1
|
Hernansanz-Agustín P, Morales-Vidal C, Calvo E, Natale P, Martí-Mateos Y, Jaroszewicz SN, Cabrera-Alarcón JL, Acín-Pérez R, López-Montero I, Vázquez J, Enríquez JA. A transmitochondrial sodium gradient controls membrane potential in mammalian mitochondria. Cell 2024:S0092-8674(24)00974-7. [PMID: 39303716 DOI: 10.1016/j.cell.2024.08.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 07/02/2024] [Accepted: 08/21/2024] [Indexed: 09/22/2024]
Abstract
Eukaryotic cell function and survival rely on the use of a mitochondrial H+ electrochemical gradient (Δp), which is composed of an inner mitochondrial membrane (IMM) potential (ΔΨmt) and a pH gradient (ΔpH). So far, ΔΨmt has been assumed to be composed exclusively of H+. Here, using a rainbow of mitochondrial and nuclear genetic models, we have discovered that a Na+ gradient equates with the H+ gradient and controls half of ΔΨmt in coupled-respiring mammalian mitochondria. This parallelism is controlled by the activity of the long-sought Na+-specific Na+/H+ exchanger (mNHE), which we have identified as the P-module of complex I (CI). Deregulation of this mNHE function, without affecting the canonical enzymatic activity or the assembly of CI, occurs in Leber's hereditary optic neuropathy (LHON), which has profound consequences in ΔΨmt and mitochondrial Ca2+ homeostasis and explains the previously unknown molecular pathogenesis of this neurodegenerative disease.
Collapse
Affiliation(s)
- Pablo Hernansanz-Agustín
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid 28029, Spain; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable, Madrid, Spain.
| | - Carmen Morales-Vidal
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid 28029, Spain
| | - Enrique Calvo
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid 28029, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBER-CV), Madrid, Spain
| | - Paolo Natale
- Departamento de Química-Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid (UCM), Madrid, Spain; Instituto de Investigación Biomédica Hospital Doce de Octubre (imas12), Madrid, Spain
| | - Yolanda Martí-Mateos
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid 28029, Spain
| | | | | | - Rebeca Acín-Pérez
- Department of Medicine, Endocrinology, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Iván López-Montero
- Departamento de Química-Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid (UCM), Madrid, Spain; Instituto de Investigación Biomédica Hospital Doce de Octubre (imas12), Madrid, Spain; Instituto Pluridisciplinar-UCM, Madrid, Spain
| | - Jesús Vázquez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid 28029, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBER-CV), Madrid, Spain
| | - José Antonio Enríquez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid 28029, Spain; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable, Madrid, Spain.
| |
Collapse
|
2
|
Brischigliaro M, Cabrera-Orefice A, Arnold S, Viscomi C, Zeviani M, Fernández-Vizarra E. Structural rather than catalytic role for mitochondrial respiratory chain supercomplexes. eLife 2023; 12:RP88084. [PMID: 37823874 PMCID: PMC10569793 DOI: 10.7554/elife.88084] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023] Open
Abstract
Mammalian mitochondrial respiratory chain (MRC) complexes are able to associate into quaternary structures named supercomplexes (SCs), which normally coexist with non-bound individual complexes. The functional significance of SCs has not been fully clarified and the debate has been centered on whether or not they confer catalytic advantages compared with the non-bound individual complexes. Mitochondrial respiratory chain organization does not seem to be conserved in all organisms. In fact, and differently from mammalian species, mitochondria from Drosophila melanogaster tissues are characterized by low amounts of SCs, despite the high metabolic demands and MRC activity shown by these mitochondria. Here, we show that attenuating the biogenesis of individual respiratory chain complexes was accompanied by increased formation of stable SCs, which are missing in Drosophila melanogaster in physiological conditions. This phenomenon was not accompanied by an increase in mitochondrial respiratory activity. Therefore, we conclude that SC formation is necessary to stabilize the complexes in suboptimal biogenesis conditions, but not for the enhancement of respiratory chain catalysis.
Collapse
Affiliation(s)
- Michele Brischigliaro
- Department of Biomedical Sciences, University of PadovaPadovaItaly
- Veneto Institute of Molecular MedicinePaduaItaly
| | - Alfredo Cabrera-Orefice
- Radboud Institute for Molecular Life Sciences, Radboud University Medical CenterNijmegenNetherlands
| | - Susanne Arnold
- Radboud Institute for Molecular Life Sciences, Radboud University Medical CenterNijmegenNetherlands
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of CologneCologneGermany
| | - Carlo Viscomi
- Department of Biomedical Sciences, University of PadovaPadovaItaly
- Veneto Institute of Molecular MedicinePaduaItaly
| | - Massimo Zeviani
- Department of Neurosciences, University of PadovaPadovaItaly
| | - Erika Fernández-Vizarra
- Department of Biomedical Sciences, University of PadovaPadovaItaly
- Veneto Institute of Molecular MedicinePaduaItaly
| |
Collapse
|
3
|
Zhang K, Chen L, Wang B, Chen D, Ye X, Han X, Fang Q, Yu C, Wu J, Guo S, Chen L, Shi Y, Wang L, Cheng H, Li H, Shen L, Zhao Q, Jin L, Lyu J, Fang H. Mitochondrial supercomplex assembly regulates metabolic features and glutamine dependency in mammalian cells. Theranostics 2023; 13:3165-3187. [PMID: 37351168 PMCID: PMC10283060 DOI: 10.7150/thno.78292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 05/08/2023] [Indexed: 06/24/2023] Open
Abstract
Rationale: Mitochondria generate ATP via the oxidative phosphorylation system, which mainly comprises five respiratory complexes found in the inner mitochondrial membrane. A high-order assembly of respiratory complexes is called a supercomplex. COX7A2L is a supercomplex assembly factor that has been well-investigated for studying supercomplex function and assembly. To date, the effects of mitochondrial supercomplexes on cell metabolism have not been elucidated. Methods: We depleted COX7A2L or Cox7a2l in human and mouse cells to generate cell models lacking mitochondrial supercomplexes as well as in DBA/2J mice as animal models. We tested the effect of impaired supercomplex assembly on cell proliferation with different nutrient supply. We profiled the metabolic features in COX7A2L-/- cells and Cox7a2l-/- mice via the combined use of targeted and untargeted metabolic profiling and metabolic flux analysis. We further tested the role of mitochondrial supercomplexes in pancreatic ductal adenocarcinoma (PDAC) through PDAC cell lines and a nude mouse model. Results: Impairing mitochondrial supercomplex assembly by depleting COX7A2L in human cells reprogrammed metabolic pathways toward anabolism and increased glutamine metabolism, cell proliferation and antioxidative defense. Similarly, knockout of Cox7a2l in DBA/2J mice promoted the use of proteins/amino acids as oxidative carbon sources. Mechanistically, impaired supercomplex assembly increased electron flux from CII to CIII/CIV and promoted CII-dependent respiration in COX7A2L-/- cells which further upregulated glutaminolysis and glutamine oxidation to accelerate the reactions of the tricarboxylic acid cycle. Moreover, the proliferation of PDAC cells lacking COX7A2L was inhibited by glutamine deprivation. Conclusion: Our results reveal the regulatory role of mitochondrial supercomplexes in glutaminolysis which may fine-tune the fate of cells with different nutrient availability.
Collapse
Affiliation(s)
- Kun Zhang
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, Department of Cell Biology and Medical Genetics, College of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou 325035, China
- Department of Clinical Laboratory, Xi'an Daxing Hospital, Xi'an 710016, China
| | - Linjie Chen
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou 310053, China
- Key Laboratory of Biomarkers and In vitro Diagnosis Translation of Zhejiang province, Zhejiang, Hangzhou 310063, China
| | - Bo Wang
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, Department of Cell Biology and Medical Genetics, College of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Deyu Chen
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, Department of Cell Biology and Medical Genetics, College of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Xianglai Ye
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, Department of Cell Biology and Medical Genetics, College of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Xinyu Han
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, Department of Cell Biology and Medical Genetics, College of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Quan Fang
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou 310053, China
| | - Can Yu
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, Department of Cell Biology and Medical Genetics, College of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Jia Wu
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, Department of Cell Biology and Medical Genetics, College of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Sihan Guo
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, Department of Cell Biology and Medical Genetics, College of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Lifang Chen
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, Department of Cell Biology and Medical Genetics, College of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Yu Shi
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, Department of Cell Biology and Medical Genetics, College of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Lan Wang
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, Department of Cell Biology and Medical Genetics, College of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Huang Cheng
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, Department of Cell Biology and Medical Genetics, College of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Hao Li
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, Department of Cell Biology and Medical Genetics, College of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Lu Shen
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, Department of Cell Biology and Medical Genetics, College of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Qiongya Zhao
- Department of Laboratory Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, Hangzhou 310000, China
| | - Liqin Jin
- Department of Laboratory Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, Hangzhou 310000, China
| | - Jianxin Lyu
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, Department of Cell Biology and Medical Genetics, College of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou 325035, China
- Department of Laboratory Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, Hangzhou 310000, China
| | - Hezhi Fang
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, Department of Cell Biology and Medical Genetics, College of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou 325035, China
- Department of Laboratory Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, Hangzhou 310000, China
| |
Collapse
|
4
|
A Mutation in Mouse MT-ATP6 Gene Induces Respiration Defects and Opposed Effects on the Cell Tumorigenic Phenotype. Int J Mol Sci 2023; 24:ijms24021300. [PMID: 36674816 PMCID: PMC9865613 DOI: 10.3390/ijms24021300] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 12/23/2022] [Accepted: 01/06/2023] [Indexed: 01/10/2023] Open
Abstract
As the last step of the OXPHOS system, mitochondrial ATP synthase (or complex V) is responsible for ATP production by using the generated proton gradient, but also has an impact on other important functions linked to this system. Mutations either in complex V structural subunits, especially in mtDNA-encoded ATP6 gene, or in its assembly factors, are the molecular cause of a wide variety of human diseases, most of them classified as neurodegenerative disorders. The role of ATP synthase alterations in cancer development or metastasis has also been postulated. In this work, we reported the generation and characterization of the first mt-Atp6 pathological mutation in mouse cells, an m.8414A>G transition that promotes an amino acid change from Asn to Ser at a highly conserved residue of the protein (p.N163S), located near the path followed by protons from the intermembrane space to the mitochondrial matrix. The phenotypic consequences of the p.N163S change reproduce the effects of MT-ATP6 mutations in human diseases, such as dependence on glycolysis, defective OXPHOS activity, ATP synthesis impairment, increased ROS generation or mitochondrial membrane potential alteration. These observations demonstrate that this mutant cell line could be of great interest for the generation of mouse models with the aim of studying human diseases caused by alterations in ATP synthase. On the other hand, mutant cells showed lower migration capacity, higher expression of MHC-I and slightly lower levels of HIF-1α, indicating a possible reduction of their tumorigenic potential. These results could suggest a protective role of ATP synthase inhibition against tumor transformation that could open the door to new therapeutic strategies in those cancer types relying on OXPHOS metabolism.
Collapse
|
5
|
Alkhaldi HA, Vik SB. Subunits E-F-G of E. coli Complex I can form an active complex when expressed alone, but in time-delayed assembly co-expression of B-CD-E-F-G is optimal. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2022; 1863:148593. [PMID: 35850264 PMCID: PMC9783743 DOI: 10.1016/j.bbabio.2022.148593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/15/2022] [Accepted: 07/11/2022] [Indexed: 12/27/2022]
Abstract
Respiratory Complex I from E. coli is a proto-type of the mitochondrial enzyme, consisting of a 6-subunit peripheral arm (B-CD-E-F-G-I) and a 7-subunit membrane arm. When subunits E-F-G (N-module), were expressed alone they formed an active complex as determined by co-immunoprecipitation and native gel electrophoresis. When co-expressed with subunits B and CD, only a complex of E-F-G was found. When these five subunits were co-expressed with subunit I and two membrane subunits, A and H, a complex of B-CD-E-F-G-I was membrane-bound, constituting the N- and Q-modules. Assembly of Complex I was also followed by splitting the genes between two plasmids, in three different groupings, and expressing them simultaneously, or with time-delay of expression from one plasmid. When the B-CD-E-F-G genes were co-expressed after a time-delay, assembly was over 90 % of that when the whole operon was expressed together. In summary, E-F-G was the only soluble subcomplex detected in these studies, but assembly was not optimal when these subunits were expressed either first or last. Co-expression of subunits B and CD with E-F-G provided a higher level of assembly, indicating that integrated assembly of N- and Q-modules provides a more efficient pathway.
