1
|
Maul-Newby HM, Halene S. Splicing the Difference: Harnessing the Complexity of the Transcriptome in Hematopoiesis. Exp Hematol 2024; 140:104655. [PMID: 39393608 DOI: 10.1016/j.exphem.2024.104655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/30/2024] [Accepted: 10/02/2024] [Indexed: 10/13/2024]
Abstract
Alternative splicing has long been recognized as a powerful tool to expand the diversity of the transcriptome and the proteome. The study of hematopoiesis, from hematopoietic stem cell maintenance and differentiation into committed progenitors to maturation into functional blood cells, has led the field of stem cell research and cellular differentiation for decades. The importance of aberrant splicing due to mutations in cis has been exemplified in thalassemias, resulting from aberrant expression of β-globin. The simultaneous development of increasingly sophisticated technologies, in particular the combination of multicolor flow cytometric cell sorting with bulk and single-cell sequencing, has provided sophisticated insights into the complex regulation of the blood system. The recognition that mutations in key splicing factors drive myeloid malignancies, in particular myelodysplastic syndromes, has galvanized research into alternative splicing in hematopoiesis and its diseases. In this review, we will update the audience on the exciting novel technologies, highlight alternative splicing events and their regulators with essential functions in hematopoiesis, and provide a high-level overview how splicing factor mutations contribute to hematologic malignancies.
Collapse
Affiliation(s)
- Hannah M Maul-Newby
- Section of Hematology, Department of Internal Medicine, Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, Connecticut
| | - Stephanie Halene
- Section of Hematology, Department of Internal Medicine, Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, Connecticut.
| |
Collapse
|
2
|
Joshi U, Jani D, George LB, Highland H. Human erythrocytes' perplexing behaviour: erythrocytic microRNAs. Mol Cell Biochem 2024:10.1007/s11010-024-05075-0. [PMID: 39037663 DOI: 10.1007/s11010-024-05075-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 07/14/2024] [Indexed: 07/23/2024]
Abstract
Erythrocytes have the potential role in erythropoiesis and disease diagnosis. Thought to have lacked nucleic acid content, mammalian erythrocytes are nevertheless able to function for 120-140 days, metabolize heme, maintain oxidative stress, and so on. Mysteriously, erythrocytes proved as largest repositories of microRNAs (miRNAs) some of which are selectively retained and function in mature erythrocytes. They have unique expression patterns and have been found to be linked to specific conditions such as sickle cell anaemia, high-altitude hypoxia, chronic mountain sickness, cardiovascular and metabolic conditions as well as host-parasite interactions. They also have been implicated in cell storage-related damage and the regulation of its survival. However, the mechanism by which miRNAs function in the cell remains unclear. Investigations into the molecular mechanism of miRNAs in erythrocytes via extracellular vesicles have provided important clues in research studies on Plasmodium infection. Erythrocytes are also the primary source of circulating miRNAs but, how they affect the plasma/serum miRNAs profiles are still poorly understood. Erythrocyte-derived exosomal miRNAs, can interact with various body cell types, and have easy access to all regions, making them potentially crucial in various pathophysiological conditions. Which can also improve our understanding to identify potential treatment options and discovery related to non-invasive diagnostic markers. This article emphasizes the importance of erythrocytic miRNAs while focusing on the enigmatic behaviour of erythrocytes. It also sheds light on how this knowledge may be applied in the future to enhance the state of erythrocyte translational research from the standpoint of erythrocytic miRNAs.
Collapse
Affiliation(s)
- Urja Joshi
- Department of Biochemistry, School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India.
| | - Dhara Jani
- Department of Zoology, Biomedical Technology, Human Genetics and WLC, School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India
| | - Linz-Buoy George
- Department of Zoology, Biomedical Technology, Human Genetics and WLC, School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India
| | - Hyacinth Highland
- Department of Zoology, Biomedical Technology, Human Genetics and WLC, School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India
| |
Collapse
|
3
|
Zhang YE, Stuelten CH. Alternative splicing in EMT and TGF-β signaling during cancer progression. Semin Cancer Biol 2024; 101:1-11. [PMID: 38614376 PMCID: PMC11180579 DOI: 10.1016/j.semcancer.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 11/20/2023] [Accepted: 04/04/2024] [Indexed: 04/15/2024]
Abstract
Epithelial to mesenchymal transition (EMT) is a physiological process during development where epithelial cells transform to acquire mesenchymal characteristics, which allows them to migrate and colonize secondary tissues. Many cellular signaling pathways and master transcriptional factors exert a myriad of controls to fine tune this vital process to meet various developmental and physiological needs. Adding to the complexity of this network are post-transcriptional and post-translational regulations. Among them, alternative splicing has been shown to play important roles to drive EMT-associated phenotypic changes, including actin cytoskeleton remodeling, cell-cell junction changes, cell motility and invasiveness. In advanced cancers, transforming growth factor-β (TGF-β) is a major inducer of EMT and is associated with tumor cell metastasis, cancer stem cell self-renewal, and drug resistance. This review aims to provide an overview of recent discoveries regarding alternative splicing events and the involvement of splicing factors in the EMT and TGF-β signaling. It will emphasize the importance of various splicing factors involved in EMT and explore their regulatory mechanisms.
