1
|
Novotna E, Milosevic M, Prukova D, Magalhaes-Novais S, Dvorakova S, Dmytruk K, Gemperle J, Zudova D, Nickl T, Vrbacky M, Rosel D, Filimonenko V, Prochazka J, Brabek J, Neuzil J, Rohlenova K, Rohlena J. Mitochondrial HER2 stimulates respiration and promotes tumorigenicity. Eur J Clin Invest 2024; 54:e14174. [PMID: 38291340 DOI: 10.1111/eci.14174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/15/2023] [Accepted: 01/16/2024] [Indexed: 02/01/2024]
Abstract
BACKGROUND Amplification of HER2, a receptor tyrosine kinase and a breast cancer-linked oncogene, is associated with aggressive disease. HER2 protein is localised mostly at the cell membrane, but a fraction translocates to mitochondria. Whether and how mitochondrial HER2 contributes to tumorigenicity is currently unknown. METHODS We enriched the mitochondrial (mt-)HER2 fraction in breast cancer cells using an N-terminal mitochondrial targeting sequence and analysed how this manipulation impacts bioenergetics and tumorigenic properties. The role of the tyrosine kinase activity of mt-HER2 was assessed in wild type, kinase-dead (K753M) and kinase-enhanced (V659E) mtHER2 constructs. RESULTS We document that mt-HER2 associates with the oxidative phosphorylation system, stimulates bioenergetics and promotes larger respiratory supercomplexes. mt-HER2 enhances proliferation and invasiveness in vitro and tumour growth and metastatic potential in vivo, in a kinase activity-dependent manner. On the other hand, constitutively active mt-HER2 provokes excessive mitochondria ROS generation, sensitises to cell death, and restricts growth of primary tumours, suggesting that regulation of HER2 activity in mitochondria is required for the maximal pro-tumorigenic effect. CONCLUSIONS mt-HER2 promotes tumorigenicity by supporting bioenergetics and optimal redox balance.
Collapse
Affiliation(s)
- Eliska Novotna
- Institute of Biotechnology of the Czech Academy of Sciences, Vestec, Czech Republic
- Faculty of Science, Charles University, Prague, Czech Republic
| | - Mirko Milosevic
- Institute of Biotechnology of the Czech Academy of Sciences, Vestec, Czech Republic
- Faculty of Science, Charles University, Prague, Czech Republic
| | - Dana Prukova
- Institute of Biotechnology of the Czech Academy of Sciences, Vestec, Czech Republic
| | - Silvia Magalhaes-Novais
- Institute of Biotechnology of the Czech Academy of Sciences, Vestec, Czech Republic
- Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Sarka Dvorakova
- Institute of Biotechnology of the Czech Academy of Sciences, Vestec, Czech Republic
| | - Kristina Dmytruk
- Institute of Biotechnology of the Czech Academy of Sciences, Vestec, Czech Republic
| | - Jakub Gemperle
- Faculty of Science, Charles University, Prague, Czech Republic
| | - Dagmar Zudova
- Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Tereza Nickl
- Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Marek Vrbacky
- Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Daniel Rosel
- Faculty of Science, Charles University, Prague, Czech Republic
| | - Vlada Filimonenko
- Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jan Prochazka
- Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jan Brabek
- Faculty of Science, Charles University, Prague, Czech Republic
| | - Jiri Neuzil
- Institute of Biotechnology of the Czech Academy of Sciences, Vestec, Czech Republic
- Faculty of Science, Charles University, Prague, Czech Republic
- School of Medical Science, Griffith University, Gold Coast, Queensland, Australia
- 1st Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Katerina Rohlenova
- Institute of Biotechnology of the Czech Academy of Sciences, Vestec, Czech Republic
| | - Jakub Rohlena
- Institute of Biotechnology of the Czech Academy of Sciences, Vestec, Czech Republic
| |
Collapse
|
2
|
Vettorazzi M, Díaz I, Angelina E, Salido S, Gutierrez L, Alvarez SE, Cobo J, Enriz RD. Second generation of pyrimidin-quinolone hybrids obtained from virtual screening acting as sphingosine kinase 1 inhibitors and potential anticancer agents. Bioorg Chem 2024; 144:107112. [PMID: 38237390 DOI: 10.1016/j.bioorg.2024.107112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/22/2023] [Accepted: 01/08/2024] [Indexed: 02/17/2024]
Abstract
We report here the virtual screening design, synthesis and activity of eight new inhibitors of SphK1. For this study we used a pre-trained Graph Convolutional Network (GCN) combined with docking calculations. This exploratory analysis proposed nine compounds from which eight displayed significant inhibitory effect against sphingosine kinase 1 (SphK1) demonstrating a high level of efficacy for this approach. Four of these compounds also displayed anticancer activity against different tumor cell lines, and three of them (5), (6) and (7) have shown a wide inhibitory action against many of the cancer cell line tested, with GI50 below 5 µM, being (5) the most promising with TGI below 10 µM for the half of cell lines. Our results suggest that the three most promising compounds reported here are the pyrimidine-quinolone hybrids (1) and (6) linked by p-aminophenylsulfanyl and o-aminophenol fragments respectively, and (8) without such aryl linker. We also performed an exhaustive study about the molecular interactions that stabilize the different ligands at the binding site of SphK1. This molecular modeling analysis was carried out by using combined techniques: docking calculations, MD simulations and QTAIM analysis. In this study we also included PF543, as reference compound, in order to better understand the molecular behavior of these ligands at the binding site of SphK1.These results provide useful information for the design of new inhibitors of SphK1 possessing these structural scaffolds.
Collapse
Affiliation(s)
- Marcela Vettorazzi
- Universidad Nacional de San Luis, Facultad de Química, Bioquímica y Farmacia, Ejercito de los Andes 950, (5700) San Luis, Argentina; Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO-SL), Ejercito de los Andes 950, (5700) San Luis, Argentina
| | - Iván Díaz
- Universidad de Jaén, Departamento de Química Inorgánica y Orgánica, Campus Las Lagunillas s/n, 23071 Jaén, Spain
| | - Emilio Angelina
- Universidad Nacional del Nordeste, Facultad de Ciencias Exactas y Naturales y Agrimensura, Departamento de Química, Área de Química Física, Laboratorio de Estructura Molecular y Propiedades, Avda. Libertad 5460, 3400 Corrientes, Argentina
| | - Sofía Salido
- Universidad de Jaén, Departamento de Química Inorgánica y Orgánica, Campus Las Lagunillas s/n, 23071 Jaén, Spain
| | - Lucas Gutierrez
- Universidad Nacional de San Luis, Facultad de Química, Bioquímica y Farmacia, Ejercito de los Andes 950, (5700) San Luis, Argentina; Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO-SL), Ejercito de los Andes 950, (5700) San Luis, Argentina
| | - Sergio E Alvarez
- Universidad Nacional de San Luis, Facultad de Química, Bioquímica y Farmacia, Ejercito de los Andes 950, (5700) San Luis, Argentina; Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO-SL), Ejercito de los Andes 950, (5700) San Luis, Argentina
| | - Justo Cobo
- Universidad de Jaén, Departamento de Química Inorgánica y Orgánica, Campus Las Lagunillas s/n, 23071 Jaén, Spain.
| | - Ricardo D Enriz
- Universidad Nacional de San Luis, Facultad de Química, Bioquímica y Farmacia, Ejercito de los Andes 950, (5700) San Luis, Argentina; Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO-SL), Ejercito de los Andes 950, (5700) San Luis, Argentina.
| |
Collapse
|
3
|
18F-FDG uptake of visceral adipose tissue on preoperative PET/CT as a predictive marker for breast cancer recurrence. Sci Rep 2022; 12:21109. [PMID: 36473927 PMCID: PMC9727140 DOI: 10.1038/s41598-022-25540-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
Glucose utilization by visceral adipose tissue (VAT) reflects inflammatory activity, which also promotes tumor growth and carcinogenesis. The effect of metabolically active VAT on survival outcomes in breast cancer is unknown. We investigated survival outcomes in patients with breast cancer based on the standardized uptake value (SUV) of VAT (SUVmean-VAT) using 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT). A total of 148 patients with breast cancer were divided into high- and low groups according to their SUVmean-VAT and SUVmax-tumor. Clinical characteristics and survival outcomes were compared between the groups. High SUVmean-VAT was associated with poor recurrence-free survival (RFS; hazard ratio [HR], 2.754; 95% confidence interval [CI], 1.090-6.958, p = 0.032) and distant metastasis-free survival (DMFS; HR, 3.500; 95% CI, 1.224-10.01, p = 0.019). Multivariate analysis showed that high SUVmean-VAT was a significant factor for poor RFS and poor DMFS (p = 0.023 and 0.039, respectively). High SUVmax-tumor was significantly associated with short RFS (p = 0.0388). Tumors with a high SUV tended to have a short DMFS, although the difference was not significant (p = 0.0718). Our findings showed that upregulated glucose metabolism in the VAT measured using 18F-FDG PET/CT may be a prognostic biomarker for adverse outcomes in breast cancer.
Collapse
|
4
|
Momchilova A, Pankov R, Staneva G, Pankov S, Krastev P, Vassileva E, Hazarosova R, Krastev N, Robev B, Nikolova B, Pinkas A. Resveratrol Affects Sphingolipid Metabolism in A549 Lung Adenocarcinoma Cells. Int J Mol Sci 2022; 23:ijms231810870. [PMID: 36142801 PMCID: PMC9505893 DOI: 10.3390/ijms231810870] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 12/22/2022] Open
Abstract
Resveratrol is a naturally occurring polyphenol which has various beneficial effects, such as anti-inflammatory, anti-tumor, anti-aging, antioxidant, and neuroprotective effects, among others. The anti-cancer activity of resveratrol has been related to alterations in sphingolipid metabolism. We analyzed the effect of resveratrol on the enzymes responsible for accumulation of the two sphingolipids with highest functional activity—apoptosis promoting ceramide (CER) and proliferation-stimulating sphingosine-1-phosphate (S1P)—in human lung adenocarcinoma A549 cells. Resveratrol treatment induced an increase in CER and sphingosine (SPH) and a decrease in sphingomyelin (SM) and S1P. Our results showed that the most common mode of CER accumulation, through sphingomyelinase-induced hydrolysis of SM, was not responsible for a CER increase despite the reduction in SM in A549 plasma membranes. However, both the activity and the expression of CER synthase 6 were upregulated in resveratrol-treated cells, implying that CER was accumulated as a result of stimulated de novo synthesis. Furthermore, the enzyme responsible for CER hydrolysis, alkaline ceramidase, was not altered, suggesting that it was not related to changes in the CER level. The enzyme maintaining the balance between apoptosis and proliferation, sphingosine kinase 1 (SK1), was downregulated, and its expression was reduced, resulting in a decrease in S1P levels in resveratrol-treated lung adenocarcinoma cells. In addition, incubation of resveratrol-treated A549 cells with the SK1 inhibitors DMS and fingolimod additionally downregulated SK1 without affecting its expression. The present studies provide information concerning the biochemical processes underlying the influence of resveratrol on sphingolipid metabolism in A549 lung cancer cells and reveal possibilities for combined use of polyphenols with specific anti-proliferative agents that could serve as the basis for the development of complex therapeutic strategies.
Collapse
Affiliation(s)
- Albena Momchilova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. bl.21, 1113 Sofia, Bulgaria
- Correspondence: ; Tel.:+359-2-9792686 or +359-898-238971
| | - Roumen Pankov
- Biological Faculty, Sofia University “St. Kliment Ohridki”, 8, Dragan Tzankov Str., 1164 Sofia, Bulgaria
| | - Galya Staneva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. bl.21, 1113 Sofia, Bulgaria
| | - Stefan Pankov
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. bl.21, 1113 Sofia, Bulgaria
| | - Plamen Krastev
- Cardiology Clinic, University Hospital “St. Ekaterina”, 1431 Sofia, Bulgaria
| | - Evgenia Vassileva
- Clinic of Neurology, Tsaritsa Yoanna University Hospital-ISUL, 1527 Sofia, Bulgaria
| | - Rusina Hazarosova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. bl.21, 1113 Sofia, Bulgaria
| | - Nikolai Krastev
- Department of Anatomy, Histology and Embryology, Medical University—Sofia, Blvd. Sv. Georgi Sofiisky 1, 1431 Sofia, Bulgaria
- Medical Center Relax, 8 Ami Bue Str., 1606 Sofia, Bulgaria
| | - Bozhil Robev
- Department of Medical Oncology, University Multi-Profile Hospital for Active Treatment (UMHAT) “St. Ivan Rilski”, 1606 Sofia, Bulgaria
| | - Biliana Nikolova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. bl.21, 1113 Sofia, Bulgaria
| | - Adriana Pinkas
- CSTEP, Office of Continuing Education, Suffolk County Community College 30 Greene Ave., Sayville, NY 11782, USA
| |
Collapse
|
5
|
Revealing 2-Dimethylhydrazino-2-alkyl alkynyl sphingosine derivatives as Sphingosine Kinase 2 inhibitors: some hints on the structural basis for selective inhibition. Bioorg Chem 2022; 121:105668. [DOI: 10.1016/j.bioorg.2022.105668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 02/02/2022] [Accepted: 02/07/2022] [Indexed: 12/29/2022]
|
6
|
Velazquez FN, Zhang L, Viscardi V, Trocchia C, Hannun YA, Obeid LM, Snider AJ. Loss of sphingosine kinase 1 increases lung metastases in the MMTV-PyMT mouse model of breast cancer. PLoS One 2021; 16:e0252311. [PMID: 34043703 PMCID: PMC8158862 DOI: 10.1371/journal.pone.0252311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 05/13/2021] [Indexed: 12/11/2022] Open
Abstract
Breast cancer is a very heterogeneous disease, and ~30% of breast cancer patients succumb to metastasis, highlighting the need to understand the mechanisms of breast cancer progression in order to identify new molecular targets for treatment. Sphingosine kinase 1 (SK1) has been shown to be upregulated in patients with breast cancer, and several studies have suggested its involvement in breast cancer progression and/or metastasis, mostly based on cell studies. In this work we evaluated the role of SK1 in breast cancer development and metastasis using a transgenic breast cancer model, mouse mammary tumor virus-polyoma middle tumor-antigen (MMTV-PyMT), that closely resembles the characteristics and evolution of human breast cancer. The results show that SK1 deficiency does not alter tumor latency or growth, but significantly increases the number of metastatic lung nodules and the average metastasis size in the lung of MMTV-PyMT mice. Additionally, analysis of Kaplan-Meier plotter of human disease shows that high SK1 mRNA expression can be associated with a better prognosis for breast cancer patients. These results suggest a metastasis-suppressing function for SK1 in the MMTV-PyMT model of breast cancer, and that its role in regulating human breast cancer progression and metastasis may be dependent on the breast cancer type.