Collapse
Affiliation(s)
- Hind A Alkhaldi
- Department of Biological Sciences, Southern Methodist University, Dallas, TX 75275-0376, USA
| | - Steven B Vik
- Department of Biological Sciences, Southern Methodist University, Dallas, TX 75275-0376, USA.
| |
Collapse
|
6
|
Xu Q, Sun P, Feng C, Chen Q, Sun X, Chen Y, Tian G. Varying Clinical Phenotypes of Mitochondrial DNA T12811C Mutation: A Case Series Report. Front Med (Lausanne) 2022; 9:912103. [PMID: 35860740 PMCID: PMC9291510 DOI: 10.3389/fmed.2022.912103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/13/2022] [Indexed: 11/18/2022] Open
Abstract
The T12811C mitochondrial DNA (mtDNA) mutation has been reported in Leber hereditary optic neuropathy (LHON) previously, with vision loss as the main manifestation. The involvement of other organ systems, including the central and peripheral nervous system, heart, and extraocular muscles, has not been well described. This case series report investigated four patients with T12811C mtDNA mutation, verified through a next generation sequencing. Two male patients presented with bilateral subacute visual decrease combined with involvement of multiple organ systems: leukoencephalopathy, hypertrophic cardiomyopathy, neurosensory deafness, spinal cord lesion and peripheral neuropathies. Two female patients presented with progressive ptosis and ophthalmoplegia, one of whom also manifested optic atrophy. This study found out that patients harboring T12811C mtDNA mutation manifested not only as vision loss, but also as a multi-system disorder affecting the nervous system, heart, and extraocular muscles.
Collapse
Affiliation(s)
- Qingdan Xu
- Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, China
| | - Ping Sun
- Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, China
| | - Chaoyi Feng
- NHC Key Laboratory of Myopia, Chinese Academy of Medical Sciences, and Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China
| | - Qian Chen
- NHC Key Laboratory of Myopia, Chinese Academy of Medical Sciences, and Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China
| | - Xinghuai Sun
- Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia, Chinese Academy of Medical Sciences, and Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China
- State Key Laboratory of Medical Neurobiology, Institute of Brain Science, Fudan University, Shanghai, China
| | - Yuhong Chen
- Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia, Chinese Academy of Medical Sciences, and Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China
- *Correspondence: Yuhong Chen,
| | - Guohong Tian
- Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia, Chinese Academy of Medical Sciences, and Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China
- Guohong Tian,
| |
Collapse
|
7
|
Sachdeva A, Hart CA, Carey CD, Vincent AE, Greaves LC, Heer R, Oliveira P, Brown MD, Clarke NW, Turnbull DM. Automated quantitative high-throughput multiplex immunofluorescence pipeline to evaluate OXPHOS defects in formalin-fixed human prostate tissue. Sci Rep 2022; 12:6660. [PMID: 35459777 PMCID: PMC9033818 DOI: 10.1038/s41598-022-10588-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 04/01/2022] [Indexed: 11/09/2022] Open
Abstract
Advances in multiplex immunofluorescence (mIF) and digital image analysis has enabled simultaneous assessment of protein defects in electron transport chain components. However, current manual methodology is time consuming and labour intensive. Therefore, we developed an automated high-throughput mIF workflow for quantitative single-cell level assessment of formalin fixed paraffin embedded tissue (FFPE), leveraging tyramide signal amplification on a Ventana Ultra platform coupled with automated multispectral imaging on a Vectra 3 platform. Utilising this protocol, we assessed the mitochondrial oxidative phosphorylation (OXPHOS) protein alterations in a cohort of benign and malignant prostate samples. Mitochondrial OXPHOS plays a critical role in cell metabolism, and OXPHOS perturbation is implicated in carcinogenesis. Marked inter-patient, intra-patient and spatial cellular heterogeneity in OXPHOS protein abundance was observed. We noted frequent Complex IV loss in benign prostate tissue and Complex I loss in age matched prostate cancer tissues. Malignant regions within prostate cancer samples more frequently contained cells with low Complex I & IV and high mitochondrial mass in comparison to benign-adjacent regions. This methodology can now be applied more widely to study the frequency and distribution of OXPHOS alterations in formalin-fixed tissues, and their impact on long-term clinical outcomes.
Collapse
Affiliation(s)
- Ashwin Sachdeva
- Genito Urinary Cancer Research Group, Division of Cancer Sciences, Oglesby Cancer Research Building, University of Manchester, Manchester, M20 4GJ, UK.
- Belfast-Manchester Movember FASTMAN Prostate Cancer Centre of Excellence, Manchester, UK.
- Department of Surgery, The Christie NHS Foundation Trust, Manchester, M20 4BX, UK.
- Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle-upon-Tyne, UK.
| | - Claire A Hart
- Genito Urinary Cancer Research Group, Division of Cancer Sciences, Oglesby Cancer Research Building, University of Manchester, Manchester, M20 4GJ, UK
- Belfast-Manchester Movember FASTMAN Prostate Cancer Centre of Excellence, Manchester, UK
| | - Christopher D Carey
- Translational and Clinical Research Institute, Newcastle University, Newcastle-upon-Tyne, UK
- NovoPath, Cellular Pathology, Newcastle-upon-Tyne NHS Foundation Trust, Newcastle-upon-Tyne, UK
| | - Amy E Vincent
- Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle-upon-Tyne, UK
| | - Laura C Greaves
- Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle-upon-Tyne, UK
| | - Rakesh Heer
- Translational and Clinical Research Institute, Newcastle University, Newcastle-upon-Tyne, UK
| | - Pedro Oliveira
- Department of Pathology, The Christie NHS Foundation Trust, Manchester, M20 4BX, UK
| | - Michael D Brown
- Genito Urinary Cancer Research Group, Division of Cancer Sciences, Oglesby Cancer Research Building, University of Manchester, Manchester, M20 4GJ, UK
- Belfast-Manchester Movember FASTMAN Prostate Cancer Centre of Excellence, Manchester, UK
| | - Noel W Clarke
- Genito Urinary Cancer Research Group, Division of Cancer Sciences, Oglesby Cancer Research Building, University of Manchester, Manchester, M20 4GJ, UK
- Belfast-Manchester Movember FASTMAN Prostate Cancer Centre of Excellence, Manchester, UK
- Department of Surgery, The Christie NHS Foundation Trust, Manchester, M20 4BX, UK
- Department of Urology, Salford Royal NHS Foundation Trust, Salford, M6 8HD, UK
| | - Doug M Turnbull
- Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle-upon-Tyne, UK
| |
Collapse
|
8
|
Jackson TD, Crameri JJ, Muellner-Wong L, Frazier AE, Palmer CS, Formosa LE, Hock DH, Fujihara KM, Stait T, Sharpe AJ, Thorburn DR, Ryan MT, Stroud DA, Stojanovski D. Sideroflexin 4 is a complex I assembly factor that interacts with the MCIA complex and is required for the assembly of the ND2 module. Proc Natl Acad Sci U S A 2022; 119:e2115566119. [PMID: 35333655 PMCID: PMC9060475 DOI: 10.1073/pnas.2115566119] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 02/11/2022] [Indexed: 12/23/2022] Open
Abstract
SignificanceMitochondria are double-membraned eukaryotic organelles that house the proteins required for generation of ATP, the energy currency of cells. ATP generation within mitochondria is performed by five multisubunit complexes (complexes I to V), the assembly of which is an intricate process. Mutations in subunits of these complexes, or the suite of proteins that help them assemble, lead to a severe multisystem condition called mitochondrial disease. We show that SFXN4, a protein that causes mitochondrial disease when mutated, assists with the assembly of complex I. This finding explains why mutations in SFXN4 cause mitochondrial disease and is surprising because SFXN4 belongs to a family of amino acid transporter proteins, suggesting that it has undergone a dramatic shift in function through evolution.
Collapse
Affiliation(s)
- Thomas D. Jackson
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, VIC 3010, Australia
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Jordan J. Crameri
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, VIC 3010, Australia
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Linden Muellner-Wong
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, VIC 3010, Australia
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3010, Australia
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne, VIC 3052, Australia
| | - Ann E. Frazier
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne, VIC 3052, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, VIC 3052, Australia
| | - Catherine S. Palmer
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, VIC 3010, Australia
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Luke E. Formosa
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3168, Australia
| | - Daniella H. Hock
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, VIC 3010, Australia
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Kenji M. Fujihara
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Tegan Stait
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne, VIC 3052, Australia
- Victorian Clinical Genetic Services, Royal Children’s Hospital, Melbourne, VIC 3052, Australia
| | - Alice J. Sharpe
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3168, Australia
| | - David R. Thorburn
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne, VIC 3052, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, VIC 3052, Australia
- Victorian Clinical Genetic Services, Royal Children’s Hospital, Melbourne, VIC 3052, Australia
| | - Michael T. Ryan
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3168, Australia
| | - David A. Stroud
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, VIC 3010, Australia
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3010, Australia
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne, VIC 3052, Australia
| | - Diana Stojanovski
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, VIC 3010, Australia
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
9
|
Li H, Uittenbogaard M, Navarro R, Ahmed M, Gropman A, Chiaramello A, Hao L. Integrated proteomic and metabolomic analyses of the mitochondrial neurodegenerative disease MELAS. Mol Omics 2022; 18:196-205. [PMID: 34982085 PMCID: PMC11334596 DOI: 10.1039/d1mo00416f] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
MELAS (mitochondrial encephalomyopathy, lactic acidosis, stroke-like episodes) is a progressive neurodegenerative disease caused by pathogenic mitochondrial DNA variants. The pathogenic mechanism of MELAS remains enigmatic due to the exceptional clinical heterogeneity and the obscure genotype-phenotype correlation among MELAS patients. To gain insights into the pathogenic signature of MELAS, we designed a comprehensive strategy integrating proteomics and metabolomics in patient-derived dermal fibroblasts harboring the ultra-rare MELAS pathogenic variant m.14453G>A, specifically affecting the mitochondrial respiratory complex I. Global proteomics was achieved by data-dependent acquisition (DDA) and verified by data-independent acquisition (DIA) using both Spectronaut and the recently launched MaxDIA platforms. Comprehensive metabolite coverage was achieved for both polar and nonpolar metabolites in both reverse phase and HILIC LC-MS/MS analyses. Our proof-of-principle MELAS study with multi-omics integration revealed OXPHOS dysregulation with a predominant deficiency of complex I subunits, as well as alterations in key bioenergetic pathways, glycolysis, tricarboxylic acid cycle, and fatty acid β-oxidation. The most clinically relevant discovery is the downregulation of the arginine biosynthesis pathway, likely due to blocked argininosuccinate synthase, which is congruent with the MELAS cardinal symptom of stroke-like episodes and its current treatment by arginine infusion. In conclusion, we demonstrated an integrated proteomic and metabolomic strategy for patient-derived fibroblasts, which has great clinical potential to discover therapeutic targets and design personalized interventions after validation with a larger patient cohort in the future.
