1
|
Zaugg A, Sherren E, Yi R, Farnsworth A, Pauga F, Linder A, Kelly L, Takara M, Hoather M, Stump S, Behunin C, Boyack B, Tolley M, Holland K, Salmon M, Deng S, Patterson JE, Savage PB. Incorporation of Ceragenins into Medical Adhesives and Adhesive Scar Tape to Prevent Microbial Colonization Common in Healthcare-Associated Infections. Antibiotics (Basel) 2024; 13:1002. [PMID: 39596697 PMCID: PMC11591062 DOI: 10.3390/antibiotics13111002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/17/2024] [Accepted: 10/20/2024] [Indexed: 11/29/2024] Open
Abstract
Background/Objectives: Healthcare-associated infections involving surgical sites, skin trauma, and devices penetrating the skin are a frequent source of increased expense, hospitalization periods, and adverse outcomes. Medical adhesives are often employed to help protect compromised skin from infection and to secure medical devices, but adhesives can become contaminated by pathogens, exposing wounds, surgical sites, and medical devices to colonization. We aimed to incorporate ceragenins, a class of antimicrobial agents, into silicone- and polyacrylate-based adhesives with the goal of reducing adhesive contamination and subsequent infections. Methods: Three adhesives were developed and evaluated for the release of ceragenins, antimicrobial efficacy, adhesive strength, and dermal irritation. Results: Elution profiles over two weeks showed a high initial release followed by steady, long-term release. Standard microbial challenges of the adhesives by methicillin-resistant Staphylococcus aureus, Pseudomonas aeruginosa, or Candida albicans demonstrated microbial reduction for 6 to 68 days. Lap shear adhesive strength was not reduced for polyacrylate adhesives containing ceragenins, and no dermal irritation was observed in an in vivo model. Conclusions: Ceragenin-containing adhesive materials appear well suited for prevention of bacterial and fungal infections associated with medical devices and bandages.
Collapse
Affiliation(s)
- Aaron Zaugg
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA; (A.Z.); (A.F.); (M.S.); (J.E.P.)
| | - Elliot Sherren
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA; (A.Z.); (A.F.); (M.S.); (J.E.P.)
| | - Rebekah Yi
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA; (A.Z.); (A.F.); (M.S.); (J.E.P.)
| | - Alex Farnsworth
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA; (A.Z.); (A.F.); (M.S.); (J.E.P.)
| | - Fetutasi Pauga
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA; (A.Z.); (A.F.); (M.S.); (J.E.P.)
| | - Anna Linder
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA; (A.Z.); (A.F.); (M.S.); (J.E.P.)
| | - Lauren Kelly
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA
| | - Meg Takara
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA; (A.Z.); (A.F.); (M.S.); (J.E.P.)
| | - McKenna Hoather
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA; (A.Z.); (A.F.); (M.S.); (J.E.P.)
| | - Sierra Stump
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA; (A.Z.); (A.F.); (M.S.); (J.E.P.)
| | - Christine Behunin
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA; (A.Z.); (A.F.); (M.S.); (J.E.P.)
| | - Boston Boyack
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA; (A.Z.); (A.F.); (M.S.); (J.E.P.)
| | - Morgan Tolley
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA; (A.Z.); (A.F.); (M.S.); (J.E.P.)
| | - Kayla Holland
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA; (A.Z.); (A.F.); (M.S.); (J.E.P.)
| | - Morgann Salmon
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA; (A.Z.); (A.F.); (M.S.); (J.E.P.)
| | - Shenglou Deng
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA; (A.Z.); (A.F.); (M.S.); (J.E.P.)
| | - James E. Patterson
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA; (A.Z.); (A.F.); (M.S.); (J.E.P.)
| | - Paul B. Savage
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA; (A.Z.); (A.F.); (M.S.); (J.E.P.)
| |
Collapse
|
2
|
Codru IR, Vintilă BI, Sava M, Bereanu AS, Neamțu SI, Bădilă RM, Bîrluțiu V. Optimizing Diagnosis and Management of Ventilator-Associated Pneumonia: A Systematic Evaluation of Biofilm Detection Methods and Bacterial Colonization on Endotracheal Tubes. Microorganisms 2024; 12:1966. [PMID: 39458275 PMCID: PMC11509713 DOI: 10.3390/microorganisms12101966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024] Open
Abstract
Healthcare-associated infections, such as ventilator-associated pneumonia and biofilm formation on intubation cannulas, impose significant burdens on hospitals, affecting staffing, finances, and patient wellbeing, while also increasing the risk of patient mortality. We propose a research study aimed at exploring various methodologies for detecting these infections, discovered in the biofilm on medical devices, particularly tracheal cannulas, and understanding the role of each method in comprehending these infections from an etiological perspective. Our investigation also involves an analysis of the types of endotracheal tubes utilized in each case, the bacteria species identified, and strategies for combating biofilm-associated infections. The potential impact of our research is the substantial improvement of patient care through enhanced diagnosis and management of these infections.
Collapse
Affiliation(s)
- Ioana Roxana Codru
- Faculty of Medicine, Lucian Blaga University of Sibiu,550169 Sibiu, Romania; (I.R.C.); (A.S.B.); (V.B.)
- County Clinical Emergency Hospital of Sibiu, 550245 Sibiu, Romania; (S.I.N.); (R.M.B.)
| | - Bogdan Ioan Vintilă
- Faculty of Medicine, Lucian Blaga University of Sibiu,550169 Sibiu, Romania; (I.R.C.); (A.S.B.); (V.B.)
- County Clinical Emergency Hospital of Sibiu, 550245 Sibiu, Romania; (S.I.N.); (R.M.B.)
| | - Mihai Sava
- Faculty of Medicine, Lucian Blaga University of Sibiu,550169 Sibiu, Romania; (I.R.C.); (A.S.B.); (V.B.)
- County Clinical Emergency Hospital of Sibiu, 550245 Sibiu, Romania; (S.I.N.); (R.M.B.)
| | - Alina Simona Bereanu
- Faculty of Medicine, Lucian Blaga University of Sibiu,550169 Sibiu, Romania; (I.R.C.); (A.S.B.); (V.B.)
