1
|
Pereira LMS, Taveira IC, Maués DB, de Paula RG, Silva RN. Advances in fungal sugar transporters: unlocking the potential of second-generation bioethanol production. Appl Microbiol Biotechnol 2025; 109:19. [PMID: 39841260 PMCID: PMC11754382 DOI: 10.1007/s00253-025-13408-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/09/2025] [Accepted: 01/11/2025] [Indexed: 01/23/2025]
Abstract
Second-generation (2G) bioethanol production, derived from lignocellulosic biomass, has emerged as a sustainable alternative to fossil fuels by addressing growing energy demands and environmental concerns. Fungal sugar transporters (STs) play a critical role in this process, enabling the uptake of monosaccharides such as glucose and xylose, which are released during the enzymatic hydrolysis of biomass. This mini-review explores recent advances in the structural and functional characterization of STs in filamentous fungi and yeasts, highlighting their roles in processes such as cellulase induction, carbon catabolite repression, and sugar signaling pathways. The review also emphasizes the potential of genetic engineering to enhance the specificity and efficiency of these transporters, overcoming challenges such as substrate competition and limited pentose metabolism in industrial strains. By integrating the latest research findings, this work underscores the pivotal role of fungal STs in optimizing lignocellulosic bioethanol production and advancing the bioeconomy. Future prospects for engineering transport systems and their implications for industrial biotechnology are also discussed. KEY POINTS: STs present a conserved structure with different sugar affinities STs are involved in the signaling and transport of sugars derived from plant biomass Genetic engineering of STs can improve 2G bioethanol production.
Collapse
Affiliation(s)
- Lucas Matheus Soares Pereira
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | - Iasmin Cartaxo Taveira
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | - David Batista Maués
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | - Renato Graciano de Paula
- Department of Physiological Sciences, Health Sciences Centre, Federal University of Espirito Santo, Vitória, ES, 29047-105, Brazil
- National Institute of Science and Technology in Human Pathogenic Fungi, São Paulo, Brazil
| | - Roberto N Silva
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil.
- National Institute of Science and Technology in Human Pathogenic Fungi, São Paulo, Brazil.
| |
Collapse
|
2
|
Wang C, Li P, Cong W, Ma N, Zhou M, Hou Y. The transcription factor FgCreA modulates ergosterol biosynthesis and sensitivity to DMI fungicides by regulating transcription of FgCyp51A and FgErg6A in Fusarium graminearum. Int J Biol Macromol 2025; 284:137903. [PMID: 39581416 DOI: 10.1016/j.ijbiomac.2024.137903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 11/15/2024] [Accepted: 11/19/2024] [Indexed: 11/26/2024]
Abstract
Fusarium head blight (FHB), caused by Fusarium graminearum, is a devastating disease that severely affects crop yield and quality worldwide. The catabolite responsive elements A (CreA) plays a critical role in numerous cellular processes in eukaryotes. In this study, we performed a functional characterization of CreA in F. graminearum. Deletion of FgCreA led to the transcriptional upregulation of FgCyp51A and FgErg6A, consequently resulting in elevated levels of ergosterol. This augmented ergosterol content was observed to improve cellular membrane integrity and diminished sensitivity to demethylation inhibitors (DMI) fungicides in F. graminearum. FgCreA is an essential element in carbon catabolite repression (CCR), consequently, the ΔFgcreA mutant was compromised in radial growth on various carbon sources, sexual/asexual development, and deoxynivalenol toxin biosynthesis, which was suppressed due to transcriptional downregulation of the biosynthesis-required enzymes. These results unveil a novel regulatory mechanism of FgCreA, influencing both the pathogenicity of F. graminearum and its sensitivity to DMI fungicides.
Collapse
Affiliation(s)
- Chenguang Wang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Pengfei Li
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Weiwei Cong
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Niu Ma
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Mingguo Zhou
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yiping Hou
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu, China.
