1
|
Hossain MA. A comprehensive review of targeting RAF kinase in cancer. Eur J Pharmacol 2025; 986:177142. [PMID: 39577552 DOI: 10.1016/j.ejphar.2024.177142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 11/11/2024] [Accepted: 11/17/2024] [Indexed: 11/24/2024]
Abstract
RAF kinases, particularly the BRAF isoform, play a crucial role in the MAPK/ERK signaling pathway, regulating key cellular processes such as proliferation, differentiation, and survival. Dysregulation of this pathway often caused by mutations in the BRAF gene or alterations in upstream regulators like Ras and receptor tyrosine kinases contributes significantly to cancer development. Mutations, such as BRAF-V600E, are present in a variety of malignancies, with the highest prevalence in melanoma. Targeted therapies against RAF kinases have achieved substantial success, especially in BRAF-V600E-mutant melanomas, where inhibitors like vemurafenib and dabrafenib have demonstrated remarkable efficacy, leading to improved patient outcomes. These inhibitors have also shown clinical benefits in cancers such as thyroid and colorectal carcinoma, although to a lesser extent. Despite these successes, therapeutic resistance remains a major hurdle. Resistance mechanisms, including RAF dimerization, feedback reactivation of the MAPK pathway, and paradoxical activation of ERK signaling, often lead to diminished efficacy over time, resulting in disease progression or even secondary malignancies. In response, current research is focusing on novel therapeutic strategies, including combination therapies that target multiple components of the pathway simultaneously, such as MEK inhibitors used in tandem with RAF inhibitors. Additionally, next-generation RAF inhibitors are being developed to address resistance and enhance therapeutic specificity. This review discusses the clinical advancements in RAF-targeted therapies, with a focus on ongoing efforts to overcome therapeutic resistance and enhance outcomes for cancer patients. It also underscores the persistent challenges in effectively targeting RAF kinase in oncology.
Collapse
Affiliation(s)
- Md Arafat Hossain
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh.
| |
Collapse
|
2
|
Wu J, Jonniya NA, Hirakis SP, Olivieri C, Veglia G, Kornev AP, Taylor SS. Role of the αC-β4 loop in protein kinase structure and dynamics. eLife 2024; 12:RP91980. [PMID: 39630082 PMCID: PMC11616992 DOI: 10.7554/elife.91980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024] Open
Abstract
Although the αC-β4 loop is a stable feature of all protein kinases, the importance of this motif as a conserved element of secondary structure, as well as its links to the hydrophobic architecture of the kinase core, has been underappreciated. We first review the motif and then describe how it is linked to the hydrophobic spine architecture of the kinase core, which we first discovered using a computational tool, local spatial Pattern (LSP) alignment. Based on NMR predictions that a mutation in this motif abolishes the synergistic high-affinity binding of ATP and a pseudo substrate inhibitor, we used LSP to interrogate the F100A mutant. This comparison highlights the importance of the αC-β4 loop and key residues at the interface between the N- and C-lobes. In addition, we delved more deeply into the structure of the apo C-subunit, which lacks ATP. While apo C-subunit showed no significant changes in backbone dynamics of the αC-β4 loop, we found significant differences in the side chain dynamics of K105. The LSP analysis suggests disruption of communication between the N- and C-lobes in the F100A mutant, which would be consistent with the structural changes predicted by the NMR spectroscopy.
Collapse
Affiliation(s)
- Jian Wu
- Department of Pharmacology, University of California, San DiegoSan DiegoUnited States
| | - Nisha A Jonniya
- Department of Pharmacology, University of California, San DiegoSan DiegoUnited States
| | - Sophia P Hirakis
- Department of Chemistry and Biochemistry, University of California, San DiegoSan DiegoUnited States
| | - Cristina Olivieri
- Department of Biochemistry, Molecular Biology, and Biophysics, University of MinnesotaMinneapolisUnited States
| | - Gianluigi Veglia
- Department of Biochemistry, Molecular Biology, and Biophysics, University of MinnesotaMinneapolisUnited States
- Department of Chemistry, University of MinnesotaMinneapolisUnited States
| | - Alexandr P Kornev
- Department of Pharmacology, University of California, San DiegoSan DiegoUnited States
| | - Susan S Taylor
- Department of Pharmacology, University of California, San DiegoSan DiegoUnited States
- Department of Chemistry and Biochemistry, University of California, San DiegoSan DiegoUnited States
| |
Collapse
|
3
|
Hossain MA. Targeting the RAS upstream and downstream signaling pathway for cancer treatment. Eur J Pharmacol 2024; 979:176727. [PMID: 38866361 DOI: 10.1016/j.ejphar.2024.176727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 06/14/2024]
Abstract
Cancer often involves the overactivation of RAS/RAF/MEK/ERK (MAPK) and PI3K-Akt-mTOR pathways due to mutations in genes like RAS, RAF, PTEN, and PIK3CA. Various strategies are employed to address the overactivation of these pathways, among which targeted therapy emerges as a promising approach. Directly targeting specific proteins, leads to encouraging results in cancer treatment. For instance, RTK inhibitors such as imatinib and afatinib selectively target these receptors, hindering ligand binding and reducing signaling initiation. These inhibitors have shown potent efficacy against Non-Small Cell Lung Cancer. Other inhibitors, like lonafarnib targeting Farnesyltransferase and GGTI 2418 targeting geranylgeranyl Transferase, disrupt post-translational modifications of proteins. Additionally, inhibition of proteins like SOS, SH2 domain, and Ras demonstrate promising anti-tumor activity both in vivo and in vitro. Targeting downstream components with RAF inhibitors such as vemurafenib, dabrafenib, and sorafenib, along with MEK inhibitors like trametinib and binimetinib, has shown promising outcomes in treating cancers with BRAF-V600E mutations, including myeloma, colorectal, and thyroid cancers. Furthermore, inhibitors of PI3K (e.g., apitolisib, copanlisib), AKT (e.g., ipatasertib, perifosine), and mTOR (e.g., sirolimus, temsirolimus) exhibit promising efficacy against various cancers such as Invasive Breast Cancer, Lymphoma, Neoplasms, and Hematological malignancies. This review offers an overview of small molecule inhibitors targeting specific proteins within the RAS upstream and downstream signaling pathways in cancer.
Collapse
Affiliation(s)
- Md Arafat Hossain
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh.
| |
Collapse
|
4
|
Ali DH, Gaji RY. TKL family kinases in human apicomplexan pathogens. Mol Biochem Parasitol 2024; 259:111628. [PMID: 38719028 PMCID: PMC11182715 DOI: 10.1016/j.molbiopara.2024.111628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/28/2024] [Accepted: 04/30/2024] [Indexed: 05/18/2024]
Abstract
Apicomplexan parasites are the primary causative agents of many human diseases, including malaria, toxoplasmosis, and cryptosporidiosis. These opportunistic pathogens undergo complex life cycles with multiple developmental stages, wherein many key steps are regulated by phosphorylation mechanisms. The genomes of apicomplexan pathogens contain protein kinases from different groups including tyrosine kinase-like (TKL) family proteins. Although information on the role of TKL kinases in apicomplexans is quite limited, recent studies have revealed the important role of this family of proteins in apicomplexan biology. TKL kinases in these protozoan pathogens show unique organization with many novel domains thus making them attractive candidates for drug development. In this mini review, we summarize the current understanding of the role of TKL kinases in human apicomplexan pathogens' (Toxoplasma gondii, Plasmodium falciparum and Cryptosporidium parvum) biology and pathogenesis.
Collapse
Affiliation(s)
- Dima Hajj Ali
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, USA
| | - Rajshekhar Y Gaji
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, USA.
| |
Collapse
|
5
|
Scardaci R, Berlinska E, Scaparone P, Vietti Michelina S, Garbo E, Novello S, Santamaria D, Ambrogio C. Novel RAF-directed approaches to overcome current clinical limits and block the RAS/RAF node. Mol Oncol 2024; 18:1355-1377. [PMID: 38362705 PMCID: PMC11161739 DOI: 10.1002/1878-0261.13605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/30/2023] [Accepted: 01/30/2024] [Indexed: 02/17/2024] Open
Abstract
Mutations in the RAS-RAF-MEK-ERK pathway are frequent alterations in cancer and RASopathies, and while RAS oncogene activation alone affects 19% of all patients and accounts for approximately 3.4 million new cases every year, less frequent alterations in the cascade's downstream effectors are also involved in cancer etiology. RAS proteins initiate the signaling cascade by promoting the dimerization of RAF kinases, which can act as oncoproteins as well: BRAFV600E is the most common oncogenic driver, mutated in the 8% of all malignancies. Research in this field led to the development of drugs that target the BRAFV600-like mutations (Class I), which are now utilized in clinics, but cause paradoxical activation of the pathway and resistance development. Furthermore, they are ineffective against non-BRAFV600E malignancies that dimerize and could be either RTK/RAS independent or dependent (Class II and III, respectively), which are still lacking an effective treatment. This review discusses the recent advances in anti-RAF therapies, including paradox breakers, dimer-inhibitors, immunotherapies, and other novel approaches, critically evaluating their efficacy in overcoming the therapeutic limitations, and their putative role in blocking the RAS pathway.
Collapse
Affiliation(s)
- Rossella Scardaci
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology CenterUniversity of TorinoItaly
| | - Ewa Berlinska
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology CenterUniversity of TorinoItaly
| | - Pietro Scaparone
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology CenterUniversity of TorinoItaly
| | - Sandra Vietti Michelina
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology CenterUniversity of TorinoItaly
| | - Edoardo Garbo
- Department of OncologyUniversity of Torino, San Luigi HospitalOrbassanoItaly
| | - Silvia Novello
- Department of OncologyUniversity of Torino, San Luigi HospitalOrbassanoItaly
| | - David Santamaria
- Centro de Investigación del CáncerCSIC‐Universidad de SalamancaSpain
| | - Chiara Ambrogio
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology CenterUniversity of TorinoItaly
| |
Collapse
|
6
|
Gormal RS, Martinez-Marmol R, Brooks AJ, Meunier FA. Location, location, location: Protein kinase nanoclustering for optimised signalling output. eLife 2024; 13:e93902. [PMID: 38206309 PMCID: PMC10783869 DOI: 10.7554/elife.93902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
Protein kinases (PKs) are proteins at the core of cellular signalling and are thereby responsible for most cellular physiological processes and their regulations. As for all intracellular proteins, PKs are subjected to Brownian thermal energy that tends to homogenise their distribution throughout the volume of the cell. To access their substrates and perform their critical functions, PK localisation is therefore tightly regulated in space and time, relying upon a range of clustering mechanisms. These include post-translational modifications, protein-protein and protein-lipid interactions, as well as liquid-liquid phase separation, allowing spatial restriction and ultimately regulating access to their substrates. In this review, we will focus on key mechanisms mediating PK nanoclustering in physiological and pathophysiological processes. We propose that PK nanoclusters act as a cellular quantal unit of signalling output capable of integration and regulation in space and time. We will specifically outline the various super-resolution microscopy approaches currently used to elucidate the composition and mechanisms driving PK nanoscale clustering and explore the pathological consequences of altered kinase clustering in the context of neurodegenerative disorders, inflammation, and cancer.
Collapse
Affiliation(s)
- Rachel S Gormal
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of QueenslandBrisbaneAustralia
| | - Ramon Martinez-Marmol
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of QueenslandBrisbaneAustralia
| | - Andrew J Brooks
- Frazer Institute, The University of QueenslandWoolloongabbaAustralia
| | - Frédéric A Meunier
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of QueenslandBrisbaneAustralia
- School of Biomedical Sciences, The University of QueenslandSt LuciaAustralia
| |
Collapse
|
7
|
Clucas J, Meier P. Roles of RIPK1 as a stress sentinel coordinating cell survival and immunogenic cell death. Nat Rev Mol Cell Biol 2023; 24:835-852. [PMID: 37568036 DOI: 10.1038/s41580-023-00623-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2023] [Indexed: 08/13/2023]
Abstract
Cell death and inflammation are closely linked arms of the innate immune response to combat infection and tissue malfunction. Recent advancements in our understanding of the intricate signals originating from dying cells have revealed that cell death serves as more than just an end point. It facilitates the exchange of information between the dying cell and cells of the tissue microenvironment, particularly immune cells, alerting and recruiting them to the site of disturbance. Receptor-interacting serine/threonine-protein kinase 1 (RIPK1) is emerging as a critical stress sentinel that functions as a molecular switch, governing cellular survival, inflammatory responses and immunogenic cell death signalling. Its tight regulation involves multiple layers of post-translational modifications. In this Review, we discuss the molecular mechanisms that regulate RIPK1 to maintain homeostasis and cellular survival in healthy cells, yet drive cell death in a context-dependent manner. We address how RIPK1 mutations or aberrant regulation is associated with inflammatory and autoimmune disorders and cancer. Moreover, we tease apart what is known about catalytic and non-catalytic roles of RIPK1 and discuss the successes and pitfalls of current strategies that aim to target RIPK1 in the clinic.
