1
|
Park SY, Kim KY, Gwak DS, Shin SY, Jun DY, Kim YH. L-Cysteine mitigates ROS-induced apoptosis and neurocognitive deficits by protecting against endoplasmic reticulum stress and mitochondrial dysfunction in mouse neuronal cells. Biomed Pharmacother 2024; 180:117538. [PMID: 39393330 DOI: 10.1016/j.biopha.2024.117538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/30/2024] [Accepted: 10/04/2024] [Indexed: 10/13/2024] Open
Abstract
Oxidative stress and mitochondrial dysfunction play critical roles in neurodegenerative diseases. Glutathione (GSH), a key brain antioxidant, helps to neutralize reactive oxygen species (ROS) and maintain redox balance. We investigated the effectiveness of L-cysteine (L-Cys) in preventing apoptosis induced by the ROS generator 2,3-dimethoxy-1,4-naphthoquinone (DMNQ) in mouse hippocampal neuronal HT22 cells, as well as alleviating memory and cognitive impairments caused by the GSH synthesis inhibitor L-buthionine sulfoximine (BSO) in mice. DMNQ-induced apoptotic events in HT22 cells, including elevated cytosolic and mitochondrial ROS levels, DNA fragmentation, endoplasmic reticulum stress, and mitochondrial damage-mediated apoptotic pathways were dose-dependently abrogated by L-Cys (0.5-2 mM). The reduced intracellular GSH level, caused by DMNQ treatment, was restored by L-Cys cotreatment. Although L-Cys did not significantly restore GSH in the presence of BSO, it prevented DMNQ-induced ROS elevation, mitochondrial damage, and apoptosis. Furthermore, compared to N-acetylcysteine and GSH, L-Cys had higher 2,2-diphenyl-1-picrylhydrazyl and 2,2-azino-bis-3-ethylbenzothiazoline-6-sulphonic acid radical-scavenging activity. L-Cys also restored mitochondrial respiration capacity in DMNQ-treated HT22 cells by reversing mitochondrial fission-fusion dynamic balance. BSO administration (500 mg/kg/day) in mice led to neuronal deficits, including memory and cognitive impairments, which were effectively mitigated by oral L-Cys (15 or 30 mg/kg/day). L-Cys also reduced BSO-induced ROS levels in the mice hippocampus and cortex. These findings suggest that even though it does not contribute to intracellular GSH synthesis, exogenous L-Cys protects neuronal cells against oxidative stress-induced mitochondrial damage and apoptosis, by acting as a ROS scavenger, which is beneficial in ameliorating neurocognitive deficits caused by oxidative stress.
Collapse
Affiliation(s)
- Shin Young Park
- Laboratory of Immunobiology, School of Life Science, College of Natural Sciences, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea; AT-31 BIO Inc., Business Incubation Center, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Ki Yun Kim
- Laboratory of Immunobiology, School of Life Science, College of Natural Sciences, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea; AT-31 BIO Inc., Business Incubation Center, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Dong Seol Gwak
- Laboratory of Immunobiology, School of Life Science, College of Natural Sciences, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Soon Young Shin
- Department of Biological Sciences, Sanghuh College of Life Sciences, Konkuk University, Seoul 05029, Republic of Korea
| | - Do Youn Jun
- AT-31 BIO Inc., Business Incubation Center, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Young Ho Kim
- Laboratory of Immunobiology, School of Life Science, College of Natural Sciences, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea; AT-31 BIO Inc., Business Incubation Center, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea.
| |
Collapse
|
2
|
Murphy BÓ, Latimer C, Dobani S, Pourshahidi LK, Fontana M, Ternan NG, McDougall G, Rowland I, Pereira-Caro G, Tuohy KM, Del Rio D, Almutairi TM, Crozier A, Naumovski N, Gill CIR. Microbially mediated phenolic catabolites exert differential genoprotective activities in normal and adenocarcinoma cell lines. Int J Food Sci Nutr 2024; 75:673-686. [PMID: 39261459 DOI: 10.1080/09637486.2024.2397055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 08/15/2024] [Accepted: 08/19/2024] [Indexed: 09/13/2024]
Abstract
Age-associated decline of nuclear factor erythroid 2-related factor 2 (Nrf2) activity and DNA repair efficiency leads to the accumulation of DNA damage and increased risk of cancer. Understanding the mechanisms behind increased levels of damaged DNA is crucial for developing interventions to mitigate age-related cancer risk. Associated with various health benefits, (poly)phenols and their microbially mediated phenolic catabolites represent a potential means to reduce DNA damage. Four colonic-microbiota-derived phenolic catabolites were investigated for their ability to reduce H2O2-induced oxidative DNA damage and modulate the Nrf2-Antixoidant Response Element (ARE) pathway, in normal (CCD 841 CoN) and adenocarcinoma (HT29) colonocyte cell lines. Each catabolite demonstrated significant (p < .001) genoprotective activity and modulation of key genes in the Nrf2-ARE pathway. Overall, the colon-derived phenolic metabolites, when assessed at physiologically relevant concentrations, reduced DNA damage in both normal and adenocarcinoma colonic cells in response to oxidative challenge, mediated in part via upregulation of the Nrf2-ARE pathway.
Collapse
Affiliation(s)
- Brian Óg Murphy
- Nutrition Innovation Centre for Food and Health (NICHE), Ulster University, Coleraine, UK
| | - Cheryl Latimer
- Nutrition Innovation Centre for Food and Health (NICHE), Ulster University, Coleraine, UK
| | - Sara Dobani
- Nutrition Innovation Centre for Food and Health (NICHE), Ulster University, Coleraine, UK
| | - L Kirsty Pourshahidi
- Nutrition Innovation Centre for Food and Health (NICHE), Ulster University, Coleraine, UK
| | - Massimilano Fontana
- Nutrition Innovation Centre for Food and Health (NICHE), Ulster University, Coleraine, UK
| | - Nigel G Ternan
- Nutrition Innovation Centre for Food and Health (NICHE), Ulster University, Coleraine, UK
| | - Gordon McDougall
- Environmental and Biochemical Sciences Department, The James Hutton Institute, Dundee, UK
| | - Ian Rowland
- Department of Food and Nutritional Sciences, University of Reading, Reading, UK
| | - Gema Pereira-Caro
- Department of Food Science and Health, IFAPA-Alameda Del Obispo, Córdoba, Spain
| | - Kieran M Tuohy
- School of Food Science and Nutrition, University of Leeds, Leeds, UK
| | - Daniele Del Rio
- Human Nutrition Unit, Department of Food and Drug, University of Parma, Parma, Italy
| | | | - Alan Crozier
- Department of Chemistry, King Saud University Riyadh, Saudi Arabia
- School of Medicine, Dentistry and Nursing, University of Glasgow, Glasgow, UK
| | - Nenad Naumovski
- School of Rehabilitation and Exercise Sciences, Faculty of Health, University of Canberra, Canberra, Australia
| | - Chris I R Gill
- Nutrition Innovation Centre for Food and Health (NICHE), Ulster University, Coleraine, UK
| |
Collapse
|
3
|
Li S, Ma S, Wang L, Zhan D, Jiang S, Zhang Z, Xiong M, Jiang Y, Huang Q, Zhang J, Li X. ATF3 as a response factor to regulate Cd-induced reproductive damage by activating the NRF2/HO-1 ferroptosis pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117114. [PMID: 39357374 DOI: 10.1016/j.ecoenv.2024.117114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/04/2024]
Abstract
Cadmium (Cd) has garnered significant attention due to reproductive toxicity in inducing ferroptosis. However, the specific mechanisms underlying Cd-induced germ cell ferroptosis remain poorly understood. This study aimed to systematically explore the molecular mechanisms of germ cell ferroptosis by investigating differential changes in transcription factors and proteins in male mice treated orally with CdCl2 (0.5 g/L) reaching postnatal day 60, alongside Leydig cell (TM3) and Sertoli cell (TM4) lines. Results demonstrated that Cd exposure led to increased iron overload and oxidative stress in mouse testes, disrupted intracellular mitochondrial morphology characteristic of ferroptosis. RNA sequencing revealed significant upregulation of Atf3 and Hmox1 in Cd-exposed germ cells, along with increased expression of ATF3 and HO-1. Intervention in ferroptosis or HO-1 effectively rescued cells from Cd-induced mortality by breaking the detrimental cycle between lipid peroxidation and HO-1 activation. Further findings showed that NRF2 and HO-1 expression was notably elevated upon ATF3 overexpression in TM3 and TM4 cells, activating the Keap1-Nrf2 pathway and triggering ferroptosis in testes, whereas NRF2 and HO-1 expression levels were reversed when ATF3 was silenced. This study provides novel insights into ATF3-mediated NRF2/HO-1 signaling in Cd-induced mitochondrial ferroptosis in testes, shedding light on the mechanisms underlying Cd-induced ferroptosis and testicular injury.