- County Clinical Emergency Hospital of Sibiu, 550245 Sibiu, Romania; (S.I.N.); (R.M.B.)
| | - Sandra Ioana Neamțu
- County Clinical Emergency Hospital of Sibiu, 550245 Sibiu, Romania; (S.I.N.); (R.M.B.)
| | - Raluca Maria Bădilă
- County Clinical Emergency Hospital of Sibiu, 550245 Sibiu, Romania; (S.I.N.); (R.M.B.)
| | - Victoria Bîrluțiu
- Faculty of Medicine, Lucian Blaga University of Sibiu,550169 Sibiu, Romania; (I.R.C.); (A.S.B.); (V.B.)
- County Clinical Emergency Hospital of Sibiu, 550245 Sibiu, Romania; (S.I.N.); (R.M.B.)
| |
Collapse
|
3
|
Enright AL, Heelan WJ, Ward RD, Peters JM. CRISPRi functional genomics in bacteria and its application to medical and industrial research. Microbiol Mol Biol Rev 2024; 88:e0017022. [PMID: 38809084 PMCID: PMC11332340 DOI: 10.1128/mmbr.00170-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024] Open
Abstract
SUMMARYFunctional genomics is the use of systematic gene perturbation approaches to determine the contributions of genes under conditions of interest. Although functional genomic strategies have been used in bacteria for decades, recent studies have taken advantage of CRISPR (clustered regularly interspaced short palindromic repeats) technologies, such as CRISPRi (CRISPR interference), that are capable of precisely modulating expression of all genes in the genome. Here, we discuss and review the use of CRISPRi and related technologies for bacterial functional genomics. We discuss the strengths and weaknesses of CRISPRi as well as design considerations for CRISPRi genetic screens. We also review examples of how CRISPRi screens have defined relevant genetic targets for medical and industrial applications. Finally, we outline a few of the many possible directions that could be pursued using CRISPR-based functional genomics in bacteria. Our view is that the most exciting screens and discoveries are yet to come.
Collapse
Affiliation(s)
- Amy L. Enright
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
- DOE Great Lakes Bioenergy Research Center University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - William J. Heelan
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Ryan D. Ward
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA
- DOE Great Lakes Bioenergy Research Center University of Wisconsin-Madison, Madison, Wisconsin, USA
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jason M. Peters
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA
- DOE Great Lakes Bioenergy Research Center University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
4
|
Otto RM, Turska-Nowak A, Brown PM, Reynolds KA. A continuous epistasis model for predicting growth rate given combinatorial variation in gene expression and environment. Cell Syst 2024; 15:134-148.e7. [PMID: 38340730 PMCID: PMC10885703 DOI: 10.1016/j.cels.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 10/13/2023] [Accepted: 01/18/2024] [Indexed: 02/12/2024]
Abstract
Quantifying and predicting growth rate phenotype given variation in gene expression and environment is complicated by epistatic interactions and the vast combinatorial space of possible perturbations. We developed an approach for mapping expression-growth rate landscapes that integrates sparsely sampled experimental measurements with an interpretable machine learning model. We used mismatch CRISPRi across pairs and triples of genes to create over 8,000 titrated changes in E. coli gene expression under varied environmental contexts, exploring epistasis in up to 22 distinct environments. Our results show that a pairwise model previously used to describe drug interactions well-described these data. The model yielded interpretable parameters related to pathway architecture and generalized to predict the combined effect of up to four perturbations when trained solely on pairwise perturbation data. We anticipate this approach will be broadly applicable in optimizing bacterial growth conditions, generating pharmacogenomic models, and understanding the fundamental constraints on bacterial gene expression. A record of this paper's transparent peer review process is included in the supplemental information.
Collapse
Affiliation(s)
- Ryan M Otto
- Green Center for Systems Biology - Lyda Hill Department of Bioinformatics, The University of Texas Southwestern Medical Center, Dallas, TX 75230, USA
| | - Agata Turska-Nowak
- Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, TX 75230, USA
| | - Philip M Brown
- Green Center for Systems Biology - Lyda Hill Department of Bioinformatics, The University of Texas Southwestern Medical Center, Dallas, TX 75230, USA
| | - Kimberly A Reynolds
- Green Center for Systems Biology - Lyda Hill Department of Bioinformatics, The University of Texas Southwestern Medical Center, Dallas, TX 75230, USA; Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, TX 75230, USA.
| |
Collapse
|
5
|
Safwan SM, Kumar N, Mehta D, Singh M, Saini V, Pandey N, Khatol S, Batheja S, Singh J, Walia P, Bajaj A. Xanthone Derivatives Enhance the Therapeutic Potential of Neomycin against Polymicrobial Gram-Negative Bacterial Infections. ACS Infect Dis 2024; 10:527-540. [PMID: 38294409 DOI: 10.1021/acsinfecdis.3c00471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Gram-negative bacterial infections are difficult to manage as many antibiotics are ineffective owing to the presence of impermeable bacterial membranes. Polymicrobial infections pose a serious threat due to the inadequate efficacy of available antibiotics, thereby necessitating the administration of antibiotics at higher doses. Antibiotic adjuvants have emerged as a boon as they can augment the therapeutic potential of available antibiotics. However, the toxicity profile of antibiotic adjuvants is a major hurdle in clinical translation. Here, we report the design, synthesis, and biological activities of xanthone-derived molecules as potential antibiotic adjuvants. Our SAR studies witnessed that the p-dimethylamino pyridine-derivative of xanthone (X8) enhances the efficacy of neomycin (NEO) against Escherichia coli and Pseudomonas aeruginosa and causes a synergistic antimicrobial effect without any toxicity against mammalian cells. Biochemical studies suggest that the combination of X8 and NEO, apart from inhibiting protein synthesis, enhances the membrane permeability by binding to lipopolysaccharide. Notably, the combination of X8 and NEO can disrupt the monomicrobial and polymicrobial biofilms and show promising therapeutic potential against a murine wound infection model. Collectively, our results unveil the combination of X8 and NEO as a suitable adjuvant therapy for the inhibition of the Gram-negative bacterial infections.
