1
|
Milan KL, Jayasuriya R, Harithpriya K, Anuradha M, Sarada DVL, Siti Rahayu N, Ramkumar KM. Vitamin D resistant genes - promising therapeutic targets of chronic diseases. Food Funct 2022; 13:7984-7998. [PMID: 35856462 DOI: 10.1039/d2fo00822j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Vitamin D is an essential vitamin indispensable for calcium and phosphate metabolism, and its deficiency has been implicated in several extra-skeletal pathologies, including cancer and chronic kidney disease. Synthesized endogenously in the layers of the skin by the action of UV-B radiation, the vitamin maintains the integrity of the bones, teeth, and muscles and is involved in cell proliferation, differentiation, and immunity. The deficiency of Vit-D is increasing at an alarming rate, with nearly 32% of children and adults being either deficient or having insufficient levels. This has been attributed to Vit-D resistant genes that cause a reduction in circulatory Vit-D levels through a set of signaling pathways. CYP24A1, SMRT, and SNAIL are three genes responsible for Vit-D resistance as their activity either lowers the circulatory levels of Vit-D or reduces its availability in target tissues. The hydroxylase CYP24A1 inactivates analogs and prohormonal and/or hormonal forms of calcitriol. Elevation of the expression of CYP24A1 is the major cause of exacerbation of several diseases. CYP24A1 is rate-limiting, and its induction has been correlated with increased prognosis of diseases, while loss of function mutations cause hypersensitivity to Vit-D. The silencing mediator of retinoic acid and thyroid hormone receptor (SMRT) and its corepressor are involved in the transcriptional repression of VDR-target genes. SNAIL1 (SNAIL), SNAIL2 (Slug), and SNAIL3 (Smuc) are involved in transcriptional repression and binding to histone deacetylases and methyltransferases in addition to recruiting polycomb repressive complexes to the target gene promoters. An inverse relationship between the levels of calcitriol and the epithelial-to-mesenchymal transition is reported. Studies have demonstrated a strong association between Vit-D deficiency and chronic diseases, including cardiovascular diseases, diabetes, cancers, autoimmune diseases, infectious diseases, etc. Vit-D resistant genes associated with the aforementioned chronic diseases could serve as potential therapeutic targets. This review focuses on the basic structures and mechanisms of the repression of Vit-D regulated genes and highlights the role of Vit-D resistant genes in chronic diseases.
Collapse
Affiliation(s)
- Kunnath Lakshmanan Milan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India.
| | - Ravichandran Jayasuriya
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India.
| | - Kannan Harithpriya
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India.
| | - Murugesan Anuradha
- Department of Obstetrics & Gynaecology, SRM Medical College Hospital and Research Centre, Kattankulathur 603 203, Tamil Nadu, India
| | - Dronamraju V L Sarada
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India.
| | - Nadhiroh Siti Rahayu
- Department of Nutrition, Faculty of Public Health, Universitas Airlangga, Indonesia
| | - Kunka Mohanram Ramkumar
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India.
| |
Collapse
|
2
|
Halada S, Casado-Medrano V, Baran JA, Lee J, Chinmay P, Bauer AJ, Franco AT. Hormonal Crosstalk Between Thyroid and Breast Cancer. Endocrinology 2022; 163:6588704. [PMID: 35587175 PMCID: PMC9653009 DOI: 10.1210/endocr/bqac075] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Indexed: 12/09/2022]
Abstract
Differentiated thyroid cancer and breast cancer account for a significant portion of endocrine-related malignancies and predominately affect women. As hormonally responsive tissues, the breast and thyroid share endocrine signaling. Breast cells are responsive to thyroid hormone signaling and are affected by altered thyroid hormone levels. Thyroid cells are responsive to sex hormones, particularly estrogen, and undergo protumorigenic processes upon estrogen stimulation. Thyroid and sex hormones also display significant transcriptional crosstalk that influences oncogenesis and treatment sensitivity. Obesity-related adipocyte alterations-adipocyte estrogen production, inflammation, feeding hormone dysregulation, and metabolic syndromes-promote hormonal alterations in breast and thyroid tissues. Environmental toxicants disrupt endocrine systems, including breast and thyroid homeostasis, and influence pathologic processes in both organs through hormone mimetic action. In this brief review, we discuss the hormonal connections between the breast and thyroid and perspectives on hormonal therapies for breast and thyroid cancer. Future research efforts should acknowledge and further explore the hormonal crosstalk of these tissues in an effort to further understand the prevalence of thyroid and breast cancer in women and to identify potential therapeutic options.
Collapse
Affiliation(s)
- Stephen Halada
- Division of Endocrinology and Diabetes, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Victoria Casado-Medrano
- Division of Endocrinology and Diabetes, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Julia A Baran
- Division of Endocrinology and Diabetes, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Joshua Lee
- Division of Endocrinology and Diabetes, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Poojita Chinmay
- Division of Endocrinology and Diabetes, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Andrew J Bauer
- Division of Endocrinology and Diabetes, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Aime T Franco
- Correspondence: Aime T. Franco, Ph.D., Pediatric Thyroid Center Translational Laboratory, The University of Pennsylvania and Children’s Hospital of Philadelphia, 3615 Civic Center Blvd, Philadelphia, PA 19104, USA.
| |
Collapse
|
3
|
Reduced NCOR2 expression accelerates androgen deprivation therapy failure in prostate cancer. Cell Rep 2021; 37:110109. [PMID: 34910907 PMCID: PMC8889623 DOI: 10.1016/j.celrep.2021.110109] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 09/21/2021] [Accepted: 11/17/2021] [Indexed: 01/27/2023] Open
Abstract
This study addresses the roles of nuclear receptor corepressor 2 (NCOR2) in prostate cancer (PC) progression in response to androgen deprivation therapy (ADT). Reduced NCOR2 expression significantly associates with shorter disease-free survival in patients with PC receiving adjuvant ADT. Utilizing the CWR22 xenograft model, we demonstrate that stably reduced NCOR2 expression accelerates disease recurrence following ADT, associates with gene expression patterns that include neuroendocrine features, and induces DNA hypermethylation. Stably reduced NCOR2 expression in isogenic LNCaP (androgen-sensitive) and LNCaP-C4–2 (androgen-independent) cells revealed that NCOR2 reduction phenocopies the impact of androgen treatment and induces global DNA hypermethylation patterns. NCOR2 genomic binding is greatest in LNCaP-C4–2 cells and most clearly associates with forkhead box (FOX) transcription factor FOXA1 binding. NCOR2 binding significantly associates with transcriptional regulation most when in active enhancer regions. These studies reveal robust roles for NCOR2 in regulating the PC transcriptome and epigenome and underscore recent mutational studies linking NCOR2 loss of function to PC disease progression. Long et al. show that reduced levels of NCOR2 lead to accelerated prostate cancer recurrence during androgen withdrawal in a patient-derived xenograft model. NCOR2 reduction is characterized by incomplete response to androgen withdrawal, and recurrent tumors show increased neuroendocrine traits. These phenotypic changes are associated with hypermethylated enhancers.
Collapse
|
4
|
Tsoi H, Man EPS, Chau KM, Khoo US. Targeting the IL-6/STAT3 Signalling Cascade to Reverse Tamoxifen Resistance in Estrogen Receptor Positive Breast Cancer. Cancers (Basel) 2021; 13:cancers13071511. [PMID: 33806019 PMCID: PMC8036560 DOI: 10.3390/cancers13071511] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/17/2021] [Accepted: 03/22/2021] [Indexed: 12/01/2022] Open
Abstract
Simple Summary This study identifies the molecular mechanisms through which BQ323636.1 can enhance IL-6 and IL-6R expression, which leads to the activation of STAT3 and the development of tamoxifen resistance in ER+ breast cancer. We demonstrated a statistically significant association of IL-6R with tamoxifen resistance; patients with high IL-6R expression had poorer survival outcome. In vitro and in vivo studies confirmed that targeting IL-6R with Tocilizumab reduced tamoxifen resistance, providing the basis for potential use for disease management Abstract Breast cancer is the most common female cancer. About 70% of breast cancer patients are estrogen receptor α (ERα) positive (ER+) with tamoxifen being the most commonly used anti-endocrine therapy. However, up to 50% of patients who receive tamoxifen suffer recurrence. We previously identified BQ323636.1 (BQ), a novel splice variant of NCOR2, can robustly predict tamoxifen resistance in ER+ primary breast cancer. Here we show that BQ can enhance IL-6/STAT3 signalling. We demonstrated that through interfering with NCOR2 suppressive activity, BQ favours the binding of ER to IL-6 promoter and the binding of NF-ĸB to IL-6 receptor (IL-6R) promoter, leading to the up-regulation of both IL-6 and IL-6R and thus the activation of STAT3. Knockdown of IL-6R could compromise tamoxifen resistance mediated by BQ. Furthermore, Tocilizumab (TCZ), an antibody that binds to IL-6R, could effectively reverse tamoxifen resistance both in vitro and in vivo. Analysis of clinical breast cancer samples confirmed that IL-6R expression was significantly associated with BQ expression and tamoxifen resistance in primary breast cancer, with high IL-6R expression correlating with poorer survival. Multivariate Cox-regression analysis confirmed that high IL-6R expression remained significantly associated with poor overall as well as disease-specific survival in ER+ breast cancer.
Collapse
|
5
|
HOS15 is a transcriptional corepressor of NPR1-mediated gene activation of plant immunity. Proc Natl Acad Sci U S A 2020; 117:30805-30815. [PMID: 33199617 PMCID: PMC7720166 DOI: 10.1073/pnas.2016049117] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Immune responses protect organisms against biotic challenges but can also produce deleterious effects, such as inflammation and necrosis. This growth-defense trade-off necessitates fine control of immune responses, including the activation of defense gene expression. The transcriptional coactivator NPR1 is a key regulatory hub of immune activation in plant cells. Surprisingly, full activation of NPR1-activated defense genes requires proteasome-mediated degradation of NPR1 induced by a CUL3-based E3 ubiquitin ligase complex. Our work demonstrates that HOS15 is the specificity determinant of a CUL1-based E3 ubiquitin ligase complex that limits defense gene expression by targeting NPR1 for proteasome-mediated degradation. Thus, distinct ubiquitin-based degradation pathways coordinately modulate the timing and amplitude of transcriptional outputs during plant defense. Transcriptional regulation is a complex and pivotal process in living cells. HOS15 is a transcriptional corepressor. Although transcriptional repressors generally have been associated with inactive genes, increasing evidence indicates that, through poorly understood mechanisms, transcriptional corepressors also associate with actively transcribed genes. Here, we show that HOS15 is the substrate receptor for an SCF/CUL1 E3 ubiquitin ligase complex (SCFHOS15) that negatively regulates plant immunity by destabilizing transcriptional activation complexes containing NPR1 and associated transcriptional activators. In unchallenged conditions, HOS15 continuously eliminates NPR1 to prevent inappropriate defense gene expression. Upon defense activation, HOS15 preferentially associates with phosphorylated NPR1 to stimulate rapid degradation of transcriptionally active NPR1 and thus limit the extent of defense gene expression. Our findings indicate that HOS15-mediated ubiquitination and elimination of NPR1 produce effects contrary to those of CUL3-containing ubiquitin ligase that coactivate defense gene expression. Thus, HOS15 plays a key role in the dynamic regulation of pre- and postactivation host defense.
