1
|
Guo Y, Tao T, Wu T, Hou J, Lin W. Nucleoporin Nup98 is an essential factor for ipo4 dependent protein import. J Cell Biochem 2024; 125:e30573. [PMID: 38780165 DOI: 10.1002/jcb.30573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 04/12/2024] [Accepted: 04/19/2024] [Indexed: 05/25/2024]
Abstract
Nucleocytoplasmic transport of macromolecules is essential in eukaryotic cells. In this process, the karyopherins play a central role when they transport cargoes across the nuclear pore complex. Importin 4 belongs to the karyopherin β family. Many studies have focused on finding substrates for importin 4, but no direct mechanism studies of its precise transport function have been reported. Therefore, this paper mainly aimed to study the mechanism of nucleoporins in mediating nuclear import and export of importin 4. To address this question, we constructed shRNAs targeting Nup358, Nup153, Nup98, and Nup50. We found that depletion of Nup98 resulted in a shift in the subcellular localization of importin 4 from the cytoplasm to the nucleus. Mutational analysis demonstrated that Nup98 physically and functionally interacts with importin 4 through its N-terminal phenylalanine-glycine (FG) repeat region. Mutation of nine of these FG motifs to SG motifs significantly attenuated the binding of Nup98 to importin 4, and we further confirmed the essential role of the six FG motifs in amino acids 121-360 of Nup98 in binding with importin 4. In vitro transport assay also confirmed that VDR, the substrate of importin 4, could not be transported into the nucleus after Nup98 knockdown. Overall, our results showed that Nup98 is required for efficient importin 4-mediated transport. This is the first study to reveal the mechanism of importin 4 in transporting substrates into the nucleus.
Collapse
Affiliation(s)
- Yingying Guo
- State Key Laboratory of Stress Cell Biology, School of Life Sciences, Xiamen University, Xiame, Fujian, China
| | - Tao Tao
- State Key Laboratory of Stress Cell Biology, School of Life Sciences, Xiamen University, Xiame, Fujian, China
| | - Ting Wu
- Department of Basic Medicine, School of Medicine, Cancer Research Center, Xiamen University, Xiamen, Fujian, China
| | - Jingjing Hou
- State Key Laboratory of Stress Cell Biology, School of Life Sciences, Xiamen University, Xiame, Fujian, China
- Department of Gastrointestinal Surgery, School of Medicine, Zhongshan Hospital of Xiamen University, Xiamen University, Xiamen, Fujian, China
| | - Wenbo Lin
- State Key Laboratory of Stress Cell Biology, School of Life Sciences, Xiamen University, Xiame, Fujian, China
| |
Collapse
|
2
|
Zhao H, Bi F, Li M, Diao Y, Zhang C. E3 ubiquitin ligase RNF180 impairs IPO4/SOX2 complex stability and inhibits SOX2-mediated malignancy in ovarian cancer. Cell Signal 2024; 113:110961. [PMID: 37923100 DOI: 10.1016/j.cellsig.2023.110961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 10/17/2023] [Accepted: 10/30/2023] [Indexed: 11/07/2023]
Abstract
RING finger protein 180 (RNF180), an E3 ubiquitin ligase, is thought to be a tumor suppressor gene. However, the detailed mechanism of its effect on ovarian cancer (OV) has not been elucidated. Importin 4 (IPO4) which belongs to transport protein is reported to have cancer-promoting effects on OV. Here, we explored the potential signaling pathways related to RNF180 and IPO4. It was first verified that RNF180 is downregulated and IPO4 is upregulated in OV. By overexpressing or knocking down RNF180 in OV cells, we confirmed that RNF180 inhibited the malignant behaviors of OV cells both in vitro and in vivo. Bioinformatics analysis and proteomics experiments found that RNF180 could interact with IPO4 and promote the degradation of IPO4 through ubiquitination. In addition, overexpression of IPO4 removed the inhibitory effect of RNF180 on OV. We subsequently found that IPO4 could bind to the oncogene Sex determining Region Y-box 2 (SOX2). Knockdown of IPO4 in OV cells decreased SOX2 protein level in nucleus and promoted cyclin-dependent kinase inhibitory protein-1 (p21) expression. Overexpression of RNF180 also inhibited the expression of SOX2 in nucleus. All these results indicated that RNF180 inhibited the nuclear translocation of SOX2 by promoting ubiquitination of IPO4, which ultimately promoted the expression of p21 and then suppressed the progression of OV. This study verified the tumor suppressor effect of RNF180 on OV, elucidated the mechanism of the molecule network related to RNF180 and IPO4 in OV and identified for OV.
Collapse
Affiliation(s)
- Haiyan Zhao
- Department of Rheumatology and Immunology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Fangfang Bi
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Mengyuan Li
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yuhan Diao
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Chen Zhang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
3
|
Panagiotopoulos AA, Kalyvianaki K, Tsodoulou PK, Darivianaki MN, Dellis D, Notas G, Daskalakis V, Theodoropoulos PA, Panagiotidis CΑ, Castanas E, Kampa M. Recognition motifs for importin 4 [(L)PPRS(G/P)P] and importin 5 [KP(K/Y)LV] binding, identified by bio-informatic simulation and experimental in vitro validation. Comput Struct Biotechnol J 2022; 20:5952-5961. [PMID: 36382187 PMCID: PMC9646746 DOI: 10.1016/j.csbj.2022.10.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 01/21/2023] Open
Abstract
Nuclear translocation of large proteins is mediated through karyopherins, carrier proteins recognizing specific motifs of cargo proteins, known as nuclear localization signals (NLS). However, only few NLS signals have been reported until now. In the present work, NLS signals for Importins 4 and 5 were identified through an unsupervised in silico approach, followed by experimental in vitro validation. The sequences LPPRS(G/P)P and KP(K/Y)LV were identified and are proposed as recognition motifs for Importins 4 and 5 binding, respectively. They are involved in the trafficking of important proteins into the nucleus. These sequences were validated in the breast cancer cell line T47D, which expresses both Importins 4 and 5. Elucidating the complex relationships of the nuclear transporters and their cargo proteins is very important in better understanding the mechanism of nuclear transport of proteins and laying the foundation for the development of novel therapeutics, targeting specific importins.