Collapse
Affiliation(s)
- Sayed Mohamad Safwan
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Third Milestone, Faridabad-Gurgaon Expressway, Faridabad 121001, Haryana, India
| | - Neeraj Kumar
- Lord Shiva College of Pharmacy, Near Civil Hospital, Sirsa 125055, Haryana, India
| | - Devashish Mehta
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Third Milestone, Faridabad-Gurgaon Expressway, Faridabad 121001, Haryana, India
| | - Mohit Singh
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Third Milestone, Faridabad-Gurgaon Expressway, Faridabad 121001, Haryana, India
| | - Varsha Saini
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Third Milestone, Faridabad-Gurgaon Expressway, Faridabad 121001, Haryana, India
| | - Nishant Pandey
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Third Milestone, Faridabad-Gurgaon Expressway, Faridabad 121001, Haryana, India
| | - Steffi Khatol
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Third Milestone, Faridabad-Gurgaon Expressway, Faridabad 121001, Haryana, India
| | - Shalini Batheja
- Lord Shiva College of Pharmacy, Near Civil Hospital, Sirsa 125055, Haryana, India
| | - Jitender Singh
- Lord Shiva College of Pharmacy, Near Civil Hospital, Sirsa 125055, Haryana, India
| | - Preeti Walia
- Lord Shiva College of Pharmacy, Near Civil Hospital, Sirsa 125055, Haryana, India
| | - Avinash Bajaj
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Third Milestone, Faridabad-Gurgaon Expressway, Faridabad 121001, Haryana, India
| |
Collapse
|
6
|
Jirillo E, Palmirotta R, Colella M, Santacroce L. A Bird's-Eye View of the Pathophysiologic Role of the Human Urobiota in Health and Disease: Can We Modulate It? PATHOPHYSIOLOGY 2024; 31:52-67. [PMID: 38390942 PMCID: PMC10885084 DOI: 10.3390/pathophysiology31010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/24/2024] Open
Abstract
For a long time, urine has been considered sterile in physiological conditions, thanks to the particular structure of the urinary tract and the production of uromodulin or Tamm-Horsfall protein (THP) by it. More recently, thanks to the development and use of new technologies, i.e., next-generation sequencing and expanded urine culture, the identification of a microbial community in the urine, the so-called urobiota, became possible. Major phyla detected in the urine are represented by Firmicutes, Bacteroidetes, Proteobacteria, and Actinobacteria. Particularly, the female urobiota is largely represented by Lactobacillus spp., which are very active against urinary pathogenic Escherichia (E.) coli (UPEC) strains via the generation of lactic acid and hydrogen peroxide. Gut dysbiosis accounts for recurrent urinary tract infections (UTIs), so-called gut-bladder axis syndrome with the formation of intracellular bacterial communities in the course of acute cystitis. However, other chronic urinary tract infections are caused by bacterial strains of intestinal derivation. Monomicrobial and polymicrobial infections account for the outcome of acute and chronic UTIs, even including prostatitis and chronic pelvic pain. E. coli isolates have been shown to be more invasive and resistant to antibiotics. Probiotics, fecal microbial transplantation, phage therapy, antimicrobial peptides, and immune-mediated therapies, even including vaccines for the treatment of UTIs, will be described.
Collapse
Affiliation(s)
- Emilio Jirillo
- Interdisciplinary Department of Medicine, Section of Microbiology and Virology, School of Medicine, University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Raffaele Palmirotta
- Interdisciplinary Department of Medicine, Section of Microbiology and Virology, School of Medicine, University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Marica Colella
- Interdisciplinary Department of Medicine, Section of Microbiology and Virology, School of Medicine, University of Bari "Aldo Moro", 70124 Bari, Italy
- Doctoral School, eCampus University, 22060 Novedrate, Italy
| | - Luigi Santacroce
- Interdisciplinary Department of Medicine, Section of Microbiology and Virology, School of Medicine, University of Bari "Aldo Moro", 70124 Bari, Italy
| |
Collapse
|
7
|
Ma F, Song J, He M, Wang X. The Antimicrobial Peptide Merecidin Inhibit the Metastasis of Triple-Negative Breast Cancer by Obstructing EMT via miR-30d-5p/Vimentin. Technol Cancer Res Treat 2024; 23:15330338241281310. [PMID: 39267432 PMCID: PMC11402084 DOI: 10.1177/15330338241281310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2024] Open
Abstract
Purpose: To investigate the inhibitory effect of antimicrobial peptide merecidin on triple-negative breast cancer (TNBC) and the mechanism of inhibiting epithelial-mesenchymal transformation (EMT) by regulating miR-30d-5p/vimentin. Methods: TNBC cell lines (MDA-MB-231, MDA-MB-468) were treated with merecidin to assess proliferation, migration, invasion ability, and EMT. Confocal laser localization was used to examine the role of merecidin and TNBC cells. The relationship between merecidin and miR-30d-5p was determined through RT-qPCR and dual-luciferase reporter gene, and the relationship between merecidin and vimentin was verified through pulling down the experiment. The effects of miR-30d-5p on the migration and invasion ability of TNBC cells were confirmed through scratch and transwell experiments. Vimentin levels, tumor volume, shape, size, and weight were observed in the MDA-MB-231 subcutaneous tumor model in nude mice. Results: merecidin inhibited the proliferation, migration, invasion, and EMT of TNBC cells. merecidin was primarily located in the cytoplasm of TNBC cells, and the expression of miR-30d-5p was low in TNBC cells. merecidin significantly up-regulated the expression of miR-30d-5p. miR-30d-5p negatively regulated vimentin. merecidin could bind to vimentin in vitro. miR-30d-5p inhibited the migration and invasion ability of TNBC cells, while vimentin promoted their migration and invasion ability. Down-regulation of miR-30d-5p or overexpression of vimentin partially counteracted the inhibitory effects of merecidin on TNBC cell migration, invasion ability, and EMT. In nude mouse tumor models, merecidin significantly suppressed tumor growth. Conclusion: Merecidin effectively blocks the EMT process and inhibits the migration and invasion of TNBC cells by regulating miR-30d-5p/vimentin.