Collapse
|
6
|
Hewitt SC, Grimm SA, Wu SP, DeMayo FJ, Korach KS. Estrogen receptor α (ERα)-binding super-enhancers drive key mediators that control uterine estrogen responses in mice. J Biol Chem 2020; 295:8387-8400. [PMID: 32354741 DOI: 10.1074/jbc.ra120.013666] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/27/2020] [Indexed: 12/13/2022] Open
Abstract
Estrogen receptor α (ERα) modulates gene expression by interacting with chromatin regions that are frequently distal from the promoters of estrogen-regulated genes. Active chromatin-enriched "super-enhancer" (SE) regions, mainly observed in in vitro culture systems, often control production of key cell type-determining transcription factors. Here, we defined super-enhancers that bind to ERα in vivo within hormone-responsive uterine tissue in mice. We found that SEs are already formed prior to estrogen exposure at the onset of puberty. The genes at SEs encoded critical developmental factors, including retinoic acid receptor α (RARA) and homeobox D (HOXD). Using high-throughput chromosome conformation capture (Hi-C) along with DNA sequence analysis, we demonstrate that most SEs are located at a chromatin loop end and that most uterine genes in loop ends associated with these SEs are regulated by estrogen. Although the SEs were formed before puberty, SE-associated genes acquired optimal ERα-dependent expression after reproductive maturity, indicating that pubertal processes that occur after SE assembly and ERα binding are needed for gene responses. Genes associated with these SEs affected key estrogen-mediated uterine functions, including transforming growth factor β (TGFβ) and LIF interleukin-6 family cytokine (LIF) signaling pathways. To the best of our knowledge, this is the first identification of SE interactions that underlie hormonal regulation of genes in uterine tissue and optimal development of estrogen responses in this tissue.
Collapse
Affiliation(s)
- Sylvia C Hewitt
- Reproductive and Developmental Biology Laboratory, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - Sara A Grimm
- Integrative Bioinformatics Support Group, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - San-Pin Wu
- Reproductive and Developmental Biology Laboratory, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - Francesco J DeMayo
- Reproductive and Developmental Biology Laboratory, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - Kenneth S Korach
- Reproductive and Developmental Biology Laboratory, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina, USA
| |
Collapse
|
7
|
Ji H, Yi Q, Chen L, Wong L, Liu Y, Xu G, Zhao J, Huang T, Li B, Yang Y, Li W, Han L, Duan S. Circulating miR-3197 and miR-2116-5p as novel biomarkers for diabetic retinopathy. Clin Chim Acta 2019; 501:147-153. [PMID: 31678272 DOI: 10.1016/j.cca.2019.10.036] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 10/21/2019] [Accepted: 10/24/2019] [Indexed: 12/13/2022]
Abstract
Diabetic retinopathy (DR) is the leading cause of vision loss among older adults. The goal of this case-control study was to identify circulating miRNAs for the diagnosis of DR. The miRNeasy Serum/Plasma Kit was used to extract serum miRNAs. The μParaflo™ MicroRNA microarray was used to detect the expression levels of the miRNAs. The miRWalk algorithm was applied to predict the target genes of the miRNAs, which were further confirmed by the dual luciferase reporter gene system in HEK293T cells. A microarray was performed between 5 DR cases and 5 age-, sex-, body mass index-, and duration of diabetes-matched type 2 diabetic (T2DM) controls. The quantitative reverse transcription polymerase chain reaction technique was used to validate the differentially expressed circulating miRNAs in 45 DR cases and 45 well-matched controls. Receiver operating characteristic (ROC) curve analysis was used to evaluate the performance of the circulating miRNAs as diagnostic biomarkers for DR. Our microarray analysis screened out miR-2116-5p and miR-3197 as significantly up-regulated in DR cases compared with the controls. Furthermore, two miRNAs were validated in the 45 DR cases and 45 controls. The ROC analysis suggested that both miR-3197 and miR-2116-5p distinguished DR cases from controls. An additional dual-luciferase reporter gene assay confirmed that notch homolog 2 (NOTCH2) was the target gene of miR-2116-5p. Both miR-3197 and miR-2116-5p were identified as promising diagnostic biomarkers for DR. Future research is still needed to explore the molecular mechanisms of miR-3197 and miR-2116-5p in the pathogenesis of DR.
Collapse
Affiliation(s)
- Huihui Ji
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang, China; Departmant of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Quanyong Yi
- Ningbo Eye Hospital, Minan Road 855, Ningbo, Zhejiang, China
| | - Lishuang Chen
- Ningbo Eye Hospital, Minan Road 855, Ningbo, Zhejiang, China
| | - Liping Wong
- Department of Social and Preventive Medicine, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Yanfen Liu
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Guodong Xu
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Jun Zhao
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Tianyi Huang
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Bin Li
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Yong Yang
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Wenxia Li
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Liyuan Han
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang, China.
| | - Shiwei Duan
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang, China.
| |
Collapse
|
8
|
Abstract
The small ubiquitin-related modification molecule (SUMO), one of the post-translational modification molecules, is involved in a variety of cellular functions where it regulates protein activity and stability, transcription, and cell cycling. Modulation of protein SUMOylation or deSUMOylation modification has been associated with regulation of carcinogenesis in breast cancer. In the dynamic processes of SUMOylation and deSUMOylation in a variety of cancers, SUMO proteases (SENPs), reverse SUMOylation by isopeptidase activity and SENPs are mostly elevated, and are related to poor patient prognosis. Although underlying mechanisms have been suggested for how SENPs participate in breast cancer tumorigenesis, such as through regulation of target protein transactivation, cancer cell survival, cell cycle, or other post-translational modification-related machinery recruitment, the effect of SENP isoform-specific inhibitors on the progression of breast cancer have not been well evaluated. This review will introduce the functions of SENP1 and SENP2 and the underlying signaling pathways in breast cancer for use in discovery of new biomarkers for diagnosis or therapeutic targets for treatment. [BMB Reports 2019; 52(2): 113-118].
Collapse
Affiliation(s)
- Kyung-Sun Heo
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, Daejeon 34134, Korea
| |
Collapse
|
9
|
Meng D, Lei H, Zheng X, Han Y, Sun R, Zhao D, Liu R. A temperature-sensitive phase-change hydrogel of tamoxifen achieves the long-acting antitumor activation on breast cancer cells. Onco Targets Ther 2019; 12:3919-3931. [PMID: 31213826 PMCID: PMC6538837 DOI: 10.2147/ott.s201421] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 04/16/2019] [Indexed: 12/24/2022] Open
Abstract
Background: Breast cancer is one of the foremost threats to female health nowadays. Tamoxifen, an antagonist of estrogen receptor-α (ERα), is the first choice for endocrine-dependent breast cancer (ERα-positive breast cancer) treatment. However, ERα has an important function in the normal physical regulation of estrogen, and current oral administration of tamoxifen has potential side effects on normal endocrine secretion. In the present work, we aim to develop novel approaches to increase the antitumor effect of tamoxifen on breast cancer cells and decrease the potential side effects in the human body during treatment. Methods: A temperature-sensitive phase-change hydrogel for tamoxifen (Tam-Gel) was generated. After establishing subcutaneous tumors formed by MCF-7, an ERα-positive breast cancer cell line, in nude mice, an intratumoral injection of Tam-Gel was performed to examine whether Tam-Gel facilitated the slow-release or antitumor effect of tamoxifen. A metastatic breast cancer model was established using the intrahepatic growth of MCF-7 cells in immunodeficient rats. Results: Tam-Gel can transform from liquid to hydrogel at room temperature. An intratumoral injection of Tam-Gel facilitated the slow-release or antitumor effect of tamoxifen. Once Tam-Gel, but not Tam-Sol, was administered by intratumoral injection, it significantly decreased the uptake of radionuclide probes (18F-fluoroestradiol or 18F-fluorodeoxyglucose) by cells in rats' livers and the intrahepatic growth of MCF-7 cells in rats' livers. Conclusion: A novel slow-release system was successfully prepared to facilitate the long-term release of tamoxifen in breast cancer tissues, and achieved an antitumor effect in the long term.
Collapse
Affiliation(s)
- Du Meng
- Department of Radio Oncology, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi Province, 710061, People's Republic of China
| | - Hongwei Lei
- Department of Radio Oncology, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, 116027, People's Republic of China
| | - Xiaoqiang Zheng
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi Province, 710061, People's Republic of China
| | - Yaxuan Han
- Department of Oncology, The Xi'an Chest Hospital, Xi'an, Shaanxi Province, 710000, People's Republic of China
| | - Ronggang Sun
- Department of Radio Oncology, The People's Hospital of YangZhong City, YangZhong, Jiangsu Province, 212200, People's Republic of China
| | - Dongli Zhao
- Department of Radio Oncology, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi Province, 710061, People's Republic of China
| | - Rui Liu
- Department of Radio Oncology, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi Province, 710061, People's Republic of China
| |
Collapse
|
10
|
Sharma N, Pollina EA, Nagy MA, Yap EL, DiBiase FA, Hrvatin S, Hu L, Lin C, Greenberg ME. ARNT2 Tunes Activity-Dependent Gene Expression through NCoR2-Mediated Repression and NPAS4-Mediated Activation. Neuron 2019; 102:390-406.e9. [PMID: 30846309 DOI: 10.1016/j.neuron.2019.02.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 11/20/2018] [Accepted: 02/04/2019] [Indexed: 12/22/2022]
Abstract
Neuronal activity-dependent transcription is tuned to ensure precise gene induction during periods of heightened synaptic activity, allowing for appropriate responses of activated neurons within neural circuits. The consequences of aberrant induction of activity-dependent genes on neuronal physiology are not yet clear. Here, we demonstrate that, in the absence of synaptic excitation, the basic-helix-loop-helix (bHLH)-PAS family transcription factor ARNT2 recruits the NCoR2 co-repressor complex to suppress neuronal activity-dependent regulatory elements and maintain low basal levels of inducible genes. This restricts inhibition of excitatory neurons, maintaining them in a state that is receptive to future sensory stimuli. By contrast, in response to heightened neuronal activity, ARNT2 recruits the neuronal-specific bHLH-PAS factor NPAS4 to activity-dependent regulatory elements to induce transcription and thereby increase somatic inhibitory input. Thus, the interplay of bHLH-PAS complexes at activity-dependent regulatory elements maintains temporal control of activity-dependent gene expression and scales somatic inhibition with circuit activity.
Collapse
Affiliation(s)
- Nikhil Sharma
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | | | - M Aurel Nagy
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Ee-Lynn Yap
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Florence A DiBiase
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Sinisa Hrvatin
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Linda Hu
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Cindy Lin
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
11
|
Siersbæk R, Madsen JGS, Javierre BM, Nielsen R, Bagge EK, Cairns J, Wingett SW, Traynor S, Spivakov M, Fraser P, Mandrup S. Dynamic Rewiring of Promoter-Anchored Chromatin Loops during Adipocyte Differentiation. Mol Cell 2017; 66:420-435.e5. [PMID: 28475875 DOI: 10.1016/j.molcel.2017.04.010] [Citation(s) in RCA: 159] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 03/06/2017] [Accepted: 04/11/2017] [Indexed: 01/08/2023]
Abstract
Interactions between transcriptional promoters and their distal regulatory elements play an important role in transcriptional regulation; however, the extent to which these interactions are subject to rapid modulations in response to signals is unknown. Here, we use promoter capture Hi-C to demonstrate a rapid reorganization of promoter-anchored chromatin loops within 4 hr after inducing differentiation of 3T3-L1 preadipocytes. The establishment of new promoter-enhancer loops is tightly coupled to activation of poised (histone H3 lysine 4 mono- and dimethylated) enhancers, as evidenced by the acquisition of histone H3 lysine 27 acetylation and the binding of MED1, SMC1, and P300 proteins to these regions, as well as to activation of target genes. Intriguingly, formation of loops connecting activated enhancers and promoters is also associated with extensive recruitment of corepressors such as NCoR and HDACs, indicating that this class of coregulators may play a previously unrecognized role during enhancer activation.