Collapse
Affiliation(s)
- Fabiola N. Velazquez
- Department of Medicine, Stony Brook University, Stony Brook, NY, United States of America
- Cancer Center, Stony Brook University, Stony Brook, NY, United States of America
| | - Leiqing Zhang
- Department of Medicine, Stony Brook University, Stony Brook, NY, United States of America
- Cancer Center, Stony Brook University, Stony Brook, NY, United States of America
| | - Valentina Viscardi
- Department of Medicine, Stony Brook University, Stony Brook, NY, United States of America
- Cancer Center, Stony Brook University, Stony Brook, NY, United States of America
| | - Carolena Trocchia
- Department of Medicine, Stony Brook University, Stony Brook, NY, United States of America
- Cancer Center, Stony Brook University, Stony Brook, NY, United States of America
| | - Yusuf A. Hannun
- Department of Medicine, Stony Brook University, Stony Brook, NY, United States of America
- Cancer Center, Stony Brook University, Stony Brook, NY, United States of America
| | - Lina M. Obeid
- Department of Medicine, Stony Brook University, Stony Brook, NY, United States of America
- Cancer Center, Stony Brook University, Stony Brook, NY, United States of America
| | - Ashley J. Snider
- Department of Medicine, Stony Brook University, Stony Brook, NY, United States of America
- Cancer Center, Stony Brook University, Stony Brook, NY, United States of America
- Department of Nutritional Sciences, College of Agriculture and Life Sciences, University of Arizona, Tucson, AZ, United States of America
- * E-mail:
| |
Collapse
|
7
|
Brown RDR, Veerman BEP, Oh J, Tate RJ, Torta F, Cunningham MR, Adams DR, Pyne S, Pyne NJ. A new model for regulation of sphingosine kinase 1 translocation to the plasma membrane in breast cancer cells. J Biol Chem 2021; 296:100674. [PMID: 33865856 PMCID: PMC8135045 DOI: 10.1016/j.jbc.2021.100674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/01/2021] [Accepted: 04/14/2021] [Indexed: 01/24/2023] Open
Abstract
The translocation of sphingosine kinase 1 (SK1) to the plasma membrane (PM) is crucial in promoting oncogenesis. We have previously proposed that SK1 exists as both a monomer and dimer in equilibrium, although it is unclear whether these species translocate to the PM via the same or different mechanisms. We therefore investigated the structural determinants involved to better understand how translocation might potentially be targeted for therapeutic intervention. We report here that monomeric WT mouse SK1 (GFP-mSK1) translocates to the PM of MCF-7L cells stimulated with carbachol or phorbol 12-myristate 13-acetate, whereas the dimer translocates to the PM in response to sphingosine-1-phosphate; thus, the equilibrium between the monomer and dimer is sensitive to cellular stimulus. In addition, carbachol and phorbol 12-myristate 13-acetate induced translocation of monomeric GFP-mSK1 to lamellipodia, whereas sphingosine-1-phosphate induced translocation of dimeric GFP-mSK1 to filopodia, suggesting that SK1 regulates different cell biological processes dependent on dimerization. GFP-mSK1 mutants designed to modulate dimerization confirmed this difference in localization. Regulation by the C-terminal tail of SK1 was investigated using GFP-mSK1 truncations. Removal of the last five amino acids (PPEEP) prevented translocation of the enzyme to the PM, whereas removal of the last ten amino acids restored translocation. This suggests that the penultimate five amino acids (SRRGP) function as a translocation brake, which can be released by sequestration of the PPEEP sequence. We propose that these determinants alter the arrangement of N-terminal and C-terminal domains in SK1, leading to unique surfaces that promote differential translocation to the PM.
Collapse
Affiliation(s)
- Ryan D R Brown
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, Scotland, UK
| | - Ben E P Veerman
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, Scotland, UK
| | - Jeongah Oh
- SLING, Singapore Lipidomics Incubator, Life Sciences Institute and Department of Biochemistry, YLL School of Medicine, National University of Singapore, Singapore, Singapore
| | - Rothwelle J Tate
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, Scotland, UK
| | - Federico Torta
- SLING, Singapore Lipidomics Incubator, Life Sciences Institute and Department of Biochemistry, YLL School of Medicine, National University of Singapore, Singapore, Singapore
| | - Margaret R Cunningham
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, Scotland, UK
| | - David R Adams
- School of Engineering & Physical Sciences, Heriot-Watt University, Edinburgh, UK
| | - Susan Pyne
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, Scotland, UK
| | - Nigel J Pyne
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, Scotland, UK.
| |
Collapse
|
8
|
Hii LW, Chung FFL, Mai CW, Ng PY, Leong CO. Sphingosine Kinase 1 Signaling in Breast Cancer: A Potential Target to Tackle Breast Cancer Stem Cells. Front Mol Biosci 2021; 8:748470. [PMID: 34820423 PMCID: PMC8606534 DOI: 10.3389/fmolb.2021.748470] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 10/25/2021] [Indexed: 02/05/2023] Open
Abstract
Sphingosine kinases (SPHKs) are conserved lipid enzymes that catalyze the formation of sphingosine-1-phosphate (S1P) through ATP-dependent phosphorylation of sphingosine. Two distinct SPHK isoforms, namely SPHK1 and SPHK2, have been identified to date, and the former has been implicated for its oncogenic roles in cancer development and progression. While SPHK1 signaling axis has been extensively studied in non-stem breast cancer cells, recent evidence has emerged to suggest a role of SPHK1 in regulating cancer stem cells (CSCs). With the clinical implications of CSCs in disease relapse and metastasis, it is believed that therapeutic approaches that can eradicate both non-stem cancer cells and CSCs could be a key to cancer cure. In this review, we first explore the oncogenic functions of sphingosine kinase 1 in human cancers and summarize current research findings of SPHK1 signaling with a focus on breast cancer. We also discuss the therapeutic potentials and perspectives of targeting SPHK1 signaling in breast cancer and cancer stem cells. We aim to offer new insights and inspire future studies looking further into the regulatory functions of SPHK1 in CSC-driven tumorigenesis, uncovering novel therapeutic avenues of using SPHK1-targeted therapy in the treatment of CSC-enriched refractory cancers.
Collapse
Affiliation(s)
- Ling-Wei Hii
- Department of Life Sciences, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
- Center for Cancer and Stem Cell Research, Institute for Research, Development and Innovation (IRDI), International Medical University, Kuala Lumpur, Malaysia
| | - Felicia Fei-Lei Chung
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, Bandar Sunway, Malaysia
| | - Chun-Wai Mai
- Center for Cancer and Stem Cell Research, Institute for Research, Development and Innovation (IRDI), International Medical University, Kuala Lumpur, Malaysia
- State Key Laboratory of Oncogenes and Related Genes, School of Medicine, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Pei Yuen Ng
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Chee-Onn Leong
- Department of Life Sciences, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
- Center for Cancer and Stem Cell Research, Institute for Research, Development and Innovation (IRDI), International Medical University, Kuala Lumpur, Malaysia
- *Correspondence: Chee-Onn Leong,
| |
Collapse
|
9
|
Velazquez FN, Hernandez-Corbacho M, Trayssac M, Stith JL, Bonica J, Jean B, Pulkoski-Gross MJ, Carroll BL, Salama MF, Hannun YA, Snider AJ. Bioactive sphingolipids: Advancements and contributions from the laboratory of Dr. Lina M. Obeid. Cell Signal 2020; 79:109875. [PMID: 33290840 PMCID: PMC8244749 DOI: 10.1016/j.cellsig.2020.109875] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/01/2020] [Accepted: 12/02/2020] [Indexed: 02/06/2023]
Abstract
Sphingolipids and their synthetic enzymes have emerged as critical mediators in numerous diseases including inflammation, aging, and cancer. One enzyme in particular, sphingosine kinase (SK) and its product sphingosine-1-phosphate (S1P), has been extensively implicated in these processes. SK catalyzes the phosphorylation of sphingosine to S1P and exists as two isoforms, SK1 and SK2. In this review, we will discuss the contributions from the laboratory of Dr. Lina M. Obeid that have defined the roles for several bioactive sphingolipids in signaling and disease with an emphasis on her work defining SK1 in cellular fates and pathobiologies including proliferation, senescence, apoptosis, and inflammation.
Collapse
Affiliation(s)
- Fabiola N Velazquez
- Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; Cancer Center, Stony Brook University, Stony Brook, NY 11794, USA
| | - Maria Hernandez-Corbacho
- Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; Cancer Center, Stony Brook University, Stony Brook, NY 11794, USA
| | - Magali Trayssac
- Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; Cancer Center, Stony Brook University, Stony Brook, NY 11794, USA
| | - Jeffrey L Stith
- Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; Cancer Center, Stony Brook University, Stony Brook, NY 11794, USA
| | - Joseph Bonica
- Cancer Center, Stony Brook University, Stony Brook, NY 11794, USA; Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11790, USA
| | - Bernandie Jean
- Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; Cancer Center, Stony Brook University, Stony Brook, NY 11794, USA
| | - Michael J Pulkoski-Gross
- Cancer Center, Stony Brook University, Stony Brook, NY 11794, USA; Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11790, USA
| | - Brittany L Carroll
- Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11790, USA
| | - Mohamed F Salama
- Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; Cancer Center, Stony Brook University, Stony Brook, NY 11794, USA; Department of Biochemistry, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Yusuf A Hannun
- Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; Cancer Center, Stony Brook University, Stony Brook, NY 11794, USA
| | - Ashley J Snider
- Department of Nutritional Sciences, College of Agriculture and Life Sciences, University of Arizona, Tucson, AZ 85721, USA.
| |
Collapse
|
10
|
Pyne NJ, Pyne S. Recent advances in the role of sphingosine 1-phosphate in cancer. FEBS Lett 2020; 594:3583-3601. [PMID: 32969034 DOI: 10.1002/1873-3468.13933] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 09/05/2020] [Accepted: 09/07/2020] [Indexed: 12/18/2022]
Abstract
Sphingosine 1-phosphate (S1P) is a bioactive lipid that binds to a family of G protein-coupled receptors (S1P1-5 ) and intracellular targets, such as HDAC1/2, that are functional in normal and pathophysiologic cell biology. There is a significant role for sphingosine 1-phosphate in cancer underpinning the so-called hallmarks, such as transformation and replicative immortality. In this review, we survey the most recent developments concerning the role of sphingosine 1-phosphate receptors, sphingosine kinase and S1P lyase in cancer and the prognostic indications of these receptors and enzymes in terms of disease-specific survival and recurrence. We also provide evidence for identification of new therapeutic approaches targeting sphingosine 1-phosphate to prevent neovascularisation, to revert aggressive and drug-resistant cancers to more amenable forms sensitive to chemotherapy, and to induce cytotoxicity in cancer cells. Finally, we briefly describe current advances in the development of isoform-specific inhibitors of sphingosine kinases for potential use in the treatment of various cancers, where these enzymes have a predominant role. This review will therefore highlight sphingosine 1-phosphate signalling as a promising translational target for precision medicine in stratified cancer patients.
Collapse
Affiliation(s)
- Nigel J Pyne
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Susan Pyne
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| |
Collapse
|
11
|
Hii LW, Chung FFL, Mai CW, Yee ZY, Chan HH, Raja VJ, Dephoure NE, Pyne NJ, Pyne S, Leong CO. Sphingosine Kinase 1 Regulates the Survival of Breast Cancer Stem Cells and Non-stem Breast Cancer Cells by Suppression of STAT1. Cells 2020; 9:E886. [PMID: 32260399 PMCID: PMC7226795 DOI: 10.3390/cells9040886] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/01/2020] [Accepted: 04/03/2020] [Indexed: 02/05/2023] Open
Abstract
Cancer stem cells (CSCs) represent rare tumor cell populations capable of self-renewal, differentiation, and tumor initiation and are highly resistant to chemotherapy and radiotherapy. Thus, therapeutic approaches that can effectively target CSCs and tumor cells could be the key to efficient tumor treatment. In this study, we explored the function of SPHK1 in breast CSCs and non-CSCs. We showed that RNAi-mediated knockdown of SPHK1 inhibited cell proliferation and induced apoptosis in both breast CSCs and non-CSCs, while ectopic expression of SPHK1 enhanced breast CSC survival and mammosphere forming efficiency. We identified STAT1 and IFN signaling as key regulatory targets of SPHK1 and demonstrated that an important mechanism by which SPHK1 promotes cancer cell survival is through the suppression of STAT1. We further demonstrated that SPHK1 inhibitors, FTY720 and PF543, synergized with doxorubicin in targeting both breast CSCs and non-CSCs. In conclusion, we provide important evidence that SPHK1 is a key regulator of cell survival and proliferation in breast CSCs and non-CSCs and is an attractive target for the design of future therapies.
Collapse
Affiliation(s)
- Ling-Wei Hii
- Centre for Cancer and Stem Cell Research, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia; (L.-W.H.); (C.W.M.); (Z.Y.Y.); (H.H.C.)
- School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia
- School of Postgraduate Studies, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia
| | - Felicia Fei-Lei Chung
- Mechanisms of Carcinogenesis Section (MCA), Epigenetics Group (EGE) International Agency for Research on Cancer, World Health Organization, 69372 Lyon, France;
| | - Chun Wai Mai
- Centre for Cancer and Stem Cell Research, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia; (L.-W.H.); (C.W.M.); (Z.Y.Y.); (H.H.C.)
- School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia
| | - Zong Yang Yee
- Centre for Cancer and Stem Cell Research, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia; (L.-W.H.); (C.W.M.); (Z.Y.Y.); (H.H.C.)
- School of Postgraduate Studies, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia
| | - Hong Hao Chan
- Centre for Cancer and Stem Cell Research, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia; (L.-W.H.); (C.W.M.); (Z.Y.Y.); (H.H.C.)
- School of Postgraduate Studies, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia
| | - Vijay Joseph Raja
- Department of Biochemistry, Weill Cornell Medical College, New York, NY 10021, USA; (V.J.R.); (N.E.D.)
| | - Noah Elias Dephoure
- Department of Biochemistry, Weill Cornell Medical College, New York, NY 10021, USA; (V.J.R.); (N.E.D.)
| | - Nigel J. Pyne
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, Scotland, UK; (N.J.P.); (S.P.)
| | - Susan Pyne
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, Scotland, UK; (N.J.P.); (S.P.)
| | - Chee-Onn Leong
- Centre for Cancer and Stem Cell Research, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia; (L.-W.H.); (C.W.M.); (Z.Y.Y.); (H.H.C.)