Collapse
Affiliation(s)
- Fei Ma
- College of Laboratory Medicine, Ningxia Medical University, Yinchuan, China
| | - Jinxuan Song
- College of Laboratory Medicine, Ningxia Medical University, Yinchuan, China
| | - Min He
- College of Laboratory Medicine, Ningxia Medical University, Yinchuan, China
| | - Xiuqing Wang
- College of Laboratory Medicine, Ningxia Medical University, Yinchuan, China
| |
Collapse
|
8
|
Karasiński M, Wnorowska U, Durnaś B, Król G, Daniluk T, Skłodowski K, Głuszek K, Piktel E, Okła S, Bucki R. Ceragenins and Ceragenin-Based Core-Shell Nanosystems as New Antibacterial Agents against Gram-Negative Rods Causing Nosocomial Infections. Pathogens 2023; 12:1346. [PMID: 38003809 PMCID: PMC10674730 DOI: 10.3390/pathogens12111346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/30/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
The growing number of infections caused by multidrug-resistant bacterial strains, limited treatment options, multi-species infections, high toxicity of the antibiotics used, and an increase in treatment costs are major challenges for modern medicine. To remedy this, scientists are looking for new antibiotics and treatment methods that will effectively eradicate bacteria while continually developing different resistance mechanisms. Ceragenins are a new group of antimicrobial agents synthesized based on molecular patterns that define the mechanism of antibacterial action of natural antibacterial peptides and steroid-polyamine conjugates such as squalamine. Since ceragenins have a broad spectrum of antimicrobial activity, with little recorded ability of bacteria to develop a resistance mechanism that can bridge their mechanism of action, there are high hopes that this group of molecules can give rise to a new family of drugs effective against bacteria resistant to currently used antibiotics. Experimental data suggests that core-shell nanosystems, in which ceragenins are presented to bacterial cells on metallic nanoparticles, may increase their antimicrobial potential and reduce their toxicity. However, studies should be conducted, among others, to assess potential long-term cytotoxicity and in vivo studies to confirm their activity and stability in animal models. Here, we summarized the current knowledge on ceragenins and ceragenin-containing nanoantibiotics as potential new tools against emerging Gram-negative rods associated with nosocomial infections.
Collapse
Affiliation(s)
- Maciej Karasiński
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Mickiewicza 2C, 15-222 Bialystok, Poland; (M.K.); (U.W.); (T.D.); (K.S.)
| | - Urszula Wnorowska
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Mickiewicza 2C, 15-222 Bialystok, Poland; (M.K.); (U.W.); (T.D.); (K.S.)
| | - Bonita Durnaś
- Department of Microbiology and Immunology, Institute of Medical Science, Collegium Medicum, Jan Kochanowski University in Kielce, IX Wieków Kielc 19A, 25-317 Kielce, Poland; (B.D.); (G.K.); (K.G.)
| | - Grzegorz Król
- Department of Microbiology and Immunology, Institute of Medical Science, Collegium Medicum, Jan Kochanowski University in Kielce, IX Wieków Kielc 19A, 25-317 Kielce, Poland; (B.D.); (G.K.); (K.G.)
| | - Tamara Daniluk
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Mickiewicza 2C, 15-222 Bialystok, Poland; (M.K.); (U.W.); (T.D.); (K.S.)
| | - Karol Skłodowski
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Mickiewicza 2C, 15-222 Bialystok, Poland; (M.K.); (U.W.); (T.D.); (K.S.)
| | - Katarzyna Głuszek
- Department of Microbiology and Immunology, Institute of Medical Science, Collegium Medicum, Jan Kochanowski University in Kielce, IX Wieków Kielc 19A, 25-317 Kielce, Poland; (B.D.); (G.K.); (K.G.)
| | - Ewelina Piktel
- Independent Laboratory of Nanomedicine, Medical University of Białystok, Mickiewicza 2B, 15-222 Białystok, Poland;
| | - Sławomir Okła
- Holy Cross Oncology Center of Kielce, Artwińskiego 3, 25-734 Kielce, Poland;
| | - Robert Bucki
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Mickiewicza 2C, 15-222 Bialystok, Poland; (M.K.); (U.W.); (T.D.); (K.S.)
| |
Collapse
|
9
|
Marcut L, Mohan AG, Corneschi I, Grosu E, Paltanea G, Avram I, Badaluta AV, Vasilievici G, Nicolae CA, Ditu LM. Improving the Hydrophobicity of Plasticized Polyvinyl Chloride for Use in an Endotracheal Tube. MATERIALS (BASEL, SWITZERLAND) 2023; 16:7089. [PMID: 38005019 PMCID: PMC10672304 DOI: 10.3390/ma16227089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/26/2023] [Accepted: 10/29/2023] [Indexed: 11/26/2023]
Abstract
An endotracheal tube (ETT) is a greatly appreciated medical device at the global level with widespread application in the treatment of respiratory diseases, such as bronchitis and asthma, and in general anesthesia, to provide narcotic gases. Since an important quantitative request for cuffed ETTs was recorded during the COVID-19 pandemic, concerns about infection have risen. The plasticized polyvinyl chloride (PVC) material used to manufacture ETTs favors the attachment of microorganisms from the human biological environment and the migration of plasticizer from the polymer that feeds the microorganisms and promotes the growth of biofilms. This leads to developing infections, which means additional suffering, discomfort for patients, and increased hospital costs. In this work, we propose to modify the surfaces of some samples taken from commercial ETTs in order to develop their hydrophobic character using surface fluorination by a plasma treatment in SF6 discharge and magnetron sputtering physical evaporation from the PTFE target. Samples with surfaces thus modified were subsequently tested using XPS, ATR-FTIR, CA, SEM + EDAX, profilometry, density, Shore A hardness, TGA-DSC, and biological antimicrobial and biocompatibility properties. The obtained results demonstrate a successful increase in the hydrophobic character of the plasticized PVC samples and biocompatibility properties.
Collapse
Affiliation(s)
- Lavinia Marcut
- Faculty of Medicine and Pharmacy, University of Oradea, 10 P-ta 1 December Street, RO-410073 Oradea, Romania; (L.M.); (A.G.M.)
- Intensive Care Unit, Clinical Emergency Hospital Oradea, 65 Gheorghe Doja Street, RO-410169 Oradea, Romania
| | - Aurel George Mohan
- Faculty of Medicine and Pharmacy, University of Oradea, 10 P-ta 1 December Street, RO-410073 Oradea, Romania; (L.M.); (A.G.M.)
