1
|
Zhang Y, Wei S, Jin EJ, Jo Y, Oh CM, Bae GU, Kang JS, Ryu D. Protein Arginine Methyltransferases: Emerging Targets in Cardiovascular and Metabolic Disease. Diabetes Metab J 2024; 48:487-502. [PMID: 39043443 PMCID: PMC11307121 DOI: 10.4093/dmj.2023.0362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 06/17/2024] [Indexed: 07/25/2024] Open
Abstract
Cardiovascular diseases (CVDs) and metabolic disorders stand as formidable challenges that significantly impact the clinical outcomes and living quality for afflicted individuals. An intricate comprehension of the underlying mechanisms is paramount for the development of efficacious therapeutic strategies. Protein arginine methyltransferases (PRMTs), a class of enzymes responsible for the precise regulation of protein methylation, have ascended to pivotal roles and emerged as crucial regulators within the intrinsic pathophysiology of these diseases. Herein, we review recent advancements in research elucidating on the multifaceted involvements of PRMTs in cardiovascular system and metabolic diseases, contributing significantly to deepen our understanding of the pathogenesis and progression of these maladies. In addition, this review provides a comprehensive analysis to unveil the distinctive roles of PRMTs across diverse cell types implicated in cardiovascular and metabolic disorders, which holds great potential to reveal novel therapeutic interventions targeting PRMTs, thus presenting promising perspectives to effectively address the substantial global burden imposed by CVDs and metabolic disorders.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Molecular Cell Biology, Single Cell Network Research Center, Sungkyunkwan University, Suwon, Korea
| | - Shibo Wei
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Eun-Ju Jin
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Yunju Jo
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Chang-Myung Oh
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Gyu-Un Bae
- Muscle Physiome Institute, College of Pharmacy, Sookmyung Women’s University, Seoul, Korea
- Research Institute of Aging-Related Diseases, AniMusCure Inc., Suwon, Korea
| | - Jong-Sun Kang
- Department of Molecular Cell Biology, Single Cell Network Research Center, Sungkyunkwan University, Suwon, Korea
- Research Institute of Aging-Related Diseases, AniMusCure Inc., Suwon, Korea
| | - Dongryeol Ryu
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Korea
| |
Collapse
|
2
|
Zhu N, Guo ZF, Kazama K, Yi B, Tongmuang N, Yao H, Yang R, Zhang C, Qin Y, Han L, Sun J. Epigenetic regulation of vascular smooth muscle cell phenotypic switch and neointimal formation by PRMT5. Cardiovasc Res 2023; 119:2244-2255. [PMID: 37486354 PMCID: PMC10578915 DOI: 10.1093/cvr/cvad110] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 03/20/2023] [Accepted: 04/08/2023] [Indexed: 07/25/2023] Open
Abstract
AIMS Phenotypic transition of vascular smooth muscle cells (VSMCs) from a contractile to a synthetic state is involved in the development of cardiovascular diseases, including atherosclerosis, hypertension, and post-angioplasty restenosis. Arginine methylation catalyzed by protein arginine methyltransferases (PRMTs) has been implicated in multiple cellular processes, however, its role in VSMC biology remains undetermined. The objective of this study was to determine the role of PRMTs in VSMC phenotypic switch and vascular remodelling after injury. METHODS AND RESULTS Our results show that PRMT5 is the most abundantly expressed PRMT in human aortic SMCs, and its expression is up-regulated in platelet-derived growth factor (PDGF)-stimulated VSMCs, human atherosclerotic lesions, and rat carotid arteries after injury, as determined by western blot and immunohistochemical staining. PRMT5 overexpression inhibits the expression of SMC marker genes and promotes VSMC proliferation and migration, while silencing PRMT5 exerts the opposite effects. Mechanistically, we found that PRMT5 overexpression led to histone di-methylation of H3R8 and H4R3, which in turn attenuates acetylation of H3K9 and H4, thus limiting recruitment of the SRF/myocardin complexes to the CArG boxes of SMC marker genes. Furthermore, both SMC-specific deletion of PRMT5 in mice and local delivery of lentivirus expressing shPRMT5 to rat carotid arteries significantly attenuated neointimal formation after injury. Likewise, pharmacological inhibition of PRMT5 by EPZ015666 markedly inhibited carotid artery ligation-induced neointimal formation in mice. CONCLUSIONS Our results identify PRMT5 as a novel regulator in VSMC phenotypic switch and suggest that inhibition of PRMT5 may represent an effective therapeutic strategy for proliferative vascular diseases.
Collapse
Affiliation(s)
- Ni Zhu
- Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, 1020 Locust St, Philadelphia, PA 19107, USA
| | - Zhi-Fu Guo
- Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, 1020 Locust St, Philadelphia, PA 19107, USA
| | - Kyosuke Kazama
- Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, 1020 Locust St, Philadelphia, PA 19107, USA
| | - Bing Yi
- Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, 1020 Locust St, Philadelphia, PA 19107, USA
| | - Nopprarat Tongmuang
- Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, 1020 Locust St, Philadelphia, PA 19107, USA
| | - Huijuan Yao
- Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, 1020 Locust St, Philadelphia, PA 19107, USA
| | - Ruifeng Yang
- Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, 1020 Locust St, Philadelphia, PA 19107, USA
| | - Chen Zhang
- Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, 1020 Locust St, Philadelphia, PA 19107, USA
| | - Yongwen Qin
- Department of Cardiovascular Medicine, Changhai Hospital, Naval Medical University, 168 Changhai Rd, Shanghai 200433, China
| | - Lin Han
- Department of Cardiovascular Medicine, Changhai Hospital, Naval Medical University, 168 Changhai Rd, Shanghai 200433, China
| | - Jianxin Sun
- Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, 1020 Locust St, Philadelphia, PA 19107, USA
| |
Collapse
|
3
|
Zhong Q, Xiao X, Qiu Y, Xu Z, Chen C, Chong B, Zhao X, Hai S, Li S, An Z, Dai L. Protein posttranslational modifications in health and diseases: Functions, regulatory mechanisms, and therapeutic implications. MedComm (Beijing) 2023; 4:e261. [PMID: 37143582 PMCID: PMC10152985 DOI: 10.1002/mco2.261] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/26/2023] [Accepted: 03/27/2023] [Indexed: 05/06/2023] Open
Abstract
Protein posttranslational modifications (PTMs) refer to the breaking or generation of covalent bonds on the backbones or amino acid side chains of proteins and expand the diversity of proteins, which provides the basis for the emergence of organismal complexity. To date, more than 650 types of protein modifications, such as the most well-known phosphorylation, ubiquitination, glycosylation, methylation, SUMOylation, short-chain and long-chain acylation modifications, redox modifications, and irreversible modifications, have been described, and the inventory is still increasing. By changing the protein conformation, localization, activity, stability, charges, and interactions with other biomolecules, PTMs ultimately alter the phenotypes and biological processes of cells. The homeostasis of protein modifications is important to human health. Abnormal PTMs may cause changes in protein properties and loss of protein functions, which are closely related to the occurrence and development of various diseases. In this review, we systematically introduce the characteristics, regulatory mechanisms, and functions of various PTMs in health and diseases. In addition, the therapeutic prospects in various diseases by targeting PTMs and associated regulatory enzymes are also summarized. This work will deepen the understanding of protein modifications in health and diseases and promote the discovery of diagnostic and prognostic markers and drug targets for diseases.
