1
|
Riba A, Oravecz A, Durik M, Jiménez S, Alunni V, Cerciat M, Jung M, Keime C, Keyes WM, Molina N. Cell cycle gene regulation dynamics revealed by RNA velocity and deep-learning. Nat Commun 2022; 13:2865. [PMID: 35606383 PMCID: PMC9126911 DOI: 10.1038/s41467-022-30545-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 05/06/2022] [Indexed: 11/15/2022] Open
Abstract
Despite the fact that the cell cycle is a fundamental process of life, a detailed quantitative understanding of gene regulation dynamics throughout the cell cycle is far from complete. Single-cell RNA-sequencing (scRNA-seq) technology gives access to these dynamics without externally perturbing the cell. Here, by generating scRNA-seq libraries in different cell systems, we observe cycling patterns in the unspliced-spliced RNA space of cell cycle-related genes. Since existing methods to analyze scRNA-seq are not efficient to measure cycling gene dynamics, we propose a deep learning approach (DeepCycle) to fit these patterns and build a high-resolution map of the entire cell cycle transcriptome. Characterizing the cell cycle in embryonic and somatic cells, we identify major waves of transcription during the G1 phase and systematically study the stages of the cell cycle. Our work will facilitate the study of the cell cycle in multiple cellular models and different biological contexts. Single-cell RNA-sequencing technology gives access to cell cycle dynamics without externally perturbing the cell. Here the authors present DeepCycle,a robust deep learning method to infer the cell cycle state in single cells from scRNA-seq data.
Collapse
|
2
|
Stroggilos R, Frantzi M, Zoidakis J, Mokou M, Moulavasilis N, Mavrogeorgis E, Melidi A, Makridakis M, Stravodimos K, Roubelakis MG, Mischak H, Vlahou A. Gene Expression Monotonicity across Bladder Cancer Stages Informs on the Molecular Pathogenesis and Identifies a Prognostic Eight-Gene Signature. Cancers (Basel) 2022; 14:cancers14102542. [PMID: 35626146 PMCID: PMC9140126 DOI: 10.3390/cancers14102542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/14/2022] [Accepted: 05/17/2022] [Indexed: 01/27/2023] Open
Abstract
Despite advancements in molecular classification, tumor stage and grade still remain the most relevant prognosticators used by clinicians to decide on patient management. Here, we leverage publicly available data to characterize bladder cancer (BLCA)’s stage biology based on increased sample sizes, identify potential therapeutic targets, and extract putative biomarkers. A total of 1135 primary BLCA transcriptomes from 12 microarray studies were compiled in a meta-cohort and analyzed for monotonal alterations in pathway activities, gene expression, and co-expression patterns with increasing stage (Ta–T1–T2–T3–T4), starting from the non-malignant tumor-adjacent urothelium. The TCGA-2017 and IMvigor-210 RNA-Seq data were used to validate our findings. Wnt, MTORC1 signaling, and MYC activity were monotonically increased with increasing stage, while an opposite trend was detected for the catabolism of fatty acids, circadian clock genes, and the metabolism of heme. Co-expression network analysis highlighted stage- and cell-type-specific genes of potentially synergistic therapeutic value. An eight-gene signature, consisting of the genes AKAP7, ANLN, CBX7, CDC14B, ENO1, GTPBP4, MED19, and ZFP2, had independent prognostic value in both the discovery and validation sets. This novel eight-gene signature may increase the granularity of current risk-to-progression estimators.
Collapse
Affiliation(s)
- Rafael Stroggilos
- Systems Biology Center, Biomedical Research Foundation of the Academy of Athens, Soranou Efessiou 4, 11527 Athens, Greece; (R.S.); (J.Z.); (E.M.); (A.M.); (M.M.)
| | - Maria Frantzi
- Mosaiques Diagnostics GmbH, 30659 Hannover, Germany; (M.F.); (M.M.); (H.M.)
| | - Jerome Zoidakis
- Systems Biology Center, Biomedical Research Foundation of the Academy of Athens, Soranou Efessiou 4, 11527 Athens, Greece; (R.S.); (J.Z.); (E.M.); (A.M.); (M.M.)
| | - Marika Mokou
- Mosaiques Diagnostics GmbH, 30659 Hannover, Germany; (M.F.); (M.M.); (H.M.)
| | - Napoleon Moulavasilis
- 1st Department of Urology, Laiko Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (N.M.); (K.S.)
| | - Emmanouil Mavrogeorgis
- Systems Biology Center, Biomedical Research Foundation of the Academy of Athens, Soranou Efessiou 4, 11527 Athens, Greece; (R.S.); (J.Z.); (E.M.); (A.M.); (M.M.)
| | - Anna Melidi
- Systems Biology Center, Biomedical Research Foundation of the Academy of Athens, Soranou Efessiou 4, 11527 Athens, Greece; (R.S.); (J.Z.); (E.M.); (A.M.); (M.M.)
| | - Manousos Makridakis
- Systems Biology Center, Biomedical Research Foundation of the Academy of Athens, Soranou Efessiou 4, 11527 Athens, Greece; (R.S.); (J.Z.); (E.M.); (A.M.); (M.M.)
| | - Konstantinos Stravodimos
- 1st Department of Urology, Laiko Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (N.M.); (K.S.)
| | - Maria G. Roubelakis
- Laboratory of Biology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece;
- Cell and Gene Therapy Laboratory, Biomedical Research Foundation of the Academy of Athens, Soranou Efessiou 4, 11527 Athens, Greece
| | - Harald Mischak
- Mosaiques Diagnostics GmbH, 30659 Hannover, Germany; (M.F.); (M.M.); (H.M.)
| | - Antonia Vlahou
- Systems Biology Center, Biomedical Research Foundation of the Academy of Athens, Soranou Efessiou 4, 11527 Athens, Greece; (R.S.); (J.Z.); (E.M.); (A.M.); (M.M.)