- School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia
| |
Collapse
|
12
|
Alshaker H, Thrower H, Pchejetski D. Sphingosine Kinase 1 in Breast Cancer-A New Molecular Marker and a Therapy Target. Front Oncol 2020; 10:289. [PMID: 32266132 PMCID: PMC7098968 DOI: 10.3389/fonc.2020.00289] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 02/19/2020] [Indexed: 12/31/2022] Open
Abstract
It is now well-established that sphingosine kinase 1 (SK1) plays a significant role in breast cancer development, progression, and spread, whereas SK1 knockdown can reverse these processes. In breast cancer cells and tumors, SK1 was shown to interact with various pathways involved in cell survival and chemoresistance, such as nuclear factor-kappa B (NFκB), Notch, Ras/MAPK, PKC, and PI3K. SK1 is upregulated by estrogen signaling, which, in turn, confers cancer cells with resistance to tamoxifen. Sphingosine-1-phosphate (S1P) produced by SK1 has been linked to tumor invasion and metastasis. Both SK1 and S1P are closely linked to inflammation and adipokine signaling in breast cancer. In human tumors, high SK1 expression has been linked with poorer survival and prognosis. SK1 is upregulated in triple negative tumors and basal-like subtypes. It is often associated with high phosphorylation levels of ERK1/2, SFK, LYN, AKT, and NFκB. Higher tumor SK1 mRNA levels were correlated with poor response to chemotherapy. This review summarizes the up-to-date evidence and discusses the therapeutic potential for the SK1 inhibition in breast cancer, with emphasis on the mechanisms of chemoresistance and combination with other therapies such as gefitinib or docetaxel. We have outlined four key areas for future development, including tumor microenvironment, combination therapies, and nanomedicine. We conclude that SK1 may have a potential as a target for precision medicine, its high expression being a negative prognostic marker in ER-negative breast cancer, as well as a target for chemosensitization therapy.
Collapse
Affiliation(s)
- Heba Alshaker
- School of Medicine, University of East Anglia, Norwich, United Kingdom
| | - Hannah Thrower
- Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Dmitri Pchejetski
- School of Medicine, University of East Anglia, Norwich, United Kingdom
| |
Collapse
|
13
|
Wang P, Yuan Y, Lin W, Zhong H, Xu K, Qi X. Roles of sphingosine-1-phosphate signaling in cancer. Cancer Cell Int 2019; 19:295. [PMID: 31807117 PMCID: PMC6857321 DOI: 10.1186/s12935-019-1014-8] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 11/01/2019] [Indexed: 12/15/2022] Open
Abstract
The potent pleiotropic lipid mediator sphingosine-1-phosphate (S1P) participates in numerous cellular processes, including angiogenesis and cell survival, proliferation, and migration. It is formed by one of two sphingosine kinases (SphKs), SphK1 and SphK2. These enzymes largely exert their various biological and pathophysiological actions through one of five G protein-coupled receptors (S1PR1–5), with receptor activation setting in motion various signaling cascades. Considerable evidence has been accumulated on S1P signaling and its pathogenic roles in diseases, as well as on novel modulators of S1P signaling, such as SphK inhibitors and S1P agonists and antagonists. S1P and ceramide, composed of sphingosine and a fatty acid, are reciprocal cell fate regulators, and S1P signaling plays essential roles in several diseases, including inflammation, cancer, and autoimmune disorders. Thus, targeting of S1P signaling may be one way to block the pathogenesis and may be a therapeutic target in these conditions. Increasingly strong evidence indicates a role for the S1P signaling pathway in the progression of cancer and its effects. In the present review, we discuss recent progress in our understanding of S1P and its related proteins in cancer progression. Also described is the therapeutic potential of S1P receptors and their downstream signaling cascades as targets for cancer treatment.
Collapse
Affiliation(s)
- Peng Wang
- 1Key Laboratory of Diagnostic Imaging and Interventional Radiology of Liaoning Province, Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, 110001 Liaoning China
| | - Yonghui Yuan
- 1Key Laboratory of Diagnostic Imaging and Interventional Radiology of Liaoning Province, Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, 110001 Liaoning China.,2Research and Academic Department, Cancer Hospital of China Medical University Liaoning Cancer Hospital & Institute, Shenyang, 110042 Liaoning China
| | - Wenda Lin
- 1Key Laboratory of Diagnostic Imaging and Interventional Radiology of Liaoning Province, Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, 110001 Liaoning China
| | - Hongshan Zhong
- 1Key Laboratory of Diagnostic Imaging and Interventional Radiology of Liaoning Province, Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, 110001 Liaoning China
| | - Ke Xu
- 1Key Laboratory of Diagnostic Imaging and Interventional Radiology of Liaoning Province, Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, 110001 Liaoning China
| | - Xun Qi
- 1Key Laboratory of Diagnostic Imaging and Interventional Radiology of Liaoning Province, Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, 110001 Liaoning China
| |
Collapse
|
14
|
Alganga H, Almabrouk TAM, Katwan OJ, Daly CJ, Pyne S, Pyne NJ, Kennedy S. Short Periods of Hypoxia Upregulate Sphingosine Kinase 1 and Increase Vasodilation of Arteries to Sphingosine 1-Phosphate (S1P) via S1P 3. J Pharmacol Exp Ther 2019; 371:63-74. [PMID: 31371480 DOI: 10.1124/jpet.119.257931] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 07/30/2019] [Indexed: 02/06/2023] Open
Abstract
Sphingosine kinase [(SK), isoforms SK1 and SK2] catalyzes the formation of the bioactive lipid, sphingosine 1-phosphate (S1P). This can be exported from cells and bind to S1P receptors to modulate vascular function. We investigated the effect of short-term hypoxia on SK1 expression and the response of arteries to S1P. SK1 expression in rat aortic and coronary artery endothelial cells was studied using immunofluorescence and confocal microscopy. Responses of rat aortic rings were studied using wire myography and reversible hypoxia induced by bubbling myography chambers with 95% N2:5% CO2 Inhibitors were added 30 minutes before induction of hypoxia. S1P induced endothelium-dependent vasodilation via activation of S1P3 receptors and generation of nitric oxide. Hypoxia significantly increased relaxation to S1P and this was attenuated by (2R)-1-[[(4-[[3-methyl-5-[(phenylsulfonyl)methyl] phenoxy]methyl]phenyl]methyl]-2-pyrrolidinemethanol [(PF-543), SK1 inhibitor] but not (R)-FTY720 methyl ether [(ROMe), SK2 inhibitor]. Hypoxia also increased vessel contractility to the thromboxane mimetic, 9,11-dideoxy-11α,9α-epoxymethanoprostaglandin F2α, which was further increased by PF-543 and ROMe. Hypoxia upregulated SK1 expression in aortic and coronary artery endothelial cells and this was blocked by PF-543 and 2-(p-hydroxyanilino)-4-(p-chlorophenyl)thiazole [(SKi), SK1/2 inhibitor]. The effects of PF-543 and SKi were associated with increased proteasomal/lysosomal degradation of SK1. A short period of hypoxia increases the expression of SK1, which may generate S1P to oppose vessel contraction. Under hypoxic conditions, upregulation of SK1 is likely to lead to increased export of S1P from the cell and vasodilation via activation of endothelial S1P3 receptors. These data have significance for perfusion of tissue during episodes of ischemia.
Collapse
Affiliation(s)
- H Alganga
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, United Kingdom (H.A., T.A.M.A., O.J.K., C.J.D., S.K.); Strathclyde Institute of Pharmacy and Biomedical Science, University of Strathclyde, Glasgow, United Kingdom (S.P., N.J.P.); Department of Pharmacology, School of Medicine, University of Zawia, Zawia, Libya (H.A., T.A.M.A.); and Department of Biochemistry, College of Medicine, University of Diyala, Baqubah, Iraq (O.J.K.)
| | - T A M Almabrouk
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, United Kingdom (H.A., T.A.M.A., O.J.K., C.J.D., S.K.); Strathclyde Institute of Pharmacy and Biomedical Science, University of Strathclyde, Glasgow, United Kingdom (S.P., N.J.P.); Department of Pharmacology, School of Medicine, University of Zawia, Zawia, Libya (H.A., T.A.M.A.); and Department of Biochemistry, College of Medicine, University of Diyala, Baqubah, Iraq (O.J.K.)
| | - O J Katwan
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, United Kingdom (H.A., T.A.M.A., O.J.K., C.J.D., S.K.); Strathclyde Institute of Pharmacy and Biomedical Science, University of Strathclyde, Glasgow, United Kingdom (S.P., N.J.P.); Department of Pharmacology, School of Medicine, University of Zawia, Zawia, Libya (H.A., T.A.M.A.); and Department of Biochemistry, College of Medicine, University of Diyala, Baqubah, Iraq (O.J.K.)
| | - C J Daly
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, United Kingdom (H.A., T.A.M.A., O.J.K., C.J.D., S.K.); Strathclyde Institute of Pharmacy and Biomedical Science, University of Strathclyde, Glasgow, United Kingdom (S.P., N.J.P.); Department of Pharmacology, School of Medicine, University of Zawia, Zawia, Libya (H.A., T.A.M.A.); and Department of Biochemistry, College of Medicine, University of Diyala, Baqubah, Iraq (O.J.K.)
| | - S Pyne
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, United Kingdom (H.A., T.A.M.A., O.J.K., C.J.D., S.K.); Strathclyde Institute of Pharmacy and Biomedical Science, University of Strathclyde, Glasgow, United Kingdom (S.P., N.J.P.); Department of Pharmacology, School of Medicine, University of Zawia, Zawia, Libya (H.A., T.A.M.A.); and Department of Biochemistry, College of Medicine, University of Diyala, Baqubah, Iraq (O.J.K.)
| | - N J Pyne
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, United Kingdom (H.A., T.A.M.A., O.J.K., C.J.D., S.K.); Strathclyde Institute of Pharmacy and Biomedical Science, University of Strathclyde, Glasgow, United Kingdom (S.P., N.J.P.); Department of Pharmacology, School of Medicine, University of Zawia, Zawia, Libya (H.A., T.A.M.A.); and Department of Biochemistry, College of Medicine, University of Diyala, Baqubah, Iraq (O.J.K.)
| | - S Kennedy
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, United Kingdom (H.A., T.A.M.A., O.J.K., C.J.D., S.K.); Strathclyde Institute of Pharmacy and Biomedical Science, University of Strathclyde, Glasgow, United Kingdom (S.P., N.J.P.); Department of Pharmacology, School of Medicine, University of Zawia, Zawia, Libya (H.A., T.A.M.A.); and Department of Biochemistry, College of Medicine, University of Diyala, Baqubah, Iraq (O.J.K.)
| |
Collapse
|
15
|
Hashimoto N, Nagano H, Tanaka T. The role of tumor suppressor p53 in metabolism and energy regulation, and its implication in cancer and lifestyle-related diseases. Endocr J 2019; 66:485-496. [PMID: 31105124 DOI: 10.1507/endocrj.ej18-0565] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The tumor suppressor gene p53 is mutated in approximately more than 50% of human cancers. p53 is also referred to as the "cellular gatekeeper" or "guardian of the genome" because it protects the body from spreading mutated genome induced by various stress. When the cells receives stimuli such as DNA damage, oncogene activation, oxidative stress or undernutrition, p53 gives rise to a number of cellular responses, including cell cycle arrest, apoptosis, cellular senescence and metabolic adaptation. Related to energy metabolisms, it has been reported that p53 reduces glycolysis and enhances mitochondrial respiration. p53 is also involved in the regulation of other cellular metabolism and energy production systems: amino acid metabolism, fatty acid metabolism, nucleic acid metabolism, anti-oxidation, mitochondrial quality control, and autophagy. Moreover, recent studies have shown that p53 gene polymorphisms affect life expectancy and lifestyle-related disease such as type 2 diabetes, suggesting that there is a certain relationship between p53 function and metabolic disorders. In addition, mutant p53 protein does not only lose the tumor suppressor function, but it also gains novel oncogenic function and contributes to tumor development, involving cellular metabolism modification. Therefore, the importance of multifunctionality of p53, particularly with regard to intracellular metabolisms, arouses therapeutic interest and calls attention as the key molecule among cancer, lifestyle-related diseases and life expectancy.
Collapse
Affiliation(s)
- Naoko Hashimoto
- Department of Molecular Diagnosis, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Hidekazu Nagano
- Department of Molecular Diagnosis, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Tomoaki Tanaka
- Department of Molecular Diagnosis, Chiba University Graduate School of Medicine, Chiba, Japan
| |
Collapse
|
16
|
Costales MG, Hoch DG, Abegg D, Childs-Disney JL, Velagapudi SP, Adibekian A, Disney MD. A Designed Small Molecule Inhibitor of a Non-Coding RNA Sensitizes HER2 Negative Cancers to Herceptin. J Am Chem Soc 2019; 141:2960-2974. [PMID: 30726072 DOI: 10.1021/jacs.8b10558] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A small molecule (1) with overlapping affinity for two microRNA (miRNA) precursors was used to inform design of a dimeric compound (2) selective for one of the miRNAs. In particular, 2 selectively targets the microRNA(miR)-515 hairpin precursor to inhibit production of miR-515 that represses sphingosine kinase 1 (SK1), a key enzyme in the biosynthesis of sphingosine 1-phosphate (S1P). Application of 2 to breast cancer cells enhanced SK1 and S1P levels, triggering a migratory phenotype. Knockout of SK1, forced overexpression of miR-515, and application of a small molecule SK1 inhibitor all ablated 2's effect on phenotype, consistent with its designed mode of action. Target profiling studies via Chem-CLIP showed that 2 bound selectively to the miR-515 hairpin precursor in cells. Global neoprotein synthesis upon addition of 2 to MCF-7 breast cancer cells demonstrated 2's selectivity and upregulation of cancer-associated proteins regulated by S1P. The most upregulated protein was human epidermal growth factor receptor 2 (ERBB2/HER2), which is regulated by the SK1/S1P pathway and is normally not expressed in MCF-7 cells. Like triple negative breast cancer (TNBC) cells, the lack of HER2 renders them insusceptible to Herceptin and its antibody-drug conjugate Kadcyla. In addition to proteomics, an RNA-seq study supports that 2 has limited off target effects and other studies support that 2 is more selective than an oligonucleotide. We therefore hypothesized that 2 could sensitize MCF-7 cells to anti-HER2 therapies. Indeed, application of 2 sensitized cells to Herceptin. These results were confirmed in two other cell lines that express miR-515 and are HER2-, the hepatocellular carcinoma cell line HepG2 and the TNBC line MDA-MB-231. Importantly, normal breast epithelial cells (MCF-10A) that do not express miR-515 are not affected by 2. These observations suggest a precision medicine approach to sensitize HER2- cancers to approved anticancer medicines. This study has implications for broadening the therapeutic utility of known targeted cancer therapeutics by using a secondary targeted approach to render otherwise insensitive cells, sensitive to a targeted therapeutic.