Collapse
Affiliation(s)
- Qian Zhong
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Xina Xiao
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Yijie Qiu
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Zhiqiang Xu
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Chunyu Chen
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Baochen Chong
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Xinjun Zhao
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Shan Hai
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Shuangqing Li
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Zhenmei An
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Lunzhi Dai
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| |
Collapse
|
4
|
Zhang Y, Verwilligen RAF, Van Eck M, Hoekstra M. PRMT5 inhibition induces pro-inflammatory macrophage polarization and increased hepatic triglyceride levels without affecting atherosclerosis in mice. J Cell Mol Med 2023; 27:1056-1068. [PMID: 36946061 PMCID: PMC10098290 DOI: 10.1111/jcmm.17676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 01/02/2023] [Accepted: 01/06/2023] [Indexed: 03/23/2023] Open
Abstract
Protein arginine methyltransferase 5 (PRMT5) controls inflammation and metabolism through modulation of histone methylation and gene transcription. Given the important role of inflammation and metabolism in atherosclerotic cardiovascular disease, here we examined the role of PRMT5 in atherosclerosis using the specific PRMT5 inhibitor GSK3326595. Cultured thioglycollate-elicited peritoneal macrophages were exposed to GSK3326595 or DMSO control and stimulated with either 1 ng/mL LPS or 100 ng/mL interferon-gamma for 24 h. Furthermore, male low-density lipoprotein (LDL) receptor knockout mice were fed an atherogenic Western-type diet and injected intraperitoneally 3×/week with a low dose of 5 mg/kg GSK3326595 or solvent control for 9 weeks. In vitro, GSK3326595 primed peritoneal macrophages to interferon-gamma-induced M1 polarization, as evidenced by an increased M1/M2 gene marker ratio. In contrast, no difference was found in the protein expression of iNOS (M1 marker) and ARG1 (M2 marker) in peritoneal macrophages of GSK3326595-treated mice. Also no change in the T cell activation state or the susceptibility to atherosclerosis was detected. However, chronic GSK3326595 treatment did activate genes involved in hepatic fatty acid acquisition, i.e. SREBF1, FASN, and CD36 (+59%, +124%, and +67%, respectively; p < 0.05) and significantly increased hepatic triglyceride levels (+50%; p < 0.05). PRMT5 inhibition by low-dose GSK3326595 treatment does not affect the inflammatory state or atherosclerosis susceptibility of Western-type diet-fed LDL receptor knockout mice, while it induces hepatic triglyceride accumulation. Severe side effects in liver, i.e. development of non-alcoholic fatty liver disease, should thus be taken into account upon chronic treatment with this PRMT5 inhibitor.
Collapse
Affiliation(s)
- Yiheng Zhang
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, The Netherlands
| | - Robin A F Verwilligen
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, The Netherlands
| | - Miranda Van Eck
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, The Netherlands
- Division of Systems Pharmacology and Pharmacy, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, The Netherlands
- Pharmacy Leiden, Leiden, The Netherlands
| | - Menno Hoekstra
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, The Netherlands
- Division of Systems Pharmacology and Pharmacy, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, The Netherlands
- Pharmacy Leiden, Leiden, The Netherlands
| |
Collapse
|
5
|
Wang N, Li T, Liu W, Lin J, Zhang K, Li Z, Huang Y, Shi Y, Xu M, Liu X. USP7- and PRMT5-dependent G3BP2 stabilization drives de novo lipogenesis and tumorigenesis of HNSC. Cell Death Dis 2023; 14:182. [PMID: 36878903 PMCID: PMC9988876 DOI: 10.1038/s41419-023-05706-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 02/17/2023] [Accepted: 02/22/2023] [Indexed: 03/08/2023]
Abstract
GTPase-activating protein-binding protein 2 (G3BP2) is a key stress granule-associated RNA-binding protein responsible for the formation of stress granules (SGs). Hyperactivation of G3BP2 is associated with various pathological conditions, especially cancers. Emerging evidence indicates that post-translational modifications (PTMs) play critical roles in gene transcription, integrate metabolism and immune surveillance. However, how PTMs directly regulate G3BP2 activity is lacking. Here, our analyses identify a novel mechanism that PRMT5-mediated G3BP2-R468me2 enhances the binding to deubiquitinase USP7, which ensures the deubiquitination and stabilization of G3BP2. Mechanistically, USP7- and PRMT5-dependent G3BP2 stabilization consequently guarantee robust ACLY activation, which thereby stimulating de novo lipogenesis and tumorigenesis. More importantly, USP7-induced G3BP2 deubiquitination is attenuated by PRMT5 depletion or inhibition. PRMT5-activity dependent methylation of G3BP2 is required for its deubiquitination and stabilization by USP7. Consistently, G3BP2, PRMT5 and G3BP2 R468me2 protein levels were found positively correlated in clinical patients and associated with poor prognosis. Altogether, these data suggest that PRMT5-USP7-G3BP2 regulatory axis serves as a lipid metabolism reprogramming mechanism in tumorigenesis, and unveil a promising therapeutic target in the metabolic treatment of head and neck squamous carcinoma.
Collapse
Affiliation(s)
- Nan Wang
- Laboratory of Cell and Molecular Biology, School of life sciences, Jiaying University, Meizhou, China.
| | - Tianzi Li
- Laboratory of Cell and Molecular Biology, School of life sciences, Jiaying University, Meizhou, China
| | - Wanyu Liu
- Laboratory of Cell and Molecular Biology, School of life sciences, Jiaying University, Meizhou, China
| | - Jinhua Lin
- Laboratory of Cell and Molecular Biology, School of life sciences, Jiaying University, Meizhou, China
| | - Ke Zhang
- Laboratory of Cell and Molecular Biology, School of life sciences, Jiaying University, Meizhou, China
| | - Zhenhao Li
- Laboratory of Cell and Molecular Biology, School of life sciences, Jiaying University, Meizhou, China
| | - Yanfei Huang
- Laboratory of Cell and Molecular Biology, School of life sciences, Jiaying University, Meizhou, China
| | - Yufei Shi
- Laboratory of Cell and Molecular Biology, School of life sciences, Jiaying University, Meizhou, China
| | - Meilan Xu
- Laboratory of Cell and Molecular Biology, School of life sciences, Jiaying University, Meizhou, China
| | - Xuekui Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
6
|
Malbeteau L, Pham HT, Eve L, Stallcup MR, Poulard C, Le Romancer M. How Protein Methylation Regulates Steroid Receptor Function. Endocr Rev 2022; 43:160-197. [PMID: 33955470 PMCID: PMC8755998 DOI: 10.1210/endrev/bnab014] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Indexed: 02/06/2023]
Abstract
Steroid receptors (SRs) are members of the nuclear hormonal receptor family, many of which are transcription factors regulated by ligand binding. SRs regulate various human physiological functions essential for maintenance of vital biological pathways, including development, reproduction, and metabolic homeostasis. In addition, aberrant expression of SRs or dysregulation of their signaling has been observed in a wide variety of pathologies. SR activity is tightly and finely controlled by post-translational modifications (PTMs) targeting the receptors and/or their coregulators. Whereas major attention has been focused on phosphorylation, growing evidence shows that methylation is also an important regulator of SRs. Interestingly, the protein methyltransferases depositing methyl marks are involved in many functions, from development to adult life. They have also been associated with pathologies such as inflammation, as well as cardiovascular and neuronal disorders, and cancer. This article provides an overview of SR methylation/demethylation events, along with their functional effects and biological consequences. An in-depth understanding of the landscape of these methylation events could provide new information on SR regulation in physiology, as well as promising perspectives for the development of new therapeutic strategies, illustrated by the specific inhibitors of protein methyltransferases that are currently available.
Collapse
Affiliation(s)
- Lucie Malbeteau
- Université de Lyon, F-69000 Lyon, France.,Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France.,CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
| | - Ha Thuy Pham
- Université de Lyon, F-69000 Lyon, France.,Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France.,CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
| | - Louisane Eve
- Université de Lyon, F-69000 Lyon, France.,Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France.,CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
| | - Michael R Stallcup
- Department of Biochemistry and Molecular Medicine, Norris Comprehensive Center, University of Southern California, Los Angeles, CA 90089, USA
| | - Coralie Poulard
- Université de Lyon, F-69000 Lyon, France.,Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France.,CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
| | - Muriel Le Romancer
- Université de Lyon, F-69000 Lyon, France.,Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France.,CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
| |
Collapse
|
7
|
Protein Arginine Methyltransferase 5 Promotes the Migration of AML Cells by Regulating the Expression of Leukocyte Immunoglobulin-Like Receptor B4. BIOMED RESEARCH INTERNATIONAL 2021; 2021:7329072. [PMID: 34712735 PMCID: PMC8548104 DOI: 10.1155/2021/7329072] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 09/24/2021] [Indexed: 12/22/2022]
Abstract
Acute myeloid leukemia (AML) is the most common type of acute leukemia in adults with poor prognosis. Especially for AML-M5 type, due to the strong cell migration ability, the possibility of extramedullary invasion is large and widespread, which leads to poor therapeutic effect. Previous studies have found that protein arginine methyltransferase 5 (PRMT5) could promote the proliferation and differentiation of leukemic cells in AML, but its regulation on the invasive ability of AML cells remains unclear. This study was designed to explore the role of PRMT5 in regulating the invasion of AML cells and to investigate the mechanisms. Patient samples were collected for detection of PRMT5 expression level. AML cells were used for exploring the function of PRMT5. The results of clinical samples showed that the expression of PRMT5 was significantly increased in newly diagnosed and recurrent AML patients, and the expression of leukocyte immunoglobulin-like receptor B4 (LILRB4) was positively correlated with the level of PRMT5. In the cell experiment in vitro, we found that when PRMT5 was knocked down, the invasion, migration, and adhesion capacities of MV-4-11 cells and THP-1 cells were decreased, and the mRNA and protein levels of LILRB4 were also decreased. Moreover, we screened related signaling pathways and found that PRMT5 affected the expression of downstream LILRB4 by activating mTOR pathway, which in turn enhanced the invasive ability of AML cells. Taken together, PRMT5 plays an important role in the invasion of AML, which acts via regulating the expression of LILRB4. PRMT5 could act as a potential therapeutic candidate for AML.
