1
|
Hurtado-Lorenzo A, Swantek JL. The landscape of new therapeutic opportunities for IBD. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2024; 101:1-83. [PMID: 39521596 DOI: 10.1016/bs.apha.2024.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
This chapter presents an overview of the emerging strategies to address the unmet needs in the management of inflammatory bowel diseases (IBD). IBD poses significant challenges, as over half of patients experience disease progression despite interventions, leading to irreversible complications, and a substantial proportion do not respond to existing therapies, such as biologics. To overcome these limitations, we describe a diverse array of novel therapeutic approaches. In the area of immune homeostasis restoration, the focus is on targeting cytokine networks, leukocyte trafficking, novel immune pathways, and cell therapies involving regulatory T cells and mesenchymal stem cells (MSC). Recognizing the critical role of impaired intestinal barrier integrity in IBD, we highlight therapies aimed at restoring barrier function and promoting mucosal healing, such as those targeting cell proliferation, tight junctions, and lipid mediators. Addressing the challenges posed by fibrosis and fistulas, we describe emerging targets for reversing fibrosis like kinase and cytokine inhibitors and nuclear receptor agonists, as well as the potential of MSC for fistulas. The restoration of a healthy gut microbiome, through strategies like fecal microbiota transplantation, rationally defined bacterial consortia, and targeted antimicrobials, is also highlighted. We also describe innovative approaches to gut-targeted drug delivery to enhance efficacy and minimize side effects. Reinforcing these advancements is the critical role of precision medicine, which emphasizes the use of multiomics analysis for the discovery of biomarkers to enable personalized IBD care. Overall, the emerging landscape of therapeutic opportunities for IBD holds great potential to surpass the therapeutic ceiling of current treatments.
Collapse
Affiliation(s)
- Andrés Hurtado-Lorenzo
- Translational Research & IBD Ventures, Research Department, Crohn's & Colitis Foundation, New York, NY, United States.
| | - Jennifer L Swantek
- Translational Research & IBD Ventures, Research Department, Crohn's & Colitis Foundation, New York, NY, United States
| |
Collapse
|
2
|
Li C, Yi J, Jie H, Liu Z, Li S, Zeng Z, Zhou Y. Acetylation of ELMO1 correlates with Rac1 activity and colorectal cancer progress. Exp Cell Res 2024; 439:114068. [PMID: 38750717 DOI: 10.1016/j.yexcr.2024.114068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/28/2024] [Accepted: 04/29/2024] [Indexed: 05/27/2024]
Abstract
Acetylation, a critical regulator of diverse cellular processes, holds significant implications in various cancer contexts. Further understanding of the acetylation patterns of key cancer-driven proteins is crucial for advancing therapeutic strategies in cancer treatment. This study aimed to unravel the acetylation patterns of Engulfment and Cell Motility Protein 1 (ELMO1) and its relevance to the pathogenesis of colorectal cancer (CRC). Immunoprecipitation and mass spectrometry precisely identified lysine residue 505 (K505) as a central acetylation site in ELMO1. P300 emerged as the acetyltransferase for ELMO1 K505 acetylation, while SIRT2 was recognized as the deacetylase. Although K505 acetylation minimally affected ELMO1's localization and stability, it played a crucial role in mediating ELMO1-Dock180 interaction, thereby influencing Rac1 activation. Functionally, ELMO1 K505 acetylation proved to be a pivotal factor in CRC progression, exerting its influence on key cellular processes. Clinical analysis of CRC samples unveiled elevated ELMO1 acetylation in primary tumors, indicating a potential association with CRC pathologies. This work provides insights into ELMO1 acetylation and its significance in advancing potentially therapeutic interventions in CRC treatment.
Collapse
Affiliation(s)
- Chuangkun Li
- Department of General Surgery, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Hunan, China
| | - Jianmei Yi
- Department of General Surgery, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Hunan, China
| | - Haiqing Jie
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhihang Liu
- The "Double-First Class" Application Characteristic Discipline of Hunan Province (Clinical Medicine), Changsha Medical University, Changsha, China
| | - Shujuan Li
- Department of Pharmacy, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ziwei Zeng
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yi Zhou
- Department of General Surgery, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Hunan, China.
| |
Collapse
|
3
|
Lan Y, Peng X, Ji Y, Su Y, Duan W, Ai J, Zhang H. Discovery of a 1,6-naphthyridin-4-one-based AXL inhibitor with improved pharmacokinetics and enhanced in vivo antitumor efficacy. Eur J Med Chem 2024; 265:116045. [PMID: 38128234 DOI: 10.1016/j.ejmech.2023.116045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/30/2023] [Accepted: 12/10/2023] [Indexed: 12/23/2023]
Abstract
The receptor tyrosine kinase AXL has emerged as an attractive target in anticancer drug discovery. Herein, we described the discovery of a new series of 1,6-naphthyridin-4-one derivatives as potent AXL inhibitors. Starting from a low in vivo potency compound 9 which was previously reported by our group, we utilized structure-based drug design and scaffold hopping strategies to discover potent AXL inhibitors. The privileged compound 13c was a highly potent and orally bioavailable AXL inhibitor with an IC50 value of 3.2 ± 0.3 nM. Compound 13c exhibited significantly improved in vivo antitumor efficacy in AXL-driven tumor xenograft mice, causing tumor regression at well-tolerated dose, and demonstrated favorable pharmacokinetic properties (MRT = 16.5 h, AUC0-∞ = 59,815 ng h/mL) in Sprague-Dawley rats. These results suggest that 13c is a promising therapeutic candidate for AXL-targeting cancer treatment.
Collapse
Affiliation(s)
- Yaohan Lan
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Xia Peng
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China
| | - Yinchun Ji
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China
| | - Yi Su
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China
| | - Wenhu Duan
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China; Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong, 264117, China
| | - Jing Ai
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China; Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China.
| | - Hefeng Zhang
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China.
| |
Collapse
|
4
|
Noubissi FK, Odubanjo OV, Ogle BM, Tchounwou PB. Mechanisms of Cell Fusion in Cancer. Results Probl Cell Differ 2024; 71:407-432. [PMID: 37996688 PMCID: PMC10893907 DOI: 10.1007/978-3-031-37936-9_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Cell-cell fusion is a normal physiological mechanism that requires a well-orchestrated regulation of intracellular and extracellular factors. Dysregulation of this process could lead to diseases such as osteoporosis, malformation of muscles, difficulties in pregnancy, and cancer. Extensive literature demonstrates that fusion occurs between cancer cells and other cell types to potentially promote cancer progression and metastasis. However, the mechanisms governing this process in cancer initiation, promotion, and progression are less well-studied. Fusogens involved in normal physiological processes such as syncytins and associated factors such as phosphatidylserine and annexins have been observed to be critical in cancer cell fusion as well. Some of the extracellular factors associated with cancer cell fusion include chronic inflammation and inflammatory cytokines, hypoxia, and viral infection. The interaction between these extracellular factors and cell's intrinsic factors potentially modulates actin dynamics to drive the fusion of cancer cells. In this review, we have discussed the different mechanisms that have been identified or postulated to drive cancer cell fusion.
Collapse
Affiliation(s)
- Felicite K Noubissi
- Department of Biology, Jackson State University, Jackson, MS, USA.
- Research Centers in Minority Institutions (RCMI), Center for Health Disparity Research (RCMI-CHDR), Jackson State University, Jackson, MS, USA.
| | - Oluwatoyin V Odubanjo
- Department of Biology, Jackson State University, Jackson, MS, USA
- Research Centers in Minority Institutions (RCMI), Center for Health Disparity Research (RCMI-CHDR), Jackson State University, Jackson, MS, USA
| | - Brenda M Ogle
- Department of Biomedical Engineering, University of Minnesota-Twin Cities, Minneapolis, MN, USA
- Department of Pediatrics, University of Minnesota-Twin Cities, Minneapolis, MN, USA
- Stem Cell Institute, University of Minnesota-Twin Cities, Minneapolis, MN, USA
| | - Paul B Tchounwou
- Department of Biology, Jackson State University, Jackson, MS, USA
- Research Centers in Minority Institutions (RCMI), Center for Health Disparity Research (RCMI-CHDR), Jackson State University, Jackson, MS, USA
| |
Collapse
|
5
|
Tang J, Jin Y, Jia F, Lv T, Manaenko A, Zhang LF, Zhang Z, Qi X, Xue Y, Zhao B, Zhang X, Zhang JH, Lu J, Hu Q. Gas6 Promotes Microglia Efferocytosis and Suppresses Inflammation Through Activating Axl/Rac1 Signaling in Subarachnoid Hemorrhage Mice. Transl Stroke Res 2023; 14:955-969. [PMID: 36324028 DOI: 10.1007/s12975-022-01099-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 11/05/2022]
Abstract
Early brain injury (EBI) following subarachnoid hemorrhage (SAH) is characterized by rapid development of neuron apoptosis and dysregulated inflammatory response. Microglia efferocytosis plays a critical role in the clearance of apoptotic cells, attenuation of inflammation, and minimizing brain injury in various pathological conditions. Here, using a mouse SAH model, we aim to investigate whether microglia efferocytosis is involved in post-SAH inflammation and to determine the underlying signaling pathway. We hypothesized that TAM receptors and their ligands regulate this process. To prove our hypothesis, the expression and cellular location of TAM (Tyro3, Axl, and Mertk) receptors and their ligands growth arrest-specific 6 (Gas6) and Protein S (ProS1) were examined by PCR, western blots, and fluorescence immunostaining. Thirty minutes after SAH, mice received an intraventricular injection of recombinant Gas6 (rGas6) or recombinant ProS1 (rPros1) and underwent evaluations of inflammatory mediator expression, neurological deficits, and blood-brain barrier integrity at 24 h. Microglia efferocytosis of apoptotic neurons was analyzed in vivo and in vitro. The potential mechanism was determined by inhibiting or knocking down TAM receptors and Rac1 by specific inhibitors or siRNA. SAH induced upregulation of Axl and its ligand Gas6. The administration of rGas6 but not rPros1 promoted microglia efferocytosis, alleviated inflammation, and ameliorated SAH-induced BBB breakdown and neurological deficits. The beneficial effects of rGas6 were arrogated by inhibiting or knocking down Axl and Rac1. We concluded that rGas6 attenuated the development of early brain injury in mice after SAH by facilitating microglia efferocytosis and preventing inflammatory response, which is partly dependent on activation of Axl and Rac1.
Collapse
Affiliation(s)
- Junjia Tang
- Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
- Department of Neurosurgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, China
| | - Yichao Jin
- Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Feng Jia
- Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Tao Lv
- Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Anatol Manaenko
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lin-Feng Zhang
- Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Zeyu Zhang
- Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Xin Qi
- Discipline of Neuroscience, Department of Physiology and Anatomy, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yajun Xue
- Department of Neurosurgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, China
| | - Bin Zhao
- Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Xiaohua Zhang
- Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - John H Zhang
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA
| | - Jianfei Lu
- Discipline of Neuroscience, Department of Physiology and Anatomy, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Songjiang Institute and Songjiang Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201600, China.
| | - Qin Hu
- Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
| |
Collapse
|
6
|
Doan RA, Monk KR. Dock1 acts cell-autonomously in Schwann cells to regulate the development, maintenance, and repair of peripheral myelin. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.26.564271. [PMID: 37961336 PMCID: PMC10634861 DOI: 10.1101/2023.10.26.564271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Schwann cells, the myelinating glia of the peripheral nervous system (PNS), are critical for myelin development, maintenance, and repair. Rac1 is a known regulator of radial sorting, a key step in developmental myelination, and we previously showed in zebrafish that loss of Dock1, a Rac1-specific guanine nucleotide exchange factor, results in delayed peripheral myelination in development. We demonstrate here that Dock1 is necessary for myelin maintenance and remyelination after injury in adult zebrafish. Furthermore, it performs an evolutionary conserved role in mice, acting cell-autonomously in Schwann cells to regulate peripheral myelin development, maintenance, and repair. Additionally, manipulating Rac1 levels in larval zebrafish reveals that dock1 mutants are sensitized to inhibition of Rac1, suggesting an interaction between the two proteins during PNS development. We propose that the interplay between Dock1 and Rac1 signaling in Schwann cells is required to establish, maintain, and facilitate repair and remyelination within the peripheral nervous system.
