1
|
Balestrini PA, Abdelbaki A, McCarthy A, Devito L, Senner CE, Chen AE, Munusamy P, Blakeley P, Elder K, Snell P, Christie L, Serhal P, Odia RA, Sangrithi M, Niakan KK, Fogarty NME. Transcription factor-based transdifferentiation of human embryonic to trophoblast stem cells. Development 2024; 151:dev202778. [PMID: 39250534 DOI: 10.1242/dev.202778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 08/05/2024] [Indexed: 09/11/2024]
Abstract
During the first week of development, human embryos form a blastocyst composed of an inner cell mass and trophectoderm (TE) cells, the latter of which are progenitors of placental trophoblast. Here, we investigated the expression of transcripts in the human TE from early to late blastocyst stages. We identified enrichment of the transcription factors GATA2, GATA3, TFAP2C and KLF5 and characterised their protein expression dynamics across TE development. By inducible overexpression and mRNA transfection, we determined that these factors, together with MYC, are sufficient to establish induced trophoblast stem cells (iTSCs) from primed human embryonic stem cells. These iTSCs self-renew and recapitulate morphological characteristics, gene expression profiles, and directed differentiation potential, similar to existing human TSCs. Systematic omission of each, or combinations of factors, revealed the crucial importance of GATA2 and GATA3 for iTSC transdifferentiation. Altogether, these findings provide insights into the transcription factor network that may be operational in the human TE and broaden the methods for establishing cellular models of early human placental progenitor cells, which may be useful in the future to model placental-associated diseases.
Collapse
Affiliation(s)
- Paula A Balestrini
- Centre for Gene Therapy and Regenerative Medicine, King's College London, London SE1 9RT, UK
| | - Ahmed Abdelbaki
- Human Embryo and Stem Cell Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
- The Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
- Department of Zoology, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| | - Afshan McCarthy
- Human Embryo and Stem Cell Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Liani Devito
- Human Embryo and Stem Cell Unit, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Claire E Senner
- The Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| | - Alice E Chen
- Trestle Biotherapeutics, Centre for Novel Therapeutics, 9310 Athena Circle, La Jolla, CA 92037, USA
| | - Prabhakaran Munusamy
- KK Women's and Children's Hospital, Division of Obstetrics and Gynecology, 100 Bukit Timah Road, Singapore229899, Singapore
| | - Paul Blakeley
- Human Embryo and Stem Cell Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
- Department of Surgery, School of Clinical Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Kay Elder
- Bourn Hall Clinic, Bourn, Cambridge CB23 2TN, UK
| | - Phil Snell
- Bourn Hall Clinic, Bourn, Cambridge CB23 2TN, UK
| | | | - Paul Serhal
- The Centre for Reproductive & Genetic Health, 230-232 Great Portland Street, London W1W 5QS, UK
| | - Rabi A Odia
- The Centre for Reproductive & Genetic Health, 230-232 Great Portland Street, London W1W 5QS, UK
| | - Mahesh Sangrithi
- Centre for Gene Therapy and Regenerative Medicine, King's College London, London SE1 9RT, UK
- KK Women's and Children's Hospital, Division of Obstetrics and Gynecology, 100 Bukit Timah Road, Singapore229899, Singapore
- Duke-NUS Graduate Medical School, Cancer Stem Cell Biology/OBGYN ACP, 8 College Road, Singapore 169857, Singapore
| | - Kathy K Niakan
- Human Embryo and Stem Cell Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
- The Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
- Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge CB2 0AW, UK
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, UK
| | - Norah M E Fogarty
- Centre for Gene Therapy and Regenerative Medicine, King's College London, London SE1 9RT, UK
- Human Embryo and Stem Cell Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| |
Collapse
|
2
|
Lemke KA, Sarkar CA, Azarin SM. Rapid retinoic acid-induced trophoblast cell model from human induced pluripotent stem cells. Sci Rep 2024; 14:18204. [PMID: 39107470 PMCID: PMC11303561 DOI: 10.1038/s41598-024-68952-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 07/30/2024] [Indexed: 08/10/2024] Open
Abstract
A limited number of accessible and representative models of human trophoblast cells currently exist for the study of placentation. Current stem cell models involve either a transition through a naïve stem cell state or precise dynamic control of multiple growth factors and small-molecule cues. Here, we demonstrated that a simple five-day treatment of human induced pluripotent stem cells with two small molecules, retinoic acid (RA) and Wnt agonist CHIR 99021 (CHIR), resulted in rapid, synergistic upregulation of CDX2. Transcriptomic analysis of RA + CHIR-treated cells showed high similarity to primary trophectoderm cells. Multipotency was verified via further differentiation towards cells with syncytiotrophoblast or extravillous trophoblast features. RA + CHIR-treated cells were also assessed for the established criteria defining a trophoblast cell model, and they possess all the features necessary to be considered valid. Collectively, our data demonstrate a facile, scalable method for generating functional trophoblast-like cells in vitro to better understand the placenta.
