1
|
Zhang X, Van Treeck B, Horton CA, McIntyre JJR, Palm SM, Shumate JL, Collins K. Harnessing eukaryotic retroelement proteins for transgene insertion into human safe-harbor loci. Nat Biotechnol 2025; 43:42-51. [PMID: 38379101 PMCID: PMC11371274 DOI: 10.1038/s41587-024-02137-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/10/2024] [Indexed: 02/22/2024]
Abstract
Current approaches for inserting autonomous transgenes into the genome, such as CRISPR-Cas9 or virus-based strategies, have limitations including low efficiency and high risk of untargeted genome mutagenesis. Here, we describe precise RNA-mediated insertion of transgenes (PRINT), an approach for site-specifically primed reverse transcription that directs transgene synthesis directly into the genome at a multicopy safe-harbor locus. PRINT uses delivery of two in vitro transcribed RNAs: messenger RNA encoding avian R2 retroelement-protein and template RNA encoding a transgene of length validated up to 4 kb. The R2 protein coordinately recognizes the target site, nicks one strand at a precise location and primes complementary DNA synthesis for stable transgene insertion. With a cultured human primary cell line, over 50% of cells can gain several 2 kb transgenes, of which more than 50% are full-length. PRINT advantages include no extragenomic DNA, limiting risk of deleterious mutagenesis and innate immune responses, and the relatively low cost, rapid production and scalability of RNA-only delivery.
Collapse
Affiliation(s)
- Xiaozhu Zhang
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, USA
| | - Briana Van Treeck
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, USA
| | - Connor A Horton
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, USA
| | - Jeremy J R McIntyre
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, USA
| | - Sarah M Palm
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, USA
| | - Justin L Shumate
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, USA
| | - Kathleen Collins
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, USA.
| |
Collapse
|
2
|
Blokhina Y, Buchwalter A. Modeling the consequences of age-linked rDNA hypermethylation with dCas9-directed DNA methylation in human cells. PLoS One 2024; 19:e0310626. [PMID: 39666677 PMCID: PMC11637357 DOI: 10.1371/journal.pone.0310626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 09/03/2024] [Indexed: 12/14/2024] Open
Abstract
Ribosomal DNA (rDNA) genes encode the structural RNAs of the ribosome and are present in hundreds of copies in mammalian genomes. Age-linked DNA hypermethylation throughout the rDNA constitutes a robust "methylation clock" that accurately reports age, yet the consequences of hypermethylation on rDNA function are unknown. We confirmed that pervasive hypermethylation of rDNA occurs during mammalian aging and senescence while rDNA copy number remains stable. We found that DNA methylation is exclusively found on the promoters and gene bodies of inactive rDNA. To model the effects of age-linked methylation on rDNA function, we directed de novo DNA methylation to the rDNA promoter or gene body with a nuclease-dead Cas9 (dCas9)-DNA methyltransferase fusion enzyme in human cells. Hypermethylation at each target site had no detectable effect on rRNA transcription, nucleolar morphology, or cellular growth rate. Instead, human UBF and Pol I remain bound to rDNA promoters in the presence of increased DNA methylation. These data suggest that promoter methylation is not sufficient to impair transcription of the human rDNA and imply that the human rDNA transcription machinery may be resilient to age-linked rDNA hypermethylation.
Collapse
Affiliation(s)
- Yana Blokhina
- Cardiovascular Research Institute and Department of Physiology, University of California, San Francisco, San Francisco, California, United States of America
| | - Abigail Buchwalter
- Cardiovascular Research Institute and Department of Physiology, University of California, San Francisco, San Francisco, California, United States of America
| |
Collapse
|
3
|
Chen Z, Wang X, Gao X, Arslanovic N, Chen K, Tyler JK. Transcriptional inhibition after irradiation occurs preferentially at highly expressed genes in a manner dependent on cell cycle progression. eLife 2024; 13:RP94001. [PMID: 39392398 PMCID: PMC11469672 DOI: 10.7554/elife.94001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024] Open
Abstract
In response to DNA double-strand damage, ongoing transcription is inhibited to facilitate accurate DNA repair while transcriptional recovery occurs after DNA repair is complete. However, the mechanisms at play and the identity of the transcripts being regulated in this manner are unclear. In contrast to the situation following UV damage, we found that transcriptional recovery after ionizing radiation (IR) occurs in a manner independent of the HIRA histone chaperone. Sequencing of the nascent transcripts identified a programmed transcriptional response, where certain transcripts and pathways are rapidly downregulated after IR, while other transcripts and pathways are upregulated. Specifically, most of the loss of nascent transcripts occurring after IR is due to inhibition of transcriptional initiation of the highly transcribed histone genes and the rDNA. To identify factors responsible for transcriptional inhibition after IR in an unbiased manner, we performed a whole genome gRNA library CRISPR/Cas9 screen. Many of the top hits on our screen were factors required for protein neddylation. However, at short times after inhibition of neddylation, transcriptional inhibition still occurred after IR, even though neddylation was effectively inhibited. Persistent inhibition of neddylation blocked transcriptional inhibition after IR, and it also leads to cell cycle arrest. Indeed, we uncovered that many inhibitors and conditions that lead to cell cycle arrest in G1 or G2 phase also prevent transcriptional inhibition after IR. As such, it appears that transcriptional inhibition after IR occurs preferentially at highly expressed genes in cycling cells.