Collapse
Affiliation(s)
- Ryan A Doan
- The Vollum Institute, Oregon Health & Science University, Portland, OR, USA
| | - Kelly R Monk
- The Vollum Institute, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
7
|
Schneider K, Arandjelovic S. Apoptotic cell clearance components in inflammatory arthritis. Immunol Rev 2023; 319:142-150. [PMID: 37507355 PMCID: PMC10615714 DOI: 10.1111/imr.13256] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023]
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory disease of the synovial joints that affects ~1% of the human population. Joint swelling and bone erosion, hallmarks of RA, contribute to disability and, sometimes, loss of life. Mechanistically, disease is driven by immune dysregulation characterized by circulating autoantibodies, inflammatory mediators, tissue degradative enzymes, and metabolic dysfunction of resident stromal and recruited immune cells. Cell death by apoptosis has been therapeutically explored in animal models of RA due to the comparisons drawn between synovial hyperplasia and paucity of apoptosis in RA with the malignant transformation of cancer cells. Several efforts to induce cell death have shown benefits in reducing the development and/or severity of the disease. Apoptotic cells are cleared by phagocytes in a process known as efferocytosis, which differs from microbial phagocytosis in its "immuno-silent," or anti-inflammatory, nature. Failures in efferocytosis have been linked to autoimmune disease, whereas administration of apoptotic cells in RA models effectively inhibits inflammatory indices, likely though efferocytosis-mediated resolution-promoting mechanisms. However, the nature of signaling pathways elicited and the molecular identity of clearance mediators in RA are understudied. Furthermore, canonical efferocytosis machinery elements also play important non-canonical functions in homeostasis and pathology. Here, we discuss the roles of efferocytosis machinery components in models of RA and discuss their potential involvement in disease pathophysiology.
Collapse
Affiliation(s)
- Kevin Schneider
- University of Virginia, Center for Immunity, Inflammation and Regenerative Medicine, Department of Medicine, Charlottesville, VA, USA
| | - Sanja Arandjelovic
- University of Virginia, Center for Immunity, Inflammation and Regenerative Medicine, Department of Medicine, Charlottesville, VA, USA
| |
Collapse
|
8
|
Serwe G, Kachaner D, Gagnon J, Plutoni C, Lajoie D, Duramé E, Sahmi M, Garrido D, Lefrançois M, Arseneault G, Saba-El-Leil MK, Meloche S, Emery G, Therrien M. CNK2 promotes cancer cell motility by mediating ARF6 activation downstream of AXL signalling. Nat Commun 2023; 14:3560. [PMID: 37322019 PMCID: PMC10272126 DOI: 10.1038/s41467-023-39281-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 05/31/2023] [Indexed: 06/17/2023] Open
Abstract
Cell motility is a critical feature of invasive tumour cells that is governed by complex signal transduction events. Particularly, the underlying mechanisms that bridge extracellular stimuli to the molecular machinery driving motility remain partially understood. Here, we show that the scaffold protein CNK2 promotes cancer cell migration by coupling the pro-metastatic receptor tyrosine kinase AXL to downstream activation of ARF6 GTPase. Mechanistically, AXL signalling induces PI3K-dependent recruitment of CNK2 to the plasma membrane. In turn, CNK2 stimulates ARF6 by associating with cytohesin ARF GEFs and with a novel adaptor protein called SAMD12. ARF6-GTP then controls motile forces by coordinating the respective activation and inhibition of RAC1 and RHOA GTPases. Significantly, genetic ablation of CNK2 or SAMD12 reduces metastasis in a mouse xenograft model. Together, this work identifies CNK2 and its partner SAMD12 as key components of a novel pro-motility pathway in cancer cells, which could be targeted in metastasis.
Collapse
Affiliation(s)
- Guillaume Serwe
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
- Molecular Biology Program, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - David Kachaner
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| | - Jessica Gagnon
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
- Molecular Biology Program, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Cédric Plutoni
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| | - Driss Lajoie
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| | - Eloïse Duramé
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
- Molecular Biology Program, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Malha Sahmi
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| | - Damien Garrido
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| | - Martin Lefrançois
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| | - Geneviève Arseneault
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| | - Marc K Saba-El-Leil
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| | - Sylvain Meloche
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
- Molecular Biology Program, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Gregory Emery
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
- Molecular Biology Program, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
- Department of Pathology and Cell Biology, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Marc Therrien
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada.
- Molecular Biology Program, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada.
- Department of Pathology and Cell Biology, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada.
| |
Collapse
|
9
|
Abstract
PURPOSE OF REVIEW The AXL signaling pathway is associated with tumor growth as well as poor prognosis in cancer. Here, we highlight recent strategies for targeting AXL in the treatment of solid and hematological malignancies. RECENT FINDINGS AXL is a key player in survival, metastasis, and therapeutic resistance in many cancers. A range of AXL-targeted therapies, including tyrosine kinase inhibitors, monoclonal antibodies, antibody-drug conjugates, and soluble receptors, have entered clinical development. Notably, AXL inhibitors in combination with immune checkpoint inhibitors demonstrate early promise; however, further understanding of predictive biomarkers and treatment sequencing is necessary. Based on its role in tumor growth and drug resistance, AXL represents a promising therapeutic target in oncology. Results from ongoing clinical trials will provide valuable insights into the role of AXL inhibitors, both as single agents and in combination with other therapies.
Collapse
Affiliation(s)
- Sheena Bhalla
- Department of Internal Medicine (Division of Hematology-Oncology), UT Southwestern Medical Center, Dallas, TX, USA.
- Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA.
- Division of Hematology-Oncology, Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - David E Gerber
- Department of Internal Medicine (Division of Hematology-Oncology), UT Southwestern Medical Center, Dallas, TX, USA
- Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA
- Peter O'Donnell Jr. School of Public Health, UT Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
10
|
Boland A, Côté J, Barford D. Structural biology of DOCK-family guanine nucleotide exchange factors. FEBS Lett 2023; 597:794-810. [PMID: 36271211 PMCID: PMC10152721 DOI: 10.1002/1873-3468.14523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 11/09/2022]
Abstract
DOCK proteins are a family of multi-domain guanine nucleotide exchange factors (GEFs) that activate the RHO GTPases CDC42 and RAC1, thereby regulating several RHO GTPase-dependent cellular processes. DOCK proteins are characterized by the catalytic DHR2 domain (DOCKDHR2 ), and a phosphatidylinositol(3,4,5)P3 -binding DHR1 domain (DOCKDHR1 ) that targets DOCK proteins to plasma membranes. DOCK-family GEFs are divided into four subfamilies (A to D) differing in their specificities for CDC42 and RAC1, and the composition of accessory signalling domains. Additionally, the DOCK-A and DOCK-B subfamilies are constitutively associated with ELMO proteins that auto-inhibit DOCK GEF activity. We review structural studies that have provided mechanistic insights into DOCK-protein functions. These studies revealed how a conserved nucleotide sensor in DOCKDHR2 catalyses nucleotide exchange, the basis for how different DOCK proteins activate specifically CDC42 and RAC1, and sometimes both, and how up-stream regulators relieve the ELMO-mediated auto-inhibition. We conclude by presenting a model for full-length DOCK9 of the DOCK-D subfamily. The involvement of DOCK GEFs in a range of diseases highlights the importance of gaining structural insights into these proteins to better understand and specifically target them.
Collapse
Affiliation(s)
- Andreas Boland
- Department of Molecular and Cellular BiologyUniversity of GenevaSwitzerland
| | - Jean‐Francois Côté
- Montreal Clinical Research Institute (IRCM)Canada
- Department of Medicine and Department of Biochemistry and Molecular MedicineUniversité de MontréalCanada
| | | |
Collapse
|
11
|
Chan S, Zhang Y, Wang J, Yu Q, Peng X, Zou J, Zhou L, Tan L, Duan Y, Zhou Y, Hur H, Ai J, Wang Z, Ren X, Zhang Z, Ding K. Discovery of 3-Aminopyrazole Derivatives as New Potent and Orally Bioavailable AXL Inhibitors. J Med Chem 2022; 65:15374-15390. [DOI: 10.1021/acs.jmedchem.2c01346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Shingpan Chan
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, #855 Xingye Avenue, Guangzhou 510632, China
| | - Yunong Zhang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, #855 Xingye Avenue, Guangzhou 510632, China
| | - Jie Wang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, #855 Xingye Avenue, Guangzhou 510632, China
| | - Qiuchun Yu
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, #855 Xingye Avenue, Guangzhou 510632, China
| | - Xia Peng
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai 201203, China
| | - Jian Zou
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, #855 Xingye Avenue, Guangzhou 510632, China
| | - Licheng Zhou
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, #345 Lingling Road, Shanghai 200032, China
| | - Li Tan
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, #855 Xingye Avenue, Guangzhou 510632, China
| | - Yunxin Duan
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, #855 Xingye Avenue, Guangzhou 510632, China
| | - Yang Zhou
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, #855 Xingye Avenue, Guangzhou 510632, China
| | - Hoon Hur
- Department of Surgery, Ajou University School of Medicine, 164 Worldcup-ro, Yeongtong-gu, Suwon-si 16499, Gyeonggi-do, Republic of Korea
| | - Jing Ai
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai 201203, China
| | - Zhen Wang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, #345 Lingling Road, Shanghai 200032, China
| | - Xiaomei Ren
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, #345 Lingling Road, Shanghai 200032, China
| | - Zhang Zhang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, #855 Xingye Avenue, Guangzhou 510632, China
| | - Ke Ding
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, #855 Xingye Avenue, Guangzhou 510632, China
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, #345 Lingling Road, Shanghai 200032, China
- The First Affiliated Hospital (Huaqiao Hospital), Jinan University, #601 Huangpu Avenue West, Guangzhou 510632, China
| |
Collapse
|
12
|
Yazbeck P, Cullere X, Bennett P, Yajnik V, Wang H, Kawada K, Davis V, Parikh A, Kuo A, Mysore V, Hla T, Milstone D, Mayadas TN. DOCK4 Regulation of Rho GTPases Mediates Pulmonary Vascular Barrier Function. Arterioscler Thromb Vasc Biol 2022; 42:886-902. [PMID: 35477279 PMCID: PMC9233130 DOI: 10.1161/atvbaha.122.317565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 04/12/2022] [Indexed: 01/10/2023]
Abstract
BACKGROUND The vascular endothelium maintains tissue-fluid homeostasis by controlling the passage of large molecules and fluid between the blood and interstitial space. The interaction of catenins and the actin cytoskeleton with VE-cadherin (vascular endothelial cadherin) is the primary mechanism for stabilizing AJs (adherens junctions), thereby preventing lung vascular barrier disruption. Members of the Rho (Ras homology) family of GTPases and conventional GEFs (guanine exchange factors) of these GTPases have been demonstrated to play important roles in regulating endothelial permeability. Here, we evaluated the role of DOCK4 (dedicator of cytokinesis 4)-an unconventional Rho family GTPase GEF in vascular function. METHODS We generated mice deficient in DOCK4' used DOCK4 silencing and reconstitution approaches in human pulmonary artery endothelial cells' used assays to evaluate protein localization, endothelial cell permeability, and small GTPase activation. RESULTS Our data show that DOCK4-deficient mice are viable. However, these mice have hemorrhage selectively in the lung, incomplete smooth muscle cell coverage in pulmonary vessels, increased basal microvascular permeability, and impaired response to S1P (sphingosine-1-phosphate)-induced reversal of thrombin-induced permeability. Consistent with this, DOCK4 rapidly translocates to the cell periphery and associates with the detergent-insoluble fraction following S1P treatment, and its absence prevents S1P-induced Rac-1 activation and enhancement of barrier function. Moreover, DOCK4-silenced pulmonary artery endothelial cells exhibit enhanced basal permeability in vitro that is associated with enhanced Rho GTPase activation. CONCLUSIONS Our findings indicate that DOCK4 maintains AJs necessary for lung vascular barrier function by establishing the normal balance between RhoA (Ras homolog family member A) and Rac-1-mediated actin cytoskeleton remodeling, a previously unappreciated function for the atypical GEF family of molecules. Our studies also identify S1P as a potential upstream regulator of DOCK4 activity.