- Correspondence: ; Tel.: +30-210-659-7506; Fax: +30-210-659-7545
| |
Collapse
|
3
|
Sharma M, Dey CS. Role of Akt isoforms in neuronal insulin signaling and resistance. Cell Mol Life Sci 2021; 78:7873-7898. [PMID: 34724097 PMCID: PMC11073101 DOI: 10.1007/s00018-021-03993-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 02/04/2023]
Abstract
The aim of the present study was to determine the role of Akt isoforms in insulin signaling and resistance in neuronal cells. By silencing Akt isoforms individually and in pairs, in Neuro-2a and HT22 cells we observed that, in insulin-sensitive condition, Akt isoforms differentially reduced activation of AS160 and glucose uptake with Akt2 playing the major role. Under insulin-resistant condition, phosphorylation of all isoforms and glucose uptake were severely affected. Over-expression of individual isoforms in insulin-sensitive and resistant cells differentially reversed AS160 phosphorylation with concomitant reversal in glucose uptake indicating a compensatory role of Akt isoforms in controlling neuronal insulin signaling. Post-insulin stimulation Akt2 translocated to the membrane the most followed by Akt3 and Akt1, decreasing glucose uptake in the similar order in insulin-sensitive cells. None of the Akt isoforms translocated in insulin-resistant cells or high-fat-diet mediated diabetic mice brain cells. Based on our data, insulin-dependent differential translocation of Akt isoforms to the plasma membrane turns out to be the key factor in determining Akt isoform specificity. Thus, isoforms play parallel with predominant role by Akt2, and compensatory yet novel role by Akt1 and Akt3 to regulate neuronal insulin signaling, glucose uptake, and insulin-resistance.
Collapse
Affiliation(s)
- Medha Sharma
- Kusuma School of Biological Sciences, Indian Institute of Technology-Delhi, Hauz Khas, New Delhi, 110016, India
| | - Chinmoy Sankar Dey
- Kusuma School of Biological Sciences, Indian Institute of Technology-Delhi, Hauz Khas, New Delhi, 110016, India.
| |
Collapse
|
4
|
Abstract
The Akt isoforms-AS160-GLUT4 axis is the primary axis that governs glucose homeostasis in the body. The first step on the path to insulin resistance is deregulated Akt isoforms. This could be Akt isoform expression, its phosphorylation, or improper isoform-specific redistribution to the plasma membrane in a specific tissue system. The second step is deregulated AS160 expression, its phosphorylation, improper dissociation from glucose transporter storage vesicles (GSVs), or its inability to bind to 14-3-3 proteins, thus not allowing it to execute its function. The final step is improper GLUT4 translocation and aberrant glucose uptake. These processes lead to insulin resistance in a tissue-specific way affecting the whole-body glucose homeostasis, eventually progressing to an overt diabetic phenotype. Thus, the relationship between these three key proteins and their proper regulation comes out as the defining axis of insulin signaling and -resistance. This review summarizes the role of this central axis in insulin resistance and disease in a new light.
Collapse
Affiliation(s)
- Medha Sharma
- Kusuma School of Biological Sciences, Indian Institute of Technology-Delhi, Hauz Khas, New Delhi, 110016, India
| | - Chinmoy Sankar Dey
- Kusuma School of Biological Sciences, Indian Institute of Technology-Delhi, Hauz Khas, New Delhi, 110016, India.
| |
Collapse
|
5
|
Bao F, Hao P, An S, Yang Y, Liu Y, Hao Q, Ejaz M, Guo XX, Xu TR. Akt scaffold proteins: the key to controlling specificity of Akt signaling. Am J Physiol Cell Physiol 2021; 321:C429-C442. [PMID: 34161152 DOI: 10.1152/ajpcell.00146.2020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The phosphatidylinositol 3-kinase-Akt signaling pathway plays an essential role in regulating cell proliferation and apoptosis. Akt kinase is at the center of this signaling pathway and interacts with a variety of proteins. Akt is overexpressed in almost 80% of tumors. However, inhibiting Akt has serious clinical side effects so is not a suitable treatment for cancer. During recent years, Akt scaffold proteins have received increasing attention for their ability to regulate Akt signaling and have emerged as potential targets for cancer therapy. In this paper, we categorize Akt kinase scaffold proteins into four groups based on their cellular location: membrane-bound activator and inhibitor, cytoplasm, and endosome. We describe how these scaffolds interact with Akt kinase, how they affect Akt activity, and how they regulate the specificity of Akt signaling. We also discuss the clinical application of Akt scaffold proteins as targets for cancer therapy.
Collapse
Affiliation(s)
- Fan Bao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China.,Center of Stomatology, The First People's Hospital of Yunnan Province, Kunming, China.,The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Peiqi Hao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Su An
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Yang Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Ying Liu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Qian Hao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Mubashir Ejaz
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Xiao-Xi Guo
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Tian-Rui Xu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| |
Collapse
|
6
|
Chamberlain LH, Shipston MJ, Gould GW. Regulatory effects of protein S-acylation on insulin secretion and insulin action. Open Biol 2021; 11:210017. [PMID: 33784857 PMCID: PMC8061761 DOI: 10.1098/rsob.210017] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/02/2021] [Indexed: 12/23/2022] Open
Abstract
Post-translational modifications (PTMs) such as phosphorylation and ubiquitination are well-studied events with a recognized importance in all aspects of cellular function. By contrast, protein S-acylation, although a widespread PTM with important functions in most physiological systems, has received far less attention. Perturbations in S-acylation are linked to various disorders, including intellectual disability, cancer and diabetes, suggesting that this less-studied modification is likely to be of considerable biological importance. As an exemplar, in this review, we focus on the newly emerging links between S-acylation and the hormone insulin. Specifically, we examine how S-acylation regulates key components of the insulin secretion and insulin response pathways. The proteins discussed highlight the diverse array of proteins that are modified by S-acylation, including channels, transporters, receptors and trafficking proteins and also illustrate the diverse effects that S-acylation has on these proteins, from membrane binding and micro-localization to regulation of protein sorting and protein interactions.
Collapse
Affiliation(s)
- Luke H. Chamberlain
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Michael J. Shipston
- Centre for Discovery Brain Sciences, Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, UK
| | - Gwyn W. Gould
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| |
Collapse
|
7
|
Schianchi F, Glatz JFC, Navarro Gascon A, Nabben M, Neumann D, Luiken JJFP. Putative Role of Protein Palmitoylation in Cardiac Lipid-Induced Insulin Resistance. Int J Mol Sci 2020; 21:ijms21249438. [PMID: 33322406 PMCID: PMC7764417 DOI: 10.3390/ijms21249438] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/03/2020] [Accepted: 12/04/2020] [Indexed: 12/25/2022] Open
Abstract
In the heart, inhibition of the insulin cascade following lipid overload is strongly associated with contractile dysfunction. The translocation of fatty acid transporter CD36 (SR-B2) from intracellular stores to the cell surface is a hallmark event in the lipid-overloaded heart, feeding forward to intracellular lipid accumulation. Yet, the molecular mechanisms by which intracellularly arrived lipids induce insulin resistance is ill-understood. Bioactive lipid metabolites (diacyl-glycerols, ceramides) are contributing factors but fail to correlate with the degree of cardiac insulin resistance in diabetic humans. This leaves room for other lipid-induced mechanisms involved in lipid-induced insulin resistance, including protein palmitoylation. Protein palmitoylation encompasses the reversible covalent attachment of palmitate moieties to cysteine residues and is governed by protein acyl-transferases and thioesterases. The function of palmitoylation is to provide proteins with proper spatiotemporal localization, thereby securing the correct unwinding of signaling pathways. In this review, we provide examples of palmitoylations of individual signaling proteins to discuss the emerging role of protein palmitoylation as a modulator of the insulin signaling cascade. Second, we speculate how protein hyper-palmitoylations (including that of CD36), as they occur during lipid oversupply, may lead to insulin resistance. Finally, we conclude that the protein palmitoylation machinery may offer novel targets to fight lipid-induced cardiomyopathy.