Collapse
Affiliation(s)
- Matthew G Costales
- Department of Chemistry , The Scripps Research Institute , 130 Scripps Way , Jupiter , Florida 33458 , United States
| | - Dominic G Hoch
- Department of Chemistry , The Scripps Research Institute , 130 Scripps Way , Jupiter , Florida 33458 , United States
| | - Daniel Abegg
- Department of Chemistry , The Scripps Research Institute , 130 Scripps Way , Jupiter , Florida 33458 , United States
| | - Jessica L Childs-Disney
- Department of Chemistry , The Scripps Research Institute , 130 Scripps Way , Jupiter , Florida 33458 , United States
| | - Sai Pradeep Velagapudi
- Department of Chemistry , The Scripps Research Institute , 130 Scripps Way , Jupiter , Florida 33458 , United States
| | - Alexander Adibekian
- Department of Chemistry , The Scripps Research Institute , 130 Scripps Way , Jupiter , Florida 33458 , United States
| | - Matthew D Disney
- Department of Chemistry , The Scripps Research Institute , 130 Scripps Way , Jupiter , Florida 33458 , United States
| |
Collapse
|
17
|
Garandeau D, Noujarède J, Leclerc J, Imbert C, Garcia V, Bats ML, Rambow F, Gilhodes J, Filleron T, Meyer N, Brayer S, Arcucci S, Tartare-Deckert S, Ségui B, Marine JC, Levade T, Bertolotto C, Andrieu-Abadie N. Targeting the Sphingosine 1-Phosphate Axis Exerts Potent Antitumor Activity in BRAFi-Resistant Melanomas. Mol Cancer Ther 2018; 18:289-300. [PMID: 30482853 DOI: 10.1158/1535-7163.mct-17-1141] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 06/04/2018] [Accepted: 11/20/2018] [Indexed: 11/16/2022]
Abstract
BRAF inhibitors (BRAFi) are used to treat patients with melanoma harboring the V600E mutation. However, resistance to BRAFi is inevitable. Here, we identified sphingosine 1-phosphate (S1P) receptors as regulators of BRAFV600E-mutant melanoma cell-autonomous resistance to BRAFi. Moreover, our results reveal a distinct sphingolipid profile, that is, a tendency for increased very long-chain ceramide species, in the plasma of patients with melanoma who achieve a response to BRAFi therapy as compared with patients with progressive disease. Treatment with BRAFi resulted in a strong decrease in S1PR1/3 expression in sensitive but not in resistant cells. Genetic and pharmacologic interventions, that increase ceramide/S1P ratio, downregulated S1PR expression and blocked BRAFi-resistant melanoma cell growth. This effect was associated with a decreased expression of MITF and Bcl-2. Moreover, the BH3 mimetic ABT-737 improved the antitumor activity of approaches targeting S1P-metabolizing enzymes in BRAFi-resistant melanoma cells. Collectively, our findings indicate that targeting the S1P/S1PR axis could provide effective therapeutic options for patients with melanoma who relapse after BRAFi therapy.
Collapse
Affiliation(s)
- David Garandeau
- Université Fédérale de Toulouse Midi-Pyrénées, Université Toulouse III Paul-Sabatier, Inserm, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
| | - Justine Noujarède
- Université Fédérale de Toulouse Midi-Pyrénées, Université Toulouse III Paul-Sabatier, Inserm, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
| | - Justine Leclerc
- Université Nice Sophia-Antipolis, Inserm, Centre Méditerranéen de Médecine Moléculaire, Nice, France
| | - Caroline Imbert
- Université Fédérale de Toulouse Midi-Pyrénées, Université Toulouse III Paul-Sabatier, Inserm, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
| | - Virginie Garcia
- Université Fédérale de Toulouse Midi-Pyrénées, Université Toulouse III Paul-Sabatier, Inserm, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
| | - Marie-Lise Bats
- Université Fédérale de Toulouse Midi-Pyrénées, Université Toulouse III Paul-Sabatier, Inserm, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
| | | | - Julia Gilhodes
- Bureau des essais cliniques, Institut Universitaire du Cancer de Toulouse-Oncopôle, Toulouse, France
| | - Thomas Filleron
- Bureau des essais cliniques, Institut Universitaire du Cancer de Toulouse-Oncopôle, Toulouse, France
| | - Nicolas Meyer
- Service de Dermatologie-Oncologie, Institut Universitaire du Cancer de Toulouse-Oncopôle, Toulouse, France
| | - Stéphanie Brayer
- Service de Dermatologie-Oncologie, Institut Universitaire du Cancer de Toulouse-Oncopôle, Toulouse, France
| | - Silvia Arcucci
- Université Fédérale de Toulouse Midi-Pyrénées, Université Toulouse III Paul-Sabatier, Inserm, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
| | - Sophie Tartare-Deckert
- Université Nice Sophia-Antipolis, Inserm, Centre Méditerranéen de Médecine Moléculaire, Nice, France
| | - Bruno Ségui
- Université Fédérale de Toulouse Midi-Pyrénées, Université Toulouse III Paul-Sabatier, Inserm, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
| | | | - Thierry Levade
- Université Fédérale de Toulouse Midi-Pyrénées, Université Toulouse III Paul-Sabatier, Inserm, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France.,Laboratoire de Biochimie Métabolique, CHU Toulouse, France
| | - Corine Bertolotto
- Université Nice Sophia-Antipolis, Inserm, Centre Méditerranéen de Médecine Moléculaire, Nice, France
| | - Nathalie Andrieu-Abadie
- Université Fédérale de Toulouse Midi-Pyrénées, Université Toulouse III Paul-Sabatier, Inserm, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France.
| |
Collapse
|
18
|
Pyne NJ, Pyne S. Does the Sphingosine 1-Phosphate Receptor-1 Provide a Better or Worse Prognostic Outcome for Breast Cancer Patients? Front Oncol 2018; 8:417. [PMID: 30319979 PMCID: PMC6170648 DOI: 10.3389/fonc.2018.00417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Accepted: 09/10/2018] [Indexed: 11/13/2022] Open
Affiliation(s)
- Nigel J Pyne
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Susan Pyne
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| |
Collapse
|
19
|
Xu Y, Dong B, Wang J, Zhang J, Xue W, Huang Y. Sphingosine kinase 1 overexpression contributes to sunitinib resistance in clear cell renal cell carcinoma. Oncoimmunology 2018; 7:e1502130. [PMID: 30524898 DOI: 10.1080/2162402x.2018.1502130] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 07/12/2018] [Accepted: 07/13/2018] [Indexed: 01/30/2023] Open
Abstract
Sphingosine kinase 1 (SphK1) is the major source of the bioactive lipid and GPCR agonist sphingosine 1-phosphate (S1P). Although alterations in SphK1 expression and activity have been detected in various human malignancies, its potential molecular mechanisms in the development and sunitinib resistance of clear cell renal cell carcinoma (ccRCC) remain obscure. In this study, we aim to evaluate the clinical significance of SphK1 and to explore the therapeutic implications of combination approach for ccRCC patients. We identify upregulation of SphK1 significantly associated with poor prognosis of large cohort of ccRCC patients, which contributing to cell proliferation, colony formation, migration and survival. Suppression of SphK1 activity either by shRNA or pharmacologic inhibitior FTY720 suppresses cell growth in vitro and in vivo. A comprehensive phosphoprotein antibody array reveals that SphK1 overexpression promoted RCC progression by regulating the Akt/mTOR pathway. Moreover, FTY720 administration enhanced tumor growth inhibition effect of sunitinib treatment on RCC cells in vitro and in vivo. Our results unraveled that increased SphK1 kinase activation defines an important mechanism for sunitinib resistance, therefore contributes to tumour development and represents therapeutic targets for ccRCC.
Collapse
Affiliation(s)
- Yunze Xu
- Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Baijun Dong
- Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Jianfeng Wang
- Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Jin Zhang
- Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Wei Xue
- Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yiran Huang
- Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
20
|
Preclinical study of the antitumor effect of sphingosine-1-phosphate receptor 1 antibody (S1PR1-antibody) against human breast cancer cells. Invest New Drugs 2018; 37:57-64. [DOI: 10.1007/s10637-018-0618-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 05/25/2018] [Indexed: 12/19/2022]
|
21
|
Sukocheva OA. Expansion of Sphingosine Kinase and Sphingosine-1-Phosphate Receptor Function in Normal and Cancer Cells: From Membrane Restructuring to Mediation of Estrogen Signaling and Stem Cell Programming. Int J Mol Sci 2018; 19:ijms19020420. [PMID: 29385066 PMCID: PMC5855642 DOI: 10.3390/ijms19020420] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 01/21/2018] [Accepted: 01/24/2018] [Indexed: 02/05/2023] Open
Abstract
Sphingolipids, sphingolipid metabolizing enzymes, and their receptors network are being recognized as part of the signaling mechanisms, which govern breast cancer cell growth, migration, and survival during chemotherapy treatment. Approximately 70% of breast cancers are estrogen receptor (ER) positive and, thus, rely on estrogen signaling. Estrogen activates an intracellular network composed of many cytoplasmic and nuclear mediators. Some estrogen effects can be mediated by sphingolipids. Estrogen activates sphingosine kinase 1 (SphK1) and amplifies the intracellular concentration of sphingosine-1-phosphate (S1P) in breast cancer cells during stimulation of proliferation and survival. Specifically, Estrogen activates S1P receptors (S1PR) and induces growth factor receptor transactivation. SphK, S1P, and S1PR expression are causally associated with endocrine resistance and progression to advanced tumor stages in ER-positive breast cancers in vivo. Recently, the network of SphK/S1PR was shown to promote the development of ER-negative cancers and breast cancer stem cells, as well as stimulating angiogenesis. Novel findings confirm and broaden our knowledge about the cross-talk between sphingolipids and estrogen network in normal and malignant cells. Current S1PRs therapeutic inhibition was indicated as a promising chemotherapy approach in non-responsive and advanced malignancies. Considering that sphingolipid signaling has a prominent role in terminally differentiated cells, the impact should be considered when designing specific SphK/S1PR inhibitors. This study analyzes the dynamic of the transformation of sphingolipid axis during a transition from normal to pathological condition on the level of the whole organism. The sphingolipid-based mediation and facilitation of global effects of estrogen were critically accented as a bridging mechanism that should be explored in cancer prevention.
Collapse
Affiliation(s)
- Olga A Sukocheva
- College of Nursing and Health Sciences, Flinders University of South Australia, Bedford Park, SA 5042, Australia.
| |
Collapse
|
22
|
Shimizu Y, Furuya H, Tamashiro PM, Iino K, Chan OTM, Goodison S, Pagano I, Hokutan K, Peres R, Loo LWM, Hernandez B, Naing A, Chong CDK, Rosser CJ, Kawamori T. Genetic deletion of sphingosine kinase 1 suppresses mouse breast tumor development in an HER2 transgenic model. Carcinogenesis 2018; 39:47-55. [PMID: 28968647 PMCID: PMC5862258 DOI: 10.1093/carcin/bgx097] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 07/31/2017] [Accepted: 09/06/2017] [Indexed: 01/21/2023] Open
Abstract
Aberrant sphingolipid metabolism has been reported to promote breast cancer progression. Sphingosine kinase 1 (SphK1) is a key metabolic enzyme for the formation of pro-survival S1P from pro-apoptotic ceramide. The role of SphK1 in breast cancer has been well studied in estrogen receptor (ER)-positive breast cancer; however, its role in human epidermal growth factor 2 (HER2)-positive breast cancer remains unclear. Here, we show that genetic deletion of SphK1 significantly reduced mammary tumor development with reduced tumor incidence and multiplicity in the MMTV-neu transgenic mouse model. Gene expression analysis revealed significant reduction of claudin-2 (CLDN2) expression in tumors from SphK1 deficient mice, suggesting that CLDN2 may mediate SphK1's function. It is remarkable that SphK1 deficiency in HER2-positive breast cancer model inhibited tumor formation by the different mechanism from ER-positive breast cancer. In vitro experiments demonstrated that overexpression of SphK1 in ER-/PR-/HER2+ human breast cancer cells enhanced cell proliferation, colony formation, migration and invasion. Furthermore, immunostaining of SphK1 and CLDN2 in HER2-positive human breast tumors revealed a correlation in high-grade disease. Taken together, these findings suggest that SphK1 may play a pivotal role in HER2-positive breast carcinogenesis. Targeting SphK1 may represent a novel approach for HER2-positive breast cancer chemoprevention and/or treatment.
Collapse
Affiliation(s)
- Yoshiko Shimizu
- Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, HI, USA
- Clinical and Translational Research Program, University of Hawaii Cancer Center, Honolulu, HI, USA
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Hideki Furuya
- Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, HI, USA
- Clinical and Translational Research Program, University of Hawaii Cancer Center, Honolulu, HI, USA
| | | | - Kayoko Iino
- Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Owen T M Chan
- Clinical and Translational Research Program, University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Steve Goodison
- Department of Health Sciences Research, Mayo Clinic, Jacksonville, FL, USA
| | - Ian Pagano
- Cancer Prevention and Control Program, University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Kanani Hokutan
- Clinical and Translational Research Program, University of Hawaii Cancer Center, Honolulu, HI, USA
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Rafael Peres
- Clinical and Translational Research Program, University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Lenora W M Loo
- Cancer Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Brenda Hernandez
- Cancer Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Aung Naing
- Department of Investigational Cancer Therapeutics, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Clayton D K Chong
- Cancer Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Charles J Rosser
- Clinical and Translational Research Program, University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Toshihiko Kawamori
- Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, HI, USA
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI, USA
- Shonan Medical Clinic, Sonezakishinnchi, Kita-ku, Osaka, Japan
| |
Collapse
|
23
|
Wang YC, Tsai CF, Chuang HL, Chang YC, Chen HS, Lee JN, Tsai EM. Benzyl butyl phthalate promotes breast cancer stem cell expansion via SPHK1/S1P/S1PR3 signaling. Oncotarget 2018; 7:29563-76. [PMID: 27129165 PMCID: PMC5045417 DOI: 10.18632/oncotarget.9007] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Accepted: 03/28/2016] [Indexed: 01/12/2023] Open
Abstract
Understanding the regulatory mechanisms unique to breast cancer stem cells (BCSCs) is required to control breast cancer metastasis. We found that phthalates promote BCSCs in human breast cancer cell cultures and xenograft tumors. A toxic phthalate, benzyl butyl phthalate (BBP), activated aryl hydrocarbon receptor in breast cancer cells to stimulate sphingosine kinase 1 (SPHK1)/sphingosine 1-phosphate (S1P)/sphingosine-1-phosphate receptor 3 (S1PR3) signaling and enhance formation of metastasis-initiating BCSCs. BBP induced histone modifications in S1PR3 in side population (SP) cells, but not in non-SP cells. SPHK1 or S1PR3 knockdown in breast cancer cells effectively reduced tumor growth and lung metastasis in vivo. Our findings suggest S1PR3 is a determinant of phthalate-driven breast cancer metastasis and a possible therapeutic target for regulating BCSC populations. Furthermore, the association between breast carcinogenesis and environmental pollutants has important implications for public health.