Collapse
Affiliation(s)
- Jarama Clucas
- The Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, London, UK
| | - Pascal Meier
- The Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, London, UK.
| |
Collapse
|
8
|
Wu J, Jonniya NA, Hirakis SP, Olivieri C, Veglia G, Kornev AP, Taylor SS. Protein Kinase Structure and Dynamics: Role of the αC-β4 Loop. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.31.555822. [PMID: 37693538 PMCID: PMC10491255 DOI: 10.1101/2023.08.31.555822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Although the αC-β4 loop is a stable feature of all protein kinases, the importance of this motif as a conserved element of secondary structure, as well as its links to the hydrophobic architecture of the kinase core, has been underappreciated. We first review the motif and then describe how it is linked to the hydrophobic spine architecture of the kinase core, which we first discovered using a computational tool, Local Spatial Pattern (LSP) alignment. Based on NMR predictions that a mutation in this motif abolishes the synergistic high-affinity binding of ATP and a pseudo substrate inhibitor, we used LSP to interrogate the F100A mutant. This comparison highlights the importance of the αC-β4 loop and key residues at the interface between the N- and C-lobes. In addition, we delved more deeply into the structure of the apo C-subunit, which lacks ATP. While apo C-subunit showed no significant changes in backbone dynamics of the αC-β4 loop, we found significant differences in the side chain dynamics of K105. The LSP analysis suggests disruption of communication between the N- and C-lobes in the F100A mutant, which would be consistent with the structural changes predicted by the NMR spectroscopy.
Collapse
Affiliation(s)
- Jian Wu
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92037-0654, USA
| | - Nisha A. Jonniya
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92037-0654, USA
| | - Sophia P. Hirakis
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92037-0654, USA
| | - Cristina Olivieri
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, MN 55455, USA
| | - Gianluigi Veglia
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, MN 55455, USA
- Department of Chemistry, University of Minnesota, MN 55455, USA
| | - Alexandr P. Kornev
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92037-0654, USA
| | - Susan S. Taylor
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92037-0654, USA
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92037-0654, USA
| |
Collapse
|
9
|
Lauinger M, Christen D, Klar RFU, Roubaty C, Heilig CE, Stumpe M, Knox JJ, Radulovich N, Tamblyn L, Xie IY, Horak P, Forschner A, Bitzer M, Wittel UA, Boerries M, Ball CR, Heining C, Glimm H, Fröhlich M, Hübschmann D, Gallinger S, Fritsch R, Fröhling S, O'Kane GM, Dengjel J, Brummer T. BRAF Δβ3-αC in-frame deletion mutants differ in their dimerization propensity, HSP90 dependence, and druggability. SCIENCE ADVANCES 2023; 9:eade7486. [PMID: 37656784 DOI: 10.1126/sciadv.ade7486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 08/02/2023] [Indexed: 09/03/2023]
Abstract
In-frame BRAF exon 12 deletions are increasingly identified in various tumor types. The resultant BRAFΔβ3-αC oncoproteins usually lack five amino acids in the β3-αC helix linker and sometimes contain de novo insertions. The dimerization status of BRAFΔβ3-αC oncoproteins, their precise pathomechanism, and their direct druggability by RAF inhibitors (RAFi) has been under debate. Here, we functionally characterize BRAFΔLNVTAP>F and two novel mutants, BRAFdelinsFS and BRAFΔLNVT>F, and compare them with other BRAFΔβ3-αC oncoproteins. We show that BRAFΔβ3-αC oncoproteins not only form stable homodimers and large multiprotein complexes but also require dimerization. Nevertheless, details matter as aromatic amino acids at the deletion junction of some BRAFΔβ3-αC oncoproteins, e.g., BRAFΔLNVTAP>F, increase their stability and dimerization propensity while conferring resistance to monomer-favoring RAFi such as dabrafenib or HSP 90/CDC37 inhibition. In contrast, dimer-favoring inhibitors such as naporafenib inhibit all BRAFΔβ3-αC mutants in cell lines and patient-derived organoids, suggesting that tumors driven by such oncoproteins are vulnerable to these compounds.
Collapse
Affiliation(s)
- Manuel Lauinger
- Institute of Molecular Medicine, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Daniel Christen
- Institute of Molecular Medicine, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), partner site Freiburg and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Rhena F U Klar
- Institute of Molecular Medicine, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), partner site Freiburg and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Freeze-O Organoid Bank, University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Internal Medicine I (Hematology, Oncology, and Stem Cell Transplantation), University Hospital of Freiburg, Freiburg, Germany
- Institute of Medical Bioinformatics and Systems Medicine (IBSM), Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Carole Roubaty
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Christoph E Heilig
- Division of Translational Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Michael Stumpe
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Jennifer J Knox
- PanCuRx Translational Research Initiative, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Nikolina Radulovich
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Laura Tamblyn
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Irene Y Xie
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Peter Horak
- Division of Translational Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Andrea Forschner
- Department of Dermatology, University Hospital of Tübingen, Tübingen, Germany
- German Cancer Consortium (DKTK), DKFZ partner site Tübingen, Eberhard Karls University, Tübingen, Germany
| | - Michael Bitzer
- German Cancer Consortium (DKTK), DKFZ partner site Tübingen, Eberhard Karls University, Tübingen, Germany
- Center for Personalized Medicine Tübingen, Eberhard Karls University, Tübingen, Germany
- Department of Internal Medicine I, Eberhard-Karls University, Tübingen, Germany
| | - Uwe A Wittel
- Department of General and Visceral Surgery, University of Freiburg Medical Center, Faculty of Medicine, 79106 Freiburg, Germany
| | - Melanie Boerries
- German Cancer Consortium (DKTK), partner site Freiburg and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Institute of Medical Bioinformatics and Systems Medicine (IBSM), Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Comprehensive Cancer Center Freiburg (CCCF), Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Claudia R Ball
- Department for Translational Medical Oncology, National Center for Tumor Diseases (NCT/UCC), Dresden, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
- Translational Medical Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- German Cancer Consortium (DKTK), Dresden, Germany
- Technische Universität Dresden, Faculty of Biology, Technische Universität Dresden, Dresden, Germany
| | - Christoph Heining
- Department for Translational Medical Oncology, National Center for Tumor Diseases (NCT/UCC), Dresden, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
- Translational Medical Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- German Cancer Consortium (DKTK), Dresden, Germany
| | - Hanno Glimm
- Department for Translational Medical Oncology, National Center for Tumor Diseases (NCT/UCC), Dresden, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
- Translational Medical Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- German Cancer Consortium (DKTK), Dresden, Germany
- Translational Functional Cancer Genomics, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Martina Fröhlich
- Computational Oncology Group, Molecular Precision Oncology Program, National Center for Tumor Diseases (NCT) Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Daniel Hübschmann
- German Cancer Consortium (DKTK), Heidelberg, Germany
- Computational Oncology Group, Molecular Precision Oncology Program, National Center for Tumor Diseases (NCT) Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Pattern Recognition and Digital Medicine Group, Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM), Heidelberg, Germany
| | - Steven Gallinger
- PanCuRx Translational Research Initiative, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Ralph Fritsch
- Department of Internal Medicine I (Hematology, Oncology, and Stem Cell Transplantation), University Hospital of Freiburg, Freiburg, Germany
- Department of Medical Oncology and Haematology, University Hospital of Zurich, Zurich, Switzerland
| | - Stefan Fröhling
- Division of Translational Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Grainne M O'Kane
- PanCuRx Translational Research Initiative, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Jörn Dengjel
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Tilman Brummer
- Institute of Molecular Medicine, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
- German Cancer Consortium (DKTK), partner site Freiburg and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Freeze-O Organoid Bank, University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Comprehensive Cancer Center Freiburg (CCCF), Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Center for Biological Signalling Studies BIOSS, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
10
|
Tabrizian N, Nouruzi S, Cui CJ, Kobelev M, Namekawa T, Lodhia I, Talal A, Sivak O, Ganguli D, Zoubeidi A. ASCL1 is activated downstream of the ROR2/CREB signaling pathway to support lineage plasticity in prostate cancer. Cell Rep 2023; 42:112937. [PMID: 37552603 DOI: 10.1016/j.celrep.2023.112937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 07/16/2023] [Accepted: 07/20/2023] [Indexed: 08/10/2023] Open
Abstract
Lineage plasticity is a form of therapy-induced drug resistance. In prostate cancer, androgen receptor (AR) pathway inhibitors potentially lead to the accretion of tumor relapse with loss of AR signaling and a shift from a luminal state to an alternate program. However, the molecular and signaling mechanisms orchestrating the development of lineage plasticity under the pressure of AR-targeted therapies are not fully understood. Here, a survey of receptor tyrosine kinases (RTKs) identifies ROR2 as the top upregulated RTK following AR pathway inhibition, which feeds into lineage plasticity by promoting stem-cell-like and neuronal networks. Mechanistically, ROR2 activates the ERK/CREB signaling pathway to modulate the expression of the lineage commitment transcription factor ASCL1. Collectively, our findings nominate ROR2 as a potential therapeutic target to reverse the ENZ-induced plastic phenotype and potentially re-sensitize tumors to AR pathway inhibitors.
Collapse
Affiliation(s)
- Nakisa Tabrizian
- Department of Urologic Sciences, The University of British Columbia, Vancouver, BC V5Z 1M9, Canada; Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada
| | - Shaghayegh Nouruzi
- Department of Urologic Sciences, The University of British Columbia, Vancouver, BC V5Z 1M9, Canada; Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada
| | - Cassandra Jingjing Cui
- Department of Urologic Sciences, The University of British Columbia, Vancouver, BC V5Z 1M9, Canada; Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada
| | - Maxim Kobelev
- Department of Urologic Sciences, The University of British Columbia, Vancouver, BC V5Z 1M9, Canada; Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada
| | - Takeshi Namekawa
- Department of Urologic Sciences, The University of British Columbia, Vancouver, BC V5Z 1M9, Canada; Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada
| | - Ishana Lodhia
- Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada
| | - Amina Talal
- Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada
| | - Olena Sivak
- Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada
| | | | - Amina Zoubeidi
- Department of Urologic Sciences, The University of British Columbia, Vancouver, BC V5Z 1M9, Canada; Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada.
| |
Collapse
|
11
|
Chessel A, De Crozé N, Molina MD, Taberner L, Dru P, Martin L, Lepage T. RAS-independent ERK activation by constitutively active KSR3 in non-chordate metazoa. Nat Commun 2023; 14:3970. [PMID: 37407549 DOI: 10.1038/s41467-023-39606-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 06/21/2023] [Indexed: 07/07/2023] Open
Abstract
During early development of the sea urchin embryo, activation of ERK signalling in mesodermal precursors is not triggered by extracellular RTK ligands but by a cell-autonomous, RAS-independent mechanism that was not understood. We discovered that in these cells, ERK signalling is activated through the transcriptional activation of a gene encoding a protein related to Kinase Suppressor of Ras, that we named KSR3. KSR3 belongs to a family of catalytically inactive allosteric activators of RAF. Phylogenetic analysis revealed that genes encoding kinase defective KSR3 proteins are present in most non-chordate metazoa but have been lost in flies and nematodes. We show that the structure of KSR3 factors resembles that of several oncogenic human RAF mutants and that KSR3 from echinoderms, cnidarians and hemichordates activate ERK signalling independently of RAS when overexpressed in cultured cells. Finally, we used the sequence of KSR3 factors to identify activating mutations of human B-RAF. These findings reveal key functions for this family of factors as activators of RAF in RAS-independent ERK signalling in invertebrates. They have implications on the evolution of the ERK signalling pathway and suggest a mechanism for its co-option in the course of evolution.