Collapse
Affiliation(s)
- Francesco Schianchi
- Department of Genetics & Cell Biology, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6200 MD Maastricht, The Netherlands; (F.S.); (J.F.C.G.); (A.N.G.); (M.N.)
| | - Jan F. C. Glatz
- Department of Genetics & Cell Biology, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6200 MD Maastricht, The Netherlands; (F.S.); (J.F.C.G.); (A.N.G.); (M.N.)
- Department of Clinical Genetics, Maastricht University Medical Center+, 6202 AZ Maastricht, The Netherlands
| | - Artur Navarro Gascon
- Department of Genetics & Cell Biology, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6200 MD Maastricht, The Netherlands; (F.S.); (J.F.C.G.); (A.N.G.); (M.N.)
| | - Miranda Nabben
- Department of Genetics & Cell Biology, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6200 MD Maastricht, The Netherlands; (F.S.); (J.F.C.G.); (A.N.G.); (M.N.)
- Department of Clinical Genetics, Maastricht University Medical Center+, 6202 AZ Maastricht, The Netherlands
| | - Dietbert Neumann
- Department of Pathology, Maastricht University Medical Center+, 6202 AZ Maastricht, The Netherlands;
| | - Joost J. F. P. Luiken
- Department of Genetics & Cell Biology, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6200 MD Maastricht, The Netherlands; (F.S.); (J.F.C.G.); (A.N.G.); (M.N.)
- Department of Clinical Genetics, Maastricht University Medical Center+, 6202 AZ Maastricht, The Netherlands
- Correspondence: ; Tel.: +31-43-388-1998
| |
Collapse
|
8
|
Sugiyama MG, Fairn GD, Antonescu CN. Akt-ing Up Just About Everywhere: Compartment-Specific Akt Activation and Function in Receptor Tyrosine Kinase Signaling. Front Cell Dev Biol 2019; 7:70. [PMID: 31131274 PMCID: PMC6509475 DOI: 10.3389/fcell.2019.00070] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 04/09/2019] [Indexed: 12/12/2022] Open
Abstract
The serine/threonine kinase Akt is a master regulator of many diverse cellular functions, including survival, growth, metabolism, migration, and differentiation. Receptor tyrosine kinases are critical regulators of Akt, as a result of activation of phosphatidylinositol-3-kinase (PI3K) signaling leading to Akt activation upon receptor stimulation. The signaling axis formed by receptor tyrosine kinases, PI3K and Akt, as well as the vast range of downstream substrates is thus central to control of cell physiology in many different contexts and tissues. This axis must be tightly regulated, as disruption of PI3K-Akt signaling underlies the pathology of many diseases such as cancer and diabetes. This sophisticated regulation of PI3K-Akt signaling is due in part to the spatial and temporal compartmentalization of Akt activation and function, including in specific nanoscale domains of the plasma membrane as well as in specific intracellular membrane compartments. Here, we review the evidence for localized activation of PI3K-Akt signaling by receptor tyrosine kinases in various specific cellular compartments, as well as that of compartment-specific functions of Akt leading to control of several fundamental cellular processes. This spatial and temporal control of Akt activation and function occurs by a large number of parallel molecular mechanisms that are central to regulation of cell physiology.
Collapse
Affiliation(s)
- Michael G. Sugiyama
- Department of Chemistry and Biology, Ryerson University, Toronto, ON, Canada
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON, Canada
| | - Gregory D. Fairn
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON, Canada
- Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Costin N. Antonescu
- Department of Chemistry and Biology, Ryerson University, Toronto, ON, Canada
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON, Canada
| |
Collapse
|
9
|
Abstract
The role of the Golgi apparatus in carcinogenesis still remains unclear. A number of structural and functional cis-, medial-, and trans-Golgi proteins as well as a complexity of metabolic pathways which they mediate may indicate a central role of the Golgi apparatus in the development and progression of cancer. Pleiotropy of cellular function of the Golgi apparatus makes it a "metabolic heart" or a relay station of a cell, which combines multiple signaling pathways involved in carcinogenesis. Therefore, any damage to or structural abnormality of the Golgi apparatus, causing its fragmentation and/or biochemical dysregulation, results in an up- or downregulation of signaling pathways and may in turn promote tumor progression, as well as local nodal and distant metastases. Three alternative or parallel models of spatial and functional Golgi organization within tumor cells were proposed: (1) compacted Golgi structure, (2) normal Golgi structure with its increased activity, and (3) the Golgi fragmentation with ministacks formation. Regardless of the assumed model, the increased activity of oncogenesis initiators and promoters with inhibition of suppressor proteins results in an increased cell motility and migration, increased angiogenesis, significantly activated trafficking kinetics, proliferation, EMT induction, decreased susceptibility to apoptosis-inducing factors, and modulating immune response to tumor cell antigens. Eventually, this will lead to the increased metastatic potential of cancer cells and an increased risk of lymph node and distant metastases. This chapter provided an overview of the current state of knowledge of selected Golgi proteins, their role in cytophysiology as well as potential involvement in tumorigenesis.
Collapse
|
10
|
Du K, Murakami S, Sun Y, Kilpatrick CL, Luscher B. DHHC7 Palmitoylates Glucose Transporter 4 (Glut4) and Regulates Glut4 Membrane Translocation. J Biol Chem 2017; 292:2979-2991. [PMID: 28057756 DOI: 10.1074/jbc.m116.747139] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 12/30/2016] [Indexed: 11/06/2022] Open
Abstract
Insulin-dependent translocation of glucose transporter 4 (Glut4) to the plasma membrane plays a key role in the dynamic regulation of glucose homeostasis. We recently showed that this process is critically dependent on palmitoylation of Glut4 at Cys-223. To gain further insights into the regulation of Glut4 palmitoylation, we set out to identify the palmitoyl acyltransferase (PAT) involved. Here we report that among 23 mammalian DHHC proteins, DHHC7 is the major Glut4 PAT, based on evidence that ectopic expression of DHHC7 increased Glut4 palmitoylation, whereas DHHC7 knockdown in 3T3-L1 adipocytes and DHHC7 KO in adipose tissue and muscle decreased Glut4 palmitoylation. Moreover, inactivation of DHHC7 suppressed insulin-dependent Glut4 membrane translocation in both 3T3-L1 adipocytes and primary adipocytes. Finally, DHHC7 KO mice developed hyperglycemia and glucose intolerance, thereby confirming that DHHC7 represents the principal PAT for Glut4 and that this mechanism is essential for insulin-regulated glucose homeostasis.