Collapse
Affiliation(s)
- Rasmus Siersbæk
- University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | | | | | - Ronni Nielsen
- University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | | | - Jonathan Cairns
- Nuclear Dynamics Programme, Babraham Institute, Cambridge CB22 3AT, UK
| | - Steven William Wingett
- Nuclear Dynamics Programme, Babraham Institute, Cambridge CB22 3AT, UK; Bioinformatics Group, Babraham Institute, Cambridge CB22 3AT, UK
| | - Sofie Traynor
- University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Mikhail Spivakov
- Nuclear Dynamics Programme, Babraham Institute, Cambridge CB22 3AT, UK
| | - Peter Fraser
- Nuclear Dynamics Programme, Babraham Institute, Cambridge CB22 3AT, UK; Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA.
| | - Susanne Mandrup
- University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark.
| |
Collapse
|
12
|
Ventura C, Nieto MRR, Bourguignon N, Lux-Lantos V, Rodriguez H, Cao G, Randi A, Cocca C, Núñez M. Pesticide chlorpyrifos acts as an endocrine disruptor in adult rats causing changes in mammary gland and hormonal balance. J Steroid Biochem Mol Biol 2016; 156:1-9. [PMID: 26518068 DOI: 10.1016/j.jsbmb.2015.10.010] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 10/02/2015] [Accepted: 10/09/2015] [Indexed: 11/30/2022]
Abstract
Endocrine disruptors (EDs) are compounds that interfere with hormone regulation and influence mammary carcinogenesis. We have previously demonstrated that the pesticide chlorpyrifos (CPF) acts as an ED in vitro, since it induces human breast cancer cells proliferation through estrogen receptor alpha (ERα) pathway. In this work, we studied the effects of CPF at environmental doses (0.01 and 1mg/kg/day) on mammary gland, steroid hormone receptors expression and serum steroid hormone levels. It was carried out using female Sprague-Dawley 40-days-old rats exposed to the pesticide during 100 days. We observed a proliferating ductal network with a higher number of ducts and alveolar structures. We also found an increased number of benign breast diseases, such as hyperplasia and adenosis. CPF enhanced progesterone receptor (PgR) along with the proliferating cell nuclear antigen (PCNA) in epithelial ductal cells. On the other hand, the pesticide reduced the expression of co-repressors of estrogen receptor activity REA and SMRT and it decreased serum estradiol (E2), progesterone (Pg) and luteinizing hormone (LH) levels. Finally, we found a persistent decrease in LH levels among ovariectomized rats exposed to CPF. Therefore, CPF alters the endocrine balance acting as an ED in vivo. These findings warn about the harmful effects that CPF exerts on mammary gland, suggesting that this compound may act as a risk factor for breast cancer.
Collapse
Affiliation(s)
- Clara Ventura
- Laboratorio de Radioisótopos, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Argentina
| | - María Rosa Ramos Nieto
- Laboratorio de Radioisótopos, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Argentina
| | - Nadia Bourguignon
- Laboratorio de Neuroendocrinología, Instituto de Biología y Medicina Experimental (IByME), CONICET, Argentina
| | - Victoria Lux-Lantos
- Laboratorio de Neuroendocrinología, Instituto de Biología y Medicina Experimental (IByME), CONICET, Argentina
| | - Horacio Rodriguez
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Argentina
| | - Gabriel Cao
- Instituto de Investigaciones Cardiológicas, CONICET, Argentina
| | - Andrea Randi
- Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Departamento de Bioquímica Humana, Facultad de Medicina, Universidad de Buenos Aires, Argentina
| | - Claudia Cocca
- Laboratorio de Radioisótopos, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Argentina
| | - Mariel Núñez
- Laboratorio de Radioisótopos, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Argentina.
| |
Collapse
|
13
|
Noriega-Reyes MY, Rivas-Torres MA, Oñate-Ocaña LF, Vallés AJ, Baranda-Avila N, Langley E. Novel role for PINX1 as a coregulator of nuclear hormone receptors. Mol Cell Endocrinol 2015; 414:9-18. [PMID: 26187699 DOI: 10.1016/j.mce.2015.07.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 07/10/2015] [Accepted: 07/11/2015] [Indexed: 11/20/2022]
Abstract
Estrogen receptor alpha (ERα) has an established role in breast cancer biology. Transcriptional activation by ERα is a multistep process influenced by coactivator and corepressor proteins. This work shows that Pin2 interacting protein 1 (PINX1) interacts with the N-terminal domain of ERα and functions as a corepressor of ERα. Furthermore, it represses both AF-1 and AF-2 transcriptional activities. Chromatin immunoprecipitation assays verified that the interaction between ERα and PINX1 occurs on E2 regulated promoters and enhanced expression of PINX1 deregulates the expression of a number of genes that have a role in cell growth and proliferation in breast cancer. PINX1 overexpression decreases estrogen mediated proliferation of breast cancer cell lines, while its depletion shows the opposite effect. Taken together, these data show a novel molecular mechanism for PINX1 as an attenuator of estrogen receptor activity in breast cancer cell lines, furthering its role as a tumor suppressor gene in breast cancer.
Collapse
Affiliation(s)
- Maria Yamilet Noriega-Reyes
- Departamento de Investigación Básica, Instituto Nacional de Cancerología, Av. San Fernando No. 22, Col. Sección XVI, Tlalpan 14080, Mexico D.F., Mexico; Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de Mexico. D.F., Mexico
| | - Miguel Angel Rivas-Torres
- Departamento de Investigación Básica, Instituto Nacional de Cancerología, Av. San Fernando No. 22, Col. Sección XVI, Tlalpan 14080, Mexico D.F., Mexico; Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de Mexico. D.F., Mexico
| | - Luis Fernando Oñate-Ocaña
- Departamento de Investigación Clínica, Instituto Nacional de Cancerología, Av. San Fernando No. 22, Col. Sección XVI, Tlalpan 14080, Mexico D.F., Mexico
| | - Albert Jordan Vallés
- Institut de Biología Molecular de Barcelona (IBMB-CSIC) Parc Científic de Barcelona, Barcelona, Cataluña, España
| | - Noemi Baranda-Avila
- Departamento de Investigación Básica, Instituto Nacional de Cancerología, Av. San Fernando No. 22, Col. Sección XVI, Tlalpan 14080, Mexico D.F., Mexico
| | - Elizabeth Langley
- Departamento de Investigación Básica, Instituto Nacional de Cancerología, Av. San Fernando No. 22, Col. Sección XVI, Tlalpan 14080, Mexico D.F., Mexico.
| |
Collapse
|
14
|
The expression of thyroid hormone receptors (THR) is regulated by the progesterone receptor system in first trimester placental tissue and in BeWo cells in vitro. Eur J Obstet Gynecol Reprod Biol 2015; 195:31-39. [PMID: 26476797 DOI: 10.1016/j.ejogrb.2015.09.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 07/06/2015] [Accepted: 09/03/2015] [Indexed: 12/16/2022]
Abstract
BACKGROUND Thyroid hormones are essential for the maintenance of pregnancy and a deficiency in maternal thyroid hormones has been associated with early pregnancy losses. The aim of this study was a systematic investigation of the influence of mifepristone (RU 486) on the expression of the thyroid hormone receptor (THR) isoforms THRα1, THRα2, THRβ1 and THRβ2 on protein and mRNA-level. METHODS Samples of placental tissue were obtained from patients with mifepristone induced termination of pregnancy (n=13) or mechanical induced termination of normal pregnancy (n=20), each from the 4th to 13th week of pregnancy. Expression of THRα1, THRα2, THRβ1 and THRβ2 was analysed on protein level by immunohistochemistry and on mRNA level by real time RT-PCR (TaqMan). The influence of progesterone on THR gene expression was analysed in the trophoblast tumour cell line BeWo by real time RT-PCR (TaqMan). RESULTS Nuclear expression of THRα1, THRα2 and THRβ1 is downregulated on protein level in mifepristone (RU 486) treated villous trophoblast tissue. In decidual tissue, we found a significant downregulation only for THRα1 in mifepristone treated tissue. On mRNA level, we also found a significantly reduced expression of THRA but no significant downregulation for THRB in placental tissue. The gene THRA encodes the isoform THRα and the gene THRB encodes the isoform THRβ. The majority of cells expressing the thyroid hormone receptors in the decidua are decidual stromal cells. In addition, in vitro experiments with trophoblast tumour cells showed that progesterone significantly induced THRA but not THRB expression. CONCLUSIONS Termination of pregnancy with mifepristone (RU 486) leads to a downregulation of THRα1, THRα2 and THRβ1 in villous trophoblasts and in addition to a decreased expression of THRA in placental tissue. Decreased expression of THRα1 induced by RU486 could also be found in the decidua. Therefore inhibition of the progesterone receptor may be responsible for this downregulation. This assumption is supported by the finding, that stimulation of the progesterone receptor by progesterone itself up-regulated THRA in trophoblast cells in vitro.
Collapse
|
15
|
Perspective on unraveling the versatility of ‘co-repressor’ complexes. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1849:1051-6. [DOI: 10.1016/j.bbagrm.2015.06.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 06/23/2015] [Accepted: 06/26/2015] [Indexed: 01/01/2023]
|
16
|
Wong MM, Guo C, Zhang J. Nuclear receptor corepressor complexes in cancer: mechanism, function and regulation. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL UROLOGY 2014; 2:169-187. [PMID: 25374920 PMCID: PMC4219314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 10/01/2014] [Indexed: 06/04/2023]
Abstract
Nuclear receptor corepressor (NCoR) and silencing mediator for retinoid and thyroid hormone receptors (SMRT) function as corepressors for diverse transcription factors including nuclear receptors such as estrogen receptors and androgen receptors. Deregulated functions of NCoR and SMRT have been observed in many types of cancers and leukemias. NCoR and SMRT directly bind to transcription factors and nucleate the formation of stable complexes that include histone deacetylase 3, transducin b-like protein 1/TBL1-related protein 1, and G-protein pathway suppressor 2. These NCoR/SMRT-interacting proteins also show deregulated functions in cancers. In this review, we summarize the literature on the mechanism, regulation, and function of the core components of NCoR/SMRT complexes in the context of their involvement in cancers and leukemias. While the current studies support the view that the corepressors are promising targets for cancer treatment, elucidation of the mechanisms of corepressors involved in individual types of cancers is likely required for effective therapy.