| |
Collapse
|
3
|
Liu Z, Ma K, Zhang P, Zhang S, Song X, Qin Y. F-box protein Fbx23 acts as a transcriptional coactivator to recognize and activate transcription factor Ace1. PLoS Genet 2025; 21:e1011539. [PMID: 39836692 PMCID: PMC11750091 DOI: 10.1371/journal.pgen.1011539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 12/11/2024] [Indexed: 01/23/2025] Open
Abstract
Protein ubiquitination is usually coupled with proteasomal degradation and is crucial in regulating protein quality. The E3 ubiquitin-protein ligase SCF (Skp1-Cullin-F-box) complex directly recognizes the target substrate via interaction between the F-box protein and the substrate. F-box protein is the determinant of substrate specificity. The limited number of identified ubiquitin ligase-substrate pairs is a major bottleneck in the ubiquitination field. Penicillium oxalicum contains many transcription factors, such as BrlA, CreA, XlnR, and Ace1, conserved in filamentous fungi that regulate the fungal development and transcription of (hemi)cellulase genes. Transcription factor Ace1 (also known as SltA) positively correlated with fungal growth and conidiation and negatively correlated with the expression of (hemi)cellulase genes. A ubiquitin ligase-substrate pair, SCFFbx23-Ace1, is identified in P. oxalicum. Most of PoFbx23 is present in free form within the nucleus. A small portion of PoFbx23 associates with Skp1 to form PoFbx23-Skp1 heterodimer or assembles with the three invariable core components (Skp1, Cul1, and Rbx1) of SCF to form the SCFFbx23 complex. Under glucose signal, PoFbx23 absence (Δfbx23) results in decreased transcription levels of the brlA gene which encodes the master regulator for asexual development and six spore pigmentation genes (abrB→abrA→aygB→arpA→arpB→albA) which encode the proteins in the dihydroxynaphthalene-melanin pathway, along with impaired conidiation. Under cellulose signal, transcription levels of (hemi)cellulase genes in the Δfbx23 mutant are significantly upregulated. When PoFbx23 is present, PoAce1 exists as a full-length version and several low-molecular-weight degraded versions. PoAce1 has polyubiquitin modification. Deleting the Pofbx23 gene does not affect Poace1 gene transcription but results in the remarkable accumulation of all versions of the PoAce1 protein. Accumulated PoAce1 protein is a dysfunctional form that no longer binds promoters of the target gene, including the cellulase genes cbh1 and eg1, the hemicellulase gene xyn11A, and the pigmentation-related gene abrB. PoFbx23 acts as a transcriptional coactivator, recognizing and activating PoAce1, allowing the latter to regulate the transcription of target genes with different effects (activating or repressing) under different signals.
Collapse
Affiliation(s)
- Zhongjiao Liu
- National Glycoengineering Research Center, Shandong University, Qingdao, China
| | - Kexuan Ma
- National Glycoengineering Research Center, Shandong University, Qingdao, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Panpan Zhang
- National Glycoengineering Research Center, Shandong University, Qingdao, China
| | - Siqi Zhang
- National Glycoengineering Research Center, Shandong University, Qingdao, China
| | - Xin Song
- National Glycoengineering Research Center, Shandong University, Qingdao, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Yuqi Qin
- National Glycoengineering Research Center, Shandong University, Qingdao, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| |
Collapse
|
4
|
Ning YN, Tian D, Zhao S, Feng JX. Regulation of genes encoding polysaccharide-degrading enzymes in Penicillium. Appl Microbiol Biotechnol 2024; 108:16. [PMID: 38170318 DOI: 10.1007/s00253-023-12892-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/02/2023] [Accepted: 10/10/2023] [Indexed: 01/05/2024]
Abstract
Penicillium fungi, including Penicillium oxalicum, can secrete a range of efficient plant-polysaccharide-degrading enzymes (PPDEs) that is very useful for sustainable bioproduction, using renewable plant biomass as feedstock. However, the low efficiency and high cost of PPDE production seriously hamper the industrialization of processes based on PPDEs. In Penicillium, the expression of PPDE genes is strictly regulated by a complex regulatory system and molecular breeding to modify this system is a promising way to improve fungal PPDE yields. In this mini-review, we present an update on recent research progress concerning PPDE distribution and function, the regulatory mechanism of PPDE biosynthesis, and molecular breeding to produce PPDE-hyperproducing Penicillium strains. This review will facilitate future development of fungal PPDE production through metabolic engineering and synthetic biology, thereby promoting PPDE industrial biorefinery applications. KEY POINTS: • This mini review summarizes PPDE distribution and function in Penicillium. • It updates progress on the regulatory mechanism of PPDE biosynthesis in Penicillium. • It updates progress on breeding of PPDE-hyperproducing Penicillium strains.