Collapse
Affiliation(s)
- Aline Chessel
- Institut de Biologie Valrose CNRS, Université Côte d'Azur, Nice, France
| | - Noémie De Crozé
- Institut de Biologie Valrose CNRS, Université Côte d'Azur, Nice, France
| | - Maria Dolores Molina
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Catalonia, Spain
| | - Laura Taberner
- Institut de Biologie Valrose CNRS, Université Côte d'Azur, Nice, France
| | - Philippe Dru
- CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Institut de la Mer de Villefranche, 181 Chemin du Lazaret, 06230, Villefranche-sur-Mer, France
| | - Luc Martin
- Institut de Biologie Valrose CNRS, Université Côte d'Azur, Nice, France
| | - Thierry Lepage
- Institut de Biologie Valrose CNRS, Université Côte d'Azur, Nice, France.
| |
Collapse
|
12
|
Yeh CY, Wang YS, Takahashi Y, Kuusk K, Paul K, Arjus T, Yadlos O, Schroeder JI, Ilves I, Garcia-Sosa AT, Kollist H. MPK12 in stomatal CO 2 signaling: function beyond its kinase activity. THE NEW PHYTOLOGIST 2023; 239:146-158. [PMID: 36978283 PMCID: PMC10247450 DOI: 10.1111/nph.18913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 03/21/2023] [Indexed: 05/24/2023]
Abstract
Protein phosphorylation is a major molecular switch involved in the regulation of stomatal opening and closure. Previous research defined interaction between MAP kinase 12 and Raf-like kinase HT1 as a required step for stomatal movements caused by changes in CO2 concentration. However, whether MPK12 kinase activity is required for regulation of CO2 -induced stomatal responses warrants in-depth investigation. We apply genetic, biochemical, and structural modeling approaches to examining the noncatalytic role of MPK12 in guard cell CO2 signaling that relies on allosteric inhibition of HT1. We show that CO2 /HCO3 - -enhanced MPK12 interaction with HT1 is independent of its kinase activity. By analyzing gas exchange of plant lines expressing various kinase-dead and constitutively active versions of MPK12 in a plant line where MPK12 is deleted, we confirmed that CO2 -dependent stomatal responses rely on MPK12's ability to bind to HT1, but not its kinase activity. We also demonstrate that purified MPK12 and HT1 proteins form a heterodimer in the presence of CO2 /HCO3 - and present structural modeling that explains the MPK12:HT1 interaction interface. These data add to the model that MPK12 kinase-activity-independent interaction with HT1 functions as a molecular switch by which guard cells sense changes in atmospheric CO2 concentration.
Collapse
Affiliation(s)
- Chung-Yueh Yeh
- Institute of Technology, University of Tartu, Nooruse 1, Tartu 50411, Estonia
| | - Yuh-Shuh Wang
- Institute of Technology, University of Tartu, Nooruse 1, Tartu 50411, Estonia
| | - Yohei Takahashi
- Institute of Transformative Bio-Molecules, Nagoya University, Furocho, Chikusa, Nagoya, Aichi 464-8601, Japan
| | - Katarina Kuusk
- Institute of Technology, University of Tartu, Nooruse 1, Tartu 50411, Estonia
| | - Karnelia Paul
- School of Biological Sciences, Cell and Developmental Biology Department, University of California San Diego, La Jolla, CA 92093-0116, USA
| | - Triinu Arjus
- Institute of Technology, University of Tartu, Nooruse 1, Tartu 50411, Estonia
| | - Oleksii Yadlos
- Institute of Technology, University of Tartu, Nooruse 1, Tartu 50411, Estonia
| | - Julian I. Schroeder
- School of Biological Sciences, Cell and Developmental Biology Department, University of California San Diego, La Jolla, CA 92093-0116, USA
| | - Ivar Ilves
- Institute of Technology, University of Tartu, Nooruse 1, Tartu 50411, Estonia
| | | | - Hannes Kollist
- Institute of Technology, University of Tartu, Nooruse 1, Tartu 50411, Estonia
| |
Collapse
|
13
|
McCoy CJ, Paupelin-Vaucelle H, Gorilak P, Beneke T, Varga V, Gluenz E. ULK4 and Fused/STK36 interact to mediate assembly of a motile flagellum. Mol Biol Cell 2023; 34:ar66. [PMID: 36989043 PMCID: PMC10295485 DOI: 10.1091/mbc.e22-06-0222] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 03/10/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
Unc-51-like kinase (ULK) family serine-threonine protein kinase homologues have been linked to the function of motile cilia in diverse species. Mutations in Fused/STK36 and ULK4 in mice resulted in hydrocephalus and other phenotypes consistent with ciliary defects. How either protein contributes to the assembly and function of motile cilia is not well understood. Here we studied the phenotypes of ULK4 and Fused gene knockout (KO) mutants in the flagellated protist Leishmania mexicana. Both KO mutants exhibited a variety of structural defects of the flagellum cytoskeleton. Biochemical approaches indicate spatial proximity of these proteins and indicate a direct interaction between the N-terminus of LmxULK4 and LmxFused. Both proteins display a dispersed localization throughout the cell body and flagellum, with enrichment near the flagellar base and tip. The stable expression of LmxULK4 was dependent on the presence of LmxFused. Fused/STK36 was previously shown to localize to mammalian motile cilia, and we demonstrate here that ULK4 also localizes to the motile cilia in mouse ependymal cells. Taken together these data suggest a model where the pseudokinase ULK4 is a positive regulator of the kinase Fused/ STK36 in a pathway required for stable assembly of motile cilia.
Collapse
Affiliation(s)
- Ciaran J. McCoy
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| | | | - Peter Gorilak
- Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, 142 20 Prague 4, Czech Republic
| | - Tom Beneke
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| | - Vladimir Varga
- Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, 142 20 Prague 4, Czech Republic
| | - Eva Gluenz
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
- Wellcome Centre for Integrative Parasitology, School of Infection and Immunity, University of Glasgow, Glasgow G12 8TA, United Kingdom
| |
Collapse
|
14
|
Pseudokinase NRP1 facilitates endocytosis of transferrin in the African trypanosome. Sci Rep 2022; 12:18572. [PMID: 36329148 PMCID: PMC9633767 DOI: 10.1038/s41598-022-22054-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022] Open
Abstract
Trypanosoma brucei causes human African trypanosomiasis (HAT) and nagana in cattle. During infection of a vertebrate, endocytosis of host transferrin (Tf) is important for viability of the parasite. The majority of proteins involved in trypanosome endocytosis of Tf are unknown. Here we identify pseudokinase NRP1 (Tb427tmp.160.4770) as a regulator of Tf endocytosis. Genetic knockdown of NRP1 inhibited endocytosis of Tf without blocking uptake of bovine serum albumin. Binding of Tf to the flagellar pocket was not affected by knockdown of NRP1. However the quantity of Tf per endosome dropped significantly, consistent with NRP1 promoting robust capture and/or retention of Tf in vesicles. NRP1 is involved in motility of Tf-laden vesicles since distances between endosomes and the kinetoplast were reduced after knockdown of the gene. In search of possible mediators of NRP1 modulation of Tf endocytosis, the gene was knocked down and the phosphoproteome analyzed. Phosphorylation of protein kinases forkhead, NEK6, and MAPK10 was altered, in addition to EpsinR, synaptobrevin and other vesicle-associated proteins predicted to be involved in endocytosis. These candidate proteins may link NRP1 functionally either to protein kinases or to vesicle-associated proteins.
Collapse
|
15
|
Nussinov R, Zhang M, Maloney R, Liu Y, Tsai CJ, Jang H. Allostery: Allosteric Cancer Drivers and Innovative Allosteric Drugs. J Mol Biol 2022; 434:167569. [PMID: 35378118 PMCID: PMC9398924 DOI: 10.1016/j.jmb.2022.167569] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/11/2022] [Accepted: 03/25/2022] [Indexed: 01/12/2023]
Abstract
Here, we discuss the principles of allosteric activating mutations, propagation downstream of the signals that they prompt, and allosteric drugs, with examples from the Ras signaling network. We focus on Abl kinase where mutations shift the landscape toward the active, imatinib binding-incompetent conformation, likely resulting in the high affinity ATP outcompeting drug binding. Recent pharmacological innovation extends to allosteric inhibitor (GNF-5)-linked PROTAC, targeting Bcr-Abl1 myristoylation site, and broadly, allosteric heterobifunctional degraders that destroy targets, rather than inhibiting them. Designed chemical linkers in bifunctional degraders can connect the allosteric ligand that binds the target protein and the E3 ubiquitin ligase warhead anchor. The physical properties and favored conformational state of the engineered linker can precisely coordinate the distance and orientation between the target and the recruited E3. Allosteric PROTACs, noncompetitive molecular glues, and bitopic ligands, with covalent links of allosteric ligands and orthosteric warheads, increase the effective local concentration of productively oriented and placed ligands. Through covalent chemical or peptide linkers, allosteric drugs can collaborate with competitive drugs, degrader anchors, or other molecules of choice, driving innovative drug discovery.
Collapse
Affiliation(s)
- Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, MD 21702, USA; Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
| | - Mingzhen Zhang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, MD 21702, USA
| | - Ryan Maloney
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, MD 21702, USA
| | - Yonglan Liu
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, MD 21702, USA
| | - Chung-Jung Tsai
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, MD 21702, USA
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, MD 21702, USA
| |
Collapse
|
16
|
Born J, Shoshan Y, Huynh T, Cornell WD, Martin EJ, Manica M. On the Choice of Active Site Sequences for Kinase-Ligand Affinity Prediction. J Chem Inf Model 2022; 62:4295-4299. [PMID: 36098536 PMCID: PMC9516689 DOI: 10.1021/acs.jcim.2c00840] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Recent work showed that active site rather than full-protein-sequence
information improves predictive performance in kinase-ligand binding
affinity prediction. To refine the notion of an “active site”,
we here propose and compare multiple definitions. We report significant
evidence that our novel definition is superior to previous definitions
and better models of ATP-noncompetitive inhibitors. Moreover, we leverage
the discontiguity of the active site sequence to motivate novel protein-sequence
augmentation strategies and find that combining them further improves
performance.
Collapse
Affiliation(s)
- Jannis Born
- Accelerated Discovery, IBM Research Europe, 8803 Rüschlikon, Switzerland.,Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
| | | | - Tien Huynh
- IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598, United States
| | - Wendy D Cornell
- IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598, United States
| | - Eric J Martin
- Novartis Institutes for BioMedical Research, Emeryville, California 94608, United States
| | - Matteo Manica
- Accelerated Discovery, IBM Research Europe, 8803 Rüschlikon, Switzerland
| |
Collapse
|
17
|
Yasuda R, Hayashi Y, Hell JW. CaMKII: a central molecular organizer of synaptic plasticity, learning and memory. Nat Rev Neurosci 2022; 23:666-682. [PMID: 36056211 DOI: 10.1038/s41583-022-00624-2] [Citation(s) in RCA: 124] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2022] [Indexed: 12/30/2022]
Abstract
Calcium-calmodulin (CaM)-dependent protein kinase II (CaMKII) is the most abundant protein in excitatory synapses and is central to synaptic plasticity, learning and memory. It is activated by intracellular increases in calcium ion levels and triggers molecular processes necessary for synaptic plasticity. CaMKII phosphorylates numerous synaptic proteins, thereby regulating their structure and functions. This leads to molecular events crucial for synaptic plasticity, such as receptor trafficking, localization and activity; actin cytoskeletal dynamics; translation; and even transcription through synapse-nucleus shuttling. Several new tools affording increasingly greater spatiotemporal resolution have revealed the link between CaMKII activity and downstream signalling processes in dendritic spines during synaptic and behavioural plasticity. These technologies have provided insights into the function of CaMKII in learning and memory.
Collapse
Affiliation(s)
- Ryohei Yasuda
- Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA.
| | - Yasunori Hayashi
- Department of Pharmacology, Kyoto University Graduate School of Medicine, Kyoto, Japan.
| | - Johannes W Hell
- Department of Pharmacology, University of California, Davis, Davis, CA, USA.
| |
Collapse
|
18
|
Olivieri C, Li GC, Wang Y, V.S. M, Walker C, Kim J, Camilloni C, De Simone A, Vendruscolo M, Bernlohr DA, Taylor SS, Veglia G. ATP-competitive inhibitors modulate the substrate binding cooperativity of a kinase by altering its conformational entropy. SCIENCE ADVANCES 2022; 8:eabo0696. [PMID: 35905186 PMCID: PMC9337769 DOI: 10.1126/sciadv.abo0696] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
ATP-competitive inhibitors are currently the largest class of clinically approved drugs for protein kinases. By targeting the ATP-binding pocket, these compounds block the catalytic activity, preventing substrate phosphorylation. A problem with these drugs, however, is that inhibited kinases may still recognize and bind downstream substrates, acting as scaffolds or binding hubs for signaling partners. Here, using protein kinase A as a model system, we show that chemically different ATP-competitive inhibitors modulate the substrate binding cooperativity by tuning the conformational entropy of the kinase and shifting the populations of its conformationally excited states. Since we found that binding cooperativity and conformational entropy of the enzyme are correlated, we propose a new paradigm for the discovery of ATP-competitive inhibitors, which is based on their ability to modulate the allosteric coupling between nucleotide and substrate-binding sites.
Collapse
Affiliation(s)
- Cristina Olivieri
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Geoffrey C. Li
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Yingjie Wang
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518055, China
| | - Manu V.S.