Collapse
Affiliation(s)
- Pascal Yazbeck
- Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115
| | - Xavier Cullere
- Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115
| | - Paul Bennett
- Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115
| | - Vijay Yajnik
- Department of Medicine, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02445
| | - Huan Wang
- Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115
| | - Kenji Kawada
- Department of Medicine, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02445
| | - Vanessa Davis
- Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115
| | - Asit Parikh
- Department of Medicine, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02445
| | - Andrew Kuo
- Vascular Biology Program, Boston Children’s Hospital and Harvard Medical School, Boston, MA 20115
| | - Vijayashree Mysore
- Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115
| | - Timothy Hla
- Vascular Biology Program, Boston Children’s Hospital and Harvard Medical School, Boston, MA 20115
| | - David Milstone
- Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115
| | - Tanya N. Mayadas
- Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115
| |
Collapse
|
13
|
Tocci S, Ibeawuchi SR, Das S, Sayed IM. Role of ELMO1 in inflammation and cancer-clinical implications. Cell Oncol (Dordr) 2022; 45:505-525. [PMID: 35668246 DOI: 10.1007/s13402-022-00680-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/19/2022] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Engulfment and cell motility protein 1 (ELMO1) is a key protein for innate immunity since it is required for the clearance of apoptotic cells and pathogenic bacteria as well as for the control of inflammatory responses. ELMO1, through binding with Dock180 and activation of the Rac1 signaling pathway, plays a significant role in cellular shaping and motility. Rac-mediated actin cytoskeletal rearrangement is essential for bacterial phagocytosis, but also plays a crucial role in processes such as cancer cell invasion and metastasis. While the role of ELMO1 in bacterial infection and inflammatory responses is well established, its implication in cancer is not widely explored yet. Molecular changes or epigenetic alterations such as DNA methylation, which ultimately leads to alterations in gene expression and deregulation of cellular signaling, has been reported for ELMO1 in different cancer types. CONCLUSIONS In this review, we provide an updated and comprehensive summary of the roles of ELMO1 in infection, inflammatory diseases and cancer. We highlight the possible mechanisms regulated by ELMO1 that are relevant for cancer development and progression and provide insight into the possible use of ELMO1 as a diagnostic biomarker and therapeutic target.
Collapse
Affiliation(s)
- Stefania Tocci
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | | | - Soumita Das
- Department of Pathology, University of California San Diego, La Jolla, CA, USA.
| | - Ibrahim M Sayed
- Department of Pathology, University of California San Diego, La Jolla, CA, USA. .,Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut, Egypt.
| |
Collapse
|
14
|
AXL Receptor Tyrosine Kinase as a Promising Therapeutic Target Directing Multiple Aspects of Cancer Progression and Metastasis. Cancers (Basel) 2022; 14:cancers14030466. [PMID: 35158733 PMCID: PMC8833413 DOI: 10.3390/cancers14030466] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/10/2022] [Accepted: 01/17/2022] [Indexed: 01/15/2023] Open
Abstract
Simple Summary Metastasis is a complex process that requires the acquisition of certain traits by cancer cells as well as the cooperation of several non-neoplastic cells that populate the stroma. Cancer-related deaths are predominantly associated with complications arising from metastases. Limiting metastasis therefore represents an important clinical challenge. The receptor tyrosine kinase AXL is required at many steps of the metastatic cascade and contributes to tumor microenvironment deregulation. In this review, we describe how AXL contributes to metastatic progression by governing various biological processes in cancer cells and in stromal cells, highlighting the potential of its inhibition. Abstract The receptor tyrosine kinase AXL is emerging as a key player in tumor progression and metastasis and its expression correlates with poor survival in a plethora of cancers. While studies have shown the benefits of AXL inhibition for the treatment of metastatic cancers, additional roles for AXL in cancer progression are still being explored. This review discusses recent advances in understanding AXL’s functions in different tumor compartments including cancer, vascular, and immune cells. AXL is required at multiple steps of the metastatic cascade where its activation in cancer cells leads to EMT, invasion, survival, proliferation and therapy resistance. AXL activation in cancer cells and various stromal cells also results in tumor microenvironment deregulation, leading to modulation of angiogenesis, fibrosis, immune response and hypoxia. A better understanding of AXL’s role in these processes could lead to new therapeutic approaches that would benefit patients suffering from metastatic diseases.
Collapse
|
15
|
FARP1, ARHGEF39, and TIAM2 are essential receptor tyrosine kinase effectors for Rac1-dependent cell motility in human lung adenocarcinoma. Cell Rep 2021; 37:109905. [PMID: 34731623 PMCID: PMC8627373 DOI: 10.1016/j.celrep.2021.109905] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 08/27/2021] [Accepted: 10/07/2021] [Indexed: 12/14/2022] Open
Abstract
Despite the undisputable role of the small GTPase Rac1 in the regulation of actin cytoskeleton reorganization, the Rac guanine-nucleotide exchange factors (Rac-GEFs) involved in Rac1-mediated motility and invasion in human lung adenocarcinoma cells remain largely unknown. Here, we identify FARP1, ARHGEF39, and TIAM2 as essential Rac-GEFs responsible for Rac1-mediated lung cancer cell migration upon EGFR and c-Met activation. Noteworthily, these Rac-GEFs operate in a non-redundant manner by controlling distinctive aspects of ruffle dynamics formation. Mechanistic analysis reveals a leading role of the AXL-Gab1-PI3K axis in conferring pro-motility traits downstream of EGFR. Along with the positive association between the overexpression of Rac-GEFs and poor lung adenocarcinoma patient survival, we show that FARP1 and ARHGEF39 are upregulated in EpCam+ cells sorted from primary human lung adenocarcinomas. Overall, our study reveals fundamental insights into the complex intricacies underlying Rac-GEF-mediated cancer cell motility signaling, hence underscoring promising targets for metastatic lung cancer therapy.
Collapse
|
16
|
Physiological Roles of Apoptotic Cell Clearance: Beyond Immune Functions. Life (Basel) 2021; 11:life11111141. [PMID: 34833017 PMCID: PMC8621940 DOI: 10.3390/life11111141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/24/2021] [Accepted: 10/25/2021] [Indexed: 11/16/2022] Open
Abstract
The clearance of apoptotic cells is known to be a critical step in maintaining tissue and organism homeostasis. This process is rapidly/promptly mediated by recruited or resident phagocytes. Phagocytes that engulf apoptotic cells have been closely linked to the release of anti-inflammatory cytokines to eliminate inflammatory responses. Defective clearance of apoptotic cells can cause severe inflammation and autoimmune responses due to secondary necrosis of apoptotic cells. Recently accumulated evidence indicates that apoptotic cells and their clearance have important physiological roles in addition to immune-related functions. Herein, we review the current understanding of the mechanisms and fundamental roles of apoptotic cell clearance and the beneficial roles of apoptotic cells in physiological processes such as differentiation and development.
Collapse
|
17
|
Khera L, Lev S. Accelerating AXL targeting for TNBC therapy. Int J Biochem Cell Biol 2021; 139:106057. [PMID: 34403827 DOI: 10.1016/j.biocel.2021.106057] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/02/2021] [Accepted: 08/10/2021] [Indexed: 12/11/2022]
Abstract
The tyrosine kinase receptor AXL of the TAM (TYRO3, AXL and MERTK) family is considered as a promising therapeutic target for different hematological cancers and solid tumors. AXL is involved in multiple pro-tumorigenic processes including cell migration, invasion, epithelial-mesenchymal transition (EMT), and stemness, and recent studies demonstrated its impact on cancer metastasis and drug resistance. Extensive studies on AXL have highlighted its unique characteristics and physiological functions and suggest that targeting of AXL could be beneficial in combination with chemotherapy, radiotherapy, immunotherapy, and targeted therapy. In this mini review, we discuss possible outcomes of AXL targeting either alone or together with other therapeutic agents and emphasize its impact on triple negative breast cancer (TNBC).
Collapse
Affiliation(s)
- Lohit Khera
- Molecular Cell Biology Department, Weizmann Institute of Science, Rehovot, Israel
| | - Sima Lev
- Molecular Cell Biology Department, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
18
|
AXL Receptor in Cancer Metastasis and Drug Resistance: When Normal Functions Go Askew. Cancers (Basel) 2021; 13:cancers13194864. [PMID: 34638349 PMCID: PMC8507788 DOI: 10.3390/cancers13194864] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/15/2021] [Accepted: 09/21/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary AXL is a member of the TAM (TYRO3, AXL, MER) family of receptor tyrosine kinases. In normal physiological conditions, AXL is involved in removing dead cells and their remains, and limiting the duration of immune responses. Both functions are utilized by cancers in the course of tumour progression. Cancer cells use the AXL pathway to detect toxic environments and to activate molecular mechanisms, thereby ensuring their survival or escape from the toxic zone. AXL is instrumental in controlling genetic programs of epithelial-mesenchymal and mesenchymal-epithelial transitions, enabling cancer cells to metastasize. Additionally, AXL signaling suppresses immune responses in tumour microenvironment and thereby helps cancer cells to evade immune surveillance. The broad role of AXL in tumour biology is the reason why its inhibition sensitizes tumours to a broad spectrum of anti-cancer drugs. In this review, we outline molecular mechanisms underlying AXL function in normal tissues, and discuss how these mechanisms are adopted by cancers to become metastatic and drug-resistant. Abstract The TAM proteins TYRO3, AXL, and MER are receptor tyrosine kinases implicated in the clearance of apoptotic debris and negative regulation of innate immune responses. AXL contributes to immunosuppression by terminating the Toll-like receptor signaling in dendritic cells, and suppressing natural killer cell activity. In recent years, AXL has been intensively studied in the context of cancer. Both molecules, the receptor, and its ligand GAS6, are commonly expressed in cancer cells, as well as stromal and infiltrating immune cells. In cancer cells, the activation of AXL signaling stimulates cell survival and increases migratory and invasive potential. In cells of the tumour microenvironment, AXL pathway potentiates immune evasion. AXL has been broadly implicated in the epithelial-mesenchymal plasticity of cancer cells, a key factor in drug resistance and metastasis. Several antibody-based and small molecule AXL inhibitors have been developed and used in preclinical studies. AXL inhibition in various mouse cancer models reduced metastatic spread and improved the survival of the animals. AXL inhibitors are currently being tested in several clinical trials as monotherapy or in combination with other drugs. Here, we give a brief overview of AXL structure and regulation and discuss the normal physiological functions of TAM receptors, focusing on AXL. We present a theory of how epithelial cancers exploit AXL signaling to resist cytotoxic insults, in order to disseminate and relapse.
Collapse
|
19
|
Augustin V, Kins S. Fe65: A Scaffolding Protein of Actin Regulators. Cells 2021; 10:cells10071599. [PMID: 34202290 PMCID: PMC8304848 DOI: 10.3390/cells10071599] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/19/2021] [Accepted: 06/21/2021] [Indexed: 01/19/2023] Open
Abstract
The scaffolding protein family Fe65, composed of Fe65, Fe65L1, and Fe65L2, was identified as an interaction partner of the amyloid precursor protein (APP), which plays a key function in Alzheimer’s disease. All three Fe65 family members possess three highly conserved interaction domains, forming complexes with diverse binding partners that can be assigned to different cellular functions, such as transactivation of genes in the nucleus, modulation of calcium homeostasis and lipid metabolism, and regulation of the actin cytoskeleton. In this article, we rule out putative new intracellular signaling mechanisms of the APP-interacting protein Fe65 in the regulation of actin cytoskeleton dynamics in the context of various neuronal functions, such as cell migration, neurite outgrowth, and synaptic plasticity.
Collapse
|
20
|
Steiner CA, Rodansky ES, Johnson LA, Berinstein JA, Cushing KC, Huang S, Spence JR, Higgins PDR. AXL Is a Potential Target for the Treatment of Intestinal Fibrosis. Inflamm Bowel Dis 2021; 27:303-316. [PMID: 32676663 PMCID: PMC7885333 DOI: 10.1093/ibd/izaa169] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Fibrosis is the final common pathway to intestinal failure in Crohn's disease, but no medical therapies exist to treat intestinal fibrosis. Activated myofibroblasts are key effector cells of fibrosis in multiple organ systems, including the intestine. AXL is a receptor tyrosine kinase that has been implicated in fibrogenic pathways involving myofibroblast activation. We aimed to investigate the AXL pathway as a potential target for the treatment of intestinal fibrosis. METHODS To establish proof of concept, we first analyzed AXL gene expression in 2 in vivo models of intestinal fibrosis and 3 in vitro models of intestinal fibrosis. We then tested whether pharmacological inhibition of AXL signaling could reduce fibrogenesis in 3 in vitro models of intestinal fibrosis. In vitro testing included 2 distinct cell culture models of intestinal fibrosis (matrix stiffness and TGF-β1 treatment) and a human intestinal organoid model using TGF-β1 cytokine stimulation. RESULTS Our findings suggest that the AXL pathway is induced in models of intestinal fibrosis. We demonstrate that inhibition of AXL signaling with the small molecule inhibitor BGB324 abrogates both matrix-stiffness and transforming growth factor beta (TGF-β1)-induced fibrogenesis in human colonic myofibroblasts. AXL inhibition with BGB324 sensitizes myofibroblasts to apoptosis. Finally, AXL inhibition with BGB324 blocks TGF-β1-induced fibrogenic gene and protein expression in human intestinal organoids. CONCLUSIONS The AXL pathway is active in multiple models of intestinal fibrosis. In vitro experiments suggest that inhibiting AXL signaling could represent a novel approach to antifibrotic therapy for intestinal fibrosis such as in Crohn's disease.