Collapse
Affiliation(s)
- Madeline M Wong
- Department of Pharmacological & Physiological Science, Saint Louis University School of Medicine St. Louis, Missouri 63104
| | - Chun Guo
- Department of Pharmacological & Physiological Science, Saint Louis University School of Medicine St. Louis, Missouri 63104
| | - Jinsong Zhang
- Department of Pharmacological & Physiological Science, Saint Louis University School of Medicine St. Louis, Missouri 63104
| |
Collapse
|
17
|
Blackmore JK, Karmakar S, Gu G, Chaubal V, Wang L, Li W, Smith CL. The SMRT coregulator enhances growth of estrogen receptor-α-positive breast cancer cells by promotion of cell cycle progression and inhibition of apoptosis. Endocrinology 2014; 155:3251-61. [PMID: 24971610 PMCID: PMC4138560 DOI: 10.1210/en.2014-1002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The SMRT coregulator functions as a dual coactivator and corepressor for estrogen receptor-α (ERα) in a gene-specific manner, and in several studies its elevated expression correlates with poor outcome for breast cancer patients. A specific role of SMRT in breast cancer progression has not been elucidated, but SMRT knock-down limits estradiol-dependent growth of MCF-7 breast cancer cells. In this study, small-interfering RNA (siRNA) and short-hairpin RNA (shRNA) approaches were used to determine the effects of SMRT depletion on growth of ERα-positive MCF-7 and ZR-75-1 breast cancer cells, as well as the ERα-negative MDA-MB-231 breast cancer line. Depletion of SMRT inhibited growth of ERα-positive cells grown in monolayer but had no effect on growth of the ERα-negative cells. Reduced SMRT levels also negatively impacted the anchorage-independent growth of MCF-7 cells as assessed by soft agar colony formation assays. The observed growth inhibitions were due to a loss of estradiol-induced progression through the G1/S transition of the cell cycle and increased apoptosis in SMRT-depleted compared with control cells. Gene expression analyses indicated that SMRT inhibits apoptosis by a coordinated regulation of genes involved in apoptosis. Functioning as a dual coactivator for anti-apoptotic genes and corepressor for pro-apoptotic genes, SMRT can limit apoptosis. Together these data indicate that SMRT promotes breast cancer progression through multiple pathways leading to increased proliferation and decreased apoptosis.
Collapse
Affiliation(s)
- Julia K Blackmore
- Molecular and Cellular Biology (J.K.B., S.K., V.C., C.L.S.), Lester and Sue Smith Breast Center (G.G.), and Dan L Duncan Cancer Center (L.W., W.L.), Baylor College of Medicine, Houston, Texas 77030
| | | | | | | | | | | | | |
Collapse
|
18
|
Vázquez-Martínez ER, Mendoza-Garcés L, Vergara-Castañeda E, Cerbón M. Epigenetic regulation of Progesterone Receptor isoforms: from classical models to the sexual brain. Mol Cell Endocrinol 2014; 392:115-24. [PMID: 24859604 DOI: 10.1016/j.mce.2014.05.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 05/12/2014] [Indexed: 01/29/2023]
Abstract
Progesterone Receptor is a member of the nuclear receptor superfamily, which regulates several functions in both reproductive and non-reproductive tissues. Progesterone Receptor gene encodes for two main isoforms, A and B, and contains two specific promoters with their respective transcription start sites. The mRNA expression of both isoforms is mainly regulated by estrogens and specifically via the Estrogen Receptor Alpha, in a context specific manner. Furthermore, it has been reported in extensive physiological and pathological models that Progesterone Receptor isoforms regulation is related to the epigenetic state of their respective promoters. Epigenetic regulation of Progesterone Receptor isoforms in the brain is a recent and scarcely explored field in neurosciences. This review focuses on the epigenetic mechanisms involved in Progesterone Receptor regulation, emphasizing the implications for the sexual brain. Future directions for research about this important field are also discussed.
Collapse
Affiliation(s)
- Edgar Ricardo Vázquez-Martínez
- Departamento de Biología, Facultad de Química, Av Universidad 3000, Universidad Nacional Autónoma de México (UNAM), Coyoacán, 04510, Distrito Federal, México, Mexico
| | - Luciano Mendoza-Garcés
- Instituto Nacional de Geriatría, Periférico Sur 2767, San Jerónimo Lídice, Magdalena Contreras, 10200, Distrito Federal, México, Mexico
| | - Edgar Vergara-Castañeda
- Departamento de Biología, Facultad de Química, Av Universidad 3000, Universidad Nacional Autónoma de México (UNAM), Coyoacán, 04510, Distrito Federal, México, Mexico
| | - Marco Cerbón
- Departamento de Biología, Facultad de Química, Av Universidad 3000, Universidad Nacional Autónoma de México (UNAM), Coyoacán, 04510, Distrito Federal, México, Mexico.
| |
Collapse
|
19
|
Nwachukwu JC, Srinivasan S, Bruno NE, Parent AA, Hughes TS, Pollock JA, Gjyshi O, Cavett V, Nowak J, Garcia-Ordonez RD, Houtman R, Griffin PR, Kojetin DJ, Katzenellenbogen JA, Conkright MD, Nettles KW. Resveratrol modulates the inflammatory response via an estrogen receptor-signal integration network. eLife 2014; 3:e02057. [PMID: 24771768 PMCID: PMC4017646 DOI: 10.7554/elife.02057] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 04/05/2014] [Indexed: 12/21/2022] Open
Abstract
Resveratrol has beneficial effects on aging, inflammation and metabolism, which are thought to result from activation of the lysine deacetylase, sirtuin 1 (SIRT1), the cAMP pathway, or AMP-activated protein kinase. In this study, we report that resveratrol acts as a pathway-selective estrogen receptor-α (ERα) ligand to modulate the inflammatory response but not cell proliferation. A crystal structure of the ERα ligand-binding domain (LBD) as a complex with resveratrol revealed a unique perturbation of the coactivator-binding surface, consistent with an altered coregulator recruitment profile. Gene expression analyses revealed significant overlap of TNFα genes modulated by resveratrol and estradiol. Furthermore, the ability of resveratrol to suppress interleukin-6 transcription was shown to require ERα and several ERα coregulators, suggesting that ERα functions as a primary conduit for resveratrol activity.DOI: http://dx.doi.org/10.7554/eLife.02057.001.
Collapse
Affiliation(s)
- Jerome C Nwachukwu
- Department of Cancer Biology, The Scripps Research Institute, Jupiter, United States
| | - Sathish Srinivasan
- Department of Cancer Biology, The Scripps Research Institute, Jupiter, United States
| | - Nelson E Bruno
- Department of Cancer Biology, The Scripps Research Institute, Jupiter, United States
| | | | - Travis S Hughes
- Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, United States
| | - Julie A Pollock
- Department of Chemistry, University of Illinois, Urbana, United States
| | - Olsi Gjyshi
- Department of Cancer Biology, The Scripps Research Institute, Jupiter, United States
| | - Valerie Cavett
- Department of Cancer Biology, The Scripps Research Institute, Jupiter, United States
| | - Jason Nowak
- Department of Cancer Biology, The Scripps Research Institute, Jupiter, United States
| | - Ruben D Garcia-Ordonez
- Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, United States
| | - René Houtman
- Nuclear Receptor Group, PamGene International, Den Bosch, Netherlands
| | - Patrick R Griffin
- Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, United States
| | - Douglas J Kojetin
- Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, United States
| | | | - Michael D Conkright
- Department of Cancer Biology, The Scripps Research Institute, Jupiter, United States
| | - Kendall W Nettles
- Department of Cancer Biology, The Scripps Research Institute, Jupiter, United States
| |
Collapse
|
20
|
Adikesavan AK, Karmakar S, Pardo P, Wang L, Liu S, Li W, Smith CL. Activation of p53 transcriptional activity by SMRT: a histone deacetylase 3-independent function of a transcriptional corepressor. Mol Cell Biol 2014; 34:1246-61. [PMID: 24449765 PMCID: PMC3993559 DOI: 10.1128/mcb.01216-13] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The silencing mediator of retinoic acid and thyroid hormone receptors (SMRT) is an established histone deacetylase 3 (HDAC3)-dependent transcriptional corepressor. Microarray analyses of MCF-7 cells transfected with control or SMRT small interfering RNA revealed SMRT regulation of genes involved in DNA damage responses, and the levels of the DNA damage marker γH2AX as well as poly(ADP-ribose) polymerase cleavage were elevated in SMRT-depleted cells treated with doxorubicin. A number of these genes are established p53 targets. SMRT knockdown decreased the activity of two p53-dependent reporter genes as well as the expression of p53 target genes, such as CDKN1A (which encodes p21). SMRT bound directly to p53 and was recruited to p53 binding sites within the p21 promoter. Depletion of GPS2 and TBL1, components of the SMRT corepressor complex, but not histone deacetylase 3 (HDAC3) decreased p21-luciferase activity. p53 bound to the SMRT deacetylase activation domain (DAD), which mediates HDAC3 binding and activation, and HDAC3 could attenuate p53 binding to the DAD region of SMRT. Moreover, an HDAC3 binding-deficient SMRT DAD mutant coactivated p53 transcriptional activity. Collectively, these data highlight a biological role for SMRT in mediating DNA damage responses and suggest a model where p53 binding to the DAD limits HDAC3 interaction with this coregulator, thereby facilitating SMRT coactivation of p53-dependent gene expression.
Collapse
Affiliation(s)
| | - Sudipan Karmakar
- Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Patricia Pardo
- Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Liguo Wang
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, USA
| | - Shuang Liu
- Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Wei Li
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, USA
| | - Carolyn L. Smith
- Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
21
|
Bing Y, Zhu S, Jiang K, Dong G, Li J, Yang Z, Yang J, Yue J. Reduction of thyroid hormones triggers down-regulation of hepatic CYP2B through nuclear receptors CAR and TR in a rat model of acute stroke. Biochem Pharmacol 2014; 87:636-49. [DOI: 10.1016/j.bcp.2013.12.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 12/11/2013] [Accepted: 12/12/2013] [Indexed: 12/15/2022]
|
22
|
Abstract
Nuclear receptors are transcription factors that regulate gene expression through the ligand-controlled recruitment of a diverse group of proteins known as coregulators. Most nuclear receptor coregulators function in large multi-protein complexes that modify chromatin and thereby regulate the transcription of target genes. Structural and functional studies are beginning to reveal how these complexes are assembled bringing together multiple functionalities that mediate: recruitment to specific genomic loci through interaction with transcription factors; recruitment of enzymatic activities that either modify or remodel chromatin and targeting the complexes to their chromatin substrate. These activities are regulated by post-translational modifications, alternative splicing and small signalling molecules. This review focuses on our current understanding of coregulator complexes and aims to highlight the common principles that are beginning to emerge.
Collapse
Affiliation(s)
- Christopher J. Millard
- Henry Wellcome Laboratories of Structural Biology, Department of Biochemistry, University of Leicester, Leicester, LE1 9HN. UK
| | - Peter J. Watson
- Henry Wellcome Laboratories of Structural Biology, Department of Biochemistry, University of Leicester, Leicester, LE1 9HN. UK
| | - Louise Fairall
- Henry Wellcome Laboratories of Structural Biology, Department of Biochemistry, University of Leicester, Leicester, LE1 9HN. UK
| | - John W.R. Schwabe
- Henry Wellcome Laboratories of Structural Biology, Department of Biochemistry, University of Leicester, Leicester, LE1 9HN. UK
- Correspondence to:
| |
Collapse
|
23
|
Ji M, Liu Y, Yang S, Zhai D, Zhang D, Bai L, Wang Z, Yu J, Yu C, Cai Z. Puerarin suppresses proliferation of endometriotic stromal cells in part via differential recruitment of nuclear receptor coregulators to estrogen receptor-α. J Steroid Biochem Mol Biol 2013; 138:421-6. [PMID: 23907019 DOI: 10.1016/j.jsbmb.2013.07.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2012] [Revised: 06/24/2013] [Accepted: 07/22/2013] [Indexed: 01/09/2023]
Abstract
BACKGROUND AND OBJECTIVES Puerarin, a phytoestrogen with a weak estrogenic effect, binds to estrogen receptors, thereby competing with 17β-estradiol and producing an anti-estrogenic effect. In our early clinical practice to treat endometriosis, a better therapeutic effect was achieved if the formula of traditional Chinese medicine included Radix puerariae. This study was to investigate whether puerarin could suppress the proliferation of endometriotic stromal cells (ESCs) and to further elucidate the potential mechanism. METHODS AND RESULTS The ESCs were successfully established. The effects of puerarin on the proliferation of ESCs, cell cycle and apoptosis were determined by Cell Counting Kit-8 assay and flow cytometry. The mRNA and protein levels of cyclin D1 and cdc25A were detected by real-time PCR and Western blot analysis. Coimmunoprecipitation was applied to examine the recruitment of nuclear receptor coregulators to the estrogen receptor-α. We found that puerarin can suppress estrogen-stimulated proliferation partly through down-regulating the transcription of cyclin D1 and cdc25A by promoting the recruitment of corepressors to estrogen receptor-α as well as limiting that of coactivators in ESCs. CONCLUSIONS Our data suggest that puerarin could suppress the proliferation of ESCs and could be a potential therapeutic agent for the treatment of endometriosis.