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Caitlin Walker
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jonggul Kim
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Carlo Camilloni
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano 20133, Italy
| | - Alfonso De Simone
- Department of Pharmacy, Università degli Studi di Napoli Federico II, Napoli 80131, Italy
| | | | - David A. Bernlohr
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Susan S. Taylor
- Department of Chemistry and Biochemistry, and Pharmacology, University of California at San Diego, CA 92093, USA
| | - Gianluigi Veglia
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
19
|
Kotsaridis K, Tsakiri D, Sarris PF. Understanding enemy's weapons to an effective prevention: common virulence effects across microbial phytopathogens kingdoms. Crit Rev Microbiol 2022:1-15. [PMID: 35709325 DOI: 10.1080/1040841x.2022.2083939] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Plant-pathogens interaction is an ongoing confrontation leading to the emergence of new diseases. The majority of the invading microorganisms inject effector proteins into the host cell, to bypass the sophisticated defense system of the host. However, the effectors could also have other specialized functions, which can disrupt various biological pathways of the host cell. Pathogens can enrich their effectors arsenal to increase infection success or expand their host range. This usually is accomplished by the horizontal gene transfer. Nowadays, the development of specialized software that can predict proteins structure, has changed the experimental designing in effectors' function research. Different effectors of distinct plant pathogens tend to fold alike and have the same function and focussed structural studies on microbial effectors can help to uncover their catalytic/functional activities, while the structural similarity can enable cataloguing the great number of pathogens' effectors. In this review, we collectively present phytopathogens' effectors with known enzymatic functions and proteins structure, originated from all the kingdoms of microbial plant pathogens. Presentation of their common domains and motifs is also included. We believe that the in-depth understanding of the enemy's weapons will help the development of new strategies to prevent newly emerging or re-emerging plant pathogens.
Collapse
Affiliation(s)
| | | | - Panagiotis F Sarris
- Department of Biology, University of Crete, Crete, Greece.,Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Crete, Greece.,Biosciences, University of Exeter, Exeter, UK
| |
Collapse
|
20
|
Feichtner A, Kugler V, Schwaighofer S, Nuener T, Fleischmann J, Stefan E. Tracking mutation and drug-driven alterations of oncokinase conformations. MEMO 2022; 15:137-142. [PMID: 35677701 PMCID: PMC7612828 DOI: 10.1007/s12254-021-00790-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Numerous kinases act as central nodes of cellular signaling networks. As such, many of these enzymes function as molecular switches for coordinating spatiotemporal signal transmission. Typically, it is the compartmentalized phosphorylation of protein substrates which relays the transient input signal to determine decisive physiological cell responses. Genomic alterations affect kinase abundance and/or their activities which contribute to the malignant transformation, progression, and metastasis of human cancers. Thus, major drug discovery efforts have been made to identify lead molecules targeting clinically relevant oncokinases. The concept of personalized medicine aims to apply the therapeutic agent with the highest efficacy towards a patient-specific mutation. Here, we discuss the implementation of a cell-based reporter system which may foster the decision-making process to identify the most promising lead-molecules. We present a modular kinase conformation (KinCon) biosensor platform for live-cell analyses of kinase activity states. This biosensor facilitates the recording of kinase activity conformations of the wild-type and the respective mutated kinase upon lead molecule exposure. We reflect proof-of-principle studies demonstrating how this technology has been extended to profile drug properties of the full-length kinases BRAF and MEK1 in intact cells. Further, we pinpoint how this technology may open new avenues for systematic and patient-tailored drug discovery efforts. Overall, this precision-medicineoriented biosensor concept aims to determine kinase inhibitor specificity and anticipate their drug efficacies.
Collapse
Affiliation(s)
- Andreas Feichtner
- Institute of Biochemistry and Center for Molecular Biosciences, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Valentina Kugler
- Institute of Biochemistry and Center for Molecular Biosciences, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Selina Schwaighofer
- Institute of Biochemistry and Center for Molecular Biosciences, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Thomas Nuener
- Institute of Biochemistry and Center for Molecular Biosciences, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Jakob Fleischmann
- Institute of Biochemistry and Center for Molecular Biosciences, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Eduard Stefan
- Institute of Biochemistry and Center for Molecular Biosciences, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria; Tyrolean Cancer Research Institute, Innrain 66, 6020 Innsbruck, Austria
| |
Collapse
|
21
|
Zhao J, Luo Z. Discovery of Raf Family Is a Milestone in Deciphering the Ras-Mediated Intracellular Signaling Pathway. Int J Mol Sci 2022; 23:ijms23095158. [PMID: 35563547 PMCID: PMC9101324 DOI: 10.3390/ijms23095158] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/02/2022] [Accepted: 05/03/2022] [Indexed: 01/27/2023] Open
Abstract
The Ras-Raf-MEK-ERK signaling pathway, the first well-established MAPK pathway, plays essential roles in cell proliferation, survival, differentiation and development. It is activated in over 40% of human cancers owing to mutations of Ras, membrane receptor tyrosine kinases and other oncogenes. The Raf family consists of three isoforms, A-Raf, B-Raf and C-Raf. Since the first discovery of a truncated mutant of C-Raf as a transforming oncogene carried by a murine retrovirus, forty years of extensive studies have provided a wealth of information on the mechanisms underlying the activation, regulation and biological functions of the Raf family. However, the mechanisms by which activation of A-Raf and C-Raf is accomplished are still not completely understood. In contrast, B-Raf can be easily activated by binding of Ras-GTP, followed by cis-autophosphorylation of the activation loop, which accounts for the fact that this isoform is frequently mutated in many cancers, especially melanoma. The identification of oncogenic B-Raf mutations has led to accelerated drug development that targets Raf signaling in cancer. However, the effort has not proved as effective as anticipated, inasmuch as the mechanism of Raf activation involves multiple steps, factors and phosphorylation of different sites, as well as complex interactions between Raf isoforms. In this review, we will focus on the physiological complexity of the regulation of Raf kinases and their connection to the ERK phosphorylation cascade and then discuss the role of Raf in tumorigenesis and the clinical application of Raf inhibitors in the treatment of cancer.
Collapse
Affiliation(s)
- Jingtong Zhao
- Queen Mary School, Nanchang University, Nanchang 330031, China;
| | - Zhijun Luo
- Queen Mary School, Nanchang University, Nanchang 330031, China;
- Provincial Key Laboratory of Tumor Pathogens and Molecular Pathology, Nanchang University, Nanchang 330031, China
- NCU-QMUL Joint Research Institute of Precision Medical Science, Nanchang 330031, China
- Correspondence:
| |
Collapse
|
22
|
Maloney RC, Zhang M, Liu Y, Jang H, Nussinov R. The mechanism of activation of MEK1 by B-Raf and KSR1. Cell Mol Life Sci 2022; 79:281. [PMID: 35508574 PMCID: PMC9068654 DOI: 10.1007/s00018-022-04296-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/04/2022] [Accepted: 04/07/2022] [Indexed: 12/01/2022]
Abstract
MEK1 interactions with B-Raf and KSR1 are key steps in Ras/Raf/MEK/ERK signaling. Despite this, vital mechanistic details of how these execute signal transduction are still enigmatic. Among these is why, despite B-Raf and KSR1 kinase domains similarity, the B-Raf/MEK1 and KSR1/MEK1 complexes have distinct contributions to MEK1 activation, and broadly, what is KSR1's role. Our molecular dynamics simulations clarify these still unresolved ambiguities. Our results reveal that the proline-rich (P-rich) loop of MEK1 plays a decisive role in MEK1 activation loop (A-loop) phosphorylation. In the inactive B-Raf/MEK1 heterodimer, the collapsed A-loop of B-Raf interacts with the P-rich loop and A-loop of MEK1, minimizing MEK1 A-loop fluctuation and preventing it from phosphorylation. In the active B-Raf/MEK1 heterodimer, the P-rich loop moves in concert with the A-loop of B-Raf as it extends. This reduces the number of residues interacting with MEK1 A-loop, allowing increased A-loop fluctuation, and bringing Ser222 closer to ATP for phosphorylation. B-Raf αG-helix Arg662 promotes MEK1 activation by orienting Ser218 towards ATP. In KSR1/MEK1, the KSR1 αG-helix has Ala826 in place of B-Raf Arg662. This difference results in much fewer interactions between KSR1 αG-helix and MEK1 A-loop, thus a more flexible A-loop. We postulate that if KSR1 were to adopt an active configuration with an extended A-loop as seen in other protein kinases, then the MEK1 P-rich loop would extend in a similar manner, as seen in the active B-Raf/MEK1 heterodimer. This would result in highly flexible MEK1 A-loop, and KSR1 functioning as an active, B-Raf-like, kinase.
Collapse
Affiliation(s)
- Ryan C Maloney
- Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD, 21702, USA
| | - Mingzhen Zhang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Yonglan Liu
- Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD, 21702, USA
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA.
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, 69978, Tel Aviv, Israel.
| |
Collapse
|
23
|
Zhao P, Wang X, Zhuang L, Huang S, Zhou Y, Yan Y, Shen R, Zhang F, Li J, Hu Q, Liu S, Zhang R, Dong P, Wan H, Bai C, He F, Tao W. Discovery of novel spiro compound as RAF kinase inhibitor with in vitro potency against KRAS mutant cancer. Bioorg Med Chem Lett 2022; 63:128666. [PMID: 35276360 DOI: 10.1016/j.bmcl.2022.128666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/04/2022] [Accepted: 03/05/2022] [Indexed: 11/18/2022]
Abstract
The development of RAF inhibitors targeting cancers with wild type RAF kinase and/or RAS mutation has been challenging due to the paradoxical activation of the RAS-RAF-MEK-ERK cascade following RAF inhibitor treatment. Herein is the discovery and optimization of a series of RAF inhibitors with a novel spiro structure. The most potent spiro molecule 9 showed excellent in vitro potency against b/c RAF enzymes and RAS mutant H358 cancer cells with minimal paradoxical RAF signaling activation. Compound 9 also exhibited good drug-like properties as demonstrated by in vitro cytochrome P450 (CYP), liver microsome stability (LMS) data and moderate oral pharmacokinetics (PK) profiles in rat and mouse.
Collapse
Affiliation(s)
- Peng Zhao
- Eternity Bioscience Inc., 6 Cedarbrook Drive, Cranbury, NJ 08512, USA.
| | - Xiangzhu Wang
- Eternity Bioscience Inc., 6 Cedarbrook Drive, Cranbury, NJ 08512, USA
| | - Linghang Zhuang
- Eternity Bioscience Inc., 6 Cedarbrook Drive, Cranbury, NJ 08512, USA
| | - Song Huang
- Shanghai Hengrui Pharmaceutical Co. Ltd., 279 Wenjing Road, Shanghai 200245, China
| | - Yu Zhou
- Eternity Bioscience Inc., 6 Cedarbrook Drive, Cranbury, NJ 08512, USA
| | - Yuna Yan
- Shanghai Hengrui Pharmaceutical Co. Ltd., 279 Wenjing Road, Shanghai 200245, China
| | - Ru Shen
- Eternity Bioscience Inc., 6 Cedarbrook Drive, Cranbury, NJ 08512, USA
| | - Fan Zhang
- Eternity Bioscience Inc., 6 Cedarbrook Drive, Cranbury, NJ 08512, USA
| | - Jie Li
- Shanghai Hengrui Pharmaceutical Co. Ltd., 279 Wenjing Road, Shanghai 200245, China
| | - Qiyue Hu
- Shanghai Hengrui Pharmaceutical Co. Ltd., 279 Wenjing Road, Shanghai 200245, China
| | - Suxing Liu
- Eternity Bioscience Inc., 6 Cedarbrook Drive, Cranbury, NJ 08512, USA
| | - Rumin Zhang
- Eternity Bioscience Inc., 6 Cedarbrook Drive, Cranbury, NJ 08512, USA
| | - Ping Dong
- Shanghai Hengrui Pharmaceutical Co. Ltd., 279 Wenjing Road, Shanghai 200245, China
| | - Hong Wan
- Shanghai Hengrui Pharmaceutical Co. Ltd., 279 Wenjing Road, Shanghai 200245, China
| | - Chang Bai
- Shanghai Hengrui Pharmaceutical Co. Ltd., 279 Wenjing Road, Shanghai 200245, China
| | - Feng He
- Shanghai Hengrui Pharmaceutical Co. Ltd., 279 Wenjing Road, Shanghai 200245, China
| | - Weikang Tao
- Shanghai Hengrui Pharmaceutical Co. Ltd., 279 Wenjing Road, Shanghai 200245, China
| |
Collapse
|
24
|
Discovery of spiro amide SHR902275: A potent, selective, and efficacious RAF inhibitor targeting RAS mutant cancers. Eur J Med Chem 2022; 228:114040. [PMID: 34906761 DOI: 10.1016/j.ejmech.2021.114040] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/28/2021] [Accepted: 12/02/2021] [Indexed: 11/23/2022]
Abstract
The RAS-RAF-MEK-ERK signaling pathway plays a key role to regulate multiple cellular functions. Acquired resistance to the first-generation RAF inhibitors that only targeted the bRAFV600E mutation prompted the need for a new generation of RAF inhibitors to target cancers bearing mutant RAS and wild type RAF activity by inhibition of paradoxical activation. Starting from the company's previously reported RAF inhibitor 1, extensive drug potency and drug-like properties optimizations led to the discovery of molecule 33 (SHR902275) with greatly improved in vitro potency and solubility. Molecule 33 exhibited good DMPK (Drug Metabolism and Pharmacokinetics) properties, excellent permeability, and outstanding mouse/rat oral PK. It was further evaluated in an in vivo RAS mutant Calu6 xenograft mouse model and demonstrated dose dependent efficacy. To achieve high exposure in a toxicity study, pro-drug 48 was also explored.
