1
|
Raicu AM, Castanheira P, Arnosti DN. Retinoblastoma protein activity revealed by CRISPRi study of divergent Rbf1 and Rbf2 paralogs. G3 (BETHESDA, MD.) 2024; 14:jkae238. [PMID: 39365155 PMCID: PMC11631494 DOI: 10.1093/g3journal/jkae238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/19/2024] [Accepted: 10/03/2024] [Indexed: 10/05/2024]
Abstract
Retinoblastoma tumor suppressor proteins (Rb) are highly conserved metazoan transcriptional corepressors involved in regulating the expression of thousands of genes. The vertebrate lineage and the Drosophila genus independently experienced an Rb gene duplication event, leading to the expression of several Rb paralogs whose unique and redundant roles in gene regulation remain to be fully explored. Here, we used a novel CRISPRi system in Drosophila to identify the significance of paralogy in the Rb family. We engineered dCas9 fusions to the fly Rbf1 and Rbf2 paralogs and deployed them to gene promoters in vivo, studying them in their native chromatin context. By directly querying the in vivo response of dozens of genes to Rbf1 and Rbf2 targeting, using both transcriptional as well as sensitive developmental readouts, we find that Rb paralogs function as "soft repressors" and have highly context-specific activities. Our comparison of targeting endogenous genes to reporter genes in cell culture identified striking differences in activity, underlining the importance of using CRISPRi effectors in a physiologically relevant context to identify paralog-specific activities. Our study uncovers the complexity of Rb-mediated transcriptional regulation in a living organism, and serves as a stepping stone for future CRISPRi development in Drosophila.
Collapse
Affiliation(s)
- Ana-Maria Raicu
- Cell and Molecular Biology Program, Michigan State University, East Lansing, MI 48824, USA
| | - Patricia Castanheira
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - David N Arnosti
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
2
|
Raicu AM, Castanheira P, Arnosti DN. Retinoblastoma protein activity revealed by CRISPRi study of divergent Rbf1 and Rbf2 paralogs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.19.541454. [PMID: 37293052 PMCID: PMC10245722 DOI: 10.1101/2023.05.19.541454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Retinoblastoma tumor suppressor proteins regulate the key transition from G1 to S phase of the cell cycle. The mammalian Rb family comprises Rb, p107, and p130, with overlapping and unique roles in gene regulation. Drosophila experienced an independent gene duplication event, leading to the Rbf1 and Rbf2 paralogs. To uncover the significance of paralogy in the Rb family, we used CRISPRi. We engineered dCas9 fusions to Rbf1 and Rbf2, and deployed them to gene promoters in developing Drosophila tissue to study their relative impacts on gene expression. On some genes, both Rbf1 and Rbf2 mediate potent repression, in a highly distance-dependent manner. In other cases, the two proteins have different effects on phenotype and gene expression, indicating different functional potential. In a direct comparison of Rb activity on endogenous genes and transiently transfected reporters, we found that only qualitative, but not key quantitative aspects of repression were conserved, indicating that the native chromatin environment generates context-specific effects of Rb activity. Our study uncovers the complexity of Rb-mediated transcriptional regulation in a living organism, which is clearly impacted by the different promoter landscapes and the evolution of the Rb proteins themselves.
Collapse
Affiliation(s)
- Ana-Maria Raicu
- Cell and Molecular Biology Program, Michigan State University, East Lansing, MI
| | - Patricia Castanheira
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI
| | - David N Arnosti
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI
| |
Collapse
|
3
|
Zappia M, Kwon YJ, Westacott A, Liseth I, Lee H, Islam ABMMK, Kim J, Frolov M. E2F regulation of the Phosphoglycerate kinase gene is functionally important in Drosophila development. Proc Natl Acad Sci U S A 2023; 120:e2220770120. [PMID: 37011211 PMCID: PMC10104548 DOI: 10.1073/pnas.2220770120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 03/03/2023] [Indexed: 04/05/2023] Open
Abstract
The canonical role of the transcription factor E2F is to control the expression of cell cycle genes by binding to the E2F sites in their promoters. However, the list of putative E2F target genes is extensive and includes many metabolic genes, yet the significance of E2F in controlling the expression of these genes remains largely unknown. Here, we used the CRISPR/Cas9 technology to introduce point mutations in the E2F sites upstream of five endogenous metabolic genes in Drosophila melanogaster. We found that the impact of these mutations on both the recruitment of E2F and the expression of the target genes varied, with the glycolytic gene, Phosphoglycerate kinase (Pgk), being mostly affected. The loss of E2F regulation on the Pgk gene led to a decrease in glycolytic flux, tricarboxylic acid cycle intermediates levels, adenosine triphosphate (ATP) content, and an abnormal mitochondrial morphology. Remarkably, chromatin accessibility was significantly reduced at multiple genomic regions in PgkΔE2F mutants. These regions contained hundreds of genes, including metabolic genes that were downregulated in PgkΔE2F mutants. Moreover, PgkΔE2F animals had shortened life span and exhibited defects in high-energy consuming organs, such as ovaries and muscles. Collectively, our results illustrate how the pleiotropic effects on metabolism, gene expression, and development in the PgkΔE2F animals underscore the importance of E2F regulation on a single E2F target, Pgk.
Collapse
Affiliation(s)
- Maria Paula Zappia
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607
| | - Yong-Jae Kwon
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607
| | - Anton Westacott
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607
| | - Isabel Liseth
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607
| | - Hyun Min Lee
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607
| | - Abul B. M. M. K. Islam
- Department of Genetic Engineering and Biotechnology, University of Dhaka, Dhaka1000, Bangladesh
| | - Jiyeon Kim
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607
| | - Maxim V. Frolov
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607
| |
Collapse
|
4
|
Sainz de la Maza D, Hof-Michel S, Phillimore L, Bökel C, Amoyel M. Cell-cycle exit and stem cell differentiation are coupled through regulation of mitochondrial activity in the Drosophila testis. Cell Rep 2022; 39:110774. [PMID: 35545055 PMCID: PMC9350557 DOI: 10.1016/j.celrep.2022.110774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 02/21/2022] [Accepted: 04/12/2022] [Indexed: 11/27/2022] Open
Abstract
Whereas stem and progenitor cells proliferate to maintain tissue homeostasis, fully differentiated cells exit the cell cycle. How cell identity and cell-cycle state are coordinated during differentiation is still poorly understood. The Drosophila testis niche supports germline stem cells and somatic cyst stem cells (CySCs). CySCs give rise to post-mitotic cyst cells, providing a tractable model to study the links between stem cell identity and proliferation. We show that, while cell-cycle progression is required for CySC self-renewal, the E2f1/Dp transcription factor is dispensable for self-renewal but instead must be silenced by the Drosophila retinoblastoma homolog, Rbf, to permit differentiation. Continued E2f1/Dp activity inhibits the expression of genes important for mitochondrial activity. Furthermore, promoting mitochondrial biogenesis rescues the differentiation of CySCs with ectopic E2f1/Dp activity but not their cell-cycle exit. In sum, E2f1/Dp coordinates cell-cycle progression with stem cell identity by regulating the metabolic state of CySCs. CycE is critical for CySC self-renewal E2f/Dp does not act in self-renewal but must be silenced for differentiation E2f/Dp inhibits increases in oxidative metabolism involved in normal differentiation Increased mitochondrial biogenesis rescues differentiation of E2f/Dp-active cells
Collapse
Affiliation(s)
- Diego Sainz de la Maza
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Silvana Hof-Michel
- Department of Developmental Genetics, Philipps University Marburg, Karl-von-Frisch-Str. 8, 35043 Marburg, Germany
| | - Lee Phillimore
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Christian Bökel
- Department of Developmental Genetics, Philipps University Marburg, Karl-von-Frisch-Str. 8, 35043 Marburg, Germany.
| | - Marc Amoyel
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
5
|
Payankaulam S, Hickey SL, Arnosti DN. Cell cycle expression of polarity genes features Rb targeting of Vang. Cells Dev 2022; 169:203747. [PMID: 34583062 PMCID: PMC8934252 DOI: 10.1016/j.cdev.2021.203747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 08/28/2021] [Accepted: 09/17/2021] [Indexed: 11/17/2022]
Abstract
Specification of cellular polarity is vital to normal tissue development and function. Pioneering studies in Drosophila and C. elegans have elucidated the composition and dynamics of protein complexes critical for establishment of cell polarity, which is manifest in processes such as cell migration and asymmetric cell division. Conserved throughout metazoans, planar cell polarity (PCP) genes are implicated in disease, including neural tube closure defects associated with mutations in VANGL1/2. PCP protein regulation is well studied; however, relatively little is known about transcriptional regulation of these genes. Our earlier study revealed an unexpected role for the fly Rbf1 retinoblastoma corepressor protein, a regulator of cell cycle genes, in transcriptional regulation of polarity genes. Here we analyze the physiological relevance of the role of E2F/Rbf proteins in the transcription of the key core polarity gene Vang. Targeted mutations to the E2F site within the Vang promoter disrupts binding of E2F/Rbf proteins in vivo, leading to polarity defects in wing hairs. E2F regulation of Vang is supported by the requirement for this motif in a reporter gene. Interestingly, the promoter is repressed by overexpression of E2F1, a transcription factor generally identified as an activator. Consistent with the regulation of this polarity gene by E2F and Rbf factors, expression of Vang and other polarity genes is found to peak in G2/M phase in cells of the embryo and wing imaginal disc, suggesting that cell cycle signals may play a role in regulation of these genes. These findings suggest that the E2F/Rbf complex mechanistically links cell proliferation and polarity.
Collapse
Affiliation(s)
- Sandhya Payankaulam
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Stephanie L Hickey
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA; Department of Computational Mathematics, Science, and Engineering, Michigan State University, East Lansing, MI, USA
| | - David N Arnosti
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
6
|
Rajasekaran S, Siddiqui J, Rakijas J, Nicolay B, Lin C, Khan E, Patel R, Morris R, Wyler E, Boukhali M, Balasubramanyam J, Ranjith Kumar R, Van Rechem C, Vogel C, Elchuri SV, Landthaler M, Obermayer B, Haas W, Dyson N, Miles W. Integrated multi-omics analysis of RB-loss identifies widespread cellular programming and synthetic weaknesses. Commun Biol 2021; 4:977. [PMID: 34404904 PMCID: PMC8371045 DOI: 10.1038/s42003-021-02495-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 07/26/2021] [Indexed: 11/09/2022] Open
Abstract
Inactivation of RB is one of the hallmarks of cancer, however gaps remain in our understanding of how RB-loss changes human cells. Here we show that pRB-depletion results in cellular reprogramming, we quantitatively measured how RB-depletion altered the transcriptional, proteomic and metabolic output of non-tumorigenic RPE1 human cells. These profiles identified widespread changes in metabolic and cell stress response factors previously linked to E2F function. In addition, we find a number of additional pathways that are sensitive to RB-depletion that are not E2F-regulated that may represent compensatory mechanisms to support the growth of RB-depleted cells. To determine whether these molecular changes are also present in RB1-/- tumors, we compared these results to Retinoblastoma and Small Cell Lung Cancer data, and identified widespread conservation of alterations found in RPE1 cells. To define which of these changes contribute to the growth of cells with de-regulated E2F activity, we assayed how inhibiting or depleting these proteins affected the growth of RB1-/- cells and of Drosophila E2f1-RNAi models in vivo. From this analysis, we identify key metabolic pathways that are essential for the growth of pRB-deleted human cells.