Collapse
Affiliation(s)
- Yu-Chih Wang
- Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Cheng-Fang Tsai
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Hsiao-Li Chuang
- National Applied Research Laboratories, National Laboratory Animal Center, Nangang, Taipei 11529, Taiwan
| | - Yi-Chih Chang
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung 40402, Taiwan
| | - Hung-Sheng Chen
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Jau-Nan Lee
- Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Eing-Mei Tsai
- Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan.,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
24
|
Carroll BL, Bonica J, Shamseddine AA, Hannun YA, Obeid LM. A role for caspase-2 in sphingosine kinase 1 proteolysis in response to doxorubicin in breast cancer cells - implications for the CHK1-suppressed pathway. FEBS Open Bio 2017; 8:27-40. [PMID: 29321954 PMCID: PMC5757171 DOI: 10.1002/2211-5463.12344] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 09/29/2017] [Accepted: 10/13/2017] [Indexed: 12/27/2022] Open
Abstract
Sphingosine kinase 1 (SK1) is a lipid kinase whose activity produces sphingosine 1‐phosphate, a prosurvival lipid associated with proliferation, angiogenesis, and invasion. SK1 overexpression has been observed in numerous cancers. Recent studies have demonstrated that SK1 proteolysis occurs downstream of the tumor suppressor p53 in response to several DNA‐damaging agents. Moreover, loss of SK1 in p53‐knockout mice resulted in complete protection from thymic lymphoma, providing evidence that regulation of SK1 constitutes a major tumor suppressor function of p53. Given this profound phenotype, this study aimed to investigate the mechanism by which wild‐type p53 regulates proteolysis of SK1 in response to the DNA‐damaging agent doxorubicin in breast cancer cells. We find that p53‐mediated activation of caspase‐2 was required for SK1 proteolysis and that caspase‐2 activity significantly alters the levels of endogenous sphingolipids. As p53 is mutated in 50% of all cancers, we extended our studies to investigate whether SK1 is deregulated in the context of triple‐negative breast cancer cells (TNBC) harboring a mutation in p53. Indeed, caspase‐2 was not activated in these cells and SK1 was not degraded. Moreover, caspase‐2 activation was recently shown to be downstream of the CHK1‐suppressed pathway in p53‐mutant cells, whereby inhibition of the cell cycle kinase CHK1 leads to caspase‐2 activation and apoptosis. Indeed, knockdown and inhibition of CHK1 led to the loss of SK1 in p53‐mutant TNBC cells, providing evidence that SK1 may be the first identified effector of the CHK1‐suppressed pathway.
Collapse
Affiliation(s)
- Brittany L Carroll
- Department of Medicine Stony Brook Cancer Center Health Sciences Center Stony Brook University NY USA
| | - Joseph Bonica
- Department of Medicine Stony Brook Cancer Center Health Sciences Center Stony Brook University NY USA
| | - Achraf A Shamseddine
- Department of Medicine Stony Brook Cancer Center Health Sciences Center Stony Brook University NY USA
| | - Yusuf A Hannun
- Department of Medicine Stony Brook Cancer Center Health Sciences Center Stony Brook University NY USA
| | - Lina M Obeid
- Department of Medicine Stony Brook Cancer Center Health Sciences Center Stony Brook University NY USA.,Northport Veterans Affairs Medical Center NY USA
| |
Collapse
|
25
|
Pyne NJ, El Buri A, Adams DR, Pyne S. Sphingosine 1-phosphate and cancer. Adv Biol Regul 2017; 68:97-106. [PMID: 28942351 DOI: 10.1016/j.jbior.2017.09.006] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 09/13/2017] [Accepted: 09/13/2017] [Indexed: 01/08/2023]
Abstract
The bioactive lipid, sphingosine 1-phosphate (S1P) is produced by phosphorylation of sphingosine and this is catalysed by two sphingosine kinase isoforms (SK1 and SK2). Here we discuss structural functional aspects of SK1 (which is a dimeric quaternary enzyme) that relate to coordinated coupling of membrane association with phosphorylation of Ser225 in the 'so-called' R-loop, catalytic activity and protein-protein interactions (e.g. TRAF2, PP2A and Gq). S1P formed by SK1 at the plasma-membrane is released from cells via S1P transporters to act on S1P receptors to promote tumorigenesis. We discuss here an additional novel mechanism that can operate between cancer cells and fibroblasts and which involves the release of the S1P receptor, S1P2 in exosomes from breast cancer cells that regulates ERK-1/2 signalling in fibroblasts. This novel mechanism of signalling might provide an explanation for the role of S1P2 in promoting metastasis of cancer cells and which is dependent on the micro-environmental niche.
Collapse
Affiliation(s)
- Nigel J Pyne
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral St, Glasgow, G4 0RE, Scotland, UK.
| | - Ashref El Buri
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral St, Glasgow, G4 0RE, Scotland, UK
| | - David R Adams
- Institute of Chemical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, Scotland, UK
| | - Susan Pyne
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral St, Glasgow, G4 0RE, Scotland, UK
| |
Collapse
|
26
|
"Dicing and Splicing" Sphingosine Kinase and Relevance to Cancer. Int J Mol Sci 2017; 18:ijms18091891. [PMID: 28869494 PMCID: PMC5618540 DOI: 10.3390/ijms18091891] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 08/29/2017] [Accepted: 08/29/2017] [Indexed: 02/06/2023] Open
Abstract
Sphingosine kinase (SphK) is a lipid enzyme that maintains cellular lipid homeostasis. Two SphK isozymes, SphK1 and SphK2, are expressed from different chromosomes and several variant isoforms are expressed from each of the isozymes, allowing for the multi-faceted biological diversity of SphK activity. Historically, SphK1 is mainly associated with oncogenicity, however in reality, both SphK1 and SphK2 isozymes possess oncogenic properties and are recognized therapeutic targets. The absence of mutations of SphK in various cancer types has led to the theory that cancer cells develop a dependency on SphK signaling (hyper-SphK signaling) or “non-oncogenic addiction”. Here we discuss additional theories of SphK cellular mislocation and aberrant “dicing and splicing” as contributors to cancer cell biology and as key determinants of the success or failure of SphK/S1P (sphingosine 1 phosphate) based therapeutics.
Collapse
|
27
|
Tsuchida J, Nagahashi M, Takabe K, Wakai T. Clinical Impact of Sphingosine-1-Phosphate in Breast Cancer. Mediators Inflamm 2017; 2017:2076239. [PMID: 28912626 PMCID: PMC5585627 DOI: 10.1155/2017/2076239] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 07/24/2017] [Indexed: 02/06/2023] Open
Abstract
Breast cancer metastasizes to lymph nodes or other organs, which determine the prognosis of patients. It is difficult to cure the breast cancer patients with distant metastasis due to resistance to drug therapies. Elucidating the underlying mechanisms of breast cancer metastasis and drug resistance is expected to provide new therapeutic targets. Sphingosine-1-phosphate (S1P) is a pleiotropic, bioactive lipid mediator that regulates many cellular functions, including proliferation, migration, survival, angiogenesis/lymphangiogenesis, and immune responses. S1P is formed in cells by sphingosine kinases and released from them, which acts in an autocrine, paracrine, and/or endocrine manner. S1P in extracellular space, such as interstitial fluid, interacts with components in the tumor microenvironment, which may be important for metastasis. Importantly, recent translational research has demonstrated an association between S1P levels in breast cancer patients and clinical outcomes, highlighting the clinical importance of S1P in breast cancer. We suggest that S1P is one of the key molecules to overcome the resistance to the drug therapies, such as hormonal therapy, anti-HER2 therapy, or chemotherapy, all of which are crucial aspects of a breast cancer treatment.
Collapse
Affiliation(s)
- Junko Tsuchida
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata City, Niigata 951-8510, Japan
| | - Masayuki Nagahashi
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata City, Niigata 951-8510, Japan
| | - Kazuaki Takabe
- Breast Surgery, Roswell Park Cancer Institute, Elm & Carlton Streets, Buffalo, NY 14263, USA
- Department of Surgery, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, The State University of New York, Buffalo, NY 14203, USA
| | - Toshifumi Wakai
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata City, Niigata 951-8510, Japan
| |
Collapse
|
28
|
Vettorazzi M, Angelina E, Lima S, Gonec T, Otevrel J, Marvanova P, Padrtova T, Mokry P, Bobal P, Acosta LM, Palma A, Cobo J, Bobalova J, Csollei J, Malik I, Alvarez S, Spiegel S, Jampilek J, Enriz RD. An integrative study to identify novel scaffolds for sphingosine kinase 1 inhibitors. Eur J Med Chem 2017; 139:461-481. [PMID: 28822281 DOI: 10.1016/j.ejmech.2017.08.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 08/02/2017] [Accepted: 08/05/2017] [Indexed: 10/19/2022]
Abstract
Sphingosine kinase 1 (SphK1), the enzyme that produces the bioactive sphingolipid metabolite, sphingosine-1-phosphate, is a promising new molecular target for therapeutic intervention in cancer and inflammatory diseases. In view of its importance, the main objective of this work was to find new and more potent inhibitors for this enzyme possessing different structural scaffolds than those of the known inhibitors. Our theoretical and experimental study has allowed us to identify two new structural scaffolds (three new compounds), which could be used as starting structures for the design and then the development of new inhibitors of SphK1. Our study was carried out in different steps: virtual screening, synthesis, bioassays and molecular modelling. From our results, we propose a new dihydrobenzo[b]pyrimido[5,4-f]azepine and two alkyl{3-/4-[1-hydroxy-2-(4-arylpiperazin-1-yl)ethyl]phenyl}carbamates as initial structures for the development of new inhibitors. In addition, our molecular modelling study using QTAIM calculations, allowed us to describe in detail the molecular interactions that stabilize the different Ligand-Receptor complexes. Such analyses indicate that the cationic head of the different compounds must be refined in order to obtain an increase in the binding affinity of these ligands.
Collapse
Affiliation(s)
- Marcela Vettorazzi
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO-SL), Chacabuco 915, 5700 San Luis, Argentina
| | - Emilio Angelina
- Laboratorio de Estructura Molecular y Propiedades, Área de Química Física, Departamento de Química, Facultad de Ciencias Exactas y Naturales y Agrimensura, Universidad Nacional del Nordeste, Avda. Libertad 5460, 3400 Corrientes, Argentina
| | - Santiago Lima
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298 USA
| | - Tomas Gonec
- Department of Chemical Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, Palackeho 1, 612 42 Brno, Czech Republic
| | - Jan Otevrel
- Department of Chemical Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, Palackeho 1, 612 42 Brno, Czech Republic
| | - Pavlina Marvanova
- Department of Chemical Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, Palackeho 1, 612 42 Brno, Czech Republic
| | - Tereza Padrtova
- Department of Chemical Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, Palackeho 1, 612 42 Brno, Czech Republic
| | - Petr Mokry
- Department of Chemical Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, Palackeho 1, 612 42 Brno, Czech Republic
| | - Pavel Bobal
- Department of Chemical Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, Palackeho 1, 612 42 Brno, Czech Republic
| | - Lina M Acosta
- Laboratorio de Síntesis Orgánica, Escuela de Química, Universidad Industrial de Santander, Carrera 27, Calle 9, A.A 678, Bucaramanga, Colombia
| | - Alirio Palma
- Laboratorio de Síntesis Orgánica, Escuela de Química, Universidad Industrial de Santander, Carrera 27, Calle 9, A.A 678, Bucaramanga, Colombia
| | - Justo Cobo
- Inorganic and Organic Department, University of Jaén, Campus Las Lagunillas s/n, 23071, Jaén, Spain
| | - Janette Bobalova
- Institute of Analytical Chemistry of the Czech Academy of Sciences, v. v. i., Veveri 97, 602 00 Brno, Czech Republic
| | - Jozef Csollei
- Department of Chemical Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, Palackeho 1, 612 42 Brno, Czech Republic; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Comenius University, Odbojarov 10, 83232 Bratislava, Slovakia
| | - Ivan Malik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Comenius University, Odbojarov 10, 83232 Bratislava, Slovakia
| | - Sergio Alvarez
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO-SL), Chacabuco 915, 5700 San Luis, Argentina
| | - Sarah Spiegel
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298 USA
| | - Josef Jampilek
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Comenius University, Odbojarov 10, 83232 Bratislava, Slovakia
| | - Ricardo D Enriz
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO-SL), Chacabuco 915, 5700 San Luis, Argentina.
| |
Collapse
|
29
|
Nazouri AS, Asadpour O, Dabiri S, Pourseyedi B, Lashkarizadeh MR, Zianalinejad H. High Expression of Sphingosine Kinase 1 in Estrogen and Progesterone Receptors-Negative Breast Cancer. IRANIAN JOURNAL OF PATHOLOGY 2017. [PMID: 29531546 DOI: pmid/29531546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND & OBJECTIVE Breast cancer is the leading cause of cancer related death in females. Sphingosine kinase 1 (SPHK1) and its product sphingosine-1-phosphate (S1P) are the essential key regulator molecules in breast cancer through their ability to promote cell proliferation, angiogenesis, cell proliferation, and lymphagiogenesis. SPHK1 is overexpressed in multiple types of cancer including breast cancer and is associated with resistance to treatment. The current study aimed at investigating the expression of SPHK1 in estrogen and progesterone receptors (ER, PR) negative in comparison to ER, and PR positive breast cancer and their normal controls, and also finding the relationship between SPHK1 expression and high body index (BMI) in the selected groups with breast cancer. METHODS A total of 120 human breast cancer tissue specimens were analyzed for SPHK1 expression using Quantitative Real-Time Polymerase Chain Reaction (q RT-PCR) assay. Detection of hormonal status of breast cancer tissue samples was conducted by immunohistochemical assay. RESULT The current study findings showed that the level of SPHK1expression in the breast cancer tissue was significantly higher in patients with estrogen and progesterone negative receptors, compared to the ones without them (P-value< 0.05). The obtained data confirmed that the obesity in patients with ER negative was higher than the ones with positive receptors (BMI> 25). CONCLUSION The current study showed that expression of SPHK1gene was higher in the patients with ER and PR negative breast cancer and high BMI, compared with other groups.