Collapse
Affiliation(s)
- Zulong Chen
- Weill Cornell Medicine, Department of Pathology and Laboratory MedicineNew YorkUnited States
| | - Xin Wang
- Basic and Translational Research Division, Department of Cardiology, Boston Children's HospitalBostonUnited States
- Department of Pediatrics, Harvard Medical SchoolBostonUnited States
| | - Xinlei Gao
- Basic and Translational Research Division, Department of Cardiology, Boston Children's HospitalBostonUnited States
- Department of Pediatrics, Harvard Medical SchoolBostonUnited States
| | - Nina Arslanovic
- Weill Cornell Medicine, Department of Pathology and Laboratory MedicineNew YorkUnited States
| | - Kaifu Chen
- Basic and Translational Research Division, Department of Cardiology, Boston Children's HospitalBostonUnited States
- Department of Pediatrics, Harvard Medical SchoolBostonUnited States
| | - Jessica K Tyler
- Weill Cornell Medicine, Department of Pathology and Laboratory MedicineNew YorkUnited States
| |
Collapse
|
4
|
Qiu GH, Fu M, Zheng X, Huang C. Protection of the genome and the central exome by peripheral non-coding DNA against DNA damage in health, ageing and age-related diseases. Biol Rev Camb Philos Soc 2024. [PMID: 39327815 DOI: 10.1111/brv.13151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 09/15/2024] [Accepted: 09/18/2024] [Indexed: 09/28/2024]
Abstract
DNA in eukaryotic genomes is under constant assault from both exogenous and endogenous sources, leading to DNA damage, which is considered a major molecular driver of ageing. Fortunately, the genome and the central exome are safeguarded against these attacks by abundant peripheral non-coding DNA. Non-coding DNA codes for small non-coding RNAs that inactivate foreign nucleic acids in the cytoplasm and physically blocks these attacks in the nucleus. Damage to non-coding DNA produced during such blockage is removed in the form of extrachromosomal circular DNA (eccDNA) through nucleic pore complexes. Consequently, non-coding DNA serves as a line of defence for the exome against DNA damage. The total amount of non-coding DNA/heterochromatin declines with age, resulting in a decrease in both physical blockage and eccDNA exclusion, and thus an increase in the accumulation of DNA damage in the nucleus during ageing and in age-related diseases. Here, we summarize recent evidence supporting a protective role of non-coding DNA in healthy and pathological states and argue that DNA damage is the proximate cause of ageing and age-related genetic diseases. Strategies aimed at strengthening the protective role of non-coding DNA/heterochromatin could potentially offer better systematic protection for the dynamic genome and the exome against diverse assaults, reduce the burden of DNA damage to the exome, and thus slow ageing, counteract age-related genetic diseases and promote a healthier life for individuals.
Collapse
Affiliation(s)
- Guo-Hua Qiu
- College of Life Sciences, Longyan University, Longyan, 364012, People's Republic of China
- Fujian Provincial Key Laboratory of Preventive Veterinary Medicine and Biotechnology, Engineering Research Center for the Prevention and Control of Animal-Origin Zoonosis, Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Fujian Province Universities, Longyan, People's Republic of China
| | - Mingjun Fu
- College of Life Sciences, Longyan University, Longyan, 364012, People's Republic of China
- Fujian Provincial Key Laboratory of Preventive Veterinary Medicine and Biotechnology, Engineering Research Center for the Prevention and Control of Animal-Origin Zoonosis, Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Fujian Province Universities, Longyan, People's Republic of China
| | - Xintian Zheng
- College of Life Sciences, Longyan University, Longyan, 364012, People's Republic of China
- Fujian Provincial Key Laboratory of Preventive Veterinary Medicine and Biotechnology, Engineering Research Center for the Prevention and Control of Animal-Origin Zoonosis, Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Fujian Province Universities, Longyan, People's Republic of China
| | - Cuiqin Huang
- College of Life Sciences, Longyan University, Longyan, 364012, People's Republic of China
- Fujian Provincial Key Laboratory of Preventive Veterinary Medicine and Biotechnology, Engineering Research Center for the Prevention and Control of Animal-Origin Zoonosis, Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Fujian Province Universities, Longyan, People's Republic of China
| |
Collapse
|
5
|
Yang F, Guo X, Bao Y, Li R. The role of ribosomal DNA methylation in embryonic development, aging and diseases. Epigenetics Chromatin 2024; 17:23. [PMID: 39085958 PMCID: PMC11290161 DOI: 10.1186/s13072-024-00548-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/11/2024] [Indexed: 08/02/2024] Open
Abstract
The ribosomal DNA (rDNA) constitutes a remarkably conserved DNA sequence within species, located in the area of the nucleolus, and responsible for coding three major types of rRNAs (18S, 5.8S and 28S). While historical investigations into rDNA focused on its structure and coding capabilities, recent research has turned to explore its functional roles in various biological processes. In this review, we summarize the main findings of rDNA methylation with embryonic development, aging and diseases in multiple species, including epigenetic alterations, related biological processes and potential applications of rDNA methylation. We present an overview of current related research and identify gaps in this field.
Collapse
Affiliation(s)
- Fei Yang
- National Genomics Data Center, China National Center for Bioinformation, Beijing, 100101, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xutong Guo
- National Genomics Data Center, China National Center for Bioinformation, Beijing, 100101, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yiming Bao
- National Genomics Data Center, China National Center for Bioinformation, Beijing, 100101, China.
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Rujiao Li
- National Genomics Data Center, China National Center for Bioinformation, Beijing, 100101, China.