Collapse
Affiliation(s)
- Sisi Li
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Key Laboratory for Veterinary and Biotechnology, Shanghai 200240, China
| | - Sheng Ma
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Key Laboratory for Veterinary and Biotechnology, Shanghai 200240, China
| | - Lirui Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Key Laboratory for Veterinary and Biotechnology, Shanghai 200240, China
| | - Dian Zhan
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Key Laboratory for Veterinary and Biotechnology, Shanghai 200240, China
| | - Shengyao Jiang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Key Laboratory for Veterinary and Biotechnology, Shanghai 200240, China
| | - Zhenyang Zhang
- Department of Animal Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Manyi Xiong
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Key Laboratory for Veterinary and Biotechnology, Shanghai 200240, China
| | - Yanping Jiang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Key Laboratory for Veterinary and Biotechnology, Shanghai 200240, China
| | - Qixian Huang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Key Laboratory for Veterinary and Biotechnology, Shanghai 200240, China
| | - Jian Zhang
- Department of Agriculture, Hetao College, Bayannur 015000, China
| | - Xinhong Li
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Key Laboratory for Veterinary and Biotechnology, Shanghai 200240, China.
| |
Collapse
|
4
|
Wang Y, Feng W, Li S, Liu C, Jia L, Wang P, Li L, Du H, Yu W. Oxycodone attenuates lipopolysaccharide-induced myocardial injury by inhibiting inflammation, oxidation and pyroptosis via Nrf2/HO-1 signalling pathway. Clin Exp Pharmacol Physiol 2024; 51:e13910. [PMID: 39073215 DOI: 10.1111/1440-1681.13910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 05/27/2024] [Accepted: 06/20/2024] [Indexed: 07/30/2024]
Abstract
Myocardial injury and cardiovascular dysfunction are the most common complications of sepsis, and effective therapeutic candidate is still lacking. This study aims to investigate the protective effect of oxycodone in myocardial injury of lipopolysaccharide-induced sepsis and its related signalling pathways. Wild-type and nuclear factor erythroid 2-related factor 2 (Nrf2)-knockout mice, as well as H9c2 cardiomyocytes cultures treated with lipopolysaccharide (LPS) were used as models of septic myocardial injury. H9c2 cardiomyocytes culture showed that oxycodone protected cells from pyroptosis induced by LPS. Mice model confirmed that oxycodone pretreatment significantly attenuated myocardial pathological damage and improved cardiac function demonstrated by increased ejection fraction (EF) and fractional shortening (FS), as well as decreased cardiac troponin I (cTnI) and creatine kinase isoenzymes MB (CK-MB). Oxycodone also reduced the levels of inflammatory factors and oxidative stress damage induced by LPS, which involves pyroptosis-related proteins including: Nod-like receptor protein 3 (NLRP3), Caspase 1, Apoptosis-associated speck-like protein contain a CARD (ASC), and Gasdermin D (GSDMD). These changes were mediated by Nrf2 and heme oxygenase-1 (HO-1) because Nrf2-knockout mice or Nrf2 knockdown in H9c2 cells significantly reversed the beneficial effect of oxycodone on oxidative stress, inflammatory responses and NLRP3-mediated pyroptosis. Our findings yielded that oxycodone therapy reduces LPS-induced myocardial injury by suppressing NLRP3-mediated pyroptosis via the Nrf2/HO-1 signalling pathway in vivo and in vitro.
Collapse
Affiliation(s)
- Yanting Wang
- The First Central Clinical College, Tianjin Medical University, Tianjin, China
| | - Wei Feng
- Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shaona Li
- Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Cuicui Liu
- Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lili Jia
- Department of Anesthesiology, Tianjin First Central Hospital, Tianjin, China
| | - Pei Wang
- Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Linlin Li
- Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hongyin Du
- Tianjin Municipal Health Commission, Tianjin, China
| | - Wenli Yu
- Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
5
|
Salloom RJ, Ahmad IM, Sahtout DZ, Baine MJ, Abdalla MY. Heme Oxygenase-1 and Prostate Cancer: Function, Regulation, and Implication in Cancer Therapy. Int J Mol Sci 2024; 25:9195. [PMID: 39273143 PMCID: PMC11394971 DOI: 10.3390/ijms25179195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/15/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024] Open
Abstract
Prostate cancer (PC) is a significant cause of mortality in men worldwide, hence the need for a comprehensive understanding of the molecular mechanisms underlying its progression and resistance to treatment. Heme oxygenase-1 (HO-1), an inducible enzyme involved in heme catabolism, has emerged as a critical player in cancer biology, including PC. This review explores the multifaceted role of HO-1 in PC, encompassing its function, regulation, and implications in cancer therapy. HO-1 influences cell proliferation, anti-apoptotic pathways, angiogenesis, and the tumor microenvironment, thereby influencing tumor growth and metastasis. HO-1 has also been associated with therapy resistance, affecting response to standard treatments. Moreover, HO-1 plays a significant role in immune modulation, affecting the tumor immune microenvironment and potentially influencing therapy outcomes. Understanding the intricate balance of HO-1 in PC is vital for developing effective therapeutic strategies. This review further explores the potential of targeting HO-1 as a therapeutic approach, highlighting challenges and opportunities. Additionally, clinical implications are discussed, focusing on the prognostic value of HO-1 expression and the development of novel combined therapies to augment PC sensitivity to standard treatment strategies. Ultimately, unraveling the complexities of HO-1 in PC biology will provide critical insights into personalized treatment approaches for PC patients.