Collapse
Affiliation(s)
- Ying E Zhang
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA.
| | - Christina H Stuelten
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| |
Collapse
|
4
|
Tao Y, Zhang Q, Wang H, Yang X, Mu H. Alternative splicing and related RNA binding proteins in human health and disease. Signal Transduct Target Ther 2024; 9:26. [PMID: 38302461 PMCID: PMC10835012 DOI: 10.1038/s41392-024-01734-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 12/18/2023] [Accepted: 12/27/2023] [Indexed: 02/03/2024] Open
Abstract
Alternative splicing (AS) serves as a pivotal mechanism in transcriptional regulation, engendering transcript diversity, and modifications in protein structure and functionality. Across varying tissues, developmental stages, or under specific conditions, AS gives rise to distinct splice isoforms. This implies that these isoforms possess unique temporal and spatial roles, thereby associating AS with standard biological activities and diseases. Among these, AS-related RNA-binding proteins (RBPs) play an instrumental role in regulating alternative splicing events. Under physiological conditions, the diversity of proteins mediated by AS influences the structure, function, interaction, and localization of proteins, thereby participating in the differentiation and development of an array of tissues and organs. Under pathological conditions, alterations in AS are linked with various diseases, particularly cancer. These changes can lead to modifications in gene splicing patterns, culminating in changes or loss of protein functionality. For instance, in cancer, abnormalities in AS and RBPs may result in aberrant expression of cancer-associated genes, thereby promoting the onset and progression of tumors. AS and RBPs are also associated with numerous neurodegenerative diseases and autoimmune diseases. Consequently, the study of AS across different tissues holds significant value. This review provides a detailed account of the recent advancements in the study of alternative splicing and AS-related RNA-binding proteins in tissue development and diseases, which aids in deepening the understanding of gene expression complexity and offers new insights and methodologies for precision medicine.
Collapse
Affiliation(s)
- Yining Tao
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 200000, Shanghai, China
- Shanghai Bone Tumor Institution, 200000, Shanghai, China
| | - Qi Zhang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, 200000, Shanghai, China
| | - Haoyu Wang
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 200000, Shanghai, China
- Shanghai Bone Tumor Institution, 200000, Shanghai, China
| | - Xiyu Yang
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 200000, Shanghai, China
- Shanghai Bone Tumor Institution, 200000, Shanghai, China
| | - Haoran Mu
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 200000, Shanghai, China.
- Shanghai Bone Tumor Institution, 200000, Shanghai, China.
| |
Collapse
|
5
|
Campagne S, Jutzi D, Malard F, Matoga M, Romane K, Feldmuller M, Colombo M, Ruepp MD, Allain FHT. Molecular basis of RNA-binding and autoregulation by the cancer-associated splicing factor RBM39. Nat Commun 2023; 14:5366. [PMID: 37666821 PMCID: PMC10477243 DOI: 10.1038/s41467-023-40254-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 07/14/2023] [Indexed: 09/06/2023] Open
Abstract
Pharmacologic depletion of RNA-binding motif 39 (RBM39) using aryl sulfonamides represents a promising anti-cancer therapy but requires high levels of the adaptor protein DCAF15. Consequently, novel approaches to deplete RBM39 in an DCAF15-independent manner are required. Here, we uncover that RBM39 autoregulates via the inclusion of a poison exon into its own pre-mRNA and identify the cis-acting elements that govern this regulation. We also determine the NMR solution structures of RBM39's tandem RNA recognition motifs (RRM1 and RRM2) bound to their respective RNA targets, revealing how RRM1 recognises RNA stem loops whereas RRM2 binds specifically to single-stranded N(G/U)NUUUG. Our results support a model where RRM2 selects the 3'-splice site of a poison exon and the RRM3 and RS domain stabilise the U2 snRNP at the branchpoint. Our work provides molecular insights into RBM39-dependent 3'-splice site selection and constitutes a solid basis to design alternative anti-cancer therapies.
Collapse
Affiliation(s)
- Sébastien Campagne
- ETH Zurich, Department of Biology, Institute of Biochemistry, 8093, Zurich, Switzerland.