Collapse
Affiliation(s)
- Haorong Li
- Department of Chemistry, The George Washington University, Science and Engineering Hall, 800 22nd St., NW, Washington, DC 20052, USA.
| | - Martine Uittenbogaard
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA
| | - Ryan Navarro
- Department of Chemistry, The George Washington University, Science and Engineering Hall, 800 22nd St., NW, Washington, DC 20052, USA.
| | - Mustafa Ahmed
- Department of Chemistry, The George Washington University, Science and Engineering Hall, 800 22nd St., NW, Washington, DC 20052, USA.
| | - Andrea Gropman
- Division of Neurogenetics and Neurodevelopmental Pediatrics, Children's National Medical Center, Washington, DC 20010, USA
| | - Anne Chiaramello
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA
| | - Ling Hao
- Department of Chemistry, The George Washington University, Science and Engineering Hall, 800 22nd St., NW, Washington, DC 20052, USA.
| |
Collapse
|
10
|
Curtabbi A, Enríquez JA. The ins and outs of the flavin mononucleotide cofactor of respiratory complex I. IUBMB Life 2022; 74:629-644. [PMID: 35166025 DOI: 10.1002/iub.2600] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 01/23/2022] [Accepted: 01/24/2022] [Indexed: 12/12/2022]
Abstract
The flavin mononucleotide (FMN) cofactor of respiratory complex I occupies a key position in the electron transport chain. Here, the electrons coming from NADH start the sequence of oxidoreduction reactions, which drives the generation of the proton-motive force necessary for ATP synthesis. The overall architecture and the general catalytic proprieties of the FMN site are mostly well established. However, several aspects regarding the complex I flavin cofactor are still unknown. For example, the flavin binding to the N-module, the NADH-oxidizing portion of complex I, lacks a molecular description. The dissociation of FMN from the enzyme is beginning to emerge as an important regulatory mechanism of complex I activity and ROS production. Finally, how mitochondria import and metabolize FMN is still uncertain. This review summarizes the current knowledge on complex I flavin cofactor and discusses the open questions for future research.
Collapse
Affiliation(s)
- Andrea Curtabbi
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| | - José Antonio Enríquez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain.,Centro de Investigación Biomédica en Red en Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
11
|
Zhao Q, Luo T, Gao F, Fu Y, Li B, Shao X, Chen H, Zhou Z, Guo S, Shen L, Jin L, Cen D, Zhou H, Lyu J, Fang H. GRP75 Regulates Mitochondrial-Supercomplex Turnover to Modulate Insulin Sensitivity. Diabetes 2022; 71:233-248. [PMID: 34810178 DOI: 10.2337/db21-0173] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 11/16/2021] [Indexed: 11/13/2022]
Abstract
GRP75 (75-kDA glucose-regulated protein), defined as a major component of both the mitochondrial quality control system and mitochondria-associated membrane, plays a key role in mitochondrial homeostasis. In this study, we assessed the roles of GRP75, other than as a component, in insulin action in both in vitro and in vivo models with insulin resistance. We found that GRP75 was downregulated in mice fed a high-fat diet (HFD) and that induction of Grp75 in mice could prevent HFD-induced obesity and insulin resistance. Mechanistically, GRP75 influenced insulin sensitivity by regulating mitochondrial function through its modulation of mitochondrial-supercomplex turnover rather than mitochondria-associated membrane communication: GRP75 was negatively associated with respiratory chain complex activity and was essential for mitochondrial-supercomplex assembly and stabilization. Moreover, mitochondrial dysfunction in Grp75-knockdown cells might further increase mitochondrial fragmentation, thus triggering cytosolic mtDNA release and activating the cGAS/STING-dependent proinflammatory response. Therefore, GRP75 can serve as a potential therapeutic target of insulin resistant-related diabetes or other metabolic diseases.
Collapse
Affiliation(s)
- Qiongya Zhao
- School of Laboratory Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Ting Luo
- Ningbo Yinzhou No. 2 Hospital, Ningbo, Zhejiang, China
| | - Feng Gao
- School of Laboratory Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yinxu Fu
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Bin Li
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaoli Shao
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Haifeng Chen
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhuohua Zhou
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Sihan Guo
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lijun Shen
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Liqin Jin
- School of Laboratory Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Dong Cen
- Ningbo Yinzhou No. 2 Hospital, Ningbo, Zhejiang, China
| | - Huaibin Zhou
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jianxin Lyu
- School of Laboratory Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Hezhi Fang
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
12
|
Zhang F, Vik SB. Analysis of the assembly pathway for membrane subunits of Complex I reveals that subunit L (ND5) can assemble last in E. coli. BBA ADVANCES 2021; 1. [DOI: 10.1016/j.bbadva.2021.100027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
13
|
Stable retention of chloramphenicol-resistant mtDNA to rescue metabolically impaired cells. Sci Rep 2020; 10:14328. [PMID: 32868785 PMCID: PMC7459123 DOI: 10.1038/s41598-020-71199-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 08/10/2020] [Indexed: 12/27/2022] Open
Abstract
The permanent transfer of specific mtDNA sequences into mammalian cells could generate improved models of mtDNA disease and support future cell-based therapies. Previous studies documented multiple biochemical changes in recipient cells shortly after mtDNA transfer, but the long-term retention and function of transferred mtDNA remains unknown. Here, we evaluate mtDNA retention in new host cells using ‘MitoPunch’, a device that transfers isolated mitochondria into mouse and human cells. We show that newly introduced mtDNA is stably retained in mtDNA-deficient (ρ0) recipient cells following uridine-free selection, although exogenous mtDNA is lost from metabolically impaired, mtDNA-intact (ρ+) cells. We then introduced a second selective pressure by transferring chloramphenicol-resistant mitochondria into chloramphenicol-sensitive, metabolically impaired ρ+ mouse cybrid cells. Following double selection, recipient cells with mismatched nuclear (nDNA) and mitochondrial (mtDNA) genomes retained transferred mtDNA, which replaced the endogenous mutant mtDNA and improved cell respiration. However, recipient cells with matched mtDNA-nDNA failed to retain transferred mtDNA and sustained impaired respiration. Our results suggest that exogenous mtDNA retention in metabolically impaired ρ+ recipients depends on the degree of recipient mtDNA-nDNA co-evolution. Uncovering factors that stabilize exogenous mtDNA integration will improve our understanding of in vivo mitochondrial transfer and the interplay between mitochondrial and nuclear genomes.
Collapse
|
14
|
García‐Poyatos C, Cogliati S, Calvo E, Hernansanz‐Agustín P, Lagarrigue S, Magni R, Botos M, Langa X, Amati F, Vázquez J, Mercader N, Enríquez JA. Scaf1 promotes respiratory supercomplexes and metabolic efficiency in zebrafish. EMBO Rep 2020; 21:e50287. [PMID: 32496654 PMCID: PMC7332985 DOI: 10.15252/embr.202050287] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/13/2020] [Accepted: 04/28/2020] [Indexed: 01/01/2023] Open
Abstract
The oxidative phosphorylation (OXPHOS) system is a dynamic system in which the respiratory complexes coexist with super-assembled quaternary structures called supercomplexes (SCs). The physiological role of SCs is still disputed. Here, we used zebrafish to study the relevance of respiratory SCs. We combined immunodetection analysis and deep data-independent proteomics to characterize these structures and found similar SCs to those described in mice, as well as novel SCs including III2 + IV2 , I + IV, and I + III2 + IV2 . To study the physiological role of SCs, we generated two null allele zebrafish lines for supercomplex assembly factor 1 (scaf1). scaf1-/- fish displayed altered OXPHOS activity due to the disrupted interaction of complexes III and IV. scaf1-/- fish were smaller in size and showed abnormal fat deposition and decreased female fertility. These physiological phenotypes were rescued by doubling the food supply, which correlated with improved bioenergetics and alterations in the metabolic gene expression program. These results reveal that SC assembly by Scaf1 modulates OXPHOS efficiency and allows the optimization of metabolic resources.
Collapse
Affiliation(s)
- Carolina García‐Poyatos
- Centro Nacional de Investigaciones Cardiovasculares Carlos IIIMadridSpain
- Institute of AnatomyUniversity of BernBernSwitzerland
| | - Sara Cogliati
- Centro Nacional de Investigaciones Cardiovasculares Carlos IIIMadridSpain
- Instituto de Nutrición y Tecnología de los Alimentos (INYTA)Universidad de GranadaGranadaSpain
| | - Enrique Calvo
- Centro Nacional de Investigaciones Cardiovasculares Carlos IIIMadridSpain
| | | | - Sylviane Lagarrigue
- Aging and Muscle Metabolism LaboratoryDepartment of Biomedical SciencesUniversity of LausanneLausanneSwitzerland
| | - Ricardo Magni
- Centro Nacional de Investigaciones Cardiovasculares Carlos IIIMadridSpain
| | - Marius Botos
- Institute of AnatomyUniversity of BernBernSwitzerland
| | - Xavier Langa
- Institute of AnatomyUniversity of BernBernSwitzerland
| | - Francesca Amati
- Aging and Muscle Metabolism LaboratoryDepartment of Biomedical SciencesUniversity of LausanneLausanneSwitzerland
| | - Jesús Vázquez
- Centro Nacional de Investigaciones Cardiovasculares Carlos IIIMadridSpain
- CIBERCVMadridSpain
| | - Nadia Mercader
- Centro Nacional de Investigaciones Cardiovasculares Carlos IIIMadridSpain
| | - José Antonio Enríquez
- Centro Nacional de Investigaciones Cardiovasculares Carlos IIIMadridSpain
- CIBERFESMadridSpain
| |
Collapse
|
15
|
Calvo E, Cogliati S, Hernansanz-Agustín P, Loureiro-López M, Guarás A, Casuso RA, García-Marqués F, Acín-Pérez R, Martí-Mateos Y, Silla-Castro JC, Carro-Alvarellos M, Huertas JR, Vázquez J, Enríquez JA. Functional role of respiratory supercomplexes in mice: SCAF1 relevance and segmentation of the Q pool. SCIENCE ADVANCES 2020; 6:eaba7509. [PMID: 32637615 PMCID: PMC7314541 DOI: 10.1126/sciadv.aba7509] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 05/08/2020] [Indexed: 05/16/2023]
Abstract
Mitochondrial respiratory complexes assemble into supercomplexes (SC). Q-respirasome (III2 + IV) requires the supercomplex assembly factor (SCAF1) protein. The role of this factor in the N-respirasome (I + III2 + IV) and the physiological role of SCs are controversial. Here, we study C57BL/6J mice harboring nonfunctional SCAF1, the full knockout for SCAF1, or the wild-type version of the protein and found that exercise performance is SCAF1 dependent. By combining quantitative data-independent proteomics, 2D Blue native gel electrophoresis, and functional analysis of enriched respirasome fractions, we show that SCAF1 confers structural attachment between III2 and IV within the N-respirasome, increases NADH-dependent respiration, and reduces reactive oxygen species (ROS). Furthermore, the expression of AOX in cells and mice confirms that CI-CIII superassembly segments the CoQ in two pools and modulates CI-NADH oxidative capacity.
Collapse
Affiliation(s)
- Enrique Calvo
- Centro Nacional de Investigaciones Cardiovasculares Carlos III. Madrid 28029, Spain
| | - Sara Cogliati
- Centro Nacional de Investigaciones Cardiovasculares Carlos III. Madrid 28029, Spain
- Institute of Nutrition and Food Technology, Biomedical Research Centre, Department of Physiology, University of Granada
| | | | - Marta Loureiro-López
- Centro Nacional de Investigaciones Cardiovasculares Carlos III. Madrid 28029, Spain
| | - Adela Guarás
- Centro Nacional de Investigaciones Cardiovasculares Carlos III. Madrid 28029, Spain
| | - Rafael A. Casuso
- Institute of Nutrition and Food Technology, Biomedical Research Centre, Department of Physiology, University of Granada
| | | | - Rebeca Acín-Pérez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III. Madrid 28029, Spain
| | - Yolanda Martí-Mateos
- Centro Nacional de Investigaciones Cardiovasculares Carlos III. Madrid 28029, Spain
| | - JC. Silla-Castro
- Centro Nacional de Investigaciones Cardiovasculares Carlos III. Madrid 28029, Spain
| | | | - Jesús R. Huertas
- Institute of Nutrition and Food Technology, Biomedical Research Centre, Department of Physiology, University of Granada
| | - Jesús Vázquez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III. Madrid 28029, Spain
- CIBERCV, Madrid, Spain
| | - J. A. Enríquez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III. Madrid 28029, Spain
- CIBERFES, Madrid, Spain
| |
Collapse
|
16
|
Formosa LE, Muellner-Wong L, Reljic B, Sharpe AJ, Jackson TD, Beilharz TH, Stojanovski D, Lazarou M, Stroud DA, Ryan MT. Dissecting the Roles of Mitochondrial Complex I Intermediate Assembly Complex Factors in the Biogenesis of Complex I. Cell Rep 2020; 31:107541. [DOI: 10.1016/j.celrep.2020.107541] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 02/17/2020] [Accepted: 03/27/2020] [Indexed: 10/24/2022] Open
|
17
|
Acín-Pérez R, Hernansanz-Agustín P, Enríquez JA. Analyzing electron transport chain supercomplexes. Methods Cell Biol 2020; 155:181-197. [PMID: 32183958 DOI: 10.1016/bs.mcb.2019.12.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
This review focuses on three independent and complementary approaches to obtain information on the combined function of respiratory complexes when present in different structural situations, either as individual complexes or when superassembled with other complexes. We review the utility of in-gel activity after blue native electrophoresis, integrated oxygen consumption of supercomplexes containing complex IV, and spectrophotometric activity measurements.