Collapse
Affiliation(s)
- Keyong Du
- From the Molecular Oncology Research Institute, Tufts Medical Center, Boston, Massachusetts 02111 and
| | | | - Yingmin Sun
- From the Molecular Oncology Research Institute, Tufts Medical Center, Boston, Massachusetts 02111 and
| | - Casey L Kilpatrick
- Department of Biochemistry and Molecular Biology.,Department of Biology, and.,Center for Molecular Investigation of Neurological Disorders, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Bernhard Luscher
- Department of Biochemistry and Molecular Biology.,Department of Biology, and.,Center for Molecular Investigation of Neurological Disorders, Pennsylvania State University, University Park, Pennsylvania 16802
| |
Collapse
|
11
|
Sun Y, Côté JF, Du K. Elmo2 Is a Regulator of Insulin-dependent Glut4 Membrane Translocation. J Biol Chem 2016; 291:16150-61. [PMID: 27226625 DOI: 10.1074/jbc.m116.731521] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Indexed: 11/06/2022] Open
Abstract
Elmo2, a member of the Elmo protein family, has been implicated in the regulation of Rac1 and Akt activation. Recently, we found that Elmo2 specifically interacts with ClipR-59. Because Akt and Rac1 have been implicated in insulin dependent Glut4 membrane translocation, we hypothesize here that Elmo2 may play a role in insulin-dependent Glut4 membrane translocation. Accordingly, we found that overexpression of Elmo2 enhanced, whereas its knockdown suppressed, insulin-dependent Glut4 membrane translocation in both 3T3-L1 adipocytes and L6 skeletal muscle cells. We also examined whether Elmo2 contributes to the insulin-mediated activation of Rac1 and Akt. We found that Elmo2 is required for insulin-induced Rac1 GTP loading, but not AKT activation, in L6 cells induced by insulin. Instead, Elmo2 is required to promote the insulin-induced membrane association of Akt. Together, our studies demonstrate that Elmo2 is a new regulator of insulin-dependent Glut4 membrane translocation through modulating Rac1 activity and Akt membrane compartmentalization.
Collapse
Affiliation(s)
- Yingmin Sun
- From the Molecular Oncology Research Institute, Tufts Medical Center, Boston, Massachusetts 02111 and
| | - Jean-François Côté
- the Institut de Recherches Cliniques de Montréal, Université de Montréal, Montréal, Québec H2W 1R7, Canada
| | - Keyong Du
- From the Molecular Oncology Research Institute, Tufts Medical Center, Boston, Massachusetts 02111 and
| |
Collapse
|
12
|
Du K, Yingmin S. ClipR-59 plays a critical role in the regulation of body glucose homeostasis. Adipocyte 2015; 4:286-94. [PMID: 26451285 DOI: 10.1080/21623945.2015.1048051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 04/24/2015] [Accepted: 04/28/2015] [Indexed: 02/06/2023] Open
Abstract
By regulating Akt membrane compartmentalization, ClipR-59 modulates adipocyte glucose transport. To elucidate the role of ClipR-59 in the regulation of whole body glucose homeostasis, we have generated adipose tissue specific transgenic mice and examined how forcing expression of ClipR-59 in adipose tissue affects body glucose homeostasis. We found that ClipR-59 adipose transgenic mice showed lower blood glucose level with increased glucose tolerance and enhanced insulin sensitivity. Moreover, ClipR-59 adipose transgenic mice were lean with reduced fat mass and against diet induced obesity. Finally, we examined the potential impact of ClipR-59 on adipose endocrine function and found that ClipR-59 expression enhanced adiponectin secretion in both 3T3-L1 adipocytes and adipose tissue, accompanied with increased circulating adiponectin and enhanced AMPKα phosphorylation at Thr172 in adipose tissue and skeletal muscle. Overall, these studies demonstrate that ClipR-59 is likely an important regulator of body glucose homeostasis and adipocyte function.
Collapse
|
13
|
Akt kinase C-terminal modifications control activation loop dephosphorylation and enhance insulin response. Biochem J 2015. [PMID: 26201515 DOI: 10.1042/bj20150325] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The Akt protein kinase, also known as protein kinase B, plays key roles in insulin receptor signalling and regulates cell growth, survival and metabolism. Recently, we described a mechanism to enhance Akt phosphorylation that restricts access of cellular phosphatases to the Akt activation loop (Thr(308) in Akt1 or protein kinase B isoform alpha) in an ATP-dependent manner. In the present paper, we describe a distinct mechanism to control Thr(308) dephosphorylation and thus Akt deactivation that depends on intramolecular interactions of Akt C-terminal sequences with its kinase domain. Modifications of amino acids surrounding the Akt1 C-terminal mTORC2 (mammalian target of rapamycin complex 2) phosphorylation site (Ser(473)) increased phosphatase resistance of the phosphorylated activation loop (pThr(308)) and amplified Akt phosphorylation. Furthermore, the phosphatase-resistant Akt was refractory to ceramide-dependent dephosphorylation and amplified insulin-dependent Thr(308) phosphorylation in a regulated fashion. Collectively, these results suggest that the Akt C-terminal hydrophobic groove is a target for the development of agents that enhance Akt phosphorylation by insulin.
Collapse
|
14
|
Sun Y, Ren W, Côté JF, Hinds PW, Hu X, Du K. ClipR-59 interacts with Elmo2 and modulates myoblast fusion. J Biol Chem 2015; 290:6130-40. [PMID: 25572395 PMCID: PMC4358253 DOI: 10.1074/jbc.m114.616680] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 01/06/2015] [Indexed: 11/06/2022] Open
Abstract
Recent studies using ClipR-59 knock-out mice implicated this protein in the regulation of muscle function. In this report, we have examined the role of ClipR-59 in muscle differentiation and found that ClipR-59 knockdown in C2C12 cells suppressed myoblast fusion. To elucidate the molecular mechanism whereby ClipR-59 regulates myoblast fusion, we carried out a yeast two-hybrid screen using ClipR-59 as the bait and identified Elmo2, a member of the Engulfment and cell motility protein family, as a novel ClipR-59-associated protein. We showed that the interaction between ClipR-59 and Elmo2 was mediated by the atypical PH domain of Elmo2 and the Glu-Pro-rich domain of ClipR-59 and regulated by Rho-GTPase. We have examined the impact of ClipR-59 on Elmo2 downstream signaling and found that interaction of ClipR-59 with Elmo2 enhanced Rac1 activation. Collectively, our studies demonstrate that formation of an Elmo2·ClipR-59 complex plays an important role in myoblast fusion.