Collapse
Affiliation(s)
- Ramia J. Salloom
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (R.J.S.); (D.Z.S.)
| | - Iman M. Ahmad
- Department of Clinical, Diagnostic, and Therapeutic Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Dania Z. Sahtout
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (R.J.S.); (D.Z.S.)
| | - Michael J. Baine
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Maher Y. Abdalla
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (R.J.S.); (D.Z.S.)
| |
Collapse
|
6
|
Zhang T, Kang H, Peng Q, Jiang Y, Xie Y, Zhang D, Song X, Li Y, Deng C. Therapeutic mechanism of Cornus Officinalis Fruit Coreon on ALI by AKT/Nrf2 pathway and gut microbiota. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 130:155736. [PMID: 38788396 DOI: 10.1016/j.phymed.2024.155736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 05/06/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024]
Abstract
BACKGROUND Acute liver injury (ALI) often precipitates severe liver function impairment and is associated with high mortality rates. Traditional Chinese Medicine (TCM) has demonstrated efficacy in mitigating hepatic damage by exhibiting anti-inflammatory effects, enhancing antioxidant activity, and modulating gut microbiota (GM). Numerous studies have identified similar or identical bioactive compounds within the Cornus Officinalis Fruit Coreon(COFO) and its flesh. Notably, Cornus Officinalis has been shown to possess potent hepatoprotective properties. However, studies on the pharmacological effects and mechanism of action of COFO for hepatoprotection have received little attention. PURPOSE To elucidate the mechanisms underlying the COFO effect in ALI by integrating GM gene sequencing, quantifying Short-Chain Fatty Acids (SCFAs), and examining relevant signaling pathways. MATERIALS AND METHODS A rat model for carbon tetrachloride (CCl4)-induced ALI was established, and the best liver protective components of COFO were selected by pathological observation and biochemical determination. The therapeutic efficacy of COFO in mitigating liver injury was elucidated through an integrated approach that included network pharmacology, biochemical indexes, 16S rDNA sequencing analyses, short-chain fatty acids, Western blotting analysis of protein levels, and immunohistochemical evaluations. RESULTS Pharmacological evaluation established that the n-butanol fraction (CNBP) provided optimal hepatoprotective effects. Firstly, the chemical constituents of CNBP were characterized, and its principal anti-ALI targets, such as ALI, AKT1, TNF, and IL-6, were identified through network pharmacology analysis. Secondly, experimental validation revealed that CNBP may enhance the genetic diversity of the GM, augmenting the diversity of the microbial community, increasing the levels of three SCFAs, and activating key proteins in the AKT/Nrf2 signaling pathway (AKT1, TNF-α, IL-6, NF-κB p65, Nrf2, and HO-1). Consequently, CNBP exhibited hepatoprotective effects, with antioxidative and anti-inflammatory properties. CONCLUSION CNBP may mitigate GM-induced disturbances, augment the levels of three SCFAs, activate the AKT/Nrf2 signaling pathway, and exhibit antioxidant and anti-inflammatory effects, thereby conferring hepatoprotective benefits.
Collapse
Affiliation(s)
- Ting Zhang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Huili Kang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Qin Peng
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Yi Jiang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, China; Shaanxi Key Lab. of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xianyang 712046, China; Key Research Laboratory of the Administration of Traditional Chinese Medicine of Shaanxi Province: Research and Application of Tai Bai Seven Medicines, Xianyang 712046, China
| | - Yundong Xie
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Dongdong Zhang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Xiaomei Song
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, China; Shaanxi Key Lab. of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xianyang 712046, China; Key Research Laboratory of the Administration of Traditional Chinese Medicine of Shaanxi Province: Research and Application of Tai Bai Seven Medicines, Xianyang 712046, China
| | - Yuze Li
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Chong Deng
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, China; Shaanxi Key Lab. of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xianyang 712046, China; College of Pharmacy and Shaanxi Qinling Application Development and Engineering Center of Chinese Herbal Medicine, Shaanxi University of Chinese Medicine, Xianyang 712046, China; Shaanxi Provincial Administration of Traditional Chinese Medicine Key Laboratory of Mechanical and Material Basis of Chinese Medicine, Xianyang 712046, China; Key Research Laboratory of the Administration of Traditional Chinese Medicine of Shaanxi Province: Research and Application of Tai Bai Seven Medicines, Xianyang 712046, China.
| |
Collapse
|
7
|
Suryaningtyas IT, Lee DS, Je JY. Brown Algae Ecklonia cava Extract Modulates Adipogenesis and Browning in 3T3-L1 Preadipocytes through HO-1/Nrf2 Signaling. Mar Drugs 2024; 22:330. [PMID: 39195446 PMCID: PMC11355876 DOI: 10.3390/md22080330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 08/29/2024] Open
Abstract
This study explores the anti-obesity effects of the ethyl acetate extract of Ecklonia cava (EC-ETAC) on 3T3-L1 preadipocytes, focusing on its impact on adipogenesis, lipolysis, and adipose browning via the HO-1/Nrf2 pathway. Western blot analysis revealed that EC-ETAC significantly inhibited adipogenic transcription factors (PPARγ, C/EBPα, SREBP-1) and lipogenesis-related proteins (FAS, LPL). Concurrently, EC-ETAC enhanced lipolytic markers (p-AMPK, p-HSL) and adipose browning-related proteins (UCP-1, PGC-1α), indicating its role in promoting lipolysis and adipose browning. The inhibition of HO-1 by zinc protoporphyrin (ZnPP) significantly reversed these effects, underscoring the critical role of HO-1 in mediating the anti-obesity properties of EC-ETAC. Additionally, fluorescence measurements and Oil Red O staining confirmed the reduction of lipid accumulation and oxidative stress upon EC-ETAC treatment. These findings suggest that EC-ETAC exerts its anti-obesity effects by modulating the HO-1/Nrf2 pathway, which is crucial for regulating adipogenesis, lipolysis, and adipose browning. This study highlights the potential of EC-ETAC as a natural therapeutic agent for obesity management and supports further research into its clinical applications. By targeting the HO-1/Nrf2 pathway, EC-ETAC could offer a novel approach to enhancing energy expenditure and reducing fat mass, thereby improving metabolic health.