Collapse
Affiliation(s)
- Mei Ji
- Department of Traditional Chinese Medicine, Changhai Hospital, Second Military Medical University, Shanghai, China; Department of Obstetrics and Gynecology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Proteomic analysis of coregulators bound to ERα on DNA and nucleosomes reveals coregulator dynamics. Mol Cell 2013; 51:185-99. [PMID: 23850489 DOI: 10.1016/j.molcel.2013.06.007] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 04/02/2013] [Accepted: 06/04/2013] [Indexed: 11/21/2022]
Abstract
Chromatin immunoprecipitation studies have mapped protein occupancies at many genomic loci. However, a detailed picture of the complexity of coregulators (CoRs) bound to a defined enhancer along with a transcription factor is missing. To address this, we used biotin-DNA pull-down assays coupled with mass spectrometry-immunoblotting to identify at least 17 CoRs from nuclear extracts bound to 17β-estradiol (E2)-liganded estrogen receptor-α on estrogen response elements (EREs). Unexpectedly, these complexes initially are biochemically stable and contain certain atypical corepressors. Addition of ATP dynamically converts these complexes to an "activated" state by phosphorylation events, primarily mediated by DNA-dependent protein kinase. Importantly, a "natural" ERE-containing enhancer and nucleosomal EREs recruit similar complexes. We further discovered the mechanism whereby H3K4me3 stimulates ERα-mediated transcription as compared with unmodified nucleosomes. H3K4me3 templates promote specific CoR dynamics in the presence of ATP and AcCoA, as manifested by CBP/p300 and SRC-3 dismissal and SAGA and TFIID stabilization/recruitment.
Collapse
|
25
|
Feng Y, Singleton D, Guo C, Gardner A, Pakala S, Kumar R, Jensen E, Zhang J, Khan S. DNA homologous recombination factor SFR1 physically and functionally interacts with estrogen receptor alpha. PLoS One 2013; 8:e68075. [PMID: 23874500 PMCID: PMC3706619 DOI: 10.1371/journal.pone.0068075] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Accepted: 05/25/2013] [Indexed: 11/29/2022] Open
Abstract
Estrogen receptor alpha (ERα), a ligand-dependent transcription factor, mediates the expression of its target genes by interacting with corepressors and coactivators. Since the first cloning of SRC1, more than 280 nuclear receptor cofactors have been identified, which orchestrate target gene transcription. Aberrant activity of ER or its accessory proteins results in a number of diseases including breast cancer. Here we identified SFR1, a protein involved in DNA homologous recombination, as a novel binding partner of ERα. Initially isolated in a yeast two-hybrid screen, the interaction of SFR1 and ERα was confirmed in vivo by immunoprecipitation and mammalian one-hybrid assays. SFR1 co-localized with ERα in the nucleus, potentiated ER’s ligand-dependent and ligand-independent transcriptional activity, and occupied the ER binding sites of its target gene promoters. Knockdown of SFR1 diminished ER’s transcriptional activity. Manipulating SFR1 expression by knockdown and overexpression revealed a role for SFR1 in ER-dependent and -independent cancer cell proliferation. SFR1 differs from SRC1 by the lack of an intrinsic activation function. Taken together, we propose that SFR1 is a novel transcriptional modulator for ERα and a potential target in breast cancer therapy.
Collapse
Affiliation(s)
- Yuxin Feng
- Department of Cancer Biology, College of Medicine, University of Cincinnati, Cincinnati, Ohio, United States of America
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - David Singleton
- Department of Cancer Biology, College of Medicine, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Chun Guo
- Department of Cancer Biology, College of Medicine, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Amanda Gardner
- Department of Cancer Biology, College of Medicine, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Suresh Pakala
- Department of Biochemistry and Molecular Biology, George Washington University School of Medicine, Washington, DC, United States of America
| | - Rakesh Kumar
- Department of Biochemistry and Molecular Biology, George Washington University School of Medicine, Washington, DC, United States of America
| | - Elwood Jensen
- Department of Cancer Biology, College of Medicine, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Jinsong Zhang
- Department of Cancer Biology, College of Medicine, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Sohaib Khan
- Department of Cancer Biology, College of Medicine, University of Cincinnati, Cincinnati, Ohio, United States of America
- * E-mail:
| |
Collapse
|
26
|
Meyer MB, Pike JW. Corepressors (NCoR and SMRT) as well as coactivators are recruited to positively regulated 1α,25-dihydroxyvitamin D3-responsive genes. J Steroid Biochem Mol Biol 2013; 136:120-4. [PMID: 22944139 PMCID: PMC3548980 DOI: 10.1016/j.jsbmb.2012.08.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Revised: 08/02/2012] [Accepted: 08/09/2012] [Indexed: 01/21/2023]
Abstract
Transcription factors require coactivators and corepressors to modulate transcription in mammalian cells. The vitamin D receptor (VDR) utilizes coactivators and corepressors to gain tight control over the activity of a diverse set of genes that can regulate calcium transport, slow proliferation and promote immune responses. We have recently established the VDR/RXR cistrome in human colon cancer cells and have linked these binding sites to the genes that are regulated by 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3). In additional studies described herein, we demonstrate that the coactivators SRC1, CBP and MED1 are recruited to upregulated genes to facilitate transcription as expected. SRC1 was the most highly correlated to VDR/RXR binding (50%). However, we also found that corepressor molecules such as NCoR and SMRT were present along with SRC1, CBP or MED1 at these 1,25(OH)2D3 activated gene enhancers. Interestingly, genome-wide NCoR binding mimicked VDR binding by increasing its association with VDR binding in response to 1,25(OH)2D3 treatment. Overall, these data indicate a complex role for corepressor and coactivator complexes in the activation or active repression of 1,25(OH)2D3 responsive genes. This article is part of a Special Issue entitled 'Vitamin D Workshop'.
Collapse
Affiliation(s)
- Mark B Meyer
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, United States
| | | |
Collapse
|
27
|
Karmakar S, Jin Y, Nagaich AK. Interaction of glucocorticoid receptor (GR) with estrogen receptor (ER) α and activator protein 1 (AP1) in dexamethasone-mediated interference of ERα activity. J Biol Chem 2013; 288:24020-34. [PMID: 23814048 PMCID: PMC3745347 DOI: 10.1074/jbc.m113.473819] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The role of glucocorticoids in the inhibition of estrogen (17-β-estradiol (E2))-regulated estrogen receptor (ER)-positive breast cancer cell proliferation is well established. We and others have seen that synthetic glucocorticoid dexamethasone (Dex) antagonizes E2-stimulated endogenous ERα target gene expression. However, how glucocorticoids negatively regulate the ERα signaling pathway is still poorly understood. ChIP studies using ERα- and glucocorticoid receptor (GR)-positive MCF-7 cells revealed that GR occupies several ERα-binding regions (EBRs) in cells treated with E2 and Dex simultaneously. Interestingly, there was little or no GR loading to these regions when cells were treated with E2 or Dex alone. The E2+Dex-dependent GR recruitment is associated with the displacement of ERα and steroid receptor coactivator-3 from the target EBRs leading to the repression of ERα-mediated transcriptional activation. The recruitment of GR to EBRs requires assistance from ERα and FOXA1 and is facilitated by AP1 binding within the EBRs. The GR binding to EBRs is mediated via direct protein-protein interaction between the GR DNA-binding domain and ERα. Limited mutational analyses indicate that arginine 488 located within the C-terminal zinc finger domain of the GR DNA-binding domain plays a critical role in stabilizing this interaction. Together, the results of this study unravel a novel mechanism involved in glucocorticoid inhibition of ERα transcriptional activity and E2-mediated cell proliferation and thus establish a foundation for future exploitation of the GR signaling pathway in the treatment of ER-positive breast cancer.
Collapse
Affiliation(s)
- Sudipan Karmakar
- Division of Therapeutic Proteins, Office of Biotechnology Products, Office of Pharmaceutical Sciences, Center for Drug Evaluation and Research, Food and Drug Administration, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
28
|
Renoir JM, Marsaud V, Lazennec G. Estrogen receptor signaling as a target for novel breast cancer therapeutics. Biochem Pharmacol 2013; 85:449-65. [DOI: 10.1016/j.bcp.2012.10.018] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Revised: 10/11/2012] [Accepted: 10/19/2012] [Indexed: 02/07/2023]
|
29
|
Hoffman KL, Lerner SP, Smith CL. Raloxifene inhibits growth of RT4 urothelial carcinoma cells via estrogen receptor-dependent induction of apoptosis and inhibition of proliferation. HORMONES & CANCER 2013; 4:24-35. [PMID: 22965848 PMCID: PMC3541450 DOI: 10.1007/s12672-012-0123-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Accepted: 08/28/2012] [Indexed: 12/28/2022]
Abstract
Bladder cancer is the fifth most common type of cancer in the USA, with over 70,000 new cases diagnosed each year. Treatment often involves invasive surgical therapies, as chemotherapy alone is often ineffective and associated with high recurrence rates. Identification of estrogen receptor-β (ERβ) in up to 75 % of urinary tumors raises the question of whether this receptor could be targeted to effectively treat bladder cancer. In this study, a panel of five bladder cancer cell lines representing a variety of disease stage and grades were treated with the antiestrogens 4-hydroxytamoxifen, raloxifene, or the pure antagonist ICI 182,780. All cell lines were ERβ positive while only a few expressed estrogen receptor-α (ERα). Notably, all but the TCCSUP cell line were growth inhibited 20-100 % by at least two antiestrogens. Using RT4 cells, we demonstrate that growth inhibition by raloxifene is ER dependent and either ERα or ERβ can mediate this response. Activation of caspase-3 and its effector poly-ADP ribose polymerase (PARP) demonstrate that raloxifene-induced growth inhibition is in part the result of increased apoptosis; this PARP cleavage was ER dependent. Moreover, changes in the expression of cell cycle genes indicate that cell proliferation is also affected. Specifically, raloxifene treatment results in the stabilization of p27 protein, likely via the downregulation of S-phase kinase-associated protein (SKP2). Expression of the negative cell cycle regulator B-cell translocation gene (BTG2) is also increased, while cyclin D1 transcription is reduced. These results indicate that antiestrogens may be useful therapeutics in the treatment of bladder cancer by targeting ER and inhibiting growth via multiple mechanisms.