Collapse
Affiliation(s)
- Kristen A Lemke
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Casim A Sarkar
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Samira M Azarin
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
3
|
Bi S, Huang L, Chen Y, Hu Z, Li S, Wang Y, Huang B, Zhang L, Huang Y, Dai B, Du L, Tu Z, Wang Y, Xu D, Xu X, Sun W, Kzhyshkowska J, Wang H, Chen D, Wang F, Zhang S. KAT8-mediated H4K16ac is essential for sustaining trophoblast self-renewal and proliferation via regulating CDX2. Nat Commun 2024; 15:5602. [PMID: 38961108 PMCID: PMC11222414 DOI: 10.1038/s41467-024-49930-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 06/24/2024] [Indexed: 07/05/2024] Open
Abstract
Abnormal trophoblast self-renewal and differentiation during early gestation is the major cause of miscarriage, yet the underlying regulatory mechanisms remain elusive. Here, we show that trophoblast specific deletion of Kat8, a MYST family histone acetyltransferase, leads to extraembryonic ectoderm abnormalities and embryonic lethality. Employing RNA-seq and CUT&Tag analyses on trophoblast stem cells (TSCs), we further discover that KAT8 regulates the transcriptional activation of the trophoblast stemness marker, CDX2, via acetylating H4K16. Remarkably, CDX2 overexpression partially rescues the defects arising from Kat8 knockout. Moreover, increasing H4K16ac via using deacetylase SIRT1 inhibitor, EX527, restores CDX2 levels and promoted placental development. Clinical analysis shows reduced KAT8, CDX2 and H4K16ac expression are associated with recurrent pregnancy loss (RPL). Trophoblast organoids derived from these patients exhibit impaired TSC self-renewal and growth, which are significantly ameliorated with EX527 treatment. These findings suggest the therapeutic potential of targeting the KAT8-H4K16ac-CDX2 axis for mitigating RPL, shedding light on early gestational abnormalities.
Collapse
Affiliation(s)
- Shilei Bi
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
- Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
- Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
- Guangdong-Hong Kong-Macao Great Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Lijun Huang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
- Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
- Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
- Guangdong-Hong Kong-Macao Great Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Yongjie Chen
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University. Beijing Maternal and Child Health Care Hospital, Beijing, 100026, China
| | - Zhenhua Hu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
- Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
- Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
- Guangdong-Hong Kong-Macao Great Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Shanze Li
- National Institute of Biological Sciences, Beijing, 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 102206, China
| | - Yifan Wang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
- Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
- Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
- Guangdong-Hong Kong-Macao Great Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Baoying Huang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
- Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
- Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
- Guangdong-Hong Kong-Macao Great Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Lizi Zhang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
- Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
- Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
- Guangdong-Hong Kong-Macao Great Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Yuanyuan Huang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
- Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
- Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
- Guangdong-Hong Kong-Macao Great Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Beibei Dai
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
- Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
- Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
- Guangdong-Hong Kong-Macao Great Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Lili Du
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
- Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
- Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
- Guangdong-Hong Kong-Macao Great Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Zhaowei Tu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
- Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
- Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
- Guangdong-Hong Kong-Macao Great Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Yijing Wang
- National Institute of Biological Sciences, Beijing, 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 102206, China
| | - Dan Xu
- National Institute of Biological Sciences, Beijing, 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 102206, China
| | - Xiaotong Xu
- National Institute of Biological Sciences, Beijing, 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 102206, China
| | - Wen Sun
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
- Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
- Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
- Guangdong-Hong Kong-Macao Great Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Julia Kzhyshkowska
- Institute of Transfusion Medicine and Immunology, Mannheim Institute of Innate Immunosciences (MI3), Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany
- German Red Cross Blood Service Baden-Württemberg-Hessen, 68167, Mannheim, Germany
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, Tomsk, Russia
| | - Haibin Wang
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361102, China.