Collapse
Affiliation(s)
- Calen A Steiner
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Eva S Rodansky
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Laura A Johnson
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Jeffrey A Berinstein
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Kelly C Cushing
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Sha Huang
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Jason R Spence
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Peter D R Higgins
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
21
|
Park YL, Choi JH, Park SY, Oh HH, Kim DH, Seo YJ, So JK, Song K, Cho MS, Chung MW, Hong JY, Kim KH, Myung E, Myung DS, Cho SB, Lee WS, Park D, Joo YE. Engulfment and cell motility 1 promotes tumor progression via the modulation of tumor cell survival in gastric cancer. Am J Transl Res 2020; 12:7797-7811. [PMID: 33437361 PMCID: PMC7791502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 10/25/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND/AIM Engulfment and cell motility 1 (ELMO1) protein has been implicated in phagocytosis of apoptotic cells, cell migration, neurite outgrowth, cancer cell invasion and metastasis, and poor prognosis in various cancers. We investigated the role of ELMO1 in mediating the oncogenic behavior of gastric cancer (GC) cells. We also investigated the correlation between expression of ELMO1 in GC tissues and various clinicopathological parameters. METHODS We studied the impact of ELMO1 on tumor cell behavior using the pcDNA-myc vector and small interfering RNA in AGS and SNU1750 GC cell lines. We performed western blotting and immunohistochemistry to investigate the expression of ELMO1 in GC cells and tissues. RESULTS ELMO1 overexpression inhibited apoptosis via the modulation of PARP, caspase-3 and caspase-7 in GC cells. ELMO1 overexpression led to significant increase in the number of migrating and invading GC cells. The expression of E-cadherin decreased and that of Snail increased in GC cells upon ELMO1 overexpression. Phosphorylation of PI3K/Akt and GSK-3β was increased and that of β-catenin was decreased upon ELMO1 overexpression in GC cells. These results were reversed after ELMO1 knockdown. ELMO1 expression was significantly associated with tumor size, cancer stage, lymph node metastasis and survival. ELMO1-positive tumors had significantly higher mean of Ki-67 labeling index than ELMO1-negative tumors. There was no significant relationship between ELMO1 expression and the mean value of the apoptotic index. CONCLUSIONS Our results indicate that ELMO1 promotes tumor progression by modulating tumor cell survival in human GC.
Collapse
Affiliation(s)
- Young-Lan Park
- Department of Internal Medicine, Chonnam National University Medical SchoolGwangju, Republic of Korea
| | - Jung-Ho Choi
- Department of Internal Medicine, Chonnam National University Medical SchoolGwangju, Republic of Korea
| | - Sun-Young Park
- Department of Internal Medicine, Chonnam National University Medical SchoolGwangju, Republic of Korea
| | - Hyung-Hoon Oh
- Department of Internal Medicine, Chonnam National University Medical SchoolGwangju, Republic of Korea
| | - Dong-Ho Kim
- Department of Internal Medicine, Chonnam National University Medical SchoolGwangju, Republic of Korea
| | - Yoon-Jin Seo
- Department of Internal Medicine, Chonnam National University Medical SchoolGwangju, Republic of Korea
| | - Jae-Kyoung So
- Department of Internal Medicine, Chonnam National University Medical SchoolGwangju, Republic of Korea
| | - Kaeun Song
- Department of Internal Medicine, Chonnam National University Medical SchoolGwangju, Republic of Korea
| | - Min-Seok Cho
- Department of Internal Medicine, Chonnam National University Medical SchoolGwangju, Republic of Korea
| | - Min-Woo Chung
- Department of Internal Medicine, Chonnam National University Medical SchoolGwangju, Republic of Korea
| | - Ji-Yun Hong
- Department of Internal Medicine, Chonnam National University Medical SchoolGwangju, Republic of Korea
| | - Ki-Hyun Kim
- Department of Internal Medicine, Chonnam National University Medical SchoolGwangju, Republic of Korea
| | - Eun Myung
- Department of Internal Medicine, Chonnam National University Medical SchoolGwangju, Republic of Korea
| | - Dae-Seong Myung
- Department of Internal Medicine, Chonnam National University Medical SchoolGwangju, Republic of Korea
| | - Sung-Bum Cho
- Department of Internal Medicine, Chonnam National University Medical SchoolGwangju, Republic of Korea
| | - Wan-Sik Lee
- Department of Internal Medicine, Chonnam National University Medical SchoolGwangju, Republic of Korea
| | - Daeho Park
- School of Life Sciences and Bio Imaging Research Center, Gwangju Institute of Science and TechnologyGwangju, Republic of Korea
| | - Young-Eun Joo
- Department of Internal Medicine, Chonnam National University Medical SchoolGwangju, Republic of Korea
| |
Collapse
|
22
|
Abu-Thuraia A, Goyette MA, Boulais J, Delliaux C, Apcher C, Schott C, Chidiac R, Bagci H, Thibault MP, Davidson D, Ferron M, Veillette A, Daly RJ, Gingras AC, Gratton JP, Côté JF. AXL confers cell migration and invasion by hijacking a PEAK1-regulated focal adhesion protein network. Nat Commun 2020; 11:3586. [PMID: 32681075 PMCID: PMC7368075 DOI: 10.1038/s41467-020-17415-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 06/28/2020] [Indexed: 01/08/2023] Open
Abstract
Aberrant expression of receptor tyrosine kinase AXL is linked to metastasis. AXL can be activated by its ligand GAS6 or by other kinases, but the signaling pathways conferring its metastatic activity are unknown. Here, we define the AXL-regulated phosphoproteome in breast cancer cells. We reveal that AXL stimulates the phosphorylation of a network of focal adhesion (FA) proteins, culminating in faster FA disassembly. Mechanistically, AXL phosphorylates NEDD9, leading to its binding to CRKII which in turn associates with and orchestrates the phosphorylation of the pseudo-kinase PEAK1. We find that PEAK1 is in complex with the tyrosine kinase CSK to mediate the phosphorylation of PAXILLIN. Uncoupling of PEAK1 from AXL signaling decreases metastasis in vivo, but not tumor growth. Our results uncover a contribution of AXL signaling to FA dynamics, reveal a long sought-after mechanism underlying AXL metastatic activity, and identify PEAK1 as a therapeutic target in AXL positive tumors. AXL receptor tyrosine kinase has a role in metastasis but the mechanism is unclear. In this study, the authors show that AXL activation can control focal adhesion dynamics via PEAK1 and that AXL-mediated PEAK1 phosphorylation is required for metastasis of triple negative breast cancer cells in vivo.
Collapse
Affiliation(s)
- Afnan Abu-Thuraia
- Montreal Clinical Research Institute (IRCM), Montréal, QC, H2W 1R7, Canada.,Molecular Biology Programs, Université de Montréal, Montréal, QC, H3T 1J4, Canada
| | - Marie-Anne Goyette
- Montreal Clinical Research Institute (IRCM), Montréal, QC, H2W 1R7, Canada.,Molecular Biology Programs, Université de Montréal, Montréal, QC, H3T 1J4, Canada
| | - Jonathan Boulais
- Montreal Clinical Research Institute (IRCM), Montréal, QC, H2W 1R7, Canada
| | - Carine Delliaux
- Montreal Clinical Research Institute (IRCM), Montréal, QC, H2W 1R7, Canada
| | - Chloé Apcher
- Montreal Clinical Research Institute (IRCM), Montréal, QC, H2W 1R7, Canada.,Molecular Biology Programs, Université de Montréal, Montréal, QC, H3T 1J4, Canada
| | - Céline Schott
- Montreal Clinical Research Institute (IRCM), Montréal, QC, H2W 1R7, Canada.,Molecular Biology Programs, Université de Montréal, Montréal, QC, H3T 1J4, Canada
| | - Rony Chidiac
- Department of Pharmacology and Physiology, Université de Montréal, Montréal, QC, H3C 3J7, Canada
| | - Halil Bagci
- Montreal Clinical Research Institute (IRCM), Montréal, QC, H2W 1R7, Canada.,Department of Anatomy and Cell Biology, McGill University, Montréal, QC, H3A 0C7, Canada.,Institute of Biochemistry, ETH Zürich, Otto-Stern-Weg 3, 8093, Zürich, Switzerland
| | | | - Dominique Davidson
- Montreal Clinical Research Institute (IRCM), Montréal, QC, H2W 1R7, Canada
| | - Mathieu Ferron
- Montreal Clinical Research Institute (IRCM), Montréal, QC, H2W 1R7, Canada.,Molecular Biology Programs, Université de Montréal, Montréal, QC, H3T 1J4, Canada.,Division of Experimental Medicine, McGill University, Montréal, QC, H4A 3J1, Canada
| | - André Veillette
- Montreal Clinical Research Institute (IRCM), Montréal, QC, H2W 1R7, Canada.,Molecular Biology Programs, Université de Montréal, Montréal, QC, H3T 1J4, Canada
| | - Roger J Daly
- Cancer Program, Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3800, Australia
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, M5G 1X5, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Jean-Philippe Gratton
- Department of Pharmacology and Physiology, Université de Montréal, Montréal, QC, H3C 3J7, Canada
| | - Jean-François Côté
- Montreal Clinical Research Institute (IRCM), Montréal, QC, H2W 1R7, Canada. .,Molecular Biology Programs, Université de Montréal, Montréal, QC, H3T 1J4, Canada. .,Department of Anatomy and Cell Biology, McGill University, Montréal, QC, H3A 0C7, Canada. .,Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC, H3C 3J7, Canada.
| |
Collapse
|
23
|
Chang L, Yang J, Jo CH, Boland A, Zhang Z, McLaughlin SH, Abu-Thuraia A, Killoran RC, Smith MJ, Côté JF, Barford D. Structure of the DOCK2-ELMO1 complex provides insights into regulation of the auto-inhibited state. Nat Commun 2020; 11:3464. [PMID: 32651375 PMCID: PMC7351999 DOI: 10.1038/s41467-020-17271-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 06/17/2020] [Indexed: 12/29/2022] Open
Abstract
DOCK (dedicator of cytokinesis) proteins are multidomain guanine nucleotide exchange factors (GEFs) for RHO GTPases that regulate intracellular actin dynamics. DOCK proteins share catalytic (DOCKDHR2) and membrane-associated (DOCKDHR1) domains. The structurally-related DOCK1 and DOCK2 GEFs are specific for RAC, and require ELMO (engulfment and cell motility) proteins for function. The N-terminal RAS-binding domain (RBD) of ELMO (ELMORBD) interacts with RHOG to modulate DOCK1/2 activity. Here, we determine the cryo-EM structures of DOCK2-ELMO1 alone, and as a ternary complex with RAC1, together with the crystal structure of a RHOG-ELMO2RBD complex. The binary DOCK2-ELMO1 complex adopts a closed, auto-inhibited conformation. Relief of auto-inhibition to an active, open state, due to a conformational change of the ELMO1 subunit, exposes binding sites for RAC1 on DOCK2DHR2, and RHOG and BAI GPCRs on ELMO1. Our structure explains how up-stream effectors, including DOCK2 and ELMO1 phosphorylation, destabilise the auto-inhibited state to promote an active GEF.