Collapse
Affiliation(s)
- Swetha Rajasekaran
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, USA.,The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Jalal Siddiqui
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, USA.,The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Jessica Rakijas
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, USA.,The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Brandon Nicolay
- Massachusetts General Hospital Cancer Center, Charlestown, MA, USA.,Harvard Medical School, Boston, MA, USA.,Agios Pharmaceutical, Cambridge, MA, USA
| | - Chenyu Lin
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, USA.,The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Eshan Khan
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, USA.,The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Rahi Patel
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, USA.,The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Robert Morris
- Massachusetts General Hospital Cancer Center, Charlestown, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Emanuel Wyler
- Berlin Institute for Medical Systems Biology, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Myriam Boukhali
- Massachusetts General Hospital Cancer Center, Charlestown, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Jayashree Balasubramanyam
- Department of Nanobiotechnology, Vision Research Foundation, Sankara Nethralaya, Chennai, Tamil Nadu, India
| | - R Ranjith Kumar
- Department of Nanobiotechnology, Vision Research Foundation, Sankara Nethralaya, Chennai, Tamil Nadu, India
| | | | - Christine Vogel
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, USA
| | - Sailaja V Elchuri
- Department of Nanobiotechnology, Vision Research Foundation, Sankara Nethralaya, Chennai, Tamil Nadu, India
| | - Markus Landthaler
- Berlin Institute for Medical Systems Biology, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Benedikt Obermayer
- Berlin Institute for Medical Systems Biology, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,IRI Life Sciences, Institute für Biologie, Humboldt Universität zu Berlin, Berlin, Germany.,Core Unit Bioinformatics, Berlin Institute of Health (BIH), Berlin, Germany
| | - Wilhelm Haas
- Massachusetts General Hospital Cancer Center, Charlestown, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Nicholas Dyson
- Massachusetts General Hospital Cancer Center, Charlestown, MA, USA. .,Harvard Medical School, Boston, MA, USA.
| | - Wayne Miles
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, USA. .,The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
7
|
Kim M, Delos Santos K, Moon NS. Proper CycE-Cdk2 activity in endocycling tissues requires regulation of the cyclin-dependent kinase inhibitor Dacapo by dE2F1b in Drosophila. Genetics 2021; 217:1-15. [PMID: 33683365 DOI: 10.1093/genetics/iyaa029] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 12/06/2020] [Indexed: 01/05/2023] Open
Abstract
Polyploidy is an integral part of development and is associated with cellular stress, aging, and pathological conditions. The endocycle, comprised of successive rounds of G and S phases without mitosis, is widely employed to produce polyploid cells in plants and animals. In Drosophila, maintenance of the endocycle is dependent on E2F-governed oscillations of Cyclin E (CycE)-Cdk2 activity, which is known to be largely regulated at the level of transcription. In this study, we report an additional level of E2F-dependent control of CycE-Cdk2 activity during the endocycle. Genetic experiments revealed that an alternative isoform of Drosophila de2f1, dE2F1b, regulates the expression of the p27CIP/KIP-like Cdk inhibitor Dacapo (Dap). We provide evidence showing that dE2F1b-dependent Dap expression in endocycling tissues is necessary for setting proper CycE-Cdk2 activity. Furthermore, we demonstrate that dE2F1b is required for proliferating cell nuclear antigen expression that establishes a negative feedback loop in S phase. Overall, our study reveals previously unappreciated E2F-dependent regulatory networks that are critical for the periodic transition between G and S phases during the endocycle.
Collapse
Affiliation(s)
- Minhee Kim
- Department of Biology, Developmental Biology Research Initiative, McGill University, Montreal, Quebec H3A 1B1 Canada
| | - Keemo Delos Santos
- Department of Biology, Developmental Biology Research Initiative, McGill University, Montreal, Quebec H3A 1B1 Canada
| | - Nam-Sung Moon
- Department of Biology, Developmental Biology Research Initiative, McGill University, Montreal, Quebec H3A 1B1 Canada
| |
Collapse
|
8
|
Brady NJ, Bagadion AM, Singh R, Conteduca V, Van Emmenis L, Arceci E, Pakula H, Carelli R, Khani F, Bakht M, Sigouros M, Bareja R, Sboner A, Elemento O, Tagawa S, Nanus DM, Loda M, Beltran H, Robinson B, Rickman DS. Temporal evolution of cellular heterogeneity during the progression to advanced AR-negative prostate cancer. Nat Commun 2021; 12:3372. [PMID: 34099734 PMCID: PMC8185096 DOI: 10.1038/s41467-021-23780-y] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 05/11/2021] [Indexed: 02/05/2023] Open
Abstract
Despite advances in the development of highly effective androgen receptor (AR)-directed therapies for the treatment of men with advanced prostate cancer, acquired resistance to such therapies frequently ensues. A significant subset of patients with resistant disease develop AR-negative tumors that lose their luminal identity and display neuroendocrine features (neuroendocrine prostate cancer (NEPC)). The cellular heterogeneity and the molecular evolution during the progression from AR-positive adenocarcinoma to AR-negative NEPC has yet to be characterized. Utilizing a new genetically engineered mouse model, we have characterized the synergy between Rb1 loss and MYCN (encodes N-Myc) overexpression which results in the formation of AR-negative, poorly differentiated tumors with high metastatic potential. Single-cell-based approaches revealed striking temporal changes to the transcriptome and chromatin accessibility which have identified the emergence of distinct cell populations, marked by differential expression of Ascl1 and Pou2f3, during the transition to NEPC. Moreover, global DNA methylation and the N-Myc cistrome are redirected following Rb1 loss. Altogether, our data provide insight into the progression of prostate adenocarcinoma to NEPC.
Collapse
Affiliation(s)
- Nicholas J Brady
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Alyssa M Bagadion
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Richa Singh
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Vincenza Conteduca
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA, USA
| | - Lucie Van Emmenis
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Elisa Arceci
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Hubert Pakula
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Ryan Carelli
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Francesca Khani
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
- Department of Urology, Weill Cornell Medicine, New York, NY, USA
- Caryl and Israel Englander Institute for Precision Medicine, New York-Presbyterian Hospital, Weill Cornell Medicine, New York, NY, USA
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Martin Bakht
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA, USA
| | - Michael Sigouros
- Caryl and Israel Englander Institute for Precision Medicine, New York-Presbyterian Hospital, Weill Cornell Medicine, New York, NY, USA
| | - Rohan Bareja
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Andrea Sboner
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
- Caryl and Israel Englander Institute for Precision Medicine, New York-Presbyterian Hospital, Weill Cornell Medicine, New York, NY, USA
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Olivier Elemento
- Caryl and Israel Englander Institute for Precision Medicine, New York-Presbyterian Hospital, Weill Cornell Medicine, New York, NY, USA
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Scott Tagawa
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - David M Nanus
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Massimo Loda
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Himisha Beltran
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA, USA
| | - Brian Robinson
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
- Department of Urology, Weill Cornell Medicine, New York, NY, USA
- Caryl and Israel Englander Institute for Precision Medicine, New York-Presbyterian Hospital, Weill Cornell Medicine, New York, NY, USA
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - David S Rickman
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA.
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
9
|
Zhang P, Katzaroff AJ, Buttitta LA, Ma Y, Jiang H, Nickerson DW, Øvrebø JI, Edgar BA. The Krüppel-like factor Cabut has cell cycle regulatory properties similar to E2F1. Proc Natl Acad Sci U S A 2021; 118:e2015675118. [PMID: 33558234 PMCID: PMC7896318 DOI: 10.1073/pnas.2015675118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Using a gain-of-function screen in Drosophila, we identified the Krüppel-like factor Cabut (Cbt) as a positive regulator of cell cycle gene expression and cell proliferation. Enforced cbt expression is sufficient to induce an extra cell division in the differentiating fly wing or eye, and also promotes intestinal stem cell divisions in the adult gut. Although inappropriate cell proliferation also results from forced expression of the E2f1 transcription factor or its target, Cyclin E, Cbt does not increase E2F1 or Cyclin E activity. Instead, Cbt regulates a large set of E2F1 target genes independently of E2F1, and our data suggest that Cbt acts via distinct binding sites in target gene promoters. Although Cbt was not required for cell proliferation during wing or eye development, Cbt is required for normal intestinal stem cell divisions in the midgut, which expresses E2F1 at relatively low levels. The E2F1-like functions of Cbt identify a distinct mechanism for cell cycle regulation that may be important in certain normal cell cycles, or in cells that cycle inappropriately, such as cancer cells.
Collapse
Affiliation(s)
- Peng Zhang
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112
| | - Alexia J Katzaroff
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - Laura A Buttitta
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - Yiqin Ma
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112
| | - Huaqi Jiang
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - Derek W Nickerson
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - Jan Inge Øvrebø
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112
| | - Bruce A Edgar
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112;
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| |
Collapse
|
10
|
Mitra A, Raicu AM, Hickey SL, Pile LA, Arnosti DN. Soft repression: Subtle transcriptional regulation with global impact. Bioessays 2020; 43:e2000231. [PMID: 33215731 PMCID: PMC9068271 DOI: 10.1002/bies.202000231] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 12/29/2022]
Abstract
Pleiotropically acting eukaryotic corepressors such as retinoblastoma and SIN3 have been found to physically interact with many widely expressed “housekeeping” genes. Evidence suggests that their roles at these loci are not to provide binary on/off switches, as is observed at many highly cell-type specific genes, but rather to serve as governors, directly modulating expression within certain bounds, while not shutting down gene expression. This sort of regulation is challenging to study, as the differential expression levels can be small. We hypothesize that depending on context, corepressors mediate “soft repression,” attenuating expression in a less dramatic but physiologically appropriate manner. Emerging data indicate that such regulation is a pervasive characteristic of most eukaryotic systems, and may reflect the mechanistic differences between repressor action at promoter and enhancer locations. Soft repression may represent an essential component of the cybernetic systems underlying metabolic adaptations, enabling modest but critical adjustments on a continual basis.
Collapse
Affiliation(s)
- Anindita Mitra
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, USA
| | - Ana-Maria Raicu
- Cell and Molecular Biology Program, Michigan State University, East Lansing, Michigan, USA
| | - Stephanie L Hickey
- Department of Computational Mathematics, Science, and Engineering, Michigan State University, East Lansing, Michigan, USA.,Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
| | - Lori A Pile
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, USA
| | - David N Arnosti
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
11
|
Evolutionarily Conserved Roles for Apontic in Induction and Subsequent Decline of Cyclin E Expression. iScience 2020; 23:101369. [PMID: 32736066 PMCID: PMC7394757 DOI: 10.1016/j.isci.2020.101369] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 05/24/2020] [Accepted: 07/11/2020] [Indexed: 11/24/2022] Open
Abstract
Cyclin E is a key factor for S phase entry, and deregulation of Cyclin E results in developmental defects and tumors. Therefore, proper cycling of Cyclin E is crucial for normal growth. Here we found that transcription factors Apontic (Apt) and E2f1 cooperate to induce cyclin E in Drosophila. Functional binding motifs of Apt and E2f1 are clustered in the first intron of Drosophila cyclin E and directly contribute to the cyclin E transcription. Knockout of apt and e2f1 together abolished Cyclin E expression. Furthermore, Apt up-regulates Retinoblastoma family protein 1 (Rbf1) for proper chromatin compaction, which is known to repress cyclin E. Notably, Apt-dependent up-regulation of Cyclin E and Rbf1 is evolutionarily conserved in mammalian cells. Our findings reveal a unique mechanism underlying the induction and subsequent decline of Cyclin E expression.
Collapse
|
12
|
Zappia MP, Rogers A, Islam ABMMK, Frolov MV. Rbf Activates the Myogenic Transcriptional Program to Promote Skeletal Muscle Differentiation. Cell Rep 2020; 26:702-719.e6. [PMID: 30650361 PMCID: PMC6344057 DOI: 10.1016/j.celrep.2018.12.080] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 11/18/2018] [Accepted: 12/18/2018] [Indexed: 11/25/2022] Open
Abstract
The importance of the retinoblastoma tumor suppressor protein pRB in cell cycle control is well established. However, less is known about its role in differentiation during animal development. Here, we investigated the role of Rbf, the Drosophila pRB homolog, in adult skeletal muscles. We found that the depletion of Rbf severely reduced muscle growth and altered myofibrillogenesis but only minimally affected myoblast proliferation. We identified an Rbf-dependent transcriptional program in late muscle development that is distinct from the canonical role of Rbf in cell cycle control. Unexpectedly, Rbf acts as a transcriptional activator of the myogenic and metabolic genes in the growing muscles. The genomic regions bound by Rbf contained the binding sites of several factors that genetically interacted with Rbf by modulating Rbf-dependent phenotype. Thus, our results reveal a distinctive role for Rbf as a direct activator of the myogenic transcriptional program that drives late muscle differentiation. Inactivation of the tumor suppressor RB, an obligatory step in most cancers, results in unrestrained cell cycle progression. Zappia et al. show that Rbf, the RB Drosophila ortholog, directly activates the metabolic program that accompanies muscle development. This work expands the understanding of the plethora of Rbf functions.