Collapse
Affiliation(s)
- Yuan-Ni Ning
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, Guangxi, 530004, People's Republic of China
| | - Di Tian
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, Guangxi, 530004, People's Republic of China
| | - Shuai Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, Guangxi, 530004, People's Republic of China.
| | - Jia-Xun Feng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, Guangxi, 530004, People's Republic of China.
| |
Collapse
|
5
|
Wang Y, Xu D, Yu B, Lian Q, Huang J. Combined Transcriptome and Metabolome Analysis Reveals That Carbon Catabolite Repression Governs Growth and Pathogenicity in Verticillium dahliae. Int J Mol Sci 2024; 25:11575. [PMID: 39519126 PMCID: PMC11546859 DOI: 10.3390/ijms252111575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/10/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024] Open
Abstract
Carbon catabolite repression (CCR) is a common transcriptional regulatory mechanism that microorganisms use to efficiently utilize carbon nutrients, which is critical for the fitness of microorganisms and for pathogenic species to cause infection. Here, we characterized two CCR genes, VdCreA and VdCreC, in Verticillium dahliae that cause cotton Verticillium wilt disease. The VdCreA and VdCreC knockout mutants displayed slow growth with decreased conidiation and microsclerotium production and reduced virulence to cotton, suggesting that VdCreA and VdCreC are involved in growth and pathogenicity in V. dahliae. We further generated 36 highly reliable and stable ΔVdCreA and ΔVdCreC libraries to comprehensively explore the dynamic expression of genes and metabolites when grown under different carbon sources and CCR conditions. Based on the weighted gene co-expression network analysis (WGCNA) and correlation networks, VdCreA is co-expressed with a multitude of downregulated genes. These gene networks span multiple functional pathways, among which seven genes, including PYCR (pyrroline-5-carboxylate reductase), are potential target genes of VdCreA. Different carbon source conditions triggered entirely distinct gene regulatory networks, yet they exhibited similar changes in metabolic pathways. Six genes, including 6-phosphogluconolactonase and 2-ODGH (2-oxoglutarate dehydrogenase E1), may serve as hub genes in this process. Both VdCreA and VdCreC could comprehensively influence the expression of plant cell wall-degrading enzyme (PCWDE) genes, suggesting that they have a role in pathogenicity in V. dahliae. The integrated expression profiles of the genes and metabolites involved in the glycolysis/gluconeogenesis and pentose phosphate pathways showed that the two major sugar metabolism-related pathways were completely changed, and GADP (glyceraldehyde-3-phosphate) may be a pivotal factor for CCR under different carbon sources. All these results provide a more comprehensive perspective for further analyzing the role of Cre in CCR.
Collapse
Affiliation(s)
| | | | | | - Qinggui Lian
- Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization, College of Agriculture, Shihezi University, Shihezi 832000, China; (Y.W.); (D.X.); (B.Y.)
| | - Jiafeng Huang
- Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization, College of Agriculture, Shihezi University, Shihezi 832000, China; (Y.W.); (D.X.); (B.Y.)
| |
Collapse
|
6
|
Hu Y, Dong H, Chen H, Shen X, Li H, Wen Q, Wang F, Qi Y, Shen J. PoSnf1 affects cellulose utilization through interaction with cellobiose transporter in Pleurotus ostreatus. Int J Biol Macromol 2024; 275:133503. [PMID: 38944091 DOI: 10.1016/j.ijbiomac.2024.133503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/07/2024] [Accepted: 06/26/2024] [Indexed: 07/01/2024]
Abstract
Pleurotus ostreatus is one of the most cultivated edible fungi worldwide, but its lignocellulose utilization efficiency is relatively low (<50 %), which eventually affects the biological efficiency of P. ostreatus. Improving cellulase production and activity will contribute to enhancing the lignocellulose-degrading capacity of P. ostreatus. AMP-activated/Snf1 protein kinase plays important roles in regulating carbon and energy metabolism. The Snf1 homolog (PoSnf1) in P. ostreatus was obtained and analyzed using bioinformatics. The cellulose response of PoSnf1, the effect of the phosphorylation level of PoSnf1 on the expression of cellulose degradation-related genes, the putative proteins that interact with the phosphorylated PoSnf1 (P-PoSnf1), the cellobiose transport function of two sugar transporters (STP1 and STP2), and the interactions between PoSnf1 and STP1/STP2 were studied in this research. We found that cellulose treatment improved the phosphorylation level of PoSnf1, which further affected cellulase activity and the expression of most cellulose degradation-related genes. A total of 1, 024 proteins putatively interacting with P-PoSnf1 were identified, and they were enriched mainly in the substances transport and metabolism. Most of the putative cellulose degradation-related protein-coding genes could respond to cellulose. Among the P-PoSnf1-interacting proteins, the functions of two sugar transporters (STP1 and STP2) were further studied, and the results showed that both could transport cellobiose and were indirectly regulated by P-PoSnf1, and that STP2 could directly interact with PoSnf1. The results of this study indicated that PoSnf1 plays an important role in regulating the expression of cellulose degradation genes possibly by affecting cellobiose transport.