Collapse
Affiliation(s)
- Indyaswan T. Suryaningtyas
- Department of Food and Nutrition, Pukyong National University, Busan 48513, Republic of Korea;
- Research Center for Food Technology and Processing, National Research and Innovation Agency, Yogyakarta 55861, Indonesia
| | - Dae-Sung Lee
- National Marine Biodiversity Institute of Korea (MABIK), Seochun 33662, Republic of Korea;
| | - Jae-Young Je
- Major of Human Bioconvergence, Division of Smart Healthcare, Pukyong National University, Busan 48513, Republic of Korea
| |
Collapse
|
8
|
Endo M, Tanaka Y, Fukuoka M, Suzuki H, Minami Y. Wnt5a/Ror2 promotes Nrf2-mediated tissue protective function of astrocytes after brain injury. Glia 2024; 72:411-432. [PMID: 37904612 DOI: 10.1002/glia.24483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 11/01/2023]
Abstract
Astrocytes, a type of glial cells, play critical roles in promoting the protection and repair of damaged tissues after brain injury. Inflammatory cytokines and growth factors can affect gene expression in astrocytes in injured brains, but signaling pathways and transcriptional mechanisms that regulate tissue protective functions of astrocytes are still poorly understood. In this study, we investigated the molecular mechanisms regulating the function of reactive astrocytes induced in mouse models of stab wound (SW) brain injury and collagenase-induced intracerebral hemorrhage (ICH). We show that basic fibroblast growth factor (bFGF), whose expression is up-regulated in mouse brains after SW injury and ICH, acts synergistically with inflammatory cytokines to activate E2F1-mediated transcription of a gene encoding the Ror-family protein Ror2, a receptor for Wnt5a, in cultured astrocytes. We also found that subsequent activation of Wnt5a/Ror2 signaling in astrocytes results in nuclear accumulation of antioxidative transcription factor Nrf2 at least partly by increased expression of p62/Sqstm1, leading to promoted expression of several Nrf2 target genes, including heme oxygenase 1. Finally, we provide evidence demonstrating that enhanced activation of Wnt5a/Ror2 signaling in astrocytes reduces cellular damage caused by hemin, a degradation product of hemoglobin, and promotes repair of the damaged blood brain barrier after brain hemorrhage.
Collapse
Affiliation(s)
- Mitsuharu Endo
- Division of Cell Physiology, Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Yuki Tanaka
- Division of Cell Physiology, Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Mayo Fukuoka
- Division of Cell Physiology, Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Hayata Suzuki
- Division of Cell Physiology, Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Yasuhiro Minami
- Division of Cell Physiology, Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University, Kobe, Japan
| |
Collapse
|
9
|
Romero-Miguel D, Casquero-Veiga M, Lamanna-Rama N, Torres-Sánchez S, MacDowell KS, García-Partida JA, Santa-Marta C, Berrocoso E, Leza JC, Desco M, Soto-Montenegro ML. N-acetylcysteine during critical neurodevelopmental periods prevents behavioral and neurochemical deficits in the Poly I:C rat model of schizophrenia. Transl Psychiatry 2024; 14:14. [PMID: 38191622 PMCID: PMC10774365 DOI: 10.1038/s41398-023-02652-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 10/24/2023] [Accepted: 11/06/2023] [Indexed: 01/10/2024] Open
Abstract
Schizophrenia is a chronic neurodevelopmental disorder with an inflammatory/prooxidant component. N-acetylcysteine (NAC) has been evaluated in schizophrenia as an adjuvant to antipsychotics, but its role as a preventive strategy has not been sufficiently explored. We aimed to evaluate the potential of NAC administration in two-time windows before the onset of symptoms in a schizophrenia-like maternal immune stimulation (MIS) rat model. Pregnant Wistar rats were injected with Poly I:C or Saline on gestational day (GD) 15. Three different preventive approaches were evaluated: 1) NAC treatment during periadolescence in the offspring (from postnatal day [PND] 35 to 49); 2) NAC treatment during pregnancy after MIS challenge until delivery (GD15-21); and 3) NAC treatment throughout all pregnancy (GD1-21). At postnatal day (PND) 70, prepulse inhibition (PPI) and anxiety levels were evaluated. In vivo magnetic resonance (MR) imaging was acquired on PND100 to assess structural changes in gray and white matter, and brain metabolite concentrations. Additionally, inflammation and oxidative stress (IOS) markers were measured ex vivo in selected brain regions. MIS offspring showed behavioral, neuroanatomical, and biochemical alterations. Interestingly, NAC treatment during periadolescence prevented PPI deficits and partially counteracted some biochemical imbalances. Moreover, NAC treatments during pregnancy not only replicated the beneficial outcomes reported by the treatment in periadolescence, but also prevented some neuroanatomical deficits, including reductions in hippocampal and corpus callosum volumes. This study suggests that early reduction of inflammation and prooxidation could help prevent the onset of schizophrenia-like symptoms, supporting the importance of anti-IOS compounds in ameliorating this disorder.
Collapse
Grants
- MLS was supported by the Ministerio de Ciencia e Innovación, Instituto de Salud Carlos III (project number PI17/01766, and grant number BA21/00030), co-financed by the European Regional Development Fund (ERDF), “A way to make Europe”; project PID2021-128862OB-I00 funded by MCIN /AEI /10.13039/501100011033 / FEDER, UE, CIBER de Salud Mental - Instituto de Salud Carlos III (project number CB07/09/0031); Delegación del Gobierno para el Plan Nacional sobre Drogas (project number 2017/085, 2022/008917); and Fundación Alicia Koplowitz.
- DRM was supported by Consejería de Educación e investigación, Comunidad de Madrid, co-funded by the European Social Fund “Investing in your future” (grant, PEJD-2018-PRE/BMD-7899).
- MCV was supported by a predoctoral grant from Fundación Tatiana Pérez de Guzmán el Bueno.
- NLR was supported by the Instituto de investigación Sanitaria Gregorio Marañón, “Programa Intramural de Impulso a la I+D+I 2019”.
- EBD, JAG-P and ST-S work was supported by the “Fondo Europeo de Desarrollo Regional” (FEDER)-UE “A way to build Europe” from the “Ministerio de Economía y Competitividad” (RTI2018-099778-B-I00); from the “Plan Nacional sobre Drogas, Ministerio de Sanidad, Consumo y Bienestar Social” (2019I041); from the “Ministerio de Salud-Instituto de Salud Carlos III” (PI18/01691); from the “Programa Operativo de Andalucía FEDER, Iniciativa Territorial Integrada ITI 2014-2020 Consejería Salud y Familias, Junta de Andalucía” (PI-0080-2017, PI-0009-2017), "Consejería de Salud y Familias, Junta de Andalucía" (PI-0134-2018 and PEMP-0008-2020); from the "Consejería de Transformación Económica, Industria, Conocimiento y Universidad, Junta de Andalucía" (P20_00958 and CTS-510); from the CEIMAR (CEIJ-003); from the “Instituto de Investigación e Innovación en Ciencias Biomédicas de Cádiz-INiBICA” (LI19/06IN-CO22; IN-C09); from the “CIBERSAM”: CIBER-Consorcio Centro de Investigación Biomédica en Red- (CB07/09/0033), Instituto de Salud Carlos III, Ministerio de Ciencia e Innovación and from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 955684.
- JCL was supported by the Ministerio de Economía y Competitividad, MINECO-EU-FEDER (SAF2016-75500-R) and Ministerio de Ciencia e Innovación (PID2019-109033RB-I00).
- MD work was supported by Ministerio de Ciencia e Innovación (MCIN) and Instituto de Salud Carlos III (PT20/00044). The CNIC is supported by the Instituto de Salud Carlos III (ISCIII), the Ministerio de Ciencia e Innovación (MCIN) and the Pro CNIC Foundation, and is a Severo Ochoa Center of Excellence (SEV-2015-0505).