Collapse
|
25
|
Zhang M, Maloney R, Jang H, Nussinov R. The mechanism of Raf activation through dimerization. Chem Sci 2021; 12:15609-15619. [PMID: 35003591 PMCID: PMC8654025 DOI: 10.1039/d1sc03444h] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 11/16/2021] [Indexed: 01/07/2023] Open
Abstract
Raf, a threonine/serine kinase in the Raf/MEK/ERK pathway, regulates cell proliferation. Raf's full activation requires dimerization. Aberrant activation through dimerization is an important therapeutic target. Despite its clinical importance, fundamental questions, such as how the side-to-side dimerization promotes the OFF-to-ON transition of Raf's kinase domain and how the fully activated ON-state kinase domain is stabilized in the dimer for Raf signaling, remain unanswered. Herein, we decipher an atomic-level mechanism of Raf activation through dimerization, clarifying this enigma. The mechanism reveals that the replacement of intramolecular π–π stacking by intermolecular π–π stacking at the dimer interface releases the structural constraint of the αC-helix, promoting the OFF-to-ON transition. During the transition, the inhibitory hydrophobic interactions were disrupted, making the phosphorylation sites in A-loop approach the HRD motif for cis-autophosphorylation. Once fully activated, the ON-state kinase domain can be stabilized by a newly identified functional N-terminal basic (NtB) motif in the dimer for Raf signaling. This work provides atomic level insight into critical steps in Raf activation and outlines a new venue for drug discovery against Raf dimerization. We decipher an atomic-level mechanism of Raf activation through dimerization, revealing that the disruption of intramolecular π–π stacking at the dimer interface promotes the OFF-to-ON transition.![]()
Collapse
Affiliation(s)
- Mingzhen Zhang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute Frederick MD 21702 USA +1-301-846-5579
| | - Ryan Maloney
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute Frederick MD 21702 USA +1-301-846-5579
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute Frederick MD 21702 USA +1-301-846-5579
| | - Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute Frederick MD 21702 USA +1-301-846-5579.,Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University Tel Aviv 69978 Israel
| |
Collapse
|
26
|
Passirani C, Vessières A, La Regina G, Link W, Silvestri R. Modulating undruggable targets to overcome cancer therapy resistance. Drug Resist Updat 2021; 60:100788. [DOI: 10.1016/j.drup.2021.100788] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 11/03/2022]
|
27
|
Zell D, Dalziel ME, Carrera DE, Stumpf A, Bachmann S, Mercado-Marin E, Koenig SG, Zhang H, Gosselin F. An Efficient Second-Generation Manufacturing Process for the pan-RAF Inhibitor Belvarafenib. Org Process Res Dev 2021. [DOI: 10.1021/acs.oprd.1c00277] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Daniel Zell
- Department of Small Molecule Process Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Michael E. Dalziel
- Department of Small Molecule Process Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Diane E. Carrera
- Department of Small Molecule Process Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Andreas Stumpf
- Department of Small Molecule Process Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Stephan Bachmann
- Department of Process Chemistry and Catalysis, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, CH-4070 Basel, Switzerland
| | - Eduardo Mercado-Marin
- Department of Small Molecule Process Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Stefan G. Koenig
- Department of Small Molecule Process Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Haiming Zhang
- Department of Small Molecule Process Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Francis Gosselin
- Department of Small Molecule Process Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| |
Collapse
|
28
|
Kondo Y, Paul JW, Subramaniam S, Kuriyan J. New insights into Raf regulation from structural analyses. Curr Opin Struct Biol 2021; 71:223-231. [PMID: 34454301 DOI: 10.1016/j.sbi.2021.07.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/06/2021] [Accepted: 07/10/2021] [Indexed: 01/07/2023]
Abstract
BRAF is a highly regulated protein kinase that controls cell fate in animal cells. Recent structural analyses have revealed how active and inactive forms of BRAF bind to dimers of the scaffold protein 14-3-3. Inactive BRAF binds to 14-3-3 as a monomer and is held in an inactive conformation by interactions with ATP and the substrate kinase MEK, a striking example of enzyme inhibition by substrate binding. A change in the phosphorylation state of BRAF shifts the stoichiometry of the BRAF:14-3-3 complex from 1:2 to 2:2, resulting in stabilization of the active dimeric form of the kinase. These new findings uncover unexpected features of the regulatory mechanisms underlying Raf biology and help explain the paradoxical activation of Raf by small-molecule inhibitors.
Collapse
Affiliation(s)
- Yasushi Kondo
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, 94720, USA; California Institute for Quantitative Biosciences, University of California, Berkeley, CA, 94720, USA
| | - Joseph W Paul
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, 94720, USA; California Institute for Quantitative Biosciences, University of California, Berkeley, CA, 94720, USA
| | | | - John Kuriyan
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, 94720, USA; California Institute for Quantitative Biosciences, University of California, Berkeley, CA, 94720, USA; Howard Hughes Medical Institute, University of California, Berkeley, CA, 94720, USA; Department of Chemistry, University of California, Berkeley, CA, 94720, USA; Division of Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| |
Collapse
|
29
|
Nussinov R, Zhang M, Maloney R, Jang H. Ras isoform-specific expression, chromatin accessibility, and signaling. Biophys Rev 2021; 13:489-505. [PMID: 34466166 PMCID: PMC8355297 DOI: 10.1007/s12551-021-00817-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 06/29/2021] [Indexed: 12/12/2022] Open
Abstract
The anchorage of Ras isoforms in the membrane and their nanocluster formations have been studied extensively, including their detailed interactions, sizes, preferred membrane environments, chemistry, and geometry. However, the staggering challenge of their epigenetics and chromatin accessibility in distinct cell states and types, which we propose is a major factor determining their specific expression, still awaits unraveling. Ras isoforms are distinguished by their C-terminal hypervariable region (HVR) which acts in intracellular transport, regulation, and membrane anchorage. Here, we review some isoform-specific activities at the plasma membrane from a structural dynamic standpoint. Inspired by physics and chemistry, we recognize that understanding functional specificity requires insight into how biomolecules can organize themselves in different cellular environments. Within this framework, we suggest that isoform-specific expression may largely be controlled by the chromatin density and physical compaction, which allow (or curb) access to "chromatinized DNA." Genes are preferentially expressed in tissues: proteins expressed in pancreatic cells may not be equally expressed in lung cells. It is the rule-not an exception, and it can be at least partly understood in terms of chromatin organization and accessibility state. Genes are expressed when they can be sufficiently exposed to the transcription machinery, and they are less so when they are persistently buried in dense chromatin. Notably, chromatin accessibility can similarly determine expression of drug resistance genes.
Collapse
Affiliation(s)
- Ruth Nussinov
- Computational Structural Biology Section Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism National Cancer Institute, 1050 Boyles St, Frederick, MD 21702 USA
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine Tel Aviv University, 69978 Tel Aviv, Israel
| | - Mingzhen Zhang
- Computational Structural Biology Section Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism National Cancer Institute, 1050 Boyles St, Frederick, MD 21702 USA
| | - Ryan Maloney
- Computational Structural Biology Section Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism National Cancer Institute, 1050 Boyles St, Frederick, MD 21702 USA
| | - Hyunbum Jang
- Computational Structural Biology Section Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism National Cancer Institute, 1050 Boyles St, Frederick, MD 21702 USA
| |
Collapse
|
30
|
De A, Maity A, Mazumder M, Mondal B, Mukherjee A, Ghosh S, Ray P, Polley S, Dastidar SG, Basu D. Overexpression of LYK4, a lysin motif receptor with non-functional kinase domain, enhances tolerance to Alternaria brassicicola and increases trichome density in Brassica juncea. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 309:110953. [PMID: 34134846 DOI: 10.1016/j.plantsci.2021.110953] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/17/2021] [Accepted: 05/20/2021] [Indexed: 06/12/2023]
Abstract
Lysin motif receptor-like kinases (LYKs) are involved in the recognition of chitin and activation of plant immune response. In this study, we found LYK4 to be strongly induced in resistant Sinapis alba compared with susceptible Brassica juncea on challenge with Alternaria brassicicola. In silico analysis and in vitro kinase assay revealed that despite the presence of canonical protein kinase fold, B.juncea LYK4 (BjLYK4) lacks several key residues of a prototype protein kinase which renders it catalytically inactive. Transient expression analysis confirmed that fluorescently tagged BjLYK4 localizes specifically to the plasma membrane. Overexpression (OE) of BjLYK4 in B. juncea enhanced tolerance against A. brassicicola. Interestingly, the OE lines also exhibited a novel trichome dense phenotype and increased jasmonic acid (JA) responsiveness. We further showed that many chitin responsive WRKY transcription factors and JA biosynthetic genes were strongly induced in the OE lines on challenge with the pathogen. Moreover, several JA inducible trichome developmental genes constituting the WD-repeat/bHLH/MYB activator complex were also upregulated in the OE lines compared with vector control and RNA interference line. These results suggest that BjLYK4 plays an essential role in chitin-dependent activation of defense response and chitin independent trichome development likely by influencing the JA signaling pathway.
Collapse
Affiliation(s)
- Aishee De
- Division of Plant Biology, Bose Institute, P1/12 C.I.T. Scheme-VIIM, Kankurgachi, Kolkata, 700054, India.
| | - Atanu Maity
- Division of Bioinformatics, Bose Institute, P1/12 C.I.T. Scheme-VIIM, Kankurgachi, Kolkata, 700054, India.
| | - Mrinmoy Mazumder
- Department of Biological Sciences, National University of Singapore (NUS), Singapore, 119077.
| | - Banani Mondal
- Division of Plant Biology, Bose Institute, P1/12 C.I.T. Scheme-VIIM, Kankurgachi, Kolkata, 700054, India.
| | - Amrita Mukherjee
- Division of Plant Biology, Bose Institute, P1/12 C.I.T. Scheme-VIIM, Kankurgachi, Kolkata, 700054, India.
| | - Swagata Ghosh
- Division of Plant Biology, Bose Institute, P1/12 C.I.T. Scheme-VIIM, Kankurgachi, Kolkata, 700054, India.
| | - Pranita Ray
- Department of Biophysics, Bose Institute, P1/12 C.I.T. Scheme-VIIM, Kankurgachi, Kolkata, 700054, India.
| | - Smarajit Polley
- Department of Biophysics, Bose Institute, P1/12 C.I.T. Scheme-VIIM, Kankurgachi, Kolkata, 700054, India.
| | - Shubhra Ghosh Dastidar
- Division of Bioinformatics, Bose Institute, P1/12 C.I.T. Scheme-VIIM, Kankurgachi, Kolkata, 700054, India.
| | - Debabrata Basu
- Division of Plant Biology, Bose Institute, P1/12 C.I.T. Scheme-VIIM, Kankurgachi, Kolkata, 700054, India.
| |
Collapse
|
31
|
Zhang M, Jang H, Li Z, Sacks DB, Nussinov R. B-Raf autoinhibition in the presence and absence of 14-3-3. Structure 2021; 29:768-777.e2. [PMID: 33711246 PMCID: PMC9907365 DOI: 10.1016/j.str.2021.02.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 02/04/2021] [Accepted: 02/19/2021] [Indexed: 01/06/2023]
Abstract
Raf-activating mutations are frequent in cancer. In the basal state, B-Raf is autoinhibited by its upstream Ras-binding domain (RBD) and cysteine-rich domain (RBD-CRD) interacting with its kinase domain (KD) and the 14-3-3 dimer. Our comprehensive molecular dynamics simulations explore two autoinhibition scenarios in the presence and absence of the 14-3-3 dimer. When present, the 14-3-3 interaction with B-Raf stabilizes the RBD-CRD-KD interaction, interfering with the KD dimerization. Raf's pSer365 removal fails to induce large disruption. RBD-CRD release promotes KD fluctuations and reorientation for dimerization, consistent with experimental data. In the absence of 14-3-3, our sampled B-Raf conformations suggest that RBD-CRD can block the KD dimerization surface. Our results suggest a B-Raf activation mechanism, whereby one KD monomer is donated by 14-3-3-free B-Raf KD and the other by 14-3-3-bound KD. This mechanism can lead to homo- and heterodimers. These autoinhibition scenarios can transform autoinhibited B-Raf monomers into active B-Raf dimers.