- University of Bordeaux, Inserm U1212, CNRS UMR5320, ARNA Laboratory, 33077, Bordeaux, France.
| | - Daniel Jutzi
- United Kingdom Dementia Research Institute Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Maurice Wohl Clinical Neuroscience Institute, London, SE5 9NU, UK
| | - Florian Malard
- ETH Zurich, Department of Biology, Institute of Biochemistry, 8093, Zurich, Switzerland
- University of Bordeaux, Inserm U1212, CNRS UMR5320, ARNA Laboratory, 33077, Bordeaux, France
| | - Maja Matoga
- ETH Zurich, Department of Biology, Institute of Biochemistry, 8093, Zurich, Switzerland
| | - Ksenija Romane
- ETH Zurich, Department of Biology, Institute of Biochemistry, 8093, Zurich, Switzerland
| | - Miki Feldmuller
- ETH Zurich, Department of Biology, Institute of Biochemistry, 8093, Zurich, Switzerland
| | - Martino Colombo
- University of Bern, Department of Chemistry and Biochemistry, 3012, Bern, Switzerland
- Celgene Institute of Translational Research in Europe (CITRE), Bristol Myers Squibb, 41092, Seville, Spain
| | - Marc-David Ruepp
- United Kingdom Dementia Research Institute Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Maurice Wohl Clinical Neuroscience Institute, London, SE5 9NU, UK.
| | - Frédéric H-T Allain
- ETH Zurich, Department of Biology, Institute of Biochemistry, 8093, Zurich, Switzerland.
| |
Collapse
|
6
|
Li Y, Zhang H, Hu B, Wang P, Wang W, Liu J. Post-transcriptional regulation of erythropoiesis. BLOOD SCIENCE 2023; 5:150-159. [PMID: 37546708 PMCID: PMC10400058 DOI: 10.1097/bs9.0000000000000159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 04/11/2023] [Indexed: 08/08/2023] Open
Abstract
Erythropoiesis is a complex, precise, and lifelong process that is essential for maintaining normal body functions. Its strict regulation is necessary to prevent a variety of blood diseases. Normal erythropoiesis is precisely regulated by an intricate network that involves transcription levels, signal transduction, and various epigenetic modifications. In recent years, research on post-transcriptional levels in erythropoiesis has expanded significantly. The dynamic regulation of splicing transitions is responsible for changes in protein isoform expression that add new functions beneficial for erythropoiesis. RNA-binding proteins adapt the translation of transcripts to the protein requirements of the cell, yielding mRNA with dynamic translation efficiency. Noncoding RNAs, such as microRNAs and lncRNAs, are indispensable for changing the translational efficiency and/or stability of targeted mRNAs to maintain the normal expression of genes related to erythropoiesis. N6-methyladenosine-dependent regulation of mRNA translation plays an important role in maintaining the expression programs of erythroid-related genes and promoting erythroid lineage determination. This review aims to describe our current understanding of the role of post-transcriptional regulation in erythropoiesis and erythroid-associated diseases, and to shed light on the physiological and pathological implications of the post-transcriptional regulation machinery in erythropoiesis. These may help to further enrich our understanding of the regulatory network of erythropoiesis and provide new strategies for the diagnosis and treatment of erythroid-related diseases.
Collapse
Affiliation(s)
- Yanan Li
- Molecular Biology Research Center, Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, Hunan 410078, China
- Department of Imaging and Interventional Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Haihang Zhang
- Molecular Biology Research Center, Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, Hunan 410078, China
| | - Bin Hu
- Molecular Biology Research Center, Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, Hunan 410078, China
| | - Pan Wang
- Molecular Biology Research Center, Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, Hunan 410078, China
| | - Wei Wang
- Department of Imaging and Interventional Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Jing Liu
- Molecular Biology Research Center, Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, Hunan 410078, China
| |
Collapse
|
7
|
Eléouët M, Lu C, Zhou Y, Yang P, Ma J, Xu G. Insights on the biological functions and diverse regulation of RNA-binding protein 39 and their implication in human diseases. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194902. [PMID: 36535628 DOI: 10.1016/j.bbagrm.2022.194902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/24/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
RNA-binding protein 39 (RBM39) involves in pre-mRNA splicing and transcriptional regulation. RBM39 is dysregulated in many cancers and its upregulation enhances cancer cell proliferation. Recently, it has been discovered that aryl sulfonamides act as molecular glues to recruit RBM39 to the CRL4DCAF15 E3 ubiquitin ligase complex for its ubiquitination and proteasomal degradation. Therefore, various studies have focused on the degradation of RBM39 by aryl sulfonamides in the aim of finding new cancer therapeutics. These discoveries also attracted focus for thorough study on the biological functions of RBM39. RBM39 was found to regulate the splicing and transcription of genes mainly involved in pre-mRNA splicing, cell cycle regulation, DNA damage response, and metabolism, but the understanding of these regulations is still in its infancy. This article reviews the advances of the current literature and discusses the remaining key issues on the biological function and dynamic regulation of RBM39 at the post-translational level.