Collapse
Affiliation(s)
- Rebeca Acín-Pérez
- Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| | | | - José Antonio Enríquez
- Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain.
| |
Collapse
|
18
|
Sirey TM, Roberts K, Haerty W, Bedoya-Reina O, Rogatti-Granados S, Tan JY, Li N, Heather LC, Carter RN, Cooper S, Finch AJ, Wills J, Morton NM, Marques AC, Ponting CP. The long non-coding RNA Cerox1 is a post transcriptional regulator of mitochondrial complex I catalytic activity. eLife 2019; 8:e45051. [PMID: 31045494 PMCID: PMC6542586 DOI: 10.7554/elife.45051] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 05/02/2019] [Indexed: 12/11/2022] Open
Abstract
To generate energy efficiently, the cell is uniquely challenged to co-ordinate the abundance of electron transport chain protein subunits expressed from both nuclear and mitochondrial genomes. How an effective stoichiometry of this many constituent subunits is co-ordinated post-transcriptionally remains poorly understood. Here we show that Cerox1, an unusually abundant cytoplasmic long noncoding RNA (lncRNA), modulates the levels of mitochondrial complex I subunit transcripts in a manner that requires binding to microRNA-488-3p. Increased abundance of Cerox1 cooperatively elevates complex I subunit protein abundance and enzymatic activity, decreases reactive oxygen species production, and protects against the complex I inhibitor rotenone. Cerox1 function is conserved across placental mammals: human and mouse orthologues effectively modulate complex I enzymatic activity in mouse and human cells, respectively. Cerox1 is the first lncRNA demonstrated, to our knowledge, to regulate mitochondrial oxidative phosphorylation and, with miR-488-3p, represent novel targets for the modulation of complex I activity.
Collapse
Affiliation(s)
- Tamara M Sirey
- MRC Human Genetics Unit, Institute of Genetics and Molecular MedicineUniversity of Edinburgh, Western General HospitalEdinburghUnited Kingdom
- MRC Functional Genomics UnitUniversity of OxfordOxfordUnited Kingdom
| | - Kenny Roberts
- MRC Functional Genomics UnitUniversity of OxfordOxfordUnited Kingdom
| | - Wilfried Haerty
- MRC Functional Genomics UnitUniversity of OxfordOxfordUnited Kingdom
| | - Oscar Bedoya-Reina
- MRC Human Genetics Unit, Institute of Genetics and Molecular MedicineUniversity of Edinburgh, Western General HospitalEdinburghUnited Kingdom
- MRC Functional Genomics UnitUniversity of OxfordOxfordUnited Kingdom
| | - Sebastian Rogatti-Granados
- MRC Human Genetics Unit, Institute of Genetics and Molecular MedicineUniversity of Edinburgh, Western General HospitalEdinburghUnited Kingdom
- MRC Functional Genomics UnitUniversity of OxfordOxfordUnited Kingdom
| | - Jennifer Y Tan
- MRC Functional Genomics UnitUniversity of OxfordOxfordUnited Kingdom
| | - Nick Li
- MRC Functional Genomics UnitUniversity of OxfordOxfordUnited Kingdom
| | - Lisa C Heather
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUnited Kingdom
| | - Roderick N Carter
- University/British Heart Foundation Centre for Cardiovascular Science, Queen’s Medical Research InstituteUniversity of EdinburghEdinburghUnited Kingdom
| | - Sarah Cooper
- Department of BiochemistryUniversity of OxfordOxfordUnited Kingdom
| | - Andrew J Finch
- MRC Human Genetics Unit, Institute of Genetics and Molecular MedicineUniversity of Edinburgh, Western General HospitalEdinburghUnited Kingdom
| | - Jimi Wills
- MRC Human Genetics Unit, Institute of Genetics and Molecular MedicineUniversity of Edinburgh, Western General HospitalEdinburghUnited Kingdom
| | - Nicholas M Morton
- University/British Heart Foundation Centre for Cardiovascular Science, Queen’s Medical Research InstituteUniversity of EdinburghEdinburghUnited Kingdom
| | | | - Chris P Ponting
- MRC Human Genetics Unit, Institute of Genetics and Molecular MedicineUniversity of Edinburgh, Western General HospitalEdinburghUnited Kingdom
- MRC Functional Genomics UnitUniversity of OxfordOxfordUnited Kingdom
| |
Collapse
|
19
|
Balsa E, Soustek MS, Thomas A, Cogliati S, García-Poyatos C, Martín-García E, Jedrychowski M, Gygi SP, Enriquez JA, Puigserver P. ER and Nutrient Stress Promote Assembly of Respiratory Chain Supercomplexes through the PERK-eIF2α Axis. Mol Cell 2019; 74:877-890.e6. [PMID: 31023583 DOI: 10.1016/j.molcel.2019.03.031] [Citation(s) in RCA: 221] [Impact Index Per Article: 44.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/20/2019] [Accepted: 03/25/2019] [Indexed: 12/27/2022]
Abstract
Endoplasmic reticulum (ER) stress and unfolded protein response are energetically challenging under nutrient stress conditions. However, the regulatory mechanisms that control the energetic demand under nutrient and ER stress are largely unknown. Here we show that ER stress and glucose deprivation stimulate mitochondrial bioenergetics and formation of respiratory supercomplexes (SCs) through protein kinase R-like ER kinase (PERK). Genetic ablation or pharmacological inhibition of PERK suppresses nutrient and ER stress-mediated increases in SC levels and reduces oxidative phosphorylation-dependent ATP production. Conversely, PERK activation augments respiratory SCs. The PERK-eIF2α-ATF4 axis increases supercomplex assembly factor 1 (SCAF1 or COX7A2L), promoting SCs and enhanced mitochondrial respiration. PERK activation is sufficient to rescue bioenergetic defects caused by complex I missense mutations derived from mitochondrial disease patients. These studies have identified an energetic communication between ER and mitochondria, with implications in cell survival and diseases associated with mitochondrial failures.
Collapse
Affiliation(s)
- Eduardo Balsa
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Meghan S Soustek
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Ajith Thomas
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Sara Cogliati
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, 28029 Madrid, Spain
| | | | - Elena Martín-García
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, 28029 Madrid, Spain
| | - Mark Jedrychowski
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Steve P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - José Antonio Enriquez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, 28029 Madrid, Spain; CIBERFES, Institute of Health Carlos III, Madrid 28029, Spain
| | - Pere Puigserver
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
20
|
Arena G, Cissé MY, Pyrdziak S, Chatre L, Riscal R, Fuentes M, Arnold JJ, Kastner M, Gayte L, Bertrand-Gaday C, Nay K, Angebault-Prouteau C, Murray K, Chabi B, Koechlin-Ramonatxo C, Orsetti B, Vincent C, Casas F, Marine JC, Etienne-Manneville S, Bernex F, Lombès A, Cameron CE, Dubouchaud H, Ricchetti M, Linares LK, Le Cam L. Mitochondrial MDM2 Regulates Respiratory Complex I Activity Independently of p53. Mol Cell 2019; 69:594-609.e8. [PMID: 29452639 DOI: 10.1016/j.molcel.2018.01.023] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 12/21/2017] [Accepted: 01/18/2018] [Indexed: 12/12/2022]
Abstract
Accumulating evidence indicates that the MDM2 oncoprotein promotes tumorigenesis beyond its canonical negative effects on the p53 tumor suppressor, but these p53-independent functions remain poorly understood. Here, we show that a fraction of endogenous MDM2 is actively imported in mitochondria to control respiration and mitochondrial dynamics independently of p53. Mitochondrial MDM2 represses the transcription of NADH-dehydrogenase 6 (MT-ND6) in vitro and in vivo, impinging on respiratory complex I activity and enhancing mitochondrial ROS production. Recruitment of MDM2 to mitochondria increases during oxidative stress and hypoxia. Accordingly, mice lacking MDM2 in skeletal muscles exhibit higher MT-ND6 levels, enhanced complex I activity, and increased muscular endurance in mild hypoxic conditions. Furthermore, increased mitochondrial MDM2 levels enhance the migratory and invasive properties of cancer cells. Collectively, these data uncover a previously unsuspected function of the MDM2 oncoprotein in mitochondria that play critical roles in skeletal muscle physiology and may contribute to tumor progression.
Collapse
Affiliation(s)
- Giuseppe Arena
- Institut de Recherche en Cancérologie de Montpellier, INSERM, Université de Montpellier, Institut Régional du Cancer de Montpellier, Montpellier, France; Equipe Labélisée par la Ligue contre le Cancer; Unit of Stem Cells and Development, Team Stability of Nuclear and Mitochondrial DNA, Department of Developmental and Stem Cell Biology, Institut Pasteur, CNRS, Paris, France
| | - Madi Yann Cissé
- Institut de Recherche en Cancérologie de Montpellier, INSERM, Université de Montpellier, Institut Régional du Cancer de Montpellier, Montpellier, France; Equipe Labélisée par la Ligue contre le Cancer
| | - Samuel Pyrdziak
- Institut de Recherche en Cancérologie de Montpellier, INSERM, Université de Montpellier, Institut Régional du Cancer de Montpellier, Montpellier, France; Equipe Labélisée par la Ligue contre le Cancer
| | - Laurent Chatre
- Unit of Stem Cells and Development, Team Stability of Nuclear and Mitochondrial DNA, Department of Developmental and Stem Cell Biology, Institut Pasteur, CNRS, Paris, France
| | - Romain Riscal
- Institut de Recherche en Cancérologie de Montpellier, INSERM, Université de Montpellier, Institut Régional du Cancer de Montpellier, Montpellier, France; Equipe Labélisée par la Ligue contre le Cancer
| | - Maryse Fuentes
- Institut de Recherche en Cancérologie de Montpellier, INSERM, Université de Montpellier, Institut Régional du Cancer de Montpellier, Montpellier, France; Equipe Labélisée par la Ligue contre le Cancer
| | - Jamie Jon Arnold
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, State College, PA, USA
| | - Markus Kastner
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, State College, PA, USA
| | - Laurie Gayte
- Institut de Recherche en Cancérologie de Montpellier, INSERM, Université de Montpellier, Institut Régional du Cancer de Montpellier, Montpellier, France; Equipe Labélisée par la Ligue contre le Cancer
| | - Christelle Bertrand-Gaday
- Dynamique Musculaire et Métabolisme Laboratory, INRA, Université de Montpellier, Montpellier, France
| | - Kevin Nay
- Dynamique Musculaire et Métabolisme Laboratory, INRA, Université de Montpellier, Montpellier, France
| | - Claire Angebault-Prouteau
- INSERM, CNRS, Université de Montpellier, Centre Hospitalier Régional Universitaire de Montpellier, Montpellier, France
| | - Kerren Murray
- Institut Pasteur Paris, Cell Polarity, Migration and Cancer Unit, CNRS, INSERM, Paris, France
| | - Beatrice Chabi
- Dynamique Musculaire et Métabolisme Laboratory, INRA, Université de Montpellier, Montpellier, France
| | | | - Béatrice Orsetti
- Institut de Recherche en Cancérologie de Montpellier, INSERM, Université de Montpellier, Institut Régional du Cancer de Montpellier, Montpellier, France; Equipe Labélisée par la Ligue contre le Cancer
| | - Charles Vincent
- Institut de Recherche en Cancérologie de Montpellier, INSERM, Université de Montpellier, Institut Régional du Cancer de Montpellier, Montpellier, France; Equipe Labélisée par la Ligue contre le Cancer
| | - François Casas
- Dynamique Musculaire et Métabolisme Laboratory, INRA, Université de Montpellier, Montpellier, France
| | - Jean-Christophe Marine
- Laboratory for Molecular Cancer Biology, Center for the Biology of Disease, VIB, Leuven, Belgium; Laboratory for Molecular Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium
| | | | - Florence Bernex
- Institut de Recherche en Cancérologie de Montpellier, INSERM, Université de Montpellier, Institut Régional du Cancer de Montpellier, Montpellier, France; Réseau d'Histologie Expérimentale de Montpellier, BioCampus, CNRS, INSERM, Université de Montpellier, Montpellier, France
| | - Anne Lombès
- Institut Cochin, INSERM, CNRS, Université Paris Descartes, Paris, France
| | - Craig Eugene Cameron
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, State College, PA, USA
| | | | - Miria Ricchetti
- Unit of Stem Cells and Development, Team Stability of Nuclear and Mitochondrial DNA, Department of Developmental and Stem Cell Biology, Institut Pasteur, CNRS, Paris, France
| | - Laetitia Karine Linares
- Institut de Recherche en Cancérologie de Montpellier, INSERM, Université de Montpellier, Institut Régional du Cancer de Montpellier, Montpellier, France; Equipe Labélisée par la Ligue contre le Cancer.