| | - Dunjin Chen
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China.
- Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China.
- Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China.
- Guangdong-Hong Kong-Macao Great Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China.
| | - Fengchao Wang
- National Institute of Biological Sciences, Beijing, 102206, China.
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 102206, China.
| | - Shuang Zhang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China.
- Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China.
- Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China.
- Guangdong-Hong Kong-Macao Great Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China.
| |
Collapse
|
4
|
Li L, Lai F, Liu L, Lu X, Hu X, Liu B, Lin Z, Fan Q, Kong F, Xu Q, Xie W. Lineage regulators TFAP2C and NR5A2 function as bipotency activators in totipotent embryos. Nat Struct Mol Biol 2024; 31:950-963. [PMID: 38243114 DOI: 10.1038/s41594-023-01199-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 12/05/2023] [Indexed: 01/21/2024]
Abstract
During the first lineage segregation, a mammalian totipotent embryo differentiates into the inner cell mass (ICM) and trophectoderm (TE). However, how transcription factors (TFs) regulate this earliest cell-fate decision in vivo remains elusive, with their regulomes primarily inferred from cultured cells. Here, we investigated the TF regulomes during the first lineage specification in early mouse embryos, spanning the pre-initiation, initiation, commitment, and maintenance phases. Unexpectedly, we found that TFAP2C, a trophoblast regulator, bound and activated both early TE and inner cell mass (ICM) genes at the totipotent (two- to eight-cell) stages ('bipotency activation'). Tfap2c deficiency caused downregulation of early ICM genes, including Nanog, Nr5a2, and Tdgf1, and early TE genes, including Tfeb and Itgb5, in eight-cell embryos. Transcription defects in both ICM and TE lineages were also found in blastocysts, accompanied by increased apoptosis and reduced cell numbers in ICMs. Upon trophoblast commitment, TFAP2C left early ICM genes but acquired binding to late TE genes in blastocysts, where it co-bound with CDX2, and later to extra-embryonic ectoderm (ExE) genes, where it cooperatively co-occupied with the former ICM regulator SOX2. Finally, 'bipotency activation' in totipotent embryos also applied to a pluripotency regulator NR5A2, which similarly bound and activated both ICM and TE lineage genes at the eight-cell stage. These data reveal a unique transcription circuity of totipotency underpinned by highly adaptable lineage regulators.
Collapse
Affiliation(s)
- Lijia Li
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Fangnong Lai
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Ling Liu
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Xukun Lu
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Xiaoyu Hu
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Bofeng Liu
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Zili Lin
- College of Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Qiang Fan
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Feng Kong
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Qianhua Xu
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Wei Xie
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, China.