Collapse
Affiliation(s)
- Leifu Chang
- MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Jing Yang
- MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK
| | - Chang Hwa Jo
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Québec, H3T 1J4, Canada
| | - Andreas Boland
- MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK
- Department of Molecular Biology, Science III, University of Geneva, Geneva, Switzerland
| | - Ziguo Zhang
- MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK
| | | | - Afnan Abu-Thuraia
- Montreal Institute of Clinical Research (IRCM), Montréal, QC, H2W 1R7, Canada
| | - Ryan C Killoran
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Québec, H3T 1J4, Canada
| | - Matthew J Smith
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Québec, H3T 1J4, Canada
- Department of Pathology and Cell Biology, Faculty of Medicine, Université de Montréal, Montréal, QC, H3T 1J4, Canada
| | - Jean-Francois Côté
- Montreal Institute of Clinical Research (IRCM), Montréal, QC, H2W 1R7, Canada
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montréal, QC, H3C 3J7, Canada
- Department of Anatomy and Cell Biology, McGill University, Montréal, QC, H3A 0C7, Canada
| | - David Barford
- MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK.
| |
Collapse
|
24
|
AXL as a Target in Breast Cancer Therapy. JOURNAL OF ONCOLOGY 2020; 2020:5291952. [PMID: 32148495 PMCID: PMC7042526 DOI: 10.1155/2020/5291952] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 01/18/2020] [Indexed: 12/21/2022]
Abstract
AXL is a receptor tyrosine kinase (RTK) that has been implicated in diverse tumor-promoting processes such as proliferation, migration, invasion, survival, and apoptosis. AXL therefore plays a role in cancer progression, and AXL has been implicated in a wide variety of malignancies from solid tumors to hematopoietic cancers where it is often associated with poor prognosis. In cancer, AXL has been shown to promote epithelial to mesenchymal transition (EMT), metastasis formation, drug resistance, and a role for AXL in modulation of the tumor microenvironment and immune response has been identified. In light of these activities multiple AXL inhibitors have been developed, and several of these have entered clinical trials in the U.S. In breast cancer, high levels of AXL expression have been observed. The role of AXL in cancer with a focus on therapeutic implications for breast cancer is discussed.
Collapse
|
25
|
Burstyn-Cohen T, Maimon A. TAM receptors, Phosphatidylserine, inflammation, and Cancer. Cell Commun Signal 2019; 17:156. [PMID: 31775787 PMCID: PMC6881992 DOI: 10.1186/s12964-019-0461-0] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 10/11/2019] [Indexed: 01/26/2023] Open
Abstract
Abstract The numerous and diverse biological roles of Phosphatidylserine (PtdSer) are featured in this special issue. This review will focus on PtdSer as a cofactor required for stimulating TYRO3, AXL and MERTK – comprising the TAM family of receptor tyrosine kinases by their ligands Protein S (PROS1) and growth-arrest-specific 6 (GAS6) in inflammation and cancer. As PtdSer binding to TAMs is a requirement for their activation, the biological repertoire of PtdSer is now recognized to be broadened to include functions performed by TAMs. These include key homeostatic roles necessary for preserving a healthy steady state in different tissues, controlling inflammation and further additional roles in diseased states and cancer. The impact of PtdSer on inflammation and cancer through TAM signaling is a highly dynamic field of research. This review will focus on PtdSer as a necessary component of the TAM receptor-ligand complex, and for maximal TAM signaling. In particular, interactions between tumor cells and their immediate environment - the tumor microenvironment (TME) are highlighted, as both cancer cells and TME express TAMs and secrete their ligands, providing a nexus for a multifold of cross-signaling pathways which affects both immune cells and inflammation as well as tumor cell biology and growth. Here, we will highlight the current and emerging knowledge on the implications of PtdSer on TAM signaling, inflammation and cancer. Graphical Abstract ![]()
Collapse
Affiliation(s)
- Tal Burstyn-Cohen
- Institute for Dental Sciences, Faculty of Dental Medicine, The Hebrew University-Hadassah, Jerusalem, Israel.
| | - Avi Maimon
- Institute for Dental Sciences, Faculty of Dental Medicine, The Hebrew University-Hadassah, Jerusalem, Israel
| |
Collapse
|
26
|
Haqshenas G, Doerig C. Targeting of host cell receptor tyrosine kinases by intracellular pathogens. Sci Signal 2019; 12:12/599/eaau9894. [PMID: 31530732 DOI: 10.1126/scisignal.aau9894] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Intracellular pathogens use complex and tightly regulated processes to enter host cells. Upon initial interactions with signaling proteins at the surface of target cells, intracellular microbes activate and co-opt specific host signaling pathways that mediate cell surface-cytosol communications to facilitate pathogen internalization. Here, we discuss the roles of host receptor tyrosine kinases (RTKs) in the establishment of productive infections by major intracellular pathogens. We evaluate the gaps in the current understanding of this process and propose a comprehensive approach for assessing the role of host cell signaling in the biology of intracellular microorganisms and viruses. We also discuss RTK-targeting strategies for the treatment of various infections.
Collapse
Affiliation(s)
- Gholamreza Haqshenas
- Infection and Immunity, Monash Biomedicine Discovery Institute, and Department of Microbiology, Monash University, Clayton, VIC 3800, Australia.
| | - Christian Doerig
- Infection and Immunity, Monash Biomedicine Discovery Institute, and Department of Microbiology, Monash University, Clayton, VIC 3800, Australia. .,Centre for Chronic Infectious and Inflammatory Diseases, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia
| |
Collapse
|
27
|
Song J, Li P, Yuan GH, Jia Z, Zhang RL, Wang FB, Zhong GB, Li YN, Zhong DJ. Value of of ELMO1 gene methylation detection in early diagnosis of gastric cancer. Shijie Huaren Xiaohua Zazhi 2019; 27:1055-1061. [DOI: 10.11569/wcjd.v27.i17.1055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Gastric cancer (GC) is a malignant tumor that seriously endangers human health. Its morbidity and mortality rank second and first, respectively, among malignant tumors in China. It is difficult to diagnose early. Therefore, finding new markers for GC diagnosis is very important to improve the early detection rate and prognosis of GC. At present, there are few reports on the diagnostic value of engulfment and cell motility 1 (ELMO1) gene methylation in GC.
AIM To explore the relationship between the methylation of ELMO1 gene and GC in order to provide new ideas for early diagnosis of this malignancy.
METHODS From January 2017 to August 2018, 20 cases of chronic superficial gastritis, 20 cases of chronic atrophic gastritis, and 37 cases of GC (15 cases of early GC and 22 cases of advanced GC) were selected. The gastric juice and biopsy were collected at the same time. Methylation-specific polymerase chain reaction was used to detect the methylation level of ELMO1 gene in the three groups, and the correlation between ELMO1 gene methylation and the occurrence, stage, and metastasis of GC was analyzed.
RESULTS The methylation rate of ELMO1 gene in tissues and gastric juice of chronic superficial gastritis, chronic atrophic gastritis, and GC were 0%, 20.5%, and 93.3% (P < 0.01), and 0%, 12.3%, and 76.7% (P < 0.05), respectively. The methylation rate of ELMO1 gene in adjacent tissue DNA was 96.7%, which was not significantly different from that in the GC group (P > 0.05). The methylation rates of ELMO1 gene in gastric juice of patients with early GC and advanced GC were 73.3% and 80.0%, respectively. The methylation rates of ELMO1 gene in the two tissues were 86.7% and 100%, respectively. There was no significant difference between them in both gastric juice and tissues (P > 0.05).
CONCLUSION The promoter region of ELMO1 gene in gastric juice DNA and pathological tissues of patients with GC is hypermethylated, which has high consistency. ELMO1 gene methylation can be used as a molecular target for early diagnosis of GC, and gastric juice can be used as a good clinical sample for detection of ELMO1 gene methylation.
Collapse
Affiliation(s)
- Jian Song
- Department of Digestive Endoscopy, Hainan Cancer Hospital, Haikou 570123, Hainan Province, China
| | - Ping Li
- Department of Digestive Endoscopy, Hainan Cancer Hospital, Haikou 570123, Hainan Province, China
| | - Gui-Hong Yuan
- Department of Digestive Endoscopy, Hainan Cancer Hospital, Haikou 570123, Hainan Province, China
| | - Zhen Jia
- Department of Anesthesiology, Hainan Cancer Hospital, Haikou 570123, Hainan Province, China
| | - Rong-Lin Zhang
- Department of Digestive Endoscopy, Hainan Cancer Hospital, Haikou 570123, Hainan Province, China
| | - Fa-Bao Wang
- Department of Pathology, Hainan Cancer Hospital, Haikou 570123, Hainan Province, China
| | - Guo-Bing Zhong
- Central Laboratory of Hainan Cancer Hospital, Haikou 570123, Hainan Province, China
| | - Yi-Ni Li
- Department of Digestive Endoscopy, Hainan Cancer Hospital, Haikou 570123, Hainan Province, China
| | - Dun-Jing Zhong
- Department of Digestive Endoscopy, Hainan Cancer Hospital, Haikou 570123, Hainan Province, China
| |
Collapse
|
28
|
Pan C, Zhang Y, Meng Q, Dai G, Jiang Z, Bao H. Down Regulation of the Expression of ELMO3 by COX2 Inhibitor Suppresses Tumor Growth and Metastasis in Non-Small-Cell Lung Cancer. Front Oncol 2019; 9:363. [PMID: 31134158 PMCID: PMC6515945 DOI: 10.3389/fonc.2019.00363] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 04/18/2019] [Indexed: 01/04/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) is one of the most common malignancies. Studies have shown that engulfment and cell motility 3 (ELMO3) is highly expressed in NSCLC and can be used as a novel biomarker, but its underlying mechanism remains to be explored. The aim of this study was to investigate the mechanism by which ELMO3 may be down-regulated by COX-2 inhibitors to inhibit NSCLC. NSCLC tissue and adjacent normal lung tissue from 24 patients were used to detect the mRNA and protein expression of ELMO3, COX-2, and other related proteins by Western blot, RT-PCR, and Immunohistochemical analysis. Lewis Lung carcinoma (LLC) cells were used to investigate the effects and the mechanism of siELMO3 and COX-2 inhibitor. C57BL/6 mice inoculated with LLC cells by subcutaneous (s.c.) injection were used to detect the in vivo effects of cox-2 inhibitor. The expression of ELMO3 and cyclooxygenase-2 (COX-2) in human NSCLC tissues was significantly increased compared with that in the adjacent normal tissues. ELMO3 exhibited a positive correlation with COX-2 expression. Moreover, knockdown of ELMO3 suppressed the epithelial-mesenchymal transition (EMT), adhesion, and metastasis of Lewis lung carcinoma (LLC) cells. Importantly, Parecoxib, a selective inhibitor of COX-2, significantly reduced the expression of ELMO3 and EMT in LLC cells and LLC-bearing mice. Furthermore, it could inhibit the growth, adhesion and metastasis of LLC cells in vitro. Our results demonstrate that down regulation of ELMO3 suppressed growth and metastasis of lung cancer by inhibiting EMT. Parecoxib could reduce ELMO3 expression and suppress growth and metastasis of lung cancer, which might be a useful chemotherapeutic agent for inhibiting metastasis and recurrence of NSCLC.
Collapse
Affiliation(s)
- Cailong Pan
- Department of Anesthesiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yong Zhang
- Department of Anesthesiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Qinghai Meng
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Guoliang Dai
- Department of Clinical Pharmacology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhitao Jiang
- Department of Pharmacy Office, Zhangjiagang Hospital of Traditional Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, China
| | - Hongguang Bao
- Department of Anesthesiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
29
|
Du W, Brekken RA. Does Axl have potential as a therapeutic target in pancreatic cancer? Expert Opin Ther Targets 2018; 22:955-966. [PMID: 30244621 PMCID: PMC6292430 DOI: 10.1080/14728222.2018.1527315] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Pancreatic cancer is a leading cause of cancer-related death. Metastasis, therapy resistance, and immunosuppression are dominant characteristics of pancreatic tumors. Strategies that enhance the efficacy of standard of care and/or immune therapy are likely the most efficient route to improve overall survival in this disease. Areas covered: Axl, a member of the TAM (Tyro3, Axl, MerTK) family of receptor tyrosine kinases, is involved in cell plasticity, chemoresistance, immune suppression, and metastasis in various cancers, including pancreatic cancer. This review provides an overview of Axl and its function in normal conditions, summarizes the regulation and function of Axl in cancer, and highlights the contribution of Axl to pancreatic cancer as well as its potential as a therapeutic target. Expert opinion: Axl is an attractive therapeutic target in pancreatic cancer because it contributes to many of the roadblocks that hamper therapeutic efficacy. Clinical evidence supporting Axl inhibition in pancreatic cancer is currently limited; however, multiple clinical trials have been initiated or are in the planning phase to test the effect of inhibiting Axl in conjunction with standard therapy in pancreatic cancer patients. We anticipate that these studies will provide robust validation of Axl as a therapeutic target in pancreatic cancer.