Collapse
|
8
|
Chiu SC, Huang YRJ, Wei TYW, Chen JMM, Kuo YC, Huang YTJ, Liao YTA, Yu CTR. The PRMT5/HURP axis retards Golgi repositioning by stabilizing acetyl-tubulin and Golgi apparatus during cell migration. J Cell Physiol 2021; 237:1033-1043. [PMID: 34541678 DOI: 10.1002/jcp.30589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/29/2021] [Accepted: 08/31/2021] [Indexed: 11/10/2022]
Abstract
The Golgi apparatus (GA) translocates to the cell leading end during directional migration, thereby determining cell polarity and transporting essential factors to the migration apparatus. The study provides mechanistic insights into how GA repositioning (GR) is regulated. We show that the methyltransferase PRMT5 methylates the microtubule regulator HURP at R122. The HURP methylation mimicking mutant 122F impairs GR and cell migration. Mechanistic studies revealed that HURP 122F or endogenous methylated HURP, that is, HURP m122, interacts with acetyl-tubulin. Overexpression of HURP 122F stabilizes the bundling pattern of acetyl-tubulin by decreasing the sensitivity of the latter to a microtubule disrupting agent nocodazole. HURP 122F also rigidifies GA via desensitizing the organelle to several GA disrupting chemicals. Similarly, the acetyl-tubulin mimicking mutant 40Q or tubulin acetyltransferase αTAT1 can rigidify GA, impair GR, and retard cell migration. Reversal of HURP 122F-induced GA rigidification, by knocking down GA assembly factors such as GRASP65 or GM130, attenuates 122F-triggered GR and cell migration. Remarkably, PRMT5 is found downregulated and the level of HURP m122 is decreased during the early hours of wound healing-based cell migration, collectively implying that the PRMT5-HURP-acetyl-tubulin axis plays the role of brake, preventing GR and cell migration before cells reach empty space.
Collapse
Affiliation(s)
- Shao-Chih Chiu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.,Department of Medical Research, Translational Cell Therapy Center, China Medical University Hospital, Taichung, Taiwan
| | | | - Tong-You Wade Wei
- Graduate Institute of Biomedicine and Biomedical Technology, National Chi Nan University, Nantou, Taiwan.,Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Jo-Mei Maureen Chen
- Department of Applied Chemistry, National Chi Nan University, Nantou, Taiwan
| | - Yi-Chun Kuo
- Graduate Institute of Biomedicine and Biomedical Technology, National Chi Nan University, Nantou, Taiwan
| | - Yu-Ting Jenny Huang
- Department of Applied Chemistry, National Chi Nan University, Nantou, Taiwan
| | - Yu-Ting Amber Liao
- Department of Applied Chemistry, National Chi Nan University, Nantou, Taiwan
| | - Chang-Tze Ricky Yu
- Department of Applied Chemistry, National Chi Nan University, Nantou, Taiwan.,Graduate Institute of Biomedicine and Biomedical Technology, National Chi Nan University, Nantou, Taiwan
| |
Collapse
|
9
|
Lam KK, Sethi R, Tan G, Tomar S, Lo M, Loi C, Tang CL, Tan E, Lai PS, Cheah PY. The orphan nuclear receptor
NR0B2
could be a novel susceptibility locus associated with microsatellite‐stable,
APC
mutation‐negative early‐onset colorectal carcinomas with metabolic manifestation. Genes Chromosomes Cancer 2020; 60:61-72. [DOI: 10.1002/gcc.22904] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/16/2020] [Accepted: 10/19/2020] [Indexed: 12/15/2022] Open
Affiliation(s)
- Kuen Kuen Lam
- Department of Colorectal Surgery Singapore General Hospital Singapore Singapore
| | - Raman Sethi
- Department of Paediatrics, Yong Loo Lin School of Medicine National University of Singapore Singapore Singapore
| | - Grace Tan
- Department of Paediatrics, Yong Loo Lin School of Medicine National University of Singapore Singapore Singapore
| | - Swati Tomar
- Department of Paediatrics, Yong Loo Lin School of Medicine National University of Singapore Singapore Singapore
| | - Michelle Lo
- Department of Colorectal Surgery Singapore General Hospital Singapore Singapore
| | - Carol Loi
- Department of Colorectal Surgery Singapore General Hospital Singapore Singapore
| | - Choong Leong Tang
- Department of Colorectal Surgery Singapore General Hospital Singapore Singapore
| | - Emile Tan
- Department of Colorectal Surgery Singapore General Hospital Singapore Singapore
| | - Poh San Lai
- Department of Paediatrics, Yong Loo Lin School of Medicine National University of Singapore Singapore Singapore
- Genome Institute of Singapore, A*STAR Singapore Singapore
| | - Peh Yean Cheah
- Department of Colorectal Surgery Singapore General Hospital Singapore Singapore
- Saw Swee Hock School of Public Health National University of Singapore Singapore Singapore
- Duke‐NUS Medical School National University of Singapore Singapore Singapore
| |
Collapse
|
10
|
Zhu F, Rui L. PRMT5 in gene regulation and hematologic malignancies. Genes Dis 2019; 6:247-257. [PMID: 32042864 PMCID: PMC6997592 DOI: 10.1016/j.gendis.2019.06.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 06/06/2019] [Indexed: 12/30/2022] Open
Abstract
Arginine methylation is a common posttranslational modification that governs important cellular processes and impacts development, cell growth, proliferation, and differentiation. Arginine methylation is catalyzed by protein arginine methyltransferases (PRMTs), which are classified as type I and type II enzymes responsible for the formation of asymmetric and symmetric dimethylarginine, respectively. PRMT5 is the main type II enzyme that catalyzes symmetric dimethylarginine of histone proteins to induce gene silencing by generating repressive histone marks, including H2AR3me2s, H3R8me2s, and H4R3me2s. PRMT5 can also methylate nonhistone proteins such as the transcription factors p53, E2F1 and p65. Modifications of these proteins by PRMT5 are involved in diverse cellular processes, including transcription, translation, DNA repair, RNA processing, and metabolism. A growing literature demonstrates that PRMT5 expression is upregulated in hematologic malignancies, including leukemia and lymphoma, where PRMT5 regulates gene expression to promote cancer cell proliferation. Targeting PRMT5 by specific inhibitors has emerged as a potential therapeutic strategy to treat these diseases.