Collapse
Affiliation(s)
- Yingmin Sun
- From the State Key Laboratory for Agro-biotechnology, College of Biological Science, China Agricultural University, 10083 Beijing, China, the Molecular Oncology Research Institute, Tufts Medical Center, Boston, Massachusetts 02111, and
| | - Wenying Ren
- the Molecular Oncology Research Institute, Tufts Medical Center, Boston, Massachusetts 02111, and
| | - Jean-François Côté
- the Institut de Recherches Cliniques de Montréal, Montréal, Université de Montréal, Québec H2W 1R7, Canada
| | - Philip W Hinds
- the Molecular Oncology Research Institute, Tufts Medical Center, Boston, Massachusetts 02111, and
| | - Xiaoxiang Hu
- From the State Key Laboratory for Agro-biotechnology, College of Biological Science, China Agricultural University, 10083 Beijing, China
| | - Keyong Du
- the Molecular Oncology Research Institute, Tufts Medical Center, Boston, Massachusetts 02111, and
| |
Collapse
|
15
|
Decision trees for the analysis of genes involved in Alzheimer׳s disease pathology. J Theor Biol 2014; 357:21-5. [DOI: 10.1016/j.jtbi.2014.05.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 04/22/2014] [Accepted: 05/01/2014] [Indexed: 01/08/2023]
|
16
|
Abstract
GLUT4 is regulated by its intracellular localization. In the absence of insulin, GLUT4 is efficiently retained intracellularly within storage compartments in muscle and fat cells. Upon insulin stimulation (and contraction in muscle), GLUT4 translocates from these compartments to the cell surface where it transports glucose from the extracellular milieu into the cell. Its implication in insulin-regulated glucose uptake makes GLUT4 not only a key player in normal glucose homeostasis but also an important element in insulin resistance and type 2 diabetes. Nevertheless, how GLUT4 is retained intracellularly and how insulin acts on this retention mechanism is largely unclear. In this review, the current knowledge regarding the various molecular processes that govern GLUT4 physiology is discussed as well as the questions that remain.
Collapse
|
17
|
DHHC17 palmitoylates ClipR-59 and modulates ClipR-59 association with the plasma membrane. Mol Cell Biol 2013; 33:4255-65. [PMID: 24001771 DOI: 10.1128/mcb.00527-13] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
ClipR-59 interacts with Akt and regulates Akt compartmentalization and Glut4 membrane trafficking in a plasma membrane association-dependent manner. The association of ClipR-59 with plasma membrane is mediated by ClipR-59 palmitoylation at Cys534 and Cys535. To understand the regulation of ClipR-59 palmitoylation, we have examined all known mammalian DHHC palmitoyltransferases with respect to their ability to promote ClipR-59 palmitoylation. We found that, among 23 mammalian DHHC palmitoyltransferases, DHHC17 is the major ClipR-59 palmitoyltransferase, as evidenced by the fact that DHHC17 interacted with ClipR-59 and palmitoylated ClipR-59 at Cys534 and Cys535. By palmitoylating ClipR-59, DHHC17 directly regulates ClipR-59 plasma membrane association, as ectopic expression of DHHC17 increased whereas silencing of DHHC17 reduced the levels of ClipR-59 associated with plasma membrane. We have also examined the role of DHHC17 in Akt signaling and found that silencing of DHHC17 in 3T3-L1 adipocytes decreased the levels of Akt as well as ClipR-59 on the plasma membrane and impaired insulin-dependent Glut4 membrane translocation. We suggest that DHHC17 is a ClipR-59 palmitoyltransferase that modulates ClipR-59 plasma membrane binding, thereby regulating Akt signaling and Glut4 membrane translocation in adipocytes.
Collapse
|
18
|
Couesnon A, Offner N, Bernard V, Chaverot N, Backer S, Dimitrov A, Perez F, Molgó J, Bloch-Gallego E. CLIPR-59: a protein essential for neuromuscular junction stability during mouse late embryonic development. Development 2013; 140:1583-93. [PMID: 23482493 DOI: 10.1242/dev.087106] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
CLIPR-59 is a new member of the cytoplasmic linker proteins (CLIP) family mainly localized to the trans-Golgi network. We show here that Clipr-59 expression in mice is restricted to specific pools of neurons, in particular motoneurons (MNs), and progressively increases from embryonic day 12.5 (E12.5) until the first postnatal days. We generated a Clipr-59 knockout mouse model that presents perinatal lethality due to respiratory defects. Physiological experiments revealed that this altered innervation prevents the normal nerve-elicited contraction of the mutant diaphragm that is reduced both in amplitude and fatigue-resistance at E18.5, despite unaffected functional muscular contractility. Innervation of the mutant diaphragm is not altered until E15.5, but is then partially lost in the most distal parts of the muscle. Ultrastructural observations of neuromuscular junctions (NMJs) in the distal region of the diaphragm reveal a normal organization, but a lower density of nerve terminals capped by terminal Schwann cells in E18.5 mutant when compared with control embryos. Similar defects in NMJ stability, with a hierarchy of severity along the caudo-rostral axis, are also observed in other muscles innervated by facial and spinal MNs in Clipr-59 mutant mice. Clipr-59 deficiency therefore affects axon maintenance but not axon guidance toward muscle targets. Thus, CLIPR-59 is involved in the stabilization of specific motor axons at the NMJ during mouse late embryogenesis and its role is crucial for mouse perinatal development.