Collapse
Affiliation(s)
- Yanru Hu
- Key Laboratory of Agricultural Microbial Enzyme Engineering, Ministry of Agriculture, Rural Department, College of Life Sciences, Henan Agricultural University, Henan, Zhengzhou 450002, People's Republic of China
| | - Haozhe Dong
- Key Laboratory of Agricultural Microbial Enzyme Engineering, Ministry of Agriculture, Rural Department, College of Life Sciences, Henan Agricultural University, Henan, Zhengzhou 450002, People's Republic of China
| | - Haolan Chen
- Key Laboratory of Agricultural Microbial Enzyme Engineering, Ministry of Agriculture, Rural Department, College of Life Sciences, Henan Agricultural University, Henan, Zhengzhou 450002, People's Republic of China
| | - Xiaoye Shen
- College of Food Science and Technology, Henan Agricultural University, Henan, Zhengzhou 450002, People's Republic of China
| | - Huihui Li
- Key Laboratory of Agricultural Microbial Enzyme Engineering, Ministry of Agriculture, Rural Department, College of Life Sciences, Henan Agricultural University, Henan, Zhengzhou 450002, People's Republic of China
| | - Qing Wen
- Key Laboratory of Agricultural Microbial Enzyme Engineering, Ministry of Agriculture, Rural Department, College of Life Sciences, Henan Agricultural University, Henan, Zhengzhou 450002, People's Republic of China.
| | - Fengqin Wang
- Key Laboratory of Agricultural Microbial Enzyme Engineering, Ministry of Agriculture, Rural Department, College of Life Sciences, Henan Agricultural University, Henan, Zhengzhou 450002, People's Republic of China
| | - Yuancheng Qi
- Key Laboratory of Agricultural Microbial Enzyme Engineering, Ministry of Agriculture, Rural Department, College of Life Sciences, Henan Agricultural University, Henan, Zhengzhou 450002, People's Republic of China
| | - Jinwen Shen
- Key Laboratory of Agricultural Microbial Enzyme Engineering, Ministry of Agriculture, Rural Department, College of Life Sciences, Henan Agricultural University, Henan, Zhengzhou 450002, People's Republic of China.
| |
Collapse
|
7
|
Shangguan J, Qiao J, Liu H, Zhu L, Han X, Shi L, Zhu J, Liu R, Ren A, Zhao M. The CBS/H 2S signalling pathway regulated by the carbon repressor CreA promotes cellulose utilization in Ganoderma lucidum. Commun Biol 2024; 7:466. [PMID: 38632386 PMCID: PMC11024145 DOI: 10.1038/s42003-024-06180-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 04/10/2024] [Indexed: 04/19/2024] Open
Abstract
Cellulose is an important abundant renewable resource on Earth, and the microbial cellulose utilization mechanism has attracted extensive attention. Recently, some signalling molecules have been found to regulate cellulose utilization and the discovery of underlying signals has recently attracted extensive attention. In this paper, we found that the hydrogen sulfide (H2S) concentration under cellulose culture condition increased to approximately 2.3-fold compared with that under glucose culture condition in Ganoderma lucidum. Further evidence shown that cellulase activities of G. lucidum were improved by 18.2-27.6% through increasing H2S concentration. Then, we observed that the carbon repressor CreA inhibited H2S biosynthesis in G. lucidum by binding to the promoter of cbs, a key gene for H2S biosynthesis, at "CTGGGG". In our study, we reported for the first time that H2S increased the cellulose utilization in G. lucidum, and analyzed the mechanism of H2S biosynthesis induced by cellulose. This study not only enriches the understanding of the microbial cellulose utilization mechanism but also provides a reference for the analysis of the physiological function of H2S signals.
Collapse
Affiliation(s)
- Jiaolei Shangguan
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs; Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
| | - Jinjin Qiao
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs; Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
| | - He Liu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs; Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
| | - Lei Zhu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs; Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
| | - Xiaofei Han
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs; Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
| | - Liang Shi
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs; Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
| | - Jing Zhu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs; Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
| | - Rui Liu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs; Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
| | - Ang Ren
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs; Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
| | - Mingwen Zhao
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs; Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China.