Collapse
Affiliation(s)
- Maria Paula Zappia
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, 900 S. Ashland Avenue, Chicago, IL 60607, USA
| | - Alice Rogers
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, 900 S. Ashland Avenue, Chicago, IL 60607, USA
| | - Abul B M M K Islam
- Department of Genetic Engineering and Biotechnology, University of Dhaka, Dhaka 1000, Bangladesh
| | - Maxim V Frolov
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, 900 S. Ashland Avenue, Chicago, IL 60607, USA.
| |
Collapse
|
13
|
Takeuchi T, Sears BB, Lindeboom C, Lin YT, Fekaris N, Zienkiewicz K, Zienkiewicz A, Poliner E, Benning C. Chlamydomonas CHT7 Is Required for an Effective Quiescent State by Regulating Nutrient-Responsive Cell Cycle Gene Expression. THE PLANT CELL 2020; 32:1240-1269. [PMID: 32001503 PMCID: PMC7145468 DOI: 10.1105/tpc.19.00628] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 01/07/2020] [Accepted: 01/27/2020] [Indexed: 06/10/2023]
Abstract
COMPROMISED HYDROLYSIS OF TRIACYLGLYCEROLS7 (CHT7) in Chlamydomonas (Chlamydomonas reinhardtii) was previously shown to affect the transcription of a subset of genes during nitrogen (N)-replete growth and following N refeeding. Here, we show that an extensive derepression of genes involved in DNA metabolism and cell cycle-related processes, as well as downregulation of genes encoding oxidoreductases and nutrient transporters, occurs in the cht7 mutant during N deprivation. Cellular mutant phenotypes are consistent with the observed transcriptome misregulation, as cht7 cells fail to properly arrest growth, nuclear replication, and cell division following N deprivation. Reduction in cht7 colony formation following N refeeding is explained by its compromised viability during N deprivation and by the occurrence of abortive divisions during N refeeding. Surprisingly, the largely unstructured C-terminal half of CHT7 with predicted protein binding domains, but not the canonical CXC DNA binding domain, is essential for the ability of CHT7 to form stable complexes and reverse the cellular phenotypes and transcription levels in the cht7 mutant. Hence, although lacking the presumed DNA binding domain, CHT7 modulates the expression of cell cycle genes in response to N availability, which is essential for establishing an effective quiescent state and the coordinated resumption of growth following N refeeding.
Collapse
Affiliation(s)
- Tomomi Takeuchi
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824
| | - Barbara B Sears
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824
| | - Chase Lindeboom
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824
| | - Yang-Tsung Lin
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824
| | - Nicholas Fekaris
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824
| | - Krzysztof Zienkiewicz
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824
- Centre of Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland
| | - Agnieszka Zienkiewicz
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824
- Centre of Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan 48824
| | - Eric Poliner
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824
| | - Christoph Benning
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan 48824
| |
Collapse
|
14
|
Mouawad R, Prasad J, Thorley D, Himadewi P, Kadiyala D, Wilson N, Kapranov P, Arnosti DN. Diversification of Retinoblastoma Protein Function Associated with Cis and Trans Adaptations. Mol Biol Evol 2020; 36:2790-2804. [PMID: 31418797 DOI: 10.1093/molbev/msz187] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Retinoblastoma proteins are eukaryotic transcriptional corepressors that play central roles in cell cycle control, among other functions. Although most metazoan genomes encode a single retinoblastoma protein, gene duplications have occurred at least twice: in the vertebrate lineage, leading to Rb, p107, and p130, and in Drosophila, an ancestral Rbf1 gene and a derived Rbf2 gene. Structurally, Rbf1 resembles p107 and p130, and mutation of the gene is lethal. Rbf2 is more divergent and mutation does not lead to lethality. However, the retention of Rbf2 >60 My in Drosophila points to essential functions, which prior cell-based assays have been unable to elucidate. Here, using genomic approaches, we provide new insights on the function of Rbf2. Strikingly, we show that Rbf2 regulates a set of cell growth-related genes and can antagonize Rbf1 on specific genes. These unique properties have important implications for the fly; Rbf2 mutants show reduced egg laying, and lifespan is reduced in females and males. Structural alterations in conserved regions of Rbf2 gene suggest that it was sub- or neofunctionalized to develop specific regulatory specificity and activity. We define cis-regulatory features of Rbf2 target genes that allow preferential repression by this protein, indicating that it is not a weaker version of Rbf1 as previously thought. The specialization of retinoblastoma function in Drosophila may reflect a parallel evolution found in vertebrates, and raises the possibility that cell growth control is equally important to cell cycle function for this conserved family of transcriptional corepressors.
Collapse
Affiliation(s)
- Rima Mouawad
- Graduate Program in Cell and Molecular Biology, Michigan State University, East Lansing, MI
| | - Jaideep Prasad
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI
| | - Dominic Thorley
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI
| | - Pamela Himadewi
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI
| | - Dhruva Kadiyala
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI
| | - Nathan Wilson
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI
| | - Philipp Kapranov
- Institute of Genomics, School of Biomedical Sciences, Huaqiao University, Xiamen, China
| | - David N Arnosti
- Graduate Program in Cell and Molecular Biology, Michigan State University, East Lansing, MI.,Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI
| |
Collapse
|
15
|
Greenspan LJ, Matunis EL. Retinoblastoma Intrinsically Regulates Niche Cell Quiescence, Identity, and Niche Number in the Adult Drosophila Testis. Cell Rep 2019; 24:3466-3476.e8. [PMID: 30257208 PMCID: PMC6226258 DOI: 10.1016/j.celrep.2018.08.083] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 05/29/2018] [Accepted: 08/27/2018] [Indexed: 12/20/2022] Open
Abstract
Homeostasis in adult tissues depends on the precise regulation of stem cells and their surrounding microenvironments, or niches. Here, we show that the cell cycle inhibitor and tumor suppressor Retinoblastoma (RB) is a critical regulator of niche cells in the Drosophila testis. The testis contains a single niche, composed of somatic hub cells, that signals to adjacent germline and somatic stem cells. Hub cells are normally quiescent, but knockdown of the RB homolog Rbf in these cells causes them to proliferate and convert to somatic stem cells. Over time, mutant hub cell clusters enlarge and split apart, forming ectopic hubs surrounded by active stem cells. Furthermore, we show that Rbf’s ability to restrict niche number depends on the transcription factors E2F and Escargot and the adhesion molecule E-cadherin. Together this work reveals how precise modulation of niche cells, not only the stem cells they support, can drive regeneration and disease. Greenspan and Matunis find that the tumor suppressor Retinoblastoma is required in niche cells to maintain quiescence, cell fate, and niche number. Loss of Retinoblastoma causes niche cell divisions, conversion to somatic stem cells, and ectopic niche formation through niche fission, suggesting that mutations in niche cells may drive disease.
Collapse
Affiliation(s)
- Leah J Greenspan
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Erika L Matunis
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
16
|
Ma Y, McKay DJ, Buttitta L. Changes in chromatin accessibility ensure robust cell cycle exit in terminally differentiated cells. PLoS Biol 2019; 17:e3000378. [PMID: 31479438 PMCID: PMC6743789 DOI: 10.1371/journal.pbio.3000378] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 09/13/2019] [Accepted: 08/13/2019] [Indexed: 12/12/2022] Open
Abstract
During terminal differentiation, most cells exit the cell cycle and enter into a prolonged or permanent G0 in which they are refractory to mitogenic signals. Entry into G0 is usually initiated through the repression of cell cycle gene expression by formation of a transcriptional repressor complex called dimerization partner (DP), retinoblastoma (RB)-like, E2F and MuvB (DREAM). However, when DREAM repressive function is compromised during terminal differentiation, additional unknown mechanisms act to stably repress cycling and ensure robust cell cycle exit. Here, we provide evidence that developmentally programmed, temporal changes in chromatin accessibility at a small subset of critical cell cycle genes act to enforce cell cycle exit during terminal differentiation in the Drosophila melanogaster wing. We show that during terminal differentiation, chromatin closes at a set of pupal wing enhancers for the key rate-limiting cell cycle regulators Cyclin E (cycE), E2F transcription factor 1 (e2f1), and string (stg). This closing coincides with wing cells entering a robust postmitotic state that is strongly refractory to cell cycle reactivation, and the regions that close contain known binding sites for effectors of mitogenic signaling pathways such as Yorkie and Notch. When cell cycle exit is genetically disrupted, chromatin accessibility at cell cycle genes remains unaffected, and the closing of distal enhancers at cycE, e2f1, and stg proceeds independent of the cell cycling status. Instead, disruption of cell cycle exit leads to changes in accessibility and expression of a subset of hormone-induced transcription factors involved in the progression of terminal differentiation. Our results uncover a mechanism that acts as a cell cycle–independent timer to limit the response to mitogenic signaling and aberrant cycling in terminally differentiating tissues. In addition, we provide a new molecular description of the cross talk between cell cycle exit and terminal differentiation during metamorphosis. The longer a cell remains in G0, the more refractory it becomes to re-entering the cell cycle. This study shows that in terminally differentiated cells in vivo, regulatory elements at genes encoding just three key cell cycle regulators (cycE, e2f1 and stg) become inaccessible, limiting their aberrant activation and maintaining a prolonged, robust G0.
Collapse
Affiliation(s)
- Yiqin Ma
- Department of Molecular Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Daniel J McKay
- Department of Biology, Department of Genetics, Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Laura Buttitta
- Department of Molecular Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
17
|
Delos Santos K, Kim M, Yergeau C, Jean S, Moon NS. Pleiotropic role of Drosophila phosphoribosyl pyrophosphate synthetase in autophagy and lysosome homeostasis. PLoS Genet 2019; 15:e1008376. [PMID: 31487280 PMCID: PMC6748441 DOI: 10.1371/journal.pgen.1008376] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 09/17/2019] [Accepted: 08/17/2019] [Indexed: 01/07/2023] Open
Abstract
Phosphoribosyl pyrophosphate synthetase (PRPS) is a rate-limiting enzyme whose function is important for the biosynthesis of purines, pyrimidines, and pyridines. Importantly, while missense mutations of PRPS1 have been identified in neurological disorders such as Arts syndrome, how they contribute to neuropathogenesis is still unclear. We identified the Drosophila ortholog of PRPS (dPRPS) as a direct target of RB/E2F in Drosophila, a vital cell cycle regulator, and engineered dPRPS alleles carrying patient-derived mutations. Interestingly, while they are able to develop normally, dPRPS mutant flies have a shortened lifespan and locomotive defects, common phenotypes associated with neurodegeneration. Careful analysis of the fat body revealed that patient-derived PRPS mutations result in profound defects in lipolysis, macroautophagy, and lysosome function. Significantly, we show evidence that the nervous system of dPRPS mutant flies is affected by these defects. Overall, we uncovered an unexpected link between nucleotide metabolism and autophagy/lysosome function, providing a possible mechanism by which PRPS-dysfunction contributes to neurological disorders.
Collapse
Affiliation(s)
- Keemo Delos Santos
- Department of Biology, Developmental Biology Research Initiative, McGill University, Montreal, Quebec, Canada
| | - Minhee Kim
- Department of Biology, Developmental Biology Research Initiative, McGill University, Montreal, Quebec, Canada
| | - Christine Yergeau
- Department of Biology, Developmental Biology Research Initiative, McGill University, Montreal, Quebec, Canada
| | - Steve Jean
- Faculté de Médecine et des Sciences de la Santé, Département d’Anatomie et de Biologie Cellulaire, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Nam-Sung Moon
- Department of Biology, Developmental Biology Research Initiative, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
18
|
Takeuchi T, Benning C. Nitrogen-dependent coordination of cell cycle, quiescence and TAG accumulation in Chlamydomonas. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:292. [PMID: 31890020 PMCID: PMC6927116 DOI: 10.1186/s13068-019-1635-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 12/12/2019] [Indexed: 05/07/2023]
Abstract
Microalgae hold great promises as sustainable cellular factories for the production of alternative fuels, feeds, and biopharmaceuticals for human health. While the biorefinery approach for fuels along with the coproduction of high-value compounds with industrial, therapeutic, or nutraceutical applications have the potential to make algal biofuels more economically viable, a number of challenges continue to hamper algal production systems at all levels. One such hurdle includes the metabolic trade-off often observed between the increased yields of desired products, such as triacylglycerols (TAG), and the growth of an organism. Initial genetic engineering strategies to improve lipid productivity in microalgae, which focused on overproducing the enzymes involved in fatty acid and TAG biosynthesis or inactivating competing carbon (C) metabolism, have seen some successes albeit at the cost of often greatly reduced biomass. Emergent approaches that aim at modifying the dynamics of entire metabolic pathways by engineering of pertinent transcription factors or signaling networks appear to have successfully achieved a balance between growth and neutral lipid accumulation. However, the biological knowledge of key signaling networks and molecular components linking these two processes is still incomplete in photosynthetic eukaryotes, making it difficult to optimize metabolic engineering strategies for microalgae. Here, we focus on nitrogen (N) starvation of the model green microalga, Chlamydomonas reinhardtii, to present the current understanding of the nutrient-dependent switch between proliferation and quiescence, and the drastic reprogramming of metabolism that results in the storage of C compounds following N starvation. We discuss the potential components mediating the transcriptional repression of cell cycle genes and the establishment of quiescence in Chlamydomonas, and highlight the importance of signaling pathways such as those governed by the target of rapamycin (TOR) and sucrose nonfermenting-related (SnRK) kinases in the coordination of metabolic status with cellular growth. A better understanding of how the cell division cycle is regulated in response to nutrient scarcity and of the signaling pathways linking cellular growth to energy and lipid homeostasis, is essential to improve the prospects of biofuels and biomass production in microalgae.