Collapse
Affiliation(s)
- Diego Romero-Miguel
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, 28007, Spain
- Department of Bioengineering, Universidad Carlos III de Madrid, Leganés (Madrid), 28911, Spain
| | - Marta Casquero-Veiga
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, 28007, Spain
- Instituto de Investigación Sanitaria Fundación Jiménez Díaz, IIS-FJD, 28040, Madrid, Spain
- Cardiovascular Imaging and Population Studies, Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029, Madrid, Spain
| | - Nicolás Lamanna-Rama
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, 28007, Spain
- Department of Bioengineering, Universidad Carlos III de Madrid, Leganés (Madrid), 28911, Spain
| | - Sonia Torres-Sánchez
- CIBER de Salud Mental (CIBERSAM), Madrid, 28029, Spain
- Neuropsychopharmacology & Psychobiology Research Group, Department of Neuroscience, Universidad de Cádiz, Cádiz, 11003, Spain
- Instituto de Investigación e Innovación en Ciencias Biomédicas de Cádiz (INiBICA), Hospital Universitario Puerta del Mar, Cádiz, 11009, Spain
| | - Karina S MacDowell
- CIBER de Salud Mental (CIBERSAM), Madrid, 28029, Spain
- Department of Pharmacology & Toxicology, School of Medicine, Universidad Complutense (UCM), IIS Imas12, IUIN, Madrid, 28040, Spain
| | - José A García-Partida
- Neuropsychopharmacology & Psychobiology Research Group, Department of Neuroscience, Universidad de Cádiz, Cádiz, 11003, Spain
- Instituto de Investigación e Innovación en Ciencias Biomédicas de Cádiz (INiBICA), Hospital Universitario Puerta del Mar, Cádiz, 11009, Spain
| | | | - Esther Berrocoso
- CIBER de Salud Mental (CIBERSAM), Madrid, 28029, Spain
- Neuropsychopharmacology & Psychobiology Research Group, Department of Neuroscience, Universidad de Cádiz, Cádiz, 11003, Spain
- Instituto de Investigación e Innovación en Ciencias Biomédicas de Cádiz (INiBICA), Hospital Universitario Puerta del Mar, Cádiz, 11009, Spain
| | - Juan C Leza
- CIBER de Salud Mental (CIBERSAM), Madrid, 28029, Spain
- Department of Pharmacology & Toxicology, School of Medicine, Universidad Complutense (UCM), IIS Imas12, IUIN, Madrid, 28040, Spain
| | - Manuel Desco
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, 28007, Spain.
- Department of Bioengineering, Universidad Carlos III de Madrid, Leganés (Madrid), 28911, Spain.
- CIBER de Salud Mental (CIBERSAM), Madrid, 28029, Spain.
- Advanced Imaging Unit, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, 28029, Spain.
| | - María Luisa Soto-Montenegro
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, 28007, Spain.
- CIBER de Salud Mental (CIBERSAM), Madrid, 28029, Spain.
- Grupo de Fisiopatología y Farmacología del Sistema Digestivo de la Universidad Rey Juan Carlos (NeuGut), Alcorcón (Madrid), 28922, Spain.
| |
Collapse
|
10
|
Fahrer J, Wittmann S, Wolf AC, Kostka T. Heme Oxygenase-1 and Its Role in Colorectal Cancer. Antioxidants (Basel) 2023; 12:1989. [PMID: 38001842 PMCID: PMC10669411 DOI: 10.3390/antiox12111989] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
Heme oxygenase-1 (HO-1) is an enzyme located at the endoplasmic reticulum, which is responsible for the degradation of cellular heme into ferrous iron, carbon monoxide and biliverdin-IXa. In addition to this main function, the enzyme is involved in many other homeostatic, toxic and cancer-related mechanisms. In this review, we first summarize the importance of HO-1 in physiology and pathophysiology with a focus on the digestive system. We then detail its structure and function, followed by a section on the regulatory mechanisms that control HO-1 expression and activity. Moreover, HO-2 as important further HO isoform is discussed, highlighting the similarities and differences with regard to HO-1. Subsequently, we describe the direct and indirect cytoprotective functions of HO-1 and its breakdown products carbon monoxide and biliverdin-IXa, but also highlight possible pro-inflammatory effects. Finally, we address the role of HO-1 in cancer with a particular focus on colorectal cancer. Here, relevant pathways and mechanisms are presented, through which HO-1 impacts tumor induction and tumor progression. These include oxidative stress and DNA damage, ferroptosis, cell cycle progression and apoptosis as well as migration, proliferation, and epithelial-mesenchymal transition.
Collapse
Affiliation(s)
- Jörg Fahrer
- Division of Food Chemistry and Toxicology, Department of Chemistry, RPTU Kaiserslautern-Landau, Erwin-Schrödinger Strasse 52, D-67663 Kaiserslautern, Germany; (S.W.); (A.-C.W.)
| | | | | | - Tina Kostka
- Division of Food Chemistry and Toxicology, Department of Chemistry, RPTU Kaiserslautern-Landau, Erwin-Schrödinger Strasse 52, D-67663 Kaiserslautern, Germany; (S.W.); (A.-C.W.)
| |
Collapse
|
11
|
Zhang A, Suzuki T, Adachi S, Yoshida E, Sakaguchi S, Yamamoto M. Nrf2 activation improves experimental rheumatoid arthritis. Free Radic Biol Med 2023; 207:279-295. [PMID: 37494986 DOI: 10.1016/j.freeradbiomed.2023.07.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/03/2023] [Accepted: 07/16/2023] [Indexed: 07/28/2023]
Abstract
Rheumatoid arthritis is a systemic autoimmune disease with pain and functional disorder of joints. Multiple strategies toward treatment of the rheumatoid arthritis are operating, while there are concerns of serious adverse effects of the therapeutic drugs. Here, we show that activation of Nrf2 (Nuclear factor erythroid 2-related factor 2) efficiently improves arthritis of SKG mice, which develop T cell-mediated autoimmune arthritis by zymosan A injection. We found that genetic Nrf2 activation by knockdown of Keap1 (Kelch-like ECH-associated protein 1), a negative regulator of Nrf2, repressed arthritis by inhibiting the expression of pro-inflammatory cytokines and inducing the expression of antioxidant enzymes in SKG mice. In addition, oral administration of CDDO-Im, a representative chemical inducer of Nrf2, had effects of both prevention and treatment toward arthritis of SKG mice in an Nrf2-dependent manner. We also found that Nrf2 activation through myeloid-cell lineage-specific Keap1 disruption did not achieve significant improvement in the arthritis of SKG mice. In contrast, expressions of pro-inflammatory cytokine genes were decreased, and those of antioxidant enzyme genes were increased in fibroblast-like synoviocytes (FLS) isolated from SKG mouse. Our results thus demonstrate that Nrf2 activation exerts marked anti-arthritis effects in the SKG experimental rheumatoid arthritis model mice, supporting the contention that the Nrf2 activation is a new therapeutic strategy for the rheumatoid arthritis.