Collapse
|
30
|
Li W, Xiong X, Abdalla A, Alejo S, Zhu L, Lu F, Sun H. HGF-induced formation of the MET-AXL-ELMO2-DOCK180 complex promotes RAC1 activation, receptor clustering, and cancer cell migration and invasion. J Biol Chem 2018; 293:15397-15418. [PMID: 30108175 PMCID: PMC6177597 DOI: 10.1074/jbc.ra118.003063] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 07/23/2018] [Indexed: 12/25/2022] Open
Abstract
The MET proto-oncogene-encoded receptor tyrosine kinase (MET) and AXL receptor tyrosine kinase (AXL) are independently operating receptor tyrosine kinases (RTKs) that are functionally associated with aggressive and invasive cancer cell growth. However, how MET and AXL regulate the migratory properties of cancer cells remains largely unclear. We report here that the addition of hepatocyte growth factor (HGF), the natural ligand of MET, to serum-starved human glioblastoma cells induces the rapid activation of both MET and AXL and formation of highly polarized MET-AXL clusters on the plasma membrane. HGF also promoted the formation of the MET and AXL protein complexes and phosphorylation of AXL, independent of AXL's ligand, growth arrest-specific 6 (GAS6). The HGF-induced MET-AXL complex stimulated rapid and dynamic cytoskeleton reorganization by activating the small GTPase RAC1, a process requiring both MET and AXL kinase activities. We further found that HGF also promotes the recruitment of ELMO2 and DOCK180, a bipartite guanine nucleotide exchange factor for RAC1, to the MET-AXL complex and thereby stimulates the RAC1-dependent cytoskeleton reorganization. We also demonstrated that the MET-AXL-ELMO2-DOCK180 complex is critical for HGF-induced cell migration and invasion in glioblastoma or other cancer cells. Our findings uncover a critical HGF-dependent signaling pathway that involves the assembly of a large protein complex consisting of MET, AXL, ELMO2, and DOCK180 on the plasma membrane, leading to RAC1-dependent cell migration and invasion in various cancer cells.
Collapse
Affiliation(s)
- Wenjing Li
- From the Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Nevada 89154-4003 and
- the School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, Guangdong 518055, China
| | - Xiahui Xiong
- From the Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Nevada 89154-4003 and
| | - Amro Abdalla
- From the Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Nevada 89154-4003 and
| | - Salvador Alejo
- From the Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Nevada 89154-4003 and
| | - Linyu Zhu
- From the Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Nevada 89154-4003 and
| | - Fei Lu
- the School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, Guangdong 518055, China
| | - Hong Sun
- From the Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Nevada 89154-4003 and
| |
Collapse
|
31
|
Lu L, Kok CH, Saunders VA, Wang J, McLean JA, Hughes TP, White DL. Modelling ponatinib resistance in tyrosine kinase inhibitor-naïve and dasatinib resistant BCR-ABL1+ cell lines. Oncotarget 2018; 9:34735-34747. [PMID: 30410673 PMCID: PMC6205183 DOI: 10.18632/oncotarget.26187] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 09/15/2018] [Indexed: 11/25/2022] Open
Abstract
TKI resistance remains a major impediment to successful treatment of CML. In this study, we investigated the emerging modes of ponatinib resistance in TKI-naïve and dasatinib resistant BCR-ABL1+ cell lines. To investigate potential resistance mechanisms, ponatinib resistance was generated in BCR-ABL1+ cell-lines by long-term exposure to increasing concentrations of ponatinib. Two cell lines with prior dasatinib resistance demonstrated BCR-ABL1 kinase domain (KD) mutation(s) upon exposure to ponatinib. In one of these cell lines the T315I mutation had emerged during dasatinib exposure. When further cultured with ponatinib, the T315I mutation level and BCR-ABL1 mRNA expression level were increased. In the other cell line, compound mutations G250E/E255K developed with ponatinib exposure. In contrast, the ponatinib resistant cell lines that had no prior exposure to other TKIs (TKI-naïve) did not develop BCR-ABL1 KD mutations. Rather, both of these cell lines demonstrated Bcr-Abl-independent resistance via Axl overexpression. Axl, a receptor tyrosine kinase, has previously been associated with imatinib and nilotinib resistance. Ponatinib sensitivity was restored following Axl inhibition or shRNA-mediated-knockdown of Axl, suggesting that Axl was the primary driver of resistance and a potential target for therapy in this setting.
Collapse
Affiliation(s)
- Liu Lu
- South Australian Health and Medical Research Institute (SAHMRI), Cancer Theme, Adelaide, SA, Australia.,School of Medicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Chung Hoow Kok
- South Australian Health and Medical Research Institute (SAHMRI), Cancer Theme, Adelaide, SA, Australia.,School of Medicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Verity Ann Saunders
- South Australian Health and Medical Research Institute (SAHMRI), Cancer Theme, Adelaide, SA, Australia
| | - Jueqiong Wang
- Australian Centre for Blood Diseases, Monash University, Melbourne, VIC, Australia
| | - Jennifer Anne McLean
- South Australian Health and Medical Research Institute (SAHMRI), Cancer Theme, Adelaide, SA, Australia
| | - Timothy Peter Hughes
- South Australian Health and Medical Research Institute (SAHMRI), Cancer Theme, Adelaide, SA, Australia.,School of Medicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia.,Department of Haematology, SA Pathology, Adelaide, SA, Australia
| | - Deborah Lee White
- South Australian Health and Medical Research Institute (SAHMRI), Cancer Theme, Adelaide, SA, Australia.,School of Medicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia.,Discipline of Paediatrics, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia.,School of Biological Sciences, Faculty of Sciences, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
32
|
Silencing ELMO3 Inhibits the Growth, Invasion, and Metastasis of Gastric Cancer. BIOMED RESEARCH INTERNATIONAL 2018; 2018:3764032. [PMID: 30345300 PMCID: PMC6174816 DOI: 10.1155/2018/3764032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 09/03/2018] [Indexed: 12/19/2022]
Abstract
ELMO3 is a member of the engulfment and cell motility (ELMO) protein family, which plays a vital role in the process of chemotaxis and metastasis of tumor cells. However, remarkably little is known about the role of ELMO3 in cancer. The present study was conducted to investigate the function and role of ELMO3 in gastric cancer (GC) progression. The expression level of ELMO3 in gastric cancer tissues and cell lines was measured by means of real-time quantitative PCR (qPCR) and Western blot analysis. RNA interference was used to inhibit ELMO3 expression in gastric cancer cells. Then, wound-healing assays, Transwell assays, MTS assays, flow cytometry, and fluorescence microscopy were applied to detect cancer cell migration, cell invasion, cell proliferation, the cell cycle, and F-actin polymerization, respectively. The results revealed that ELMO3 expression in GC tumor tissues was significantly higher than in the paired adjacent tissues. Moreover, knockdown of ELMO3 by a specific siRNA significantly inhibited the processes of cell proliferation, invasion, metastasis, regulation of the cell cycle, and F-actin polymerization. Collectively, the results indicate that ELMO3 participates in the processes of cell growth, invasion, and migration, and ELMO3 is expected to be a potential diagnostic and prognostic marker for GC.
Collapse
|
33
|
Elevated Expression of AXL May Contribute to the Epithelial-to-Mesenchymal Transition in Inflammatory Bowel Disease Patients. Mediators Inflamm 2018; 2018:3241406. [PMID: 30140167 PMCID: PMC6081531 DOI: 10.1155/2018/3241406] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 05/27/2018] [Accepted: 06/12/2018] [Indexed: 12/19/2022] Open
Abstract
Understanding the molecular mechanisms inducing and regulating epithelial-to-mesenchymal transition (EMT) upon chronic intestinal inflammation is critical for understanding the exact pathomechanism of inflammatory bowel disease (IBD). The aim of this study was to determine the expression profile of TAM family receptors in an inflamed colon. For this, we used a rat model of experimental colitis and also collected samples from colons of IBD patients. Samples were taken from both inflamed and uninflamed regions of the same colon; the total RNA was isolated, and the mRNA and microRNA expressions were monitored. We have determined that AXL is highly induced in active-inflamed colon, which is accompanied with reduced expression of AXL-regulating microRNAs. In addition, the expression of genes responsible for inducing or maintaining mesenchymal phenotype, such as SNAI1, ZEB2, VIM, MMP9, and HIF1α, were all significantly induced in the active-inflamed colon of IBD patients while the epithelial marker E-cadherin (CDH1) was downregulated. We also show that, in vitro, monocytic and colonic epithelial cells increase the expression of AXL in response to LPS or TNFα stimuli, respectively. In summary, we identified several interacting genes and microRNAs with mutually exclusive expression pattern in active-inflamed colon of IBD patients. Our results shed light onto a possible AXL- and microRNA-mediated regulation influencing epithelial-to-mesenchymal transition in IBD.
Collapse
|
34
|
DNA Methylation Levels of the ELMO Gene Promoter CpG Islands in Human Glioblastomas. Int J Mol Sci 2018; 19:ijms19030679. [PMID: 29495584 PMCID: PMC5877540 DOI: 10.3390/ijms19030679] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 02/13/2018] [Accepted: 02/23/2018] [Indexed: 02/07/2023] Open
Abstract
Complete surgical resection of glioblastoma is difficult due to the invasive nature of this primary brain tumor, for which the molecular mechanisms behind remain poorly understood. The three human ELMO genes play key roles in cellular motility, and have been linked to metastasis and poor prognosis in other cancer types. The aim of this study was to investigate methylation levels of the ELMO genes and their correlation to clinical characteristics and outcome in patients diagnosed with glioblastoma. To measure DNA methylation levels we designed pyrosequencing assays targeting the promoter CpG island of each the ELMO genes. These were applied to diagnostic tumor specimens from a well-characterized cohort of 121 patients who received standard treatment consisting of surgery, radiation therapy, plus concomitant and adjuvant chemotherapy. The promoter methylation levels of ELMO1 and ELMO2 were generally low, whereas ELMO3 methylation levels were high, in the tumor biopsies. Thirteen, six, and 18 biopsies were defined as aberrantly methylated for ELMO1, ELMO2, and ELMO3, respectively. There were no significant associations between the methylation status of any of the ELMO gene promoter CpG islands and overall survival, progression-free survival, and clinical characteristics of the patients including intracranial tumor location. Therefore, the methylation status of the ELMO gene promoter CpG islands is unlikely to have prognostic value in glioblastoma.
Collapse
|
35
|
Suppression of the metastatic spread of breast cancer by DN10764 (AZD7762)-mediated inhibition of AXL signaling. Oncotarget 2018; 7:83308-83318. [PMID: 27829217 PMCID: PMC5347771 DOI: 10.18632/oncotarget.13088] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 10/21/2016] [Indexed: 11/26/2022] Open
Abstract
Breast cancer is the most common malignant disease occurring in women and represents a substantial proportion of the global cancer burden. In these patients, metastasis but not the primary tumor is the main cause of breast cancer-related deaths. Here, we report the novel finding that DN10764 (AZD7762, a selective inhibitor of checkpoint kinases 1 and 2) can suppress breast cancer metastasis. In breast cancer cells, DN10764 inhibited cell proliferation and GAS6-mediated AXL signaling, consequently resulting in suppressed migration and invasion. In addition, DN10764 induced caspase 3/7-mediated apoptosis in breast cancer cells and inhibited tube formation of human umbilical vein endothelial cells. Finally, DN10764 significantly suppressed the tumor growth and metastasis of breast cancer cells in in vivo metastasis models. Taken together, these data suggest that therapeutic strategies targeting AXL in combination with systemic therapies could improve responses to anti-cancer therapies and reduce breast cancer recurrence and metastases.
Collapse
|
36
|
Zhang G, Wang M, Zhao H, Cui W. Function of Axl receptor tyrosine kinase in non-small cell lung cancer. Oncol Lett 2017; 15:2726-2734. [PMID: 29434997 DOI: 10.3892/ol.2017.7694] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 11/07/2017] [Indexed: 11/06/2022] Open
Abstract
Axl receptor tyrosine kinase (hereafter Axl) is a member of the tyrosine-protein kinase receptor Tyro3, Axl and proto-oncogene tyrosine-protein kinase Mer family of receptor tyrosine kinases, possessing multiple different functions in normal cells. Axl is overexpressed and activated in numerous different human cancer types, triggering several signaling pathways and enhancing tumor progression. The present review assesses previous studies on the function of Axl in non-small cell lung cancer (NSCLC). Axl is overexpressed in the tumor tissues of a number of patients with NSCLC and is associated with poorer clinical outcomes; it promotes NSCLC tumor growth, invasion/metastasis, drug resistance and the epithelial-mesenchymal transition, thus providing a survival advantage to tumor cells. Therefore, Axl may be a promising target in NSCLC treatment.