Collapse
Affiliation(s)
- Tomomi Takeuchi
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824 USA
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, MI 48824 USA
| | - Christoph Benning
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824 USA
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, MI 48824 USA
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824 USA
| |
Collapse
|
19
|
Genome-wide identification of RETINOBLASTOMA RELATED 1 binding sites in Arabidopsis reveals novel DNA damage regulators. PLoS Genet 2018; 14:e1007797. [PMID: 30500810 PMCID: PMC6268010 DOI: 10.1371/journal.pgen.1007797] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 10/30/2018] [Indexed: 01/06/2023] Open
Abstract
Retinoblastoma (pRb) is a multifunctional regulator, which was likely present in the last common ancestor of all eukaryotes. The Arabidopsis pRb homolog RETINOBLASTOMA RELATED 1 (RBR1), similar to its animal counterparts, controls not only cell proliferation but is also implicated in developmental decisions, stress responses and maintenance of genome integrity. Although most functions of pRb-type proteins involve chromatin association, a genome-wide understanding of RBR1 binding sites in Arabidopsis is still missing. Here, we present a plant chromatin immunoprecipitation protocol optimized for genome-wide studies of indirectly DNA-bound proteins like RBR1. Our analysis revealed binding of Arabidopsis RBR1 to approximately 1000 genes and roughly 500 transposable elements, preferentially MITES. The RBR1-decorated genes broadly overlap with previously identified targets of two major transcription factors controlling the cell cycle, i.e. E2F and MYB3R3 and represent a robust inventory of RBR1-targets in dividing cells. Consistently, enriched motifs in the RBR1-marked domains include sequences related to the E2F consensus site and the MSA-core element bound by MYB3R transcription factors. Following up a key role of RBR1 in DNA damage response, we performed a meta-analysis combining the information about the RBR1-binding sites with genome-wide expression studies under DNA stress. As a result, we present the identification and mutant characterization of three novel genes required for growth upon genotoxic stress. The Retinoblastoma (pRb) tumor suppressor is a master regulator of the cell cycle and its inactivation is associated with many types of cancer. Since pRb’s first description as a transcriptional repressor of genes important for cell cycle progression, many more functions have been elucidated, e.g. in developmental decisions and genome integrity. Homologs of human pRb have been identified in most eukaryotes, including plants, indicating an ancient evolutionary origin of pRb-type proteins. We describe here the first genome-wide DNA-binding study for a plant pRb protein, i.e. RBR1, the only pRb homolog in Arabidopsis thaliana. We see prominent binding of RBR1 to the 5’ region of genes involved in cell cycle regulation, chromatin organization and DNA repair. Moreover, we also reveal extensive binding of RBR1 to specific classes of DNA transposons. Since RBR1 is involved in a plethora of processes, our dataset provides a valuable resource for researches from different fields. As an example, we used our dataset to successfully identify new genes necessary for growth upon DNA damage exerted by drugs such as cisplatin or the environmentally prevalent metal aluminum.
Collapse
|
20
|
Oh E, Garg S, Liu Y, Afzal S, Gao R, Yun CO, Kaul SC, Wadhwa R. Identification and Functional Characterization of Anti-metastasis and Anti-angiogenic Activities of Triethylene Glycol Derivatives. Front Oncol 2018; 8:552. [PMID: 30547009 PMCID: PMC6279921 DOI: 10.3389/fonc.2018.00552] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Accepted: 11/07/2018] [Indexed: 12/28/2022] Open
Abstract
We had previously reported anticancer activity in the water extract (WEX) of Ashwagandha leaves, and identified Triethylene glycol (TEG) as an active tumor suppressor component. In this study, we investigated anti-migratory and anti-angiogenesis activities of WEX and TEG. We conducted in vitro and in vivo experiments using TEG, and its two derivatives, Triethyleneglycol dimethacrylate (TD-10), and Tetraethyleneglycol dimethacrylate (TD-11). The data revealed strong anticancer and anti-metastasis potentials in the derivatives. Non-toxic, anti-migratory doses of the derivatives showed inhibition of canonical Wnt/β-catenin axis and consequent downregulation of EMT-signaling proteins (Vimentin, MMPs and VEGF). These results endorse that the TD-10 and TD-11 have potential to safely put a check on the aggressiveness of the metastatic cells and therefore represent promising candidates for the treatment of metastatic cancers.
Collapse
Affiliation(s)
- Eonju Oh
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul, South Korea
| | - Sukant Garg
- DAILAB, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), National Institute of Advanced Industrial Science & Technology, Tsukuba, Japan.,School of Integrative and Global Majors, University of Tsukuba, Tsukuba, Japan
| | - Ye Liu
- DAILAB, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), National Institute of Advanced Industrial Science & Technology, Tsukuba, Japan
| | - Sajal Afzal
- DAILAB, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), National Institute of Advanced Industrial Science & Technology, Tsukuba, Japan.,School of Integrative and Global Majors, University of Tsukuba, Tsukuba, Japan
| | - Ran Gao
- DAILAB, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), National Institute of Advanced Industrial Science & Technology, Tsukuba, Japan
| | - Chae-Ok Yun
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul, South Korea
| | - Sunil C Kaul
- DAILAB, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), National Institute of Advanced Industrial Science & Technology, Tsukuba, Japan
| | - Renu Wadhwa
- DAILAB, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), National Institute of Advanced Industrial Science & Technology, Tsukuba, Japan.,School of Integrative and Global Majors, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
21
|
Kim M, Tang JP, Moon NS. An alternatively spliced form affecting the Marked Box domain of Drosophila E2F1 is required for proper cell cycle regulation. PLoS Genet 2018; 14:e1007204. [PMID: 29420631 PMCID: PMC5821395 DOI: 10.1371/journal.pgen.1007204] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 02/21/2018] [Accepted: 01/16/2018] [Indexed: 12/28/2022] Open
Abstract
Across metazoans, cell cycle progression is regulated by E2F family transcription factors that can function as either transcriptional activators or repressors. For decades, the Drosophila E2F family has been viewed as a streamlined RB/E2F network, consisting of one activator (dE2F1) and one repressor (dE2F2). Here, we report that an uncharacterized isoform of dE2F1, hereon called dE2F1b, plays an important function during development and is functionally distinct from the widely-studied dE2F1 isoform, dE2F1a. dE2F1b contains an additional exon that inserts 16 amino acids to the evolutionarily conserved Marked Box domain. Analysis of de2f1b-specific mutants generated via CRISPR/Cas9 indicates that dE2F1b is a critical regulator of the cell cycle during development. This is particularly evident in endocycling salivary glands in which a tight control of dE2F1 activity is required. Interestingly, close examination of mitotic tissues such as eye and wing imaginal discs suggests that dE2F1b plays a repressive function as cells exit from the cell cycle. We also provide evidence demonstrating that dE2F1b differentially interacts with RBF1 and alters the recruitment of RBF1 and dE2F1 to promoters. Collectively, our data suggest that dE2F1b is a novel member of the E2F family, revealing a previously unappreciated complexity in the Drosophila RB/E2F network.
Collapse
Affiliation(s)
- Minhee Kim
- Department of Biology, Developmental Biology Research Initiative, McGill University, Montreal, Quebec, Canada
| | - Jack P. Tang
- Department of Biology, Developmental Biology Research Initiative, McGill University, Montreal, Quebec, Canada
| | - Nam-Sung Moon
- Department of Biology, Developmental Biology Research Initiative, McGill University, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|
22
|
Zhang P, Pei C, Wang X, Xiang J, Sun BF, Cheng Y, Qi X, Marchetti M, Xu JW, Sun YP, Edgar BA, Yuan Z. A Balance of Yki/Sd Activator and E2F1/Sd Repressor Complexes Controls Cell Survival and Affects Organ Size. Dev Cell 2018; 43:603-617.e5. [PMID: 29207260 PMCID: PMC5722641 DOI: 10.1016/j.devcel.2017.10.033] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 08/17/2017] [Accepted: 10/29/2017] [Indexed: 01/03/2023]
Abstract
The Hippo/Yki and RB/E2F pathways both regulate tissue growth by affecting cell proliferation and survival, but interactions between these parallel control systems are poorly defined. In this study, we demonstrate that interaction between Drosophila E2F1 and Sd disrupts Yki/Sd complex formation and thereby suppresses Yki target gene expression. RBF modifies these effects by reducing E2F1/Sd interaction. This regulation has significant effects on apoptosis, organ size, and progenitor cell proliferation. Using a combination of DamID-seq and RNA-seq, we identified a set of Yki targets that play a diversity of roles during development and are suppressed by E2F1. Further, we found that human E2F1 competes with YAP for TEAD1 binding, affecting YAP activity, indicating that this mode of cross-regulation is conserved. In sum, our study uncovers a previously unknown mechanism in which RBF and E2F1 modify Hippo signaling responses to modulate apoptosis, organ growth, and homeostasis. RBF/E2F1 regulates the Hippo pathway by modulating formation of Yki/Sd complexes E2F1 releases Yki:Sd association and suppresses a set of Yki target expression Human E2F1 competes with YAP for TEAD1 binding and affects YAP activity
Collapse
Affiliation(s)
- Peng Zhang
- State Key Laboratory of Brain and Cognitive Sciences, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; German Cancer Research Center (DKFZ) & Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), 69120 Heidelberg, Germany; Huntsman Cancer Institute, Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Chunli Pei
- State Key Laboratory of Brain and Cognitive Sciences, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; The Brain Science Center, Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Beijing 100850, China
| | - Xi Wang
- German Cancer Research Center (DKFZ) & Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), 69120 Heidelberg, Germany
| | - Jinyi Xiang
- German Cancer Research Center (DKFZ) & Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), 69120 Heidelberg, Germany
| | - Bao-Fa Sun
- Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yongsheng Cheng
- German Cancer Research Center (DKFZ) & Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), 69120 Heidelberg, Germany
| | - Xiaolong Qi
- State Key Laboratory of Brain and Cognitive Sciences, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; The Brain Science Center, Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Beijing 100850, China
| | - Marco Marchetti
- German Cancer Research Center (DKFZ) & Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), 69120 Heidelberg, Germany; Huntsman Cancer Institute, Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Jia-Wei Xu
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Ying-Pu Sun
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Bruce A Edgar
- German Cancer Research Center (DKFZ) & Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), 69120 Heidelberg, Germany; Huntsman Cancer Institute, Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112, USA.
| | - Zengqiang Yuan
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Beijing 100850, China; Center of Alzheimer's Disease, Beijing Institute for Brain Disorders, Beijing 100069, China.
| |
Collapse
|
23
|
Guarner A, Morris R, Korenjak M, Boukhali M, Zappia MP, Van Rechem C, Whetstine JR, Ramaswamy S, Zou L, Frolov MV, Haas W, Dyson NJ. E2F/DP Prevents Cell-Cycle Progression in Endocycling Fat Body Cells by Suppressing dATM Expression. Dev Cell 2017; 43:689-703.e5. [PMID: 29233476 PMCID: PMC5901703 DOI: 10.1016/j.devcel.2017.11.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 08/28/2017] [Accepted: 11/07/2017] [Indexed: 10/18/2022]
Abstract
To understand the consequences of the complete elimination of E2F regulation, we profiled the proteome of Drosophila dDP mutants that lack functional E2F/DP complexes. The results uncovered changes in the larval fat body, a differentiated tissue that grows via endocycles. We report an unexpected mechanism of E2F/DP action that promotes quiescence in this tissue. In the fat body, dE2F/dDP limits cell-cycle progression by suppressing DNA damage responses. Loss of dDP upregulates dATM, allowing cells to sense and repair DNA damage and increasing replication of loci that are normally under-replicated in wild-type tissues. Genetic experiments show that ectopic dATM is sufficient to promote DNA synthesis in wild-type fat body cells. Strikingly, reducing dATM levels in dDP-deficient fat bodies restores cell-cycle control, improves tissue morphology, and extends animal development. These results show that, in some cellular contexts, dE2F/dDP-dependent suppression of DNA damage signaling is key for cell-cycle control and needed for normal development.