Collapse
Affiliation(s)
- Azadeh-Sadat Nazouri
- Dept. of Biology, Science Faculty, Shahid Beheshti University, Tehran, Iran.,Pathology and Stem Cell Research Center, Pathology Department, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Ommolbanin Asadpour
- Dept. of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Shahriar Dabiri
- Pathology and Stem Cell Research Center, Pathology Department, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Bahram Pourseyedi
- Surgery Department, Kerman University of Medical Sciences, Kerman, Iran
| | | | | |
Collapse
|
30
|
Hatoum D, Haddadi N, Lin Y, Nassif NT, McGowan EM. Mammalian sphingosine kinase (SphK) isoenzymes and isoform expression: challenges for SphK as an oncotarget. Oncotarget 2017; 8:36898-36929. [PMID: 28415564 PMCID: PMC5482707 DOI: 10.18632/oncotarget.16370] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 03/02/2017] [Indexed: 12/16/2022] Open
Abstract
The various sphingosine kinase (SphK) isoenzymes (isozymes) and isoforms, key players in normal cellular physiology, are strongly implicated in cancer and other diseases. Mutations in SphKs, that may justify abnormal physiological function, have not been recorded. Nonetheless, there is a large and growing body of evidence demonstrating the contribution of gain or loss of function and the imbalance in the SphK/S1P rheostat to a plethora of pathological conditions including cancer, diabetes and inflammatory diseases. SphK is expressed as two isozymes SphK1 and SphK2, transcribed from genes located on different chromosomes and both isozymes catalyze the phosphorylation of sphingosine to S1P. Expression of each SphK isozyme produces alternately spliced isoforms. In recent years the importance of the contribution of SpK1 expression to treatment resistance in cancer has been highlighted and, additionally, differences in treatment outcome appear to also be dependent upon SphK isoform expression. This review focuses on an exciting emerging area of research involving SphKs functions, expression and subcellular localization, highlighting the complexity of targeting SphK in cancer and also comorbid diseases. This review also covers the SphK isoenzymes and isoforms from a historical perspective, from their first discovery in murine species and then in humans, their role(s) in normal cellular function and in disease processes, to advancement of SphK as an oncotarget.
Collapse
Affiliation(s)
- Diana Hatoum
- School of Life Sciences, University of Technology Sydney, Ultimo, Sydney, NSW 2007, Australia
| | - Nahal Haddadi
- School of Life Sciences, University of Technology Sydney, Ultimo, Sydney, NSW 2007, Australia
| | - Yiguang Lin
- School of Life Sciences, University of Technology Sydney, Ultimo, Sydney, NSW 2007, Australia
| | - Najah T. Nassif
- School of Life Sciences, University of Technology Sydney, Ultimo, Sydney, NSW 2007, Australia
| | - Eileen M. McGowan
- School of Life Sciences, University of Technology Sydney, Ultimo, Sydney, NSW 2007, Australia
| |
Collapse
|
31
|
Targeting sphingosine-1-phosphate signaling for cancer therapy. SCIENCE CHINA-LIFE SCIENCES 2017. [DOI: 10.1007/s11427-017-9046-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
32
|
Bernacchioni C, Ghini V, Cencetti F, Japtok L, Donati C, Bruni P, Turano P. NMR metabolomics highlights sphingosine kinase-1 as a new molecular switch in the orchestration of aberrant metabolic phenotype in cancer cells. Mol Oncol 2017; 11:517-533. [PMID: 28258651 PMCID: PMC5527469 DOI: 10.1002/1878-0261.12048] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 02/17/2017] [Accepted: 02/21/2017] [Indexed: 12/11/2022] Open
Abstract
Strong experimental evidence in animal and cellular models supports a pivotal role of sphingosine kinase‐1 (SK1) in oncogenesis. In many human cancers, SK1 levels are upregulated and these increases are linked to poor prognosis in patients. Here, by employing untargeted NMR‐based metabolomic profiling combined with functional validations, we report the crucial role of SK1 in the metabolic shift known as the Warburg effect in A2780 ovarian cancer cells. Indeed, expression of SK1 induced a high glycolytic rate, characterized by increased levels of lactate along with increased expression of the proton/monocarboxylate symporter MCT1, and decreased oxidative metabolism, associated with the accumulation of intermediates of the tricarboxylic acid cycle and reduction in CO2 production. Additionally, SK1‐expressing cells displayed a significant increase in glucose uptake paralleled by GLUT3 transporter upregulation. The role of SK1 is not limited to the induction of aerobic glycolysis, affecting metabolic pathways that appear to support the biosynthesis of macromolecules. These findings highlight the role of SK1 signaling axis in cancer metabolic reprogramming, pointing out innovative strategies for cancer therapies.
Collapse
Affiliation(s)
- Caterina Bernacchioni
- Department of Biomedical, Clinical and Experimental Sciences, University of Florence, Italy
| | - Veronica Ghini
- CERM and Department of Chemistry, University of Florence, Italy
| | - Francesca Cencetti
- Department of Biomedical, Clinical and Experimental Sciences, University of Florence, Italy
| | - Lukasz Japtok
- Department of Toxicology, Faculty of Mathematics and Natural Science, Institute of Nutritional Science, University of Potsdam, Germany
| | - Chiara Donati
- Department of Biomedical, Clinical and Experimental Sciences, University of Florence, Italy
| | - Paola Bruni
- Department of Biomedical, Clinical and Experimental Sciences, University of Florence, Italy
| | - Paola Turano
- CERM and Department of Chemistry, University of Florence, Italy
| |
Collapse
|
33
|
Lee HM, Lo KW, Wei W, Tsao SW, Chung GTY, Ibrahim MH, Dawson CW, Murray PG, Paterson IC, Yap LF. Oncogenic S1P signalling in EBV-associated nasopharyngeal carcinoma activates AKT and promotes cell migration through S1P receptor 3. J Pathol 2017; 242:62-72. [PMID: 28240350 DOI: 10.1002/path.4879] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 12/30/2016] [Accepted: 01/04/2017] [Indexed: 12/27/2022]
Abstract
Undifferentiated nasopharyngeal carcinoma (NPC) is a cancer with high metastatic potential that is consistently associated with Epstein-Barr virus (EBV) infection. In this study, we have investigated the functional contribution of sphingosine-1-phosphate (S1P) signalling to the pathogenesis of NPC. We show that EBV infection or ectopic expression of the EBV-encoded latent genes (EBNA1, LMP1, and LMP2A) can up-regulate sphingosine kinase 1 (SPHK1), the key enzyme that produces S1P, in NPC cell lines. Exogenous addition of S1P promotes the migration of NPC cells through the activation of AKT; shRNA knockdown of SPHK1 resulted in a reduction in the levels of activated AKT and inhibition of cell migration. We also show that S1P receptor 3 (S1PR3) mRNA is overexpressed in EBV-positive NPC patient-derived xenografts and a subset of primary NPC tissues, and that knockdown of S1PR3 suppressed the activation of AKT and the S1P-induced migration of NPC cells. Taken together, our data point to a central role for EBV in mediating the oncogenic effects of S1P in NPC and identify S1P signalling as a potential therapeutic target in this disease. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Hui Min Lee
- Department of Oral & Craniofacial Sciences and Oral Cancer Research & Coordinating Centre, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Kwok-Wai Lo
- Department of Anatomical and Cellular Pathology, State Key Laboratory in Oncology in South China and Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong
| | - Wenbin Wei
- Institute of Cancer and Genomic Medicine, University of Birmingham, Birmingham, UK.,Sheffield Institute of Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Sai Wah Tsao
- School of Biomedical Sciences and Center for Cancer Research, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Grace Tin Yun Chung
- Department of Anatomical and Cellular Pathology, State Key Laboratory in Oncology in South China and Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong
| | - Maha Hafez Ibrahim
- Institute of Cancer and Genomic Medicine, University of Birmingham, Birmingham, UK
| | - Christopher W Dawson
- Institute of Cancer and Genomic Medicine, University of Birmingham, Birmingham, UK
| | - Paul G Murray
- Institute of Cancer and Genomic Medicine, University of Birmingham, Birmingham, UK
| | - Ian C Paterson
- Department of Oral & Craniofacial Sciences and Oral Cancer Research & Coordinating Centre, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Lee Fah Yap
- Department of Oral & Craniofacial Sciences and Oral Cancer Research & Coordinating Centre, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
34
|
Maiti A, Takabe K, Hait NC. Metastatic triple-negative breast cancer is dependent on SphKs/S1P signaling for growth and survival. Cell Signal 2017; 32:85-92. [PMID: 28108260 DOI: 10.1016/j.cellsig.2017.01.021] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 01/13/2017] [Accepted: 01/13/2017] [Indexed: 12/16/2022]
Abstract
About 40,000 American women die from metastatic breast cancer each year despite advancements in treatment. Approximately, 15% of breast cancers are triple-negative for estrogen receptor, progesterone receptor, and HER2. Triple-negative cancer is characterized by more aggressive, harder to treat with conventional approaches and having a greater possibility of recurrence. Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid signaling mediator has emerged as a key regulatory molecule in breast cancer progression. Therefore, we investigated whether cytosolic sphingosine kinase type 1 (SphK1) and nuclear sphingosine kinase type 2 (SphK2), the enzymes that make S1P are critical for growth and PI3K/AKT, ERK-MAP kinase mediated survival signaling of lung metastatic variant LM2-4 breast cancer cells, generated from the parental triple-negative MDA-MB-231 human breast cancer cell line. Similar with previous report, SphKs/S1P signaling is critical for the growth and survival of estrogen receptor positive MCF-7 human breast cancer cells, was used as our study control. MDA-MB-231 did not show a significant effect of SphKs/S1P signaling on AKT, ERK, and p38 pathways. In contrast, LM2-4 cells that gained lung metastatic phenotype from primary MDA-MB-231 cells show a significant effect of SphKs/S1P signaling requirement on cell growth, survival, and cell motility. PF-543, a selective potent inhibitor of SphK1, attenuated epidermal growth factor (EGF)-mediated cell growth and survival signaling through inhibition of AKT, ERK, and p38 MAP kinase pathways mainly in LM2-4 cells but not in parental MDA-MB-231 human breast cancer cells. Moreover, K-145, a selective inhibitor of SphK2, markedly attenuated EGF-mediated cell growth and survival of LM2-4 cells. We believe this study highlights the importance of SphKs/S1P signaling in metastatic triple-negative breast cancers and targeted therapies.
Collapse
Affiliation(s)
- Aparna Maiti
- Roswell Park Cancer Institute, Division of Breast Surgery, Department of Surgical Oncology, Department of Molecular and Cellular Biology, Elm and Carlton Streets, Buffalo, NY 14263, USA
| | - Kazuaki Takabe
- Roswell Park Cancer Institute, Division of Breast Surgery, Department of Surgical Oncology, Department of Molecular and Cellular Biology, Elm and Carlton Streets, Buffalo, NY 14263, USA
| | - Nitai C Hait
- Roswell Park Cancer Institute, Division of Breast Surgery, Department of Surgical Oncology, Department of Molecular and Cellular Biology, Elm and Carlton Streets, Buffalo, NY 14263, USA.
| |
Collapse
|
35
|
Reynolds GM, Visentin B, Sabbadini R. Immunohistochemical Detection of Sphingosine-1-Phosphate and Sphingosine Kinase-1 in Human Tissue Samples and Cell Lines. Methods Mol Biol 2017; 1697:43-56. [PMID: 28560513 DOI: 10.1007/7651_2017_44] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Sphingosine-1-phosphate (S1P) and the enzyme primarily responsible for its production, sphingosine kinase-1 (SphK-1), are dysregulated in multiple human diseases including cancer, multiple sclerosis (MS), diabetes, neurological diseases, fibrosis, and certain pathologies associated with impaired angiogenesis such as age-related macular degeneration (AMD). Antibody-based techniques to identify and localize S1P and SphK-1 within cells and tissue specimens represent a powerful tool, not only to understand biological role of these molecules but also to validate these unique in-class targets in multiple state diseases. Consequently, the potential applications of these molecules for therapy and diagnostic purposes are currently under investigation. Here, we describe a new improved technique, Agitated Low Temperature Epitope Retrieval (ALTER) for staining procedures, to identify expression of S1P and SphK-1 in human frozen tissue samples. The challenges encountered in the process of localization in tissue samples of lipid molecules such as S1P are discussed.
Collapse
Affiliation(s)
- Gary M Reynolds
- Centre for Liver Research and NIHR Biomedical Research Unit, University of Birmingham and Queen Elizabeth Hospital Birmingham, Birmingham, B15 2TT, UK.
| | | | | |
Collapse
|
36
|
Rodriguez YI, Campos LE, Castro MG, Aladhami A, Oskeritzian CA, Alvarez SE. Sphingosine-1 Phosphate: A New Modulator of Immune Plasticity in the Tumor Microenvironment. Front Oncol 2016; 6:218. [PMID: 27800303 PMCID: PMC5066089 DOI: 10.3389/fonc.2016.00218] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 09/30/2016] [Indexed: 01/01/2023] Open
Abstract
In the last 15 years, increasing evidences demonstrate a strong link between sphingosine-1-phosphate (S1P) and both normal physiology and progression of different diseases, including cancer and inflammation. Indeed, numerous studies show that tissue levels of this sphingolipid metabolite are augmented in many cancers, affecting survival, proliferation, angiogenesis, and metastatic spread. Recent insights into the possible role of S1P as a therapeutic target has attracted enormous attention and opened new opportunities in this evolving field. In this review, we will focus on the role of S1P in cancer, with particular emphasis in new developments that highlight the many functions of this sphingolipid in the tumor microenvironment. We will discuss how S1P modulates phenotypic plasticity of macrophages and mast cells, tumor-induced immune evasion, differentiation and survival of immune cells in the tumor milieu, interaction between cancer and stromal cells, and hypoxic response.
Collapse
Affiliation(s)
- Yamila I Rodriguez
- Instituto Multidisciplinario de Investigaciones Biológicas San Luis (IMIBIO-SL) CONICET , San Luis , Argentina
| | - Ludmila E Campos
- Instituto Multidisciplinario de Investigaciones Biológicas San Luis (IMIBIO-SL) CONICET , San Luis , Argentina
| | - Melina G Castro
- Instituto Multidisciplinario de Investigaciones Biológicas San Luis (IMIBIO-SL) CONICET , San Luis , Argentina
| | - Ahmed Aladhami
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine , Columbia, SC , USA
| | - Carole A Oskeritzian
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine , Columbia, SC , USA
| | - Sergio E Alvarez
- Instituto Multidisciplinario de Investigaciones Biológicas San Luis (IMIBIO-SL) CONICET, San Luis, Argentina; Universidad Nacional de San Luis, San Luis, Argentina
| |
Collapse
|
37
|
Al Alam N, Kreydiyyeh SI. FTY720P inhibits hepatic Na(+)-K(+) ATPase via S1PR2 and PGE2. Biochem Cell Biol 2016; 94:371-7. [PMID: 27501354 DOI: 10.1139/bcb-2016-0025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Sphingosine-1-phosphate (S1P) was found previously to inhibit Na(+)-K(+) ATPase in HepG2 cells. Whether fingolimod (FTY720), a S1P receptor (S1PR) agonist, similarly inhibits the ATPase is a question that needs to be addressed. The aim of this work was to study the effect of FTY720P, the active form of the drug, on the activity of Na(+)-K(+) ATPase in HepG2 cells and determine its mechanism of action. The activity of the ATPase was assayed by measuring the amount of inorganic phosphate liberated in the presence and the absence of ouabain. FTY720-P (7.5 nmol/L, 15 min) significantly reduced the activity of the ATPase. This effect disappeared completely in the presence of JTE-013, which is a specific blocker of sphingosine-1-phosphate receptor 2 (S1PR2), as well as in the presence of calphostin and indomethacin, which are inhibitors of protein kinase C (PKC) and COX-2, respectively. The effect of FTY720P was mimicked by prostaglandin E2 (PGE2) and PMA, but abrogated by NF-κB inhibition. When NF-κB was inhibited, the effect of exogenous PGE2 still appeared, but that of PMA did not manifest, suggesting that NF-κB is upstream of PGE2 and downstream of PKC. It was concluded that FTY720P activates via S1PR2, PKC, and NF-κB. The latter induces PGE2 generation and inhibits Na(+)-K(+) ATPase.