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
6
|
Chen Z, Wang X, Gao X, Arslanovic N, Chen K, Tyler J. Transcriptional inhibition after irradiation occurs preferentially at highly expressed genes in a manner dependent on cell cycle progression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.20.567799. [PMID: 38045243 PMCID: PMC10690177 DOI: 10.1101/2023.11.20.567799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
In response to DNA double strand damage, ongoing transcription is inhibited to facilitate accurate DNA repair while transcriptional recovery occurs after DNA repair is complete. However, the mechanisms at play and identity of the transcripts being regulated in this manner are unclear. In contrast to the situation following UV damage, we found that transcriptional recovery after ionizing radiation (IR) occurs in a manner independent of the HIRA histone chaperone. Sequencing of the nascent transcripts identified a programmed transcriptional response, where certain transcripts and pathways are rapidly downregulated after IR, while other transcripts and pathways are upregulated. Specifically, most of the loss of nascent transcripts occurring after IR is due to inhibition of transcriptional initiation of the highly transcribed histone genes and the rDNA. To identify factors responsible for transcriptional inhibition after IR in an unbiased manner, we performed a whole genome gRNA library CRISPR / Cas9 screen. Many of the top hits in our screen were factors required for protein neddylation. However, at short times after inhibition of neddylation, transcriptional inhibition still occurred after IR, even though neddylation was effectively inhibited. Persistent inhibition of neddylation blocked transcriptional inhibition after IR, and it also leads to cell cycle arrest. Indeed, we uncovered that many inhibitors and conditions that lead to cell cycle arrest in G1 or G2 phase also prevent transcriptional inhibition after IR. As such, it appears that transcriptional inhibition after IR occurs preferentially at highly expressed genes in cycling cells.
Collapse
Affiliation(s)
- Zulong Chen
- Weill Cornell Medicine, Department of Pathology and Laboratory Medicine, New York, NY 10065, USA
| | - Xin Wang
- Basic and Translational Research Division, Department of Cardiology, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Xinlei Gao
- Basic and Translational Research Division, Department of Cardiology, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Nina Arslanovic
- Weill Cornell Medicine, Department of Pathology and Laboratory Medicine, New York, NY 10065, USA
| | - Kaifu Chen
- Basic and Translational Research Division, Department of Cardiology, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Jessica Tyler
- Weill Cornell Medicine, Department of Pathology and Laboratory Medicine, New York, NY 10065, USA
| |
Collapse
|
7
|
Kim JH, Nagaraja R, Ogurtsov AY, Noskov VN, Liskovykh M, Lee HS, Hori Y, Kobayashi T, Hunter K, Schlessinger D, Kouprina N, Shabalina SA, Larionov V. Comparative analysis and classification of highly divergent mouse rDNA units based on their intergenic spacer (IGS) variability. NAR Genom Bioinform 2024; 6:lqae070. [PMID: 38881577 PMCID: PMC11177557 DOI: 10.1093/nargab/lqae070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/20/2024] [Accepted: 06/05/2024] [Indexed: 06/18/2024] Open
Abstract
Ribosomal DNA (rDNA) repeat units are organized into tandem clusters in eukaryotic cells. In mice, these clusters are located on at least eight chromosomes and show extensive variation in the number of repeats between mouse genomes. To analyze intra- and inter-genomic variation of mouse rDNA repeats, we selectively isolated 25 individual rDNA units using Transformation-Associated Recombination (TAR) cloning. Long-read sequencing and subsequent comparative sequence analysis revealed that each full-length unit comprises an intergenic spacer (IGS) and a ∼13.4 kb long transcribed region encoding the three rRNAs, but with substantial variability in rDNA unit size, ranging from ∼35 to ∼46 kb. Within the transcribed regions of rDNA units, we found 209 variants, 70 of which are in external transcribed spacers (ETSs); but the rDNA size differences are driven primarily by IGS size heterogeneity, due to indels containing repetitive elements and some functional signals such as enhancers. Further evolutionary analysis categorized rDNA units into distinct clusters with characteristic IGS lengths; numbers of enhancers; and presence/absence of two common SNPs in promoter regions, one of which is located within promoter (p)RNA and may influence pRNA folding stability. These characteristic features of IGSs also correlated significantly with 5'ETS variant patterns described previously and associated with differential expression of rDNA units. Our results suggest that variant rDNA units are differentially regulated and open a route to investigate the role of rDNA variation on nucleolar formation and possible associations with pathology.
Collapse
Affiliation(s)
- Jung-Hyun Kim
- National Cancer Institute, Developmental Therapeutics Branch, Bethesda, MD, USA
| | - Ramaiah Nagaraja
- National Institute of Aging, Laboratory of Genetics and Genomics, Baltimore, MD, USA
| | - Alexey Y Ogurtsov
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD, USA
| | - Vladimir N Noskov
- National Cancer Institute, Developmental Therapeutics Branch, Bethesda, MD, USA
| | - Mikhail Liskovykh
- National Cancer Institute, Developmental Therapeutics Branch, Bethesda, MD, USA
| | - Hee-Sheung Lee
- National Cancer Institute, Developmental Therapeutics Branch, Bethesda, MD, USA
| | - Yutaro Hori
- The University of Tokyo, Laboratory of Genome Regeneration, Tokyo 113-0032, Japan
| | - Takehiko Kobayashi
- The University of Tokyo, Laboratory of Genome Regeneration, Tokyo 113-0032, Japan
| | - Kent Hunter
- National Cancer Institute, Laboratory of Cancer Biology and Genetics, Bethesda, MD, USA
| | - David Schlessinger
- National Institute of Aging, Laboratory of Genetics and Genomics, Baltimore, MD, USA
| | - Natalay Kouprina
- National Cancer Institute, Developmental Therapeutics Branch, Bethesda, MD, USA
| | - Svetlana A Shabalina
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD, USA
| | - Vladimir Larionov
- National Cancer Institute, Developmental Therapeutics Branch, Bethesda, MD, USA
| |
Collapse
|
8
|
Murai T, Yanagi S, Hori Y, Kobayashi T. Replication fork blocking deficiency leads to a reduction of rDNA copy number in budding yeast. iScience 2024; 27:109120. [PMID: 38384843 PMCID: PMC10879690 DOI: 10.1016/j.isci.2024.109120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/27/2023] [Accepted: 01/31/2024] [Indexed: 02/23/2024] Open
Abstract
The ribosomal RNA genes are encoded as hundreds of tandem repeats, known as the rDNA, in eukaryotes. Maintaining these copies seems to be necessary, but copy number changes in an active manner have been reported in only frogs, flies, Neurospora, and yeast. In the best-studied system, yeast, a protein (Fob1) binds to the rDNA and unidirectionally blocks the replication fork. This block stimulates rDNA double-strand breaks (DSBs) leading to recombination and copy number change. To date, copy number maintenance and concerted evolution mediated by rDNA repeat turnover were the proposed benefits of Fob1-dependent replication fork arrest. In this study, we tested whether Fob1 provides these benefits and found that rDNA copy number decreases when FOB1 is deleted, suggesting that Fob1 is important for recovery from low copy number. We suppose that replication fork stalling at rDNA is necessary for recovering from rDNA copy number loss in other species as well.