Collapse
Affiliation(s)
- Aurélie Couesnon
- Institut Cochin, Université Paris Descartes, CNRS UMR 8104, Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Sharma N, Sequea DA, Arias EB, Cartee GD. Greater insulin-mediated Akt phosphorylation concomitant with heterogeneous effects on phosphorylation of Akt substrates in soleus of calorie-restricted rats. Am J Physiol Regul Integr Comp Physiol 2012; 303:R1261-7. [PMID: 23115120 DOI: 10.1152/ajpregu.00457.2012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Akt is a serine/threonine kinase that plays a key role in numerous cellular functions including metabolism, growth, protein synthesis, apoptosis, and cell proliferation. The most consistent and robust effect of moderate calorie restriction (CR; ~60% of ad libitum, AL, food consumption) on insulin signaling in rodent muscle has been enhanced insulin-induced phosphorylation of Akt (pAkt). However, there is limited knowledge regarding the mechanism for this enhancement and its consequences in predominantly slow-twitch muscle. Accordingly, in soleus muscle of 9-mo-old rats, we analyzed the effect of CR and insulin on important signaling events that are proximal to Akt activation including: pIR(Tyr1162/1163), pIRS1(Tyr), pIRS1(Ser312), IRS1-associated phosphatidylinositol 3-kinase activity, or pPTEN(Ser380). In addition, we analyzed the effect of CR and insulin on Akt substrates that have established or putative roles in glucose metabolism, cellular growth, maintenance of muscle structure, or protein synthesis including pGSK3α(Ser21), pGSK3β(Ser9), pTSC2(Ser939), pP70S6K(Thr412), pAS160(Thr642), and pFLNc(Ser2213). The current study demonstrated that the CR-induced increase in pAkt in isolated soleus muscles from 9-mo-old rats can occur without concomitant enhancement of several important insulin signaling events that are proximal to Akt activation. These results suggest that the greater pAkt in the soleus muscles from CR rats was attributable to an alternative mechanism. We also observed that the effects of CR were not uniform for phosphorylation of six insulin-regulated Akt substrates in the soleus. The differential response in phosphorylation by Akt substrates likely has important implications for explaining the complex effect of CR diverse cellular functions.
Collapse
Affiliation(s)
- Naveen Sharma
- Muscle Biology Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, MI 48109-2214, USA.
| | | | | | | |
Collapse
|
20
|
Changes in CLIP3 expression after sciatic nerve injury in adult rats. J Mol Histol 2012; 43:669-79. [PMID: 23014974 DOI: 10.1007/s10735-012-9450-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Accepted: 09/14/2012] [Indexed: 02/04/2023]
Abstract
CLIP3 (cytoplasmic linker protein 3) is a 547 amino acid residue cytoplasmic protein that localises to Golgi stacks and tubulovesicular elements juxtaposed to Golgi cisternae. Composed of three Ank (ankyrin) repeats and two CAP-Gly (cytoskeleton-associated protein-glycine) domains, CLIP3 may function as a cytoplasmic linker protein that is involved in TGN-endosome dynamics. To define the expression and role of CLIP3 during peripheral nervous system degeneration and regeneration, we created an acute sciatic nerve injury (SNI) model in adult rats. Western blot analyses revealed prominent up-regulation of CLIP3 and PCNA (proliferating cell nuclear antigen) protein levels at 3 days after SNI. Immunohistochemistry displayed that the expression of CLIP3 was noticeably increased in the injured nerve. Immunofluorescence further revealed that the CLIP3 and PCNA proteins colocalised respectively with S100 in the cytoplasm of Schwann cells. The expression profile of the SC/neuron co-cultures demonstrated that CLIP3 and PCNA protein levels were markedly expressed during the early stage of myelination. These results suggest that CLIP3 is likely associated with the myelination of proliferating Schwann cells, and nerve tissue regeneration after peripheral nerve injury. CLIP3 and PCNA expression during early myelination may be related to the direct uptake and transport of lipids and cholesterol, which were derived from the degenerating myelin, by Schwann cells to prepare for the formation of myelin sheath-like structures around regenerated axons after SNI.
Collapse
|
21
|
Ren W, Cheema S, Du K. The association of ClipR-59 protein with AS160 modulates AS160 protein phosphorylation and adipocyte Glut4 protein membrane translocation. J Biol Chem 2012; 287:26890-900. [PMID: 22689584 DOI: 10.1074/jbc.m112.357699] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
ClipR-59 is a membrane-associated protein and has been implicated in membrane signaling and vesicle trafficking. Recently, we have identified ClipR-59 as an Akt-interacting protein, and we have found that, by interacting with Akt, ClipR-59 modulates Akt subcellular compartmentalization and Akt substrate AS160 phosphorylation, thereby promoting Glut4 membrane translocation. Here, we have further investigated the regulatory effects of ClipR-59 on AS160 phosphorylation and subsequent adipocyte glucose transport. Our data showed that ClipR-59 interacted with AS160, which was mediated by the ankyrin repeats of ClipR-59 and regulated by insulin signaling. Moreover, the data also demonstrated that the interaction of ClipR-59 with AS160 was required for ClipR-59 to modulate Glut4 membrane translocation as ΔANK-ClipR-59, an AS160 interaction-defective mutant, failed to promote AS160 phosphorylation, Glut4 membrane translocation, and glucose transport induced by insulin in 3T3-L1 adipocytes. Because ClipR-59 also interacts with Akt and enhances the interaction between Akt and AS160, we suggest that ClipR-59 functions as a scaffold protein to facilitate Akt-mediated AS160 phosphorylation, thereby regulating glucose transport.
Collapse
Affiliation(s)
- Wenying Ren
- Molecular Oncology Research Institute, Tufts Medical Center, Boston, Massachusetts 02111, USA
| | | | | |
Collapse
|
22
|
Fujikura D, Ito M, Chiba S, Harada T, Perez F, Reed JC, Uede T, Miyazaki T. CLIPR-59 regulates TNF-α-induced apoptosis by controlling ubiquitination of RIP1. Cell Death Dis 2012; 3:e264. [PMID: 22297296 PMCID: PMC3288345 DOI: 10.1038/cddis.2012.3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Tumor necrosis factor-α (TNF-α) has important roles in several immunological events by regulating apoptosis and transcriptional activation of cytokine genes. Intracellular signaling mediated by TNF-receptor-type 1 (TNFR1) is constituted by two sequential protein complexes: Complex-I containing the receptor and Complex-II-containing Caspase-8. Protein modifications, particularly ubiquitination, are associated with the regulation of the formation of these complexes. However, the underlying mechanisms remain poorly defined. Here, we identified CLIP-170-related 59 kDa protein (CLIPR-59) as a novel adaptor protein for TNFR1. Experimental reduction of CLIPR-59 levels prevented induction of apoptosis and activation of caspases in the context of TNF-α signaling. CLIPR-59 binds TNFR1 but dissociates in response to TNF-α stimulation. However, CLIPR-59 is also involved in and needed for the formation of Complex-II. Moreover, CLIPR-59 regulates TNF-α-induced ubiquitination of receptor-interacting protein 1 (RIP1) by its association with CYLD, a de-ubiquitinating enzyme. These findings suggest that CLIPR-59 modulates ubiquitination of RIP1, resulting in the formation of Complex-II and thus promoting Caspase-8 activation to induce apoptosis by TNF-α.