Collapse
Affiliation(s)
- Nadine Al Alam
- Department of Biology, Faculty of Arts & Sciences, American University of Beirut, Beirut, 11-0236, Lebanon.,Department of Biology, Faculty of Arts & Sciences, American University of Beirut, Beirut, 11-0236, Lebanon
| | - Sawsan Ibrahim Kreydiyyeh
- Department of Biology, Faculty of Arts & Sciences, American University of Beirut, Beirut, 11-0236, Lebanon.,Department of Biology, Faculty of Arts & Sciences, American University of Beirut, Beirut, 11-0236, Lebanon
| |
Collapse
|
38
|
Vogt D, Stark H. Therapeutic Strategies and Pharmacological Tools Influencing S1P Signaling and Metabolism. Med Res Rev 2016; 37:3-51. [PMID: 27480072 DOI: 10.1002/med.21402] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 06/01/2016] [Accepted: 06/28/2016] [Indexed: 02/06/2023]
Abstract
During the last two decades the study of the sphingolipid anabolic, catabolic, and signaling pathways has attracted enormous interest. Especially the introduction of fingolimod into market as first p.o. therapeutic for the treatment of multiple sclerosis has boosted this effect. Although the complex regulation of sphingosine-1-phosphate (S1P) and other catabolic and anabolic sphingosine-related compounds is not fully understood, the influence on different (patho)physiological states from inflammation to cytotoxicity as well as the availability of versatile pharmacological tools that represent new approaches to study these states are described. Here, we have summarized various aspects concerning the many faces of sphingolipid function modulation by different pharmacological tools up to clinical candidates. Due to the immense heterogeneity of physiological or pharmacological actions and complex cross regulations, it is difficult to predict their role in upcoming therapeutic approaches. Currently, inflammatory, immunological, and/or antitumor aspects are discussed.
Collapse
Affiliation(s)
- Dominik Vogt
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Straße 9, D-60438, Frankfurt, Germany
| | - Holger Stark
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitätsstraße 1, D-40225, Düsseldorf, Germany
| |
Collapse
|
39
|
Therapeutic potential of targeting sphingosine kinases and sphingosine 1-phosphate in hematological malignancies. Leukemia 2016; 30:2142-2151. [PMID: 27461062 DOI: 10.1038/leu.2016.208] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 06/24/2016] [Accepted: 07/07/2016] [Indexed: 12/14/2022]
Abstract
Sphingolipids, such as ceramide, sphingosine and sphingosine 1-phosphate (S1P) are bioactive molecules that have important functions in a variety of cellular processes, which include proliferation, survival, differentiation and cellular responses to stress. Sphingolipids have a major impact on the determination of cell fate by contributing to either cell survival or death. Although ceramide and sphingosine are usually considered to induce cell death, S1P promotes survival of cells. Sphingosine kinases (SPHKs) are the enzymes that catalyze the conversion of sphingosine to S1P. There are two isoforms, SPHK1 and SPHK2, which are encoded by different genes. SPHK1 has recently been implicated in contributing to cell transformation, tumor angiogenesis and metastatic spread, as well as cancer cell multidrug-resistance. More recent findings suggest that SPHK2 also has a role in cancer progression. This review is an overview of our understanding of the role of SPHKs and S1P in hematopoietic malignancies and provides information on the current status of SPHK inhibitors with respect to their therapeutic potential in the treatment of hematological cancers.
Collapse
|
40
|
Tsuchida J, Nagahashi M, Nakajima M, Moro K, Tatsuda K, Ramanathan R, Takabe K, Wakai T. Breast cancer sphingosine-1-phosphate is associated with phospho-sphingosine kinase 1 and lymphatic metastasis. J Surg Res 2016; 205:85-94. [PMID: 27621003 DOI: 10.1016/j.jss.2016.06.022] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 04/14/2016] [Accepted: 06/07/2016] [Indexed: 12/26/2022]
Abstract
BACKGROUND Sphingosine-1-phosphate (S1P), a pleiotropic bioactive lipid mediator, has been implicated as a key regulatory molecule in cancer through its ability to promote cell proliferation, migration, angiogenesis, and lymphangiogenesis. Previous studies suggested that S1P produced by sphingosine kinase 1 (SphK1) in breast cancer plays important roles in progression of disease and metastasis. However, the associations between S1P and clinical parameters in human breast cancer have not been well investigated to date. MATERIALS AND METHODS We determined levels of S1P and other sphingolipids in breast cancer tissue by electrospray ionization-tandem mass spectrometry. Associations between S1P levels and clinicopathologic features of the tumors were analyzed. Expression of phospho-SphK1 (pSphK1) in breast cancer tissues was determined by immunohistochemical scoring. RESULTS Levels of S1P in breast cancer tissues were significantly higher in patients with high white blood cell count in the blood than those patients without. S1P levels were lower in patients with human epidermal growth factor receptor 2 overexpression and/or amplification than those patients without. Furthermore, cancer tissues with high pSphK1 expression showed significantly higher levels of S1P than cancer tissues without. Finally, patients with lymph node metastasis showed significantly higher levels of S1P in tumor tissues than the patients with negative nodes. CONCLUSIONS To our knowledge, this is the first study to demonstrate that high expression of pSphK1 is associated with higher levels of S1P, which in turn is associated with lymphatic metastasis in breast cancer.
Collapse
Affiliation(s)
- Junko Tsuchida
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata City, Japan
| | - Masayuki Nagahashi
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata City, Japan.
| | - Masato Nakajima
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata City, Japan
| | - Kazuki Moro
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata City, Japan
| | - Kumiko Tatsuda
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata City, Japan
| | - Rajesh Ramanathan
- Division of Surgical Oncology, Department of Surgery, Virginia Commonwealth University School of Medicine and the Massey Cancer Center, Richmond, Virginia
| | - Kazuaki Takabe
- Division of Surgical Oncology, Department of Surgery, Virginia Commonwealth University School of Medicine and the Massey Cancer Center, Richmond, Virginia; Breast Surgery, Roswell Park Cancer Institute, Buffalo, New York
| | - Toshifumi Wakai
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata City, Japan
| |
Collapse
|
41
|
Sphingosine Kinases: Emerging Structure-Function Insights. Trends Biochem Sci 2016; 41:395-409. [PMID: 27021309 DOI: 10.1016/j.tibs.2016.02.007] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 02/08/2016] [Accepted: 02/17/2016] [Indexed: 12/15/2022]
Abstract
Sphingosine kinases (SK1 and SK2) catalyse the conversion of sphingosine into sphingosine 1-phosphate and control fundamental cellular processes, including cell survival, proliferation, differentiation, migration, and immune function. In this review, we highlight recent breakthroughs in the structural and functional characterisation of SK1 and these are contextualised by analysis of crystal structures for closely related prokaryotic lipid kinases. We identify a putative dimerisation interface and propose novel regulatory mechanisms governing structural plasticity induced by phosphorylation and interaction with phospholipids and proteins. Our analysis suggests that the catalytic function and regulation of the enzymes might be dependent on conformational mobility and it provides a roadmap for future interrogation of SK1 function and its role in physiology and disease.
Collapse
|
42
|
Pyne S, Adams DR, Pyne NJ. Sphingosine 1-phosphate and sphingosine kinases in health and disease: Recent advances. Prog Lipid Res 2016; 62:93-106. [PMID: 26970273 DOI: 10.1016/j.plipres.2016.03.001] [Citation(s) in RCA: 146] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 03/07/2016] [Accepted: 03/08/2016] [Indexed: 12/24/2022]
Abstract
Sphingosine kinases (isoforms SK1 and SK2) catalyse the formation of a bioactive lipid, sphingosine 1-phosphate (S1P). S1P is a well-established ligand of a family of five S1P-specific G protein coupled receptors but also has intracellular signalling roles. There is substantial evidence to support a role for sphingosine kinases and S1P in health and disease. This review summarises recent advances in the area in relation to receptor-mediated signalling by S1P and novel intracellular targets of this lipid. New evidence for a role of each sphingosine kinase isoform in cancer, the cardiovascular system, central nervous system, inflammation and diabetes is discussed. There is continued research to develop isoform selective SK inhibitors, summarised here. Analysis of the crystal structure of SK1 with the SK1-selective inhibitor, PF-543, is used to identify residues that could be exploited to improve selectivity in SK inhibitor development for future therapeutic application.
Collapse
Affiliation(s)
- Susan Pyne
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral St, Glasgow, G4 0RE, Scotland, UK.
| | - David R Adams
- School of Engineering & Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, Scotland, UK.
| | - Nigel J Pyne
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral St, Glasgow, G4 0RE, Scotland, UK.
| |
Collapse
|
43
|
Kashem MA, Kennedy CA, Fogarty KE, Dimock JR, Zhang Y, Sanville-Ross ML, Skow DJ, Brunette SR, Swantek JL, Hummel HS, Swindle J, Nelson RM. A High-Throughput Genetic Complementation Assay in Yeast Cells Identified Selective Inhibitors of Sphingosine Kinase 1 Not Found Using a Cell-Free Enzyme Assay. Assay Drug Dev Technol 2016; 14:39-49. [DOI: 10.1089/adt.2015.671] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Affiliation(s)
- Mohammed A. Kashem
- Small Molecule Discovery Research, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut
| | - Charles A. Kennedy
- Small Molecule Discovery Research, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut
| | - Kylie E. Fogarty
- Small Molecule Discovery Research, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut
| | - Janice R. Dimock
- Immunology and Respiratory Research, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut
| | - Yunlong Zhang
- Small Molecule Discovery Research, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut
| | - Mary L. Sanville-Ross
- Small Molecule Discovery Research, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut
| | - Donna J. Skow
- Small Molecule Discovery Research, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut
| | - Steven R. Brunette
- Small Molecule Discovery Research, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut
| | - Jennifer L. Swantek
- Immunology and Respiratory Research, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut
| | | | | | - Richard M. Nelson
- Small Molecule Discovery Research, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut
| |
Collapse
|
44
|
Pyne NJ, McNaughton M, Boomkamp S, MacRitchie N, Evangelisti C, Martelli AM, Jiang HR, Ubhi S, Pyne S. Role of sphingosine 1-phosphate receptors, sphingosine kinases and sphingosine in cancer and inflammation. Adv Biol Regul 2016; 60:151-159. [PMID: 26429117 DOI: 10.1016/j.jbior.2015.09.001] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 08/19/2015] [Accepted: 09/03/2015] [Indexed: 06/05/2023]
Abstract
Sphingosine kinase (there are two isoforms, SK1 and SK2) catalyses the formation of sphingosine 1-phosphate (S1P), a bioactive lipid that can be released from cells to activate a family of G protein-coupled receptors, termed S1P1-5. In addition, S1P can bind to intracellular target proteins, such as HDAC1/2, to induce cell responses. There is increasing evidence of a role for S1P receptors (e.g. S1P4) and SK1 in cancer, where high expression of these proteins in ER negative breast cancer patient tumours is linked with poor prognosis. Indeed, evidence will be presented here to demonstrate that S1P4 is functionally linked with SK1 and the oncogene HER2 (ErbB2) to regulate mitogen-activated protein kinase pathways and growth of breast cancer cells. Although much emphasis is placed on SK1 in terms of involvement in oncogenesis, evidence will also be presented for a role of SK2 in both T-cell and B-cell acute lymphoblastic leukemia. In patient T-ALL lymphoblasts and T-ALL cell lines, we have demonstrated that SK2 inhibitors promote T-ALL cell death via autophagy and induce suppression of c-myc and PI3K/AKT pathways. We will also present evidence demonstrating that certain SK inhibitors promote oxidative stress and protein turnover via proteasomal degradative pathways linked with induction of p53-and p21-induced growth arrest. In addition, the SK1 inhibitor, PF-543 exacerbates disease progression in an experimental autoimmune encephalomyelitis mouse model indicating that SK1 functions in an anti-inflammatory manner. Indeed, sphingosine, which accumulates upon inhibition of SK1 activity, and sphingosine-like compounds promote activation of the inflammasome, which is linked with multiple sclerosis, to stimulate formation of the pro-inflammatory mediator, IL-1β. Such compounds could be exploited to produce antagonists that diminish exaggerated inflammation in disease. The therapeutic potential of modifying the SK-S1P receptor pathway in cancer and inflammation will therefore, be reviewed.
Collapse
Affiliation(s)
- Nigel J Pyne
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral St, Glasgow, G4 0RE, Scotland, UK.
| | - Melissa McNaughton
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral St, Glasgow, G4 0RE, Scotland, UK
| | - Stephanie Boomkamp
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral St, Glasgow, G4 0RE, Scotland, UK
| | - Neil MacRitchie
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral St, Glasgow, G4 0RE, Scotland, UK
| | - Cecilia Evangelisti
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Alberto M Martelli
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Hui-Rong Jiang
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral St, Glasgow, G4 0RE, Scotland, UK
| | - Satvir Ubhi
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral St, Glasgow, G4 0RE, Scotland, UK
| | - Susan Pyne
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral St, Glasgow, G4 0RE, Scotland, UK
| |
Collapse
|
45
|
Gao Y, Gao F, Chen K, Tian ML, Zhao DL. Sphingosine kinase 1 as an anticancer therapeutic target. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:3239-45. [PMID: 26150697 PMCID: PMC4484649 DOI: 10.2147/dddt.s83288] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The development of chemotherapeutic resistance is a major challenge in oncology. Elevated sphingosine kinase 1 (SK1) levels is predictive of a poor prognosis, and SK1 overexpression may confer resistance to chemotherapeutics. The SK/sphingosine-1-phosphate (S1P)/sphingosine-1-phosphate receptor (S1PR) signaling pathway has been implicated in the progression of various cancers and in chemotherapeutic drug resistance. Therefore, SK1 may represent an important target for cancer therapy. Targeting the SK/S1P/S1PR signaling pathway may be an effective anticancer therapeutic strategy, particularly in the context of overcoming drug resistance. This review summarizes our current understanding of the role of SK/S1P/S1PR signaling in cancer and development of SK1 inhibitors.