Collapse
Affiliation(s)
| | - Konstantina Kalyvianaki
- Laboratory of Experimental Endocrinology, School of Medicine, University of Crete, 71013, Greece
| | - Paraskevi K. Tsodoulou
- Laboratory of Pharmacology, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Maria N. Darivianaki
- Laboratory of Pharmacology, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Dimitris Dellis
- National Infrastructures for Research and Technology, Athens 11523, Greece
| | - George Notas
- Laboratory of Experimental Endocrinology, School of Medicine, University of Crete, 71013, Greece
| | - Vangelis Daskalakis
- Department of Chemical Engineering, Cyprus University of Technology, Limassol, Cyprus
| | | | - Christos Α. Panagiotidis
- Laboratory of Pharmacology, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Elias Castanas
- Laboratory of Experimental Endocrinology, School of Medicine, University of Crete, 71013, Greece,Corresponding authors.
| | - Marilena Kampa
- Laboratory of Experimental Endocrinology, School of Medicine, University of Crete, 71013, Greece,Corresponding authors.
| |
Collapse
|
4
|
Ramic M, Andrade NS, Rybin MJ, Esanov R, Wahlestedt C, Benatar M, Zeier Z. Epigenetic Small Molecules Rescue Nucleocytoplasmic Transport and DNA Damage Phenotypes in C9ORF72 ALS/FTD. Brain Sci 2021; 11:brainsci11111543. [PMID: 34827542 PMCID: PMC8616043 DOI: 10.3390/brainsci11111543] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/11/2021] [Accepted: 11/18/2021] [Indexed: 01/04/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive and fatal neurodegenerative disease with available treatments only marginally slowing progression or improving survival. A hexanucleotide repeat expansion mutation in the C9ORF72 gene is the most commonly known genetic cause of both sporadic and familial cases of ALS and frontotemporal dementia (FTD). The C9ORF72 expansion mutation produces five dipeptide repeat proteins (DPRs), and while the mechanistic determinants of DPR-mediated neurotoxicity remain incompletely understood, evidence suggests that disruption of nucleocytoplasmic transport and increased DNA damage contributes to pathology. Therefore, characterizing these disturbances and determining the relative contribution of different DPRs is needed to facilitate the development of novel therapeutics for C9ALS/FTD. To this end, we generated a series of nucleocytoplasmic transport “biosensors”, composed of the green fluorescent protein (GFP), fused to different classes of nuclear localization signals (NLSs) and nuclear export signals (NESs). Using these biosensors in conjunction with automated microscopy, we investigated the role of the three most neurotoxic DPRs (PR, GR, and GA) on seven nuclear import and two export pathways. In addition to other DPRs, we found that PR had pronounced inhibitory effects on the classical nuclear export pathway and several nuclear import pathways. To identify compounds capable of counteracting the effects of PR on nucleocytoplasmic transport, we developed a nucleocytoplasmic transport assay and screened several commercially available compound libraries, totaling 2714 compounds. In addition to restoring nucleocytoplasmic transport efficiencies, hits from the screen also counteract the cytotoxic effects of PR. Selected hits were subsequently tested for their ability to rescue another C9ALS/FTD phenotype—persistent DNA double strand breakage. Overall, we found that DPRs disrupt multiple nucleocytoplasmic transport pathways and we identified small molecules that counteract these effects—resulting in increased viability of PR-expressing cells and decreased DNA damage markers in patient-derived motor neurons. Several HDAC inhibitors were validated as hits, supporting previous studies that show that HDAC inhibitors confer therapeutic effects in neurodegenerative models.
Collapse
Affiliation(s)
- Melina Ramic
- Center for Therapeutic Innovation, Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine, 1501 NW 10th Ave, Miami, FL 33136, USA; (M.R.); (N.S.A.); (M.J.R.); (R.E.); (C.W.)
| | - Nadja S. Andrade
- Center for Therapeutic Innovation, Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine, 1501 NW 10th Ave, Miami, FL 33136, USA; (M.R.); (N.S.A.); (M.J.R.); (R.E.); (C.W.)
| | - Matthew J. Rybin
- Center for Therapeutic Innovation, Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine, 1501 NW 10th Ave, Miami, FL 33136, USA; (M.R.); (N.S.A.); (M.J.R.); (R.E.); (C.W.)
| | - Rustam Esanov
- Center for Therapeutic Innovation, Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine, 1501 NW 10th Ave, Miami, FL 33136, USA; (M.R.); (N.S.A.); (M.J.R.); (R.E.); (C.W.)
| | - Claes Wahlestedt
- Center for Therapeutic Innovation, Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine, 1501 NW 10th Ave, Miami, FL 33136, USA; (M.R.); (N.S.A.); (M.J.R.); (R.E.); (C.W.)
| | - Michael Benatar
- Department of Neurology, University of Miami Miller School of Medicine, 1120 NW 14th St., Miami, FL 33136, USA;
| | - Zane Zeier
- Center for Therapeutic Innovation, Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine, 1501 NW 10th Ave, Miami, FL 33136, USA; (M.R.); (N.S.A.); (M.J.R.); (R.E.); (C.W.)
- Correspondence: ; Tel.: +1-305-243-1367
| |
Collapse
|
5
|
Xiong F, Groot EP, Zhang Y, Li S. Functions of plant importin β proteins beyond nucleocytoplasmic transport. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:6140-6149. [PMID: 34089597 DOI: 10.1093/jxb/erab263] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 06/04/2021] [Indexed: 06/12/2023]
Abstract
In eukaryotic cells, nuclear activities are isolated from other cellular functions by the nuclear envelope. Because the nuclear envelope provides a diffusion barrier for macromolecules, a complex nuclear transport machinery has evolved that is highly conserved from yeast to plants and mammals. Among those components, the importin β family is the most important one. In this review, we summarize recent findings on the biological function of importin β family members, including development, reproduction, abiotic stress responses, and plant immunity. In addition to the traditional nuclear transport function, we highlight the new molecular functions of importin β, including protein turnover, miRNA regulation, and signaling. Taken together, our review will provide a systematic view of this versatile protein family in plants.
Collapse
Affiliation(s)
- Feng Xiong
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Edwin P Groot
- Sino-German Joint Research Center for Agricultural Biology, State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Yan Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Sha Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| |
Collapse
|
6
|
Vashisht A, Gahlay GK. Using miRNAs as diagnostic biomarkers for male infertility: opportunities and challenges. Mol Hum Reprod 2021; 26:199-214. [PMID: 32084276 DOI: 10.1093/molehr/gaaa016] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 02/10/2020] [Indexed: 02/07/2023] Open
Abstract
The non-coding genome has been extensively studied for its role in human development and diseases. MicroRNAs (miRNAs) are small non-coding RNAs, which can regulate the expression of hundreds of genes at the post-transcriptional level. Therefore, any defects in miRNA biogenesis or processing can affect the genes and have been linked to several diseases. Male infertility is a clinical disorder with a significant number of cases being idiopathic. Problems in spermatogenesis and epididymal maturation, testicular development, sperm maturation or migration contribute to male infertility, and many of these idiopathic cases are related to issues with the miRNAs which tightly regulate these processes. This review summarizes the recent research on various such miRNAs and puts together the candidate miRNAs that may be used as biomarkers for diagnosis. The development of strategies for male infertility treatment using anti-miRs or miRNA mimics is also discussed. Although promising, the development of miRNA diagnostics and therapeutics is challenging, and ways to overcome some of these challenges are also reviewed.