Collapse
Affiliation(s)
- Taichi Murai
- Laboratory of Genome Regeneration, Institute for Quantitative Biosciences (IQB), The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Shuichi Yanagi
- Laboratory of Genome Regeneration, Institute for Quantitative Biosciences (IQB), The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Yutaro Hori
- Laboratory of Genome Regeneration, Institute for Quantitative Biosciences (IQB), The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Takehiko Kobayashi
- Laboratory of Genome Regeneration, Institute for Quantitative Biosciences (IQB), The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| |
Collapse
|
9
|
Garcia S, Kovarik A, Maiwald S, Mann L, Schmidt N, Pascual-Díaz JP, Vitales D, Weber B, Heitkam T. The Dynamic Interplay Between Ribosomal DNA and Transposable Elements: A Perspective From Genomics and Cytogenetics. Mol Biol Evol 2024; 41:msae025. [PMID: 38306580 PMCID: PMC10946416 DOI: 10.1093/molbev/msae025] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 12/06/2023] [Accepted: 01/29/2024] [Indexed: 02/04/2024] Open
Abstract
Although both are salient features of genomes, at first glance ribosomal DNAs and transposable elements are genetic elements with not much in common: whereas ribosomal DNAs are mainly viewed as housekeeping genes that uphold all prime genome functions, transposable elements are generally portrayed as selfish and disruptive. These opposing characteristics are also mirrored in other attributes: organization in tandem (ribosomal DNAs) versus organization in a dispersed manner (transposable elements); evolution in a concerted manner (ribosomal DNAs) versus evolution by diversification (transposable elements); and activity that prolongs genomic stability (ribosomal DNAs) versus activity that shortens it (transposable elements). Re-visiting relevant instances in which ribosomal DNA-transposable element interactions have been reported, we note that both repeat types share at least four structural and functional hallmarks: (1) they are repetitive DNAs that shape genomes in evolutionary timescales, (2) they exchange structural motifs and can enter co-evolution processes, (3) they are tightly controlled genomic stress sensors playing key roles in senescence/aging, and (4) they share common epigenetic marks such as DNA methylation and histone modification. Here, we give an overview of the structural, functional, and evolutionary characteristics of both ribosomal DNAs and transposable elements, discuss their roles and interactions, and highlight trends and future directions as we move forward in understanding ribosomal DNA-transposable element associations.
Collapse
Affiliation(s)
- Sònia Garcia
- Institut Botànic de Barcelona (IBB), CSIC-CMCNB, 08038 Barcelona, Catalonia, Spain
| | - Ales Kovarik
- Institute of Biophysics, Academy of Sciences of the Czech Republic, 61265 Brno, Czech Republic
| | - Sophie Maiwald
- Faculty of Biology, Technische Universität Dresden, D-01069 Dresden, Germany
| | - Ludwig Mann
- Faculty of Biology, Technische Universität Dresden, D-01069 Dresden, Germany
| | - Nicola Schmidt
- Faculty of Biology, Technische Universität Dresden, D-01069 Dresden, Germany
| | | | - Daniel Vitales
- Institut Botànic de Barcelona (IBB), CSIC-CMCNB, 08038 Barcelona, Catalonia, Spain
- Laboratori de Botànica–Unitat Associada CSIC, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, 08028 Barcelona, Catalonia, Spain
| | - Beatrice Weber
- Faculty of Biology, Technische Universität Dresden, D-01069 Dresden, Germany
| | - Tony Heitkam
- Faculty of Biology, Technische Universität Dresden, D-01069 Dresden, Germany
- Institute of Biology, NAWI Graz, Karl-Franzens-Universität, A-8010 Graz, Austria
| |
Collapse
|
10
|
Griffin PT, Kane AE, Trapp A, Li J, Arnold M, Poganik JR, Conway RJ, McNamara MS, Meer MV, Hoffman N, Amorim JA, Tian X, MacArthur MR, Mitchell SJ, Mueller AL, Carmody C, Vera DL, Kerepesi C, Ying K, Noren Hooten N, Mitchell JR, Evans MK, Gladyshev VN, Sinclair DA. TIME-seq reduces time and cost of DNA methylation measurement for epigenetic clock construction. NATURE AGING 2024; 4:261-274. [PMID: 38200273 PMCID: PMC11332592 DOI: 10.1038/s43587-023-00555-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 12/05/2023] [Indexed: 01/12/2024]
Abstract
Epigenetic 'clocks' based on DNA methylation have emerged as the most robust and widely used aging biomarkers, but conventional methods for applying them are expensive and laborious. Here we develop tagmentation-based indexing for methylation sequencing (TIME-seq), a highly multiplexed and scalable method for low-cost epigenetic clocks. Using TIME-seq, we applied multi-tissue and tissue-specific epigenetic clocks in over 1,800 mouse DNA samples from eight tissue and cell types. We show that TIME-seq clocks are accurate and robust, enriched for polycomb repressive complex 2-regulated loci, and benchmark favorably against conventional methods despite being up to 100-fold less expensive. Using dietary treatments and gene therapy, we find that TIME-seq clocks reflect diverse interventions in multiple tissues. Finally, we develop an economical human blood clock (R > 0.96, median error = 3.39 years) in 1,056 demographically representative individuals. These methods will enable more efficient epigenetic clock measurement in larger-scale human and animal studies.