Collapse
Affiliation(s)
- Kristi L. Hoffman
- Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX USA
| | - Seth P. Lerner
- Scott Department of Urology, Baylor College of Medicine, Houston, TX USA
| | - Carolyn L. Smith
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX USA
- Scott Department of Urology, Baylor College of Medicine, Houston, TX USA
- Baylor College of Medicine, MS BCM130, One Baylor Plaza, Houston, TX 77030 USA
| |
Collapse
|
30
|
Zhang L, Gong C, Lau SLY, Yang N, Wong OGW, Cheung ANY, Tsang JWH, Chan KYK, Khoo US. SpliceArray Profiling of Breast Cancer Reveals a Novel Variant of NCOR2/SMRT That Is Associated with Tamoxifen Resistance and Control of ERα Transcriptional Activity. Cancer Res 2012; 73:246-55. [PMID: 23117886 DOI: 10.1158/0008-5472.can-12-2241] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Luduo Zhang
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Renoir JM. Estradiol receptors in breast cancer cells: associated co-factors as targets for new therapeutic approaches. Steroids 2012; 77:1249-61. [PMID: 22917634 DOI: 10.1016/j.steroids.2012.07.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 07/18/2012] [Accepted: 07/25/2012] [Indexed: 02/07/2023]
Abstract
Estrogen receptors α (ERα) and β (ERβ) are nuclear receptors which transduce estradiol (E2) response in many tissues including the mammary gland and breast cancers (BC). They activate or inhibit specific genes involved in cell cycle progression and cell survival through multiple enzyme activities leading to malignant transformation. Hormone therapy (antiestrogens (AEs) and aromatase inhibitors (AIs) have been widely used to block the mitogenic action of E2 in patients with ER-positive BC. ERs act in concert with numerous other proteins outside and inside the nucleus where co-activators such as histone modifying enzymes help reaching optimum gene activation. Moreover, E2-mediated gene regulation can occur through ERs located at the plasma membrane or G protein-coupled estrogen receptor (GPER), triggering protein kinase signaling cascades. Classical AEs as well as AIs are inefficient to block the cascades of events emanating from the membrane and from E2 binding to GPER, leading patients to escape anti-hormone treatments and hormone therapy resistance. Many pathways are involved in resistance, mostly resulting from over-expression of growth factor membrane receptors, in particular the HER2/ErbB2 which can be inhibited by specific antibodies or tyrosine kinases inhibitors. Together with the Hsp90 molecular chaperone machinery, a complex interplay between ERs, co-activators, co-repressors and growth factor-activated membrane pathways represents potent targets which warrant to be manipulated alone and in combination to designing novel therapies. The discovery of new potential targets arising from micro array studies gives the opportunity to activate or inhibit different new ER-modulating effectors for innovative therapeutic interventions.
Collapse
|
32
|
Elevated nuclear expression of the SMRT corepressor in breast cancer is associated with earlier tumor recurrence. Breast Cancer Res Treat 2012; 136:253-65. [PMID: 23015261 DOI: 10.1007/s10549-012-2262-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2012] [Accepted: 09/17/2012] [Indexed: 12/29/2022]
Abstract
Silencing mediator of retinoic acid and thyroid hormone receptor (SMRT), also known as nuclear corepressor 2 (NCOR2) is a transcriptional corepressor for multiple members of the nuclear receptor superfamily of transcription factors, including estrogen receptor-α (ERα). In the classical model of corepressor action, SMRT binds to antiestrogen-bound ERα at target promoters and represses ERα transcriptional activity and gene expression. Herein SMRT mRNA and protein expression was examined in a panel of 30 breast cancer cell lines. Expression of both parameters was found to vary considerably amongst lines and the correlation between protein and mRNA expression was very poor (R (2) = 0.0775). Therefore, SMRT protein levels were examined by immunohistochemical staining of a tissue microarray of 866 patients with stage I-II breast cancer. Nuclear and cytoplasmic SMRT were scored separately according to the Allred score. The majority of tumors (67 %) were negative for cytoplasmic SMRT, which when detected was found at very low levels. In contrast, nuclear SMRT was broadly detected. There was no significant difference in time to recurrence (TTR) according to SMRT expression levels in the ERα-positive tamoxifen-treated patients (P = 0.297) but the difference was significant in the untreated patients (P = 0.01). In multivariate analysis, ERα-positive tamoxifen-untreated patients with high nuclear SMRT expression (SMRT 5-8, i.e., 2nd to 4th quartile) had a shorter TTR (HR = 1.94, 95 % CI, 1.24-3.04; P = 0.004) while there was no association with SMRT expression for ERα-positive tamoxifen-treated patients. There was no association between SMRT expression and overall survival for patients, regardless of whether they received tamoxifen. Thus while SMRT protein expression was not predictive of outcome after antiestrogen therapy, it may have value in predicting tumor recurrence in patients not receiving adjuvant tamoxifen therapy.
Collapse
|
33
|
Liao S, Desouki MM, Gaile DP, Shepherd L, Nowak NJ, Conroy J, Barry WT, Geradts J. Differential copy number aberrations in novel candidate genes associated with progression from in situ to invasive ductal carcinoma of the breast. Genes Chromosomes Cancer 2012; 51:1067-78. [PMID: 22887771 DOI: 10.1002/gcc.21991] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 07/06/2012] [Indexed: 12/21/2022] Open
Abstract
Only a minority of intraductal carcinomas of the breast give rise to stromally invasive disease. We microdissected 206 paraffin blocks representing 116 different cases of low-grade ductal carcinoma in situ (DCIS). Fifty-five were pure DCIS (PD) cases without progression to invasive carcinoma. Sixty-one cases had a small invasive component. DNA was extracted from microdissected sections and hybridized to high-density bacterial artificial chromosome arrays. Array comparative genomic hybridization analysis of 118 hybridized DNA samples yielded data on 69 samples that were suitable for further statistical analysis. This cohort included 20 pure DCIS cases, 25 mixed DCIS (MD), and 24 mixed invasive carcinoma samples. PD cases had a higher frequency of DNA copy number changes than MD cases, and the latter had similar DNA profiles compared to paired invasive carcinomas. Copy number changes on 13 chromosomal arms occurred at different rates in PD versus MD lesions. Eight of 19 candidate genes residing at those loci were confirmed to have differential copy number changes by quantitative PCR. NCOR2/SMRT and NR4A1 (both on 12q), DYNLRB2 (16q), CELSR1, UPK3A, and ST13 (all on 22q) were more frequently amplified in PD. Moreover, NCOR2, NR4A1, and DYNLRB2 showed more frequent copy number losses in MD. GRAP2 (22q) was more often amplified in MD, whereas TAF1C (16q) was more commonly deleted in PD. A multigene model comprising these candidate genes discriminated between PD and MD lesions with high accuracy. These findings suggest that the propensity to invade the stroma may be encoded in the genome of intraductal carcinomas.
Collapse
Affiliation(s)
- Shaoxi Liao
- Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
MicroRNAs (miRNAs) are short, noncoding RNAs that generally base-pair within the 3' untranslated region of target mRNAs causing translational inhibition and/or mRNA degradation. Estradiol (E(2)) and other estrogen receptor (ER) ligands suppress or stimulate miRNA expression in human breast cancer cells, endometrial cells, rat mammary gland, and mouse uterus, and post-translationally regulate protein expression. Aberrant miRNA expression is implicated in estrogen-related breast and endometrial cancers, and several miRNAs downregulate ERα. The role of estrogen-regulated miRNA expression, the target genes of these miRNAs, and the role of miRNAs in health and disease is a 'hot' area of research that will yield new insight into molecular mechanisms of estrogen action.
Collapse
Affiliation(s)
- Carolyn M Klinge
- Department of Biochemistry and Molecular Biology, Center for Genetics and Molecular Medicine, University of Louisville School of Medicine, Louisville, KY 40292, USA.
| |
Collapse
|
35
|
Guo C, Gow CH, Li Y, Gardner A, Khan S, Zhang J. Regulated clearance of histone deacetylase 3 protects independent formation of nuclear receptor corepressor complexes. J Biol Chem 2012; 287:12111-20. [PMID: 22337871 DOI: 10.1074/jbc.m111.327023] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
An important step in transcriptional regulation by corepressors N-CoR and SMRT is the formation of a stable and active histone deacetylase 3 (HDAC3)-containing complex. Although N-CoR and SMRT are thought to bind HDAC3 competitively, multiple studies have shown that they do not interfere with the function of each other. How this functional independence is sustained under the competitive interaction is unclear. Here, we show that the coupling of corepressor expression with HDAC3 degradation allows cells to maintain a stable level of uncomplexed HDAC3, thereby preventing mutual interference in the assembly of N-CoR and SMRT complexes. The free uncomplexed HDAC3 is highly unstable. Unexpectedly, the rate of HDAC3 degradation is inversely correlated with the expression level of corepressors. Our results indicate that reducing one corepressor accelerates HDAC3 clearance, thus preventing an increase in complex formation between HDAC3 and the other corepressor. In addition, this study also indicates that the formation of a stable and active HDAC3-corepressor complex is a stepwise process in which the C terminus of HDAC3 plays a critical role at late steps of the assembly process.
Collapse
Affiliation(s)
- Chun Guo
- Department of Cancer and Cell Biology, Vontz Center for Molecular Studies, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267, USA
| | | | | | | | | | | |
Collapse
|
36
|
Johnson AB, O'Malley BW. Steroid receptor coactivators 1, 2, and 3: critical regulators of nuclear receptor activity and steroid receptor modulator (SRM)-based cancer therapy. Mol Cell Endocrinol 2012; 348:430-9. [PMID: 21664237 PMCID: PMC3202666 DOI: 10.1016/j.mce.2011.04.021] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Revised: 04/04/2011] [Accepted: 04/22/2011] [Indexed: 01/17/2023]
Abstract
Coactivators are a diverse group of non-DNA binding proteins that induce structural changes in agonist-bound nuclear receptors (NRs) that are essential for NR-mediated transcriptional activation. Once bound, coactivators function to bridge enhancer binding proteins to the general transcription machinery, as well as to recruit secondary coactivators that modify promoter and enhancer chromatin in a manner permissive for transcriptional activation. In the following review article, we focus on one of the most in-depth studied families of coactivators, the steroid receptor coactivators (SRC) 1, 2, and 3. SRCs are widely implicated in NR-mediated diseases, especially in cancers, with the majority of studies focused on their roles in breast cancer. We highlight the relevant literature supporting the oncogenic activity of SRCs and their future as diagnostic and prognostic indicators. With much interest in the development of selective receptor modulators (SRMs), we focus on how these coactivators regulate the interactions between SRMs and their respective NRs; and, importantly, the influence that coactivators have on the functional output of SRMs. Furthermore, we speculate that coactivator-specific inhibitors could provide powerful, all-encompassing treatments that target multiple modes of oncogenic regulation in cancers resistant to typical anti-endocrine treatments.