Collapse
Affiliation(s)
- A Vashisht
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar, Punjab 143005 India
| | - G K Gahlay
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar, Punjab 143005 India
| |
Collapse
|
7
|
Zhang W, Zhang X, Huang S, Chen J, Ding P, Wang Q, Li L, Lv X, Li L, Zhang P, Zhou D, Wen W, Wang Y, Lei Q, Wu J, Hu W. FOXM1D potentiates PKM2-mediated tumor glycolysis and angiogenesis. Mol Oncol 2021; 15:1466-1485. [PMID: 33314660 PMCID: PMC8096781 DOI: 10.1002/1878-0261.12879] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/16/2020] [Accepted: 12/10/2020] [Indexed: 02/06/2023] Open
Abstract
Tumor growth, especially in the late stage, requires adequate nutrients and rich vasculature, in which PKM2 plays a convergent role. It has been reported that PKM2, together with FOXM1D, is upregulated in late-stage colorectal cancer and associated with metastasis; however, their underlying mechanism for promoting tumor progression remains elusive. Herein, we revealed that FOXM1D potentiates PKM2-mediated glycolysis and angiogenesis through multiple protein-protein interactions. In the presence of FBP, FOXM1D binds to tetrameric PKM2 and assembles a heterooctamer, restraining PKM2 metabolic activity by about a half and thereby promoting aerobic glycolysis. Furthermore, FOXM1D interacts with PKM2 and NF-κB and induces their nuclear translocation with the assistance of the nuclear transporter importin 4. Once in the nucleus, PKM2 and NF-κB complexes subsequently augment VEGFA transcription. The increased VEGFA is secreted extracellularly via exosomes, an event potentiated by the interaction of FOXM1 with VPS11, eventually promoting tumor angiogenesis. Based on these findings, our study provides another insight into the role of PKM2 in the regulation of glycolysis and angiogenesis.
Collapse
Affiliation(s)
- Wei Zhang
- Fudan University Shanghai Cancer Center and Institutes of Biomedical SciencesShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Xin Zhang
- Fudan University Shanghai Cancer Center and Institutes of Biomedical SciencesShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Sheng Huang
- Department of Breast SurgeryBreast Cancer InstituteFudan University Shanghai Cancer CenterShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Jianfeng Chen
- Fudan University Shanghai Cancer Center and Institutes of Biomedical SciencesShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Peipei Ding
- Fudan University Shanghai Cancer Center and Institutes of Biomedical SciencesShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Qi Wang
- Fudan University Shanghai Cancer Center and Institutes of Biomedical SciencesShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Luying Li
- Fudan University Shanghai Cancer Center and Institutes of Biomedical SciencesShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Xinyue Lv
- Fudan University Shanghai Cancer Center and Institutes of Biomedical SciencesShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Ling Li
- Fudan University Shanghai Cancer Center and Institutes of Biomedical SciencesShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Pingzhao Zhang
- Fudan University Shanghai Cancer Center and Institutes of Biomedical SciencesShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Danlei Zhou
- Fudan University Shanghai Cancer Center and Institutes of Biomedical SciencesShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Wenyu Wen
- Fudan University Shanghai Cancer Center and Institutes of Biomedical SciencesShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Yiping Wang
- Fudan University Shanghai Cancer Center and Institutes of Biomedical SciencesShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Qun‐Ying Lei
- Fudan University Shanghai Cancer Center and Institutes of Biomedical SciencesShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Jiong Wu
- Department of Breast SurgeryBreast Cancer InstituteFudan University Shanghai Cancer CenterShanghai Medical CollegeFudan UniversityShanghaiChina
- Key Laboratory of Breast Cancer in ShanghaiFudan University Shanghai Cancer CenterFudan UniversityShanghaiChina
| | - Weiguo Hu
- Fudan University Shanghai Cancer Center and Institutes of Biomedical SciencesShanghai Medical CollegeFudan UniversityShanghaiChina
- Key Laboratory of Breast Cancer in ShanghaiFudan University Shanghai Cancer CenterFudan UniversityShanghaiChina
| |
Collapse
|
8
|
Paul A, Sil J. Identification of Differentially Expressed Genes to Establish New Biomarker for Cancer Prediction. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2019; 16:1970-1985. [PMID: 29994718 DOI: 10.1109/tcbb.2018.2837095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The goal of the human genome project is to integrate genetic information into different clinical therapies. To achieve this goal, different computational algorithms are devised for identifying the biomarker genes, cause of complex diseases. However, most of the methods developed so far using DNA microarray data lack in interpreting biological findings and are less accurate in disease prediction. In the paper, we propose two parameters risk_factor and confusion_factor to identify the biologically significant genes for cancer development. First, we evaluate risk_factor of each gene and the genes with nonzero risk_factor result misclassification of data, therefore removed. Next, we calculate confusion_factor of the remaining genes which determines confusion of a gene in prediction due to closeness of the samples in the cancer and normal classes. We apply nondominated sorting genetic algorithm (NSGA-II) to select the maximally uncorrelated differentially expressed genes in the cancer class with minimum confusion_factor. The proposed Gene Selection Explore (GSE) algorithm is compared to well established feature selection algorithms using 10 microarray data with respect to sensitivity, specificity, and accuracy. The identified genes appear in KEGG pathway and have several biological importance.
Collapse
|
9
|
Reprint of: Importins in the maintenance and lineage commitment of ES cells. Neurochem Int 2017; 106:14-23. [PMID: 28550879 DOI: 10.1016/j.neuint.2017.01.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 01/25/2017] [Accepted: 01/30/2017] [Indexed: 11/23/2022]
Abstract
The nucleus of a eukaryotic cell is separated from the cytoplasm by a nuclear envelope, and nuclear pores within the envelope facilitate nucleocytoplasmic transport and the exchange of information. Gene regulation is a key component of biological activity regulation in the cell. Transcription factors control the expression levels of various genes that are necessary for the maintenance or conversion of cellular states during animal development. Because transcription factor activities determine the extent of transcription of target genes, the number of active transcription factors must be tightly regulated. In this regard, the nuclear translocation of a transcription factor is an important determinant of its activity. Therefore, it is becoming clear that the nucleocytoplasmic transport machinery is involved in cell differentiation and organism development. This review examines the regulation of transcription factors by the nucleocytoplasmic transport machinery in ES cells.
Collapse
|
10
|
Competitive regulation of IPO4 transcription by ELK1 and GABP. Gene 2017; 613:30-38. [DOI: 10.1016/j.gene.2017.02.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 01/25/2017] [Accepted: 02/24/2017] [Indexed: 11/19/2022]
|
11
|
Chen X, Li X, Guo J, Zhang P, Zeng W. The roles of microRNAs in regulation of mammalian spermatogenesis. J Anim Sci Biotechnol 2017; 8:35. [PMID: 28469844 PMCID: PMC5410700 DOI: 10.1186/s40104-017-0166-4] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 03/30/2017] [Indexed: 02/07/2023] Open
Abstract
Mammalian spermatogenesis contains three continuous and organized processes, by which spermatogonia undergo mitosis and differentiate to spermatocytes, follow on meiosis to form haploid spermatids and ultimately transform into spermatozoa. These processes require an accurately, spatially and temporally regulated gene expression patterns. The microRNAs are a novel class of post-transcriptional regulators. Cumulating evidences have demonstrated that microRNAs are expressed in a cell-specific or stage-specific manner during spermatogenesis. In this review, we focus on the roles of microRNAs in spermatogenesis. We highlight that N6-methyladenosine (m6A) is involved in the biogenesis of microRNAs and miRNA regulates the m6A modification on mRNA, and that specific miRNAs have been exploited as potential biomarkers for the male factor infertility, which will provide insightful understanding of microRNA roles in spermatogenesis.