Collapse
Affiliation(s)
- Ana Guarner
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Building 149 13(th) Street, Charlestown, MA 02129, USA
| | - Robert Morris
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Building 149 13(th) Street, Charlestown, MA 02129, USA
| | - Michael Korenjak
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Building 149 13(th) Street, Charlestown, MA 02129, USA
| | - Myriam Boukhali
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Building 149 13(th) Street, Charlestown, MA 02129, USA
| | - Maria Paula Zappia
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, 900 S Ashland Avenue, Chicago, IL 60607, USA
| | - Capucine Van Rechem
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Building 149 13(th) Street, Charlestown, MA 02129, USA
| | - Johnathan R Whetstine
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Building 149 13(th) Street, Charlestown, MA 02129, USA
| | - Sridhar Ramaswamy
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Building 149 13(th) Street, Charlestown, MA 02129, USA
| | - Lee Zou
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Building 149 13(th) Street, Charlestown, MA 02129, USA
| | - Maxim V Frolov
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, 900 S Ashland Avenue, Chicago, IL 60607, USA
| | - Wilhelm Haas
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Building 149 13(th) Street, Charlestown, MA 02129, USA
| | - Nicholas J Dyson
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Building 149 13(th) Street, Charlestown, MA 02129, USA.
| |
Collapse
|
24
|
Abbas MN, Kausar S, Sun YX, Sun Y, Wang L, Qian C, Wei GQ, Zhu BJ, Liu CL. Molecular cloning, expression, and characterization of E2F transcription factor 4 from Antheraea pernyi. BULLETIN OF ENTOMOLOGICAL RESEARCH 2017; 107:839-846. [PMID: 28436337 DOI: 10.1017/s0007485317000426] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The E2F transcription factor family is distributed widely in eukaryotes and has been well studied among mammals. In the present study, the E2F transcription factor 4 (E2F4) gene was isolated from fat bodies of Antheraea pernyi and sequenced. E2F4 comprised a 795 bp open reading frame encoding a deduced amino acid sequence of 264 amino acid residues. The recombinant protein was expressed in Escherichia coli (Transetta DE3), and anti-E2F4 antibodies were prepared. The deduced amino acid sequence displayed significant homology to an E2F4-like protein from Bombyx mori L. Quantitative real-time polymerase chain reaction analysis revealed that E2F4 expression was highest in the integument, followed by the fat body, silk glands, and haemocytes. The expression of E2F4 was upregulated in larvae challenged by bacterial (Escherichia coli, Micrococcus luteus), viral (nuclear polyhedrosis virus), and fungal (Beauveria bassiana) pathogens. These observations indicated that E2F4 is an inducible protein in the immune response of A. pernyi and probably in other insects.
Collapse
Affiliation(s)
- M N Abbas
- College of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - S Kausar
- College of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Y-X Sun
- College of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Y Sun
- College of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - L Wang
- College of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - C Qian
- College of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - G-Q Wei
- College of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - B-J Zhu
- College of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - C-L Liu
- College of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
25
|
Ma Y, Buttitta L. Chromatin organization changes during the establishment and maintenance of the postmitotic state. Epigenetics Chromatin 2017; 10:53. [PMID: 29126440 PMCID: PMC5681785 DOI: 10.1186/s13072-017-0159-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 10/30/2017] [Indexed: 02/06/2023] Open
Abstract
Background Genome organization changes during development as cells differentiate. Chromatin motion becomes increasingly constrained and heterochromatin clusters as cells become restricted in their developmental potential. These changes coincide with slowing of the cell cycle, which can also influence chromatin organization and dynamics. Terminal differentiation is often coupled with permanent exit from the cell cycle, and existing data suggest a close relationship between a repressive chromatin structure and silencing of the cell cycle in postmitotic cells. Heterochromatin clustering could also contribute to stable gene repression to maintain terminal differentiation or cell cycle exit, but whether clustering is initiated by differentiation, cell cycle changes, or both is unclear. Here we examine the relationship between chromatin organization, terminal differentiation and cell cycle exit. Results We focused our studies on the Drosophila wing, where epithelial cells transition from active proliferation to a postmitotic state in a temporally controlled manner. We find there are two stages of G0 in this tissue, a flexible G0 period where cells can be induced to reenter the cell cycle under specific genetic manipulations and a state we call “robust,” where cells become strongly refractory to cell cycle reentry. Compromising the flexible G0 by driving ectopic expression of cell cycle activators causes a global disruption of the clustering of heterochromatin-associated histone modifications such as H3K27 trimethylation and H3K9 trimethylation, as well as their associated repressors, Polycomb and heterochromatin protein 1 (HP1). However, this disruption is reversible. When cells enter a robust G0 state, even in the presence of ectopic cell cycle activity, clustering of heterochromatin-associated modifications is restored. If cell cycle exit is bypassed, cells in the wing continue to terminally differentiate, but heterochromatin clustering is severely disrupted. Heterochromatin-dependent gene silencing does not appear to be required for cell cycle exit, as compromising the H3K27 methyltransferase Enhancer of zeste, and/or HP1 cannot prevent the robust cell cycle exit, even in the face of normally oncogenic cell cycle activities. Conclusions Heterochromatin clustering during terminal differentiation is a consequence of cell cycle exit, rather than differentiation. Compromising heterochromatin-dependent gene silencing does not disrupt cell cycle exit. Electronic supplementary material The online version of this article (10.1186/s13072-017-0159-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yiqin Ma
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Laura Buttitta
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
26
|
Wei Y, Gokhale RH, Sonnenschein A, Montgomery KM, Ingersoll A, Arnosti DN. Complex cis-regulatory landscape of the insulin receptor gene underlies the broad expression of a central signaling regulator. Development 2017; 143:3591-3603. [PMID: 27702787 DOI: 10.1242/dev.138073] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 08/10/2016] [Indexed: 12/16/2022]
Abstract
Insulin signaling plays key roles in development, growth and metabolism through dynamic control of glucose uptake, global protein translation and transcriptional regulation. Altered levels of insulin signaling are known to play key roles in development and disease, yet the molecular basis of such differential signaling remains obscure. Expression of the insulin receptor (InR) gene itself appears to play an important role, but the nature of the molecular wiring controlling InR transcription has not been elucidated. We characterized the regulatory elements driving Drosophila InR expression and found that the generally broad expression of this gene is belied by complex individual switch elements, the dynamic regulation of which reflects direct and indirect contributions of FOXO, EcR, Rbf and additional transcription factors through redundant elements dispersed throughout ∼40 kb of non-coding regions. The control of InR transcription in response to nutritional and tissue-specific inputs represents an integration of multiple cis-regulatory elements, the structure and function of which may have been sculpted by evolutionary selection to provide a highly tailored set of signaling responses on developmental and tissue-specific levels.
Collapse
Affiliation(s)
- Yiliang Wei
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Rewatee H Gokhale
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Anne Sonnenschein
- Genetics Program, Michigan State University, East Lansing, MI 48824, USA
| | - Kelly Mone't Montgomery
- Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Andrew Ingersoll
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - David N Arnosti
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA Genetics Program, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
27
|
Fischer M, Müller GA. Cell cycle transcription control: DREAM/MuvB and RB-E2F complexes. Crit Rev Biochem Mol Biol 2017; 52:638-662. [PMID: 28799433 DOI: 10.1080/10409238.2017.1360836] [Citation(s) in RCA: 150] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The precise timing of cell cycle gene expression is critical for the control of cell proliferation; de-regulation of this timing promotes the formation of cancer and leads to defects during differentiation and development. Entry into and progression through S phase requires expression of genes coding for proteins that function in DNA replication. Expression of a distinct set of genes is essential to pass through mitosis and cytokinesis. Expression of these groups of cell cycle-dependent genes is regulated by the RB pocket protein family, the E2F transcription factor family, and MuvB complexes together with B-MYB and FOXM1. Distinct combinations of these transcription factors promote the transcription of the two major groups of cell cycle genes that are maximally expressed either in S phase (G1/S) or in mitosis (G2/M). In this review, we discuss recent work that has started to uncover the molecular mechanisms controlling the precisely timed expression of these genes at specific cell cycle phases, as well as the repression of the genes when a cell exits the cell cycle.
Collapse
Affiliation(s)
- Martin Fischer
- a Molecular Oncology, Medical School, University of Leipzig , Leipzig , Germany.,b Department of Medical Oncology , Dana-Farber Cancer Institute , Boston , MA , USA.,c Department of Medicine, Brigham and Women's Hospital , Harvard Medical School , Boston , MA , USA
| | - Gerd A Müller
- a Molecular Oncology, Medical School, University of Leipzig , Leipzig , Germany
| |
Collapse
|
28
|
Hinnant TD, Alvarez AA, Ables ET. Temporal remodeling of the cell cycle accompanies differentiation in the Drosophila germline. Dev Biol 2017; 429:118-131. [PMID: 28711427 DOI: 10.1016/j.ydbio.2017.07.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 06/15/2017] [Accepted: 07/05/2017] [Indexed: 12/27/2022]
Abstract
Development of multicellular organisms relies upon the coordinated regulation of cellular differentiation and proliferation. Growing evidence suggests that some molecular regulatory pathways associated with the cell cycle machinery also dictate cell fate; however, it remains largely unclear how the cell cycle is remodeled in concert with cell differentiation. During Drosophila oogenesis, mature oocytes are created through a series of precisely controlled division and differentiation steps, originating from a single tissue-specific stem cell. Further, germline stem cells (GSCs) and their differentiating progeny remain in a predominantly linear arrangement as oogenesis proceeds. The ability to visualize the stepwise events of differentiation within the context of a single tissue make the Drosophila ovary an exceptional model for study of cell cycle remodeling. To describe how the cell cycle is remodeled in germ cells as they differentiate in situ, we used the Drosophila Fluorescence Ubiquitin-based Cell Cycle Indicator (Fly-FUCCI) system, in which degradable versions of GFP::E2f1 and RFP::CycB fluorescently label cells in each phase of the cell cycle. We found that the lengths of the G1, S, and G2 phases of the cell cycle change dramatically over the course of differentiation, and identified the 4/8-cell cyst as a key developmental transition state in which cells prepare for specialized cell cycles. Our data suggest that the transcriptional activator E2f1, which controls the transition from G1 to S phase, is a key regulator of mitotic divisions in the early germline. Our data support the model that E2f1 is necessary for proper GSC proliferation, self-renewal, and daughter cell development. In contrast, while E2f1 degradation by the Cullin 4 (Cul4)-containing ubiquitin E3 ligase (CRL4) is essential for developmental transitions in the early germline, our data do not support a role for E2f1 degradation as a mechanism to limit GSC proliferation or self-renewal. Taken together, these findings provide further insight into the regulation of cell proliferation and the acquisition of differentiated cell fate, with broad implications across developing tissues.
Collapse
Affiliation(s)
- Taylor D Hinnant
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| | - Arturo A Alvarez
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| | - Elizabeth T Ables
- Department of Biology, East Carolina University, Greenville, NC 27858, USA.
| |
Collapse
|
29
|
Zhang J, Tian M, Yan GX, Shodhan A, Miao W. E2fl1 is a meiosis-specific transcription factor in the protist Tetrahymena thermophila. Cell Cycle 2016; 16:123-135. [PMID: 27892792 DOI: 10.1080/15384101.2016.1259779] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Members of the E2F family of transcription factors have been reported to regulate the expression of genes involved in cell cycle control, DNA replication, and DNA repair in multicellular eukaryotes. Here, E2FL1, a meiosis-specific E2F transcription factor gene, was identified in the model ciliate Tetrahymena thermophila. Loss of this gene resulted in meiotic arrest prior to anaphase I. The cytological experiments revealed that the meiotic homologous pairing was not affected in the absence of E2FL1, but the paired homologous chromosomes did not separate and assumed a peculiar tandem arrangement. This is the first time that an E2F family member has been shown to regulate meiotic events. Moreover, BrdU incorporation showed that DSB processing during meiosis was abnormal upon the deletion of E2FL1. Transcriptome sequencing analysis revealed that E2FL1 knockout decreased the expression of genes involved in DNA replication and DNA repair in T. thermophila, suggesting that the function of E2F is highly conserved in eukaryotes. In addition, E2FL1 deletion inhibited the expression of related homologous chromosome segregation genes in T. thermophila. The result may explain the meiotic arrest phenotype at anaphase I. Finally, by searching for E2F DNA-binding motifs in the entire T. thermophila genome, we identified 714 genes containing at least one E2F DNA-binding motif; of these, 235 downregulated represent putative E2FL1 target genes.