- Department of Neurosurgery, Clinical Emergency Hospital Oradea, 65 Gheorghe Doja Street, RO-410169 Oradea, Romania
| | - Iuliana Corneschi
- Faculty of Material Science and Engineering, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independentei, District 6, RO-060042 Bucharest, Romania;
| | - Elena Grosu
- Faculty of Material Science and Engineering, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independentei, District 6, RO-060042 Bucharest, Romania;
| | - Gheorghe Paltanea
- Faculty of Electrical Engineering, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independentei, District 6, RO-060042 Bucharest, Romania;
| | - Ionela Avram
- Faculty of Biology, Botanic and Microbiology Department, University of Bucharest, 3, Aleea Portocalelor, District 5, Grădina Botanică, RO-050095 Bucharest, Romania; (I.A.); (A.V.B.); (L.M.D.)
| | - Alexandra Valentina Badaluta
- Faculty of Biology, Botanic and Microbiology Department, University of Bucharest, 3, Aleea Portocalelor, District 5, Grădina Botanică, RO-050095 Bucharest, Romania; (I.A.); (A.V.B.); (L.M.D.)
| | - Gabriel Vasilievici
- National Institute for Research & Development in Chemistry and Petrochemistry ICECHIM, 202 Splaiul Independenței, District 6, RO-060021 Bucharest, Romania; (G.V.); (C.-A.N.)
| | - Cristian-Andi Nicolae
- National Institute for Research & Development in Chemistry and Petrochemistry ICECHIM, 202 Splaiul Independenței, District 6, RO-060021 Bucharest, Romania; (G.V.); (C.-A.N.)
| | - Lia Mara Ditu
- Faculty of Biology, Botanic and Microbiology Department, University of Bucharest, 3, Aleea Portocalelor, District 5, Grădina Botanică, RO-050095 Bucharest, Romania; (I.A.); (A.V.B.); (L.M.D.)
| |
Collapse
|
10
|
Neves AR, Freitas-Silva J, Durães F, Silva ER, Rodrigues IC, Mergulhão F, Gomes M, Teixeira-Santos R, Bernardes André M, Silva R, Remião F, Pinto E, da Costa PM, Sousa E, Correia da Silva M. Insights into the antimicrobial properties of a cationic steroid and antibiofilm performance in PDMS-based coatings to potentially treat urinary infections. J Mater Chem B 2023; 11:8697-8716. [PMID: 37646077 DOI: 10.1039/d3tb01185b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Currently, multidrug-resistant (MDR) infections are one of the most important threats, driving the search for new antimicrobial compounds. Cationic peptide antibiotics (CPAs) and ceragenins (CSAs) contain in their structures cationic groups and adopt a facially amphiphilic conformation, conferring the ability to permeate the membranes of bacteria and fungi. Keeping these features in mind, an amine steroid, DOCA-NH2, was found to be active against reference strains and MDR isolates of Gram-positive Enterococcus faecalis and Staphylococcus aureus and Gram-negative Escherichia coli and Pseudomonas aeruginosa. The compound was active against all the tested microorganisms, having bactericidal and fungicidal activity, displaying minimal inhibitory concentrations (MICs) between 16 and 128 μg mL-1. No synergy with clinically relevant antibacterial drugs was found. However, the compound was able to completely inhibit the biofilm formation of bacteria exposed to the MIC of the compound. For E. coli and E. faecalis, inhibition of biofilm formation occurred at half the MIC. Besides, DOCA-NH2 inhibited the dimorphic transition of Candida albicans at concentrations 4 times lower than the MIC, and can reduce the microorganism virulence and biofilm formation was significantly reduced at both MIC and half the MIC. Polydimethylsiloxane-based coatings containing DOCA-NH2 (0.5, 1.0, and 1.5 wt%) were prepared and tested against the E. coli biofilm formation under hydrodynamic conditions similar to those prevailing in ureteral stents. A biofilm reduction of approximately 80% was achieved when compared to the control.
Collapse
Affiliation(s)
- Ana Rita Neves
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, 4450-208, Matosinhos, Portugal
| | - Joana Freitas-Silva
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, 4450-208, Matosinhos, Portugal
- ICBAS - Institute of Biomedical Sciences Abel Salazar, Rua de Jorge Viterbo Ferreira 228, Porto, Portugal.
| | - Fernando Durães
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, 4450-208, Matosinhos, Portugal
| | - Elisabete R Silva
- BioISI - BioSystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Campo Grande, 1749-016 Lisboa, Portugal
- CERENA - Centro de Recursos Naturais e Ambiente, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1, 1049-001, Lisboa, Portugal
| | - Inês C Rodrigues
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, 4450-208, Matosinhos, Portugal
- ICBAS - Institute of Biomedical Sciences Abel Salazar, Rua de Jorge Viterbo Ferreira 228, Porto, Portugal.
| | - Filipe Mergulhão
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Marisa Gomes
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Rita Teixeira-Santos
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Maria Bernardes André
- UCIBIO-REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Renata Silva
- UCIBIO-REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Fernando Remião
- UCIBIO-REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Eugénia Pinto
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, 4450-208, Matosinhos, Portugal
- Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Paulo Martins da Costa
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, 4450-208, Matosinhos, Portugal
- ICBAS - Institute of Biomedical Sciences Abel Salazar, Rua de Jorge Viterbo Ferreira 228, Porto, Portugal.
| | - Emília Sousa
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, 4450-208, Matosinhos, Portugal
| | - Marta Correia da Silva
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, 4450-208, Matosinhos, Portugal
| |
Collapse
|
11
|
Suprewicz Ł, Szczepański A, Lenart M, Piktel E, Fiedoruk K, Barreto-Duran E, Kula-Pacurar A, Savage PB, Milewska A, Bucki R, Pyrć K. Ceragenins exhibit antiviral activity against SARS-CoV-2 by increasing the expression and release of type I interferons upon activation of the host's immune response. Antiviral Res 2023; 217:105676. [PMID: 37481038 DOI: 10.1016/j.antiviral.2023.105676] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 07/13/2023] [Accepted: 07/15/2023] [Indexed: 07/24/2023]
Abstract
The COVID-19 pandemic caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) heavily burdened the entire world socially and economically. Despite a generation of vaccines and therapeutics to confront infection, it remains a threat. Most available antivirals target viral proteins and block their activity or function. While such an approach is considered effective and safe, finding treatments for specific viruses of concern leaves us unprepared for developed resistance and future viral pandemics of unknown origin. Here, we propose ceragenins (CSAs), synthetic amphipathic molecules designed to mimic the properties of cationic antimicrobial peptides (cAMPs), as potential broad-spectrum antivirals. We show that selected CSAs exhibit antiviral activity against SARS-CoV-2 and low-pathogenic human coronaviruses 229E, OC43, and NL63. The mechanism of action of CSAs against coronaviruses is mainly attributed to the stimulation of antiviral cytokines, such as type I interferons or IL-6. Our study provides insight into a novel immunomodulatory strategy that might play an essential role during the current pandemic and future outbreaks.