| |
Collapse
|
8
|
Nong Y, Wang F, Shuai F, Chen S. Morphology, Development, and Pigment Production of Talaromyces marneffei are Diversely Modulated Under Physiologically Relevant Growth Conditions. Curr Microbiol 2024; 81:119. [PMID: 38526674 DOI: 10.1007/s00284-024-03623-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 01/22/2024] [Indexed: 03/27/2024]
Abstract
Talaromyces marneffei is an opportunistic pathogenic fungus that mainly affects HIV-positive individuals endemic to Southeast Asia and China. Increasing efforts have been made in the pathogenic mechanism and host interactions understanding of this pathogen in the last two decades; however, there are still no conclusions on how T. marneffei was transmitted from the donor bamboo rats to humans. A perception that the failure of fungus isolation from soil was attributed to the low salt tolerance of T. marneffei. Therefore, the effect of environmental fluctuations in fungal growth and development is fundamental for the characterization of its origin and fungal biology understanding. Herein, we characterized high osmolarity, pH, metal ions, nutrients, and oxidative stress have versatile effects on T. marneffei hyphal or yeast growth, conidia generation, and pigment production. Among these, high pH, low glucose amounts, and the inorganic nitrogen ammonium tartrate stimulated the red pigment production, whereas high osmolarity, high pH, and the inorganic nitrogen sodium nitrate could significantly accelerate the conidia generation. Specifically, zinc starvation repressed conidia generation and prevented the wrinkled yeast colony formation, indicating the function of zinc regulators in pathogenicity regulation. Since conidia are recognized as the infectious propagules, the effects characterization of different environmental factors in T. marneffei morphology in this work will not only expand the growth and pathogenic biology understanding of the fungus but also provide more clues for the T. marneffei infection transmission origin investigation.
Collapse
Affiliation(s)
- Yuan Nong
- Guangxi University of Chinese Medicine, Nanning, 530200, Guangxi, China
| | - Fang Wang
- Intensive Care Unit, Shenzhen Key Laboratory of Microbiology in Genomic Modification & Editing and Application, Shenzhen University Medical School, Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, 518035, Shenzhen, China.
| | - Feifei Shuai
- Intensive Care Unit, Shenzhen Key Laboratory of Microbiology in Genomic Modification & Editing and Application, Shenzhen University Medical School, Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, 518035, Shenzhen, China
| | - Shi Chen
- Guangxi University of Chinese Medicine, Nanning, 530200, Guangxi, China.
- Intensive Care Unit, Shenzhen Key Laboratory of Microbiology in Genomic Modification & Editing and Application, Shenzhen University Medical School, Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, 518035, Shenzhen, China.
| |
Collapse
|
9
|
Abrashev R, Krumova E, Petrova P, Eneva R, Dishliyska V, Gocheva Y, Engibarov S, Miteva-Staleva J, Spasova B, Kolyovska V, Angelova M. Glucose Catabolite Repression Participates in the Regulation of Sialidase Biosynthesis by Antarctic Strain Penicillium griseofulvum P29. J Fungi (Basel) 2024; 10:241. [PMID: 38667912 PMCID: PMC11051313 DOI: 10.3390/jof10040241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024] Open
Abstract
Sialidases (neuraminidases) catalyze the removal of terminal sialic acid residues from glycoproteins. Novel enzymes from non-clinical isolates are of increasing interest regarding their application in the food and pharmaceutical industry. The present study aimed to evaluate the participation of carbon catabolite repression (CCR) in the regulation of cold-active sialidase biosynthesis by the psychrotolerant fungal strain Penicillium griseofulvum P29, isolated from Antarctica. The presence of glucose inhibited sialidase activity in growing and non-growing fungal mycelia in a dose- and time-dependent manner. The same response was demonstrated with maltose and sucrose. The replacement of glucose with glucose-6-phosphate also exerted CCR. The addition of cAMP resulted in the partial de-repression of sialidase synthesis. The CCR in the psychrotolerant strain P. griseofulvum P29 did not depend on temperature. Sialidase might be subject to glucose repression by both at 10 and 25 °C. The fluorescent assay using 4MU-Neu5Ac for enzyme activity determination under increasing glucose concentrations evidenced that CCR may have a regulatory role in sialidase production. The real-time RT-PCR experiments revealed that the sialidase gene was subject to glucose repression. To our knowledge, this is the first report that has studied the effect of CCR on cold-active sialidase, produced by an Antarctic strain.
Collapse
Affiliation(s)
- Radoslav Abrashev
- Department of Mycology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Academician G. Bonchev 26, 1113 Sofia, Bulgaria; (R.A.); (E.K.); (V.D.); (J.M.-S.); (B.S.)
| | - Ekaterina Krumova
- Department of Mycology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Academician G. Bonchev 26, 1113 Sofia, Bulgaria; (R.A.); (E.K.); (V.D.); (J.M.-S.); (B.S.)
| | - Penka Petrova
- Department of General Microbiology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Academician G. Bonchev 26, 1113 Sofia, Bulgaria; (P.P.); (R.E.); (Y.G.); (S.E.)
| | - Rumyana Eneva
- Department of General Microbiology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Academician G. Bonchev 26, 1113 Sofia, Bulgaria; (P.P.); (R.E.); (Y.G.); (S.E.)