- Tsinghua-Peking Center for Life Sciences, Beijing, China.
| |
Collapse
|
5
|
Driscoll CS, Kim J, Knott JG. The explosive discovery of TNT in early mouse embryos. Nat Struct Mol Biol 2024; 31:852-855. [PMID: 38789683 DOI: 10.1038/s41594-024-01304-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Affiliation(s)
- Chad S Driscoll
- Developmental Epigenetics Laboratory, Department of Animal Science, Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, MI, USA
| | - Jaehwan Kim
- Developmental Epigenetics Laboratory, Department of Animal Science, Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, MI, USA
| | - Jason G Knott
- Developmental Epigenetics Laboratory, Department of Animal Science, Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
6
|
Zhu M, Meglicki M, Lamba A, Wang P, Royer C, Turner K, Jauhar MA, Jones C, Child T, Coward K, Na J, Zernicka-Goetz M. Tead4 and Tfap2c generate bipotency and a bistable switch in totipotent embryos to promote robust lineage diversification. Nat Struct Mol Biol 2024; 31:964-976. [PMID: 38789684 PMCID: PMC11189297 DOI: 10.1038/s41594-024-01311-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/09/2024] [Indexed: 05/26/2024]
Abstract
The mouse and human embryo gradually loses totipotency before diversifying into the inner cell mass (ICM, future organism) and trophectoderm (TE, future placenta). The transcription factors TFAP2C and TEAD4 with activated RHOA accelerate embryo polarization. Here we show that these factors also accelerate the loss of totipotency. TFAP2C and TEAD4 paradoxically promote and inhibit Hippo signaling before lineage diversification: they drive expression of multiple Hippo regulators while also promoting apical domain formation, which inactivates Hippo. Each factor activates TE specifiers in bipotent cells, while TFAP2C also activates specifiers of the ICM fate. Asymmetric segregation of the apical domain reconciles the opposing regulation of Hippo signaling into Hippo OFF and the TE fate, or Hippo ON and the ICM fate. We propose that the bistable switch established by TFAP2C and TEAD4 is exploited to trigger robust lineage diversification in the developing embryo.
Collapse
Affiliation(s)
- Meng Zhu
- Mammalian Embryo and Stem Cell Group, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Maciej Meglicki
- Mammalian Embryo and Stem Cell Group, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Adiyant Lamba
- Mammalian Embryo and Stem Cell Group, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Peizhe Wang
- Centre for Stem Cell Biology and Regenerative Medicine, School of Medicine, Tsinghua University, Beijing, China
| | - Christophe Royer
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Karen Turner
- Oxford Fertility, Institute of Reproductive Sciences, Oxford, UK
| | - Muhammad Abdullah Jauhar
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Celine Jones
- Nuffield Department of Women's and Reproductive Health, Level 3, Women's Centre, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Tim Child
- Nuffield Department of Women's and Reproductive Health, Level 3, Women's Centre, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Kevin Coward
- Nuffield Department of Women's and Reproductive Health, Level 3, Women's Centre, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Jie Na
- Centre for Stem Cell Biology and Regenerative Medicine, School of Medicine, Tsinghua University, Beijing, China
| | - Magdalena Zernicka-Goetz
- Mammalian Embryo and Stem Cell Group, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
7
|
Slaby EM, Hansen N, Sharma R, Pirrotte P, Weaver JD. Engineered 3D Hydrogel Matrices to Modulate Trophoblast Stem Cell-Derived Placental Organoid Phenotype. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.13.594007. [PMID: 38798435 PMCID: PMC11118344 DOI: 10.1101/2024.05.13.594007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Placental organoid models are a promising platform to study human placental development and function. Organoid systems typically use naturally derived hydrogel extracellular matrices (ECM), resulting in batch-to-batch variability that limits experimental reproducibility. As an alternative, synthetic ECM-mimicking hydrogel matrices offer greater consistency and control over environmental cues. Here, we generated trophoblast stem cell-derived placental organoids using poly(ethylene glycol) (PEG) hydrogels with tunable degradability and placenta-derived ECM cues to evaluate trophoblast differentiation relative to Matrigel and two-dimensional (2D) culture controls. Our data demonstrate that PEG hydrogels support trophoblast viability and metabolic function comparable to gold standard Matrigel. Additionally, phenotypic characterization via proteomic analysis revealed that PEG and Matrigel matrices drive syncytiotrophoblast and extravillous trophoblast-dominant placental organoid phenotypes, respectively. Further, three-dimensional (3D) environments promoted greater integrin expression and ECM production than 2D culture. This study demonstrates that engineered 3D culture environments can be used to reliably generate placental organoids and guide trophoblast differentiation.