Collapse
Affiliation(s)
- Anqi Zhang
- Departments of Biochemistry and Molecular Biology, Tohoku Medical-Megabank Organization, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8573, Japan; Departments of Medical Biochemistry, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8573, Japan
| | - Takafumi Suzuki
- Departments of Biochemistry and Molecular Biology, Tohoku Medical-Megabank Organization, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8573, Japan; Departments of Medical Biochemistry, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8573, Japan.
| | - Saki Adachi
- Departments of Medical Biochemistry, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8573, Japan
| | - Eiki Yoshida
- Departments of Medical Biochemistry, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8573, Japan
| | - Shimon Sakaguchi
- Experimental Immunology, Immunology Frontier Research Center (IFReC), Osaka University, Osaka 565-0871, Japan
| | - Masayuki Yamamoto
- Departments of Biochemistry and Molecular Biology, Tohoku Medical-Megabank Organization, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8573, Japan; Departments of Medical Biochemistry, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8573, Japan; The Advanced Research Center for Innovations in Next-Generation Medicine (INGEM), Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8573, Japan.
| |
Collapse
|
12
|
Suzuki T, Takahashi J, Yamamoto M. Molecular Basis of the KEAP1-NRF2 Signaling Pathway. Mol Cells 2023; 46:133-141. [PMID: 36994473 PMCID: PMC10070164 DOI: 10.14348/molcells.2023.0028] [Citation(s) in RCA: 82] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 02/26/2023] [Accepted: 03/04/2023] [Indexed: 03/31/2023] Open
Abstract
Transcription factor NRF2 (NF-E2-related factor 2) is a master regulator of cellular responses against environmental stresses. NRF2 induces expression of detoxification and antioxidant enzymes and suppresses inductions of pro-inflammatory cytokine genes. KEAP1 (Kelch-like ECH-associated protein 1) is an adaptor subunit of CULLIN 3 (CUL3)-based E3 ubiquitin ligase. KEAP1 regulates the activity of NRF2 and acts as a sensor for oxidative and electrophilic stresses. NRF2 has been found to be activated in many types of cancers with poor prognosis. Therapeutic strategies to control NRF2-overeactivated cancers have been considered not only by targeting cancer cells with NRF2 inhibitors or NRF2 synthetic lethal chemicals, but also by targeting host defense with NRF2 inducers. Understanding precise molecular mechanisms how the KEAP1-NRF2 system senses and regulates the cellular response is critical to overcome intractable NRF2-activated cancers.
Collapse
Affiliation(s)
- Takafumi Suzuki
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
- Tohoku Medical Megabank Organization, Tohoku University, Sendai 980-8573, Japan
| | - Jun Takahashi
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Masayuki Yamamoto
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
- Tohoku Medical Megabank Organization, Tohoku University, Sendai 980-8573, Japan
- The Advanced Research Center for Innovations in Next-Generation Medicine (INGEM), Tohoku University, Sendai 980-8573, Japan
| |
Collapse
|
13
|
Xie Y, Mei X, Shi W. Kaempferol promotes melanogenesis and reduces oxidative stress in PIG1 normal human skin melanocytes. J Cell Mol Med 2023; 27:982-990. [PMID: 36924030 PMCID: PMC10064034 DOI: 10.1111/jcmm.17711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 02/19/2023] [Accepted: 02/24/2023] [Indexed: 03/18/2023] Open
Abstract
Vitiligo is an autoimmune disease characterized by depigmentation. Kaempferol is a flavonoid compound with broad anti-inflammatory and antioxidant properties. The purpose of this study was to investigate the effect of kaempferol on melanogenesis in PIG1 normal human skin melanocytes and its response to oxidative stress. The effect of kaempferol on melanin synthesis in PIG1 normal human skin melanocytes was explored by measuring tyrosinase activity, melanin content, mRNA and protein expression of key enzymes and expression of related pathway proteins. The effects of kaempferol pretreatment on cell viability, apoptosis, ROS level and HO-1 protein level under H2 O2 stimulation were explored. When treated with kaempferol, the tyrosinase activity and melanin content of PIG1 cells increased, the mRNA and protein expressions of TYR, TRP1, TRP2 and MITF increased, and the phosphorylation level of ERK1/2 increased. Upon the stimulation of H2 O2 , kaempferol reduced the production of ROS, decreased apoptosis and increased the protein expression of HO-1 in PIG1 cells. In addition, kaempferol inhibited oxidative stress-induced melanin reduction and promoted melanin synthesis in PIG1 cells and protected against H2 O2 -induced oxidative stress damage.
Collapse
Affiliation(s)
- Yihui Xie
- Department of Dermatology, The Affiliated Hospital of Jiaxing University, The First Hospital of Jiaxing, Jiaxing, China
| | - Xingyu Mei
- Department of Dermatology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weimin Shi
- Department of Dermatology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
14
|
Caruso G, Privitera A, Saab MW, Musso N, Maugeri S, Fidilio A, Privitera AP, Pittalà A, Jolivet RB, Lanzanò L, Lazzarino G, Caraci F, Amorini AM. Characterization of Carnosine Effect on Human Microglial Cells under Basal Conditions. Biomedicines 2023; 11:biomedicines11020474. [PMID: 36831010 PMCID: PMC9953171 DOI: 10.3390/biomedicines11020474] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/28/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
The activity of microglia is fundamental for the regulation of numerous physiological processes including brain development, synaptic plasticity, and neurogenesis, and its deviation from homeostasis can lead to pathological conditions, including numerous neurodegenerative disorders. Carnosine is a naturally occurring molecule with well-characterized antioxidant and anti-inflammatory activities, able to modulate the response and polarization of immune cells and ameliorate their cellular energy metabolism. The better understanding of microglia characteristics under basal physiological conditions, as well as the possible modulation of the mechanisms related to its response to environmental challenges and/or pro-inflammatory/pro-oxidant stimuli, are of utmost importance for the development of therapeutic strategies. In the present study, we assessed the activity of carnosine on human HMC3 microglial cells, first investigating the effects of increasing concentrations of carnosine on cell viability. When used at a concentration of 20 mM, carnosine led to a decrease of cell viability, paralleled by gene expression increase and decrease, respectively, of interleukin 6 and heme oxygenase 1. When using the maximal non-toxic concentration (10 mM), carnosine decreased nitric oxide bioavailability, with no changes in the intracellular levels of superoxide ion. The characterization of energy metabolism of HMC3 microglial cells under basal conditions, never reported before, demonstrated that it is mainly based on mitochondrial oxidative metabolism, paralleled by a high rate of biosynthetic reactions. The exposure of HMC3 cells to carnosine seems to ameliorate microglia energy state, as indicated by the increase in the adenosine triphosphate/adenosine diphosphate (ATP/ADP) ratio and energy charge potential. The improvement of cell energy metabolism mediated by 10 mM carnosine could represent a useful protective weapon in the case of human microglia undergoing stressing conditions.