Collapse
Affiliation(s)
- D Fujikura
- Department of Bioresources, Hokkaido University Research Center for Zoonosis Control, North-20, West-10, Kita-ku, Sapporo, Hokkaido 001-0020, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Mohammad S, Ramos LS, Buck J, Levin LR, Rubino F, McGraw TE. Gastric inhibitory peptide controls adipose insulin sensitivity via activation of cAMP-response element-binding protein and p110β isoform of phosphatidylinositol 3-kinase. J Biol Chem 2011; 286:43062-70. [PMID: 22027830 DOI: 10.1074/jbc.m111.289009] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Gastric inhibitory peptide (GIP) is an incretin hormone secreted in response to food intake. The best known function of GIP is to enhance glucose-dependent insulin secretion from pancreatic β-cells. Extra-pancreatic effects of GIP primarily occur in adipose tissues. Here, we demonstrate that GIP increases insulin-dependent translocation of the Glut4 glucose transporter to the plasma membrane and exclusion of FoxO1 transcription factor from the nucleus in adipocytes, establishing that GIP has a general effect on insulin action in adipocytes. Stimulation of adipocytes with GIP alone has no effect on these processes. Using pharmacologic and molecular genetic approaches, we show that the effect of GIP on adipocyte insulin sensitivity requires activation of both the cAMP/protein kinase A/CREB signaling module and p110β phosphoinositol-3' kinase, establishing a novel signal transduction pathway modulating insulin action in adipocytes. This insulin-sensitizing effect is specific for GIP because isoproterenol, which elevates adipocyte cAMP and activates PKA/CREB signaling, does not affect adipocyte insulin sensitivity. The insulin-sensitizing activity points to a more central role for GIP in intestinal regulation of peripheral tissue metabolism, an emerging feature of inter-organ communication in the control of metabolism.
Collapse
Affiliation(s)
- Sameer Mohammad
- Department of Biochemistry, Weill Medical College of Cornell University, New York, New York 10065, USA
| | | | | | | | | | | |
Collapse
|
24
|
Nie J, Xue B, Sukumaran S, Jusko WJ, DuBois DC, Almon RR. Differential muscle gene expression as a function of disease progression in Goto-Kakizaki diabetic rats. Mol Cell Endocrinol 2011; 338:10-7. [PMID: 21356272 PMCID: PMC3093670 DOI: 10.1016/j.mce.2011.02.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Revised: 01/26/2011] [Accepted: 02/17/2011] [Indexed: 11/23/2022]
Abstract
The Goto-Kakizaki (GK) rat, a polygenic non-obese model of type 2 diabetes, is a useful surrogate for study of diabetes-related changes independent of obesity. GK rats and appropriate controls were killed at 4, 8, 12, 16 and 20 weeks post-weaning and differential muscle gene expression along with body and muscle weights, plasma hormones and lipids, and blood cell measurements were carried out. Gene expression analysis identified 204 genes showing 2-fold or greater differences between GK and controls in at least 3 ages. Array results suggested increased oxidative capacity in GK muscles, as well as differential gene expression related to insulin resistance, which was also indicated by HOMA-IR measurements. In addition, potential new biomarkers in muscle gene expression were identified that could be either a cause or consequence of T2DM. Furthermore, we demonstrate here the presence of chronic inflammation evident both systemically and in the musculature, despite the absence of obesity.
Collapse
Affiliation(s)
- Jing Nie
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, N.Y. 14260 USA
| | - Bai Xue
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, N.Y. 14260 USA
| | - Siddharth Sukumaran
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, N.Y. 14260 USA
| | - William J. Jusko
- Department of Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, N.Y. 14260 USA
- New York State Center of Excellence in Bioinformatics and Life Sciences
| | - Debra C. DuBois
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, N.Y. 14260 USA
- Department of Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, N.Y. 14260 USA
| | - Richard R. Almon
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, N.Y. 14260 USA
- Department of Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, N.Y. 14260 USA
- New York State Center of Excellence in Bioinformatics and Life Sciences
| |
Collapse
|
25
|
Maiuri T, Ho J, Stambolic V. Regulation of adipocyte differentiation by distinct subcellular pools of protein kinase B (PKB/Akt). J Biol Chem 2010; 285:15038-15047. [PMID: 20223817 DOI: 10.1074/jbc.m110.121434] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The phosphatidylinositol 3-kinase (PI3K)-protein kinase B (PKB)/Akt-PTEN signal transduction pathway orchestrates a variety of fundamental cell processes and its deregulation is implicated in many human diseases. Although the importance of this pathway to many cellular functions is well established, the mechanisms by which it achieves context-specific physiological outcomes in response to a variety of stimuli, using a relatively limited pool of effectors, remain largely unknown. Spatial restriction of signaling events is one means by which cells coordinate specific responses using common molecules. To investigate the subcellular location-specific roles of the major PI3K effector PKB/Akt in various cell processes, we have developed a novel experimental system employing cellular compartment-directed PKB/Akt pseudosubstrate inhibitors. Subcellular location-restricted PKB/Akt inhibition in the 3T3L1 adipocyte differentiation model revealed that nuclear and plasma membrane, but not cytoplasmic, PKB/Akt activity is required for terminal adipocyte differentiation. Nuclear and plasma membrane pools of PKB/Akt were found to contribute to distinct stages of adipocyte differentiation, revealing that PKB/Akt activity impacts multiple points of this program. Our work establishes the use of localized pseudosubstrate PKB/Akt inhibitors as an effective method for the dissection of PKB/Akt signaling.