| | - Laurent Le Cam
- Institut de Recherche en Cancérologie de Montpellier, INSERM, Université de Montpellier, Institut Régional du Cancer de Montpellier, Montpellier, France; Equipe Labélisée par la Ligue contre le Cancer.
| |
Collapse
|
21
|
Hayhurst H, Anagnostou ME, Bogle HJ, Grady JP, Taylor RW, Bindoff LA, McFarland R, Turnbull DM, Lax NZ. Dissecting the neuronal vulnerability underpinning Alpers' syndrome: a clinical and neuropathological study. Brain Pathol 2018; 29:97-113. [PMID: 30021052 PMCID: PMC7379503 DOI: 10.1111/bpa.12640] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 06/29/2018] [Indexed: 11/28/2022] Open
Abstract
Alpers’ syndrome is an early‐onset neurodegenerative disorder often caused by biallelic pathogenic variants in the gene encoding the catalytic subunit of polymerase‐gamma (POLG) which is essential for mitochondrial DNA (mtDNA) replication. Alpers’ syndrome is characterized by intractable epilepsy, developmental regression and liver failure which typically affects children aged 6 months–3 years. Although later onset variants are now recognized, they differ in that they are primarily an epileptic encephalopathy with ataxia. The disorder is progressive, without cure and inevitably leads to death from drug‐resistant status epilepticus, often with concomitant liver failure. Since our understanding of the mechanisms contributing the neurological features in Alpers’ syndrome is rudimentary, we performed a detailed and quantitative neuropathological study on 13 patients with clinically and histologically‐defined Alpers’ syndrome with ages ranging from 2 months to 18 years. Quantitative immunofluorescence showed severe respiratory chain deficiencies involving mitochondrial respiratory chain subunits of complex I and, to a lesser extent, complex IV in inhibitory interneurons and pyramidal neurons in the occipital cortex and in Purkinje cells of the cerebellum. Diminished densities of these neuronal populations were also observed. This study represents the largest cohort of post‐mortem brains from patients with clinically defined Alpers’ syndrome where we provide quantitative evidence of extensive complex I defects affecting interneurons and Purkinje cells for the first time. We believe interneuron and Purkinje cell pathology underpins the clinical development of seizures and ataxia seen in Alpers’ syndrome. This study also further highlights the extensive involvement of GABAergic neurons in mitochondrial disease.
Collapse
Affiliation(s)
- Hannah Hayhurst
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Maria-Eleni Anagnostou
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Helen J Bogle
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - John P Grady
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Robert W Taylor
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Laurence A Bindoff
- Department of Clinical Medicine, University of Bergen, Bergen, Norway.,Department of Neurology, Haukeland University, Bergen, Norway
| | - Robert McFarland
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Doug M Turnbull
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Nichola Z Lax
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| |
Collapse
|
22
|
Ahmed ST, Alston CL, Hopton S, He L, Hargreaves IP, Falkous G, Oláhová M, McFarland R, Turnbull DM, Rocha MC, Taylor RW. Using a quantitative quadruple immunofluorescent assay to diagnose isolated mitochondrial Complex I deficiency. Sci Rep 2017; 7:15676. [PMID: 29142257 PMCID: PMC5688115 DOI: 10.1038/s41598-017-14623-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 10/12/2017] [Indexed: 11/21/2022] Open
Abstract
Isolated Complex I (CI) deficiency is the most commonly observed mitochondrial respiratory chain biochemical defect, affecting the largest OXPHOS component. CI is genetically heterogeneous; pathogenic variants affect one of 38 nuclear-encoded subunits, 7 mitochondrial DNA (mtDNA)-encoded subunits or 14 known CI assembly factors. The laboratory diagnosis relies on the spectrophotometric assay of enzyme activity in mitochondrially-enriched tissue homogenates, requiring at least 50 mg skeletal muscle, as there is no reliable histochemical method for assessing CI activity directly in tissue cryosections. We have assessed a validated quadruple immunofluorescent OXPHOS (IHC) assay to detect CI deficiency in the diagnostic setting, using 10 µm transverse muscle sections from 25 patients with genetically-proven pathogenic CI variants. We observed loss of NDUFB8 immunoreactivity in all patients with mutations affecting nuclear-encoding structural subunits and assembly factors, whilst only 3 of the 10 patients with mutations affecting mtDNA-encoded structural subunits showed loss of NDUFB8, confirmed by BN-PAGE analysis of CI assembly and IHC using an alternative, commercially-available CI (NDUFS3) antibody. The IHC assay has clear diagnostic potential to identify patients with a CI defect of Mendelian origins, whilst highlighting the necessity of complete mitochondrial genome sequencing in the diagnostic work-up of patients with suspected mitochondrial disease.
Collapse
Affiliation(s)
- Syeda T Ahmed
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle Upon Tyne, UK
| | - Charlotte L Alston
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle Upon Tyne, UK.,NHS Highly Specialised Mitochondrial Diagnostic Laboratory, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Sila Hopton
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle Upon Tyne, UK.,NHS Highly Specialised Mitochondrial Diagnostic Laboratory, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Langping He
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle Upon Tyne, UK.,NHS Highly Specialised Mitochondrial Diagnostic Laboratory, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Iain P Hargreaves
- The National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, UK.,School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, UK
| | - Gavin Falkous
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle Upon Tyne, UK.,NHS Highly Specialised Mitochondrial Diagnostic Laboratory, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Monika Oláhová
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle Upon Tyne, UK
| | - Robert McFarland
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle Upon Tyne, UK
| | - Doug M Turnbull
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle Upon Tyne, UK
| | - Mariana C Rocha
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle Upon Tyne, UK.,BHF Centre of Research Excellence, The James Black Centre, King's College London, University of London, 125 Coldharbour Lane, London, SE5 9NU, UK
| | - Robert W Taylor
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle Upon Tyne, UK. .,NHS Highly Specialised Mitochondrial Diagnostic Laboratory, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK.
| |
Collapse
|
23
|
The Assembly Pathway of Mitochondrial Respiratory Chain Complex I. Cell Metab 2017; 25:128-139. [PMID: 27720676 DOI: 10.1016/j.cmet.2016.09.002] [Citation(s) in RCA: 283] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 07/21/2016] [Accepted: 09/10/2016] [Indexed: 11/20/2022]
Abstract
Mitochondrial complex I is the largest integral membrane enzyme of the respiratory chain and consists of 44 different subunits encoded in the mitochondrial and nuclear genome. Its biosynthesis is a highly complicated and multifaceted process involving at least 14 additional assembly factors. How these subunits assemble into a functional complex I and where the assembly factors come into play is largely unknown. Here, we applied a dynamic complexome profiling approach to elucidate the assembly of human mitochondrial complex I and its further incorporation into respiratory chain supercomplexes. We delineate the stepwise incorporation of all but one subunit into a series of distinct assembly intermediates and their association with known and putative assembly factors, which had not been implicated in this process before. The resulting detailed and comprehensive model of complex I assembly is fully consistent with recent structural data and the remarkable modular architecture of this multiprotein complex.
Collapse
|
24
|
Chatterjee A, Seyfferth J, Lucci J, Gilsbach R, Preissl S, Böttinger L, Mårtensson CU, Panhale A, Stehle T, Kretz O, Sahyoun AH, Avilov S, Eimer S, Hein L, Pfanner N, Becker T, Akhtar A. MOF Acetyl Transferase Regulates Transcription and Respiration in Mitochondria. Cell 2016; 167:722-738.e23. [DOI: 10.1016/j.cell.2016.09.052] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 06/22/2016] [Accepted: 09/27/2016] [Indexed: 11/29/2022]
|
25
|
Zurita Rendón O, Antonicka H, Horvath R, Shoubridge EA. A Mutation in the Flavin Adenine Dinucleotide-Dependent Oxidoreductase FOXRED1 Results in Cell-Type-Specific Assembly Defects in Oxidative Phosphorylation Complexes I and II. Mol Cell Biol 2016; 36:2132-40. [PMID: 27215383 PMCID: PMC4968213 DOI: 10.1128/mcb.00066-16] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 02/14/2016] [Accepted: 05/16/2016] [Indexed: 11/20/2022] Open
Abstract
Complex I (NADH ubiquinone oxidoreductase) is a large multisubunit enzyme that catalyzes the first step in oxidative phosphorylation (OXPHOS). In mammals, complex I biogenesis occurs in a stepwise manner, a process that requires the participation of several nucleus-encoded accessory proteins. The FAD-dependent oxidoreductase-containing domain 1 (FOXRED1) protein is a complex I assembly factor; however, its specific role in the assembly pathway remains poorly understood. We identified a homozygous missense mutation, c.1308 G→A (p.V421M) in FOXRED1 in a patient who presented with epilepsy and severe psychomotor retardation. A patient myoblast line showed a severe reduction in complex I, associated with the accumulation of subassemblies centered around ∼340 kDa, and a milder decrease in complex II, all of which were rescued by retroviral expression of wild-type FOXRED1. Two additional assembly factors, AIFM1 and ACAD9, coimmunoprecipitated with FOXRED1, and all were associated with a 370-kDa complex I subassembly that, together with a 315-kDa subassembly, forms the 550-kDa subcomplex. Loss of FOXRED1 function prevents efficient formation of this midassembly subcomplex. Although we could not identify subassemblies of complex II, our results establish that FOXRED1 function is both broader than expected, involving the assembly of two flavoprotein-containing OXPHOS complexes, and cell type specific.
Collapse
Affiliation(s)
- Olga Zurita Rendón
- Montreal Neurological Institute and Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Hana Antonicka
- Montreal Neurological Institute and Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Rita Horvath
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Eric A Shoubridge
- Montreal Neurological Institute and Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
26
|
Sánchez-Caballero L, Guerrero-Castillo S, Nijtmans L. Unraveling the complexity of mitochondrial complex I assembly: A dynamic process. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:980-90. [PMID: 27040506 DOI: 10.1016/j.bbabio.2016.03.031] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 03/17/2016] [Accepted: 03/29/2016] [Indexed: 11/17/2022]
Abstract
Mammalian complex I is composed of 44 different subunits and its assembly requires at least 13 specific assembly factors. Proper function of the mitochondrial respiratory chain enzyme is of crucial importance for cell survival due to its major participation in energy production and cell signaling. Complex I assembly depends on the coordination of several crucial processes that need to be tightly interconnected and orchestrated by a number of assembly factors. The understanding of complex I assembly evolved from simple sequential concept to the more sophisticated modular assembly model describing a convoluted process. According to this model, the different modules assemble independently and associate afterwards with each other to form the final enzyme. In this review, we aim to unravel the complexity of complex I assembly and provide the latest insights in this fundamental and fascinating process. This article is part of a Special Issue entitled Respiratory complex I, edited by Volker Zickermann and Ulrich Brandt.