Collapse
Affiliation(s)
- Amber B Johnson
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, United States
| | | |
Collapse
|
37
|
Durando M, Kass L, Perdomo V, Bosquiazzo VL, Luque EH, Muñoz-de-Toro M. Prenatal exposure to bisphenol A promotes angiogenesis and alters steroid-mediated responses in the mammary glands of cycling rats. J Steroid Biochem Mol Biol 2011; 127:35-43. [PMID: 21513798 DOI: 10.1016/j.jsbmb.2011.04.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Revised: 02/14/2011] [Accepted: 04/03/2011] [Indexed: 01/04/2023]
Abstract
Prenatal exposure to BPA disturbs mammary gland histoarchitecture and increases the carcinogenic susceptibility to chemical challenges administered long after BPA exposure. Our aim was to assess the effect of prenatal BPA exposure on mammary gland angiogenesis and steroid hormone pathways in virgin cycling rats. Pregnant Wistar rats were exposed to either 25 or 250 g/kg/day (25 and 250 BPA, respectively) or to vehicle. Female offspring were autopsied on postnatal day (PND) 50 or 110. Ovarian steroid serum levels, the expression of steroid receptors and their co-regulators SRC-3 and SMRT in the mammary gland, and angiogenesis were evaluated. At PND 50, all BPA-treated animals had lower serum levels of progesterone, while estradiol levels remained unchanged. The higher dose of BPA increased mammary ERα and decreased SRC-3 expression at PND 50 and PND 110. SMRT protein levels were similar among groups at PND 50, whereas at PND 110, animals exposed to 250 BPA showed a lower SMRT expression. Interestingly, in the control and 25 BPA groups, SMRT increased from PND 50 to PND 110. At PND 50, an increased vascular area associated with higher VEGF expression was observed in the 250 BPA-treated rats. At PND 110, the vascular area was still increased, but VEGF expression was similar to that of control rats. The present results demonstrate that prenatal exposure to BPA alters the endocrine environment of the mammary gland and its angiogenic process. Increased angiogenesis and altered steroid hormone signals could explain the higher frequency of pre-neoplastic lesions found later in life. This article is part of a Special Issue entitled 'Endocrine disruptors'.
Collapse
Affiliation(s)
- Milena Durando
- Laboratorio de Endocrinología y Tumores Hormonodependientes, School of Biochemistry and Biological Sciences, Universidad Nacional del Litoral (UNL), Santa Fe, Argentina
| | | | | | | | | | | |
Collapse
|
38
|
Ali AB, Nin DS, Tam J, Khan M. Role of chaperone mediated autophagy (CMA) in the degradation of misfolded N-CoR protein in non-small cell lung cancer (NSCLC) cells. PLoS One 2011; 6:e25268. [PMID: 21966475 PMCID: PMC3179509 DOI: 10.1371/journal.pone.0025268] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Accepted: 08/30/2011] [Indexed: 11/28/2022] Open
Abstract
Nuclear receptor co-repressor (N-CoR) plays important role in transcriptional control mediated by several tumor suppressor proteins. Recently, we reported a role of misfolded-conformation dependent loss (MCDL) of N-CoR in the activation of oncogenic survival pathway in acute promyelocytic leukemia (APL). Since N-CoR plays important role in cellular homeostasis in various tissues, therefore, we hypothesized that an APL like MCDL of N-CoR might also be involved in other malignancy. Indeed, our initial screening of N-CoR status in various leukemia and solid tumor cells revealed an APL like MCDL of N-CoR in primary and secondary tumor cells derived from non-small cell lung cancer (NSCLC). The NSCLC cell specific N-CoR loss could be blocked by Kaletra, a clinical grade protease inhibitor and by genistein, an inhibitor of N-CoR misfolding previously characterized by us. The misfolded N-CoR presented in NSCLC cells was linked to the amplification of ER stress and was subjected to degradation by NSCLC cell specific aberrant protease activity. In NSCLC cells, misfolded N-CoR was found to be associated with Hsc70, a molecular chaperone involved in chaperone mediated autophagy (CMA). Genetic and chemical inhibition of Lamp2A, a rate limiting factor of CMA, significantly blocked the loss of N-CoR in NSCLC cells, suggesting a crucial role of CMA in N-CoR degradation. These findings identify an important role of CMA-induced degradation of misfolded N-CoR in the neutralization of ER stress and suggest a possible role of misfolded N-CoR protein in the activation of oncogenic survival pathway in NSCLC cells.
Collapse
Affiliation(s)
- Azhar Bin Ali
- Cancer Science Institute, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Dawn Sijin Nin
- Cancer Science Institute, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - John Tam
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Departments of Cardiac, Thoracic & Vascular Surgery, National University Hospital, Singapore, Singapore
| | - Matiullah Khan
- Cancer Science Institute, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- * E-mail:
| |
Collapse
|
39
|
Buchanan G, Need EF, Barrett JM, Bianco-Miotto T, Thompson VC, Butler LM, Marshall VR, Tilley WD, Coetzee GA. Corepressor effect on androgen receptor activity varies with the length of the CAG encoded polyglutamine repeat and is dependent on receptor/corepressor ratio in prostate cancer cells. Mol Cell Endocrinol 2011; 342:20-31. [PMID: 21664238 PMCID: PMC3314496 DOI: 10.1016/j.mce.2011.05.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Revised: 04/12/2011] [Accepted: 05/09/2011] [Indexed: 01/01/2023]
Abstract
The response of prostate cells to androgens reflects a combination of androgen receptor (AR) transactivation and transrepression, but how these two processes differ mechanistically and influence prostate cancer risk and disease outcome remain elusive. Given recent interest in targeting AR transrepressive processes, a better understanding of AR/corepressor interaction and responses is warranted. Here, we used transactivation and interaction assays with wild-type and mutant ARs, and deletion AR fragments, to dissect the relationship between AR and the corepressor, silencing mediator for retinoic acid and thyroid hormone receptors (SMRT). We additionally tested how these processes are influenced by AR agonist and antagonist ligands, as well as by variation in the polyglutamine tract in the AR amino terminal domain (NTD), which is encoded by a polymorphic CAG repeat in the gene. SMRT was recruited to the AR ligand binding domain by agonist ligand, and as determined by the effect of strategic mutations in activation function 2 (AF-2), requires a precise conformation of that domain. A distinct region of SMRT also mediated interaction with the AR-NTD via the transactivation unit 5 (TAU5; residues 315-538) region. The degree to which SMRT was able to repress AR increased from 17% to 56% as the AR polyglutamine repeat length was increased from 9 to 42 residues, but critically this effect could be abolished by increasing the SMRT:AR molar ratio. These data suggest that the extent to which the CAG encoded polyglutamine repeat influences AR activity represents a balance between corepressor and coactivator occupancy of the same ligand-dependent and independent AR interaction surfaces. Changes in the homeostatic relationship of AR to these molecules, including SMRT, may explain the variable penetrance of the CAG repeat and the loss of AR signaling flexibility in prostate cancer progression.
Collapse
Affiliation(s)
- Grant Buchanan
- Department of Preventive Medicine, Norris Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Pike JW. Genome-scale techniques highlight the epigenome and redefine fundamental principles of gene regulation. J Bone Miner Res 2011; 26:1155-62. [PMID: 21611959 PMCID: PMC3312753 DOI: 10.1002/jbmr.317] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The regulation of gene expression represents one of the most fundamental of biologic processes that controls cellular proliferation, differentiation, and function. Recent technological advances in genome-wide annotation together with bioinformatic/computational analyses have contributed significantly to our understanding of transcriptional regulation at the epigenomic and regulomic levels. This perspective outlines the techniques that are being utilized and summarizes a few of the outcomes.
Collapse
Affiliation(s)
- J Wesley Pike
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
41
|
He B, Kim TH, Kommagani R, Feng Q, Lanz RB, Jeong JW, DeMayo FJ, Katzenellenbogen BS, Lydon JP, O'Malley BW. Estrogen-regulated prohibitin is required for mouse uterine development and adult function. Endocrinology 2011; 152:1047-56. [PMID: 21209023 PMCID: PMC3040048 DOI: 10.1210/en.2010-0732] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Estrogen signaling is pivotal for maintenance of female reproductive function in mammals. The physiological role of estrogen is mediated by estrogen receptors (ERs) and the steroid receptor coactivator family of transcriptional coregulators. Ablation of steroid receptor coactivator and ER coactivators in mice causes impaired female reproductive function. Recently we reported that prohibitin (PHB) can function as a corepressor for ERs in cultured cells. In this study, we demonstrate that PHB is an estrogen-regulated gene in vitro and in vivo, and its expression is induced by estrogen in the uterus, suggesting the existence of feedback regulatory loops. A conditional PHB knockout mouse model was generated by gene targeting to assess its in vivo function. Female mice with selective ablation of the PHB allele in the uterus were sterile, and their uteri were severely hypoplastic, indicating PHB is required for uterine development. Moreover, expression of ER and progesterone receptor target genes was selectively altered in response to hormone treatment. In summary, this study demonstrates that PHB is an estrogen-regulated gene and that PHB is essential for mouse uterine development and adult function and selectively required for estrogen-regulated gene expression.
Collapse
Affiliation(s)
- Bin He
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Karmakar S, Foster EA, Blackmore JK, Smith CL. Distinctive functions of p160 steroid receptor coactivators in proliferation of an estrogen-independent, tamoxifen-resistant breast cancer cell line. Endocr Relat Cancer 2011; 18:113-27. [PMID: 21059860 PMCID: PMC3014261 DOI: 10.1677/erc-09-0285] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Elevated expression of steroid receptor coactivator-3 (SRC-3), a member of the p160 family of nuclear receptor coactivators, has been implicated in tamoxifen resistance of breast tumors while the involvement of the two other members of this family, SRC-1 and SRC-2, is less well characterized. In this study, using small interfering RNA-based silencing, the role of each SRC coactivator in the growth of the LCC2 estrogen-independent and tamoxifen-resistant breast cancer cell line was evaluated. The loss of SRC-1, SRC-2, or SRC-3 did not significantly alter LCC2 proliferation or cell cycle distribution of 4-hydroxytamoxifen- versus vehicle-treated cells. However, depletion of SRC-2 and SRC-3, but not SRC-1, decreased basal cell proliferation and increased apoptosis. Cell cycle analyses further illustrated the divergent contributions of SRC-2 and SRC-3 with depletion of the former increasing the percentage of cells in the G(0)G(1) and sub-G(0)G(1) phases of cell cycle yet maintaining sensitivity to estradiol and ICI 182 780 antiestrogen, while SRC-3 depletion increased cells in the sub-G(0)G(1) phase and ablated response to estrogen receptor α (ERα) ligands. Surprisingly, the effects of SRC coactivator depletion on ERα transcriptional activity, as measured by luciferase reporter gene, did not correspond to the observed effects on proliferation (e.g. SRC-1 knockdown increases ERα activity). Collectively, these data indicate that SRC control of basal and hormone-regulated proliferations is not solely mediated by ERα, and suggest that targeting growth inhibition by disrupting SRC-2 and SRC-3 function may be an effective approach to inhibit the growth of tamoxifen-resistant breast cancer.
Collapse
Affiliation(s)
- Sudipan Karmakar
- Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
43
|
Abstract
Breast carcinogenesis is a multistep process involving both genetic and epigenetic changes. Epigenetics is defined as reversible changes in gene expression, not accompanied by alteration in gene sequence. DNA methylation, histone modification, and nucleosome remodeling are the major epigenetic changes that are dysregulated in breast cancer. Several genes involved in proliferation, anti-apoptosis, invasion, and metastasis have been shown to undergo epigenetic changes in breast cancer. Because epigenetic changes are potentially reversible processes, much effort has been directed toward understanding this mechanism with the goal of finding effective therapies that target these changes. Both demethylating agents and the histone deacetylase inhibitors (HDACi) are under investigation as single agents or in combination with other systemic therapies in the treatment of breast cancer. In this review, we discuss the role of epigenetic regulation in breast cancer, in particular focusing on the clinical trials using therapies that modulate epigenetic mechanisms.