Collapse
Affiliation(s)
- Guoan Zhang
- Cancer Pathology Research Institute, Jining Medical University, Jining, Shandong 272067, P.R. China
| | - Meng Wang
- Department of Oncology, Shandong Jining First People's Hospital, Jining, Shandong 272111, P.R. China
| | - Hongli Zhao
- Department of Gastroenterology, Shandong Control Center for Digestive Diseases, Jining, Shandong 272033, P.R. China
| | - Wen Cui
- Cancer Pathology Research Institute, Jining Medical University, Jining, Shandong 272067, P.R. China
| |
Collapse
|
37
|
Cell softening in malignant progression of human lung cancer cells by activation of receptor tyrosine kinase AXL. Sci Rep 2017; 7:17770. [PMID: 29259259 PMCID: PMC5736582 DOI: 10.1038/s41598-017-18120-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 12/05/2017] [Indexed: 01/28/2023] Open
Abstract
To study the role of cell softening in malignant progression, Transwell assay and atomic force microscope were used to classify six human non-small cell lung cancer cell lines into two groups: a high motility-low stiffness (HMLS) group and a low motility-high stiffness (LMHS) group. We found a significant role of activity of the AXL receptor tyrosine kinase, which belongs to the TAM (Tyro3, AXL, Mer) family, in the stimulation of motility and cell softening. HMLS cells expressed higher AXL levels than LMHS cells and contained phosphorylated AXL. H1703 LMHS cells transfected with exogenous AXL exhibited increased motility and decreased stiffness, with low levels of actin stress fibre formation. Conversely, the AXL-specific inhibitor R428 and AXL-targeting siRNA reduced motility and increased stiffness in H1299 HMLS cells. Knockdown of AXL stimulated actin stress fibre formation, which inhibited tumour formation in a mouse xenograft model. The Ras/Rac inhibitor SCH 51344, which blocks disruption of actin stress fibres, exerted similar effects to AXL inactivation. We therefore propose that the Ras/Rac pathway operates downstream of AXL. Thus, AXL activation-induced cell softening promotes malignant progression in non-small cell lung cancer and represents a key biophysical property of cancer cells.
Collapse
|
38
|
Integrative radiogenomic analysis for multicentric radiophenotype in glioblastoma. Oncotarget 2017; 7:11526-38. [PMID: 26863628 PMCID: PMC4905491 DOI: 10.18632/oncotarget.7115] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 01/18/2016] [Indexed: 12/16/2022] Open
Abstract
We postulated that multicentric glioblastoma (GBM) represents more invasiveness form than solitary GBM and has their own genomic characteristics. From May 2004 to June 2010 we retrospectively identified 51 treatment-naïve GBM patients with available clinical information from the Samsung Medical Center data registry. Multicentricity of the tumor was defined as the presence of multiple foci on the T1 contrast enhancement of MR images or having high signal for multiple lesions without contiguity of each other on the FLAIR image. Kaplan-Meier survival analysis demonstrated that multicentric GBM had worse prognosis than solitary GBM (median, 16.03 vs. 20.57 months, p < 0.05). Copy number variation (CNV) analysis revealed there was an increase in 11 regions, and a decrease in 17 regions, in the multicentric GBM. Gene expression profiling identified 738 genes to be increased and 623 genes to be decreased in the multicentric radiophenotype (p < 0.001). Integration of the CNV and expression datasets identified twelve representative genes: CPM, LANCL2, LAMP1, GAS6, DCUN1D2, CDK4, AGAP2, TSPAN33, PDLIM1, CLDN12, and GTPBP10 having high correlation across CNV, gene expression and patient outcome. Network and enrichment analyses showed that the multicentric tumor had elevated fibrotic signaling pathways compared with a more proliferative and mitogenic signal in the solitary tumors. Noninvasive radiological imaging together with integrative radiogenomic analysis can provide an important tool in helping to advance personalized therapy for the more clinically aggressive subset of GBM.
Collapse
|
39
|
Abstract
A major challenge in anticancer treatment is the pre-existence or emergence of resistance to therapy. AXL and MER are two members of the TAM (TYRO3-AXL-MER) family of receptor tyrosine kinases, which, when activated, can regulate tumor cell survival, proliferation, migration and invasion, angiogenesis, and tumor-host interactions. An increasing body of evidence strongly suggests that these receptors play major roles in resistance to targeted therapies and conventional cytotoxic agents. Multiple resistance mechanisms exist, including the direct and indirect crosstalk of AXL and MER with other receptors and the activation of feedback loops regulating AXL and MER expression and activity. These mechanisms may be innate, adaptive, or acquired. A principal role of AXL appears to be in sustaining a mesenchymal phenotype, itself a major mechanism of resistance to diverse anticancer therapies. Both AXL and MER play a role in the repression of the innate immune response which may also limit response to treatment. Small molecule and antibody inhibitors of AXL and MER have recently been described, and some of these have already entered clinical trials. The optimal design of treatment strategies to maximize the clinical benefit of these AXL and MER targeting agents are discussed in relation to the different cancer types and the types of resistance encountered. One of the major challenges to successful development of these therapies will be the application of robust predictive biomarkers for clear-cut patient stratification.
Collapse
|
40
|
Fond AM, Ravichandran KS. Clearance of Dying Cells by Phagocytes: Mechanisms and Implications for Disease Pathogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 930:25-49. [PMID: 27558816 PMCID: PMC6721615 DOI: 10.1007/978-3-319-39406-0_2] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The efficient clearance of apoptotic cells is an evolutionarily conserved process crucial for homeostasis in multicellular organisms. The clearance involves a series of steps that ultimately facilitates the recognition of the apoptotic cell by the phagocytes and the subsequent uptake and processing of the corpse. These steps include the phagocyte sensing of "find-me" signals released by the apoptotic cell, recognizing "eat-me" signals displayed on the apoptotic cell surface, and then intracellular signaling within the phagocyte to mediate phagocytic cup formation around the corpse and corpse internalization, and the processing of the ingested contents. The engulfment of apoptotic cells by phagocytes not only eliminates debris from tissues but also produces an anti-inflammatory response that suppresses local tissue inflammation. Conversely, impaired corpse clearance can result in loss of immune tolerance and the development of various inflammation-associated disorders such as autoimmunity, atherosclerosis, and airway inflammation but can also affect cancer progression. Recent studies suggest that the clearance process can also influence antitumor immune responses. In this review, we will discuss how apoptotic cells interact with their engulfing phagocytes to generate important immune responses, and how modulation of such responses can influence pathology.
Collapse
Affiliation(s)
- Aaron M Fond
- Center for Cell Clearance, and the Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, 22908, USA
| | - Kodi S Ravichandran
- Center for Cell Clearance, and the Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, 22908, USA.
| |
Collapse
|
41
|
Hernández-Vásquez MN, Adame-García SR, Hamoud N, Chidiac R, Reyes-Cruz G, Gratton JP, Côté JF, Vázquez-Prado J. Cell adhesion controlled by adhesion G protein-coupled receptor GPR124/ADGRA2 is mediated by a protein complex comprising intersectins and Elmo-Dock. J Biol Chem 2017; 292:12178-12191. [PMID: 28600358 DOI: 10.1074/jbc.m117.780304] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 05/30/2017] [Indexed: 11/06/2022] Open
Abstract
Developmental angiogenesis and the maintenance of the blood-brain barrier involve endothelial cell adhesion, which is linked to cytoskeletal dynamics. GPR124 (also known as TEM5/ADGRA2) is an adhesion G protein-coupled receptor family member that plays a pivotal role in brain angiogenesis and in ensuring a tight blood-brain barrier. However, the signaling properties of GPR124 remain poorly defined. Here, we show that ectopic expression of GPR124 promotes cell adhesion, additive to extracellular matrix-dependent effect, coupled with filopodia and lamellipodia formation and an enrichment of a pool of the G protein-coupled receptor at actin-rich cellular protrusions containing VASP, a filopodial marker. Accordingly, GPR124-expressing cells also displayed increased activation of both Rac and Cdc42 GTPases. Mechanistically, we uncover novel direct interactions between endogenous GPR124 and the Rho guanine nucleotide exchange factors Elmo/Dock and intersectin (ITSN). Small fragments of either Elmo or ITSN1 that bind GPR124 blocked GPR124-induced cell adhesion. In addition, Gβγ interacts with the C-terminal tail of GPR124 and promotes the formation of a GPR124-Elmo complex. Furthermore, GPR124 also promotes the activation of the Elmo-Dock complex, as measured by Elmo phosphorylation on a conserved C-terminal tyrosine residue. Interestingly, Elmo and ITSN1 also interact with each other independently of their GPR124-recognition regions. Moreover, endogenous phospho-Elmo and ITSN1 co-localize with GPR124 at lamellipodia of adhering endothelial cells, where GPR124 expression contributes to polarity acquisition during wound healing. Collectively, our results indicate that GPR124 promotes cell adhesion via Elmo-Dock and ITSN. This constitutes a previously unrecognized complex formed of atypical and conventional Rho guanine nucleotide exchange factors for Rac and Cdc42 that is putatively involved in GPR124-dependent angiogenic responses.
Collapse
Affiliation(s)
- Magda Nohemí Hernández-Vásquez
- Department of Pharmacology, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), Mexico City 14740, Mexico
| | - Sendi Rafael Adame-García
- Department of Cell Biology, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), Mexico City 14740, Mexico
| | - Noumeira Hamoud
- Institut de Recherches Cliniques de Montréal, Université de Montréal, Montreal, Quebec H3T 1J4, Canada
| | - Rony Chidiac
- Department of Pharmacology, Faculty of Medicine, Université de Montréal, Montreal, Quebec H3T 1J4, Canada
| | - Guadalupe Reyes-Cruz
- Department of Cell Biology, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), Mexico City 14740, Mexico
| | - Jean Philippe Gratton
- Department of Pharmacology, Faculty of Medicine, Université de Montréal, Montreal, Quebec H3T 1J4, Canada
| | - Jean-François Côté
- Institut de Recherches Cliniques de Montréal, Université de Montréal, Montreal, Quebec H3T 1J4, Canada
| | - José Vázquez-Prado
- Department of Pharmacology, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), Mexico City 14740, Mexico.
| |
Collapse
|
42
|
Badowski C, Sim AYL, Verma C, Szeverényi I, Natesavelalar C, Terron-Kwiatkowski A, Harper J, O'Toole EA, Lane EB. Modeling the Structure of Keratin 1 and 10 Terminal Domains and their Misassembly in Keratoderma. J Invest Dermatol 2017; 137:1914-1923. [PMID: 28526297 DOI: 10.1016/j.jid.2017.03.038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 03/05/2017] [Accepted: 03/20/2017] [Indexed: 02/04/2023]
Abstract
The terminal domains of suprabasal keratins of the skin epithelium are very resistant to evidence-based structural analysis because of their inherent flexibility and lack of predictable structure. We present a model for the structure and interactions of the head and tail domains of epidermal keratins 1 and 10, based on all-atom 3D simulations of keratin primary amino acid sequences, and tyrosine phosphorylation predictions, extracted from published databases. We observed that keratin 1 and 10 end domains are likely to form a tetrameric terminal domain complex incorporating a reversibly extendable region potentially acting as a molecular spring. This structure is formed by intermolecular stacking of aromatic residues, which would spatially constrain the keratin 1/keratin 10 end domains to allow filament compaction and bundling, whilst also retaining extensibility to ensure flexibility of the keratin filament network in the differentiating epidermis. The tetrameric terminal domain complex model may also help to elucidate the effects of mutations in the end domains of suprabasal keratins and so contribute to understanding of the mechanisms leading to keratinopathies such as striate palmoplantar keratoderma, as reported in this study.