| | - Vladislava Dishliyska
- Department of Mycology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Academician G. Bonchev 26, 1113 Sofia, Bulgaria; (R.A.); (E.K.); (V.D.); (J.M.-S.); (B.S.)
| | - Yana Gocheva
- Department of General Microbiology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Academician G. Bonchev 26, 1113 Sofia, Bulgaria; (P.P.); (R.E.); (Y.G.); (S.E.)
| | - Stefan Engibarov
- Department of General Microbiology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Academician G. Bonchev 26, 1113 Sofia, Bulgaria; (P.P.); (R.E.); (Y.G.); (S.E.)
| | - Jeny Miteva-Staleva
- Department of Mycology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Academician G. Bonchev 26, 1113 Sofia, Bulgaria; (R.A.); (E.K.); (V.D.); (J.M.-S.); (B.S.)
| | - Boryana Spasova
- Department of Mycology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Academician G. Bonchev 26, 1113 Sofia, Bulgaria; (R.A.); (E.K.); (V.D.); (J.M.-S.); (B.S.)
| | - Vera Kolyovska
- Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, Academician G. Bonchev 25, 1113 Sofia, Bulgaria;
| | - Maria Angelova
- Department of Mycology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Academician G. Bonchev 26, 1113 Sofia, Bulgaria; (R.A.); (E.K.); (V.D.); (J.M.-S.); (B.S.)
| |
Collapse
|
10
|
Qin L, Guo S, Li A, Fan L, Tan K, Wong KH. An effective strategy for identifying autogenous regulation of transcription factors in filamentous fungi. Microbiol Spectr 2023; 11:e0234723. [PMID: 37929986 PMCID: PMC10714999 DOI: 10.1128/spectrum.02347-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 09/08/2023] [Indexed: 11/07/2023] Open
Abstract
IMPORTANCE Transcription factors (TFs) play a crucial role in deciphering biological information from the DNA of living organisms. Improper regulation of their functions can disrupt cellular physiology and lead to diseases in humans. As one of the key regulatory mechanisms, some TFs control their own expression levels through autogenous regulation. However, identifying autogenous regulation events of TFs has been a tedious task. In this study, we present a straightforward approach that provides a reliable means to identify TF autogenous regulation events. Our method provides a valuable means for understanding the function of this important class of proteins in cells.
Collapse
Affiliation(s)
- Longguang Qin
- Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau, China
| | - Shuhui Guo
- Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau, China
| | - Ang Li
- Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau, China
| | - Lu Fan
- Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau, China
| | - Kaeling Tan
- Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau, China
- Gene Expression, Genomics and Bioinformatics core, Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau, China
| | - Koon Ho Wong
- Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau, China
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau, China
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau, China
| |
Collapse
|
11
|
Liu S, Lu X, Dai M, Zhang S. Transcription factor CreA is involved in the inverse regulation of biofilm formation and asexual development through distinct pathways in Aspergillus fumigatus. Mol Microbiol 2023; 120:830-844. [PMID: 37800624 DOI: 10.1111/mmi.15179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 08/17/2023] [Accepted: 09/21/2023] [Indexed: 10/07/2023]
Abstract
The exopolysaccharide galactosaminogalactan (GAG) contributes to biofilm formation and virulence in the pathogenic fungus Aspergillus fumigatus. Increasing evidence indicates that GAG production is inversely linked with asexual development. However, the mechanisms underlying this regulatory relationship are unclear. In this study, we found that the dysfunction of CreA, a conserved transcription factor involved in carbon catabolite repression in many fungal species, causes abnormal asexual development (conidiation) under liquid-submerged culture conditions specifically in the presence of glucose. The loss of creA decreased GAG production independent of carbon sources. Furthermore, CreA contributed to asexual development and GAG production via distinct pathways. CreA promoted A. fumigatus GAG production by positively regulating GAG biosynthetic genes (uge3 and agd3). CreA suppressed asexual development in glucose liquid-submerged culture conditions via central conidiation genes (brlA, abaA, and wetA) and their upstream activators (flbC and flbD). Restoration of brlA expression to the wild-type level by flbC or flbD deletion abolished the abnormal submerged conidiation in the creA null mutant but did not restore GAG production. The C-terminal region of CreA was crucial for the suppression of asexual development, and the repressive domain contributed to GAG production. Overall, CreA is involved in GAG production and asexual development in an inverse manner.