Collapse
Affiliation(s)
- Morgane Eléouët
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China; Synbio Technologies Company, BioBay C20, 218 Xinghu Street, Suzhou, Jiangsu 215123, China
| | - Chengpiao Lu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| | - Yijia Zhou
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| | - Ping Yang
- Synbio Technologies Company, BioBay C20, 218 Xinghu Street, Suzhou, Jiangsu 215123, China
| | - Jingjing Ma
- Department of Pharmacy, Medical Center of Soochow University, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, Jiangsu 215123, China.
| | - Guoqiang Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China.
| |
Collapse
|
8
|
Zhao H, Wei Z, Shen G, Chen Y, Hao X, Li S, Wang R. Poly(rC)-binding proteins as pleiotropic regulators in hematopoiesis and hematological malignancy. Front Oncol 2022; 12:1045797. [PMID: 36452487 PMCID: PMC9701828 DOI: 10.3389/fonc.2022.1045797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 10/26/2022] [Indexed: 11/16/2022] Open
Abstract
Poly(rC)-binding proteins (PCBPs), a defined subfamily of RNA binding proteins, are characterized by their high affinity and sequence-specific interaction with poly-cytosine (poly-C). The PCBP family comprises five members, including hnRNP K and PCBP1-4. These proteins share a relatively similar structure motif, with triple hnRNP K homology (KH) domains responsible for recognizing and combining C-rich regions of mRNA and single- and double-stranded DNA. Numerous studies have indicated that PCBPs play a prominent role in hematopoietic cell growth, differentiation, and tumorigenesis at multiple levels of regulation. Herein, we summarized the currently available literature regarding the structural and functional divergence of various PCBP family members. Furthermore, we focused on their roles in normal hematopoiesis, particularly in erythropoiesis. More importantly, we also discussed and highlighted their involvement in carcinogenesis, including leukemia and lymphoma, aiming to clarify the pleiotropic roles and molecular mechanisms in the hematopoietic compartment.
Collapse
Affiliation(s)
- Huijuan Zhao
- Henan International Joint Laboratory of Thrombosis and Hemostasis, Henan University of Science and Technology, Luoyang, China.,Basic Medical College, Henan University of Science and Technology, Luoyang, China
| | - Ziqing Wei
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Guomin Shen
- Henan International Joint Laboratory of Thrombosis and Hemostasis, Henan University of Science and Technology, Luoyang, China.,Basic Medical College, Henan University of Science and Technology, Luoyang, China
| | - Yixiang Chen
- Henan International Joint Laboratory of Thrombosis and Hemostasis, Henan University of Science and Technology, Luoyang, China.,Basic Medical College, Henan University of Science and Technology, Luoyang, China
| | - Xueqin Hao
- Basic Medical College, Henan University of Science and Technology, Luoyang, China
| | - Sanqiang Li
- Basic Medical College, Henan University of Science and Technology, Luoyang, China
| | - Rong Wang
- Department of Clinical Laboratory, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
9
|
RNA-Binding Proteins PCBP1 and PCBP2 Are Critical Determinants of Murine Erythropoiesis. Mol Cell Biol 2021; 41:e0066820. [PMID: 34180713 PMCID: PMC8384066 DOI: 10.1128/mcb.00668-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
We previously demonstrated that the two paralogous RNA-binding proteins PCBP1 and PCBP2 are individually essential for mouse development: Pcbp1-null embryos are peri-implantation lethal, while Pcbp2-null embryos lose viability at midgestation. Midgestation Pcbp2-/- embryos revealed a complex phenotype that included loss of certain hematopoietic determinants. Whether PCBP2 directly contributes to erythropoietic differentiation and whether PCBP1 has a role in this process remained undetermined. Here, we selectively inactivated the genes encoding these two RNA-binding proteins during differentiation of the erythroid lineage in the developing mouse embryo. Individual inactivation of either locus failed to impact viability or blood formation. However, combined inactivation of the two loci resulted in midgestational repression of erythroid/hematopoietic gene expression, loss of blood formation, and fetal demise. Orthogonal ex vivo analyses of primary erythroid progenitors selectively depleted of these two RNA-binding proteins revealed that they mediate a combination of overlapping and isoform-specific impacts on hematopoietic lineage transcriptome, impacting both mRNA representation and exon splicing. These data lead us to conclude that PCBP1 and PCBP2 mediate functions critical to differentiation of the erythroid lineage.
Collapse
|
10
|
Puvvula PK, Yu Y, Sullivan KR, Eyob H, Rosenberg J, Welm A, Huff C, Moon AM. Inhibiting an RBM39/MLL1 epigenomic regulatory complex with dominant-negative peptides disrupts cancer cell transcription and proliferation. Cell Rep 2021; 35:109156. [PMID: 34077726 DOI: 10.1016/j.celrep.2021.109156] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 02/07/2021] [Accepted: 04/29/2021] [Indexed: 12/13/2022] Open
Abstract
RBM39 is a known splicing factor and coactivator. Here, we report that RBM39 functions as a master transcriptional regulator that interacts with the MLL1 complex to facilitate chromatin binding and H3K4 trimethylation in breast cancer cells. We identify RBM39 functional domains required for DNA and complex binding and show that the loss of RBM39 has widespread effects on H3K4me3 and gene expression, including key oncogenic pathways. RBM39's RNA recognition motif 3 (RRM3) functions as a dominant-negative domain; namely, it disrupts the complex and H3K4me trimethylation and expression of RBM/MLL1 target genes. RRM3-derived cell-penetrating peptides phenocopy the effects of the loss of RBM39 to decrease growth and survival of all major subtypes of breast cancer and yet are nontoxic to normal cells. These findings establish RBM39/MLL1 as a major contributor to the abnormal epigenetic landscape in breast cancer and lay the foundation for peptide-mediated cancer-specific therapy based on disruption of RBM39 epigenomic functions.