Collapse
Affiliation(s)
| | - Lixin Rui
- Department of Medicine and Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53792, USA
| |
Collapse
|
11
|
Zhang X, Yang S, Chen J, Su Z. Unraveling the Regulation of Hepatic Gluconeogenesis. Front Endocrinol (Lausanne) 2019; 9:802. [PMID: 30733709 PMCID: PMC6353800 DOI: 10.3389/fendo.2018.00802] [Citation(s) in RCA: 161] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 12/20/2018] [Indexed: 02/05/2023] Open
Abstract
Hepatic gluconeogenesis, de novo glucose synthesis from available precursors, plays a crucial role in maintaining glucose homeostasis to meet energy demands during prolonged starvation in animals. The abnormally increased rate of hepatic gluconeogenesis contributes to hyperglycemia in diabetes. Gluconeogenesis is regulated on multiple levels, such as hormonal secretion, gene transcription, and posttranslational modification. We review here the molecular mechanisms underlying the transcriptional regulation of gluconeogenesis in response to nutritional and hormonal changes. The nutrient state determines the hormone release, which instigates the signaling cascades in the liver to modulate the activities of various transcriptional factors through various post-translational modifications like phosphorylation, methylation, and acetylation. AMP-activated protein kinase (AMPK) can mediate the activities of some transcription factors, however its role in the regulation of gluconeogenesis remains uncertain. Metformin, a primary hypoglycemic agent of type 2 diabetes, ameliorates hyperglycemia predominantly through suppression of hepatic gluconeogenesis. Several molecular mechanisms have been proposed to be metformin's mode of action.
Collapse
Affiliation(s)
| | | | | | - Zhiguang Su
- Molecular Medicine Research Center and National Clinical Research Center for Geriatrics, West China Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| |
Collapse
|
12
|
Shailesh H, Zakaria ZZ, Baiocchi R, Sif S. Protein arginine methyltransferase 5 (PRMT5) dysregulation in cancer. Oncotarget 2018; 9:36705-36718. [PMID: 30613353 PMCID: PMC6291173 DOI: 10.18632/oncotarget.26404] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 11/16/2018] [Indexed: 01/25/2023] Open
Abstract
Protein arginine methyltransferases (PRMTs) are known for their ability to catalyze methylation of specific arginine residues in a wide variety of cellular proteins, which are involved in a plethora of processes including signal transduction, transcription, and more recently DNA recombination. All members of the PRMT family can be grouped into three main classes depending on the type of methylation they catalyze. Type I PRMTs induce monomethylation and asymmetric dimethylation, while type II PRMTs catalyze monomethylation and symmetric dimethylation of specific arginine residues. In contrast, type III PRMTs carry out only monomethylation of arginine residues. In this review, we will focus on PRMT5, a type II PRMT essential for viability and normal development, which has been shown to be overexpressed in a wide variety of cancer cell types, owing it to the crucial role it plays in controlling key growth regulatory pathways. Furthermore, the role of PRMT5 in regulating expression and stability of key transcription factors that control normal stem cell function as well as cancer stem cell renewal will be discussed. We will review recent work that shows that through its ability to methylate various cellular proteins, PRMT5 functions as a master epigenetic regulator essential for growth and development, and we will highlight studies that have examined its dysregulation and the effects of its inhibition on cancer cell growth.
Collapse
Affiliation(s)
- Harshita Shailesh
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar
| | - Zain Z Zakaria
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar
| | - Robert Baiocchi
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Saïd Sif
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar
| |
Collapse
|
13
|
Huang L, Liu J, Zhang XO, Sibley K, Najjar SM, Lee MM, Wu Q. Inhibition of protein arginine methyltransferase 5 enhances hepatic mitochondrial biogenesis. J Biol Chem 2018; 293:10884-10894. [PMID: 29773653 DOI: 10.1074/jbc.ra118.002377] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 05/01/2018] [Indexed: 11/06/2022] Open
Abstract
Protein arginine methyltransferase 5 (PRMT5) regulates gene expression either transcriptionally by symmetric dimethylation of arginine residues on histones H4R3, H3R8, and H2AR3 or at the posttranslational level by methylation of nonhistone target proteins. Although emerging evidence suggests that PRMT5 functions as an oncogene, its role in metabolic diseases is not well-defined. We investigated the role of PRMT5 in promoting high-fat-induced hepatic steatosis. A high-fat diet up-regulated PRMT5 levels in the liver but not in other metabolically relevant tissues such as skeletal muscle or white and brown adipose tissue. This was associated with repression of master transcription regulators involved in mitochondrial biogenesis. In contrast, lentiviral short hairpin RNA-mediated reduction of PRMT5 significantly decreased phosphatidylinositol 3-kinase/AKT signaling in mouse AML12 liver cells. PRMT5 knockdown or knockout decreased basal AKT phosphorylation but boosted the expression of peroxisome proliferator-activated receptor α (PPARα) and PGC-1α with a concomitant increase in mitochondrial biogenesis. Moreover, by overexpressing an exogenous WT or enzyme-dead mutant PRMT5 or by inhibiting PRMT5 enzymatic activity with a small-molecule inhibitor, we demonstrated that the enzymatic activity of PRMT5 is required for regulation of PPARα and PGC-1α expression and mitochondrial biogenesis. Our results suggest that targeting PRMT5 may have therapeutic potential for the treatment of fatty liver.
Collapse
Affiliation(s)
- Lei Huang
- From the Department of Pediatrics, University of Massachusetts Medical School, Worcester, Massachusetts 01655
| | - Jehnan Liu
- the Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, University of Toledo, Toledo, Ohio 43606
| | - Xiao-Ou Zhang
- the Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01655
| | - Katelyn Sibley
- the Department of Biochemistry, Worcester Polytechnic Institute, Worcester, Massachusetts 01609, and
| | - Sonia M Najjar
- the Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, University of Toledo, Toledo, Ohio 43606.,the Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio 45701
| | - Mary M Lee
- From the Department of Pediatrics, University of Massachusetts Medical School, Worcester, Massachusetts 01655,
| | - Qiong Wu
- From the Department of Pediatrics, University of Massachusetts Medical School, Worcester, Massachusetts 01655,
| |
Collapse
|
14
|
Yang H, Zhao X, Zhao L, Liu L, Li J, Jia W, Liu J, Huang G. PRMT5 competitively binds to CDK4 to promote G1-S transition upon glucose induction in hepatocellular carcinoma. Oncotarget 2018; 7:72131-72147. [PMID: 27708221 PMCID: PMC5342150 DOI: 10.18632/oncotarget.12351] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 09/20/2016] [Indexed: 01/07/2023] Open
Abstract
Although cancer cells are known to be "addicted" to glucose, the effect of glucose in proliferation of these cells remains elusive. Here, we report that upon glucose induction, protein arginine methyltransferase 5 (PRMT5) exerts a profound effect on the G1-S cell cycle progression via directly interacting with cyclin dependent kinase 4 (CDK4) in hepatocellular carcinoma (HCC). Upregulation of both PRMT5 and CDK4 predicts more malignant characteristics in human HCC tissues. Mechanistically, glucose promotes the interaction between PRMT5 and CDK4, which leads to activation of CDK4-RB-E2F-mediated transcription via releasing CDKN2A from CDK4. Moreover, the PRMT5 competitive inhibition of the interaction between CDK4 and CDKN2A is important for glucose-induced growth of HCC cells. Furthermore, the CDK4 mutant R24A weakly binds to PRMT5, inhibiting HCC cell cycle progression and tumor growth. Thus, our findings uncover a critical function for PRMT5 and CDK4 and provide an improved therapeutic strategy against HCC.