Collapse
Affiliation(s)
- Xiaoxu Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100 China
| | - Xueliang Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100 China
| | - Jiayin Guo
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100 China
| | - Pengfei Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100 China
| | - Wenxian Zeng
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100 China
| |
Collapse
|
12
|
Importins in the maintenance and lineage commitment of ES cells. Neurochem Int 2017; 105:32-41. [PMID: 28163061 DOI: 10.1016/j.neuint.2017.01.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 01/25/2017] [Accepted: 01/30/2017] [Indexed: 11/23/2022]
Abstract
The nucleus of a eukaryotic cell is separated from the cytoplasm by a nuclear envelope, and nuclear pores within the envelope facilitate nucleocytoplasmic transport and the exchange of information. Gene regulation is a key component of biological activity regulation in the cell. Transcription factors control the expression levels of various genes that are necessary for the maintenance or conversion of cellular states during animal development. Because transcription factor activities determine the extent of transcription of target genes, the number of active transcription factors must be tightly regulated. In this regard, the nuclear translocation of a transcription factor is an important determinant of its activity. Therefore, it is becoming clear that the nucleocytoplasmic transport machinery is involved in cell differentiation and organism development. This review examines the regulation of transcription factors by the nucleocytoplasmic transport machinery in ES cells.
Collapse
|
13
|
Loveland KL, Major AT, Butler R, Young JC, Jans DA, Miyamoto Y. Putting things in place for fertilization: discovering roles for importin proteins in cell fate and spermatogenesis. Asian J Androl 2016; 17:537-44. [PMID: 25994647 PMCID: PMC4492042 DOI: 10.4103/1008-682x.154310] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Importin proteins were originally characterized for their central role in protein transport through the nuclear pores, the only intracellular entry to the nucleus. This vital function must be tightly regulated to control access by transcription factors and other nuclear proteins to genomic DNA, to achieve appropriate modulation of cellular behaviors affecting cell fate. Importin-mediated nucleocytoplasmic transport relies on their specific recognition of cargoes, with each importin binding to distinct and overlapping protein subsets. Knowledge of importin function has expanded substantially in regard to three key developmental systems: embryonic stem cells, muscle cells and the germ line. In the decade since the potential for regulated nucleocytoplasmic transport to contribute to spermatogenesis was proposed, we and others have shown that the importins that ferry transcription factors into the nucleus perform additional roles, which control cell fate. This review presents key findings from studies of mammalian spermatogenesis that reveal potential new pathways by which male fertility and infertility arise. These studies of germline genesis illuminate new ways in which importin proteins govern cellular differentiation, including via directing proteins to distinct intracellular compartments and by determining cellular stress responses.
Collapse
Affiliation(s)
- Kate L Loveland
- Department of Biochemistry and Molecular Biology;Department of Anatomy and Developmental Biology, Monash University; Hudson Institute of Medical Research, Monash Medical Centre; School of Clinical Sciences, Monash University, Clayton, VIC, Australia,
| | | | | | | | | | | |
Collapse
|
14
|
Bar I, Cummins S, Elizur A. Transcriptome analysis reveals differentially expressed genes associated with germ cell and gonad development in the Southern bluefin tuna (Thunnus maccoyii). BMC Genomics 2016; 17:217. [PMID: 26965070 PMCID: PMC4785667 DOI: 10.1186/s12864-016-2397-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 01/14/2016] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Controlling and managing the breeding of bluefin tuna (Thunnus spp.) in captivity is an imperative step towards obtaining a sustainable supply of these fish in aquaculture production systems. Germ cell transplantation (GCT) is an innovative technology for the production of inter-species surrogates, by transplanting undifferentiated germ cells derived from a donor species into larvae of a host species. The transplanted surrogates will then grow and mature to produce donor-derived seed, thus providing a simpler alternative to maintaining large-bodied broodstock such as the bluefin tuna. Implementation of GCT for new species requires the development of molecular tools to follow the fate of the transplanted germ cells. These tools are based on key reproductive and germ cell-specific genes. RNA-Sequencing (RNA-Seq) provides a rapid, cost-effective method for high throughput gene identification in non-model species. This study utilized RNA-Seq to identify key genes expressed in the gonads of Southern bluefin tuna (Thunnus maccoyii, SBT) and their specific expression patterns in male and female gonad cells. RESULTS Key genes involved in the reproductive molecular pathway and specifically, germ cell development in gonads, were identified using analysis of RNA-Seq transcriptomes of male and female SBT gonad cells. Expression profiles of transcripts from ovary and testis cells were compared, as well as testis germ cell-enriched fraction prepared with Percoll gradient, as used in GCT studies. Ovary cells demonstrated over-expression of genes related to stem cell maintenance, while in testis cells, transcripts encoding for reproduction-associated receptors, sex steroids and hormone synthesis and signaling genes were over-expressed. Within the testis cells, the Percoll-enriched fraction showed over-expression of genes that are related to post-meiosis germ cell populations. CONCLUSIONS Gonad development and germ cell related genes were identified from SBT gonads and their expression patterns in ovary and testis cells were determined. These expression patterns correlate with the reproductive developmental stage of the sampled fish. The majority of the genes described in this study were sequenced for the first time in T. maccoyii. The wealth of SBT gonadal and germ cell-related gene sequences made publicly available by this study provides an extensive resource for further GCT and reproductive molecular biology studies of this commercially valuable fish.
Collapse
Affiliation(s)
- Ido Bar
- Genecology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, 4558 Maroochydore DC, Queensland, Australia
| | - Scott Cummins
- Genecology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, 4558 Maroochydore DC, Queensland, Australia
| | - Abigail Elizur
- Genecology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, 4558 Maroochydore DC, Queensland, Australia
| |
Collapse
|
15
|
Roggero VR, Zhang J, Parente LE, Doshi Y, Dziedzic RC, McGregor EL, Varjabedian AD, Schad SE, Bondzi C, Allison LA. Nuclear import of the thyroid hormone receptor α1 is mediated by importin 7, importin β1, and adaptor importin α1. Mol Cell Endocrinol 2016; 419:185-97. [PMID: 26525414 PMCID: PMC4684427 DOI: 10.1016/j.mce.2015.10.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 10/20/2015] [Accepted: 10/20/2015] [Indexed: 01/27/2023]
Abstract
The thyroid hormone receptor α1 (TRα1) is a nuclear receptor for thyroid hormone that shuttles rapidly between the nucleus and cytoplasm. Our prior studies showed that nuclear import of TRα1 is directed by two nuclear localization signals, one in the N-terminal A/B domain and the other in the hinge domain. Here, we showed using in vitro nuclear import assays that TRα1 nuclear localization is temperature and energy-dependent and can be reconstituted by the addition of cytosol. In HeLa cells expressing green fluorescent protein (GFP)-tagged TRα1, knockdown of importin 7, importin β1 and importin α1 by RNA interference, or treatment with an importin β1-specific inhibitor, significantly reduced nuclear localization of TRα1, while knockdown of other importins had no effect. Coimmunoprecipitation assays confirmed that TRα1 interacts with importin 7, as well as importin β1 and the adapter importin α1, suggesting that TRα1 trafficking into the nucleus is mediated by two distinct pathways.