Collapse
Affiliation(s)
- Łukasz Suprewicz
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, Bialystok, Poland
| | - Artur Szczepański
- Virogenetics Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Marzena Lenart
- Virogenetics Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Ewelina Piktel
- Independent Laboratory of Nanomedicine, Medical University of Bialystok, Bialystok, Poland
| | - Krzysztof Fiedoruk
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, Bialystok, Poland
| | - Emilia Barreto-Duran
- Virogenetics Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Anna Kula-Pacurar
- Virogenetics Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Paul B Savage
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA
| | - Aleksandra Milewska
- Virogenetics Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Robert Bucki
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, Bialystok, Poland.
| | - Krzysztof Pyrć
- Virogenetics Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland.
| |
Collapse
|
12
|
Prasad SV, Fiedoruk K, Zakrzewska M, Savage PB, Bucki R. Glyoxylate Shunt and Pyruvate-to-Acetoin Shift Are Specific Stress Responses Induced by Colistin and Ceragenin CSA-13 in Enterobacter hormaechei ST89. Microbiol Spectr 2023; 11:e0121523. [PMID: 37338344 PMCID: PMC10434160 DOI: 10.1128/spectrum.01215-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 06/05/2023] [Indexed: 06/21/2023] Open
Abstract
Ceragenins, including CSA-13, are cationic antimicrobials that target the bacterial cell envelope differently than colistin. However, the molecular basis of their action is not fully understood. Here, we examined the genomic and transcriptome responses by Enterobacter hormaechei after prolonged exposure to either CSA-13 or colistin. Resistance of the E. hormaechei 4236 strain (sequence type 89 [ST89]) to colistin and CSA-13 was induced in vitro during serial passages with sublethal doses of tested agents. The genomic and metabolic profiles of the tested isolates were characterized using a combination of whole-genome sequencing (WGS) and transcriptome sequencing (RNA-seq), followed by metabolic mapping of differentially expressed genes using Pathway Tools software. The exposure of E. hormaechei to colistin resulted in the deletion of the mgrB gene, whereas CSA-13 disrupted the genes encoding an outer membrane protein C and transcriptional regulator SmvR. Both compounds upregulated several colistin-resistant genes, such as the arnABCDEF operon and pagE, including genes coding for DedA proteins. The latter proteins, along with beta-barrel protein YfaZ and VirK/YbjX family proteins, were the top overexpressed cell envelope proteins. Furthermore, the l-arginine biosynthesis pathway and putrescine-ornithine antiporter PotE were downregulated in both transcriptomes. In contrast, the expression of two pyruvate transporters (YhjX and YjiY) and genes involved in pyruvate metabolism, as well as genes involved in generating proton motive force (PMF), was antimicrobial specific. Despite the similarity of the cell envelope transcriptomes, distinctly remodeled carbon metabolism (i.e., toward fermentation of pyruvate to acetoin [colistin] and to the glyoxylate pathway [CSA-13]) distinguished both antimicrobials, which possibly reflects the intensity of the stress exerted by both agents. IMPORTANCE Colistin and ceragenins, like CSA-13, are cationic antimicrobials that disrupt the bacterial cell envelope through different mechanisms. Here, we examined the genomic and transcriptome changes in Enterobacter hormaechei ST89, an emerging hospital pathogen, after prolonged exposure to these agents to identify potential resistance mechanisms. Interestingly, we observed downregulation of genes associated with acid stress response as well as distinct dysregulation of genes involved in carbon metabolism, resulting in a switch from pyruvate fermentation to acetoin (colistin) and the glyoxylate pathway (CSA-13). Therefore, we hypothesize that repression of the acid stress response, which alkalinizes cytoplasmic pH and, in turn, suppresses resistance to cationic antimicrobials, could be interpreted as an adaptation that prevents alkalinization of cytoplasmic pH in emergencies induced by colistin and CSA-13. Consequently, this alteration critical for cell physiology must be compensated via remodeling carbon and/or amino acid metabolism to limit acidic by-product production.
Collapse
Affiliation(s)
- Suhanya V. Prasad
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, Bialystok, Poland
| | - Krzysztof Fiedoruk
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, Bialystok, Poland
| | - Magdalena Zakrzewska
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, Bialystok, Poland
| | - Paul B. Savage
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah, USA
| | - Robert Bucki
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
13
|
Oyardi O, Eltimur T, Demir ES, Alkan B, Savage PB, Akcali A, Bozkurt-Guzel C. Antibacterial and Antibiofilm Activities of Ceragenins Alone and in Combination with Levofloxacin Against Multidrug Resistant Myroides spp. Clinical Isolates from Patients with Urinary Tract Infections. Curr Microbiol 2023; 80:210. [PMID: 37191731 DOI: 10.1007/s00284-023-03321-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/02/2023] [Indexed: 05/17/2023]
Abstract
Myroides spp. are rare opportunistic pathogens, but they can be life-threatening because of their multidrug-resistant drug properties and their potential to cause outbreaks, especially in immunosuppressed patients. In this study, 33 isolates isolated from intensive care patients with urinary tract infections were examined for drug susceptibility. All isolates except three proved to be resistant to the tested conventional antibiotics. The effects of ceragenins, a class of compounds developed to mimic endogenous antimicrobial peptides, were evaluated against these organisms. The MIC values of nine ceragenins were determined, and the most effective ceragenins were CSA-131 and CSA-138. Three isolates that were susceptible to levofloxacin and two isolates resistant to all antibiotics underwent 16 s rDNA analysis, and whereas resistant isolates were identified as M. odoratus, susceptible isolates were identified as M. odoratimimus. CSA-131 and CSA-138 showed rapid antimicrobial effects observed in time-kill analyses. Combinations of ceragenins and levofloxacin caused a significant increase in antimicrobial and antibiofilm activities against M. odoratimimus isolates. In this study, Myroides spp. were found to be multidrug-resistant and have biofilm forming capacity, and ceragenins CSA-131 and CSA-138 were found to be especially effective on both planktonic and biofilm forms of Myroides spp.