Collapse
Affiliation(s)
- Hao Yang
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS) & Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai 200031, China
| | - Xiaoping Zhao
- Department of Nuclear Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Li Zhao
- Department of Nuclear Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Liu Liu
- Department of Nuclear Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Jiajin Li
- Department of Nuclear Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Wenzhi Jia
- Department of Nuclear Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Jianjun Liu
- Department of Nuclear Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Gang Huang
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS) & Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai 200031, China.,Department of Nuclear Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China.,Institute of Clinical Nuclear Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China.,Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| |
Collapse
|
15
|
Metabolism and chromatin dynamics in health and disease. Mol Aspects Med 2017; 54:1-15. [DOI: 10.1016/j.mam.2016.09.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 09/22/2016] [Accepted: 09/27/2016] [Indexed: 01/04/2023]
|
16
|
LeBlanc SE, Wu Q, Lamba P, Sif S, Imbalzano AN. Promoter-enhancer looping at the PPARγ2 locus during adipogenic differentiation requires the Prmt5 methyltransferase. Nucleic Acids Res 2016; 44:5133-47. [PMID: 26935580 PMCID: PMC4914087 DOI: 10.1093/nar/gkw129] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Accepted: 02/22/2016] [Indexed: 01/05/2023] Open
Abstract
PPARγ2 is a critical lineage-determining transcription factor that is essential for adipogenic differentiation. Here we report characterization of the three-dimensional structure of the PPARγ2 locus after the onset of adipogenic differentiation and the mechanisms by which it forms. We identified a differentiation-dependent loop between the PPARγ2 promoter and an enhancer sequence 10 kb upstream that forms at the onset of PPARγ2 expression. The arginine methyltransferase Prmt5 was required for loop formation, and overexpression of Prmt5 resulted in premature loop formation and earlier onset of PPARγ2 expression. Kinetic studies of regulatory factor interactions at the PPARγ2 promoter and enhancer revealed enhanced interaction of Prmt5 with the promoter that preceded stable association of Prmt5 with enhancer sequences. Prmt5 knockdown prevented binding of both MED1, a subunit of Mediator complex that facilitates enhancer–promoter interactions, and Brg1, the ATPase of the mammalian SWI/SNF chromatin remodeling enzyme required for PPARγ2 activation and adipogenic differentiation. The data indicate a dynamic association of Prmt5 with the regulatory sequences of the PPARγ2 gene that facilitates differentiation-dependent, three-dimensional organization of the locus. In addition, other differentiation-specific, long-range chromatin interactions showed Prmt5-dependence, indicating a more general role for Prmt5 in mediating higher-order chromatin connections in differentiating adipocytes.
Collapse
Affiliation(s)
- Scott E LeBlanc
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA
| | - Qiong Wu
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA
| | - Pallavi Lamba
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA
| | - Saïd Sif
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, P.O. Box 2713, Doha, Qatar Department of Internal Medicine, The Ohio State University College of Medicine, 395 W. 12th Avenue, Third Floor, Columbus, OH 43210, USA
| | - Anthony N Imbalzano
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA
| |
Collapse
|
17
|
Kim YC, Byun S, Zhang Y, Seok S, Kemper B, Ma J, Kemper JK. Liver ChIP-seq analysis in FGF19-treated mice reveals SHP as a global transcriptional partner of SREBP-2. Genome Biol 2015; 16:268. [PMID: 26634251 PMCID: PMC4669652 DOI: 10.1186/s13059-015-0835-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 11/13/2015] [Indexed: 12/15/2022] Open
Abstract
Background Fibroblast growth factor-19 (FGF19) is an intestinal hormone that mediates postprandial metabolic responses in the liver. The unusual orphan nuclear receptor, small heterodimer partner (SHP), acts as a co-repressor for many transcriptional factors and has been implicated in diverse biological pathways including FGF19-mediated repression of bile acid synthesis. To explore global functions of SHP in mediating FGF19 action, we identify genome-wide SHP binding sites in hepatic chromatin in mice treated with vehicle or FGF19 by ChIP-seq analysis. Results The overall pattern of SHP binding sites between these two groups is similar, but SHP binding is enhanced at the sites by addition of FGF19. SHP binding is detected preferentially in promoter regions that are enriched in motifs for unexpected non-nuclear receptors. We observe global co-localization of SHP sites with published sites for SREBP-2, a master transcriptional activator of cholesterol biosynthesis. FGF19 increases functional interaction between endogenous SHP and SREBP-2 and inhibits SREBP-2 target genes, and these effects were blunted in SHP-knockout mice. Furthermore, FGF19-induced phosphorylation of SHP at Thr-55 is shown to be important for its functional interaction with SREBP-2 and reduction of liver/serum cholesterol levels. Conclusion This study reveals SHP as a global transcriptional partner of SREBP-2 in regulation of sterol biosynthetic gene networks and provides a potential mechanism for cholesterol-lowering action of FGF19. Electronic supplementary material The online version of this article (doi:10.1186/s13059-015-0835-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Young-Chae Kim
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Sangwon Byun
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Yang Zhang
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Sunmi Seok
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Byron Kemper
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Jian Ma
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA. .,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| | - Jongsook Kim Kemper
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
18
|
Zou A, Lehn S, Magee N, Zhang Y. New Insights into Orphan Nuclear Receptor SHP in Liver Cancer. NUCLEAR RECEPTOR RESEARCH 2015; 2. [PMID: 26504773 PMCID: PMC4618403 DOI: 10.11131/2015/101162] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Small heterodimer partner (SHP; NR0B2) is a unique orphan nuclear receptor (NR) that contains a putative ligand-binding domain but lacks a DNA-binding domain. SHP is a transcriptional corepressor affecting diverse metabolic processes including bile acid synthesis, cholesterol and lipid metabolism, glucose and energy homeostasis, and reproductive biology via interaction with multiple NRs and transcriptional factors (TFs). Hepatocellular carcinoma (HCC) is one of the most deadly human cancers worldwide with few therapeutic options and poor prognosis. Recently, it is becoming clear that SHP plays an antitumor role in the development of liver cancer. In this review, we summarize the most recent findings regarding the new SHP interaction partners, new structural insights into SHP’s gene repressing activity, and SHP protein posttranslational modifications by bile acids. We also discuss the pleiotropic role of SHP in regulating cell proliferation, apoptosis, DNA methylation, and inflammation that are related to antitumor role of SHP in HCC. Improving our understanding of SHP’s antitumor role in the development of liver cancer will provide new insights into developing novel treatments or prevention strategies. Future research will focus on developing more efficacious and specific synthetic SHP ligands for pharmaceutical applications in liver cancer and several metabolic diseases such as hypercholesterolemia, obesity, diabetes, and fatty liver disease.
Collapse
Affiliation(s)
- An Zou
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Sarah Lehn
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Nancy Magee
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Yuxia Zhang
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
19
|
Han HS, Choi D, Choi S, Koo SH. Roles of protein arginine methyltransferases in the control of glucose metabolism. Endocrinol Metab (Seoul) 2014; 29:435-40. [PMID: 25559572 PMCID: PMC4285034 DOI: 10.3803/enm.2014.29.4.435] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Glucose homeostasis is tightly controlled by the regulation of glucose production in the liver and glucose uptake into peripheral tissues, such as skeletal muscle and adipose tissue. Under prolonged fasting, hepatic gluconeogenesis is mainly responsible for glucose production in the liver, which is essential for tissues, organs, and cells, such as skeletal muscle, the brain, and red blood cells. Hepatic gluconeogenesis is controlled in part by the concerted actions of transcriptional regulators. Fasting signals are relayed by various intracellular enzymes, such as kinases, phosphatases, acetyltransferases, and deacetylases, which affect the transcriptional activity of transcription factors and transcriptional coactivators for gluconeogenic genes. Protein arginine methyltransferases (PRMTs) were recently added to the list of enzymes that are critical for regulating transcription in hepatic gluconeogenesis. In this review, we briefly discuss general aspects of PRMTs in the control of transcription. More specifically, we summarize the roles of four PRMTs: PRMT1, PRMT 4, PRMT 5, and PRMT 6, in the control of hepatic gluconeogenesis through specific regulation of FoxO1- and CREB-dependent transcriptional events.
Collapse
Affiliation(s)
- Hye Sook Han
- Department of Life Sciences, Korea University College of Life Sciences and Biotechnology, Seoul, Korea
| | - Dahee Choi
- Department of Life Sciences, Korea University College of Life Sciences and Biotechnology, Seoul, Korea
| | - Seri Choi
- Department of Life Sciences, Korea University College of Life Sciences and Biotechnology, Seoul, Korea
| | - Seung Hoi Koo
- Department of Life Sciences, Korea University College of Life Sciences and Biotechnology, Seoul, Korea.