Collapse
Affiliation(s)
- Mingzhen Zhang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer ImmunoMetabolism, National Cancer Institute, Frederick, MD 21702, USA
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer ImmunoMetabolism, National Cancer Institute, Frederick, MD 21702, USA
| | - Zhigang Li
- Department of Laboratory Medicine, National Institutes of Health, Bethesda, MD 20892, USA
| | - David B Sacks
- Department of Laboratory Medicine, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer ImmunoMetabolism, National Cancer Institute, Frederick, MD 21702, USA; Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
32
|
HSP-90/kinase complexes are stabilized by the large PPIase FKB-6. Sci Rep 2021; 11:12347. [PMID: 34117308 PMCID: PMC8196007 DOI: 10.1038/s41598-021-91667-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/17/2021] [Indexed: 02/07/2023] Open
Abstract
Protein kinases are important regulators in cellular signal transduction. As one major type of Hsp90 client, protein kinases rely on the ATP-dependent molecular chaperone Hsp90, which maintains their structure and supports their activation. Depending on client type, Hsp90 interacts with different cofactors. Here we report that besides the kinase-specific cofactor Cdc37 large PPIases of the Fkbp-type strongly bind to kinase•Hsp90•Cdc37 complexes. We evaluate the nucleotide regulation of these assemblies and identify prominent interaction sites in this quaternary complex. The synergistic interaction between the participating proteins and the conserved nature of the interaction suggests functions of the large PPIases Fkbp51/Fkbp52 and their nematode homolog FKB-6 as contributing factors to the kinase cycle of the Hsp90 machinery.
Collapse
|
33
|
Conformation and dynamics of the kinase domain drive subcellular location and activation of LRRK2. Proc Natl Acad Sci U S A 2021; 118:2100844118. [PMID: 34088839 PMCID: PMC8201809 DOI: 10.1073/pnas.2100844118] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
To explore how pathogenic mutations of the multidomain leucine-rich repeat kinase 2 (LRRK2) hijack its finely tuned activation process and drive Parkinson's disease (PD), we used a multitiered approach. Most mutations mimic Rab-mediated activation by "unleashing" kinase activity, and many, like the kinase inhibitor MLi-2, trap LRRK2 onto microtubules. Here we mimic activation by simply deleting the inhibitory N-terminal domains and then characterize conformational changes induced by MLi-2 and PD mutations. After confirming that LRRK2RCKW retains full kinase activity, we used hydrogen-deuterium exchange mass spectrometry to capture breathing dynamics in the presence and absence of MLi-2. Solvent-accessible regions throughout the entire protein are reduced by MLi-2 binding. With molecular dynamics simulations, we created a dynamic portrait of LRRK2RCKW and demonstrate the consequences of kinase domain mutations. Although all domains contribute to regulating kinase activity, the kinase domain, driven by the DYGψ motif, is the allosteric hub that drives LRRK2 regulation.
Collapse
|
34
|
Maloney RC, Zhang M, Jang H, Nussinov R. The mechanism of activation of monomeric B-Raf V600E. Comput Struct Biotechnol J 2021; 19:3349-3363. [PMID: 34188782 PMCID: PMC8215184 DOI: 10.1016/j.csbj.2021.06.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/30/2021] [Accepted: 06/02/2021] [Indexed: 02/07/2023] Open
Abstract
Oncogenic mutations in the serine/threonine kinase B-Raf, particularly the V600E mutation, are frequent in cancer, making it a major drug target. Although much is known about B-Raf's active and inactive states, questions remain about the mechanism by which the protein changes between these two states. Here, we utilize molecular dynamics to investigate both wild-type and V600E B-Raf to gain mechanistic insights into the impact of the Val to Glu mutation. The results show that the wild-type and mutant follow similar activation pathways involving an extension of the activation loop and an inward motion of the αC-helix. The V600E mutation, however, destabilizes the inactive state by disrupting hydrophobic interactions present in the wild-type structure while the active state is stabilized through the formation of a salt bridge between Glu600 and Lys507. Additionally, when the activation loop is extended, the αC-helix is able to move between an inward and outward orientation as long as the DFG motif adopts a specific orientation. In that orientation Phe595 rotates away from the αC-helix, allowing the formation of a salt bridge between Lys483 and Glu501. These mechanistic insights have implications for the development of new Raf inhibitors.
Collapse
Affiliation(s)
- Ryan C. Maloney
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, MD 21702, USA
| | - Mingzhen Zhang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, MD 21702, USA
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, MD 21702, USA
| | - Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, MD 21702, USA
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
- Corresponding author at: Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, MD 21702, USA.
| |
Collapse
|
35
|
Yap J, Deepak RNVK, Tian Z, Ng WH, Goh KC, Foo A, Tee ZH, Mohanam MP, Sim YRM, Degirmenci U, Lam P, Chen Z, Fan H, Hu J. The stability of R-spine defines RAF inhibitor resistance: A comprehensive analysis of oncogenic BRAF mutants with in-frame insertion of αC-β4 loop. SCIENCE ADVANCES 2021; 7:7/24/eabg0390. [PMID: 34108213 PMCID: PMC8189578 DOI: 10.1126/sciadv.abg0390] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 04/15/2021] [Indexed: 06/12/2023]
Abstract
Although targeting BRAF mutants with RAF inhibitors has achieved promising outcomes in cancer therapy, drug resistance remains a remarkable challenge, and underlying molecular mechanisms are not fully understood. Here, we characterized a previously unknown group of oncogenic BRAF mutants with in-frame insertions (LLRins506 or VLRins506) of αC-β4 loop. Using structure modeling and molecular dynamics simulation, we found that these insertions formed a large hydrophobic network that stabilizes R-spine and thus triggers the catalytic activity of BRAF. Furthermore, these insertions disrupted BRAF dimer interface and impaired dimerization. Unlike BRAF(V600E), these BRAF mutants with low dimer affinity were strongly resistant to all RAF inhibitors in clinic or clinical trials, which arises from their stabilized R-spines. As predicted by molecular docking, the stabilized R-spines in other BRAF mutants also conferred drug resistance. Together, our data indicated that the stability of R-spine but not dimer affinity determines the RAF inhibitor resistance of oncogenic BRAF mutants.
Collapse
Affiliation(s)
- Jiajun Yap
- Cancer and Stem Cell Program, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
- Division of Cellular and Molecular Research, National Cancer Centre Singapore, 11 Hospital Crescen, Singapore 169610, Singapore
| | - R N V Krishna Deepak
- Bioinformatics Institute, A*STAR, 30 Biopolis Street, #07-01 Matrix, Singapore 138671, Singapore
| | - Zizi Tian
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Wan Hwa Ng
- Division of Cellular and Molecular Research, National Cancer Centre Singapore, 11 Hospital Crescen, Singapore 169610, Singapore
| | - Kah Chun Goh
- Division of Cellular and Molecular Research, National Cancer Centre Singapore, 11 Hospital Crescen, Singapore 169610, Singapore
| | - Alicia Foo
- Division of Cellular and Molecular Research, National Cancer Centre Singapore, 11 Hospital Crescen, Singapore 169610, Singapore
| | - Zi Heng Tee
- Division of Cellular and Molecular Research, National Cancer Centre Singapore, 11 Hospital Crescen, Singapore 169610, Singapore
| | - Manju Payini Mohanam
- Division of Cellular and Molecular Research, National Cancer Centre Singapore, 11 Hospital Crescen, Singapore 169610, Singapore
| | - Yuen Rong M Sim
- Division of Cellular and Molecular Research, National Cancer Centre Singapore, 11 Hospital Crescen, Singapore 169610, Singapore
| | - Ufuk Degirmenci
- Division of Cellular and Molecular Research, National Cancer Centre Singapore, 11 Hospital Crescen, Singapore 169610, Singapore
| | - Paula Lam
- Cancer and Stem Cell Program, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 2 Medical Drive, MD9, Singapore 117593, Singapore
- Cellvec Pte. Ltd., 100 Pasir Panjang Road, #04-02, Singapore 118518, Singapore
| | - Zhongzhou Chen
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Hao Fan
- Bioinformatics Institute, A*STAR, 30 Biopolis Street, #07-01 Matrix, Singapore 138671, Singapore.
| | - Jiancheng Hu
- Cancer and Stem Cell Program, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore.
- Division of Cellular and Molecular Research, National Cancer Centre Singapore, 11 Hospital Crescen, Singapore 169610, Singapore
| |
Collapse
|
36
|
Parascandolo A, Laukkanen MO. SOD3 Is a Non-Mutagenic Growth Regulator Affecting Cell Migration and Proliferation Signal Transduction. Antioxidants (Basel) 2021; 10:antiox10050635. [PMID: 33919252 PMCID: PMC8143115 DOI: 10.3390/antiox10050635] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/09/2021] [Accepted: 04/19/2021] [Indexed: 11/16/2022] Open
Abstract
Superoxide dismutase (SOD) family isoenzymes, SOD1, SOD2, and SOD3, synthesize hydrogen peroxide (H2O2), which regulates the signal transduction. H2O2 is a second messenger able to enter into the cells through aquaporin 3 cell membrane channels and to modify protein tyrosine phosphatase activity. SOD3 has been shown to activate signaling pathways in tissue injuries, inflammation, and cancer models. Similar to the H2O2 response in the cells, the cellular response of SOD3 is dose-dependent; even a short supraphysiological concentration reduces the cell survival and activates the growth arrest and apoptotic signaling, whereas the physiological SOD3 levels support its growth and survival. In the current work, we studied the signaling networks stimulated by SOD3 overexpression demonstrating a high diversity in the activation of signaling cascades. The results obtained suggest that SOD3, although inducing cell growth and affecting various biological processes, does not cause detectable long-term DNA aberrations. Therefore, according to the present data, SOD3 is not a mutagen. Additionally, we compared SOD3-driven immortalized mouse embryonic fibroblasts to SV40 immortalized NIH3T3 cells, demonstrating a marked difference in the activation of cellular kinases. The data presented may contain important druggable targets to abrogate unwanted cell growth.
Collapse
|
37
|
Jurado M, Castaño Ó, Zorzano A. Stochastic modulation evidences a transitory EGF-Ras-ERK MAPK activity induced by PRMT5. Comput Biol Med 2021; 133:104339. [PMID: 33910125 DOI: 10.1016/j.compbiomed.2021.104339] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 03/06/2021] [Accepted: 03/10/2021] [Indexed: 02/07/2023]
Abstract
The extracellular signal-regulated kinase (ERK) mitogen-activated protein kinase (MAPK) pathway involves a three-step cascade of kinases that transduce signals and promote processes such as cell growth, development, and apoptosis. An aberrant response of this pathway is related to the proliferation of cell diseases and tumors. By using simulation modeling, we document that the protein arginine methyltransferase 5 (PRMT5) modulates the MAPK pathway and thus avoids an aberrant behavior. PRMT5 methylates the Raf kinase, reducing its catalytic activity and thereby, reducing the activation of ERK in time and amplitude. Two minimal computational models of the epidermal growth factor (EGF)-Ras-ERK MAPK pathway influenced by PRMT5 were proposed: a first model in which PRMT5 is activated by EGF and a second one in which PRMT5 is stimulated by the cascade response. The reported results show that PRMT5 reduces the time duration and the expression of the activated ERK in both cases, but only in the first model PRMT5 limits the EGF range that generates an ERK activation. Based on our data, we propose the protein PRMT5 as a regulatory factor to develop strategies to fight against an excessive activity of the MAPK pathway, which could be of use in chronic diseases and cancer.
Collapse
Affiliation(s)
- Manuel Jurado
- Biotechnology Ph.D. Programme, Faculty of Pharmacy, University of Barcelona, Barcelona, Spain
| | - Óscar Castaño
- Electronics and Biomedical Engineering, University of Barcelona, Barcelona, Spain; Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona, Spain; CIBER in Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Madrid, Spain; Bioelectronics Unit and Nanobioengineering Lab., Institute for Nanoscience and Nanotechnology of the University of Barcelona (IN2UB), Barcelona, Spain.
| | - Antonio Zorzano
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; CIBER of Diabetes and Associated Metabolic Diseases, Barcelona, Spain; Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Barcelona, Spain
| |
Collapse
|
38
|
The upcycled roles of pseudoenzymes in two-component signal transduction. Curr Opin Microbiol 2021; 61:82-90. [PMID: 33872991 DOI: 10.1016/j.mib.2021.03.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 03/23/2021] [Accepted: 03/26/2021] [Indexed: 11/23/2022]
Abstract
Upon first glance at a bacterial genome, pseudoenzymes appear unremarkable due to their lack of critical motifs that facilitate catalysis. These pseudoenzymes exist within signal transduction enzymes including histidine kinases, response regulators, diguanylate cyclases, and phosphodiesterases. Here, we summarize recent studies of bacterial pseudo-histidine kinases and pseudo-response regulators that regulate cell division, capsule formation, and the circadian rhythm. These examples illuminate the mechanistic potential of catalytically dead signaling enzymes and their impact upon bacterial signal transduction. Moreover, proteins lacking characteristic catalytic features of two-component systems reveal the sophisticated underlying potential of canonical two-component systems.