Collapse
Affiliation(s)
- Pavan Kumar Puvvula
- Department of Molecular and Functional Genomics, Weis Center for Research, Geisinger Clinic, Danville, PA, USA.
| | - Yao Yu
- Department of Epidemiology, Division of Cancer Prevention and Population Sciences, MD Anderson Cancer Center, Houston, TX, USA
| | - Kaelan Renaldo Sullivan
- Department of Molecular and Functional Genomics, Weis Center for Research, Geisinger Clinic, Danville, PA, USA
| | - Henok Eyob
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT, USA
| | - Julian Rosenberg
- Department of Molecular and Functional Genomics, Weis Center for Research, Geisinger Clinic, Danville, PA, USA
| | - Alana Welm
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT, USA
| | - Chad Huff
- Department of Epidemiology, Division of Cancer Prevention and Population Sciences, MD Anderson Cancer Center, Houston, TX, USA
| | - Anne M Moon
- Department of Molecular and Functional Genomics, Weis Center for Research, Geisinger Clinic, Danville, PA, USA; Department Human Genetics, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
11
|
Vilys L, Peciuliene I, Jakubauskiene E, Zinkeviciute R, Makino Y, Kanopka A. U2AF - Hypoxia-induced fas alternative splicing regulator. Exp Cell Res 2020; 399:112444. [PMID: 33347855 DOI: 10.1016/j.yexcr.2020.112444] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 12/01/2020] [Accepted: 12/15/2020] [Indexed: 01/21/2023]
Abstract
The splicing machinery heavily contributes to biological complexity and especially to the ability of cells to adapt to altered cellular conditions. Hypoxia also plays a key role in the pathophysiology of many disease states. Recent studies have revealed that tumorigenesis and hypoxia are involved in large-scale alterations in alternative pre-mRNA splicing. Fas pre-mRNA is alternatively spliced by excluding exon 6 to produce soluble Fas (sFas) protein that lacks a transmembrane domain and acts by inhibiting Fas mediated apoptosis. In the present study we show that U2AF is involved in hypoxia dependent anti-apoptotic Fas mRNA isoform formation. Our performed studies show that U2AF-RNA interaction is reduced in hypoxic cells, leading to reduction of Fas and increased sFas mRNAs formation. Efficient U2AF-RNA interactions of both subunits are important for Fas exon 6 inclusion into forming mRNA in normoxic and hypoxic cells.
Collapse
Affiliation(s)
- Laurynas Vilys
- Department of Immunology and Cell Biology, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Inga Peciuliene
- Department of Immunology and Cell Biology, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Egle Jakubauskiene
- Department of Immunology and Cell Biology, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Ruta Zinkeviciute
- Department of Eukaryote Gene Engineering, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Yuichi Makino
- Division of Metabolism and Biosystemic Science, Department of Medicine, Asahikawa Medical College, Asahikawa, Hokkaido, Japan
| | - Arvydas Kanopka
- Department of Immunology and Cell Biology, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania.
| |
Collapse
|
12
|
Xu Y, Nijhuis A, Keun HC. RNA-binding motif protein 39 (RBM39): An emerging cancer target. Br J Pharmacol 2020; 179:2795-2812. [PMID: 33238031 DOI: 10.1111/bph.15331] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/13/2020] [Accepted: 11/09/2020] [Indexed: 12/14/2022] Open
Abstract
RNA-binding motif protein 39 (RBM39) is an RNA-binding protein involved in transcriptional co-regulation and alternative RNA splicing. Recent studies have revealed that RBM39 is the unexpected target of aryl sulphonamides, which act as molecular glues between RBM39 and the DCAF15-associated E3 ubiquitin ligase complex leading to selective degradation of the target. Loss of RBM39 leads to aberrant splicing events and differential gene expression, thereby inhibiting cell cycle progression and causing tumour regression in a number of preclinical models. Many clinical studies have shown that aryl sulphonamides were well tolerated, but their clinical performance was limited due to an insufficient understanding of the target, RBM39 biology and a lack of predictive biomarkers. This review summarises the current knowledge of RBM39 function and discusses the therapeutic potential of this spliceosome target in cancer therapy.