| |
Collapse
|
20
|
Pereira-Fantini PM, Lapthorne S, Joyce SA, Dellios NL, Wilson G, Fouhy F, Thomas SL, Scurr M, Hill C, Gahan CGM, Cotter PD, Fuller PJ, Hardikar W, Bines JE. Altered FXR signalling is associated with bile acid dysmetabolism in short bowel syndrome-associated liver disease. J Hepatol 2014; 61:1115-25. [PMID: 24999016 DOI: 10.1016/j.jhep.2014.06.025] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2013] [Revised: 05/27/2014] [Accepted: 06/22/2014] [Indexed: 12/11/2022]
Abstract
BACKGROUND & AIMS Despite the mortality associated with liver disease observed in patients with short bowel syndrome (SBS), mechanisms underlying the development of SBS-associated liver disease (SBS-ALD) are poorly understood. This study examines the impact of bacterially-mediated bile acid (BA) dysmetabolism on farnesoid X receptor (FXR) signalling pathways and clinical outcome in a piglet model of SBS-ALD. METHODS 4-week old piglets underwent 75% small bowel resection (SBR) or sham operation. Liver histology and hepatic inflammatory gene expression were examined. Abundance of BA biotransforming bacteria was determined and metabolomic studies detailed the alterations in BA composition of stool, portal serum and bile samples. Gene expression of intestinal and hepatic FXR target genes and small heterodimer partner (SHP) transrepression targets were assessed. RESULTS Histological evidence of SBS-ALD included liver bile duct proliferation, hepatocyte ballooning and fibrosis. Inflammatory gene expression was increased. Microbiota changes included a 10-fold decrease in Clostridium and a two-fold decrease in Bacteroides in SBS-ALD piglets. BA composition was altered and reflected a primary BA dominant composition. Intestinal and hepatic regulation of BA synthesis was characterised by a blunted intestinal FXR activation response and a failure of SHP to repress key hepatic targets. CONCLUSIONS We propose a pathological scenario in which microbial dysbiosis following SBR results in significant BA dysmetabolism and consequent outcomes including steatorrhoea, persistent diarrhoea and liver damage. Furthermore alterations in BA composition may have contributed to the observed disturbance in FXR-mediated signalling pathways. These findings provide an insight into the complex mechanisms mediating the development of liver disease in patients with SBS.
Collapse
Affiliation(s)
- Prue M Pereira-Fantini
- Intestinal Failure and Clinical Nutrition Research Group, Murdoch Childrens Research Institute, Parkville, Victoria, Australia.
| | - Susan Lapthorne
- Intestinal Failure and Clinical Nutrition Research Group, Murdoch Childrens Research Institute, Parkville, Victoria, Australia
| | | | - Nicole L Dellios
- Intestinal Failure and Clinical Nutrition Research Group, Murdoch Childrens Research Institute, Parkville, Victoria, Australia
| | - Guineva Wilson
- Intestinal Failure and Clinical Nutrition Research Group, Murdoch Childrens Research Institute, Parkville, Victoria, Australia; Department of Surgery, Monash Medical Centre, Clayton, Victoria, Australia
| | - Fiona Fouhy
- School of Microbiology, University College Cork, Cork, Ireland; Teagasc Food Research Centre, Moorepark, Fermoy, County Cork, Ireland
| | - Sarah L Thomas
- Intestinal Failure and Clinical Nutrition Research Group, Murdoch Childrens Research Institute, Parkville, Victoria, Australia
| | - Michelle Scurr
- Intestinal Failure and Clinical Nutrition Research Group, Murdoch Childrens Research Institute, Parkville, Victoria, Australia
| | - Colin Hill
- Alimentary Pharmabiotic Centre, Cork, Ireland
| | | | - Paul D Cotter
- Alimentary Pharmabiotic Centre, Cork, Ireland; Teagasc Food Research Centre, Moorepark, Fermoy, County Cork, Ireland
| | - Peter J Fuller
- Prince Henry's Institute for Medical Research, Clayton, Victoria, Australia
| | - Winita Hardikar
- Department of Gastroenterology and Clinical Nutrition, Royal Children's Hospital, Parkville, Victoria, Australia; Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia; Gastro and Food Allergy Group, Murdoch Childrens Research Institute, Parkville, Victoria, Australia
| | - Julie E Bines
- Intestinal Failure and Clinical Nutrition Research Group, Murdoch Childrens Research Institute, Parkville, Victoria, Australia; Department of Gastroenterology and Clinical Nutrition, Royal Children's Hospital, Parkville, Victoria, Australia; Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
21
|
Chen M, Yi B, Sun J. Inhibition of cardiomyocyte hypertrophy by protein arginine methyltransferase 5. J Biol Chem 2014; 289:24325-35. [PMID: 25012667 DOI: 10.1074/jbc.m114.577494] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Protein arginine methyltransferase 5 (PRMT5), a protein arginine methyltransferase that catalyzes the symmetrical dimethylation of arginine residues within target proteins, has been implicated in many essential cellular processes ranging from the regulation of gene expression to cell proliferation and differentiation. PRMT5 is highly expressed in the heart; the functional role of PRMT5 in the heart, however, remains largely elusive. In the present study, we show that PRMT5 specifically interacts with GATA4 in both co-transfected HEK293T cells and neonatal rat cardiomyocytes by co-immunoprecipitation. Importantly, this interaction leads to the arginine methylation of GATA4 at positions of 229, 265, and 317, which leads to an inhibition of the GATA4 transcriptional activity, predominantly through blocking the p300-mediated acetylation of GATA4 in cardiomyocytes. Moreover, overexpression of PRMT5 substantially inhibited the acetylation of GATA4 and cardiac hypertrophic responses in phenylephrine-stimulated cardiomyocytes, whereas knockdown of PRMT5 induced GATA4 activation and cardiomyocyte hypertrophy. Furthermore, in response to phenylephrine stimulation, PRMT5 translocates into the cytoplasm, thus relieving its repression on GATA4 activity in the nucleus and leading to hypertrophic gene expression in cardiomyocytes. These findings indicate that PRMT5 is an essential regulator of myocardial hypertrophic signaling and suggest that strategies aimed at activating PRMT5 in the heart may represent a potential therapeutic approach for the prevention of cardiac hypertrophy and heart failure.
Collapse
Affiliation(s)
- Ming Chen
- From the Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Bing Yi
- From the Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Jianxin Sun
- From the Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| |
Collapse
|
22
|
Seok S, Kanamaluru D, Xiao Z, Ryerson D, Choi SE, Suino-Powell K, Xu HE, Veenstra TD, Kemper JK. Bile acid signal-induced phosphorylation of small heterodimer partner by protein kinase Cζ is critical for epigenomic regulation of liver metabolic genes. J Biol Chem 2013; 288:23252-63. [PMID: 23824184 PMCID: PMC3743497 DOI: 10.1074/jbc.m113.452037] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 07/01/2013] [Indexed: 12/12/2022] Open
Abstract
Bile acids (BAs) are recently recognized key signaling molecules that control integrative metabolism and energy expenditure. BAs activate multiple signaling pathways, including those of nuclear receptors, primarily farnesoid X receptor (FXR), membrane BA receptors, and FXR-induced FGF19 to regulate the fed-state metabolism. Small heterodimer partner (SHP) has been implicated as a key mediator of these BA signaling pathways by recruitment of chromatin modifying proteins, but the key question of how SHP transduces BA signaling into repressive histone modifications at liver metabolic genes remains unknown. Here we show that protein kinase Cζ (PKCζ) is activated by BA or FGF19 and phosphorylates SHP at Thr-55 and that Thr-55 phosphorylation is critical for the epigenomic coordinator functions of SHP. PKCζ is coimmunopreciptitated with SHP and both are recruited to SHP target genes after bile acid or FGF19 treatment. Activated phosphorylated PKCζ and phosphorylated SHP are predominantly located in the nucleus after FGF19 treatment. Phosphorylation at Thr-55 is required for subsequent methylation at Arg-57, a naturally occurring mutation site in metabolic syndrome patients. Thr-55 phosphorylation increases interaction of SHP with chromatin modifiers and their occupancy at selective BA-responsive genes. This molecular cascade leads to repressive modifications of histones at metabolic target genes, and consequently, decreased BA pools and hepatic triglyceride levels. Remarkably, mutation of Thr-55 attenuates these SHP-mediated epigenomic and metabolic effects. This study identifies PKCζ as a novel key upstream regulator of BA-regulated SHP function, revealing the role of Thr-55 phosphorylation in epigenomic regulation of liver metabolism.