Collapse
|
39
|
Morgan CW, Dale IL, Thomas AP, Hunt J, Chin JW. Selective CRAF Inhibition Elicits Transactivation. J Am Chem Soc 2021; 143:4600-4606. [PMID: 33750116 PMCID: PMC8041278 DOI: 10.1021/jacs.0c11958] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
![]()
Discovering molecules that regulate
closely related protein isoforms
is challenging, and in many cases the consequences of isoform-specific
pharmacological regulation remains unknown. RAF isoforms are commonly
mutated oncogenes that serve as effector kinases in MAP kinase signaling.
BRAF/CRAF heterodimers are believed to be the primary RAF signaling
species, and many RAF inhibitors lead to a “paradoxical activation”
of RAF kinase activity through transactivation of the CRAF protomer;
this leads to resistance mechanisms and secondary tumors. It has been
hypothesized that CRAF-selective inhibition might bypass paradoxical
activation, but no CRAF-selective inhibitor has been reported and
the consequences of pharmacologically inhibiting CRAF have remained
unknown. Here, we use bio-orthogonal ligand tethering (BOLT) to selectively
target inhibitors to CRAF. Our results suggest that selective CRAF
inhibition promotes paradoxical activation and exemplify how BOLT
may be used to triage potential targets for drug discovery before
any target-selective small molecules are known.
Collapse
Affiliation(s)
- Charles W Morgan
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Ian L Dale
- Discovery Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, United Kingdom
| | - Andrew P Thomas
- Medicinal Chemistry, Oncology R&D, AstraZeneca, Cambridge CB4 0WG, United Kingdom
| | - James Hunt
- Antibody Discovery & Protein Engineering, R&D, AstraZeneca, Cambridge CB21 6GH, United Kingdom
| | - Jason W Chin
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| |
Collapse
|
40
|
Cook FA, Cook SJ. Inhibition of RAF dimers: it takes two to tango. Biochem Soc Trans 2021; 49:237-251. [PMID: 33367512 PMCID: PMC7924995 DOI: 10.1042/bst20200485] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/17/2020] [Accepted: 11/23/2020] [Indexed: 02/07/2023]
Abstract
The RAS-regulated RAF-MEK1/2-ERK1/2 pathway promotes cell proliferation and survival and RAS and BRAF proteins are commonly mutated in cancer. This has fuelled the development of small molecule kinase inhibitors including ATP-competitive RAF inhibitors. Type I and type I½ ATP-competitive RAF inhibitors are effective in BRAFV600E/K-mutant cancer cells. However, in RAS-mutant cells these compounds instead promote RAS-dependent dimerisation and paradoxical activation of wild-type RAF proteins. RAF dimerisation is mediated by two key regions within each RAF protein; the RKTR motif of the αC-helix and the NtA-region of the dimer partner. Dimer formation requires the adoption of a closed, active kinase conformation which can be induced by RAS-dependent activation of RAF or by the binding of type I and I½ RAF inhibitors. Binding of type I or I½ RAF inhibitors to one dimer partner reduces the binding affinity of the other, thereby leaving a single dimer partner uninhibited and able to activate MEK. To overcome this paradox two classes of drug are currently under development; type II pan-RAF inhibitors that induce RAF dimer formation but bind both dimer partners thus allowing effective inhibition of both wild-type RAF dimer partners and monomeric active class I mutant RAF, and the recently developed "paradox breakers" which interrupt BRAF dimerisation through disruption of the αC-helix. Here we review the regulation of RAF proteins, including RAF dimers, and the progress towards effective targeting of the wild-type RAF proteins.
Collapse
Affiliation(s)
- Frazer A. Cook
- Signalling Programme, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, U.K
| | - Simon J. Cook
- Signalling Programme, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, U.K
| |
Collapse
|
41
|
Li X, Palhano Zanela TM, Underbakke ES, Zhao Y. Controlling Kinase Activities by Selective Inhibition of Peptide Substrates. J Am Chem Soc 2021; 143:639-643. [DOI: 10.1021/jacs.0c11566] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
42
|
Nguyen D, Lin LY, Zhou JO, Kibby E, Sia TW, Tillis TD, Vapuryan N, Xu MR, Potluri R, Shin Y, Erler EA, Bronkema N, Boehlmer DJ, Chung CD, Burkhard C, Zeng SH, Grasso M, Acevedo LA, Marmorstein R, Fera D. Identification and Characterization of a B-Raf Kinase α-Helix Critical for the Activity of MEK Kinase in MAPK Signaling. Biochemistry 2020; 59:4755-4765. [PMID: 33272017 DOI: 10.1021/acs.biochem.0c00598] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In the MAPK pathway, an oncogenic V600E mutation in B-Raf kinase causes the enzyme to be constitutively active, leading to aberrantly high phosphorylation levels of its downstream effectors, MEK and ERK kinases. The V600E mutation in B-Raf accounts for more than half of all melanomas and ∼3% of all cancers, and many drugs target the ATP binding site of the enzyme for its inhibition. Because B-Raf can develop resistance against these drugs and such drugs can induce paradoxical activation, drugs that target allosteric sites are needed. To identify other potential drug targets, we generated and kinetically characterized an active form of B-RafV600E expressed using a bacterial expression system. In doing so, we identified an α-helix on B-Raf, found at the B-Raf-MEK interface, that is critical for their interaction and the oncogenic activity of B-RafV600E. We assessed the binding between B-Raf mutants and MEK using pull downs and biolayer interferometry and assessed phosphorylation levels of MEK in vitro and in cells as well as its downstream target ERK to show that mutating certain residues on this α-helix is detrimental to binding and downstream activity. Our results suggest that this B-Raf α-helix binding site on MEK could be a site to target for drug development to treat B-RafV600E-induced melanomas.
Collapse
Affiliation(s)
- Diep Nguyen
- Department of Chemistry and Biochemistry, Swarthmore College, Swarthmore, Pennsylvania 19081, United States
| | - Linda Yingqi Lin
- Department of Chemistry and Biochemistry, Swarthmore College, Swarthmore, Pennsylvania 19081, United States
| | - Jeffrey O Zhou
- Department of Chemistry and Biochemistry, Swarthmore College, Swarthmore, Pennsylvania 19081, United States
| | - Emily Kibby
- Department of Chemistry and Biochemistry, Swarthmore College, Swarthmore, Pennsylvania 19081, United States
| | - Twan W Sia
- Department of Chemistry and Biochemistry, Swarthmore College, Swarthmore, Pennsylvania 19081, United States
| | - Tiara D Tillis
- Department of Chemistry and Biochemistry, Swarthmore College, Swarthmore, Pennsylvania 19081, United States
| | - Narine Vapuryan
- Department of Chemistry and Biochemistry, Swarthmore College, Swarthmore, Pennsylvania 19081, United States
| | - Ming-Ray Xu
- Department of Chemistry and Biochemistry, Swarthmore College, Swarthmore, Pennsylvania 19081, United States
| | - Rajiv Potluri
- Department of Chemistry and Biochemistry, Swarthmore College, Swarthmore, Pennsylvania 19081, United States
| | - YongJoon Shin
- Department of Chemistry and Biochemistry, Swarthmore College, Swarthmore, Pennsylvania 19081, United States
| | - Elizabeth A Erler
- Department of Chemistry and Biochemistry, Swarthmore College, Swarthmore, Pennsylvania 19081, United States
| | - Naomi Bronkema
- Department of Chemistry and Biochemistry, Swarthmore College, Swarthmore, Pennsylvania 19081, United States
| | - Daniel J Boehlmer
- Department of Chemistry and Biochemistry, Swarthmore College, Swarthmore, Pennsylvania 19081, United States
| | - Christopher D Chung
- Department of Chemistry and Biochemistry, Swarthmore College, Swarthmore, Pennsylvania 19081, United States
| | - Caroline Burkhard
- Department of Chemistry and Biochemistry, Swarthmore College, Swarthmore, Pennsylvania 19081, United States
| | - Shirley H Zeng
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States.,Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Michael Grasso
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States.,Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Lucila A Acevedo
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States.,Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Ronen Marmorstein
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States.,Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States.,Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Daniela Fera
- Department of Chemistry and Biochemistry, Swarthmore College, Swarthmore, Pennsylvania 19081, United States
| |
Collapse
|
43
|
Taylor SS, Kaila-Sharma P, Weng JH, Aoto P, Schmidt SH, Knapp S, Mathea S, Herberg FW. Kinase Domain Is a Dynamic Hub for Driving LRRK2 Allostery. Front Mol Neurosci 2020; 13:538219. [PMID: 33122997 PMCID: PMC7573214 DOI: 10.3389/fnmol.2020.538219] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 09/02/2020] [Indexed: 12/20/2022] Open
Abstract
Protein kinases and GTPases are the two major molecular switches that regulate much of biology, and both of these domains are embedded within the large multi-domain Leucine-Rich Repeat Kinase 2 (LRRK2). Mutations in LRRK2 are the most common cause of familial Parkinson's disease (PD) and are also implicated in Crohn's disease. The recent Cryo-Electron Microscopy (Cryo-EM) structure of the four C-terminal domains [ROC COR KIN WD40 (RCKW)] of LRRK2 includes both of the catalytic domains. Although the important allosteric N-terminal domains are missing in the Cryo-EM structure this structure allows us to not only explore the conserved features of the kinase domain, which is trapped in an inactive and open conformation but also to observe the direct allosteric cross-talk between the two domains. To define the unique features of the kinase domain and to better understand the dynamic switch mechanism that allows LRRK2 to toggle between its inactive and active conformations, we have compared the LRRK2 kinase domain to Src, BRaf, and PKA. We also compare and contrast the two canonical glycine-rich loop motifs in LRRK2 that anchor the nucleotide: the G-Loop in protein kinases that anchors ATP and the P-Loop in GTPases that anchors GTP. The RCKW structure also provides a template for the cross-talk between the kinase and GTPase domains and brings new mechanistic insights into the physiological function of LRRK2 and how the kinase domain, along with key phosphorylation sites, can serve as an allosteric hub for mediating conformational changes.
Collapse
Affiliation(s)
- Susan S Taylor
- Department of Pharmacology, University of California, San Diego, San Diego, CA, United States.,Department of Chemistry and Biochemistry, University of California, San Diego, San Diego, CA, United States
| | - Pallavi Kaila-Sharma
- Department of Pharmacology, University of California, San Diego, San Diego, CA, United States
| | - Jui-Hung Weng
- Department of Pharmacology, University of California, San Diego, San Diego, CA, United States
| | - Phillip Aoto
- Department of Pharmacology, University of California, San Diego, San Diego, CA, United States
| | - Sven H Schmidt
- Department of Biochemistry, Institute for Biology, University of Kassel, Kassel, Germany
| | - Stefan Knapp
- Institute of Pharmaceutical Chemistry, Goethe-University Frankfurt, Frankfurt, Germany.,Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences (BMLS), Goethe-University Frankfurt, Frankfurt, Germany
| | - Sebastian Mathea
- Institute of Pharmaceutical Chemistry, Goethe-University Frankfurt, Frankfurt, Germany.,Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences (BMLS), Goethe-University Frankfurt, Frankfurt, Germany
| | - Friedrich W Herberg
- Department of Biochemistry, Institute for Biology, University of Kassel, Kassel, Germany
| |
Collapse
|
44
|
Yuan J, Dong X, Yap J, Hu J. The MAPK and AMPK signalings: interplay and implication in targeted cancer therapy. J Hematol Oncol 2020; 13:113. [PMID: 32807225 PMCID: PMC7433213 DOI: 10.1186/s13045-020-00949-4] [Citation(s) in RCA: 273] [Impact Index Per Article: 68.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 08/04/2020] [Indexed: 02/06/2023] Open
Abstract
Cancer is characterized as a complex disease caused by coordinated alterations of multiple signaling pathways. The Ras/RAF/MEK/ERK (MAPK) signaling is one of the best-defined pathways in cancer biology, and its hyperactivation is responsible for over 40% human cancer cases. To drive carcinogenesis, this signaling promotes cellular overgrowth by turning on proliferative genes, and simultaneously enables cells to overcome metabolic stress by inhibiting AMPK signaling, a key singular node of cellular metabolism. Recent studies have shown that AMPK signaling can also reversibly regulate hyperactive MAPK signaling in cancer cells by phosphorylating its key components, RAF/KSR family kinases, which affects not only carcinogenesis but also the outcomes of targeted cancer therapies against the MAPK signaling. In this review, we will summarize the current proceedings of how MAPK-AMPK signalings interplay with each other in cancer biology, as well as its implications in clinic cancer treatment with MAPK inhibition and AMPK modulators, and discuss the exploitation of combinatory therapies targeting both MAPK and AMPK as a novel therapeutic intervention.