Collapse
Affiliation(s)
- Jing Zhang
- a Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences , Wuhan , People's Republic of China.,b University of Chinese Academy of Sciences , Beijing , People's Republic of China
| | - Miao Tian
- a Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences , Wuhan , People's Republic of China.,c Department of Chromosome Biology and Max F. Perutz Laboratories, Center for Molecular Biology, University of Vienna , Vienna , Austria
| | - Guan-Xiong Yan
- a Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences , Wuhan , People's Republic of China.,b University of Chinese Academy of Sciences , Beijing , People's Republic of China
| | - Anura Shodhan
- c Department of Chromosome Biology and Max F. Perutz Laboratories, Center for Molecular Biology, University of Vienna , Vienna , Austria
| | - Wei Miao
- a Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences , Wuhan , People's Republic of China
| |
Collapse
|
30
|
Zhang J, Loyd MR, Randall MS, Morris JJ, Shah JG, Ney PA. Repression by RB1 characterizes genes involved in the penultimate stage of erythroid development. Cell Cycle 2016; 14:3441-53. [PMID: 26397180 DOI: 10.1080/15384101.2015.1090067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Retinoblastoma-1 (RB1), and the RB1-related proteins p107 and p130, are key regulators of the cell cycle. Although RB1 is required for normal erythroid development in vitro, it is largely dispensable for erythropoiesis in vivo. The modest phenotype caused by RB1 deficiency in mice raises questions about redundancy within the RB1 family, and the role of RB1 in erythroid differentiation. Here we show that RB1 is the major pocket protein that regulates terminal erythroid differentiation. Erythroid cells lacking all pocket proteins exhibit the same cell cycle defects as those deficient for RB1 alone. RB1 has broad repressive effects on gene transcription in erythroid cells. As a group, RB1-repressed genes are generally well expressed but downregulated at the final stage of erythroid development. Repression correlates with E2F binding, implicating E2Fs in the recruitment of RB1 to repressed genes. Merging differential and time-dependent changes in expression, we define a group of approximately 800 RB1-repressed genes. Bioinformatics analysis shows that this list is enriched for terms related to the cell cycle, but also for terms related to terminal differentiation. Some of these have not been previously linked to RB1. These results expand the range of processes potentially regulated by RB1, and suggest that a principal role of RB1 in development is coordinating the events required for terminal differentiation.
Collapse
Affiliation(s)
- Ji Zhang
- a Department of Biochemistry ; St. Jude Children's Research Hospital ; Memphis , TN USA.,b Current address: Cancer Biology & Genetics; Memorial Sloan-Kettering Cancer Center ; New York , NY USA
| | - Melanie R Loyd
- a Department of Biochemistry ; St. Jude Children's Research Hospital ; Memphis , TN USA.,c Hartwell Center for Bioinformatics and Biotechnology; St. Jude Children's Research Hospital ; Memphis , TN USA
| | - Mindy S Randall
- a Department of Biochemistry ; St. Jude Children's Research Hospital ; Memphis , TN USA
| | - John J Morris
- c Hartwell Center for Bioinformatics and Biotechnology; St. Jude Children's Research Hospital ; Memphis , TN USA
| | - Jayesh G Shah
- d Cell & Molecular Biology; Lindsley F. Kimball Research Institute; New York Blood Center ; New York , NY USA
| | - Paul A Ney
- a Department of Biochemistry ; St. Jude Children's Research Hospital ; Memphis , TN USA.,d Cell & Molecular Biology; Lindsley F. Kimball Research Institute; New York Blood Center ; New York , NY USA.,e Current address: 1735 York Ave., New York , NY USA
| |
Collapse
|
31
|
Abstract
Retinoblastoma is a malignant retinal tumor that affects young children. Mutations in the RB1 gene cause retinoblastoma. Mutations in both RB1 alleles within the precursor retinal cell are essential, with one mutation that may be germline or somatic and the second one that is always somatic. Identification of the RB1 germline status of a patient allows differentiation between sporadic and heritable retinoblastoma variants. Application of this knowledge is crucial for assessing short-term (risk of additional tumors in the same eye and other eye) and long-term (risk of nonocular malignant tumors) prognosis and offering cost-effective surveillance strategies. Genetic testing and genetic counseling are therefore essential components of care for all children diagnosed with retinoblastoma. The American Joint Committee on Cancer has acknowledged the importance of detecting this heritable trait and has introduced the letter "H" to denote a heritable trait of all cancers, starting with retinoblastoma (in publication). In this article, we discuss the clinically relevant aspects of genetic testing and genetic counseling for a child with retinoblastoma.
Collapse
Affiliation(s)
- Ashwin Mallipatna
- From *Bangalore, India; and the Departments of †Genetics and ‡Ophthalmic Oncology, Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, OH
| | | | | |
Collapse
|
32
|
Roles for the Histone Modifying and Exchange Complex NuA4 in Cell Cycle Progression in Drosophila melanogaster. Genetics 2016; 203:1265-81. [PMID: 27184390 DOI: 10.1534/genetics.116.188581] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 05/04/2016] [Indexed: 11/18/2022] Open
Abstract
Robust and synchronous repression of E2F-dependent gene expression is critical to the proper timing of cell cycle exit when cells transition to a postmitotic state. Previously NuA4 was suggested to act as a barrier to proliferation in Drosophila by repressing E2F-dependent gene expression. Here we show that NuA4 activity is required for proper cell cycle exit and the repression of cell cycle genes during the transition to a postmitotic state in vivo However, the delay of cell cycle exit caused by compromising NuA4 is not due to additional proliferation or effects on E2F activity. Instead NuA4 inhibition results in slowed cell cycle progression through late S and G2 phases due to aberrant activation of an intrinsic p53-independent DNA damage response. A reduction in NuA4 function ultimately produces a paradoxical cell cycle gene expression program, where certain cell cycle genes become derepressed in cells that are delayed during the G2 phase of the final cell cycle. Bypassing the G2 delay when NuA4 is inhibited leads to abnormal mitoses and results in severe tissue defects. NuA4 physically and genetically interacts with components of the E2F complex termed D: rosophila, R: bf, E: 2F A: nd M: yb/ M: ulti-vulva class B: (DREAM/MMB), and modulates a DREAM/MMB-dependent ectopic neuron phenotype in the posterior wing margin. However, this effect is also likely due to the cell cycle delay, as simply reducing Cdk1 is sufficient to generate a similar phenotype. Our work reveals that the major requirement for NuA4 in the cell cycle in vivo is to suppress an endogenous DNA damage response, which is required to coordinate proper S and G2 cell cycle progression with differentiation and cell cycle gene expression.
Collapse
|
33
|
Regulation of cell polarity determinants by the Retinoblastoma tumor suppressor protein. Sci Rep 2016; 6:22879. [PMID: 26971715 PMCID: PMC4789731 DOI: 10.1038/srep22879] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 02/23/2016] [Indexed: 01/24/2023] Open
Abstract
In addition to their canonical roles in the cell cycle, RB family proteins regulate numerous developmental pathways, although the mechanisms remain obscure. We found that Drosophila Rbf1 associates with genes encoding components of the highly conserved apical-basal and planar cell polarity pathways, suggesting a possible regulatory role. Here, we show that depletion of Rbf1 in Drosophila tissues is indeed associated with polarity defects in the wing and eye. Key polarity genes aPKC, par6, vang, pk, and fmi are upregulated, and an aPKC mutation suppresses the Rbf1-induced phenotypes. RB control of cell polarity may be an evolutionarily conserved function, with important implications in cancer metastasis.
Collapse
|
34
|
Zappia MP, Frolov MV. E2F function in muscle growth is necessary and sufficient for viability in Drosophila. Nat Commun 2016; 7:10509. [PMID: 26823289 PMCID: PMC4740182 DOI: 10.1038/ncomms10509] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 12/22/2015] [Indexed: 01/08/2023] Open
Abstract
The E2F transcription factor is a key cell cycle regulator. However, the inactivation of the entire E2F family in Drosophila is permissive throughout most of animal development until pupation when lethality occurs. Here we show that E2F function in the adult skeletal muscle is essential for animal viability since providing E2F function in muscles rescues the lethality of the whole-body E2F-deficient animals. Muscle-specific loss of E2F results in a significant reduction in muscle mass and thinner myofibrils. We demonstrate that E2F is dispensable for proliferation of muscle progenitor cells, but is required during late myogenesis to directly control the expression of a set of muscle-specific genes. Interestingly, E2f1 provides a major contribution to the regulation of myogenic function, while E2f2 appears to be less important. These findings identify a key function of E2F in skeletal muscle required for animal viability, and illustrate how the cell cycle regulator is repurposed in post-mitotic cells.
Collapse
Affiliation(s)
- Maria Paula Zappia
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, 900 S Ashland Avenue, Chicago, Illinois 60607, USA
| | - Maxim V. Frolov
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, 900 S Ashland Avenue, Chicago, Illinois 60607, USA
| |
Collapse
|
35
|
Abstract
Strict temporal control of cell cycle gene expression is essential for all eukaryotes including animals and plants. DREAM complexes have been identified in worm, fly, and mammals, linking several distinct transcription factors to coordinate gene expression throughout the cell cycle. In this issue of The EMBO Journal, Kobayashi et al (2015) identify distinct activator and repressor complexes for genes expressed during the G2 and M phases in Arabidopsis that can be temporarily separated during proliferating and post‐mitotic stages of development. The complexes incorporate specific activator and repressor MYB and E2F transcription factors and indicate the possibility of the existence of multiple DREAM complexes in plants.
Collapse
Affiliation(s)
- Martin Fischer
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - James A DeCaprio
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
36
|
Genome-Wide Analysis of Drosophila RBf2 Protein Highlights the Diversity of RB Family Targets and Possible Role in Regulation of Ribosome Biosynthesis. G3-GENES GENOMES GENETICS 2015; 5:1503-15. [PMID: 25999584 PMCID: PMC4502384 DOI: 10.1534/g3.115.019166] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
RBf2 is a recently evolved retinoblastoma family member in Drosophila that differs from RBf1, especially in the C-terminus. To investigate whether the unique features of RBf2 contribute to diverse roles in gene regulation, we performed chromatin immunoprecipitation sequencing for both RBf2 and RBf1 in embryos. A previous model for RB−E2F interactions suggested that RBf1 binds dE2F1 or dE2F2, whereas RBf2 is restricted to binding to dE2F2; however, we found that RBf2 targets approximately twice as many genes as RBf1. Highly enriched among the RBf2 targets were ribosomal protein genes. We tested the functional significance of this finding by assessing RBf activity on ribosomal protein promoters and the endogenous genes. RBf1 and RBf2 significantly repressed expression of some ribosomal protein genes, although not all bound genes showed transcriptional effects. Interestingly, many ribosomal protein genes are similarly targeted in human cells, indicating that these interactions may be relevant for control of ribosome biosynthesis and growth. We carried out bioinformatic analysis to investigate the basis for differential targeting by these two proteins and found that RBf2-specific promoters have distinct sequence motifs, suggesting unique targeting mechanisms. Association of RBf2 with these promoters appears to be independent of dE2F2/dDP, although promoters bound by both RBf1 and RBf2 require dE2F2/dDP. The presence of unique RBf2 targets suggest that evolutionary appearance of this corepressor represents the acquisition of potentially novel roles in gene regulation for the RB family.