Collapse
Affiliation(s)
- Vincent R Roggero
- Department of Biology, College of William and Mary, Williamsburg, VA, 23185, USA
| | - Jibo Zhang
- Department of Biology, College of William and Mary, Williamsburg, VA, 23185, USA
| | - Laura E Parente
- Department of Biology, College of William and Mary, Williamsburg, VA, 23185, USA
| | - Yazdi Doshi
- Department of Biology, College of William and Mary, Williamsburg, VA, 23185, USA
| | - Rose C Dziedzic
- Department of Biology, College of William and Mary, Williamsburg, VA, 23185, USA
| | - Emma L McGregor
- Department of Biology, College of William and Mary, Williamsburg, VA, 23185, USA
| | - Arev D Varjabedian
- Department of Biology, College of William and Mary, Williamsburg, VA, 23185, USA
| | - Sara E Schad
- Department of Biology, College of William and Mary, Williamsburg, VA, 23185, USA
| | - Cornelius Bondzi
- Department of Biological Sciences, Hampton University, Hampton, VA, 23668, USA
| | - Lizabeth A Allison
- Department of Biology, College of William and Mary, Williamsburg, VA, 23185, USA.
| |
Collapse
|
16
|
Gupta N, Madapura MP, Bhat UA, Rao MRS. Mapping of Post-translational Modifications of Transition Proteins, TP1 and TP2, and Identification of Protein Arginine Methyltransferase 4 and Lysine Methyltransferase 7 as Methyltransferase for TP2. J Biol Chem 2015; 290:12101-22. [PMID: 25818198 DOI: 10.1074/jbc.m114.620443] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Indexed: 12/22/2022] Open
Abstract
In a unique global chromatin remodeling process during mammalian spermiogenesis, 90% of the nucleosomal histones are replaced by testis-specific transition proteins, TP1, TP2, and TP4. These proteins are further substituted by sperm-specific protamines, P1 and P2, to form a highly condensed sperm chromatin. In spermatozoa, a small proportion of chromatin, which ranges from 1 to 10% in mammals, retains the nucleosomal architecture and is implicated to play a role in transgenerational inheritance. However, there is still no mechanistic understanding of the interaction of chromatin machinery with histones and transition proteins, which facilitate this selective histone replacement from chromatin. Here, we report the identification of 16 and 19 novel post-translational modifications on rat endogenous transition proteins, TP1 and TP2, respectively, by mass spectrometry. By in vitro assays and mutational analysis, we demonstrate that protein arginine methyltransferase PRMT4 (CARM1) methylates TP2 at Arg(71), Arg(75), and Arg(92) residues, and lysine methyltransferase KMT7 (Set9) methylates TP2 at Lys(88) and Lys(91) residues. Further studies with modification-specific antibodies that recognize TP2K88me1 and TP2R92me1 modifications showed that they appear in elongating to condensing spermatids and predominantly associated with the chromatin-bound TP2. This work establishes the repertoire of post-translational modifications that occur on TP1 and TP2, which may play a significant role in various chromatin-templated events during spermiogenesis and in the establishment of the sperm epigenome.
Collapse
Affiliation(s)
- Nikhil Gupta
- From the Chromatin Biology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore 560064, India
| | - M Pradeepa Madapura
- From the Chromatin Biology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore 560064, India
| | - U Anayat Bhat
- From the Chromatin Biology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore 560064, India
| | - M R Satyanarayana Rao
- From the Chromatin Biology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore 560064, India
| |
Collapse
|
17
|
Kimura M, Imamoto N. Biological significance of the importin-β family-dependent nucleocytoplasmic transport pathways. Traffic 2014; 15:727-48. [PMID: 24766099 DOI: 10.1111/tra.12174] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 04/22/2014] [Accepted: 04/22/2014] [Indexed: 12/19/2022]
Abstract
Importin-β family proteins (Imp-βs) are nucleocytoplasmic transport receptors (NTRs) that import and export proteins and RNAs through the nuclear pores. The family consists of 14-20 members depending on the biological species, and each member transports a specific group of cargoes. Thus, the Imp-βs mediate multiple, parallel transport pathways that can be regulated separately. In fact, the spatiotemporally differential expressions and the functional regulations of Imp-βs have been reported. Additionally, the biological significance of each pathway has been characterized by linking the function of a member of Imp-βs to a cellular consequence. Connecting these concepts, the regulation of the transport pathways conceivably induces alterations in the cellular physiological states. However, few studies have linked the regulation of an importin-β family NTR to an induced cellular response and the corresponding cargoes, despite the significance of this linkage in comprehending the biological relevance of the transport pathways. This review of recent reports on the regulation and biological functions of the Imp-βs highlights the significance of the transport pathways in physiological contexts and points out the possibility that the identification of yet unknown specific cargoes will reinforce the importance of transport regulation.
Collapse
Affiliation(s)
- Makoto Kimura
- Cellular Dynamics Laboratory, RIKEN, Hirosawa 2-1, Wako, Saitama, 351-0198, Japan
| | | |
Collapse
|
18
|
Noblanc A, Kocer A, Drevet JR. Recent knowledge concerning mammalian sperm chromatin organization and its potential weaknesses when facing oxidative challenge. Basic Clin Androl 2014; 24:6. [PMID: 26779341 PMCID: PMC4715350 DOI: 10.1186/2051-4190-24-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Accepted: 02/26/2014] [Indexed: 01/08/2023] Open
Abstract
Spermatozoa are the smallest and most cyto-differentiated mammalian cells. From a somatic cell-like appearance at the beginning of spermatogenesis, the male germ cell goes through a highly sophisticated process to reach its final organization entirely devoted to its mission which is to deliver the paternal genome to the oocyte. In order to fit the paternal DNA into the tiny spermatozoa head, complete chromatin remodeling is necessary. This review essentially focuses on present knowledge of this mammalian sperm nucleus compaction program. Particular attention is given to most recent advances that concern the specific organization of mammalian sperm chromatin and its potential weaknesses. Emphasis is placed on sperm DNA oxidative damage that may have dramatic consequences including infertility, abnormal embryonic development and the risk of transmission to descendants of an altered paternal genome.
Collapse
Affiliation(s)
- Anais Noblanc
- GReD Laboratory, CNRS UMR 6293 - INSERM U1103 - Clermont Université, Aubière, France
| | - Ayhan Kocer
- GReD Laboratory, CNRS UMR 6293 - INSERM U1103 - Clermont Université, Aubière, France
| | - Joël R Drevet
- GReD Laboratory, CNRS UMR 6293 - INSERM U1103 - Clermont Université, Aubière, France
| |
Collapse
|
19
|
Hou C, Qin G, Liu T, Geng T, Gao K, Pan Z, Qian H, Guo X. Transcriptome analysis of silkworm, Bombyx mori, during early response to Beauveria bassiana challenges. PLoS One 2014; 9:e91189. [PMID: 24618587 PMCID: PMC3949756 DOI: 10.1371/journal.pone.0091189] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 02/08/2014] [Indexed: 11/19/2022] Open
Abstract
Host–pathogen interactions are complex processes and it is a central challenge to reveal these interactions. Fungal infection of silkworm, Bombyx mori, may induce a variety of responsive reaction. However, little is known about the molecular mechanism of silkworm immune response against the fungal infection. To obtain an overview of the interaction between silkworm and an entomopathogenic fungus Beauveria bassiana, Digital Gene Expression profiling, a tag based high-throughput transcriptome sequencing method, was employed to screen and identify differentially expressed genes (DEGs, FDR≤0.001, ∣log2ratio∣≥1) of silkworm larvae during early response against B. bassiana infection. Total 1430 DEGs including 960 up-regulated and 470 down-regulated ones were identified, of which 627 DEGs can be classified into GO categories by Gene Ontology (GO) analysis. KEGG pathways analysis of these DEGs suggested that many biological processes, such as defense and response, signal transduction, phagocytosis, regulation of gene expression, RNA splicing, biosynthesis and metabolism, protein transport etc. were involved in the interaction between the silkworm and B. bassiana. A number of differentially expressed fungal genes were also identified by mapping the sequencing tags to B. bassiana genome. These results provided new insights to the molecular mechanism of silkworm immune response to B. bassiana infection.