Collapse
Affiliation(s)
- Shuai Liu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Xiaoyan Lu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Mengyao Dai
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Shizhu Zhang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| |
Collapse
|
12
|
Tong KTX, Tan IS, Foo HCY, Show PL, Lam MK, Wong MK. Sustainable circular biorefinery approach for novel building blocks and bioenergy production from algae using microbial fuel cell. Bioengineered 2023; 14:246-289. [PMID: 37482680 PMCID: PMC10367576 DOI: 10.1080/21655979.2023.2236842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/23/2023] [Accepted: 07/11/2023] [Indexed: 07/25/2023] Open
Abstract
The imminent need for transition to a circular biorefinery using microbial fuel cells (MFC), based on the valorization of renewable resources, will ameliorate the carbon footprint induced by industrialization. MFC catalyzed by bioelectrochemical process drew significant attention initially for its exceptional potential for integrated production of biochemicals and bioenergy. Nonetheless, the associated costly bioproduct production and slow microbial kinetics have constrained its commercialization. This review encompasses the potential and development of macroalgal biomass as a substrate in the MFC system for L-lactic acid (L-LA) and bioelectricity generation. Besides, an insight into the state-of-the-art technological advancement in the MFC system is also deliberated in detail. Investigations in recent years have shown that MFC developed with different anolyte enhances power density from several µW/m2 up to 8160 mW/m2. Further, this review provides a plausible picture of macroalgal-based L-LA and bioelectricity circular biorefinery in the MFC system for future research directions.
Collapse
Affiliation(s)
- Kevin Tian Xiang Tong
- Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, Miri, Sarawak, Malaysia
| | - Inn Shi Tan
- Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, Miri, Sarawak, Malaysia
| | - Henry Chee Yew Foo
- Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, Miri, Sarawak, Malaysia
| | - Pau Loke Show
- Department of Chemical Engineering, Khalifa University, Abu Dhabi, United Arab Emirates
- Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, China
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih, Malaysia
- Department of Sustainable Engineering, Saveetha School of Engineering, SIMATS, Chennai, India
| | - Man Kee Lam
- Chemical Engineering Department, Universiti Teknologi PETRONAS, Seri Iskandar, Perak, Malaysia
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, Seri Iskandar, Perak, Malaysia
| | - Mee Kee Wong
- PETRONAS Research Sdn Bhd, Kajang, Selangor, Malaysia
| |
Collapse
|
13
|
Kerkaert JD, Huberman LB. Regulation of nutrient utilization in filamentous fungi. Appl Microbiol Biotechnol 2023; 107:5873-5898. [PMID: 37540250 PMCID: PMC10983054 DOI: 10.1007/s00253-023-12680-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/29/2023] [Accepted: 07/04/2023] [Indexed: 08/05/2023]
Abstract
Organisms must accurately sense and respond to nutrients to survive. In filamentous fungi, accurate nutrient sensing is important in the establishment of fungal colonies and in continued, rapid growth for the exploitation of environmental resources. To ensure efficient nutrient utilization, fungi have evolved a combination of activating and repressing genetic networks to tightly regulate metabolic pathways and distinguish between preferred nutrients, which require minimal energy and resources to utilize, and nonpreferred nutrients, which have more energy-intensive catabolic requirements. Genes necessary for the utilization of nonpreferred carbon sources are activated by transcription factors that respond to the presence of the specific nutrient and repressed by transcription factors that respond to the presence of preferred carbohydrates. Utilization of nonpreferred nitrogen sources generally requires two transcription factors. Pathway-specific transcription factors respond to the presence of a specific nonpreferred nitrogen source, while another transcription factor activates genes in the absence of preferred nitrogen sources. In this review, we discuss the roles of transcription factors and upstream regulatory genes that respond to preferred and nonpreferred carbon and nitrogen sources and their roles in regulating carbon and nitrogen catabolism. KEY POINTS: • Interplay of activating and repressing transcriptional networks regulates catabolism. • Nutrient-specific activating transcriptional pathways provide metabolic specificity. • Repressing regulatory systems differentiate nutrients in mixed nutrient environments.