Collapse
Affiliation(s)
- Jimin Yuan
- Department of Urology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China.
- Geriatric Department, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China.
| | - Xiaoduo Dong
- Shenzhen People's Hospital, 1017 Dongmen North Road, Shenzhen, 518020, China
| | - Jiajun Yap
- Cancer and Stem Cell Program, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Jiancheng Hu
- Cancer and Stem Cell Program, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore.
- Division of Cellular and Molecular Research, National Cancer Centre Singapore, 11 Hospital Drive, Singapore, 169610, Singapore.
| |
Collapse
|
45
|
Abstract
Kinases form the major part of the druggable genome and their selective inhibition in human cancers has had reasonable clinical success. In contrast to tumorigenesis, the role of kinases in mediating immune responses is poorly understood. However, synergistic therapeutic regimens combining targeted therapy and immune therapy have been found to increase the median survival of tumor patients. In this context, we uncovered that RAF and MEK1/2 kinases, which are the integral parts of the classical MAPK cascade, have unique roles in driving DC differentiation and activation. RAF kinases are stabilized in their protein levels during DC differentiation and are obligatory for normal functioning of DCs. But, the targeting of MEK1/2 kinases with specific inhibitors did not phenocopy the effects observed with RAF inhibitors suggesting that RAF and MEK1/2 kinases may have specific and unique roles in driving immune responses, which deserves further studies to successfully administer these inhibitors in clinics.
Collapse
Affiliation(s)
- Kristina Riegel
- Cell Biology Unit, University Medical Center Mainz, JGU-Mainz , Mainz, Germany
| | | |
Collapse
|
46
|
Verkhivker GM, Agajanian S, Hu G, Tao P. Allosteric Regulation at the Crossroads of New Technologies: Multiscale Modeling, Networks, and Machine Learning. Front Mol Biosci 2020; 7:136. [PMID: 32733918 PMCID: PMC7363947 DOI: 10.3389/fmolb.2020.00136] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 06/08/2020] [Indexed: 12/12/2022] Open
Abstract
Allosteric regulation is a common mechanism employed by complex biomolecular systems for regulation of activity and adaptability in the cellular environment, serving as an effective molecular tool for cellular communication. As an intrinsic but elusive property, allostery is a ubiquitous phenomenon where binding or disturbing of a distal site in a protein can functionally control its activity and is considered as the "second secret of life." The fundamental biological importance and complexity of these processes require a multi-faceted platform of synergistically integrated approaches for prediction and characterization of allosteric functional states, atomistic reconstruction of allosteric regulatory mechanisms and discovery of allosteric modulators. The unifying theme and overarching goal of allosteric regulation studies in recent years have been integration between emerging experiment and computational approaches and technologies to advance quantitative characterization of allosteric mechanisms in proteins. Despite significant advances, the quantitative characterization and reliable prediction of functional allosteric states, interactions, and mechanisms continue to present highly challenging problems in the field. In this review, we discuss simulation-based multiscale approaches, experiment-informed Markovian models, and network modeling of allostery and information-theoretical approaches that can describe the thermodynamics and hierarchy allosteric states and the molecular basis of allosteric mechanisms. The wealth of structural and functional information along with diversity and complexity of allosteric mechanisms in therapeutically important protein families have provided a well-suited platform for development of data-driven research strategies. Data-centric integration of chemistry, biology and computer science using artificial intelligence technologies has gained a significant momentum and at the forefront of many cross-disciplinary efforts. We discuss new developments in the machine learning field and the emergence of deep learning and deep reinforcement learning applications in modeling of molecular mechanisms and allosteric proteins. The experiment-guided integrated approaches empowered by recent advances in multiscale modeling, network science, and machine learning can lead to more reliable prediction of allosteric regulatory mechanisms and discovery of allosteric modulators for therapeutically important protein targets.
Collapse
Affiliation(s)
- Gennady M. Verkhivker
- Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA, United States
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA, United States
| | - Steve Agajanian
- Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA, United States
| | - Guang Hu
- Center for Systems Biology, Department of Bioinformatics, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Peng Tao
- Department of Chemistry, Center for Drug Discovery, Design, and Delivery (CD4), Center for Scientific Computation, Southern Methodist University, Dallas, TX, United States
| |
Collapse
|
47
|
Kumar R, George B, Campbell MR, Verma N, Paul AM, Melo-Alvim C, Ribeiro L, Pillai MR, da Costa LM, Moasser MM. HER family in cancer progression: From discovery to 2020 and beyond. Adv Cancer Res 2020; 147:109-160. [PMID: 32593399 DOI: 10.1016/bs.acr.2020.04.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The human epidermal growth factor receptor (HER) family of receptor tyrosine kinases (RTKs) are among the first layer of molecules that receive, interpret, and transduce signals leading to distinct cancer cell phenotypes. Since the discovery of the tooth-lid factor-later characterized as the epidermal growth factor (EGF)-and its high-affinity binding EGF receptor, HER kinases have emerged as one of the commonly upregulated or hyperactivated or mutated kinases in epithelial tumors, thus allowing HER1-3 family members to regulate several hallmarks of cancer development and progression. Each member of the HER family exhibits shared and unique structural features to engage multiple receptor activation modes, leading to a range of overlapping and distinct phenotypes. EGFR, the founding HER family member, provided the roadmap for the development of the cell surface RTK-directed targeted cancer therapy by serving as a prototype/precursor for the currently used HER-directed cancer drugs. We herein provide a brief account of the discoveries, defining moments, and historical context of the HER family and guidepost advances in basic, translational, and clinical research that solidified a prominent position of the HER family in cancer research and treatment. We also discuss the significance of HER3 pseudokinase in cancer biology; its unique structural features that drive transregulation among HER1-3, leading to a superior proximal signaling response; and potential role of HER3 as a shared effector of acquired therapeutic resistance against diverse oncology drugs. Finally, we also narrate some of the current drawbacks of HER-directed therapies and provide insights into postulated advances in HER biology with extensive implications of these therapies in cancer research and treatment.
Collapse
Affiliation(s)
- Rakesh Kumar
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Trivandrum, Kerala, India; Department of Medicine, Division of Hematology & Oncology, Rutgers New Jersey Medical School, Newark, NJ, United States; Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States.
| | - Bijesh George
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Trivandrum, Kerala, India
| | - Marcia R Campbell
- Department of Medicine, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, United States
| | - Nandini Verma
- Advanced Centre for Treatment, Research and Education in Cancer, Mumbai, India
| | - Aswathy Mary Paul
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Trivandrum, Kerala, India
| | - Cecília Melo-Alvim
- Medical Oncology Department, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, Lisbon, Portugal
| | - Leonor Ribeiro
- Medical Oncology Department, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, Lisbon, Portugal
| | - M Radhakrishna Pillai
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Trivandrum, Kerala, India
| | - Luis Marques da Costa
- Medical Oncology Department, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, Lisbon, Portugal; Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Mark M Moasser
- Department of Medicine, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, United States.
| |
Collapse
|
48
|
Ras assemblies and signaling at the membrane. Curr Opin Struct Biol 2020; 62:140-148. [DOI: 10.1016/j.sbi.2020.01.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 01/16/2020] [Indexed: 02/07/2023]
|
49
|
Enzler F, Tschaikner P, Schneider R, Stefan E. KinCon: Cell-based recording of full-length kinase conformations. IUBMB Life 2020; 72:1168-1174. [PMID: 32027084 PMCID: PMC7318358 DOI: 10.1002/iub.2241] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 01/16/2020] [Indexed: 01/26/2023]
Abstract
The spectrum of kinase alterations displays distinct functional characteristics and requires kinase mutation-oriented strategies for therapeutic interference. Besides phosphotransferase activity, protein abundance, and intermolecular interactions, particular patient-mutations promote pathological kinase conformations. Despite major advances in identifying lead molecules targeting clinically relevant oncokinase functions, still many kinases are neglected and not part of drug discovery efforts. One explanation is attributed to challenges in tracking kinase activities. Chemical probes are needed to functionally annotate kinase functions, whose activities may not always depend on catalyzing phospho-transfer. Such non-catalytic kinase functions are related to transitions of full-length kinase conformations. Recent findings underline that cell-based reporter systems can be adapted to record conformation changes of kinases. Here, we discuss the possible applications of an extendable kinase conformation (KinCon) reporter toolbox for live-cell recording of kinase states. KinCon is a genetically encoded bioluminescence-based biosensor platform, which can be subjected for measurements of conformation dynamics of mutated kinases upon small molecule inhibitor exposure. We hypothesize that such biosensors can be utilized to delineate the molecular modus operandi for kinase and pseudokinase regulation. This should pave the path for full-length kinase-targeted drug discovery efforts aiming to identify single and combinatory kinase inhibitor therapies with increased specificity and efficacy.
Collapse
Affiliation(s)
- Florian Enzler
- Institute of Biochemistry and Center for Molecular Biosciences, University of InnsbruckInnsbruckAustria
| | - Philipp Tschaikner
- Institute of Biochemistry and Center for Molecular Biosciences, University of InnsbruckInnsbruckAustria
| | - Rainer Schneider
- Institute of Biochemistry and Center for Molecular Biosciences, University of InnsbruckInnsbruckAustria
| | - Eduard Stefan
- Institute of Biochemistry and Center for Molecular Biosciences, University of InnsbruckInnsbruckAustria
| |
Collapse
|
50
|
Pancholi S, Ribas R, Simigdala N, Schuster E, Nikitorowicz-Buniak J, Ressa A, Gao Q, Leal MF, Bhamra A, Thornhill A, Morisset L, Montaudon E, Sourd L, Fitzpatrick M, Altelaar M, Johnston SR, Marangoni E, Dowsett M, Martin LA. Tumour kinome re-wiring governs resistance to palbociclib in oestrogen receptor positive breast cancers, highlighting new therapeutic modalities. Oncogene 2020; 39:4781-4797. [PMID: 32307447 PMCID: PMC7299844 DOI: 10.1038/s41388-020-1284-6] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 03/18/2020] [Accepted: 03/24/2020] [Indexed: 01/13/2023]
Abstract
Combination of CDK4/6 inhibitors and endocrine therapy improves clinical outcome in advanced oestrogen receptor (ER)-positive breast cancer, however relapse is inevitable. Here, we show in model systems that other than loss of RB1 few gene-copy number (CN) alterations are associated with irreversible-resistance to endocrine therapy and subsequent secondary resistance to palbociclib. Resistance to palbociclib occurred as a result of tumour cell re-wiring leading to increased expression of EGFR, MAPK, CDK4, CDK2, CDK7, CCNE1 and CCNE2. Resistance altered the ER genome wide-binding pattern, leading to decreased expression of ‘classical’ oestrogen-regulated genes and was accompanied by reduced sensitivity to fulvestrant and tamoxifen. Persistent CDK4 blockade decreased phosphorylation of tuberous sclerosis complex 2 (TSC2) enhancing EGFR signalling, leading to the re-wiring of ER. Kinome-knockdown confirmed dependency on ERBB-signalling and G2/M–checkpoint proteins such as WEE1, together with the cell cycle master regulator, CDK7. Noteworthy, sensitivity to CDK7 inhibition was associated with loss of ER and RB1 CN. Overall, we show that resistance to CDK4/6 inhibitors is dependent on kinase re-wiring and the redeployment of signalling cascades previously associated with endocrine resistance and highlights new therapeutic networks that can be exploited upon relapse after CDK4/6 inhibition.
Collapse
Affiliation(s)
- Sunil Pancholi
- Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, London, SW7 3RP, UK
| | - Ricardo Ribas
- Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, London, SW7 3RP, UK
| | - Nikiana Simigdala
- Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, London, SW7 3RP, UK
| | - Eugene Schuster
- Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, London, SW7 3RP, UK
| | | | - Anna Ressa
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CH, Utrecht, The Netherlands
| | - Qiong Gao
- CRUK, Bioinformatic Cofacility, Institute of Cancer Research, Sutton, SM2 5NG, UK
| | - Mariana Ferreira Leal
- Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, London, SW7 3RP, UK
| | - Amandeep Bhamra
- Proteomic Unit, Institute of Cancer Research, London, SW7 3RP, UK
| | - Allan Thornhill
- Centre for Cancer Imaging, Institute of Cancer Research, Sutton, SM2 5NG, UK
| | | | - Elodie Montaudon
- Department of Translational Research, Institut Curie, Paris, France
| | - Laura Sourd
- Department of Translational Research, Institut Curie, Paris, France
| | - Martin Fitzpatrick
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CH, Utrecht, The Netherlands
| | - Maarten Altelaar
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CH, Utrecht, The Netherlands
| | | | | | - Mitch Dowsett
- Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, London, SW7 3RP, UK.,Ralph Lauren Centre for Breast Cancer Research, Royal Marsden Hospital, London, SW3 6JJ, UK
| | - Lesley-Ann Martin
- Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, London, SW7 3RP, UK.
| |
Collapse
|