Collapse
Affiliation(s)
- Laura Sánchez-Caballero
- Radboud Center for Mitochondrial Medicine, Department of Pediatrics, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands
| | - Sergio Guerrero-Castillo
- Radboud Center for Mitochondrial Medicine, Department of Pediatrics, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands
| | - Leo Nijtmans
- Radboud Center for Mitochondrial Medicine, Department of Pediatrics, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands
| |
Collapse
|
27
|
Lim SC, Hroudová J, Van Bergen NJ, Lopez Sanchez MIG, Trounce IA, McKenzie M. Loss of mitochondrial DNA-encoded protein ND1 results in disruption of complex I biogenesis during early stages of assembly. FASEB J 2016; 30:2236-48. [PMID: 26929434 DOI: 10.1096/fj.201500137r] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 02/12/2016] [Indexed: 12/20/2022]
Abstract
Mitochondrial complex I (NADH:ubiquinone oxidoreductase) must be assembled precisely from 45 protein subunits for it to function correctly. One of its mitochondrial DNA (mtDNA) encoded subunits, ND1, is incorporated during the early stages of complex I assembly. However, little is known about how mutations in ND1 affect this assembly process. We found that in human 143B cybrid cells carrying a homoplasmic MT-ND1 mutation, ND1 protein could not be translated. As a result, the early stages of complex I assembly were disrupted, with mature complex I undetectable and complex I-linked respiration severely reduced to 2.0% of control levels. Interestingly, complex IV (ferrocytochrome c:oxygen oxidoreductase) steady-state levels were also reduced to 40.3%, possibly due to its diminished stability in the absence of respiratory supercomplex formation. This was in comparison with 143B cybrid controls (that contained wild-type mtDNA on the same nuclear background), which exhibited normal complex I, complex IV, and supercomplex assembly. We conclude that the loss of ND1 stalls complex I assembly during the early stages of its biogenesis, which not only results in the loss of mature complex I but also disrupts the stability of complex IV and the respiratory supercomplex to cause mitochondrial dysfunction.-Lim, S. C., Hroudová, J., Van Bergen, N. J., Lopez Sanchez, M. I. G., Trounce, I. A., McKenzie, M. Loss of mitochondrial DNA-encoded protein ND1 results in disruption of complex I biogenesis during early stages of assembly.
Collapse
Affiliation(s)
- Sze Chern Lim
- Centre for Genetic Diseases, Hudson Institute of Medical Research, Clayton, Melbourne, Victoria, Australia
| | - Jana Hroudová
- Department of Psychiatry, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - Nicole J Van Bergen
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Victoria, Australia; Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, Victoria, Australia; and
| | - M Isabel G Lopez Sanchez
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Victoria, Australia; Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, Victoria, Australia; and
| | - Ian A Trounce
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Victoria, Australia; Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, Victoria, Australia; and
| | - Matthew McKenzie
- Centre for Genetic Diseases, Hudson Institute of Medical Research, Clayton, Melbourne, Victoria, Australia; Monash University, Clayton, Melbourne, Victoria, Australia
| |
Collapse
|
28
|
Rocha MC, Grady JP, Grünewald A, Vincent A, Dobson PF, Taylor RW, Turnbull DM, Rygiel KA. A novel immunofluorescent assay to investigate oxidative phosphorylation deficiency in mitochondrial myopathy: understanding mechanisms and improving diagnosis. Sci Rep 2015; 5:15037. [PMID: 26469001 PMCID: PMC4606788 DOI: 10.1038/srep15037] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 09/04/2015] [Indexed: 02/07/2023] Open
Abstract
Oxidative phosphorylation defects in human tissues are often challenging to quantify due to a mosaic pattern of deficiency. Biochemical assays are difficult to interpret due to the varying enzyme deficiency levels found in individual cells. Histochemical analysis allows semi-quantitative assessment of complex II and complex IV activities, but there is no validated histochemical assay to assess complex I activity which is frequently affected in mitochondrial pathology. To help improve the diagnosis of mitochondrial disease and to study the mechanisms underlying mitochondrial abnormalities in disease, we have developed a quadruple immunofluorescent technique enabling the quantification of key respiratory chain subunits of complexes I and IV, together with an indicator of mitochondrial mass and a cell membrane marker. This assay gives precise and objective quantification of protein abundance in large numbers of individual muscle fibres. By assessing muscle biopsies from subjects with a range of different mitochondrial genetic defects we have demonstrated that specific genotypes exhibit distinct biochemical signatures in muscle, providing evidence for the diagnostic use of the technique, as well as insight into the underlying molecular pathology. Stringent testing for reproducibility and sensitivity confirms the potential value of the technique for mechanistic studies of disease and in the evaluation of therapeutic approaches.
Collapse
Affiliation(s)
- Mariana C Rocha
- Newcastle University Centre for Ageing and Vitality, Institute for Neuroscience, Medical School, Newcastle University, Newcastle upon Tyne, United Kingdom.,Wellcome Trust Centre for Mitochondrial Research, Institute for Neuroscience, Medical School, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - John P Grady
- Wellcome Trust Centre for Mitochondrial Research, Institute for Neuroscience, Medical School, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Anne Grünewald
- Wellcome Trust Centre for Mitochondrial Research, Institute for Neuroscience, Medical School, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Amy Vincent
- Wellcome Trust Centre for Mitochondrial Research, Institute for Neuroscience, Medical School, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Philip F Dobson
- Newcastle University Centre for Ageing and Vitality, Institute for Neuroscience, Medical School, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Robert W Taylor
- Wellcome Trust Centre for Mitochondrial Research, Institute for Neuroscience, Medical School, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Doug M Turnbull
- Newcastle University Centre for Ageing and Vitality, Institute for Neuroscience, Medical School, Newcastle University, Newcastle upon Tyne, United Kingdom.,Wellcome Trust Centre for Mitochondrial Research, Institute for Neuroscience, Medical School, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Karolina A Rygiel
- Newcastle University Centre for Ageing and Vitality, Institute for Neuroscience, Medical School, Newcastle University, Newcastle upon Tyne, United Kingdom.,Wellcome Trust Centre for Mitochondrial Research, Institute for Neuroscience, Medical School, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
29
|
Fang H, Shi H, Li X, Sun D, Li F, Li B, Ding Y, Ma Y, Liu Y, Zhang Y, Shen L, Bai Y, Yang Y, Lu J. Exercise intolerance and developmental delay associated with a novel mitochondrial ND5 mutation. Sci Rep 2015; 5:10480. [PMID: 26014388 PMCID: PMC4444849 DOI: 10.1038/srep10480] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 04/15/2015] [Indexed: 11/22/2022] Open
Abstract
The aim of this study was to evaluate the contribution of mitochondrial DNA (mtDNA) mutations in oxidative phosphorylation (OXPHOS) deficiency. The complete mitochondrial genomes of 41 families with OXPHOS deficiency were screened for mutations. Mitochondrial functional analysis was then performed in primary and cybrid cells containing candidate mutations identified during the screening. A novel mitochondrial NADH dehydrogenase 5 (ND5) m.12955A > G mutation was identified in a patient with exercise intolerance and developmental delay. A biochemical analysis revealed deficiencies in the activity of complex I (NADH:quinone oxidoreductase) and IV (cytochrome c oxidase) of this patient. Defects in complexes I and IV were confirmed in transmitochondrial cybrid cells containing the m.12955A > G mutation, suggesting that this mutation impairs complex I assembly, resulting in reduced stability of complex IV. Further functional investigations revealed that mitochondria with the m.12955A > G mutation exhibited lower OXPHOS coupling respiration and adenosine triphosphate (ATP) generation. In addition, the cytotoxic effects, determined as reactive oxygen species (ROS) and lactate levels in the present study, increased in the cells carrying a higher m.12955A > G mutant load. In conclusion, we identified m.12955A > G as a mitochondrial disease-related mutation. Therefore, screening of m.12955A > G is advised for the diagnosis of patients with mitochondrial disease.
Collapse
Affiliation(s)
- Hezhi Fang
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Hao Shi
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Xiyuan Li
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, China
| | - Dayan Sun
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Fengjie Li
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Bin Li
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Yuan Ding
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, China
| | - Yanyan Ma
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, China
| | - Yupeng Liu
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, China
| | - Yao Zhang
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, China
| | - Lijun Shen
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Yidong Bai
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Yanling Yang
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, China
| | - Jianxin Lu
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| |
Collapse
|
30
|
Vartak R, Deng J, Fang H, Bai Y. Redefining the roles of mitochondrial DNA-encoded subunits in respiratory Complex I assembly. Biochim Biophys Acta Mol Basis Dis 2015; 1852:1531-9. [PMID: 25887158 DOI: 10.1016/j.bbadis.2015.04.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 04/01/2015] [Accepted: 04/07/2015] [Indexed: 02/03/2023]
Abstract
Respiratory Complex I deficiency is implicated in numerous degenerative and metabolic diseases. In particular, mutations in several mitochondrial DNA (mtDNA)-encoded Complex I subunits including ND4, ND5 and ND6 have been identified in several neurological diseases. We previously demonstrated that these subunits played essential roles in Complex I assembly which in turn affected mitochondrial function. Here, we carried out a comprehensive study of the Complex I assembly pathway. We identified a new Complex I intermediate containing both membrane and matrix arms at an early assembly stage. We find that lack of the ND6 subunit does not hinder membrane arm formation; instead it recruits ND1 and ND5 enters the intermediate. While ND4 is important for the formation of the newly identified intermediate, the addition of ND5 stabilizes the complex and is required for the critical transition from Complex I to supercomplex assembly. As a result, the Complex I assembly pathway has been redefined in this study.
Collapse
Affiliation(s)
- Rasika Vartak
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Janice Deng
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Hezhi Fang
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Yidong Bai
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
| |
Collapse
|
31
|
Formosa LE, Mimaki M, Frazier AE, McKenzie M, Stait TL, Thorburn DR, Stroud DA, Ryan MT. Characterization of mitochondrial FOXRED1 in the assembly of respiratory chain complex I. Hum Mol Genet 2015; 24:2952-65. [DOI: 10.1093/hmg/ddv058] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 02/09/2015] [Indexed: 11/12/2022] Open
|
32
|
Vartak RS, Semwal MK, Bai Y. An update on complex I assembly: the assembly of players. J Bioenerg Biomembr 2014; 46:323-8. [PMID: 25030182 DOI: 10.1007/s10863-014-9564-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 07/02/2014] [Indexed: 12/19/2022]
Abstract
Defects in Complex I assembly is one of the emerging underlying causes of severe mitochondrial disorders. The assembly of Complex I has been difficult to understand due to its large size, dual genetic control and the number of proteins involved. Mutations in Complex I subunits as well as assembly factors have been reported to hinder its assembly and give rise to a range of mitochondria disorders. In this review, we summarize the recent progress made in understanding the Complex I assembly pathway. In particularly, we focus on the known as well as novel assembly factors and their role in assembly of Complex I and human disease.
Collapse
Affiliation(s)
- Rasika S Vartak
- Department of Cellular and Structural Biology, UT Health Science Center, San Antonio, TX, USA
| | | | | |
Collapse
|
33
|
ATP-dependent Lon protease controls tumor bioenergetics by reprogramming mitochondrial activity. Cell Rep 2014; 8:542-56. [PMID: 25017063 DOI: 10.1016/j.celrep.2014.06.018] [Citation(s) in RCA: 151] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 03/19/2014] [Accepted: 06/12/2014] [Indexed: 12/22/2022] Open
Abstract
We generated mice deficient in Lon protease (LONP1), a major enzyme of the mitochondrial quality control machinery. Homozygous deletion of Lonp1 causes early embryonic lethality, whereas its haploinsufficiency protects against colorectal and skin tumors. Furthermore, LONP1 knockdown inhibits cellular proliferation and tumor and metastasis formation, whereas its overexpression increases tumorigenesis. Clinical studies indicate that high levels of LONP1 are a poor prognosis marker in human colorectal cancer and melanoma. Additionally, functional analyses show that LONP1 plays a key role in metabolic reprogramming by remodeling OXPHOS complexes and protecting against senescence. Our findings demonstrate the relevance of LONP1 for cellular and organismal viability and identify this protease as a central regulator of mitochondrial activity in oncogenesis.