Collapse
Affiliation(s)
- Yuewei Xu
- Cancer Metabolism & Systems Toxicology Group, Division of Cancer, Department of Surgery and Cancer, Imperial College London, London, UK
| | - Anke Nijhuis
- Cancer Metabolism & Systems Toxicology Group, Division of Cancer, Department of Surgery and Cancer, Imperial College London, London, UK
| | - Hector C Keun
- Cancer Metabolism & Systems Toxicology Group, Division of Cancer, Department of Surgery and Cancer, Imperial College London, London, UK
| |
Collapse
|
13
|
Královicová J, Ševcíková I, Stejskalová E, Obuca M, Hiller M, Stanek D, Vorechovský I. PUF60-activated exons uncover altered 3' splice-site selection by germline missense mutations in a single RRM. Nucleic Acids Res 2019; 46:6166-6187. [PMID: 29788428 PMCID: PMC6093180 DOI: 10.1093/nar/gky389] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 05/01/2018] [Indexed: 12/27/2022] Open
Abstract
PUF60 is a splicing factor that binds uridine (U)-rich tracts and facilitates association of the U2 small nuclear ribonucleoprotein with primary transcripts. PUF60 deficiency (PD) causes a developmental delay coupled with intellectual disability and spinal, cardiac, ocular and renal defects, but PD pathogenesis is not understood. Using RNA-Seq, we identify human PUF60-regulated exons and show that PUF60 preferentially acts as their activator. PUF60-activated internal exons are enriched for Us upstream of their 3′ splice sites (3′ss), are preceded by longer AG dinucleotide exclusion zones and more distant branch sites, with a higher probability of unpaired interactions across a typical branch site location as compared to control exons. In contrast, PUF60-repressed exons show U-depletion with lower estimates of RNA single-strandedness. We also describe PUF60-regulated, alternatively spliced isoforms encoding other U-bound splicing factors, including PUF60 partners, suggesting that they are co-regulated in the cell, and identify PUF60-regulated exons derived from transposed elements. PD-associated amino-acid substitutions, even within a single RNA recognition motif (RRM), altered selection of competing 3′ss and branch points of a PUF60-dependent exon and the 3′ss choice was also influenced by alternative splicing of PUF60. Finally, we propose that differential distribution of RNA processing steps detected in cells lacking PUF60 and the PUF60-paralog RBM39 is due to the RBM39 RS domain interactions. Together, these results provide new insights into regulation of exon usage by the 3′ss organization and reveal that germline mutation heterogeneity in RRMs can enhance phenotypic variability at the level of splice-site and branch-site selection.
Collapse
Affiliation(s)
- Jana Královicová
- University of Southampton Faculty of Medicine, Southampton SO16 6YD, UK.,Slovak Academy of Sciences, Centre for Biosciences, 840 05 Bratislava, Slovak Republic
| | - Ivana Ševcíková
- Slovak Academy of Sciences, Centre for Biosciences, 840 05 Bratislava, Slovak Republic
| | - Eva Stejskalová
- Czech Academy of Sciences, Institute of Molecular Genetics, 142 20 Prague, Czech Republic
| | - Mina Obuca
- Czech Academy of Sciences, Institute of Molecular Genetics, 142 20 Prague, Czech Republic
| | - Michael Hiller
- Max Planck Institute of Molecular Cell Biology and Genetics and Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
| | - David Stanek
- Czech Academy of Sciences, Institute of Molecular Genetics, 142 20 Prague, Czech Republic
| | - Igor Vorechovský
- University of Southampton Faculty of Medicine, Southampton SO16 6YD, UK
| |
Collapse
|
14
|
Meyer C, Garzia A, Mazzola M, Gerstberger S, Molina H, Tuschl T. The TIA1 RNA-Binding Protein Family Regulates EIF2AK2-Mediated Stress Response and Cell Cycle Progression. Mol Cell 2019; 69:622-635.e6. [PMID: 29429924 DOI: 10.1016/j.molcel.2018.01.011] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 12/05/2017] [Accepted: 01/09/2018] [Indexed: 12/11/2022]
Abstract
TIA1 and TIAL1 encode a family of U-rich element mRNA-binding proteins ubiquitously expressed and conserved in metazoans. Using PAR-CLIP, we determined that both proteins bind target sites with identical specificity in 3' UTRs and introns proximal to 5' as well as 3' splice sites. Double knockout (DKO) of TIA1 and TIAL1 increased target mRNA abundance proportional to the number of binding sites and also caused accumulation of aberrantly spliced mRNAs, most of which are subject to nonsense-mediated decay. Loss of PRKRA by mis-splicing triggered the activation of the double-stranded RNA (dsRNA)-activated protein kinase EIF2AK2/PKR and stress granule formation. Ectopic expression of PRKRA cDNA or knockout of EIF2AK2 in DKO cells rescued this phenotype. Perturbation of maturation and/or stability of additional targets further compromised cell cycle progression. Our study reveals the essential contributions of the TIA1 protein family to the fidelity of mRNA maturation, translation, and RNA-stress-sensing pathways in human cells.