Collapse
Affiliation(s)
- Maryam B Lustberg
- Division of Hematology and Oncology, Comprehensive Cancer Center, The Ohio State University Medical Center, Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH, USA
| | | |
Collapse
|
44
|
Thyroid hormone receptor β1 domains responsible for the antagonism with the ras oncogene: role of corepressors. Oncogene 2010; 30:854-64. [DOI: 10.1038/onc.2010.464] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
45
|
Ungaro P, Teperino R, Mirra P, Longo M, Ciccarelli M, Raciti GA, Nigro C, Miele C, Formisano P, Beguinot F. Hepatocyte nuclear factor (HNF)-4alpha-driven epigenetic silencing of the human PED gene. Diabetologia 2010; 53:1482-92. [PMID: 20396999 DOI: 10.1007/s00125-010-1732-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Accepted: 02/25/2010] [Indexed: 01/03/2023]
Abstract
AIMS/HYPOTHESIS Overexpression of PED (also known as PEA15) determines insulin resistance and impaired insulin secretion and may contribute to progression toward type 2 diabetes. Recently, we found that the transcription factor hepatocyte nuclear factor (HNF)-4alpha binds to PED promoter and represses its transcription. However, the molecular details responsible for regulation of PED gene remain unclear. METHODS Here we used gain and loss of function approaches to investigate the hypothesis that HNF-4alpha controls chromatin remodelling at the PED promoter in human cell lines. RESULTS HNF-4alpha production and binding induce chromatin remodelling at the -250 to 50 region of PED, indicating that remodelling is limited to two nucleosomes located at the proximal promoter. Chromatin immunoprecipitation assays also revealed concomitant HNF-4alpha-induced deacetylation of histone H3 at Lys9 and Lys14, and increased dimethylation of histone H3 at Lys9. The latter was followed by reduction of histone H3 Lys4 dimethylation. HNF-4alpha was also shown to target the histone deacetylase complex associated with silencing mediator of retinoic acid and thyroid hormone receptor, both at the PED promoter, and at GRB14 and USP21 regulatory regions, leading to a reduction of mRNA levels. Moreover, HNF-4alpha silencing and PED overexpression were accompanied by a significant reduction of hepatic glycogen content. CONCLUSIONS/INTERPRETATION These results show that HNF-4alpha serves as a scaffold protein for histone deacetylase activities, thereby inhibiting liver expression of genes including PED. Dysregulation of these mechanisms may lead to upregulation of the PED gene in type 2 diabetes.
Collapse
Affiliation(s)
- P Ungaro
- Dipartimento di Biologia e Patologia Cellulare e Molecolare L. Califano & Istituto di Endocrinologia ed Oncologia Sperimentale del CNR, Università di Napoli Federico II, Via Sergio Pansini, 5, Naples, 80131, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Hong W, Chen L, Li J, Yao Z. Inhibition of MAP kinase promotes the recruitment of corepressor SMRT by tamoxifen-bound estrogen receptor alpha and potentiates tamoxifen action in MCF-7 cells. Biochem Biophys Res Commun 2010; 396:299-303. [PMID: 20406620 DOI: 10.1016/j.bbrc.2010.04.085] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2010] [Accepted: 04/10/2010] [Indexed: 02/07/2023]
Abstract
Estrogen receptor alpha (ERalpha), a ligand controlled transcription factor, plays an important role in breast cancer growth and endocrine therapy. Tamoxifen (TAM) antagonizes ERalpha activity and has been applied in breast cancer treatment. TAM-bound ERalpha associates with nuclear receptor-corepressors. Mitogen-activated protein kinase (MAPK) has been elucidated to result in cross-talk between growth factor and ERalpha mediated signaling. We show that activated MAPK represses interaction of TAM-bound ERalpha with silencing mediator for retinoid and thyroid hormone receptors (SMRT) and inhibits the recruitment of SMRT by ERalpha to certain estrogen target genes. Blockade of MAPK signaling cascade with MEK inhibitor U0126 promotes the interaction and subsequently inhibits ERalpha activity via enhanced recruitment of SMRT, leading to reduced expression of ERalpha target genes. The growth rate of MCF-7 cells was decelerated when treated with both TAM and U0126. Moreover, the growth of MCF-7 cells stably expressing SMRT showed a robust repression in the presence of TAM and U0126. These results suggest that activated MAPK signaling cascade attenuates antagonist-induced recruitment of SMRT to ERalpha, suggesting corepressor mediates inhibition of ERalpha transactivation and breast cancer cell growth by antagonist. Taken together, our finding indicates combination of antagonist and MAPK inhibitor could be a helpful approach for breast cancer therapy.
Collapse
Affiliation(s)
- Wei Hong
- Department of Immunology, Tianjin Medical University, 300070 Tianjin, China.
| | | | | | | |
Collapse
|
47
|
Karmakar S, Gao T, Pace MC, Oesterreich S, Smith CL. Cooperative activation of cyclin D1 and progesterone receptor gene expression by the SRC-3 coactivator and SMRT corepressor. Mol Endocrinol 2010; 24:1187-202. [PMID: 20392877 DOI: 10.1210/me.2009-0480] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Although the ability of coactivators to enhance the expression of estrogen receptor-alpha (ERalpha) target genes is well established, the role of corepressors in regulating 17beta-estradiol (E2)-induced gene expression is poorly understood. Previous studies revealed that the silencing mediator of retinoic acid and thyroid hormone receptor (SMRT) corepressor is required for full ERalpha transcriptional activity in MCF-7 breast cancer cells, and we report herein the E2-dependent recruitment of SMRT to the regulatory regions of the progesterone receptor (PR) and cyclin D1 genes. Individual depletion of SMRT or steroid receptor coactivator (SRC)-3 modestly decreased E2-induced PR and cyclin D1 expression; however, simultaneous depletion revealed a cooperative effect of this coactivator and corepressor on the expression of these genes. SMRT and SRC-3 bind directly in an ERalpha-independent manner, and this interaction promotes E2-dependent SRC-3 binding to ERalpha measured by co-IP and SRC-3 recruitment to the cyclin D1 gene as measured by chromatin IP assays. Moreover, SMRT stimulates the intrinsic transcriptional activity of all of the SRC family (p160) coactivators. Our data link the SMRT corepressor directly with SRC family coactivators in positive regulation of ERalpha-dependent gene expression and, taken with the positive correlation found for SMRT and SRC-3 in human breast tumors, suggest that SMRT can promote ERalpha- and SRC-3-dependent gene expression in breast cancer.
Collapse
Affiliation(s)
- Sudipan Karmakar
- Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|
48
|
Wang P, Wen Y, Han GZ, Sidhu PK, Zhu BT. Characterization of the oestrogenic activity of non-aromatic steroids: are there male-specific endogenous oestrogen receptor modulators? Br J Pharmacol 2010; 158:1796-807. [PMID: 19888961 DOI: 10.1111/j.1476-5381.2009.00467.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE The endogenous oestrogens have important biological functions in men as well as in women. Because 17beta-oestradiol and oestrone are also formed in the male body, these aromatic oestrogens are generally thought to be responsible for exerting the required oestrogenic functions in the male. In the present study, we tested the hypothesis that some of the non-aromatic steroids that are androgen precursors or metabolites with hydroxyl groups at C-3 and/or C-17 positions may also be able to serve as ligands for the oestrogen receptors (ER) in the male. EXPERIMENTAL APPROACH A total of sixty non-aromatic steroids (selected from families of androstens, androstans, androstadiens, oestrens and oestrans) were analysed for their ability to bind and activate the human ERalpha and ERbetain vitro and in cultured cells. KEY RESULTS Six of the non-aromatic steroids, that is, 5-androsten-3beta,17beta-diol, 5alpha-androstan-3beta,17beta-diol, 5(10)-oestren-3alpha,17beta-diol, 5(10)-oestren-3beta,17beta-diol, 4-oestren-3beta,17beta-diol and 5alpha-oestran-3beta,17beta-diol, were found to have physiologically relevant high binding affinity ( approximately 50% of that of oestrone) for human ERalpha and ERbeta. These non-aromatic steroids also activated the transcriptional activity of human ERs and elicited biological responses (such as growth stimulation) in two representative ER-positive human cancer cell lines (MCF-7 and LNCaP) with physiologically relevant potency and efficacy. Molecular docking analysis of these six active compounds showed that they could bind to ERalpha and ERbeta in a manner similar to that of 17beta-oestradiol. CONCLUSIONS AND IMPLICATIONS These results provide evidence for the possibility that some of the endogenous androgen precursors or metabolites could serve as male-specific ER ligands.
Collapse
Affiliation(s)
- Pan Wang
- Department of Pharmacology, Toxicology and Therapeutics, School of Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | | | | | | | | |
Collapse
|
49
|
Lanz RB, Bulynko Y, Malovannaya A, Labhart P, Wang L, Li W, Qin J, Harper M, O'Malley BW. Global characterization of transcriptional impact of the SRC-3 coregulator. Mol Endocrinol 2010; 24:859-72. [PMID: 20181721 DOI: 10.1210/me.2009-0499] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The nuclear receptor and bona fide oncogene, steroid receptor coactivator-3 (SRC-3, AIB1), acts as a master transcriptional regulator of breast cancer by transducing growth signals via the estrogen receptor alpha (ER). In this resource paper, we present the genome-wide localization analysis of SRC-3 chromatin affinity sites in MCF-7 human breast cancer chromatin and compare the cis binding sites to global cartographies for ER and FoxA1. By correlating their gene proximal binding sites to integrated gene expression signatures, and in combination with gene ontology analyses, we provide a functional classification of estradiol-induced gene regulation that further highlights an intricate transcriptional control of interdependent cellular pathways by SRC-3. Furthermore, by presenting proteomics analyses of in vivo SRC-3- and ER-associated proteins, we give strong evidence to support the idea that the interpretative power of SRC-3 in estrogen signaling is mediated through the formation of distinct, cell state-dependent protein complexes. Altogether, we present the first approach in complementary comparative analyses that converges results obtained by three discovery-driven methods (cistromics, transcriptomics, and proteomics) into testable hypotheses, thus providing a valuable resource for follow-up studies that further our understanding of estrogen signaling in human diseases in general and breast cancer in particular.
Collapse
Affiliation(s)
- Rainer B Lanz
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Lustberg MB, Ramaswamy B. Epigenetic targeting in breast cancer: therapeutic impact and future direction. ACTA ACUST UNITED AC 2010; 22:369-81. [PMID: 19890494 DOI: 10.1358/dnp.2009.22.7.1405072] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Breast carcinogenesis is a multistep process involving both genetic and epigenetic changes. Epigenetics is defined as a reversible and heritable change in gene expression that is not accompanied by alteration in gene sequence. DNA methylation and histone modifications are the two major epigenetic changes that influence gene expression in cancer. The interaction between methylation and histone modification is intricately orchestrated by the formation of repressor complexes. Several genes involved in proliferation, antiapoptosis, invasion and metastasis have been shown to be methylated in various malignant and premalignant breast neoplasms. The histone deacetylase inhibitors (HDi) have emerged as an important class of drugs to be used synergistically with other systemic therapies in the treatment of breast cancer. Since epigenetic changes are potentially reversible processes, much effort has been directed toward understanding this mechanism with the goal of finding novel therapies as well as more refined diagnostic and prognostic tools in breast cancer.
Collapse
Affiliation(s)
- M B Lustberg
- Division of Hematology and Oncology, Comprehensive Cancer Center, The Ohio State University Medical Center, USA
| | | |
Collapse
|