Collapse
Affiliation(s)
- Ying Gao
- Department of Radiotherapy Oncology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Fei Gao
- Department of Neurology, First Affiliated Hospital of Xi'an Medical University, Xi'an, People's Republic of China
| | - Kan Chen
- School of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, People's Republic of China
| | - Mei-li Tian
- Department of Radiotherapy Oncology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Dong-li Zhao
- Department of Radiotherapy Oncology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| |
Collapse
|
46
|
Li C, Li JN, Kays J, Guerrero M, Nicol GD. Sphingosine 1-phosphate enhances the excitability of rat sensory neurons through activation of sphingosine 1-phosphate receptors 1 and/or 3. J Neuroinflammation 2015; 12:70. [PMID: 25880547 PMCID: PMC4397880 DOI: 10.1186/s12974-015-0286-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 03/24/2015] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid that acts through a family of five G-protein-coupled receptors (S1PR1-5) and plays a key role in regulating the inflammatory response. Our previous studies demonstrated that rat sensory neurons express the mRNAs for all five S1PRs and that S1P increases neuronal excitability primarily, but not exclusively, through S1PR1. This raises the question as to which other S1PRs mediate the enhanced excitability. METHODS Isolated sensory neurons were treated with either short-interfering RNAs (siRNAs) or a variety of pharmacological agents targeted to S1PR1/R2/R3 to determine the role(s) of these receptors in regulating neuronal excitability. The excitability of isolated sensory neurons was assessed by using whole-cell patch-clamp recording to measure the capacity of these cells to fire action potentials (APs). RESULTS After siRNA treatment, exposure to S1P failed to augment the excitability. Pooled siRNA targeted to S1PR1 and R3 also blocked the enhanced excitability produced by S1P. Consistent with the siRNA results, pretreatment with W146 and CAY10444, selective antagonists for S1PR1 and S1PR3, respectively, prevented the S1P-induced increase in neuronal excitability. Similarly, S1P failed to augment excitability after pretreatment with either VPC 23019, which is a S1PR1 and R3 antagonist, or VPC 44116, the phosphonate analog of VPC 23019. Acute exposure (10 to 15 min) to either of the well-established functional antagonists, FTY720 or CYM-5442, produced a significant increase in the excitability. Moreover, after a 1-h pretreatment with FTY720 (an agonist for S1PR1/R3/R4/R5), neither SEW2871 (S1PR1 selective agonist) nor S1P augmented the excitability. However, after pretreatment with CYM-5442 (selective for S1PR1), SEW2871 was ineffective, but S1P increased the excitability of some, but not all, sensory neurons. CONCLUSIONS These results demonstrate that the enhanced excitability produced by S1P is mediated by activation of S1PR1 and/or S1PR3.
Collapse
Affiliation(s)
- Chao Li
- Medical Neuroscience Program, School of Medicine, Indiana University, Indianapolis, IN, 46202, USA.
| | - Jun-nan Li
- Department of Pharmacology and Toxicology, School of Medicine, Indiana University, 635 Barnhill Drive, Indianapolis, IN, 46202, USA. .,Department of Pharmacology, Harbin Medical University, Harbin, Peoples' Republic of China.
| | - Joanne Kays
- Department of Pharmacology and Toxicology, School of Medicine, Indiana University, 635 Barnhill Drive, Indianapolis, IN, 46202, USA.
| | - Miguel Guerrero
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, 92037, USA.
| | - Grant D Nicol
- Department of Pharmacology and Toxicology, School of Medicine, Indiana University, 635 Barnhill Drive, Indianapolis, IN, 46202, USA.
| |
Collapse
|
47
|
Zhang L, Wang X, Bullock AJ, Callea M, Shah H, Song J, Moreno K, Visentin B, Deutschman D, Alsop DC, Atkins MB, Mier JW, Signoretti S, Bhasin M, Sabbadini RA, Bhatt RS. Anti-S1P Antibody as a Novel Therapeutic Strategy for VEGFR TKI-Resistant Renal Cancer. Clin Cancer Res 2015; 21:1925-1934. [PMID: 25589614 DOI: 10.1158/1078-0432.ccr-14-2031] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 12/13/2014] [Indexed: 01/22/2023]
Abstract
PURPOSE VEGFR2 tyrosine kinase inhibition (TKI) is a valuable treatment approach for patients with metastatic renal cell carcinoma (RCC). However, resistance to treatment is inevitable. Identification of novel targets could lead to better treatment for patients with TKI-naïve or -resistant RCC. EXPERIMENTAL DESIGN In this study, we performed transcriptome analysis of VEGFR TKI-resistant tumors in a murine model and discovered that the SPHK-S1P pathway is upregulated at the time of resistance. We tested sphingosine-1-phosphate (S1P) pathway inhibition using an anti-S1P mAb (sphingomab), in two mouse xenograft models of RCC, and assessed tumor SPHK expression and S1P plasma levels in patients with metastatic RCC. RESULTS Resistant tumors expressed several hypoxia-regulated genes. The SPHK1 pathway was among the most highly upregulated pathways that accompanied resistance to VEGFR TKI therapy. SPHK1 was expressed in human RCC, and the product of SPHK1 activity, S1P, was elevated in patients with metastatic RCC, suggesting that human RCC behavior could, in part, be due to overproduction of S1P. Sphingomab neutralization of extracellular S1P slowed tumor growth in both mouse models. Mice bearing tumors that had developed resistance to sunitinib treatment also exhibited tumor growth suppression with sphingomab. Sphingomab treatment led to a reduction in tumor blood flow as measured by MRI. CONCLUSIONS Our findings suggest that S1P inhibition may be a novel therapeutic strategy in patients with treatment-naïve RCC and also in the setting of resistance to VEGFR TKI therapy.
Collapse
Affiliation(s)
- Liang Zhang
- Division of Hematology-Oncology and Cancer Biology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, Massachusetts, 02215, United States of America
| | - Xiaoen Wang
- Division of Hematology-Oncology and Cancer Biology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, Massachusetts, 02215, United States of America.,Department of Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, Massachusetts, 02215, United States of America
| | - Andrea J Bullock
- Division of Hematology-Oncology and Cancer Biology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, Massachusetts, 02215, United States of America
| | - Marcella Callea
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, Massachusetts, 02115, United States of America
| | - Harleen Shah
- Division of Interdisciplinary Medicine and Biotechnology, and Genomics and Proteomics Center, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, Massachusetts, 02215, United States of America
| | - Jiaxi Song
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, Massachusetts, 02115, United States of America
| | - Kelli Moreno
- Lpath Inc., 4025 Sorrento Valley Blvd. San Diego, CA, 92121, United States of America
| | - Barbara Visentin
- Lpath Inc., 4025 Sorrento Valley Blvd. San Diego, CA, 92121, United States of America
| | - Douglas Deutschman
- Department of Biology, San Diego State University, 5500 Campanile Dr. San Diego, CA. 92182-4614, United States of America
| | - David C Alsop
- Department of Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, Massachusetts, 02215, United States of America
| | - Michael B Atkins
- Departments of Oncology and Medicine, Georgetown-Lombardi Comprehensive Cancer Center, 3970 Reservoir Road, NW, Washington, DC. United States of America
| | - James W Mier
- Division of Hematology-Oncology and Cancer Biology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, Massachusetts, 02215, United States of America
| | - Sabina Signoretti
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, Massachusetts, 02115, United States of America
| | - Manoj Bhasin
- Division of Interdisciplinary Medicine and Biotechnology, and Genomics and Proteomics Center, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, Massachusetts, 02215, United States of America
| | - Roger A Sabbadini
- Lpath Inc., 4025 Sorrento Valley Blvd. San Diego, CA, 92121, United States of America
| | - Rupal S Bhatt
- Division of Hematology-Oncology and Cancer Biology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, Massachusetts, 02215, United States of America
| |
Collapse
|
48
|
Alshaker H, Krell J, Frampton AE, Waxman J, Blyuss O, Zaikin A, Winkler M, Stebbing J, Yagüe E, Pchejetski D. Leptin induces upregulation of sphingosine kinase 1 in oestrogen receptor-negative breast cancer via Src family kinase-mediated, janus kinase 2-independent pathway. Breast Cancer Res 2014; 16:426. [PMID: 25482303 PMCID: PMC4303110 DOI: 10.1186/s13058-014-0426-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 08/11/2014] [Indexed: 12/31/2022] Open
Abstract
INTRODUCTION Obesity is a known risk factor for breast cancer. Sphingosine kinase 1 (SK1) is an oncogenic lipid kinase that is overexpressed in breast tumours and linked with poor prognosis, however, its role in obesity-driven breast cancer was never elucidated. METHODS Human primary and secondary breast cancer tissues were analysed for SK1 and leptin receptor expression using quantitative real-time polymerase chain reaction (qRT-PCR) assay. Leptin-induced signalling was analysed in human oestrogen receptor (ER)-positive and negative breast cancer cells using Western blotting, qRT-PCR and radiolabelling assays. RESULTS Our findings show for the first time that human primary breast tumours and associated lymph node metastases exhibit a strong correlation between SK1 and leptin receptor expression (Pearson R = 0.78 and R = 0.77, respectively, P <0.001). Both these genes are elevated in metastases of ER-negative patients and show a significant increase in patients with higher body mass index (BMI). Leptin induces SK1 expression and activation in ER-negative breast cancer cell lines MDAMB-231 and BT-549, but not in ER-positive cell lines. Pharmacological inhibition and gene knockdown showed that leptin-induced SK1 activity and expression are mediated by activation of extracellular signal-regulated kinases 1/2 (ERK1/2) and Src family kinase (SFK) pathways, but not by the major pathways downstream of leptin receptor (LEPR) - janus kinase 2 (JAK2) and signal transducer and activator of transcription 3 (STAT3). Src-homology 2 domain-containing phosphatase 2 (SHP2) appeared to be key to SK1 activation, and may function as an adaptor protein between SFKs and LEPR. Importantly, leptin-induced breast cancer cell proliferation was abrogated by SK1-specific small interfering RNA (siRNA). CONCLUSIONS Overall, our findings demonstrate a novel SFK/ERK1/2-mediated pathway that links leptin signalling and expression of oncogenic enzyme SK1 in breast tumours and suggest the potential significance of this pathway in ER-negative breast cancer.
Collapse
Affiliation(s)
- Heba Alshaker
- Department of Surgery and Cancer, Imperial College London, 1st Floor ICTEM, Hammersmith Hospital, Ducane Road, London, W120NN UK
- Department of Pharmacology and Biomedical Sciences, Faculty of Pharmacy and Medical Sciences, Petra University, Amman, Jordan
| | - Jonathan Krell
- Department of Surgery and Cancer, Imperial College London, 1st Floor ICTEM, Hammersmith Hospital, Ducane Road, London, W120NN UK
| | - Adam E Frampton
- Department of Surgery and Cancer, Imperial College London, 1st Floor ICTEM, Hammersmith Hospital, Ducane Road, London, W120NN UK
| | - Jonathan Waxman
- Department of Surgery and Cancer, Imperial College London, 1st Floor ICTEM, Hammersmith Hospital, Ducane Road, London, W120NN UK
| | - Oleg Blyuss
- Institute for Women's Health, University College London, 74, Huntley Street, London, WC1E 6AU UK
| | - Alexey Zaikin
- Institute for Women's Health, University College London, 74, Huntley Street, London, WC1E 6AU UK
| | - Mathias Winkler
- Department of Surgery and Cancer, Imperial College London, 1st Floor ICTEM, Hammersmith Hospital, Ducane Road, London, W120NN UK
| | - Justin Stebbing
- Department of Surgery and Cancer, Imperial College London, 1st Floor ICTEM, Hammersmith Hospital, Ducane Road, London, W120NN UK
| | - Ernesto Yagüe
- Department of Surgery and Cancer, Imperial College London, 1st Floor ICTEM, Hammersmith Hospital, Ducane Road, London, W120NN UK
| | - Dmitri Pchejetski
- School of Medicine, University of East Anglia, Elizabeth Fry Building, Norwich Research Park, Norwich, NR47TJ UK
| |
Collapse
|
49
|
Sphingosine-1-phosphate promotes expansion of cancer stem cells via S1PR3 by a ligand-independent Notch activation. Nat Commun 2014; 5:4806. [PMID: 25254944 DOI: 10.1038/ncomms5806] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Accepted: 07/25/2014] [Indexed: 12/16/2022] Open
Abstract
Many tumours originate from cancer stem cells (CSCs), which is a small population of cells that display stem cell properties. However, the molecular mechanisms that regulate CSC frequency remain poorly understood. Here, using microarray screening in aldehyde dehydrogenase (ALDH)-positive CSC model, we identify a fundamental role for a lipid mediator sphingosine-1-phosphate (S1P) in CSC expansion. Stimulation with S1P enhances ALDH-positive CSCs via S1P receptor 3 (S1PR3) and subsequent Notch activation. CSCs overexpressing sphingosine kinase 1 (SphK1), an S1P-producing enzyme, show increased ability to develop tumours in nude mice, compared with parent cells or CSCs. Tumorigenicity of CSCs overexpressing SphK1 is inhibited by S1PR3 knockdown or S1PR3 antagonist. Breast cancer patient-derived mammospheres contain SphK1(+)/ALDH1(+) cells or S1PR3(+)/ALDH1(+) cells. Our findings provide new insights into the lipid-mediated regulation of CSCs via Notch signalling, and rationale for targeting S1PR3 in cancer.
Collapse
|
50
|
Abstract
The signaling pathways activated by the steroid hormone oestrogen include a variety of cytoplasmic second messengers linked to a multitude of tissue-specific effects. In the last decade, sphingolipids and their membrane receptors were added to the list of oestrogen-activated mediators. Oestrogen triggers the sphingolipid signalling cascade in various tissues including breast cancer. Extensive research has shown that sphingolipids are the key regulatory molecules in growth factor networks. Sphingolipids can control the rate of cell proliferation and the differentiation outcome during malignant transformation. In this study, we summarise novel experimental evidences linking sphingolipids to oestrogen-activated effects, highlight the role of sphingolipids in cancer cells and discuss new avenues for future research at the intersection between oestrogen and sphingolipid signalling.
Collapse
Affiliation(s)
- O Sukocheva
- Division of Surgery, Flinders University of South Australia, Bedford Park, South Australia 5042, Australia Children's Cancer Institute Australia, University of New South Wales, Sydney, New South Wales, Australia
| | | |
Collapse
|