Collapse
Affiliation(s)
- Joshua D Kerkaert
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | - Lori B Huberman
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
14
|
Luo Y, Yan X, Xia Y, Cao Y. Tetracarboxylic acid transporter regulates growth, conidiation, and carbon utilization in Metarhizium acridum. Appl Microbiol Biotechnol 2023; 107:2969-2982. [PMID: 36941435 DOI: 10.1007/s00253-023-12471-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/25/2023] [Accepted: 02/28/2023] [Indexed: 03/23/2023]
Abstract
Carbon sources and their utilization are vital for fungal growth and development. C4-dicarboxylic acids are important carbon and energy sources that function as intermediate products of the tricarboxylic acid cycle. Transport and regulation of C4-dicarboxylic acid uptake are mainly dependent on tetracarboxylic acid transporters (Dcts) in many microbes, although the roles of Dct genes in fungi have only been partially characterized. Here, we report on the functions of two Dct genes (Dct1 and Dct2) in the entomopathogenic fungus Metarhizium acridum. Our data showed that loss of the MaDct1 gene affected utilization of tetracarboxylic acids and other carbon sources. ΔMaDct1 mutants showed larger colony sizes with extensive mycelial growth but were delayed in conidiation with decreased conidia yield as compared to the wild-type parental strain. On the nutrient-deficient medium, SYA, the wild-type strain produced microcycle conidia, whereas the ΔMaDct1 mutant produced (normal) aerial conidia. In addition, ΔMaDct1 had decreased tolerance to cell wall perturbing agents, but increased tolerances to UV-B radiation and osmotic stress. Insect bioassays indicated that loss of MaDct1 did not affect pathogenicity. In contrast, no distinct phenotypic change was observed for the MaDct2 mutant in terms of growth and biocontrol characteristics. Transcriptomic profiling between wild type and ΔMaDct1 showed that differentially expressed genes were enriched in carbohydrate and amino acid metabolism, transport and catabolism, and signal transduction. These results demonstrate that MaDct1 regulates the conidiation pattern shift and mycelial growth by affecting utilization of carbon sources. These findings are helpful for better understanding the effect of intermediates of carbon metabolism on fungal growth and conidiation. KEY POINTS: • MaDct1 influences fungal growth and conidiation by affecting carbon source utilization. • MaDct1 regulates conidiation pattern shift under nutrient deficiency condition. • MaDct1 is involved in stress tolerance and has no effect on virulence. • MaDct2 has no effect on growth and biocontrol characteristic.
Collapse
Affiliation(s)
- Yunxiao Luo
- School of Life Sciences, Chongqing University, Chongqing, 401331, People's Republic of China
- Chongqing Engineering Research Center for Fungal Insecticides, Chongqing, 401331, People's Republic of China
- Key Laboratory of Gene Function and Regulation Technologies Under Chongqing Municipal Education Commission, Chongqing, China
| | - Xi Yan
- School of Life Sciences, Chongqing University, Chongqing, 401331, People's Republic of China
- Chongqing Engineering Research Center for Fungal Insecticides, Chongqing, 401331, People's Republic of China
- Key Laboratory of Gene Function and Regulation Technologies Under Chongqing Municipal Education Commission, Chongqing, China
| | - Yuxian Xia
- School of Life Sciences, Chongqing University, Chongqing, 401331, People's Republic of China.
- Chongqing Engineering Research Center for Fungal Insecticides, Chongqing, 401331, People's Republic of China.
- Key Laboratory of Gene Function and Regulation Technologies Under Chongqing Municipal Education Commission, Chongqing, China.
| | - Yueqing Cao
- School of Life Sciences, Chongqing University, Chongqing, 401331, People's Republic of China.
- Chongqing Engineering Research Center for Fungal Insecticides, Chongqing, 401331, People's Republic of China.
- Key Laboratory of Gene Function and Regulation Technologies Under Chongqing Municipal Education Commission, Chongqing, China.
| |
Collapse
|
15
|
Development of the CRISPR-Cas9 System for the Marine-Derived Fungi Spiromastix sp. SCSIO F190 and Aspergillus sp. SCSIO SX7S7. J Fungi (Basel) 2022; 8:jof8070715. [PMID: 35887470 PMCID: PMC9322911 DOI: 10.3390/jof8070715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/26/2022] [Accepted: 07/06/2022] [Indexed: 11/17/2022] Open
Abstract
Marine-derived fungi are emerging as attractive producers of structurally novel secondary metabolites with diverse bioactivities. However, the lack of efficient genetic tools limits the discovery of novel compounds and the elucidation of biosynthesis mechanisms. Here, we firstly established an effective PEG-mediated chemical transformation system for protoplasts in two marine-derived fungi, Spiromastix sp. SCSIO F190 and Aspergillus sp. SCSIO SX7S7. Next, we developed a simple and versatile CRISPR-Cas9-based gene disruption strategy by transforming a target fungus with a single plasmid. We found that the transformation with a circular plasmid encoding cas9, a single-guide RNA (sgRNA), and a selectable marker resulted in a high frequency of targeted and insertional gene mutations in both marine-derived fungal strains. In addition, the histone deacetylase gene rpd3 was mutated using the established CRISPR-Cas9 system, thereby activating novel secondary metabolites that were not produced in the wild-type strain. Taken together, a versatile CRISPR-Cas9-based gene disruption method was established, which will promote the discovery of novel natural products and further biological studies.
Collapse
|