Collapse
Affiliation(s)
- Cindy Meyer
- Howard Hughes Medical Institute and Laboratory for RNA Molecular Biology, The Rockefeller University, 1230 York Avenue, Box 186, New York, NY 10065, USA
| | - Aitor Garzia
- Howard Hughes Medical Institute and Laboratory for RNA Molecular Biology, The Rockefeller University, 1230 York Avenue, Box 186, New York, NY 10065, USA
| | - Michael Mazzola
- Howard Hughes Medical Institute and Laboratory for RNA Molecular Biology, The Rockefeller University, 1230 York Avenue, Box 186, New York, NY 10065, USA
| | - Stefanie Gerstberger
- Howard Hughes Medical Institute and Laboratory for RNA Molecular Biology, The Rockefeller University, 1230 York Avenue, Box 186, New York, NY 10065, USA
| | - Henrik Molina
- Proteomics Resource Center, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Thomas Tuschl
- Howard Hughes Medical Institute and Laboratory for RNA Molecular Biology, The Rockefeller University, 1230 York Avenue, Box 186, New York, NY 10065, USA.
| |
Collapse
|
15
|
Uzor S, Zorzou P, Bowler E, Porazinski S, Wilson I, Ladomery M. Autoregulation of the human splice factor kinase CLK1 through exon skipping and intron retention. Gene 2018; 670:46-54. [PMID: 29802995 DOI: 10.1016/j.gene.2018.05.095] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 05/16/2018] [Accepted: 05/23/2018] [Indexed: 01/04/2023]
Abstract
Alternative splicing is a key process required for the regulation of gene expression in normal development and physiology. It is regulated by splice factors whose activities are in turn regulated by splice factor kinases and phosphatases. The CDC-like protein kinases are a widespread family of splice factor kinases involved in normal physiology and in several diseases including cancer. In humans they include the CLK1, CLK2, CLK3 and CLK4 genes. The expression of CLK1 is regulated through alternative splicing producing both full-length catalytically active and truncated catalytically inactive isoforms, CLKT1 (arising from exon 4 skipping) and CLKT2 (arising from intron 4 retention). We examined CLK1 alternative splicing in a range of cancer cell lines, and report widespread and highly variable rates of exon 4 skipping and intron 4 retention. We also examined the effect of severe environmental stress including heat shock, osmotic shock, and exposure to the alkaloid drug harmine on CLK1 alternative splicing in DU145 prostate cancer cells. All treatments rapidly reduced exon 4 skipping and intron 4 retention, shifting the balance towards full-length CLK1 expression. We also found that the inhibition of CLK1 with the benzothiazole TG003 reduced exon 4 skipping and intron 4 retention suggesting an autoregulatory mechanism. CLK1 inhibition with TG003 also resulted in modified alternative splicing of five cancer-associated genes.
Collapse
Affiliation(s)
- Simon Uzor
- Faculty of Health and Applied Sciences, University of the West of England, Coldharbour Lane, Frenchay, Bristol BS16 1QY, United Kingdom
| | - Panagiota Zorzou
- Faculty of Health and Applied Sciences, University of the West of England, Coldharbour Lane, Frenchay, Bristol BS16 1QY, United Kingdom
| | - Elizabeth Bowler
- Faculty of Health and Applied Sciences, University of the West of England, Coldharbour Lane, Frenchay, Bristol BS16 1QY, United Kingdom
| | - Sean Porazinski
- Faculty of Health and Applied Sciences, University of the West of England, Coldharbour Lane, Frenchay, Bristol BS16 1QY, United Kingdom
| | - Ian Wilson
- Faculty of Health and Applied Sciences, University of the West of England, Coldharbour Lane, Frenchay, Bristol BS16 1QY, United Kingdom
| | - Michael Ladomery
- Faculty of Health and Applied Sciences, University of the West of England, Coldharbour Lane, Frenchay, Bristol BS16 1QY, United Kingdom.
| |
Collapse
|
16
|
Sutandy FXR, Ebersberger S, Huang L, Busch A, Bach M, Kang HS, Fallmann J, Maticzka D, Backofen R, Stadler PF, Zarnack K, Sattler M, Legewie S, König J. In vitro iCLIP-based modeling uncovers how the splicing factor U2AF2 relies on regulation by cofactors. Genome Res 2018; 28:699-713. [PMID: 29643205 PMCID: PMC5932610 DOI: 10.1101/gr.229757.117] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 02/09/2018] [Indexed: 01/26/2023]
Abstract
Alternative splicing generates distinct mRNA isoforms and is crucial for proteome diversity in eukaryotes. The RNA-binding protein (RBP) U2AF2 is central to splicing decisions, as it recognizes 3′ splice sites and recruits the spliceosome. We establish “in vitro iCLIP” experiments, in which recombinant RBPs are incubated with long transcripts, to study how U2AF2 recognizes RNA sequences and how this is modulated by trans-acting RBPs. We measure U2AF2 affinities at hundreds of binding sites and compare in vitro and in vivo binding landscapes by mathematical modeling. We find that trans-acting RBPs extensively regulate U2AF2 binding in vivo, including enhanced recruitment to 3′ splice sites and clearance of introns. Using machine learning, we identify and experimentally validate novel trans-acting RBPs (including FUBP1, CELF6, and PCBP1) that modulate U2AF2 binding and affect splicing outcomes. Our study offers a blueprint for the high-throughput characterization of in vitro mRNP assembly and in vivo splicing regulation.