Collapse
|
8
|
Azagury M, Buganim Y. Unlocking trophectoderm mysteries: In vivo and in vitro perspectives on human and mouse trophoblast fate induction. Dev Cell 2024; 59:941-960. [PMID: 38653193 DOI: 10.1016/j.devcel.2024.03.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/10/2023] [Accepted: 03/18/2024] [Indexed: 04/25/2024]
Abstract
In recent years, the pursuit of inducing the trophoblast stem cell (TSC) state has gained prominence as a compelling research objective, illuminating the establishment of the trophoblast lineage and unlocking insights into early embryogenesis. In this review, we examine how advancements in diverse technologies, including in vivo time course transcriptomics, cellular reprogramming to TSC state, chemical induction of totipotent stem-cell-like state, and stem-cell-based embryo-like structures, have enriched our insights into the intricate molecular mechanisms and signaling pathways that define the mouse and human trophectoderm/TSC states. We delve into disparities between mouse and human trophectoderm/TSC fate establishment, with a special emphasis on the intriguing role of pluripotency in this context. Additionally, we re-evaluate recent findings concerning the potential of totipotent-stem-like cells and embryo-like structures to fully manifest the trophectoderm/trophoblast lineage's capabilities. Lastly, we briefly discuss the potential applications of induced TSCs in pregnancy-related disease modeling.
Collapse
Affiliation(s)
- Meir Azagury
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Yosef Buganim
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel.
| |
Collapse
|
9
|
Driscoll CS, Kim J, Ashry M, Knott JG. Does TFAP2C govern conflicting cell fates in mouse preimplantation embryos? Reproduction 2024; 167:e230440. [PMID: 38165360 PMCID: PMC10967010 DOI: 10.1530/rep-23-0440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/02/2024] [Indexed: 01/03/2024]
Abstract
Transcription factor AP2 gamma (TFAP2C) is a well-established regulator of the trophoblast lineage in mice and humans, but a handful of studies indicate that TFAP2C may play an important role in pluripotency. Here, we hypothesize and provide new evidence that TFAP2C functions as an activator of trophoblast and pluripotency genes during preimplantation embryo development.
Collapse
Affiliation(s)
| | | | - Mohamed Ashry
- Developmental Epigenetics Laboratory, Department of Animal Science, Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, Michigan, USA
| | - Jason G. Knott
- Developmental Epigenetics Laboratory, Department of Animal Science, Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
10
|
Kim M, Jang YJ, Lee M, Guo Q, Son AJ, Kakkad NA, Roland AB, Lee BK, Kim J. The transcriptional regulatory network modulating human trophoblast stem cells to extravillous trophoblast differentiation. Nat Commun 2024; 15:1285. [PMID: 38346993 PMCID: PMC10861538 DOI: 10.1038/s41467-024-45669-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/31/2024] [Indexed: 02/15/2024] Open
Abstract
During human pregnancy, extravillous trophoblasts play crucial roles in placental invasion into the maternal decidua and spiral artery remodeling. However, regulatory factors and their action mechanisms modulating human extravillous trophoblast specification have been unknown. By analyzing dynamic changes in transcriptome and enhancer profile during human trophoblast stem cell to extravillous trophoblast differentiation, we define stage-specific regulators, including an early-stage transcription factor, TFAP2C, and multiple late-stage transcription factors. Loss-of-function studies confirm the requirement of all transcription factors identified for adequate differentiation, and we reveal that the dynamic changes in the levels of TFAP2C are essential. Notably, TFAP2C pre-occupies the regulatory elements of the inactive extravillous trophoblast-active genes during the early stage of differentiation, and the late-stage transcription factors directly activate extravillous trophoblast-active genes, including themselves as differentiation further progresses, suggesting sequential actions of transcription factors assuring differentiation. Our results reveal stage-specific transcription factors and their inter-connected regulatory mechanisms modulating extravillous trophoblast differentiation, providing a framework for understanding early human placentation and placenta-related complications.