Collapse
Affiliation(s)
- Giuseppe Caruso
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy
- Unit of Neuropharmacology and Translational Neurosciences, Oasi Research Institute-IRCCS, 94018 Troina, Italy
- Correspondence: ; Tel.: +39-0957385036
| | - Anna Privitera
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Miriam Wissam Saab
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Nicolò Musso
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Salvatore Maugeri
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy
| | - Annamaria Fidilio
- Unit of Neuropharmacology and Translational Neurosciences, Oasi Research Institute-IRCCS, 94018 Troina, Italy
| | | | - Alessandra Pittalà
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Renaud Blaise Jolivet
- Maastricht Centre for Systems Biology (MaCSBio), Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Luca Lanzanò
- Department of Physics and Astronomy “Ettore Majorana”, University of Catania, 95123 Catania, Italy
| | - Giuseppe Lazzarino
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Filippo Caraci
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy
- Unit of Neuropharmacology and Translational Neurosciences, Oasi Research Institute-IRCCS, 94018 Troina, Italy
| | - Angela Maria Amorini
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy
| |
Collapse
|
15
|
Furuta A, Shima T, Yoshida-Kawaguchi M, Yamada K, Yasuda I, Tsuda S, Yamaki-Ushijima A, Yoneda S, Higashisaka K, Cheng SB, Matsumoto K, Tsutsumi Y, Sharma S, Saito S, Nakashima A. Chloroquine is a safe autophagy inhibitor for sustaining the expression of antioxidant enzymes in trophoblasts. J Reprod Immunol 2023; 155:103766. [PMID: 36470134 DOI: 10.1016/j.jri.2022.103766] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 10/19/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022]
Abstract
Inhibition of autophagy contributes to the pathophysiology of preeclampsia. Although chloroquine (CHQ) is an autophagy inhibitor, it can reduce the occurrence of preeclampsia in women with systemic lupus erythematosus. To clarify this important clinical question, this study aimed to address the safety of CHQ in trophoblast cells from the viewpoint of homeostasis, in which the anti-oxidative stress (OS) response and autophagy are involved. We used Western blotting to evaluate the protein levels in the trophoblast cells. The expression levels of heme oxygenase-1 (HO-1), an anti-OS enzyme, mediate resistance to OS induced by hydrogen peroxide (H2O2) in trophoblast cell lines. Among the autophagy modulators, bafilomycin A1 (BAF), an autophagy inhibitor, but not autophagy activators, suppressed HO-1 expression in BeWo cells; CHQ did not suppress HO-1 expression in BeWo cells. To clarify the role of autophagy in HO-1 induction, we observed no difference in HO-1 induction by H2O2 between autophagy-normal and autophagy-deficient cells. As for the mechanism of HO-1 induction by OS, BAF suppressed HO-1 induction by downregulating the expression of neighbor of BRCA1 gene 1 (NBR1) in the selective p62-NBR1-nuclear factor erythroid 2-related factor 2 (Nrf2) autophagy pathway. CHQ did not inhibit HO-1 expression by sustaining NBR1 expression in human villous tissues compared to BAF treatment. In conclusion, CHQ is a safer medicine than BAF for sustaining NBR1, which resist against OS in trophoblasts by connecting selective autophagy and the anti-OS response.
Collapse
Affiliation(s)
- Atsushi Furuta
- Department of Obstetrics and Gynecology, Toyama Autophagy Team in Gynecology and Obstetrics, University of Toyama, 2630 Sugitani, Toyama 9300194, Japan
| | - Tomoko Shima
- Department of Obstetrics and Gynecology, Toyama Autophagy Team in Gynecology and Obstetrics, University of Toyama, 2630 Sugitani, Toyama 9300194, Japan
| | - Mihoko Yoshida-Kawaguchi
- Department of Obstetrics and Gynecology, Toyama Autophagy Team in Gynecology and Obstetrics, University of Toyama, 2630 Sugitani, Toyama 9300194, Japan
| | - Kiyotaka Yamada
- Department of Obstetrics and Gynecology, Toyama Autophagy Team in Gynecology and Obstetrics, University of Toyama, 2630 Sugitani, Toyama 9300194, Japan
| | - Ippei Yasuda
- Department of Obstetrics and Gynecology, Toyama Autophagy Team in Gynecology and Obstetrics, University of Toyama, 2630 Sugitani, Toyama 9300194, Japan
| | - Sayaka Tsuda
- Department of Obstetrics and Gynecology, Toyama Autophagy Team in Gynecology and Obstetrics, University of Toyama, 2630 Sugitani, Toyama 9300194, Japan
| | - Akemi Yamaki-Ushijima
- Department of Obstetrics and Gynecology, Toyama Autophagy Team in Gynecology and Obstetrics, University of Toyama, 2630 Sugitani, Toyama 9300194, Japan
| | - Satoshi Yoneda
- Department of Obstetrics and Gynecology, Toyama Autophagy Team in Gynecology and Obstetrics, University of Toyama, 2630 Sugitani, Toyama 9300194, Japan
| | - Kazuma Higashisaka
- Laboratory of Toxicology and Safety Science, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Shi-Bin Cheng
- Departments of Pediatrics, Women and Infants Hospital of Rhode Island, Warren Alpert Medical School of Brown University, Providence, RI 02905, USA
| | - Kenji Matsumoto
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Yasuo Tsutsumi
- Laboratory of Toxicology and Safety Science, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan; The Center for Advanced Medical Engineering and Informatics, Osaka University, 1-6, Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Surendra Sharma
- Departments of Pediatrics, Women and Infants Hospital of Rhode Island, Warren Alpert Medical School of Brown University, Providence, RI 02905, USA
| | - Shigeru Saito
- University of Toyama, 3190 Gofuku, Toyama 9308555, Japan
| | - Akitoshi Nakashima
- Department of Obstetrics and Gynecology, Toyama Autophagy Team in Gynecology and Obstetrics, University of Toyama, 2630 Sugitani, Toyama 9300194, Japan.
| |
Collapse
|
16
|
Li Q, Fadoul G, Ikonomovic M, Yang T, Zhang F. Sulforaphane promotes white matter plasticity and improves long-term neurological outcomes after ischemic stroke via the Nrf2 pathway. Free Radic Biol Med 2022; 193:292-303. [PMID: 36244590 DOI: 10.1016/j.freeradbiomed.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/29/2022] [Accepted: 10/03/2022] [Indexed: 01/11/2023]
Abstract
AIMS Post-stroke cognitive impairment (PSCI) is a common condition following ischemic stroke. Neuronal loss and white matter injury are among the most common neuropathological characteristics in patients with PSCI. The present study tested our hypothesis that activation of the transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) reduces neuronal loss, white matter injury, and neurobehavioral deficits in a mouse model of PSCI and investigated the underlying protective mechanisms. METHODS PSCI was modeled in wildtype (WT) and Nrf2 knockout (KO), male and female mice, by distal middle cerebral artery occlusion (dMCAO), with intraperitoneal injections of the Nrf2 activator sulforaphane (Sfn) or vehicle. Long-term (35 days) sensorimotor and cognitive performances, white matter integrity, oligodendrogenesis by BrdU incorporation, and neurite sprouting using anterograde tract-tracing were evaluated up to 35 days after dMCAO. Neuronal apoptosis was evaluated three days after dMCAO. In vitro, primary neuronal cultures were applied to validate the in vivo findings. RESULTS Compared to vehicle-injected controls, Sfn treatment improved long-term sensorimotor and cognitive deficits after dMCAO in WT male and female mice. Sfn-treated WT mice also had less myelin loss/axonal injury and showed evidence of Nrf2 activation. Sfn treatment failed to provide the same level of protection in Nrf2 KO mice. Mechanistically, the ability of Sfn to reduce neuronal death after ischemia in vitro and in vivo, augment axonal sprouting and enhance oligodendrogenesis after dMCAO was dependent on Nrf2 activation. CONCLUSION Our results support that Nrf2 is critical for Sfn-afforded neuroprotection after ischemic stroke. Thus, targeting Nrf2 may be a promising strategy for the treatment of PSCI.