Collapse
Affiliation(s)
- Ozlem Oyardi
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Gazi University, 06330, Ankara, Turkey.
| | - Tuba Eltimur
- Department of Medical Microbiology, Faculty of Medicine, Canakkale Onsekiz Mart University, Terzioglu Campus, 17100, Canakkale, Turkey
| | - Elif Sena Demir
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Istanbul University, 34116, Istanbul, Turkey
| | - Busra Alkan
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Istanbul University, 34116, Istanbul, Turkey
| | - Paul B Savage
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, 84602, USA
| | - Alper Akcali
- Department of Medical Microbiology, Faculty of Medicine, Canakkale Onsekiz Mart University, Terzioglu Campus, 17100, Canakkale, Turkey
| | - Cagla Bozkurt-Guzel
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Istanbul University, 34116, Istanbul, Turkey
| |
Collapse
|
14
|
Ou Y, Zhuang H, Chen R, Huang D, Wang C. Secretory Expression and Application of Antilipopolysaccharide Factor 3 in Chlamydomonas reinhardtii. Bioengineering (Basel) 2023; 10:bioengineering10050564. [PMID: 37237634 DOI: 10.3390/bioengineering10050564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/02/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
Anti-lipopolysaccharide factor is a class of antimicrobial peptides with lipopolysaccharide-binding structural domains, which has a broad antimicrobial spectrum, high antimicrobial activities, and broad application prospects in terms of the aquaculture industry. However, the low yield of natural antimicrobial peptides and their poor expression activity in bacteria and yeast have hindered their exploration and utilization. Therefore, in this study, the extracellular expression system of Chlamydomonas reinhardtii, by fusing the target gene with the signal peptide, was used to express anti-lipopolysaccharide factor 3 (ALFPm3) from Penaeus monodon in order to obtain highly active ALFPm3. Transgenic C. reinhardtii T-JiA2, T-JiA3, T-JiA5, and T-JiA6, were verified using DNA-PCR, RT-PCR, and immunoblot. Additionally, the IBP1-ALFPm3 fusion protein could be detected not only within the cells but also in the culture supernatant. Moreover, the extracellular secretion containing ALFPm3 was collected from algal cultures, and then its bacterial inhibitory activity was analyzed. The results showed that the extracts from T-JiA3 had an inhibition rate of 97% against four common aquaculture pathogenic bacteria, including Vibrio harveyi, Vibrio anguillarum, Vibrio alginolyticus, and Vibrio parahaemolyticus. The highest inhibition rate of 116.18% was observed in the test against V. anguillarum. Finally, the minimum inhibition concentration (MIC) of the extracts from T-JiA3 to V. harveyi, V. anguillarum, V. alginolyticus, and V. parahaemolyticus were 0.11 μg/μL, 0.088 μg/μL, 0.11 μg/μL, and 0.011 μg/μL, respectively. This study supports the foundation of the expression of highly active anti-lipopolysaccharide factors using the extracellular expression system in C. reinhardtii, providing new ideas for the expression of highly active antimicrobial peptides.
Collapse
Affiliation(s)
- Yaohui Ou
- Guangdong Technology Research Center for Marine Algal Bioengineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
- Shenzhen Engineering Laboratory for Marine Algal Biological Development and Application, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Huilin Zhuang
- Guangdong Technology Research Center for Marine Algal Bioengineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
- Shenzhen Engineering Laboratory for Marine Algal Biological Development and Application, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Ruoyu Chen
- Guangdong Technology Research Center for Marine Algal Bioengineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
- Shenzhen Engineering Laboratory for Marine Algal Biological Development and Application, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Danqiong Huang
- Guangdong Technology Research Center for Marine Algal Bioengineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
- Shenzhen Engineering Laboratory for Marine Algal Biological Development and Application, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
- Laboratory of Marine Bioresource & Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Chaogang Wang
- Guangdong Technology Research Center for Marine Algal Bioengineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
- Shenzhen Engineering Laboratory for Marine Algal Biological Development and Application, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
- Laboratory of Marine Bioresource & Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
15
|
Steadman W, Chapman PR, Schuetz M, Schmutz B, Trampuz A, Tetsworth K. Local Antibiotic Delivery Options in Prosthetic Joint Infection. Antibiotics (Basel) 2023; 12:752. [PMID: 37107114 PMCID: PMC10134995 DOI: 10.3390/antibiotics12040752] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/03/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Prosthetic Joint Infection (PJI) causes significant morbidity and mortality for patients globally. Delivery of antibiotics to the site of infection has potential to improve the treatment outcomes and enhance biofilm eradication. These antibiotics can be delivered using an intra-articular catheter or combined with a carrier substance to enhance pharmacokinetic properties. Carrier options include non-resorbable polymethylmethacrylate (PMMA) bone cement and resorbable calcium sulphate, hydroxyapatite, bioactive glass, and hydrogels. PMMA allows for creation of structural spacers used in multi-stage revision procedures, however it requires subsequent removal and antibiotic compatibility and the levels delivered are variable. Calcium sulphate is the most researched resorbable carrier in PJI, but is associated with wound leakage and hypercalcaemia, and clinical evidence for its effectiveness remains at the early stage. Hydrogels provide a versatile combability with antibiotics and adjustable elution profiles, but clinical usage is currently limited. Novel anti-biofilm therapies include bacteriophages which have been used successfully in small case series.