Collapse
Affiliation(s)
- Chengxiang Hou
- Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, China
| | - Guangxing Qin
- Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, China
| | - Ting Liu
- Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, China
| | - Tao Geng
- Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
| | - Kun Gao
- Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
| | - Zhonghua Pan
- Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
| | - Heying Qian
- Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, China
| | - Xijie Guo
- Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, China
- * E-mail:
| |
Collapse
|
20
|
Miyamoto Y, Boag PR, Hime GR, Loveland KL. Regulated nucleocytoplasmic transport during gametogenesis. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1819:616-30. [PMID: 22326858 DOI: 10.1016/j.bbagrm.2012.01.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Revised: 01/23/2012] [Accepted: 01/24/2012] [Indexed: 12/13/2022]
Abstract
Gametogenesis is the process by which sperm or ova are produced in the gonads. It is governed by a tightly controlled series of gene expression events, with some common and others distinct for males and females. Nucleocytoplasmic transport is of central importance to the fidelity of gene regulation that is required to achieve the precisely regulated germ cell differentiation essential for fertility. In this review we discuss the physiological importance for gamete formation of the molecules involved in classical nucleocytoplasmic protein transport, including importins/karyopherins, Ran and nucleoporins. To address what functions/factors are conserved or specialized for these developmental processes between species, we compare knowledge from mice, flies and worms. The present analysis provides evidence of the necessity for and specificity of each nuclear transport factor and for nucleoporins during germ cell differentiation. This article is part of a Special Issue entitled: Nuclear Transport and RNA Processing.
Collapse
Affiliation(s)
- Yoichi Miyamoto
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria 3800, Australia.
| | | | | | | |
Collapse
|
21
|
Dhar S, Thota A, Rao MRS. Insights into role of bromodomain, testis-specific (Brdt) in acetylated histone H4-dependent chromatin remodeling in mammalian spermiogenesis. J Biol Chem 2012; 287:6387-405. [PMID: 22215678 DOI: 10.1074/jbc.m111.288167] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Mammalian spermiogenesis is of considerable biological interest especially due to the unique chromatin remodeling events that take place during spermatid maturation. Here, we have studied the expression of chromatin remodeling factors in different spermatogenic stages and narrowed it down to bromodomain, testis-specific (Brdt) as a key molecule participating in chromatin remodeling during rat spermiogenesis. Our immunocytochemistry experiments reveal that Brdt colocalizes with acetylated H4 in elongating spermatids. Remodeling assays showed an acetylation-dependent but ATP-independent chromatin reorganization property of Brdt in haploid round spermatids. Furthermore, Brdt interacts with Smarce1, a member of the SWI/SNF family. We have studied the genomic organization of smarce1 and identified that it has two splice variants expressed during spermatogenesis. The N terminus of Brdt is involved in the recognition of Smarce1 as well as in the reorganization of hyperacetylated round spermatid chromatin. Interestingly, the interaction between Smarce1 and Brdt increases dramatically upon histone hyperacetylation both in vitro and in vivo. Thus, our results indicate this interaction to be a vital step in the chromatin remodeling process during mammalian spermiogenesis.
Collapse
Affiliation(s)
- Surbhi Dhar
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | | | | |
Collapse
|
22
|
Dehnugara T, Dhar S, Rao MRS. An in vitro, short-term culture method for mammalian haploid round spermatids amenable for molecular manipulation. Mol Reprod Dev 2011; 79:19-30. [PMID: 21953649 DOI: 10.1002/mrd.21396] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Accepted: 09/03/2011] [Indexed: 11/11/2022]
Abstract
Extensive chromatin remodeling is a characteristic feature of mammalian spermiogenesis. To date, methods for the molecular manipulation of haploid spermatids are not available as there is a lack of a well-established culture system. Biochemical experiments and knockout studies reveal only the final outcome; studying the incremental details of the intricate mechanisms involved is still a challenge. We have established an in vitro culture system for pure haploid round spermatids isolated from rat testes that can be maintained with good viability for up to 72 hr. Changes in cell morphology and flagellar growth were also studied in the cultured spermatids. Further, we have demonstrated that upon treatment of cells with specific histone deacetylase inhibitors, sodium butyrate and trichostatin A, there is an increase in the hyperacetylation status of histone H4, mimicking an important event characteristic of histone replacement process that occurs during later stages of spermiogenesis. We have also tried various methods for introducing DNA and protein into these round spermatids in culture, and report that while DNA transfection is still a challenging task, protein transfection could be achieved using Chariot™ peptide as a transfection reagent. Thus, the method described here sets a stage to study the molecular roles of spermatid-specific proteins and chromatin remodelers in the cellular context.
Collapse
Affiliation(s)
- Tushna Dehnugara
- Chromatin Biology Lab, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, India
| | | | | |
Collapse
|
23
|
Major AT, Whiley PAF, Loveland KL. Expression of nucleocytoplasmic transport machinery: clues to regulation of spermatogenic development. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1813:1668-88. [PMID: 21420444 DOI: 10.1016/j.bbamcr.2011.03.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Revised: 02/22/2011] [Accepted: 03/11/2011] [Indexed: 12/14/2022]
Abstract
Spermatogenesis is one example of a developmental process which requires tight control of gene expression to achieve normal growth and sustain function. This review is based on the principle that events in spermatogenesis are controlled by changes in the distribution of proteins between the nuclear and cytoplasmic compartments. Through analysis of the regulated production of nucleocytoplasmic transport machinery in mammalian spermatogenesis, this review addresses the concept that access to the nucleus is tightly controlled to enable and prevent differentiation. A broad review of nuclear transport components is presented, outlining the different categories of machinery required for import, export and non-nuclear functions. In addition, the complexity of nomenclature is addressed by the provision of a concise yet comprehensive listing of information that will aid in comparative studies of different transport proteins and the genes which encode them. We review a suite of existing transcriptional analyses which identify common and distinct patterns of transport machinery expression, showing how these can be linked with key events in spermatogenic development. The additional importance of this for human fertility is considered, in light of data that identify which importin and nuclear transport machinery components are present in testicular cancer specimens, while also providing an indication of how their presence (and absence) may be considered as potential mediators of oncogenesis. This article is part of a Special Issue entitled: Regulation of Signaling and Cellular Fate through Modulation of Nuclear Protein Import.