Collapse
|
37
|
Julian LM, Blais A. Transcriptional control of stem cell fate by E2Fs and pocket proteins. Front Genet 2015; 6:161. [PMID: 25972892 PMCID: PMC4412126 DOI: 10.3389/fgene.2015.00161] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Accepted: 04/08/2015] [Indexed: 01/04/2023] Open
Abstract
E2F transcription factors and their regulatory partners, the pocket proteins (PPs), have emerged as essential regulators of stem cell fate control in a number of lineages. In mammals, this role extends from both pluripotent stem cells to those encompassing all embryonic germ layers, as well as extra-embryonic lineages. E2F/PP-mediated regulation of stem cell decisions is highly evolutionarily conserved, and is likely a pivotal biological mechanism underlying stem cell homeostasis. This has immense implications for organismal development, tissue maintenance, and regeneration. In this article, we discuss the roles of E2F factors and PPs in stem cell populations, focusing on mammalian systems. We discuss emerging findings that position the E2F and PP families as widespread and dynamic epigenetic regulators of cell fate decisions. Additionally, we focus on the ever expanding landscape of E2F/PP target genes, and explore the possibility that E2Fs are not simply regulators of general ‘multi-purpose’ cell fate genes but can execute tissue- and cell type-specific gene regulatory programs.
Collapse
Affiliation(s)
- Lisa M Julian
- Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON Canada
| | - Alexandre Blais
- Ottawa Institute of Systems Biology, Ottawa, ON Canada ; Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON Canada
| |
Collapse
|
38
|
Zhu L, Lu Z, Zhao H. Antitumor mechanisms when pRb and p53 are genetically inactivated. Oncogene 2014; 34:4547-57. [PMID: 25486431 PMCID: PMC4459916 DOI: 10.1038/onc.2014.399] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 11/03/2014] [Accepted: 11/03/2014] [Indexed: 12/31/2022]
Abstract
pRb and p53 are the two major tumor suppressors. Their inactivation is frequent when cancers develop and their reactivation is rationale of most cancer therapeutics. When pRb and p53 are genetically inactivated, cells irreparably lose the antitumor mechanisms afforded by them. Cancer genome studies document recurrent genetic inactivation of RB1 and TP53, and the inactivation becomes more frequent in more advanced cancers. These findings may explain why more advanced cancers are more likely to resist current therapies. Finding successful treatments for more advanced and multi-therapy resistant cancers will depend on finding antitumor mechanisms that remain effective when pRb and p53 are genetically inactivated. Here, we review studies that have begun to make progress in this direction.
Collapse
Affiliation(s)
- L Zhu
- Department of Developmental and Molecular Biology, and Ophthalmology and Visual Sciences, and Medicine, The Albert Einstein Comprehensive Cancer Center and Liver Research Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Z Lu
- Department of Developmental and Molecular Biology, and Ophthalmology and Visual Sciences, and Medicine, The Albert Einstein Comprehensive Cancer Center and Liver Research Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - H Zhao
- Department of Developmental and Molecular Biology, and Ophthalmology and Visual Sciences, and Medicine, The Albert Einstein Comprehensive Cancer Center and Liver Research Center, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
39
|
Miles WO, Dyson NJ. Pumilio and nanos RNA-binding proteins counterbalance the transcriptional consequences of RB1 inactivation. Mol Cell Oncol 2014; 1:e968074. [PMID: 27308363 DOI: 10.4161/23723548.2014.968074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 08/20/2014] [Accepted: 08/20/2014] [Indexed: 11/19/2022]
Abstract
The ability of the retinoblastoma protein (RB) tumor suppressor to repress transcription stimulated by the E2 promoter binding factors (E2F) is integral to its biological functions. Our recent report described a conserved feedback mechanism mediated by the RNA-binding proteins Pumilio and Nanos that increases in importance following RB loss and helps cells to tolerate deregulated E2F.
Collapse
Affiliation(s)
- Wayne O Miles
- Massachusetts General Hospital Cancer Center and Harvard Medical School ; Charlestown, MA USA
| | - Nicholas J Dyson
- Massachusetts General Hospital Cancer Center and Harvard Medical School ; Charlestown, MA USA
| |
Collapse
|
40
|
Miles WO, Korenjak M, Griffiths LM, Dyer MA, Provero P, Dyson NJ. Post-transcriptional gene expression control by NANOS is up-regulated and functionally important in pRb-deficient cells. EMBO J 2014; 33:2201-15. [PMID: 25100735 PMCID: PMC4282507 DOI: 10.15252/embj.201488057] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 07/11/2014] [Accepted: 07/15/2014] [Indexed: 11/09/2022] Open
Abstract
Inactivation of the retinoblastoma tumor suppressor (pRb) is a common oncogenic event that alters the expression of genes important for cell cycle progression, senescence, and apoptosis. However, in many contexts, the properties of pRb-deficient cells are similar to wild-type cells suggesting there may be processes that counterbalance the transcriptional changes associated with pRb inactivation. Therefore, we have looked for sets of evolutionary conserved, functionally related genes that are direct targets of pRb/E2F proteins. We show that the expression of NANOS, a key facilitator of the Pumilio (PUM) post-transcriptional repressor complex, is directly repressed by pRb/E2F in flies and humans. In both species, NANOS expression increases following inactivation of pRb/RBF1 and becomes important for tissue homeostasis. By analyzing datasets from normal retinal tissue and pRb-null retinoblastomas, we find a strong enrichment for putative PUM substrates among genes de-regulated in tumors. These include pro-apoptotic genes that are transcriptionally down-regulated upon pRb loss, and we characterize two such candidates, MAP2K3 and MAP3K1, as direct PUM substrates. Our data suggest that NANOS increases in importance in pRb-deficient cells and helps to maintain homeostasis by repressing the translation of transcripts containing PUM Regulatory Elements (PRE).
Collapse
Affiliation(s)
- Wayne O Miles
- Massachusetts General Hospital Cancer Center and Harvard Medical School Laboratory of Molecular Oncology, Charlestown, MA, USA
| | - Michael Korenjak
- Massachusetts General Hospital Cancer Center and Harvard Medical School Laboratory of Molecular Oncology, Charlestown, MA, USA
| | - Lyra M Griffiths
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Michael A Dyer
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Paolo Provero
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy Center for Translational Genomics and Bioinformatics, San Raffaele Scientific Institute, Milan, Italy
| | - Nicholas J Dyson
- Massachusetts General Hospital Cancer Center and Harvard Medical School Laboratory of Molecular Oncology, Charlestown, MA, USA
| |
Collapse
|
41
|
The pro-apoptotic activity of Drosophila Rbf1 involves dE2F2-dependent downregulation of diap1 and buffy mRNA. Cell Death Dis 2014; 5:e1405. [PMID: 25188515 PMCID: PMC4540203 DOI: 10.1038/cddis.2014.372] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 07/23/2014] [Accepted: 07/28/2014] [Indexed: 11/16/2022]
Abstract
The retinoblastoma gene, rb, ensures at least its tumor suppressor function by inhibiting cell proliferation. Its role in apoptosis is more complex and less described than its role in cell cycle regulation. Rbf1, the Drosophila homolog of Rb, has been found to be pro-apoptotic in proliferative tissue. However, the way it induces apoptosis at the molecular level is still unknown. To decipher this mechanism, we induced rbf1 expression in wing proliferative tissue. We found that Rbf1-induced apoptosis depends on dE2F2/dDP heterodimer, whereas dE2F1 transcriptional activity is not required. Furthermore, we highlight that Rbf1 and dE2F2 downregulate two major anti-apoptotic genes in Drosophila: buffy, an anti-apoptotic member of Bcl-2 family and diap1, a gene encoding a caspase inhibitor. On the one hand, Rbf1/dE2F2 repress buffy at the transcriptional level, which contributes to cell death. On the other hand, Rbf1 and dE2F2 upregulate how expression. How is a RNA binding protein involved in diap1 mRNA degradation. By this way, Rbf1 downregulates diap1 at a post-transcriptional level. Moreover, we show that the dREAM complex has a part in these transcriptional regulations. Taken together, these data show that Rbf1, in cooperation with dE2F2 and some members of the dREAM complex, can downregulate the anti-apoptotic genes buffy and diap1, and thus promote cell death in a proliferative tissue.
Collapse
|
42
|
Singer R, Atar S, Atias O, Oron E, Segal D, Hirsch JA, Tuller T, Orian A, Chamovitz DA. Drosophila COP9 signalosome subunit 7 interacts with multiple genomic loci to regulate development. Nucleic Acids Res 2014; 42:9761-70. [PMID: 25106867 PMCID: PMC4150811 DOI: 10.1093/nar/gku723] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The COP9 signalosome protein complex has a central role in the regulation of development of multicellular organisms. While the function of this complex in ubiquitin-mediated protein degradation is well established, results over the past few years have hinted that the COP9 signalosome may function more broadly in the regulation of gene expression. Here, using DamID technology, we show that COP9 signalosome subunit 7 functionally associates with a large number of genomic loci in the Drosophila genome, and show that the expression of many genes within these loci is COP9 signalosome-dependent. This association is likely direct as we show CSN7 binds DNA in vitro. The genes targeted by CSN7 are preferentially enriched for transcriptionally active regions of the genome, and are involved in the regulation of distinct gene ontology groupings including imaginal disc development and cell-cycle control. In accord, loss of CSN7 function leads to cell-cycle delay and altered wing development. These results indicate that CSN7, and by extension the entire COP9 signalosome, functions directly in transcriptional control. While the COP9 signalosome protein complex has long been known to regulate protein degradation, here we expand the role of this complex by showing that subunit 7 binds DNA in vitro and functions directly in vivo in transcriptional control of developmentally important pathways that are relevant for human health.
Collapse
Affiliation(s)
- Ruth Singer
- Department of Molecular Biology and Ecology of Plants
| | | | - Osnat Atias
- Department of Molecular Biology and Ecology of Plants
| | - Efrat Oron
- Department of Molecular Biology and Ecology of Plants
| | - Daniel Segal
- Department of Molecular Microbiology and Biotechnology
| | - Joel A Hirsch
- Department of Biochemistry and Molecular Biology, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| | | | - Amir Orian
- Cancer and Vascular Biology Research Center, Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | | |
Collapse
|
43
|
Müller GA, Wintsche A, Stangner K, Prohaska SJ, Stadler PF, Engeland K. The CHR site: definition and genome-wide identification of a cell cycle transcriptional element. Nucleic Acids Res 2014; 42:10331-50. [PMID: 25106871 PMCID: PMC4176359 DOI: 10.1093/nar/gku696] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The cell cycle genes homology region (CHR) has been identified as a DNA element with an important role in transcriptional regulation of late cell cycle genes. It has been shown that such genes are controlled by DREAM, MMB and FOXM1-MuvB and that these protein complexes can contact DNA via CHR sites. However, it has not been elucidated which sequence variations of the canonical CHR are functional and how frequent CHR-based regulation is utilized in mammalian genomes. Here, we define the spectrum of functional CHR elements. As the basis for a computational meta-analysis, we identify new CHR sequences and compile phylogenetic motif conservation as well as genome-wide protein-DNA binding and gene expression data. We identify CHR elements in most late cell cycle genes binding DREAM, MMB, or FOXM1-MuvB. In contrast, Myb- and forkhead-binding sites are underrepresented in both early and late cell cycle genes. Our findings support a general mechanism: sequential binding of DREAM, MMB and FOXM1-MuvB complexes to late cell cycle genes requires CHR elements. Taken together, we define the group of CHR-regulated genes in mammalian genomes and provide evidence that the CHR is the central promoter element in transcriptional regulation of late cell cycle genes by DREAM, MMB and FOXM1-MuvB.