Collapse
Affiliation(s)
- Patrick T Griffin
- Blavatnik Institute, Department of Genetics, Paul F. Glenn Center for Biology of Aging Research at Harvard Medical School, Boston, MA, USA
| | - Alice E Kane
- Blavatnik Institute, Department of Genetics, Paul F. Glenn Center for Biology of Aging Research at Harvard Medical School, Boston, MA, USA
- Institute for Systems Biology, Seattle, WA, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Alexandre Trapp
- Brigham and Women's Hospital, Division of Genetics, Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Jien Li
- Blavatnik Institute, Department of Genetics, Paul F. Glenn Center for Biology of Aging Research at Harvard Medical School, Boston, MA, USA
| | - Matthew Arnold
- Blavatnik Institute, Department of Genetics, Paul F. Glenn Center for Biology of Aging Research at Harvard Medical School, Boston, MA, USA
| | - Jesse R Poganik
- Brigham and Women's Hospital, Division of Genetics, Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Ryan J Conway
- Blavatnik Institute, Department of Genetics, Paul F. Glenn Center for Biology of Aging Research at Harvard Medical School, Boston, MA, USA
| | - Maeve S McNamara
- Blavatnik Institute, Department of Genetics, Paul F. Glenn Center for Biology of Aging Research at Harvard Medical School, Boston, MA, USA
| | - Margarita V Meer
- Brigham and Women's Hospital, Division of Genetics, Department of Medicine, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
- San Diego Institute of Science, Altos Labs, San Diego, CA, USA
| | - Noah Hoffman
- Blavatnik Institute, Department of Genetics, Paul F. Glenn Center for Biology of Aging Research at Harvard Medical School, Boston, MA, USA
| | - João A Amorim
- Blavatnik Institute, Department of Genetics, Paul F. Glenn Center for Biology of Aging Research at Harvard Medical School, Boston, MA, USA
| | - Xiao Tian
- Blavatnik Institute, Department of Genetics, Paul F. Glenn Center for Biology of Aging Research at Harvard Medical School, Boston, MA, USA
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Michael R MacArthur
- Department of Health Sciences and Technology, Eidgenössische Technische Hochschule Zürich, Zurich, Switzerland
- Lewis-Sigler Institute of Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Sarah J Mitchell
- Department of Health Sciences and Technology, Eidgenössische Technische Hochschule Zürich, Zurich, Switzerland
- Ludwig Princeton Branch, Princeton University, Princeton, NJ, USA
| | - Amber L Mueller
- Blavatnik Institute, Department of Genetics, Paul F. Glenn Center for Biology of Aging Research at Harvard Medical School, Boston, MA, USA
- Cell Metabolism, Cell Press, Cambridge, MA, USA
| | - Colleen Carmody
- Blavatnik Institute, Department of Genetics, Paul F. Glenn Center for Biology of Aging Research at Harvard Medical School, Boston, MA, USA
| | - Daniel L Vera
- Blavatnik Institute, Department of Genetics, Paul F. Glenn Center for Biology of Aging Research at Harvard Medical School, Boston, MA, USA
| | - Csaba Kerepesi
- Brigham and Women's Hospital, Division of Genetics, Department of Medicine, Harvard Medical School, Boston, MA, USA
- Institute for Computer Science and Control, Eötvös Loránd Research Network, Budapest, Hungary
| | - Kejun Ying
- Brigham and Women's Hospital, Division of Genetics, Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Nicole Noren Hooten
- Laboratory of Epidemiology and Population Science, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - James R Mitchell
- Department of Health Sciences and Technology, Eidgenössische Technische Hochschule Zürich, Zurich, Switzerland
| | - Michele K Evans
- Laboratory of Epidemiology and Population Science, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Vadim N Gladyshev
- Brigham and Women's Hospital, Division of Genetics, Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - David A Sinclair
- Blavatnik Institute, Department of Genetics, Paul F. Glenn Center for Biology of Aging Research at Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
11
|
Razzaq A, Bejaoui Y, Alam T, Saad M, El Hajj N. Ribosomal DNA Copy Number Variation is Coupled with DNA Methylation Changes at the 45S rDNA Locus. Epigenetics 2023; 18:2229203. [PMID: 37368968 DOI: 10.1080/15592294.2023.2229203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 06/04/2023] [Accepted: 06/20/2023] [Indexed: 06/29/2023] Open
Abstract
The human ribosomal DNA (rDNA) copy number (CN) has been challenging to analyse, and its sequence has been excluded from reference genomes due to its highly repetitive nature. The 45S rDNA locus encodes essential components of the cell, nevertheless rDNA displays high inter-individual CN variation that could influence human health and disease. CN alterations in rDNA have been hypothesized as a possible factor in autism spectrum disorders (ASD) and were shown to be altered in Schizophrenia patients. We tested whether whole-genome bisulphite sequencing can be used to simultaneously quantify rDNA CN and measure DNA methylation at the 45S rDNA locus. Using this approach, we observed high inter-individual variation in rDNA CN, and limited intra-individual copy differences in several post-mortem tissues. Furthermore, we did not observe any significant alterations in rDNA CN or DNA methylation in Autism Spectrum Disorder (ASD) brains in 16 ASD vs 11 control samples. Similarly, no difference was detected when comparing neurons form 28 Schizophrenia (Scz) patients vs 25 controls or oligodendrocytes from 22 Scz samples vs 20 controls. However, our analysis revealed a strong positive correlation between CN and DNA methylation at the 45S rDNA locus in multiple tissues. This was observed in brain and confirmed in small intestine, adipose tissue, and gastric tissue. This should shed light on a possible dosage compensation mechanism that silences additional rDNA copies to ensure homoeostatic regulation of ribosome biogenesis.