Collapse
|
34
|
Lapuente-Brun E, Moreno-Loshuertos R, Acín-Pérez R, Latorre-Pellicer A, Colás C, Balsa E, Perales-Clemente E, Quirós PM, Calvo E, Rodríguez-Hernández MA, Navas P, Cruz R, Carracedo Á, López-Otín C, Pérez-Martos A, Fernández-Silva P, Fernández-Vizarra E, Enríquez JA. Supercomplex Assembly Determines Electron Flux in the Mitochondrial Electron Transport Chain. Science 2013; 340:1567-70. [DOI: 10.1126/science.1230381] [Citation(s) in RCA: 555] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The textbook description of mitochondrial respiratory complexes (RCs) views them as free-moving entities linked by the mobile carriers coenzyme Q (CoQ) and cytochrome c (cyt c). This model (known as the fluid model) is challenged by the proposal that all RCs except complex II can associate in supercomplexes (SCs). The proposed SCs are the respirasome (complexes I, III, and IV), complexes I and III, and complexes III and IV. The role of SCs is unclear, and their existence is debated. By genetic modulation of interactions between complexes I and III and III and IV, we show that these associations define dedicated CoQ and cyt c pools and that SC assembly is dynamic and organizes electron flux to optimize the use of available substrates.
Collapse
|
35
|
Abstract
Mitochondrial oxidative phosphorylation (OXPHOS) sustains organelle function and plays a central role in cellular energy metabolism. The OXPHOS system consists of 5 multisubunit complexes (CI-CV) that are built up of 92 different structural proteins encoded by the nuclear (nDNA) and mitochondrial DNA (mtDNA). Biogenesis of a functional OXPHOS system further requires the assistance of nDNA-encoded OXPHOS assembly factors, of which 35 are currently identified. In humans, mutations in both structural and assembly genes and in genes involved in mtDNA maintenance, replication, transcription, and translation induce 'primary' OXPHOS disorders that are associated with neurodegenerative diseases including Leigh syndrome (LS), which is probably the most classical OXPHOS disease during early childhood. Here, we present the current insights regarding function, biogenesis, regulation, and supramolecular architecture of the OXPHOS system, as well as its genetic origin. Next, we provide an inventory of OXPHOS structural and assembly genes which, when mutated, induce human neurodegenerative disorders. Finally, we discuss the consequences of mutations in OXPHOS structural and assembly genes at the single cell level and how this information has advanced our understanding of the role of OXPHOS dysfunction in neurodegeneration.
Collapse
|
36
|
Guerra F, Perrone AM, Kurelac I, Santini D, Ceccarelli C, Cricca M, Zamagni C, De Iaco P, Gasparre G. Mitochondrial DNA mutation in serous ovarian cancer: implications for mitochondria-coded genes in chemoresistance. J Clin Oncol 2012; 30:e373-8. [PMID: 23150702 DOI: 10.1200/jco.2012.43.5933] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
37
|
Dieteren CEJ, Koopman WJH, Swarts HG, Peters JGP, Maczuga P, van Gemst JJ, Masereeuw R, Smeitink JAM, Nijtmans LGJ, Willems PHGM. Subunit-specific incorporation efficiency and kinetics in mitochondrial complex I homeostasis. J Biol Chem 2012; 287:41851-60. [PMID: 23038253 DOI: 10.1074/jbc.m112.391151] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Studies employing native PAGE suggest that most nDNA-encoded CI subunits form subassemblies before assembling into holo-CI. In addition, in vitro evidence suggests that some subunits can directly exchange in holo-CI. Presently, data on the kinetics of these two incorporation modes for individual CI subunits during CI maintenance are sparse. Here, we used inducible HEK293 cell lines stably expressing AcGFP1-tagged CI subunits and quantified the amount of tagged subunit in mitoplasts and holo-CI by non-native and native PAGE, respectively, to determine their CI incorporation efficiency. Analysis of time courses of induction revealed three subunit-specific patterns. A first pattern, represented by NDUFS1, showed overlapping time courses, indicating that imported subunits predominantly incorporate into holo-CI. A second pattern, represented by NDUFV1, consisted of parallel time courses, which were, however, not quantitatively overlapping, suggesting that imported subunits incorporate at similar rates into holo-CI and CI assembly intermediates. The third pattern, represented by NDUFS3 and NDUFA2, revealed a delayed incorporation into holo-CI, suggesting their prior appearance in CI assembly intermediates and/or as free monomers. Our analysis showed the same maximum incorporation into holo-CI for NDUFV1, NDUFV2, NDUFS1, NDUFS3, NDUFS4, NDUFA2, and NDUFA12 with nearly complete loss of endogenous subunit at 24 h of induction, indicative of an equimolar stoichiometry and unexpectedly rapid turnover. In conclusion, the results presented demonstrate that newly formed nDNA-encoded CI subunits rapidly incorporate into holo-CI in a subunit-specific manner.
Collapse
Affiliation(s)
- Cindy E J Dieteren
- Department of Biochemistry, Radboud University Nijmegen Medical Centre, 6500 HB Nijmegen, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Hoefs SJ, Rodenburg RJ, Smeitink JA, van den Heuvel LP. Molecular base of biochemical complex I deficiency. Mitochondrion 2012; 12:520-32. [DOI: 10.1016/j.mito.2012.07.106] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Revised: 07/06/2012] [Accepted: 07/10/2012] [Indexed: 12/21/2022]
|
39
|
Murphy JL, Ratnaike TE, Shang E, Falkous G, Blakely EL, Alston CL, Taivassalo T, Haller RG, Taylor RW, Turnbull DM. Cytochrome c oxidase-intermediate fibres: importance in understanding the pathogenesis and treatment of mitochondrial myopathy. Neuromuscul Disord 2012; 22:690-8. [PMID: 22647770 PMCID: PMC3476534 DOI: 10.1016/j.nmd.2012.04.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Revised: 03/07/2012] [Accepted: 04/03/2012] [Indexed: 11/22/2022]
Abstract
An important diagnostic muscle biopsy finding in patients with mitochondrial DNA disease is the presence of respiratory-chain deficient fibres. These fibres are detected as cytochrome c oxidase-deficient following a sequential cytochrome c oxidase-succinate dehydrogenase reaction, often in a mosaic pattern within a population of cytochrome c oxidase-normal fibres. Detailed analysis of muscle biopsies from patients with various mitochondrial DNA defects shows that a spectrum of deficiency exists, as there are a large number of fibres which do not correspond to being either completely cytochrome c oxidase-normal (brown staining) or cytochrome c oxidase-deficient (blue staining). We have used a combination of histochemical and immunocytochemical techniques to show that a population of cytochrome c oxidase-intermediate reacting fibres are a gradation between normal and deficient fibres. We show that cytochrome c oxidase-intermediate fibres also have different genetic characteristics in terms of amount of mutated and wild-type mtDNA, and as such, may represent an important transition between respiratory normal and deficient fibres. Assessing changes in intermediate fibres will be crucial to evaluating the responses to treatment and in particular to exercise training regimes in patients with mitochondrial DNA disease.
Collapse
Affiliation(s)
- Julie L. Murphy
- Wellcome Trust Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, UK
| | - Thiloka E. Ratnaike
- Wellcome Trust Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, UK
| | - Ersong Shang
- Wellcome Trust Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, UK
| | - Gavin Falkous
- Wellcome Trust Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, UK
| | - Emma L. Blakely
- Wellcome Trust Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, UK
| | - Charlotte L. Alston
- Wellcome Trust Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, UK
| | - Tanja Taivassalo
- Department of Kinesiology, McGill University, and Neuromuscular Research, Montreal Neurological Institute, Montreal, Canada
| | - Ronald G. Haller
- Neuromuscular Center Institute for Exercise and Environmental Medicine of Texas Health Presbyterian Hospital, Dallas, USA
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, USA
| | - Robert W. Taylor
- Wellcome Trust Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, UK
| | - Doug M. Turnbull
- Wellcome Trust Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
40
|
Zurita Rendón O, Shoubridge EA. Early complex I assembly defects result in rapid turnover of the ND1 subunit. Hum Mol Genet 2012; 21:3815-24. [PMID: 22653752 DOI: 10.1093/hmg/dds209] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Complex I (CI, NADH ubiquinone oxidoreductase), the largest complex of the respiratory chain, is composed of 45 structural subunits, 7 of which are encoded in mtDNA. At least 10 factors necessary for holoenzyme assembly have been identified; however, the specific roles of most of them are not well understood. We investigated the role of NDUFAF3, NDUFAF4, C8orf38 and C20orf7, four early assembly factors, in the translation of the mtDNA-encoded CI structural subunits. Transient, or stable, siRNA-mediated knock-down of any of these factors abrogated the assembly of CI, and resulted in a specific decrease in the labeling of the ND1 subunit in a pulse translation experiment, whereas knock-down of NDUFAF2, a late assembly factor, did not affect ND1 translation. Pulse-chase experiments in cells knocked down for NDUFAF3 showed that the half-life of ND1 in the chase was reduced 4-fold, fully accounting for the decrease in pulse labeling. Transient, short-term knock-down of the m-AAA protease AGF3L2 in cells that had been depleted of any of the early CI assembly factors completely rescued the ND1 labeling phenotype, confirming that it is not a synthesis defect, but rather results from rapid proteolysis of newly synthesized ND1. NDUFAF3 co-immunoprecipitated with NDUFAF4, and three matrix arm structural subunits (NDUFS2, NDUFA9, NDUFS3) that are found in a 400 kDa assembly intermediate containing ND1. These data suggest that the four early CI assembly factors have non-redundant functions in the assembly of a module that docks and stabilizes newly synthesized ND1, nucleating assembly of the holoenzyme.
Collapse
Affiliation(s)
- Olga Zurita Rendón
- Montreal Neurological Institute and Department of Human Genetics, McGill University, Montreal, QC, Canada H3A 2B4
| | | |
Collapse
|
41
|
Valsecchi F, Monge C, Forkink M, de Groof AJC, Benard G, Rossignol R, Swarts HG, van Emst-de Vries SE, Rodenburg RJ, Calvaruso MA, Nijtmans LGJ, Heeman B, Roestenberg P, Wieringa B, Smeitink JAM, Koopman WJH, Willems PHGM. Metabolic consequences of NDUFS4 gene deletion in immortalized mouse embryonic fibroblasts. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1817:1925-36. [PMID: 22430089 DOI: 10.1016/j.bbabio.2012.03.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 03/01/2012] [Accepted: 03/04/2012] [Indexed: 12/17/2022]
Abstract
Human mitochondrial complex I (CI) deficiency is associated with progressive neurological disorders. To better understand the CI pathomechanism, we here studied how deletion of the CI gene NDUFS4 affects cell metabolism. To this end we compared immortalized mouse embryonic fibroblasts (MEFs) derived from wildtype (wt) and whole-body NDUFS4 knockout (KO) mice. Mitochondria from KO cells lacked the NDUFS4 protein and mitoplasts displayed virtually no CI activity, moderately reduced CII, CIII and CIV activities and normal citrate synthase and CV (F(o)F(1)-ATPase) activity. Native electrophoresis of KO cell mitochondrial fractions revealed two distinct CI subcomplexes of ~830kDa (enzymatically inactive) and ~200kDa (active). The level of fully-assembled CII-CV was not affected by NDUFS4 gene deletion. KO cells exhibited a moderately reduced maximal and routine O(2) consumption, which was fully inhibited by acute application of the CI inhibitor rotenone. The aberrant CI assembly and reduced O(2) consumption in KO cells were fully normalized by NDUFS4 gene complementation. Cellular [NAD(+)]/[NADH] ratio, lactate production and mitochondrial tetramethyl rhodamine methyl ester (TMRM) accumulation were slightly increased in KO cells. In contrast, NDUFS4 gene deletion did not detectably alter [NADP(+)]/[NADPH] ratio, cellular glucose consumption, the protein levels of hexokinases (I and II) and phosphorylated pyruvate dehydrogenase (P-PDH), total cellular adenosine triphosphate (ATP) level, free cytosolic [ATP], cell growth rate, and reactive oxygen species (ROS) levels. We conclude that the NDUFS4 subunit is of key importance in CI stabilization and that, due to the metabolic properties of the immortalized MEFs, NDUFS4 gene deletion has only modest effects at the live cell level. This article is part of a special issue entitled: 17th European Bioenergetics Conference (EBEC 2012).