Collapse
Affiliation(s)
- Sunmi Seok
- From the Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Deepthi Kanamaluru
- From the Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Zhen Xiao
- the Laboratory of Proteomics and Analytical Technologies, Advanced Technology Program, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, and
| | - Daniel Ryerson
- From the Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Sung-E Choi
- From the Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Kelly Suino-Powell
- the Laboratory of Structure Sciences, Van Andel Research Institute, Grand Rapids, Michigan 49503
| | - H. Eric Xu
- the Laboratory of Structure Sciences, Van Andel Research Institute, Grand Rapids, Michigan 49503
| | - Timothy D. Veenstra
- the Laboratory of Proteomics and Analytical Technologies, Advanced Technology Program, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, and
| | - Jongsook Kim Kemper
- From the Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| |
Collapse
|
23
|
Smith Z, Ryerson D, Kemper JK. Epigenomic regulation of bile acid metabolism: emerging role of transcriptional cofactors. Mol Cell Endocrinol 2013; 368:59-70. [PMID: 22579755 PMCID: PMC3473118 DOI: 10.1016/j.mce.2012.04.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 04/20/2012] [Accepted: 04/24/2012] [Indexed: 01/07/2023]
Abstract
The traditional role of bile acids is to simply facilitate absorption and digestion of lipid nutrients, but bile acids also act as endocrine signaling molecules that activate nuclear and membrane receptors to control integrative metabolism and energy balance. The mechanisms by which bile acid signals are integrated to regulate target genes are, however, largely unknown. Recently emerging evidence has shown that transcriptional cofactors sense metabolic changes and modulate gene transcription by mediating reversible epigenomic post-translational modifications (PTMs) of histones and chromatin remodeling. Importantly, targeting these epigenomic changes has been a successful approach for treating human diseases, especially cancer. Here, we review emerging roles of transcriptional cofactors in the epigenomic regulation of liver metabolism, especially focusing on bile acid metabolism. Targeting PTMs of histones and chromatin remodelers, together with the bile acid-activated receptors, may provide new therapeutic options for bile acid-related disease, such as cholestasis, obesity, diabetes, and entero-hepatic cancers.
Collapse
Affiliation(s)
- Zachary Smith
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, IL 61801, USA
| | | | | |
Collapse
|
24
|
Aberrantly elevated microRNA-34a in obesity attenuates hepatic responses to FGF19 by targeting a membrane coreceptor β-Klotho. Proc Natl Acad Sci U S A 2012; 109:16137-42. [PMID: 22988100 DOI: 10.1073/pnas.1205951109] [Citation(s) in RCA: 126] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
MicroRNA-34a (miR-34a) is the most highly elevated hepatic miR in obese mice and is also substantially elevated in patients who have steatosis, but its role in obesity and metabolic dysfunction remains unclear. After a meal, FGF19 is secreted from the ileum; binds to a hepatic membrane receptor complex, FGF19 receptor 4 and coreceptor β-Klotho (βKL); and mediates postprandial responses under physiological conditions, but hepatic responses to FGF19 signaling were shown to be impaired in patients with steatosis. Here, we show an unexpected functional link between aberrantly elevated miR-34a and impaired βKL/FGF19 signaling in obesity. In vitro studies show that miR-34a down-regulates βKL by binding to the 3' UTR of βKL mRNA. Adenoviral-mediated overexpression of miR-34a in mice decreased hepatic βKL levels, impaired FGF19-activated ERK and glycogen synthase kinase signaling, and altered expression of FGF19 metabolic target genes. Consistent with these results, βKL levels were decreased and hepatic responses to FGF19 were severely impaired in dietary obese mice that have elevated miR-34a. Remarkably, in vivo antisense inhibition of miR-34a in obese mice partially restored βKL levels and improved FGF19 target gene expression and metabolic outcomes, including decreased liver fat. Further, anti-miR-34a treatment in primary hepatocytes of obese mice restored FGF19-activated ERK and glycogen synthase kinase signaling in a βKL-dependent manner. These results indicate that aberrantly elevated miR-34a in obesity attenuates hepatic FGF19 signaling by directly targeting βKL. The miR-34a/βKL/FGF19 axis may present unique therapeutic targets for FGF19-related human diseases, including metabolic disorders and cancer.
Collapse
|
25
|
Wei TYW, Juan CC, Hisa JY, Su LJ, Lee YCG, Chou HY, Chen JMM, Wu YC, Chiu SC, Hsu CP, Liu KL, Yu CTR. Protein arginine methyltransferase 5 is a potential oncoprotein that upregulates G1 cyclins/cyclin-dependent kinases and the phosphoinositide 3-kinase/AKT signaling cascade. Cancer Sci 2012; 103:1640-50. [PMID: 22726390 DOI: 10.1111/j.1349-7006.2012.02367.x] [Citation(s) in RCA: 150] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Revised: 05/29/2012] [Accepted: 06/05/2012] [Indexed: 11/30/2022] Open
Abstract
Increasing evidence suggests that PRMT5, a protein arginine methyltransferase, is involved in tumorigenesis. However, no systematic research has demonstrated the cell-transforming activity of PRMT5. We investigated the involvement of PRMT5 in tumor formation. First, we showed that PRMT5 was associated with many human cancers, through statistical analysis of microarray data in the NCBI GEO database. Overexpression of ectopic PRMT5 per se or its specific shRNA enhanced or reduced cell growth under conditions of normal or low concentrations of serum, low cell density, and poor cell attachment. A stable clone that expressed exogenous PRMT5 formed tumors in nude mice, which demonstrated that PRMT5 is a potential oncoprotein. PRMT5 accelerated cell cycle progression through G1 phase and modulated regulators of G1; for example, it upregulated cyclin-dependent kinase (CDK) 4, CDK6, and cyclins D1, D2 and E1, and inactivated retinoblastoma protein (Rb). Moreover, PRMT5 activated phosphoinositide 3-kinase (PI3K)/AKT and suppressed c-Jun N-terminal kinase (JNK)/c-Jun signaling cascades. However, only inhibition of PI3K activity, and not overexpression of JNK, blocked PRMT5-induced cell proliferation. Further analysis of PRMT5 expression in 64 samples of human lung cancer tissues by microarray and western blot analysis revealed a tight association of PRMT5 with lung cancer. Knockdown of PRMT5 retarded cell growth of lung cancer cell lines A549 and H1299. In conclusion, to the best of our knowledge, we have characterized the cell-transforming activity of PRMT5 and delineated its underlying mechanisms for the first time.
Collapse
Affiliation(s)
- Tong-You W Wei
- Graduate Institute of Biomedicine and Biomedical Technology, National Chi Nan University, Puli, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Lee J, Seok SM, Yu P, Kim K, Smith Z, Rivas-Astroza M, Zhong S, Kemper JK. Genomic analysis of hepatic farnesoid X receptor binding sites reveals altered binding in obesity and direct gene repression by farnesoid X receptor in mice. Hepatology 2012; 56:108-17. [PMID: 22278336 PMCID: PMC3343176 DOI: 10.1002/hep.25609] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Accepted: 01/17/2012] [Indexed: 02/06/2023]
Abstract
UNLABELLED The nuclear bile acid receptor, farnesoid X receptor (FXR), is an important transcriptional regulator of liver metabolism. Despite recent advances in understanding its functions, how FXR regulates genomic targets and whether the transcriptional regulation by FXR is altered in obesity remain largely unknown. Here, we analyzed hepatic genome-wide binding sites of FXR in healthy and dietary obese mice by chromatin immunoprecipitation sequencing (ChIP-seq) analysis. A total of 15,263 and 5,272 FXR binding sites were identified in livers of healthy and obese mice, respectively, after a short 1-hour treatment with the synthetic FXR agonist, GW4064. Of these sites, 7,440 and 2,344 were detected uniquely in healthy and obese mice. FXR-binding sites were localized mostly in intergenic and intron regions at an inverted repeat 1 motif in both groups, but also clustered within 1 kilobase of transcription start sites. FXR-binding sites were detected near previously unknown target genes with novel functions, including diverse cellular signaling pathways, apoptosis, autophagy, hypoxia, inflammation, RNA processing, metabolism of amino acids, and transcriptional regulators. Further analyses of randomly selected genes from both healthy and obese mice suggested that more FXR-binding sites are likely functionally inactive in obesity. Surprisingly, occupancies of FXR, retinoid X receptor alpha, RNA polymerase II, and epigenetic gene activation and repression histone marks, and messenger RNA levels of genes examined, suggested that direct gene repression by agonist-activated FXR is common. CONCLUSION Comparison of genomic FXR-binding sites in healthy and obese mice suggested that FXR transcriptional signaling is altered in dietary obese mice, which may underlie aberrant metabolism and liver function in obesity.