Collapse
Affiliation(s)
- Mijeong Kim
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Yu Jin Jang
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Muyoung Lee
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Qingqing Guo
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Albert J Son
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Nikita A Kakkad
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Abigail B Roland
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Bum-Kyu Lee
- Department of Biomedical Sciences, Cancer Research Center, University at Albany, State University of New York, Rensselaer, NY, 12144, USA
| | - Jonghwan Kim
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA.
| |
Collapse
|
11
|
Gao Y, Han W, Dong R, Wei S, Chen L, Gu Z, Liu Y, Guo W, Yan F. Efficient Reprogramming of Mouse Embryonic Stem Cells into Trophoblast Stem-like Cells via Lats Kinase Inhibition. BIOLOGY 2024; 13:71. [PMID: 38392290 PMCID: PMC10886645 DOI: 10.3390/biology13020071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 02/24/2024]
Abstract
Mouse zygotes undergo multiple rounds of cell division, resulting in the formation of preimplantation blastocysts comprising three lineages: trophectoderm (TE), epiblast (EPI), and primitive endoderm (PrE). Cell fate determination plays a crucial role in establishing a healthy pregnancy. The initial separation of lineages gives rise to TE and inner cell mass (ICM), from which trophoblast stem cells (TSC) and embryonic stem cells (ESC) can be derived in vitro. Studying lineage differentiation is greatly facilitated by the clear functional distinction between TSC and ESC. However, transitioning between these two types of cells naturally poses challenges. In this study, we demonstrate that inhibiting LATS kinase promotes the conversion of ICM to TE and also effectively reprograms ESC into stable, self-renewing TS-like cells (TSLC). Compared to TSC, TSLC exhibits similar molecular properties, including the high expression of marker genes such as Cdx2, Eomes, and Tfap2c, as well as hypomethylation of their promoters. Importantly, TSLC not only displays the ability to differentiate into mature trophoblast cells in vitro but also participates in placenta formation in vivo. These findings highlight the efficient reprogramming of ESCs into TSLCs using a small molecular inducer, which provides a new reference for understanding the regulatory network between ESCs and TSCs.
Collapse
Affiliation(s)
- Yake Gao
- State Key Laboratory of Conservation and Utilization of Bio-Resources, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming 650500, China
- Reproductive Medicine Center, Wuhan Women's and Children's Medical Care Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Wenrui Han
- State Key Laboratory of Conservation and Utilization of Bio-Resources, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming 650500, China
| | - Rui Dong
- State Key Laboratory of Conservation and Utilization of Bio-Resources, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming 650500, China
| | - Shu Wei
- State Key Laboratory of Conservation and Utilization of Bio-Resources, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming 650500, China
| | - Lu Chen
- State Key Laboratory of Conservation and Utilization of Bio-Resources, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming 650500, China
| | - Zhaolei Gu
- State Key Laboratory of Conservation and Utilization of Bio-Resources, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming 650500, China
| | - Yiming Liu
- State Key Laboratory of Conservation and Utilization of Bio-Resources, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming 650500, China
| | - Wei Guo
- State Key Laboratory of Conservation and Utilization of Bio-Resources, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming 650500, China
| | - Fang Yan
- State Key Laboratory of Conservation and Utilization of Bio-Resources, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming 650500, China
| |
Collapse
|
12
|
Liu F, Wang J, Yue Y, Li C, Zhang X, Xiang J, Wang H, Li X. Derivation of Arbas Cashmere Goat Induced Pluripotent Stem Cells in LCDM with Trophectoderm Lineage Differentiation and Interspecies Chimeric Abilities. Int J Mol Sci 2023; 24:14728. [PMID: 37834175 PMCID: PMC10572416 DOI: 10.3390/ijms241914728] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/22/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