Collapse
Affiliation(s)
- Andrew T Major
- Department of Anatomy and Developmental Biology, Monash University, Australia
| | | | | |
Collapse
|
24
|
Giannakouros T, Nikolakaki E, Mylonis I, Georgatsou E. Serine-arginine protein kinases: a small protein kinase family with a large cellular presence. FEBS J 2011; 278:570-86. [DOI: 10.1111/j.1742-4658.2010.07987.x] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
25
|
Chook YM, Süel KE. Nuclear import by karyopherin-βs: recognition and inhibition. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1813:1593-606. [PMID: 21029754 DOI: 10.1016/j.bbamcr.2010.10.014] [Citation(s) in RCA: 310] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 10/06/2010] [Accepted: 10/19/2010] [Indexed: 01/24/2023]
Abstract
Proteins in the karyopherin-β family mediate the majority of macromolecular transport between the nucleus and the cytoplasm. Eleven of the 19 known human karyopherin-βs and 10 of the 14S. cerevisiae karyopherin-βs mediate nuclear import through recognition of nuclear localization signals or NLSs in their cargos. This receptor-mediated process is essential to cellular viability as proteins are translated in the cytoplasm but many have functional roles in the nucleus. Many known karyopherin-β-cargo interactions were discovered through studies of the individual cargos rather than the karyopherins, and this information is thus widely scattered in the literature. We consolidate information about cargos that are directly recognized by import-karyopherin-βs and review common characteristics or lack thereof among cargos of different import pathways. Knowledge of karyopherin-β-cargo interactions is also critical for the development of nuclear import inhibitors and the understanding of their mechanisms of inhibition. This article is part of a Special Issue entitled: Regulation of Signaling and Cellular Fate through Modulation of Nuclear Protein Import.
Collapse
Affiliation(s)
- Yuh Min Chook
- Department of Pharmacology, University of Texas Southerwestern Medical Center, Dallas, TX 75206, USA.
| | | |
Collapse
|
26
|
Wang J, Sarkar TR, Zhou M, Sharan S, Ritt DA, Veenstra TD, Morrison DK, Huang AM, Sterneck E. CCAAT/enhancer binding protein delta (C/EBPdelta, CEBPD)-mediated nuclear import of FANCD2 by IPO4 augments cellular response to DNA damage. Proc Natl Acad Sci U S A 2010; 107:16131-6. [PMID: 20805509 PMCID: PMC2941265 DOI: 10.1073/pnas.1002603107] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Maintenance of genomic integrity is an essential cellular function. We previously reported that the transcription factor and tumor suppressor CCAAT/enhancer binding protein δ (C/EBPδ, CEBPD; also known as "NFIL-6β") promotes genomic stability. However, the molecular mechanism was not known. Here, we show that C/EBPδ is a DNA damage-induced gene, which supports survival of mouse bone marrow cells, mouse embryo fibroblasts (MEF), human fibroblasts, and breast tumor cells in response to the DNA cross-linking agent mitomycin C (MMC). Using gene knockout, protein depletion, and overexpression studies, we found that C/EBPδ promotes monoubiquitination of the Fanconi anemia complementation group D2 protein (FANCD2), which is necessary for its function in replication-associated DNA repair. C/EBPδ interacts with FANCD2 and importin 4 (IPO4, also known as "Imp4" and "RanBP4") via separate domains, mediating FANCD2-IPO4 association and augmenting nuclear import of FANCD2, a prerequisite for its monoubiquitination. This study identifies a transcription-independent activity of C/EBPδ in the DNA damage response that may in part underlie its tumor suppressor function. Furthermore, we report a function of IPO4 and nuclear import in the Fanconi anemia pathway of DNA repair.
Collapse
Affiliation(s)
- Jun Wang
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702; and
| | - Tapasree Roy Sarkar
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702; and
| | - Ming Zhou
- Laboratory of Proteomics and Analytical Technologies, Advanced Technology Program, SAIC-Frederick, Frederick, MD, 21702
| | - Shikha Sharan
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702; and
| | - Daniel A. Ritt
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702; and
| | - Timothy D. Veenstra
- Laboratory of Proteomics and Analytical Technologies, Advanced Technology Program, SAIC-Frederick, Frederick, MD, 21702
| | - Deborah K. Morrison
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702; and
| | - A-Mei Huang
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702; and
| | - Esta Sterneck
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702; and
| |
Collapse
|
27
|
Pradeepa MM, Nikhil G, Hari Kishore A, Bharath GN, Kundu TK, Rao MRS. Acetylation of transition protein 2 (TP2) by KAT3B (p300) alters its DNA condensation property and interaction with putative histone chaperone NPM3. J Biol Chem 2009; 284:29956-67. [PMID: 19710011 PMCID: PMC2785624 DOI: 10.1074/jbc.m109.052043] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2009] [Revised: 08/25/2009] [Indexed: 01/17/2023] Open
Abstract
The hallmark of mammalian spermiogenesis is the dramatic chromatin remodeling process wherein the nucleosomal histones are replaced by the transition proteins TP1, TP2, and TP4. Subsequently these transition proteins are replaced by the protamines P1 and P2. Hyperacetylation of histone H4 is linked to their replacement by transition proteins. Here we report that TP2 is acetylated in vivo as detected by anti-acetylated lysine antibody and mass spectrometric analysis. Further, recombinant TP2 is acetylated in vitro by acetyltransferase KAT3B (p300) more efficiently than by KAT2B (PCAF). In vivo p300 was demonstrated to acetylate TP2. p300 acetylates TP2 in its C-terminal domain, which is highly basic in nature and possesses chromatin-condensing properties. Mass spectrometric analysis showed that p300 acetylates four lysine residues in the C-terminal domain of TP2. Acetylation of TP2 by p300 leads to significant reduction in its DNA condensation property as studied by circular dichroism and atomic force microscopy analysis. TP2 also interacts with a putative histone chaperone, NPM3, wherein expression is elevated in haploid spermatids. Interestingly, acetylation of TP2 impedes its interaction with NPM3. Thus, acetylation of TP2 adds a new dimension to its role in the dynamic reorganization of chromatin during mammalian spermiogenesis.