Collapse
Affiliation(s)
- Gerd A Müller
- Molecular Oncology, Medical School, University of Leipzig, Semmelweisstr. 14, 04103 Leipzig, Germany
| | - Axel Wintsche
- Computational EvoDevo Group, Department of Computer Science and Interdisciplinary Center for Bioinformatics, University of Leipzig, Härtelstraße 16-18, 04107 Leipzig, Germany
| | - Konstanze Stangner
- Molecular Oncology, Medical School, University of Leipzig, Semmelweisstr. 14, 04103 Leipzig, Germany
| | - Sonja J Prohaska
- Computational EvoDevo Group, Department of Computer Science and Interdisciplinary Center for Bioinformatics, University of Leipzig, Härtelstraße 16-18, 04107 Leipzig, Germany
| | - Peter F Stadler
- Bioinformatics Group, Department of Computer Science and Interdisciplinary Center for Bioinformatics, University of Leipzig, Härtelstrasse 16-18, 04107 Leipzig, Germany Max Planck Institute for Mathematics in the Sciences, Inselstraße 22, 04103 Leipzig, Germany Center for Non-coding RNA in Technology and Health, Department of Basic Veterinary and Animal Sciences, Faculty of Life Sciences University of Copenhagen, Grønnegårdsvej 3, 1870 Frederiksberg C Denmark Santa Fe Institute, 1399 Hyde Park Rd, Santa Fe, NM 87501, USA
| | - Kurt Engeland
- Molecular Oncology, Medical School, University of Leipzig, Semmelweisstr. 14, 04103 Leipzig, Germany
| |
Collapse
|
44
|
Korenjak M, Kwon E, Morris RT, Anderssen E, Amzallag A, Ramaswamy S, Dyson NJ. dREAM co-operates with insulator-binding proteins and regulates expression at divergently paired genes. Nucleic Acids Res 2014; 42:8939-53. [PMID: 25053843 PMCID: PMC4132727 DOI: 10.1093/nar/gku609] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
dREAM complexes represent the predominant form of E2F/RBF repressor complexes in Drosophila. dREAM associates with thousands of sites in the fly genome but its mechanism of action is unknown. To understand the genomic context in which dREAM acts we examined the distribution and localization of Drosophila E2F and dREAM proteins. Here we report a striking and unexpected overlap between dE2F2/dREAM sites and binding sites for the insulator-binding proteins CP190 and Beaf-32. Genetic assays show that these components functionally co-operate and chromatin immunoprecipitation experiments on mutant animals demonstrate that dE2F2 is important for association of CP190 with chromatin. dE2F2/dREAM binding sites are enriched at divergently transcribed genes, and the majority of genes upregulated by dE2F2 depletion represent the repressed half of a differentially expressed, divergently transcribed pair of genes. Analysis of mutant animals confirms that dREAM and CP190 are similarly required for transcriptional integrity at these gene pairs and suggest that dREAM functions in concert with CP190 to establish boundaries between repressed/activated genes. Consistent with the idea that dREAM co-operates with insulator-binding proteins, genomic regions bound by dREAM possess enhancer-blocking activity that depends on multiple dREAM components. These findings suggest that dREAM functions in the organization of transcriptional domains.
Collapse
Affiliation(s)
- Michael Korenjak
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA 02129, USA
| | - Eunjeong Kwon
- Massachusetts General Hospital, Cutaneous Biology Research Center, Charlestown, MA 02129, USA
| | - Robert T Morris
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA 02129, USA
| | - Endre Anderssen
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA 02129, USA
| | - Arnaud Amzallag
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA 02129, USA
| | - Sridhar Ramaswamy
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA 02129, USA
| | - Nicholas J Dyson
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA 02129, USA
| |
Collapse
|
45
|
Ambrus AM, Islam ABMMK, Holmes KB, Moon NS, Lopez-Bigas N, Benevolenskaya EV, Frolov MV. Loss of dE2F compromises mitochondrial function. Dev Cell 2014; 27:438-51. [PMID: 24286825 DOI: 10.1016/j.devcel.2013.10.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 08/06/2013] [Accepted: 10/02/2013] [Indexed: 10/26/2022]
Abstract
E2F/DP transcription factors regulate cell proliferation and apoptosis. Here, we investigated the mechanism of the resistance of Drosophila dDP mutants to irradiation-induced apoptosis. Contrary to the prevailing view, this is not due to an inability to induce the apoptotic transcriptional program, because we show that this program is induced; rather, this is due to a mitochondrial dysfunction of dDP mutants. We attribute this defect to E2F/DP-dependent control of expression of mitochondria-associated genes. Genetic attenuation of several of these E2F/DP targets mimics the dDP mutant mitochondrial phenotype and protects against irradiation-induced apoptosis. Significantly, the role of E2F/DP in the regulation of mitochondrial function is conserved between flies and humans. Thus, our results uncover a role of E2F/DP in the regulation of mitochondrial function and demonstrate that this aspect of E2F regulation is critical for the normal induction of apoptosis in response to irradiation.
Collapse
Affiliation(s)
- Aaron M Ambrus
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Weijts BGMW, van Impel A, Schulte-Merker S, de Bruin A. Atypical E2fs control lymphangiogenesis through transcriptional regulation of Ccbe1 and Flt4. PLoS One 2013; 8:e73693. [PMID: 24069224 PMCID: PMC3771987 DOI: 10.1371/journal.pone.0073693] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 07/30/2013] [Indexed: 12/16/2022] Open
Abstract
Lymphatic vessels are derived from venous endothelial cells and their formation is governed by the Vascular endothelial growth factor C (VegfC)/Vegf receptor 3 (Vegfr3; Flt4) signaling pathway. Recent studies show that Collagen and Calcium Binding EGF domains 1 protein (Ccbe1) enhances VegfC-dependent lymphangiogenesis. Both Ccbe1 and Flt4 have been shown to be indispensable for lymphangiogenesis. However, how these essential players are transcriptionally regulated remains poorly understood. In the case of angiogenesis, atypical E2fs (E2f7 and E2f8) however have been recently shown to function as transcriptional activators for VegfA. Using a genome-wide approach we here identified both CCBE1 and FLT4 as direct targets of atypical E2Fs. E2F7/8 directly bind and stimulate the CCBE1 promoter, while recruitment of E2F7/8 inhibits the FLT4 promoter. Importantly, inactivation of e2f7/8 in zebrafish impaired venous sprouting and lymphangiogenesis with reduced ccbe1 expression and increased flt4 expression. Remarkably, over-expression of e2f7/8 rescued Ccbe1- and Flt4-dependent lymphangiogenesis phenotypes. Together these results identified E2f7/8 as novel in vivo transcriptional regulators of Ccbe1 and Flt4, both essential genes for venous sprouting and lymphangiogenesis.
Collapse
Affiliation(s)
- Bart G. M. W. Weijts
- Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | | | - Stefan Schulte-Merker
- Hubrecht Institute-KNAW and UMC Utrecht, Utrecht, The Netherlands
- EZO Department, University of Wageningen, Wageningen, The Netherlands
| | - Alain de Bruin
- Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
- * E-mail:
| |
Collapse
|
47
|
Nicolay BN, Dyson NJ. The multiple connections between pRB and cell metabolism. Curr Opin Cell Biol 2013; 25:735-40. [PMID: 23916769 DOI: 10.1016/j.ceb.2013.07.012] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 07/12/2013] [Accepted: 07/15/2013] [Indexed: 02/03/2023]
Abstract
The pRB tumor suppressor is traditionally seen as an important regulator of the cell cycle. pRB represses the transcriptional activation of a diverse set of genes by the E2F transcription factors and prevents inappropriate S-phase entry. Advances in our understanding of pRB have documented roles that extend beyond the cell cycle and this review summarizes recent studies that link pRB to the control of cell metabolism. pRB has been shown to regulate glucose tolerance, mitogenesis, glutathione synthesis, and the expression of genes involved in central carbon metabolism. Several studies have demonstrated that pRB directly targets a set of genes that are crucial for nucleotide metabolism, and this seems likely to represent one of the ways by which pRB influences the G1/S-phase transition and S-phase progression.
Collapse
Affiliation(s)
- Brandon N Nicolay
- Laboratory of Molecular Oncology, Massachusetts General Hospital Cancer Center, Building 149, 13th Street, Charlestown, MA 02129, USA.
| | | |
Collapse
|
48
|
Nicolay BN, Gameiro PA, Tschöp K, Korenjak M, Heilmann AM, Asara JM, Stephanopoulos G, Iliopoulos O, Dyson NJ. Loss of RBF1 changes glutamine catabolism. Genes Dev 2013; 27:182-96. [PMID: 23322302 PMCID: PMC3566311 DOI: 10.1101/gad.206227.112] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 12/20/2012] [Indexed: 12/17/2022]
Abstract
Inactivation of the retinoblastoma tumor suppressor (pRB) alters the expression of a myriad of genes. To understand the altered cellular environment that these changes create, we took advantage of the Drosophila model system and used targeted liquid chromatography tandem mass spectrometry (LC-MS/MS) to profile the metabolic changes that occur when RBF1, the fly ortholog of pRB, is removed. We show that RBF1-depleted tissues and larvae are sensitive to fasting. Depletion of RBF1 causes major changes in nucleotide synthesis and glutathione metabolism. Under fasting conditions, these changes interconnect, and the increased replication demand of RBF1-depleted larvae is associated with the depletion of glutathione pools. In vivo (13)C isotopic tracer analysis shows that RBF1-depleted larvae increase the flux of glutamine toward glutathione synthesis, presumably to minimize oxidative stress. Concordantly, H(2)O(2) preferentially promoted apoptosis in RBF1-depleted tissues, and the sensitivity of RBF1-depleted animals to fasting was specifically suppressed by either a glutamine supplement or the antioxidant N-acetyl-cysteine. Effects of pRB activation/inactivation on glutamine catabolism were also detected in human cell lines. These results show that the inactivation of RB proteins causes metabolic reprogramming and that these consequences of RBF/RB function are present in both flies and human cell lines.
Collapse
Affiliation(s)
- Brandon N. Nicolay
- Laboratory of Molecular Oncology, Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | - Paulo A. Gameiro
- Laboratory of Molecular Oncology, Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts 02129, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Department of Life Sciences, University of Coimbra, 3004-517 Coimbra, Portugal
| | - Katrin Tschöp
- Laboratory of Molecular Oncology, Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | - Michael Korenjak
- Laboratory of Molecular Oncology, Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | - Andreas M. Heilmann
- Laboratory of Molecular Oncology, Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | - John M. Asara
- Beth Israel Deaconess Medical Center Division of Signal Transduction/Mass Spectrometry Core, Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Gregory Stephanopoulos
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Othon Iliopoulos
- Laboratory of Molecular Oncology, Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | - Nicholas J. Dyson
- Laboratory of Molecular Oncology, Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| |
Collapse
|
49
|
Evidence for autoregulation and cell signaling pathway regulation from genome-wide binding of the Drosophila retinoblastoma protein. G3-GENES GENOMES GENETICS 2012; 2:1459-72. [PMID: 23173097 PMCID: PMC3484676 DOI: 10.1534/g3.112.004424] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Accepted: 09/20/2012] [Indexed: 12/24/2022]
Abstract
The retinoblastoma (RB) tumor suppressor protein is a transcriptional cofactor with essential roles in cell cycle and development. Physical and functional targets of RB and its paralogs p107/p130 have been studied largely in cultured cells, but the full biological context of this family of proteins' activities will likely be revealed only in whole organismal studies. To identify direct targets of the major Drosophila RB counterpart in a developmental context, we carried out ChIP-Seq analysis of Rbf1 in the embryo. The association of the protein with promoters is developmentally controlled; early promoter access is globally inhibited, whereas later in development Rbf1 is found to associate with promoter-proximal regions of approximately 2000 genes. In addition to conserved cell-cycle-related genes, a wholly unexpected finding was that Rbf1 targets many components of the insulin, Hippo, JAK/STAT, Notch, and other conserved signaling pathways. Rbf1 may thus directly affect output of these essential growth-control and differentiation pathways by regulation of expression of receptors, kinases and downstream effectors. Rbf1 was also found to target multiple levels of its own regulatory hierarchy. Bioinformatic analysis indicates that different classes of genes exhibit distinct constellations of motifs associated with the Rbf1-bound regions, suggesting that the context of Rbf1 recruitment may vary within the Rbf1 regulon. Many of these targeted genes are bound by Rbf1 homologs in human cells, indicating that a conserved role of RB proteins may be to adjust the set point of interlinked signaling networks essential for growth and development.
Collapse
|
50
|
Raj N, Zhang L, Wei Y, Arnosti DN, Henry RW. Ubiquitination of retinoblastoma family protein 1 potentiates gene-specific repression function. J Biol Chem 2012; 287:41835-43. [PMID: 23086928 DOI: 10.1074/jbc.m112.422428] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The retinoblastoma (RB) tumor suppressor family functions as a regulatory node governing cell cycle progression, differentiation, and apoptosis. Post-translational modifications play a critical role in modulating RB activity, but additional levels of control, including protein turnover, are also essential for proper function. The Drosophila RB homolog Rbf1 is subjected to developmentally cued proteolysis mediated by an instability element (IE) present in the C terminus of this protein. Paradoxically, instability mediated by the IE is also linked to Rbf1 repression potency, suggesting that proteolytic machinery may also be directly involved in transcriptional repression. We show that the Rbf1 IE is an autonomous degron that stimulates both Rbf1 ubiquitination and repression potency. Importantly, Rbf1 IE function is promoter-specific, contributing to repression of cell cycle responsive genes but not to repression of cell signaling genes. The multifunctional IE domain thus provides Rbf1 flexibility for discrimination between target genes embedded in divergent cellular processes.
Collapse
Affiliation(s)
- Nitin Raj
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824-1319, USA
| | | | | | | | | |
Collapse
|