Collapse
Affiliation(s)
| | | | - Lu Huang
- Institute of Molecular Biology (IMB) gGmbH, 55128 Mainz, Germany
| | - Anke Busch
- Institute of Molecular Biology (IMB) gGmbH, 55128 Mainz, Germany
| | - Maximilian Bach
- Institute of Molecular Biology (IMB) gGmbH, 55128 Mainz, Germany
| | - Hyun-Seo Kang
- Institute of Structural Biology, Helmholtz Center Munich, 85764 Neuherberg, Germany.,Biomolecular NMR and Center for Integrated Protein Science Munich at Department of Chemistry, Technical University of Munich, 85747 Garching, Germany
| | - Jörg Fallmann
- Bioinformatics Group, Department of Computer Science and Interdisciplinary Center for Bioinformatics, University of Leipzig, 04107 Leipzig, Germany
| | - Daniel Maticzka
- Bioinformatics Group, Department of Computer Science, University of Freiburg, 79110 Freiburg, Germany
| | - Rolf Backofen
- Bioinformatics Group, Department of Computer Science, University of Freiburg, 79110 Freiburg, Germany.,Centre for Biological Signalling Studies (BIOSS), University of Freiburg, 79104 Freiburg, Germany
| | - Peter F Stadler
- Bioinformatics Group, Department of Computer Science and Interdisciplinary Center for Bioinformatics, University of Leipzig, 04107 Leipzig, Germany
| | - Kathi Zarnack
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University Frankfurt, 60438 Frankfurt a.M., Germany
| | - Michael Sattler
- Institute of Structural Biology, Helmholtz Center Munich, 85764 Neuherberg, Germany.,Biomolecular NMR and Center for Integrated Protein Science Munich at Department of Chemistry, Technical University of Munich, 85747 Garching, Germany
| | - Stefan Legewie
- Institute of Molecular Biology (IMB) gGmbH, 55128 Mainz, Germany
| | - Julian König
- Institute of Molecular Biology (IMB) gGmbH, 55128 Mainz, Germany
| |
Collapse
|
17
|
Ji X, Humenik J, Yang D, Liebhaber SA. PolyC-binding proteins enhance expression of the CDK2 cell cycle regulatory protein via alternative splicing. Nucleic Acids Res 2018; 46:2030-2044. [PMID: 29253178 PMCID: PMC5829739 DOI: 10.1093/nar/gkx1255] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 12/01/2017] [Accepted: 12/05/2017] [Indexed: 11/13/2022] Open
Abstract
The PolyC binding proteins (PCBPs) impact alternative splicing of a subset of mammalian genes that are enriched in basic cellular functions. Here, we focus our analysis on PCBP-controlled cassette exon-splicing within the cell cycle control regulator cyclin-dependent kinase-2 (CDK2) transcript. We demonstrate that PCBP binding to a C-rich polypyrimidine tract (PPT) preceding exon 5 of the CDK2 transcript enhances cassette exon inclusion. This splice enhancement is U2AF65-independent and predominantly reflects actions of the PCBP1 isoform. Remarkably, PCBPs' control of CDK2 ex5 splicing has evolved subsequent to mammalian divergence via conversion of constitutive exon 5 inclusion in the mouse CDK2 transcript to PCBP-responsive exon 5 alternative splicing in humans. Importantly, exclusion of exon 5 from the hCDK2 transcript dramatically represses the expression of CDK2 protein with a corresponding perturbation in cell cycle kinetics. These data highlight a recently evolved post-transcriptional pathway in primate species with the potential to modulate cell cycle control.
Collapse
Affiliation(s)
- Xinjun Ji
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jesse Humenik
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Daphne Yang
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Stephen A Liebhaber
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
18
|
Howley BV, Howe PH. TGF-beta signaling in cancer: post-transcriptional regulation of EMT via hnRNP E1. Cytokine 2018; 118:19-26. [PMID: 29396052 DOI: 10.1016/j.cyto.2017.12.032] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 12/29/2017] [Indexed: 12/12/2022]
Abstract
The TGFβ signaling pathway is a critical regulator of cancer progression in part through induction of the epithelial to mesenchymal transition (EMT). This process is aberrantly activated in cancer cells, facilitating invasion of the basement membrane, survival in the circulatory system, and dissemination to distant organs. The mechanisms through which epithelial cells transition to a mesenchymal state involve coordinated transcriptional and post-transcriptional control of gene expression. One such mechanism of control is through the RNA binding protein hnRNP E1, which regulates splicing and translation of a cohort of EMT and stemness-associated transcripts. A growing body of evidence indicates a major role for hnRNP E1 in the control of epithelial cell plasticity, especially in the context of carcinoma progression. Here, we review the multiple mechanisms through which hnRNP E1 functions to control EMT and metastatic progression.
Collapse
Affiliation(s)
- Breege V Howley
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA; Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Philip H Howe
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA; Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA.
| |
Collapse
|