Collapse
Affiliation(s)
- Madapura M. Pradeepa
- From the Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P. O., Bangalore 560064, India and
| | - Gupta Nikhil
- From the Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P. O., Bangalore 560064, India and
| | - Annavarapu Hari Kishore
- From the Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P. O., Bangalore 560064, India and
| | - Giriyapura N. Bharath
- From the Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P. O., Bangalore 560064, India and
| | - Tapas K. Kundu
- From the Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P. O., Bangalore 560064, India and
| | - Manchanahalli R. Satyanarayana Rao
- From the Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P. O., Bangalore 560064, India and
- the Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
28
|
Quénet D, Mark M, Govin J, van Dorsselear A, Schreiber V, Khochbin S, Dantzer F. Parp2 is required for the differentiation of post-meiotic germ cells: Identification of a spermatid-specific complex containing Parp1, Parp2, TP2 and HSPA2. Exp Cell Res 2009; 315:2824-34. [DOI: 10.1016/j.yexcr.2009.07.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Revised: 07/01/2009] [Accepted: 07/03/2009] [Indexed: 11/24/2022]
|
29
|
Chachami G, Paraskeva E, Mingot JM, Braliou GG, Görlich D, Simos G. Transport of hypoxia-inducible factor HIF-1alpha into the nucleus involves importins 4 and 7. Biochem Biophys Res Commun 2009; 390:235-40. [PMID: 19788888 DOI: 10.1016/j.bbrc.2009.09.093] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2009] [Accepted: 09/23/2009] [Indexed: 12/20/2022]
Abstract
Hypoxia-inducible transcription factor 1 (HIF-1) mediates the cellular response to hypoxia. HIF-1 activity is controlled via the synthesis, degradation or intracellular localization of its alpha subunit. HIF-1alpha contains a C-terminal bipartite basic NLS that interacts with importins alpha. We have recently shown that HIF-1alpha also contains an atypical hydrophobic CRM1- and phosphorylation-dependent NES and can therefore shuttle in and out of the nucleus. We now report that C-terminal NLS mutants of HIF-1alpha can still enter the nucleus when CRM1-dependent nuclear export is inhibited, indicating that HIF-1alpha contains an additional functional nuclear import signal. Using an in vitro nuclear import assay, we further show that importins 4 and 7 accomplish nuclear import of HIF-1alpha more efficiently than the classical importin alpha/beta NLS receptor. Binding assays confirmed the specific physical interaction between HIF-1alpha and importins 4 and 7. Moreover, the interaction of importin 7 with HIF-1alpha is mapped at its N-terminal part encompassing the bHLH-PAS(A) domain. By expressing functional HIF-1 in yeast, we show that Nmd5, the yeast orthologue of importin 7, is required for HIF-1alpha nuclear accumulation and activity. Taken together, our data show that shuttling of HIF-1alpha between cytoplasm and nucleus is a complex process involving several members of the nuclear transport receptor family.
Collapse
Affiliation(s)
- Georgia Chachami
- Laboratory of Biochemistry, School of Medicine, University of Thessaly, Mezourlo, 41110 Larissa, Greece
| | | | | | | | | | | |
Collapse
|
30
|
Chathoth KT, Ganesan G, Rao MRS. Identification of a novel nucleolin related protein (NRP) gene expressed during rat spermatogenesis. BMC Mol Biol 2009; 10:64. [PMID: 19570216 PMCID: PMC2711064 DOI: 10.1186/1471-2199-10-64] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2008] [Accepted: 07/01/2009] [Indexed: 11/17/2022] Open
Abstract
Background Nucleolin is a major nucleolar phosphoprotein involved in various steps of ribosome biogenesis in eukaryotic cells. As nucleolin plays a significant role in ribosomal RNA transcription we were interested in examining in detail the expression of nucleolin across different stages of spermatogenesis and correlate with the transcription status of ribosomal DNA in germ cells. Results By RT PCR and western blot analysis we found that nucleolin is strongly down regulated in meiotic spermatocytes and haploid germ cells. We have identified a new nucleolin related protein (NRP) gene in the rat genome, which is over expressed in the testis and is up regulated several fold in meiotic spermatocytes and haploid germ cells. The NRP protein lacks the acidic stretches in its N terminal domain, and it is encoded in rat chromosome 15 having a different genomic organization as compared to nucleolin gene present on chromosome 9. We have also found NRP genes encoded in genomes of other mammalian species. We performed run-on transcription assay where we have observed that rDNA is transcribed at much lower level in meiotic spermatocytes and haploid spermatids as compared to diploid cells. By siRNA knock down experiments we could also demonstrate that NRP can support rDNA transcription in the absence of nucleolin. Conclusion We have identified a new nucleolin variant over expressed in germ cells in rat and analyzed its domain structure. We attribute that the transcriptional activity of rDNA genes in the late spermatogenesis is due to the presence of this variant NRP. The expression of this variant in the germ cells in the absence of nucleolin, could have additional functions in the mammalian spermatogenesis which needs to be investigated further.
Collapse
Affiliation(s)
- Keerthi T Chathoth
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Banglore, India 560064, USA.
| | | | | |
Collapse
|
31
|
Itman C, Miyamoto Y, Young J, Jans D, Loveland K. Nucleocytoplasmic transport as a driver of mammalian gametogenesis. Semin Cell Dev Biol 2009; 20:607-19. [DOI: 10.1016/j.semcdb.2009.05.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2009] [Revised: 04/29/2009] [Accepted: 05/04/2009] [Indexed: 12/17/2022]
|
32
|
The role of the nuclear transport system in cell differentiation. Semin Cell Dev Biol 2009; 20:590-9. [PMID: 19465141 DOI: 10.1016/j.semcdb.2009.05.003] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2008] [Revised: 04/24/2009] [Accepted: 05/15/2009] [Indexed: 11/23/2022]
Abstract
The eukaryotic cell nuclear transport system selectively mediates molecular trafficking to facilitate the regulation of cellular processes. The components of this system include diverse transport factors such as importins and nuclear pore components that are precisely organized to coordinate cellular events. A number of studies have demonstrated that the nuclear transport system is indispensible in many types of cellular responses. In particular, the nuclear transport machinery has been shown to be an important regulator of development, organogenesis, and tissue formation, wherein altered nuclear transport of key transcription factors can lead to disease. Importantly, precise switching between distinct forms of importin alpha is central to neural lineage specification, consistent with the hypothesis that importin expression can be a key mediator of cell differentiation.
Collapse
|
33
|
Popłonska K, Kwiatkowska M, Wojtczak A, Polit J. Immunogold evidence suggests that endoplasmic reticulum is the site of protamine-type protein synthesis and participates in translocation of these proteins into the nucleus during Chara vulgaris spermiogenesis. Biol Reprod 2009; 80:572-80. [PMID: 19074004 DOI: 10.1095/biolreprod.108.067918] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
During spermiogenesis of an alga Chara vulgaris, which in many aspects resembles that of animals, histones are replaced by protamine-type proteins. Our earlier immunocytochemical studies showed that this replacement started during the short stage V of spermiogenesis, when electronograms revealed an extensive system of cisternae and vesicles of endoplasmic reticulum (ER). The present studies revealed at stage V intensive incorporation of labeled (3)H-arginine and (3)H-lysine quickly translocating into a nucleus visualized with pulse-chase autoradiography of semithin sections. The immunogold technique with the use of the antibodies to protamine-type proteins isolated from Chara tomentosa show that both ER cisternae and vesicles are labeled with gold grains, which are absent from the spermatids not treated with the antibodies; thus, the ER is probably the site of the protamine-type protein synthesis. These proteins then are translocated to a nucleus through ER channels connected with the nuclear envelope, as suggested by gold labeling of an inner membrane of the nuclear envelope adjacent to condensed chromatin. The above results correspond with those of other authors showing that in animals, protamines bind with lamin B receptors localized in the inner membrane of the nuclear envelope. A hypothesis has been put forward that during Chara spermiogenesis the inner membrane of the nuclear envelope invaginates into a nucleus together with protamine-type proteins, which become separated from the membrane and penetrate into chromatin.
Collapse
|