Collapse
Affiliation(s)
- Qianqian Li
- Department of Neurology, Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh, Pittsburgh, PA, USA
| | - George Fadoul
- Department of Neurology, Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Milos Ikonomovic
- Departments of Neurology and Psychiatry, University of Pittsburgh, USA; Geriatric Research Education and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh, PA, USA
| | - Tuo Yang
- Department of Neurology, Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Feng Zhang
- Department of Neurology, Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
17
|
Ferroptosis, a Rising Force against Renal Fibrosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7686956. [PMID: 36275899 PMCID: PMC9581688 DOI: 10.1155/2022/7686956] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/11/2022] [Indexed: 11/18/2022]
Abstract
Ferroptosis is a type of programmed cell death characterized by iron overload, oxidative stress, imbalance in lipid repair, and mitochondria-specific pathological manifestations. Growing number of molecular mechanisms and signaling pathways have been found to be involved in ferroptosis progression, including iron metabolism, amino acid metabolism, lipid metabolism, and energy metabolism. It is worth noting that ferroptosis is involved in the progression of fibrotic diseases such as liver cirrhosis, cardiomyopathy, and idiopathic pulmonary fibrosis, and inhibition of ferroptosis has acquired beneficial outcomes in rodent models, while studies on ferroptosis and renal fibrosis remains limited. Recent studies have revealed that targeting ferroptosis can effectively mitigate chronic kidney injury and renal fibrosis. Moreover, myofibroblasts suffer from ferroptosis during fiber and extracellular matrix deposition in the fibrotic cascade reaction and pharmacological modulation of ferroptosis shows great therapeutic effect on renal fibrosis. Here, we summarize the latest molecular mechanisms of ferroptosis from high-quality studies and review its therapeutic potential in renal fibrosis.
Collapse
|
18
|
Hofmann A, Hamann B, Klimova A, Müglich M, Wolk S, Busch A, Frank F, Sabarstinski P, Kapalla M, Nees JA, Brunssen C, Poitz DM, Morawietz H, Reeps C. Pharmacotherapies and Aortic Heme Oxygenase-1 Expression in Patients with Abdominal Aortic Aneurysm. Antioxidants (Basel) 2022; 11:antiox11091753. [PMID: 36139827 PMCID: PMC9495607 DOI: 10.3390/antiox11091753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/29/2022] [Accepted: 08/31/2022] [Indexed: 11/25/2022] Open
Abstract
Background: Treatment of cardiovascular risk factors slows the progression of small abdominal aortic aneurysms (AAA). Heme oxygenase-1 (HO-1) is a stress- and hemin-induced enzyme providing cytoprotection against oxidative stress when overexpressed. However, nothing is known about the effects of cardiometabolic standard therapies on HO-1 expression in aortic walls in patients with end-stage AAA. Methods: The effects of statins, angiotensin-converting enzyme (ACE) inhibitors, angiotensin II receptor blockers (ARBs), calcium channel blockers (CCBs), beta-blockers, diuretics, acetylsalicylic acid (ASA), and therapeutic anticoagulation on HO-1 mRNA and protein expressions were analyzed in AAA patients using multivariate logistic regression analysis and comparison of monotherapy. Results: Analysis of monotherapy revealed that HO-1 mRNA and protein expressions were higher in patients on diuretics and lower in patients on statin therapy. Tests on combinations of antihypertensive medications demonstrated that ACE inhibitors and diuretics, ARBs and diuretics, and beta-blockers and diuretics were associated with increase in HO-1 mRNA expression. ASA and therapeutic anticoagulation were not linked to HO-1 expression. Conclusion: Diuretics showed the strongest association with HO-1 expression, persisting even in combination with other antihypertensive medications. Hence, changes in aortic HO-1 expression in response to different medical therapies and their effects on vessel wall degeneration should be analyzed in future studies.
Collapse
Affiliation(s)
- Anja Hofmann
- Division of Vascular and Endovascular Surgery, Department of Visceral, Thoracic and Vascular Surgery, University Hospital and Faculty of Medicine, Technische Universität Dresden, Fetscherstr. 74, D-01307 Dresden, Germany
- Correspondence: ; Tel.: +49-351-458-16607
| | - Bianca Hamann
- Division of Vascular and Endovascular Surgery, Department of Visceral, Thoracic and Vascular Surgery, University Hospital and Faculty of Medicine, Technische Universität Dresden, Fetscherstr. 74, D-01307 Dresden, Germany
| | - Anna Klimova
- National Center for Tumor Diseases, Partner Site Dresden, Institute for Medical Informatics and Biometry, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, D-01307 Dresden, Germany
| | - Margarete Müglich
- Division of Vascular and Endovascular Surgery, Department of Visceral, Thoracic and Vascular Surgery, University Hospital and Faculty of Medicine, Technische Universität Dresden, Fetscherstr. 74, D-01307 Dresden, Germany
| | - Steffen Wolk
- Division of Vascular and Endovascular Surgery, Department of Visceral, Thoracic and Vascular Surgery, University Hospital and Faculty of Medicine, Technische Universität Dresden, Fetscherstr. 74, D-01307 Dresden, Germany
| | - Albert Busch
- Division of Vascular and Endovascular Surgery, Department of Visceral, Thoracic and Vascular Surgery, University Hospital and Faculty of Medicine, Technische Universität Dresden, Fetscherstr. 74, D-01307 Dresden, Germany
| | - Frieda Frank
- Division of Vascular and Endovascular Surgery, Department of Visceral, Thoracic and Vascular Surgery, University Hospital and Faculty of Medicine, Technische Universität Dresden, Fetscherstr. 74, D-01307 Dresden, Germany
| | - Pamela Sabarstinski
- Division of Vascular and Endovascular Surgery, Department of Visceral, Thoracic and Vascular Surgery, University Hospital and Faculty of Medicine, Technische Universität Dresden, Fetscherstr. 74, D-01307 Dresden, Germany
| | - Marvin Kapalla
- Division of Vascular and Endovascular Surgery, Department of Visceral, Thoracic and Vascular Surgery, University Hospital and Faculty of Medicine, Technische Universität Dresden, Fetscherstr. 74, D-01307 Dresden, Germany
| | - Josef Albin Nees
- Clinic for Internal Medicine, Asklepios-ASB Klinik Radeberg, D-01454 Radeberg, Germany
| | - Coy Brunssen
- Division of Vascular Endothelium and Microcirculation, Department of Medicine III, University Hospital Carl Gustav Carus Dresden, Technische Universität Dresden, D-01307 Dresden, Germany
| | - David M. Poitz
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine, Technische Universität Dresden, D-01307 Dresden, Germany
| | - Henning Morawietz
- Division of Vascular Endothelium and Microcirculation, Department of Medicine III, University Hospital Carl Gustav Carus Dresden, Technische Universität Dresden, D-01307 Dresden, Germany
| | - Christian Reeps
- Division of Vascular and Endovascular Surgery, Department of Visceral, Thoracic and Vascular Surgery, University Hospital and Faculty of Medicine, Technische Universität Dresden, Fetscherstr. 74, D-01307 Dresden, Germany
| |
Collapse
|