Collapse
Affiliation(s)
- Jiyoung Lee
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Sun Mi Seok
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Pengfei Yu
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Kyungsu Kim
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Zachary Smith
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Marcelo Rivas-Astroza
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Sheng Zhong
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Jongsook Kim Kemper
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, To whom correspondence should be addressed: J. Kim Kemper Department of Molecular and Integrative Physiology, University of Illinois, Urbana, IL 61801, USA Tel: 217-333-6317 Fax: 217-333-1133
| |
Collapse
|
27
|
A pleiotropic role for the orphan nuclear receptor small heterodimer partner in lipid homeostasis and metabolic pathways. J Lipids 2012; 2012:304292. [PMID: 22577560 PMCID: PMC3346990 DOI: 10.1155/2012/304292] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Accepted: 12/05/2011] [Indexed: 12/29/2022] Open
Abstract
Nuclear receptors (NRs) comprise one of the most abundant classes of transcriptional regulators of metabolic diseases and have emerged as promising pharmaceutical targets. Small heterodimer partner (SHP; NR0B2) is a unique orphan NR lacking a DNA-binding domain but contains a putative ligand-binding domain. SHP is a transcriptional regulator affecting multiple key biological functions and metabolic processes including cholesterol, bile acid, and fatty acid metabolism, as well as reproductive biology and glucose-energy homeostasis. About half of all mammalian NRs and several transcriptional coregulators can interact with SHP. The SHP-mediated repression of target transcription factors includes at least three mechanisms including direct interference with the C-terminal activation function 2 (AF2) coactivator domains of NRs, recruitment of corepressors, or direct interaction with the surface of NR/transcription factors. Future research must focus on synthetic ligands acting on SHP as a potential therapeutic target in a series of metabolic abnormalities. Current understanding about the pleiotropic role of SHP is examined in this paper, and principal metabolic aspects connected with SHP function will be also discussed.
Collapse
|
28
|
Kanade SR, Eckert RL. Protein arginine methyltransferase 5 (PRMT5) signaling suppresses protein kinase Cδ- and p38δ-dependent signaling and keratinocyte differentiation. J Biol Chem 2011; 287:7313-23. [PMID: 22199349 DOI: 10.1074/jbc.m111.331660] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
PKCδ is a key regulator of keratinocyte differentiation that activates p38δ phosphorylation leading to increased differentiation as measured by an increased expression of the structural protein involucrin. Our previous studies suggest that p38δ exists in association with protein partners. A major goal is to identify these partners and understand their role in regulating keratinocyte differentiation. In this study we use affinity purification and mass spectrometry to identify protein arginine methyltransferase 5 (PRMT5) as part of the p38δ signaling complex. PRMT5 is an arginine methyltransferase that symmetrically dimethylates arginine residues on target proteins to alter target protein function. We show that PRMT5 knockdown is associated with increased p38δ phosphorylation, suggesting that PRMT5 impacts the p38δ signaling complex. At a functional level we show that PRMT5 inhibits the PKCδ- or 12-O-tetradecanoylphorbol-13-acetate-dependent increase in human involucrin expression, and PRMT5 dimethylates proteins in the p38δ complex. Moreover, PKCδ expression reduces the PRMT5 level, suggesting that PKCδ activates differentiation in part by reducing PRMT5 level. These studies indicate antagonism between the PKCδ and PRMT5 signaling in control of keratinocyte differentiation.
Collapse
Affiliation(s)
- Santosh R Kanade
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | | |
Collapse
|
29
|
Kim DH, Kim J, Lee JW. Requirement for MLL3 in p53 regulation of hepatic expression of small heterodimer partner and bile acid homeostasis. Mol Endocrinol 2011; 25:2076-83. [PMID: 22034226 DOI: 10.1210/me.2011-1198] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The histone H3-lysine-4 methyltransferase mixed-lineage leukemia 3 (MLL3) belongs to a large complex that functions as a coactivator of multiple transcription factors, including the bile acid (BA)-activated nuclear receptor, farnesoid X receptor (FXR), a critical player in BA homeostasis. BA-activated FXR induces hepatic expression of small heterodimer partner (SHP), which in turn suppresses expression of BA synthesis genes, Cyp7a1 and Cyp8b1. Thus, MLL3(Δ/Δ) mice that express a catalytically inactive mutant form of MLL3 display increased BA levels. Recently, we have discovered a distinct regulatory pathway for BA homeostasis, in which p53 independently up-regulates SHP expression in the liver. Here, we show that the MLL3 complex is also essential for p53 transactivation of SHP. Although activated p53 signaling in MLL3(+/+) mice results in decreased BA levels through hepatic up-regulation of SHP, these changes are abolished in MLL3(Δ/Δ) mice. For both HepG2 cells and mouse liver, we also demonstrate that p53 directs the recruitment of different components of the MLL3 complex to the p53-response elements of SHP and that p53-dependent H3-lysine-4-trimethylation of SHP requires MLL3. From these results, we conclude that both FXR- and p53-dependent regulatory pathways for SHP expression in BA homeostasis require the MLL3 complex; thus, the MLL3 complex is likely a master regulator of BA homeostasis. Using a common coregulator complex for multiple transcription factors, which independently control expression of the same gene, might be a prevalent theme in gene regulation and may also play critical roles in assigning a specific biological function to a coregulator complex.
Collapse
Affiliation(s)
- Dae-Hwan Kim
- Neuroscience Section, Papé Family Pediatric Research Institute, Department of Pediatrics, Oregon Health and Science University, Portland, Oregon 97239-3098, USA
| | | | | |
Collapse
|
30
|
Miao J, Choi SE, Seok SM, Yang L, Zuercher WJ, Xu Y, Willson TM, Xu HE, Kemper JK. Ligand-dependent regulation of the activity of the orphan nuclear receptor, small heterodimer partner (SHP), in the repression of bile acid biosynthetic CYP7A1 and CYP8B1 genes. Mol Endocrinol 2011; 25:1159-69. [PMID: 21566081 DOI: 10.1210/me.2011-0033] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Small heterodimer partner (SHP) plays important roles in diverse biological processes by directly interacting with transcription factors and inhibiting their activities. SHP has been designated an orphan nuclear receptor, but whether its activity can be modulated by ligands has been a long-standing question. Recently, retinoid-related molecules, including 4-[3-(1-adamantyl)-4-hydroxyphenyl]-3-chlorocinnamic acid (3Cl-AHPC), were shown to bind to SHP and enhance apoptosis. We have examined whether 3Cl-AHPC acts as an agonist and increases SHP activity in the repression of bile acid biosynthetic CYP7A1 and CYP8B1 genes and delineated the underlying mechanisms. Contrary to this expectation, micromolar concentrations of 3Cl-AHPC increased CYP7A1 expression but indirectly via p38 kinase signaling. Nanomolar concentrations, however, repressed CYP7A1 expression and decreased bile acid levels in HepG2 cells, and little repression was observed when SHP was down-regulated by small hairpin RNA. Mechanistic studies revealed that 3Cl-AHPC bound to SHP, increased the interaction of SHP with liver receptor homologue (LRH)-1, a hepatic activator for CYP7A1 and CYP8B1 genes, and with repressive cofactors, Brahma, mammalian Sin3a, and histone deacetylase-1, and, subsequently, increased the occupancy of SHP and these cofactors at the promoters. Mutation of Leu-100, predicted to contact 3Cl-AHPC within the SHP ligand binding pocket by molecular modeling, severely impaired the increased interaction with LRH-1, and repression of LRH-1 activity mediated by 3Cl-AHPC. 3Cl-AHPC repressed SHP metabolic target genes in a gene-specific manner in human primary hepatocytes and HepG2 cells. These data suggest that SHP may act as a ligand-regulated receptor in metabolic pathways. Modulation of SHP activity by synthetic ligands may be a useful therapeutic strategy.
Collapse
Affiliation(s)
- Ji Miao
- Department of Molecular and Integrative Physiology, University of Illinois, Urbana-Champaign, Urbana, Illinois 61801, USA
| | | | | | | | | | | | | | | | | |
Collapse
|