Collapse
Affiliation(s)
- William Steadman
- Jamieson Trauma Institute, Royal Brisbane and Women’s Hospital, Herston, Brisbane 4029, Australia
- Department of Orthopaedics, Royal Brisbane and Women’s Hospital, Herston, Brisbane 4029, Australia
- Faculty of Health, Queensland University of Technology, Brisbane 4059, Australia
| | - Paul R. Chapman
- Jamieson Trauma Institute, Royal Brisbane and Women’s Hospital, Herston, Brisbane 4029, Australia
- Herston Infectious Disease Institute, Royal Brisbane and Women’s Hospital, Herston, Brisbane 4029, Australia
- Department of Infectious Diseases, Royal Brisbane and Women’s Hospital, Herston, Brisbane 4029, Australia
| | - Michael Schuetz
- Jamieson Trauma Institute, Royal Brisbane and Women’s Hospital, Herston, Brisbane 4029, Australia
- Department of Orthopaedics, Royal Brisbane and Women’s Hospital, Herston, Brisbane 4029, Australia
- Faculty of Health, Queensland University of Technology, Brisbane 4059, Australia
| | - Beat Schmutz
- Jamieson Trauma Institute, Royal Brisbane and Women’s Hospital, Herston, Brisbane 4029, Australia
- School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane 4000, Australia
- Centre for Biomedical Technologies, Queensland University of Technology, Brisbane 4059, Australia
- Australian Research Council Training Centre for Multiscale 3D Imaging, Modelling, and Manufacturing, Queensland University of Technology, Brisbane 4059, Australia
| | - Andrej Trampuz
- Center for Musculoskeletal Surgery, Septic Unit Charité-Universitätsmedizin, 10117 Berlin, Germany
| | - Kevin Tetsworth
- Department of Orthopaedics, Royal Brisbane and Women’s Hospital, Herston, Brisbane 4029, Australia
- School of Medicine, University of Queensland, Brisbane 4029, Australia
| |
Collapse
|
16
|
Hodak CR, Bescucci DM, Shamash K, Kelly LC, Montina T, Savage PB, Inglis GD. Antimicrobial Growth Promoters Altered the Function but Not the Structure of Enteric Bacterial Communities in Broiler Chicks ± Microbiota Transplantation. Animals (Basel) 2023; 13:ani13060997. [PMID: 36978538 PMCID: PMC10044420 DOI: 10.3390/ani13060997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/28/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023] Open
Abstract
Non-antibiotic alternatives to antimicrobial growth promoters (AGPs) are required, and understanding the mode of action of AGPs may facilitate the development of effective alternatives. The temporal impact of the conventional antibiotic AGP, virginiamycin, and an AGP alternative, ceragenin (CSA-44), on the structure and function of the broiler chicken cecal microbiota was determined using next-generation sequencing and 1H-nuclear magnetic resonance spectroscopy (NMR)-based metabolomics. To elucidate the impact of enteric bacterial diversity, oral transplantation (±) of cecal digesta into 1-day-old chicks was conducted. Microbiota transplantation resulted in the establishment of a highly diverse cecal microbiota in recipient chicks that did not change between day 10 and day 15 post-hatch. Neither virginiamycin nor CSA-44 influenced feed consumption, weight gain, or feed conversion ratio, and did not affect the structure of the cecal microbiota in chicks possessing a low or high diversity enteric microbiota. However, metabolomic analysis of the cecal contents showed that the metabolome of cecal digesta was affected in birds administered virginiamycin and CSA-44 as a function of bacterial community diversity. As revealed by metabolomics, glycolysis-related metabolites and amino acid synthesis pathways were impacted by virginiamycin and CSA-44. Thus, the administration of AGPs did not influence bacterial community structure but did alter the function of enteric bacterial communities. Hence, alterations to the functioning of the enteric microbiota in chickens may be the mechanism by which AGPs impart beneficial health benefits, and this possibility should be examined in future research.
Collapse
Affiliation(s)
- Colten R. Hodak
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada
| | - Danisa M. Bescucci
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada
| | - Karen Shamash
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada
| | - Laisa C. Kelly
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada
| | - Tony Montina
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
- Southern Alberta Genome Sciences Centre, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Paul B. Savage
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA
| | - G. Douglas Inglis
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada
- Correspondence:
| |
Collapse
|
17
|
Lu F, Zhu Y, Zhang G, Liu Z. Renovation as innovation: Repurposing human antibacterial peptide LL-37 for cancer therapy. Front Pharmacol 2022; 13:944147. [PMID: 36081952 PMCID: PMC9445486 DOI: 10.3389/fphar.2022.944147] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 07/22/2022] [Indexed: 01/10/2023] Open
Abstract
In many organisms, antimicrobial peptides (AMPs) display wide activities in innate host defense against microbial pathogens. Mammalian AMPs include the cathelicidin and defensin families. LL37 is the only one member of the cathelicidin family of host defense peptides expressed in humans. Since its discovery, it has become clear that they have pleiotropic effects. In addition to its antibacterial properties, many studies have shown that LL37 is also involved in a wide variety of biological activities, including tissue repair, inflammatory responses, hemotaxis, and chemokine induction. Moreover, recent studies suggest that LL37 exhibits the intricate and contradictory effects in promoting or inhibiting tumor growth. Indeed, an increasing amount of evidence suggests that human LL37 including its fragments and analogs shows anticancer effects on many kinds of cancer cell lines, although LL37 is also involved in cancer progression. Focusing on recent information, in this review, we explore and summarize how LL37 contributes to anticancer effect as well as discuss the strategies to enhance delivery of this peptide and selectivity for cancer cells.
Collapse
|
18
|
Johnstone KF, Herzberg MC. Antimicrobial peptides: Defending the mucosal epithelial barrier. FRONTIERS IN ORAL HEALTH 2022; 3:958480. [PMID: 35979535 PMCID: PMC9376388 DOI: 10.3389/froh.2022.958480] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 06/30/2022] [Indexed: 11/13/2022] Open
Abstract
The recent epidemic caused by aerosolized SARS-CoV-2 virus illustrates the importance and vulnerability of the mucosal epithelial barrier against infection. Antimicrobial proteins and peptides (AMPs) are key to the epithelial barrier, providing immunity against microbes. In primitive life forms, AMPs protect the integument and the gut against pathogenic microbes. AMPs have also evolved in humans and other mammals to enhance newer, complex innate and adaptive immunity to favor the persistence of commensals over pathogenic microbes. The canonical AMPs are helictical peptides that form lethal pores in microbial membranes. In higher life forms, this type of AMP is exemplified by the defensin family of AMPs. In epithelial tissues, defensins, and calprotectin (complex of S100A8 and S100A9) have evolved to work cooperatively. The mechanisms of action differ. Unlike defensins, calprotectin sequesters essential trace metals from microbes, which inhibits growth. This review focuses on defensins and calprotectin as AMPs that appear to work cooperatively to fortify the epithelial barrier against infection. The antimicrobial spectrum is broad with overlap between the two AMPs. In mice, experimental models highlight the contribution of both AMPs to candidiasis as a fungal infection and periodontitis resulting from bacterial dysbiosis. These AMPs appear to contribute to innate immunity in humans, protecting the commensal microflora and restricting the emergence of pathobionts and pathogens. A striking example in human innate immunity is that elevated serum calprotectin protects against neonatal sepsis. Calprotectin is also remarkable because of functional differences when localized in epithelial and neutrophil cytoplasm or released into the extracellular environment. In the cytoplasm, calprotectin appears to protect against invasive pathogens. Extracellularly, calprotectin can engage pathogen-recognition receptors to activate innate immune and proinflammatory mechanisms. In inflamed epithelial and other tissue spaces, calprotectin, DNA, and histones are released from degranulated neutrophils to form insoluble antimicrobial barriers termed neutrophil extracellular traps. Hence, calprotectin and other AMPs use several strategies to provide microbial control and stimulate innate immunity.
Collapse
Affiliation(s)
| | - Mark C. Herzberg
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|