Collapse
Affiliation(s)
- Aleem Razzaq
- College of Health and Life Sciences, Qatar Foundation, Hamad Bin Khalifa University, Doha, Qatar
| | - Yosra Bejaoui
- College of Health and Life Sciences, Qatar Foundation, Hamad Bin Khalifa University, Doha, Qatar
| | - Tanvir Alam
- College of Science and Engineering, Hamad Bin Khalifa University, Doha, Qatar
| | - Mohamad Saad
- Qatar Computing Research Institute, Hamad Bin Khalifa University, Doha, Qatar
| | - Nady El Hajj
- College of Health and Life Sciences, Qatar Foundation, Hamad Bin Khalifa University, Doha, Qatar
- College of Science and Engineering, Hamad Bin Khalifa University, Doha, Qatar
| |
Collapse
|
12
|
Sasaki M, Kobayashi T. Regulatory processes that maintain or alter ribosomal DNA stability during the repair of programmed DNA double-strand breaks. Genes Genet Syst 2023; 98:103-119. [PMID: 35922917 DOI: 10.1266/ggs.22-00046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Organisms have evolved elaborate mechanisms that maintain genome stability. Deficiencies in these mechanisms result in changes to the nucleotide sequence as well as copy number and structural variations in the genome. Genome instability has been implicated in numerous human diseases. However, genomic alterations can also be beneficial as they are an essential part of the evolutionary process. Organisms sometimes program genomic changes that drive genetic and phenotypic diversity. Therefore, genome alterations can have both positive and negative impacts on cellular growth and functions, which underscores the need to control the processes that restrict or induce such changes to the genome. The ribosomal RNA gene (rDNA) is highly abundant in eukaryotic genomes, forming a cluster where numerous rDNA copies are tandemly arrayed. Budding yeast can alter the stability of its rDNA cluster by changing the rDNA copy number within the cluster or by producing extrachromosomal rDNA circles. Here, we review the mechanisms that regulate the stability of the budding yeast rDNA cluster during repair of DNA double-strand breaks that are formed in response to programmed DNA replication fork arrest.
Collapse
Affiliation(s)
- Mariko Sasaki
- Laboratory of Genome Regeneration, Institute for Quantitative Biosciences (IQB), The University of Tokyo
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo
| | - Takehiko Kobayashi
- Laboratory of Genome Regeneration, Institute for Quantitative Biosciences (IQB), The University of Tokyo
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo
| |
Collapse
|
13
|
López-Gil L, Pascual-Ahuir A, Proft M. Genomic Instability and Epigenetic Changes during Aging. Int J Mol Sci 2023; 24:14279. [PMID: 37762580 PMCID: PMC10531692 DOI: 10.3390/ijms241814279] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Aging is considered the deterioration of physiological functions along with an increased mortality rate. This scientific review focuses on the central importance of genomic instability during the aging process, encompassing a range of cellular and molecular changes that occur with advancing age. In particular, this revision addresses the genetic and epigenetic alterations that contribute to genomic instability, such as telomere shortening, DNA damage accumulation, and decreased DNA repair capacity. Furthermore, the review explores the epigenetic changes that occur with aging, including modifications to histones, DNA methylation patterns, and the role of non-coding RNAs. Finally, the review discusses the organization of chromatin and its contribution to genomic instability, including heterochromatin loss, chromatin remodeling, and changes in nucleosome and histone abundance. In conclusion, this review highlights the fundamental role that genomic instability plays in the aging process and underscores the need for continued research into these complex biological mechanisms.
Collapse
Affiliation(s)
- Lucía López-Gil
- Department of Biotechnology, Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València, Ingeniero Fausto Elio s/n, 46022 Valencia, Spain;
- Department of Molecular and Cellular Pathology and Therapy, Instituto de Biomedicina de Valencia IBV-CSIC, Consejo Superior de Investigaciones Científicas CSIC, Jaime Roig 11, 46010 Valencia, Spain
| | - Amparo Pascual-Ahuir
- Department of Biotechnology, Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València, Ingeniero Fausto Elio s/n, 46022 Valencia, Spain;
| | - Markus Proft
- Department of Molecular and Cellular Pathology and Therapy, Instituto de Biomedicina de Valencia IBV-CSIC, Consejo Superior de Investigaciones Científicas CSIC, Jaime Roig 11, 46010 Valencia, Spain
| |
Collapse
|
14
|
Singh VP, Hassan H, Deng F, Tsuchiya D, McKinney S, Ferro K, Gerton JL. Myc promotes polyploidy in murine trophoblast cells and suppresses senescence. Development 2023; 150:dev201581. [PMID: 37278344 PMCID: PMC10309589 DOI: 10.1242/dev.201581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 04/27/2023] [Indexed: 05/10/2023]
Abstract
The placenta is essential for reproductive success. The murine placenta includes polyploid giant cells that are crucial for its function. Polyploidy occurs broadly in nature but its regulators and significance in the placenta are unknown. We have discovered that many murine placental cell types are polyploid and have identified factors that license polyploidy using single-cell RNA sequencing. Myc is a key regulator of polyploidy and placental development, and is required for multiple rounds of DNA replication, likely via endocycles, in trophoblast giant cells. Furthermore, MYC supports the expression of DNA replication and nucleotide biosynthesis genes along with ribosomal RNA. Increased DNA damage and senescence occur in trophoblast giant cells without Myc, accompanied by senescence in the neighboring maternal decidua. These data reveal Myc is essential for polyploidy to support normal placental development, thereby preventing premature senescence. Our study, combined with available literature, suggests that Myc is an evolutionarily conserved regulator of polyploidy.