Collapse
Affiliation(s)
- Tamara Maiuri
- Ontario Cancer Institute, University Health Network, and Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 2M9, Canada
| | - Jason Ho
- Ontario Cancer Institute, University Health Network, and Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 2M9, Canada
| | - Vuk Stambolic
- Ontario Cancer Institute, University Health Network, and Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 2M9, Canada.
| |
Collapse
|
26
|
Sorice M, Matarrese P, Manganelli V, Tinari A, Giammarioli AM, Mattei V, Misasi R, Garofalo T, Malorni W. Role of GD3-CLIPR-59 association in lymphoblastoid T cell apoptosis triggered by CD95/Fas. PLoS One 2010; 5:e8567. [PMID: 20052288 PMCID: PMC2797139 DOI: 10.1371/journal.pone.0008567] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Accepted: 11/25/2009] [Indexed: 11/18/2022] Open
Abstract
We previously found that a directional movement of the raft component GD3 towards mitochondria, by its association with microtubules, was mandatory to late apoptogenic events triggered by CD95/Fas. Since CLIPR-59, CLIP-170-related protein, has recently been identified as a microtubule binding protein associated with lipid rafts, we analyzed the role of GD3-CLIPR-59 association in lymphoblastoid T cell apoptosis triggered by CD95/Fas. To test whether CLIPR-59 could play a role at the raft-microtubule junction, we performed a series of experiments by using immunoelectron microscopy, static or flow cytometry and biochemical analyses. We first assessed the presence of CLIPR-59 molecule in lymphoblastoid T cells (CEM). Then, we demonstrated that GD3-microtubule interaction occurs via CLIPR-59 and takes place at early time points after CD95/Fas ligation, preceding the association GD3-tubulin. GD3-CLIPR-59 association was demonstrated by fluorescence resonance energy transfer (FRET) analysis. The key role of CLIPR-59 in this dynamic process was clarified by the observation that silencing CLIPR-59 by siRNA affected the kinetics of GD3-tubulin association, spreading of GD3 towards mitochondria and apoptosis execution. We find that CLIPR-59 may act as a typical chaperone, allowing a prompt interaction between tubulin and the raft component GD3 during cell apoptosis triggered by CD95/Fas. On the basis of the suggested role of lipid rafts in conveying pro-apoptotic signals these results disclose new perspectives in the understanding of the mechanisms by which raft-mediated pro-apoptotic signals can directionally reach their target, i.e. the mitochondria, and trigger apoptosis execution.
Collapse
Affiliation(s)
- Maurizio Sorice
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Ng Y, Ramm G, Burchfield JG, Coster ACF, Stöckli J, James DE. Cluster analysis of insulin action in adipocytes reveals a key role for Akt at the plasma membrane. J Biol Chem 2009; 285:2245-57. [PMID: 19897488 DOI: 10.1074/jbc.m109.060236] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The phosphatidylinositol 3-kinase/Akt pathway regulates many biological processes, including insulin-regulated GLUT4 insertion into the plasma membrane. However, Akt operates well below its capacity to facilitate maximal GLUT4 translocation. Thus, reconciling modest changes in Akt expression or activity as a cause of metabolic dysfunction is complex. To resolve this, we examined insulin regulation of components within the signaling cascade in a quantitative kinetic and dose-response study combined with hierarchical cluster analysis. This revealed a strong relationship between phosphorylation of Akt substrates and GLUT4 translocation but not whole cell Akt phosphorylation. In contrast, Akt activity at the plasma membrane strongly correlated with GLUT4 translocation and Akt substrate phosphorylation. Additionally, two of the phosphorylated sites in the Akt substrate AS160 clustered separately, with Thr(P)-642 grouped with other Akt substrates. Further experiments suggested that atypical protein kinase Czeta phosphorylates AS160 at Ser-588 and that these two sites are mutually exclusive. These data indicate the utility of hierarchical cluster analysis for identifying functionally related biological nodes and highlight the importance of subcellular partitioning of key signaling components for biological specificity.
Collapse
Affiliation(s)
- Yvonne Ng
- Diabetes and Obesity Research Program, The Garvan Institute of Medical Research, Sydney, New South Wales 2010, Australia
| | | | | | | | | | | |
Collapse
|
28
|
Gonzalez E, McGraw TE. The Akt kinases: isoform specificity in metabolism and cancer. Cell Cycle 2009; 8:2502-8. [PMID: 19597332 DOI: 10.4161/cc.8.16.9335] [Citation(s) in RCA: 362] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The Akt (PKB) protein kinases are critical regulators of human physiology that control an impressive array of diverse cellular functions, including the modulation of growth, survival, proliferation and metabolism. The Akt kinase family is comprised of three highly homologous isoforms: Akt1 (PKBalpha), Akt2 (PKBbeta) and Akt3 (PKBgamma). Phenotypic analyses of Akt isoform knockout mice documented Akt isoform specific functions in the regulation of cellular growth, glucose homeostasis and neuronal development. Those studies establish that the functions of the different Akt kinases are not completely overlapping and that isoform-specific signaling contributes to the diversity of Akt activities. However, despite these important advances, a thorough understanding about the specific roles of Akt family members and the molecular mechanisms that determine Akt isoform functional specificity will be essential to elucidate the complexity of Akt regulated cellular processes and how Akt isoform-specific deregulation might contribute to disease states. Here, we summarize recent advances in understanding the roles of Akt isoforms in the regulation of metabolism and cancer, and possible mechanisms contributing to Akt isoform functional specificity.
Collapse
Affiliation(s)
- Eva Gonzalez
- Department of Biochemistry, Weill Cornell Medical College, New York, NY 10065, USA
| | | |
Collapse
|
29
|
Insulin-modulated Akt subcellular localization determines Akt isoform-specific signaling. Proc Natl Acad Sci U S A 2009; 106:7004-9. [PMID: 19372382 DOI: 10.1073/pnas.0901933106] [Citation(s) in RCA: 142] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The 3 Akt protein kinase isoforms have critical and distinct functions in the regulation of metabolism, cell growth, and apoptosis, yet the mechanisms by which their signaling specificity is achieved remain largely unclear. Here, we investigated potential mechanisms underlying Akt isoform functional specificity by using Akt2-specific regulation of glucose transport in insulin-stimulated adipocytes as a model system. We found that insulin activates both Akt1 and Akt2 in adipocytes, but differentially regulates the subcellular distribution of these Akt isoforms. The greater accumulation of Akt2 at the plasma membrane (PM) of insulin-stimulated adipocytes correlates with Akt2-specific regulation of the trafficking of the GLUT4 glucose transporter. Consistent with this pattern, Akt constructs that do not accumulate at the PM to the same degree as Akt2 fail to regulate GLUT4 translocation to the PM, whereas enhancement of Akt1 PM association through mutation in Akt1 PH domain is sufficient to overcome Akt-isoform specificity in GLUT4 regulation. Indeed, we found that this distinct insulin-induced PM accumulation of Akt kinases is translated into a differential regulation by the Akt isoforms of AS160, a RabGAP that regulates GLUT4 trafficking. Our data show that Akt2 specifically regulates AS160 phosphorylation and membrane association providing molecular basis for Akt2 specificity in the modulation of GLUT4 trafficking. Together, our findings reveal the stimulus-induced subcellular compartmentalization of Akt kinases as a mechanism contributing to specify Akt isoform functions.
Collapse
|