Collapse
Affiliation(s)
- Federica Valsecchi
- Department of Biochemistry, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Pagniez-Mammeri H, Rak M, Legrand A, Bénit P, Rustin P, Slama A. Mitochondrial complex I deficiency of nuclear origin II. Non-structural genes. Mol Genet Metab 2012; 105:173-9. [PMID: 22099533 DOI: 10.1016/j.ymgme.2011.10.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2011] [Revised: 10/07/2011] [Accepted: 10/07/2011] [Indexed: 12/01/2022]
Abstract
Complex I deficiency is the most frequent cause of respiratory chain diseases. This large multiprotein complex is composed in human of 45 structural subunits, of which 7 are mitochondrial-encoded and 38 are nuclear-encoded. Most of the pathological mutations responsible for complex I deficiencies have been identified to date in complex I structural subunits. Numerous studies from last decade gave some insight into the biogenesis of this huge multi subunit complex of double genetic origin. A sequential incorporation of the structural subunits as well as ten complex I assembly factors has been described. Here, we present a short overview of the human complex I biogenesis and we review the pathological mutations identified to date in eight of the ten known complex I assembly factors.
Collapse
Affiliation(s)
- Hélène Pagniez-Mammeri
- Laboratoire de Biochimie, APHP Hôpital de Bicêtre, 78 rue du Général Leclerc, 94275 Le Kremlin Bicêtre cedex, France
| | | | | | | | | | | |
Collapse
|
43
|
Mutations in the Gene Encoding C8orf38 Block Complex I Assembly by Inhibiting Production of the Mitochondria-Encoded Subunit ND1. J Mol Biol 2011; 414:413-26. [DOI: 10.1016/j.jmb.2011.10.012] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Revised: 10/07/2011] [Accepted: 10/07/2011] [Indexed: 12/11/2022]
|
44
|
Cells lacking Rieske iron-sulfur protein have a reactive oxygen species-associated decrease in respiratory complexes I and IV. Mol Cell Biol 2011; 32:415-29. [PMID: 22106410 DOI: 10.1128/mcb.06051-11] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Mitochondrial respiratory complexes of the electron transport chain (CI, CIII, and CIV) can be assembled into larger structures forming supercomplexes. We analyzed the assembly/stability of respiratory complexes in mouse lung fibroblasts lacking the Rieske iron-sulfur protein (RISP knockout [KO]cells), one of the catalytic subunits of CIII. In the absence of RISP, most of the remaining CIII subunits were able to assemble into a large precomplex that lacked enzymatic activity. CI, CIV, and supercomplexes were decreased in the RISP-deficient cells. Reintroduction of RISP into KO cells restored CIII activity and increased the levels of active CI, CIV, and supercomplexes. We found that hypoxia (1% O(2)) resulted in increased levels of CI, CIV, and supercomplex assembly in RISP KO cells. In addition, treatment of control cells with different oxidative phosphorylation (OXPHOS) inhibitors showed that compounds known to generate reactive oxygen species (ROS) (e.g., antimycin A and oligomycin) had a negative impact on CI and supercomplex levels. Accordingly, a superoxide dismutase (SOD) mimetic compound and SOD2 overexpression provided a partial increase in supercomplex levels in the RISP KO cells. Our data suggest that the stability of CI, CIV, and supercomplexes is regulated by ROS in the context of defective oxidative phosphorylation.
Collapse
|
45
|
Nouws J, Nijtmans LGJ, Smeitink JA, Vogel RO. Assembly factors as a new class of disease genes for mitochondrial complex I deficiency: cause, pathology and treatment options. Brain 2011; 135:12-22. [DOI: 10.1093/brain/awr261] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
46
|
Olsson AH, Yang BT, Hall E, Taneera J, Salehi A, Dekker Nitert M, Ling C. Decreased expression of genes involved in oxidative phosphorylation in human pancreatic islets from patients with type 2 diabetes. Eur J Endocrinol 2011; 165:589-95. [PMID: 21775499 PMCID: PMC3178933 DOI: 10.1530/eje-11-0282] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
OBJECTIVE Gene expression alterations, especially in target tissues of insulin, have been associated with type 2 diabetes (T2D). In this study, we examined if genes involved in oxidative phosphorylation (OXPHOS) show differential gene expression and DNA methylation in pancreatic islets from patients with T2D compared with non-diabetic donors. DESIGN AND METHODS Gene expression was analyzed in human pancreatic islets from 55 non-diabetic donors and nine T2D donors using microarray. RESULTS While the expected number of OXPHOS genes with reduced gene expression is 7.21, we identified 21 downregulated OXPHOS genes in pancreatic islets from patients with T2D using microarray analysis. This gives a ratio of observed over expected OXPHOS genes of 26.37 by a χ(2)-test with P=2.81 × 10(-7). The microarray data was validated by qRT-PCR for four selected OXPHOS genes: NDUFA5, NDUFA10, COX11, and ATP6V1H. All four OXPHOS genes were significantly downregulated in islets from patients with T2D compared with non-diabetic donors using qRT-PCR (P ≤ 0.01). Furthermore, HbAlc levels correlated negatively with gene expression of NDUFA5, COX11, and ATP6V1H (P<0.05). Gene expression of NDUFA5, NDUFA10, COX11, and ATP6V1H correlated positively with glucose-stimulated insulin secretion (P<0.03). Finally, DNA methylation was analyzed upstream of the transcription start for NDUFA5, COX11, and ATP6V1H. However, none of the analyzed CpG sites in the three genes showed differences in DNA methylation in islets from donors with T2D compared with non-diabetic donors. CONCLUSION Pancreatic islets from patients with T2D show decreased expression of a set of OXPHOS genes, which may lead to impaired insulin secretion.
Collapse
|
47
|
Dieteren CEJ, Willems PHGM, Swarts HG, Fransen J, Smeitink JAM, Koopman WJH, Nijtmans LGJ. Defective mitochondrial translation differently affects the live cell dynamics of complex I subunits. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1807:1624-33. [PMID: 21978538 DOI: 10.1016/j.bbabio.2011.09.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Revised: 09/16/2011] [Accepted: 09/18/2011] [Indexed: 10/17/2022]
Abstract
Complex I (CI) of the oxidative phosphorylation system is assembled from 45 subunits encoded by both the mitochondrial and nuclear DNA. Defective mitochondrial translation is a major cause of mitochondrial disorders and proper understanding of its mechanisms and consequences is fundamental to rational treatment design. Here, we used a live cell approach to assess its consequences on CI assembly. The approach consisted of fluorescence recovery after photobleaching (FRAP) imaging of the effect of mitochondrial translation inhibition by chloramphenicol (CAP) on the dynamics of AcGFP1-tagged CI subunits NDUFV1, NDUFS3, NDUFA2 and NDUFB6 and assembly factor NDUFAF4. CAP increased the mobile fraction of the subunits, but not NDUFAF4, and decreased the amount of CI, demonstrating that CI is relatively immobile and does not associate with NDUFAF4. CAP increased the recovery kinetics of NDUFV1-AcGFP1 to the same value as obtained with AcGFP1 alone, indicative of the removal of unbound NDUFV1 from the mitochondrial matrix. Conversely, CAP decreased the mobility of NDUFS3-AcGFP1 and, to a lesser extent, NDUFB6-AcGFP1, suggestive of their enrichment in less mobile subassemblies. Little, if any, change in mobility of NDUFA2-AcGFP1 could be detected, suggesting that the dynamics of this accessory subunit of the matrix arm remains unaltered. Finally, CAP increased the mobility of NDUFAF4-AcGFP1, indicative of interaction with a more mobile membrane-bound subassembly. Our results show that the protein interactions of CI subunits and assembly factors are differently altered when mitochondrial translation is defective.
Collapse
Affiliation(s)
- Cindy E J Dieteren
- Department of Biochemistry, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
48
|
Understanding mitochondrial complex I assembly in health and disease. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1817:851-62. [PMID: 21924235 DOI: 10.1016/j.bbabio.2011.08.010] [Citation(s) in RCA: 312] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2011] [Revised: 08/17/2011] [Accepted: 08/27/2011] [Indexed: 12/12/2022]
Abstract
Complex I (NADH:ubiquinone oxidoreductase) is the largest multimeric enzyme complex of the mitochondrial respiratory chain, which is responsible for electron transport and the generation of a proton gradient across the mitochondrial inner membrane to drive ATP production. Eukaryotic complex I consists of 14 conserved subunits, which are homologous to the bacterial subunits, and more than 26 accessory subunits. In mammals, complex I consists of 45 subunits, which must be assembled correctly to form the properly functioning mature complex. Complex I dysfunction is the most common oxidative phosphorylation (OXPHOS) disorder in humans and defects in the complex I assembly process are often observed. This assembly process has been difficult to characterize because of its large size, the lack of a high resolution structure for complex I, and its dual control by nuclear and mitochondrial DNA. However, in recent years, some of the atomic structure of the complex has been resolved and new insights into complex I assembly have been generated. Furthermore, a number of proteins have been identified as assembly factors for complex I biogenesis and many patients carrying mutations in genes associated with complex I deficiency and mitochondrial diseases have been discovered. Here, we review the current knowledge of the eukaryotic complex I assembly process and new insights from the identification of novel assembly factors. This article is part of a Special Issue entitled: Biogenesis/Assembly of Respiratory Enzyme Complexes.
Collapse
|
49
|
Abstract
Mitochondrial diseases involve the dysfunction of the oxidative phosphorylation (OXPHOS) system. This group of diseases presents with heterogeneous clinical symptoms affecting mainly organs with high energy demands. Defects in the multimeric complexes comprising the OXPHOS system have a dual genetic origin, mitochondrial or nuclear DNA. Although many nuclear DNA mutations involve genes coding for subunits of the respiratory complexes, the majority of mutations found to date affect factors that do not form part of the final complexes. These assembly factors or chaperones have multiple functions ranging from cofactor insertion to proper assembly/stability of the complexes. Although significant progress has been made in the last few years in the discovery of new assembly factors, the function of many remains elusive. Here, we describe assembly factors or chaperones that are required for respiratory chain complex assembly and their clinical relevance.
Collapse
|
50
|
Koeck T, Olsson AH, Nitert MD, Sharoyko VV, Ladenvall C, Kotova O, Reiling E, Rönn T, Parikh H, Taneera J, Eriksson JG, Metodiev MD, Larsson NG, Balhuizen A, Luthman H, Stančáková A, Kuusisto J, Laakso M, Poulsen P, Vaag A, Groop L, Lyssenko V, Mulder H, Ling C. A common variant in TFB1M is associated with reduced insulin secretion and increased future risk of type 2 diabetes. Cell Metab 2011; 13:80-91. [PMID: 21195351 DOI: 10.1016/j.cmet.2010.12.007] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2009] [Revised: 06/12/2010] [Accepted: 11/10/2010] [Indexed: 01/07/2023]
Abstract
Type 2 diabetes (T2D) evolves when insulin secretion fails. Insulin release from the pancreatic β cell is controlled by mitochondrial metabolism, which translates fluctuations in blood glucose into metabolic coupling signals. We identified a common variant (rs950994) in the human transcription factor B1 mitochondrial (TFB1M) gene associated with reduced insulin secretion, elevated postprandial glucose levels, and future risk of T2D. Because islet TFB1M mRNA levels were lower in carriers of the risk allele and correlated with insulin secretion, we examined mice heterozygous for Tfb1m deficiency. These mice displayed lower expression of TFB1M in islets and impaired mitochondrial function and released less insulin in response to glucose in vivo and in vitro. Reducing TFB1M mRNA and protein in clonal β cells by RNA interference impaired complexes of the mitochondrial oxidative phosphorylation system. Consequently, nutrient-stimulated ATP generation was reduced, leading to perturbed insulin secretion. We conclude that a deficiency in TFB1M and impaired mitochondrial function contribute to the pathogenesis of T2D.
Collapse
Affiliation(s)
- Thomas Koeck
- Department of Clinical Sciences, Lund University Diabetes Centre, CRC, Scania University Hospital, 205 02 Malmö, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|