Collapse
Affiliation(s)
| | - Huzaifa Hassan
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Fengyan Deng
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Dai Tsuchiya
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Sean McKinney
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Kevin Ferro
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Jennifer L. Gerton
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
15
|
Teefy BB, Benayoun BA. Putting aging on ICE. Cell Metab 2023; 35:383-385. [PMID: 36889279 PMCID: PMC10592682 DOI: 10.1016/j.cmet.2023.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
A recent report by Yang et al. in Cell demonstrates that faithful DNA double-strand breaks and repair cycles phenocopy many aspects of aging in mice. Whether this progeroid phenotype is caused by a loss of epigenetic information remains to be conclusively determined.
Collapse
Affiliation(s)
- Bryan B Teefy
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Bérénice A Benayoun
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA; Molecular and Computational Biology Department, USC Dornsife College of Letters, Arts and Sciences, Los Angeles, CA 90089, USA; Biochemistry and Molecular Medicine Department, USC Keck School of Medicine, Los Angeles, CA 90089, USA; USC Norris Comprehensive Cancer Center, Epigenetics and Gene Regulation, Los Angeles, CA 90089, USA; USC Stem Cell Initiative, Los Angeles, CA 90089, USA.
| |
Collapse
|
16
|
Kindelay SM, Maggert KA. Under the magnifying glass: The ups and downs of rDNA copy number. Semin Cell Dev Biol 2023; 136:38-48. [PMID: 35595601 PMCID: PMC9976841 DOI: 10.1016/j.semcdb.2022.05.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/27/2022] [Accepted: 05/09/2022] [Indexed: 11/22/2022]
Abstract
The ribosomal DNA (rDNA) in Drosophila is found as two additive clusters of individual 35 S cistrons. The multiplicity of rDNA is essential to assure proper translational demands, but the nature of the tandem arrays expose them to copy number variation within and between populations. Here, we discuss means by which a cell responds to insufficient rDNA copy number, including a historical view of rDNA magnification whose mechanism was inferred some 35 years ago. Recent work has revealed that multiple conditions may also result in rDNA loss, in response to which rDNA magnification may have evolved. We discuss potential models for the mechanism of magnification, and evaluate possible consequences of rDNA copy number variation.
Collapse
Affiliation(s)
- Selina M Kindelay
- Genetics Graduate Interdisciplinary Program, The University of Arizona, Tucson, AZ 85724, USA
| | - Keith A Maggert
- Genetics Graduate Interdisciplinary Program, The University of Arizona, Tucson, AZ 85724, USA; Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, AZ 85724, USA.
| |
Collapse
|
17
|
Regulation of ribosomal RNA gene copy number, transcription and nucleolus organization in eukaryotes. Nat Rev Mol Cell Biol 2023; 24:414-429. [PMID: 36732602 DOI: 10.1038/s41580-022-00573-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2022] [Indexed: 02/04/2023]
Abstract
One of the first biological machineries to be created seems to have been the ribosome. Since then, organisms have dedicated great efforts to optimize this apparatus. The ribosomal RNA (rRNA) contained within ribosomes is crucial for protein synthesis and maintenance of cellular function in all known organisms. In eukaryotic cells, rRNA is produced from ribosomal DNA clusters of tandem rRNA genes, whose organization in the nucleolus, maintenance and transcription are strictly regulated to satisfy the substantial demand for rRNA required for ribosome biogenesis. Recent studies have elucidated mechanisms underlying the integrity of ribosomal DNA and regulation of its transcription, including epigenetic mechanisms and a unique recombination and copy-number control system to stably maintain high rRNA gene copy number. In this Review, we disucss how the crucial maintenance of rRNA gene copy number through control of gene amplification and of rRNA production by RNA polymerase I are orchestrated. We also discuss how liquid-liquid phase separation controls the architecture and function of the nucleolus and the relationship between rRNA production, cell senescence and disease.
Collapse
|
18
|
Hall AN, Morton E, Queitsch C. First discovered, long out of sight, finally visible: ribosomal DNA. Trends Genet 2022; 38:587-597. [PMID: 35272860 PMCID: PMC10132741 DOI: 10.1016/j.tig.2022.02.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 10/18/2022]
Abstract
With the advent of long-read sequencing, previously unresolvable genomic elements are being revisited in an effort to generate fully complete reference genomes. One such element is ribosomal DNA (rDNA), the highly conserved genomic region that encodes rRNAs. Genomic structure and content of the rDNA are variable in both prokarya and eukarya, posing interesting questions about the biology of rDNA. Here, we consider the types of variation observed in rDNA - including locus structure and number, copy number, and sequence variation - and their known phenotypic consequences. With recent advances in long-read sequencing technology, incorporating the full rDNA sequence into reference genomes is within reach. This knowledge will have important implications for understanding rDNA biology within the context of cell physiology and whole-organism phenotypes.
Collapse
Affiliation(s)
- Ashley N Hall
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Elizabeth Morton
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Christine Queitsch
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.
| |
Collapse
|
19
|
Cockrell AJ, Gerton JL. Nucleolar Organizer Regions as Transcription-Based Scaffolds of Nucleolar Structure and Function. Results Probl Cell Differ 2022; 70:551-580. [PMID: 36348121 DOI: 10.1007/978-3-031-06573-6_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Eukaryotic genomes maintain multiple copies of ribosomal DNA gene repeats in tandem arrays to provide sufficient ribosomal RNAs to make ribosomes. These DNA repeats are the most highly transcribed regions of the genome, with dedicated transcriptional machinery to manage the enormous task of producing more than 50% of the total RNA in a proliferating cell. The arrays are called nucleolar organizer regions (NORs) and constitute the scaffold of the nucleolar compartment, where ribosome biogenesis occurs. Advances in molecular and cellular biology have brought great insights into how these arrays are transcribed and organized within genomes. Much of their biology is driven by their high transcription level, which has also driven the development of unique methods to understand rDNA gene activity, beginning with classic techniques such as silver staining and Miller spreads. However, the application of modern methodologies such as CRISPR gene editing, super-resolution microscopy, and long-read sequencing has enabled recent advances described herein, with many more discoveries possible soon. This chapter highlights what is known about NOR transcription and organization and the techniques applied historically and currently. Given the potential for NORs to impact organismal health and disease, as highlighted at the end of the chapter, the field must continue to develop and apply innovative analysis to understand genetic, epigenetic, and organizer properties of the ribosomal DNA repeats.