Collapse
Affiliation(s)
- Cedric Badowski
- Institute of Medical Biology (A*STAR) & Skin Research Institute of Singapore, Immunos, Singapore
| | | | - Chandra Verma
- Bioinformatics Institute (A*STAR), Matrix, Singapore
| | - Ildikó Szeverényi
- Institute of Medical Biology (A*STAR) & Skin Research Institute of Singapore, Immunos, Singapore
| | | | | | - John Harper
- University College London Institute of Child Health, London, UK
| | - Edel A O'Toole
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - E Birgitte Lane
- Institute of Medical Biology (A*STAR) & Skin Research Institute of Singapore, Immunos, Singapore.
| |
Collapse
|
43
|
Knockdown of ELMO3 Suppresses Growth, Invasion and Metastasis of Colorectal Cancer. Int J Mol Sci 2016; 17:ijms17122119. [PMID: 27999268 PMCID: PMC5187919 DOI: 10.3390/ijms17122119] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 12/05/2016] [Accepted: 12/12/2016] [Indexed: 01/08/2023] Open
Abstract
The engulfment and cell motility (ELMOs) family of proteins plays a crucial role in tumor cell migration and invasion. However, the function of ELMO3 is poorly defined. To elucidate its role in the development and progression of colorectal cancer (CRC), we examined the expression of ELMO3 in 45 cases of paired CRC tumor tissues and adjacent normal tissues. Furthermore, we assessed the effect of the knockdown of ELMO3 on cell proliferation, cell cycle, migration, invasion and F-actin polymerization in HCT116 cells. The result shows that the expression of ELMO3 in CRC tissues was significantly increased in comparison to the adjacent normal colorectal tissues. Moreover, this overexpression was associated with tumor size (p = 0.007), tumor differentiation (p = 0.001), depth of invasion (p = 0.009), lymph node metastasis (p = 0.003), distant metastasis (p = 0.013) and tumor, node, metastasis (TNM)-based classification (p = 0.000). In in vitro experiments, the silencing of ELMO3 inhibited cell proliferation, invasion, metastasis, and F-actin polymerization, and induced Gap 1 (G1) phase cell cycle arrest. Our study demonstrates that ELMO3 is involved in the processes of growth, invasion and metastasis of CRC, and could be used a potential molecular diagnostic tool or therapy target of CRC.
Collapse
|
44
|
The Receptor Tyrosine Kinase AXL in Cancer Progression. Cancers (Basel) 2016; 8:cancers8110103. [PMID: 27834845 PMCID: PMC5126763 DOI: 10.3390/cancers8110103] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 10/26/2016] [Accepted: 11/03/2016] [Indexed: 02/06/2023] Open
Abstract
The AXL receptor tyrosine kinase (AXL) has emerged as a promising therapeutic target for cancer therapy. Recent studies have revealed a central role of AXL signaling in tumor proliferation, survival, stem cell phenotype, metastasis, and resistance to cancer therapy. Moreover, AXL is expressed within cellular components of the tumor microenvironment where AXL signaling contributes to the immunosuppressive and protumorigenic phenotypes. A variety of AXL inhibitors have been developed and are efficacious in preclinical studies. These agents offer new opportunities for therapeutic intervention in the prevention and treatment of advanced disease. Here we review the literature that has illuminated the cellular and molecular mechanisms by which AXL signaling promotes tumor progression and we will discuss the therapeutic potential of AXL inhibition for cancer therapy.
Collapse
|
45
|
Penberthy KK, Ravichandran KS. Apoptotic cell recognition receptors and scavenger receptors. Immunol Rev 2016; 269:44-59. [PMID: 26683144 DOI: 10.1111/imr.12376] [Citation(s) in RCA: 141] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Phosphatidylserine recognition receptors are a highly diverse set of receptors grouped by their ability to recognize the 'eat-me' signal phosphatidylserine on apoptotic cells. Most of the phosphatidylserine recognition receptors dampen inflammation by inducing the production of anti-inflammatory mediators during the phagocytosis of apoptotic corpses. However, many phosphatidylserine receptors are also capable of recognizing other ligands, with some receptors being categorized as scavenger receptors. It is now appreciated that these receptors can elicit different downstream events for particular ligands. Therefore, how phosphatidylserine recognition receptors mediate specific signals during recognition of apoptotic cells versus other ligands, and how this might help regulate the inflammatory state of a tissue is an important question that is not fully understood. Here, we revisit the work on signaling downstream of the phosphatidylserine recognition receptor BAI1, and evaluate how these and other signaling modules mediate signaling downstream from other receptors, including Stabilin-2, MerTK, and αvβ5. We also propose the concept that phosphatidylserine recognition receptors could be viewed as a subset of scavenger receptors that are capable of eliciting anti-inflammatory responses to apoptotic cells.
Collapse
Affiliation(s)
- Kristen K Penberthy
- Department of Microbiology, Immunology, and Cancer Biology, Center for Cell Clearance, University of Virginia, Charlottesville, VA, USA
| | - Kodi S Ravichandran
- Department of Microbiology, Immunology, and Cancer Biology, Center for Cell Clearance, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
46
|
Noubissi FK, Ogle BM. Cancer Cell Fusion: Mechanisms Slowly Unravel. Int J Mol Sci 2016; 17:ijms17091587. [PMID: 27657058 PMCID: PMC5037852 DOI: 10.3390/ijms17091587] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 08/26/2016] [Accepted: 09/12/2016] [Indexed: 01/15/2023] Open
Abstract
Although molecular mechanisms and signaling pathways driving invasion and metastasis have been studied for many years, the origin of the population of metastatic cells within the primary tumor is still not well understood. About a century ago, Aichel proposed that cancer cell fusion was a mechanism of cancer metastasis. This hypothesis gained some support over the years, and recently became the focus of many studies that revealed increasing evidence pointing to the possibility that cancer cell fusion probably gives rise to the metastatic phenotype by generating widespread genetic and epigenetic diversity, leading to the emergence of critical populations needed to evolve resistance to the treatment and development of metastasis. In this review, we will discuss the clinical relevance of cancer cell fusion, describe emerging mechanisms of cancer cell fusion, address why inhibiting cancer cell fusion could represent a critical line of attack to limit drug resistance and to prevent metastasis, and suggest one new modality for doing so.
Collapse
Affiliation(s)
| | - Brenda M Ogle
- Department of Biomedical Engineering, University of Minnesota-Twin Cities, Minneapolis, MN 55455, USA.
- Stem Cell Institute, University of Minnesota-Twin Cities, Minneapolis, MN 55455, USA.
- Masonic Cancer Center, University of Minnesota-Twin Cities, Minneapolis, MN 55455, USA.
- Lillehei Heart Institute, University of Minnesota-Twin Cities, Minneapolis, MN 55455, USA.
- Institute for Engineering and Medicine, University of Minnesota-Twin Cities, Minneapolis, MN 55455, USA.
| |
Collapse
|
47
|
Vázquez-Prado J, Bracho-Valdés I, Cervantes-Villagrana RD, Reyes-Cruz G. Gβγ Pathways in Cell Polarity and Migration Linked to Oncogenic GPCR Signaling: Potential Relevance in Tumor Microenvironment. Mol Pharmacol 2016; 90:573-586. [DOI: 10.1124/mol.116.105338] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 09/14/2016] [Indexed: 12/16/2022] Open
|
48
|
Cetinkaya A, Xiong J, Vargel İ, Kösemehmetoğlu K, Canter H, Gerdan Ö, Longo N, Alzahrani A, Camps M, Taskiran E, Laupheimer S, Botto L, Paramalingam E, Gormez Z, Uz E, Yuksel B, Ruacan Ş, Sağıroğlu M, Takahashi T, Reversade B, Akarsu N. Loss-of-Function Mutations in ELMO2 Cause Intraosseous Vascular Malformation by Impeding RAC1 Signaling. Am J Hum Genet 2016; 99:299-317. [PMID: 27476657 DOI: 10.1016/j.ajhg.2016.06.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 06/09/2016] [Indexed: 12/16/2022] Open
Abstract
Vascular malformations are non-neoplastic expansions of blood vessels that arise due to errors during angiogenesis. They are a heterogeneous group of sporadic or inherited vascular disorders characterized by localized lesions of arteriovenous, capillary, or lymphatic origin. Vascular malformations that occur inside bone tissue are rare. Herein, we report loss-of-function mutations in ELMO2 (which translates extracellular signals into cellular movements) that are causative for autosomal-recessive intraosseous vascular malformation (VMOS) in five different families. Individuals with VMOS suffer from life-threatening progressive expansion of the jaw, craniofacial, and other intramembranous bones caused by malformed blood vessels that lack a mature vascular smooth muscle layer. Analysis of primary fibroblasts from an affected individual showed that absence of ELMO2 correlated with a significant downregulation of binding partner DOCK1, resulting in deficient RAC1-dependent cell migration. Unexpectedly, elmo2-knockout zebrafish appeared phenotypically normal, suggesting that there might be human-specific ELMO2 requirements in bone vasculature homeostasis or genetic compensation by related genes. Comparative phylogenetic analysis indicated that elmo2 originated upon the appearance of intramembranous bones and the jaw in ancestral vertebrates, implying that elmo2 might have been involved in the evolution of these novel traits. The present findings highlight the necessity of ELMO2 for maintaining vascular integrity, specifically in intramembranous bones.
Collapse
|
49
|
Rea K, Pinciroli P, Sensi M, Alciato F, Bisaro B, Lozneanu L, Raspagliesi F, Centritto F, Cabodi S, Defilippi P, Avanzi GC, Canevari S, Tomassetti A. Novel Axl-driven signaling pathway and molecular signature characterize high-grade ovarian cancer patients with poor clinical outcome. Oncotarget 2016; 6:30859-75. [PMID: 26356564 PMCID: PMC4741573 DOI: 10.18632/oncotarget.5087] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 08/22/2015] [Indexed: 01/12/2023] Open
Abstract
High-grade epithelial ovarian cancer (HGEOC) is a clinically diverse and molecularly heterogeneous disease comprising subtypes with distinct biological features and outcomes. The receptor tyrosine kinases, expressed by EOC cells, and their ligands, present in the microenvironment, activate signaling pathways, which promote EOC cells dissemination. Herein, we established a molecular link between the presence of Gas6 ligand in the ascites of HGEOCs, the expression and activation of its receptor Axl in ovarian cancer cell lines and biopsies, and the progression of these tumors. We demonstrated that Gas6/Axl signalling converges on the integrin β3 pathway in the presence of the adaptor protein p130Cas, thus inducing tumor cell adhesion to the extracellular matrix and invasion. Accordingly, Axl and p130Cas were significantly co-expressed in HGEOC samples. Clinically, we identified an Axl-associated signature of 62 genes able to portray the HGEOCs with the shortest overall survival. These data biologically characterize a group of HGEOCs and could help guide a more effective therapeutic approach to be taken for these patients.
Collapse
Affiliation(s)
- Katia Rea
- Unit of Molecular Therapies, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Patrizia Pinciroli
- Functional Genomics and Bioinformatics Core Facility, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Marialuisa Sensi
- Functional Genomics and Bioinformatics Core Facility, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Federica Alciato
- Department of Traslational Medicine, Università degli Studi del Piemonte Orientale, Novara, Italy
| | - Brigitte Bisaro
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Italy
| | - Ludmila Lozneanu
- Department of Morphofunctional Sciences, Histology, Morphopatology, "Grigore T. Popa" University of Medicine and Pharmacy, Iassy, Romania
| | - Francesco Raspagliesi
- Gynecology Oncology Unit, Department of Surgery, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Floriana Centritto
- Functional Genomics and Bioinformatics Core Facility, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Sara Cabodi
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Italy
| | - Paola Defilippi
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Italy
| | - Gian Carlo Avanzi
- Department of Traslational Medicine, Università degli Studi del Piemonte Orientale, Novara, Italy
| | - Silvana Canevari
- Functional Genomics and Bioinformatics Core Facility, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Antonella Tomassetti
- Unit of Molecular Therapies, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| |
Collapse
|
50
|
Tan L, Zhang Z, Gao D, Luo J, Tu ZC, Li Z, Peng L, Ren X, Ding K. 4-Oxo-1,4-dihydroquinoline-3-carboxamide Derivatives as New Axl Kinase Inhibitors. J Med Chem 2016; 59:6807-25. [PMID: 27379978 DOI: 10.1021/acs.jmedchem.6b00608] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Li Tan
- State
Key Laboratory of Respiratory Diseases, Guangzhou Institutes of Biomedicine
and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Zhang Zhang
- State
Key Laboratory of Respiratory Diseases, Guangzhou Institutes of Biomedicine
and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, China
- School
of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Donglin Gao
- State
Key Laboratory of Respiratory Diseases, Guangzhou Institutes of Biomedicine
and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Jinfeng Luo
- State
Key Laboratory of Respiratory Diseases, Guangzhou Institutes of Biomedicine
and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, China
| | - Zheng-Chao Tu
- State
Key Laboratory of Respiratory Diseases, Guangzhou Institutes of Biomedicine
and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, China
| | - Zhengqiu Li
- School
of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Lijie Peng
- School
of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Xiaomei Ren
- State
Key Laboratory of Respiratory Diseases, Guangzhou Institutes of Biomedicine
and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, China
- School
of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Ke Ding
- State
Key Laboratory of Respiratory Diseases, Guangzhou Institutes of Biomedicine
and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, China
- School
of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| |
Collapse
|