Collapse
Affiliation(s)
- Alexandria J Cockrell
- Stowers Institute for Medical Research, Kansas City, MO, USA
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Jennifer L Gerton
- Stowers Institute for Medical Research, Kansas City, MO, USA.
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
20
|
Kasselimi E, Pefani DE, Taraviras S, Lygerou Z. Ribosomal DNA and the nucleolus at the heart of aging. Trends Biochem Sci 2022; 47:328-341. [DOI: 10.1016/j.tibs.2021.12.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 12/15/2022]
|
21
|
Abstract
PURPOSE OF REVIEW Translation of genetic information encoded within mRNA molecules by ribosomes into proteins is a key part of the central dogma of molecular biology. Despite the central position of the ribosome in the translation of proteins, and considering the major proteomic changes that occur in the joint during osteoarthritis development and progression, the ribosome has received very limited attention as driver of osteoarthritis pathogenesis. RECENT FINDINGS We provide an overview of the limited literature regarding this developing topic for the osteoarthritis field. Recent key findings that connect ribosome biogenesis and activity with osteoarthritis include: ribosomal RNA transcription, processing and maturation, ribosomal protein expression, protein translation capacity and preferential translation. SUMMARY The ribosome as the central cellular protein synthesis hub is largely neglected in osteoarthritis research. Findings included in this review reveal that in osteoarthritis, ribosome aberrations have been found from early-stage ribosome biogenesis, through ribosome build-up and maturation, up to preferential translation. Classically, osteoarthritis has been explained as an imbalance between joint tissue anabolism and catabolism. We postulate that osteoarthritis can be interpreted as an acquired ribosomopathy. This hypothesis fine-tunes the dogmatic anabolism/katabolism point-of-view, and may provide novel molecular opportunities for the development of osteoarthritis disease-modifying treatments.
Collapse
Affiliation(s)
- Guus G.H. van den Akker
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University
| | - Marjolein M.J. Caron
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University
| | - Mandy J. Peffers
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Tim J.M. Welting
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University Medical Center, Maastricht, the Netherlands
| |
Collapse
|
22
|
Hori Y, Shimamoto A, Kobayashi T. The human ribosomal DNA array is composed of highly homogenized tandem clusters. Genome Res 2021; 31:1971-1982. [PMID: 34407983 PMCID: PMC8559705 DOI: 10.1101/gr.275838.121] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 08/09/2021] [Indexed: 11/25/2022]
Abstract
The structure of the human ribosomal DNA (rDNA) cluster has traditionally been hard to analyze owing to its highly repetitive nature. However, the recent development of long-read sequencing technology, such as Oxford Nanopore sequencing, has enabled us to study the large-scale structure of the genome. Using this technology, we found that human cells have a quite regular rDNA structure. Although each human rDNA copy has some variations in its noncoding region, contiguous copies of rDNA are similar, suggesting that homogenization through gene conversion frequently occurs between copies. Analysis of rDNA methylation by Nanopore sequencing further showed that all the noncoding regions are heavily methylated, whereas about half of the coding regions are clearly unmethylated. The ratio of unmethylated copies, which are speculated to be transcriptionally active, was lower in individuals with a higher rDNA copy number, suggesting that there is a mechanism that keeps the active copy number stable. In addition, the rDNA in progeroid syndrome patient cells with reduced DNA repair activity had more unstable copies compared with control normal cells, although the rate was much lower than previously reported using a fiber-FISH method. Collectively, our results clarify the view of rDNA stability and transcription regulation in human cells, indicating the presence of mechanisms for both homogenizations to ensure sequence quality and maintenance of active copies for cellular functions.
Collapse
Affiliation(s)
- Yutaro Hori
- Institute for Quantitative Biosciences, the University of Tokyo, Tokyo 133-0032, Japan
| | - Akira Shimamoto
- Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Sanyo Onoda, Yamaguchi 756-0884, Japan
| | - Takehiko Kobayashi
- Institute for Quantitative Biosciences, the University of Tokyo, Tokyo 133-0032, Japan
| |
Collapse
|
23
|
Thousands of high-quality sequencing samples fail to show meaningful correlation between 5S and 45S ribosomal DNA arrays in humans. Sci Rep 2021; 11:449. [PMID: 33432083 PMCID: PMC7801704 DOI: 10.1038/s41598-020-80049-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 12/15/2020] [Indexed: 11/08/2022] Open
Abstract
The ribosomal RNA genes (rDNA) are tandemly arrayed in most eukaryotes and exhibit vast copy number variation. There is growing interest in integrating this variation into genotype-phenotype associations. Here, we explored a possible association of rDNA copy number variation with autism spectrum disorder and found no difference between probands and unaffected siblings. Because short-read sequencing estimates of rDNA copy number are error prone, we sought to validate our 45S estimates. Previous studies reported tightly correlated, concerted copy number variation between the 45S and 5S arrays, which should enable the validation of 45S copy number estimates with pulsed-field gel-verified 5S copy numbers. Here, we show that the previously reported strong concerted copy number variation may be an artifact of variable data quality in the earlier published 1000 Genomes Project sequences. We failed to detect a meaningful correlation between 45S and 5S copy numbers in thousands of samples from the high-coverage Simons Simplex Collection dataset as well as in the recent high-coverage 1000 Genomes Project sequences. Our findings illustrate the challenge of genotyping repetitive DNA regions accurately and call into question the accuracy of recently published studies of rDNA copy number variation in cancer that relied on diverse publicly available resources for sequence data.
Collapse
|