The Arbas cashmere goat is a unique biological resource that plays a vital role in livestock husbandry in China. LCDM is a medium with special small molecules (consisting of human LIF, CHIR99021, (S)-(+)-dimethindene maleate, and minocycline hydrochloride) for generation pluripotent stem cells (PSCs) with bidirectional developmental potential in mice, humans, pigs, and bovines. However, there is no report on whether LCDM can support for generation of PSCs with the same ability in Arbas cashmere goats. In this study, we applied LCDM to generate goat induced PSCs (giPSCs) from goat fetal fibroblasts (GFFs) by reprogramming. The derived giPSCs exhibited stem cell morphology, expressing pluripotent markers, and could differentiate into three germ layers. Moreover, the giPSCs differentiated into the trophectoderm lineage by spontaneous and directed differentiation in vitro. The giPSCs contributed to embryonic and extraembryonic tissue in preimplantation blastocysts and postimplantation chimeric embryos. RNA-sequencing analysis showed that the giPSCs were very close to goat embryos at the blastocyst stage and giPSCs have similar properties to typical extended PSCs (EPSCs). The establishment of giPSCs with LCDM provides a new way to generate PSCs from domestic animals and lays the foundation for basic and applied research in biology and agriculture.
Collapse
Affiliation(s)
- Fang Liu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Jing Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Yongli Yue
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Chen Li
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Xuemin Zhang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Jinzhu Xiang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Hanning Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Xueling Li
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| |
Collapse
|
13
|
Karvas RM, Zemke JE, Ali SS, Upton E, Sane E, Fischer LA, Dong C, Park KM, Wang F, Park K, Hao S, Chew B, Meyer B, Zhou C, Dietmann S, Theunissen TW. 3D-cultured blastoids model human embryogenesis from pre-implantation to early gastrulation stages. Cell Stem Cell 2023; 30:1148-1165.e7. [PMID: 37683602 DOI: 10.1016/j.stem.2023.08.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 07/24/2023] [Accepted: 08/09/2023] [Indexed: 09/10/2023]
Abstract
Naive human pluripotent stem cells have the remarkable ability to self-organize into blastocyst-like structures ("blastoids") that model lineage segregation in the pre-implantation embryo. However, the extent to which blastoids can recapitulate the defining features of human post-implantation development remains unexplored. Here, we report that blastoids cultured on thick three-dimensional (3D) extracellular matrices capture hallmarks of early post-implantation development, including epiblast lumenogenesis, rapid expansion and diversification of trophoblast lineages, and robust invasion of extravillous trophoblast cells by day 14. Extended blastoid culture results in the localized activation of primitive streak marker TBXT and the emergence of embryonic germ layers by day 21. We also show that the modulation of WNT signaling alters the balance between epiblast and trophoblast fates in post-implantation blastoids. This work demonstrates that 3D-cultured blastoids offer a continuous and integrated in vitro model system of human embryonic and extraembryonic development from pre-implantation to early gastrulation stages.
Collapse
Affiliation(s)
- Rowan M Karvas
- Department of Developmental Biology and Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Joseph E Zemke
- Department of Developmental Biology and Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Syed Shahzaib Ali
- Department of Developmental Biology and Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Institute for Informatics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Eric Upton
- Department of Developmental Biology and Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Eshan Sane
- Department of Developmental Biology and Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Laura A Fischer
- Department of Developmental Biology and Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Chen Dong
- Department of Developmental Biology and Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kyoung-Mi Park
- Department of Developmental Biology and Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Fei Wang
- Department of Biomedical Engineering, McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Kibeom Park
- Department of Biomedical Engineering, McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Senyue Hao
- Department of Biomedical Engineering, McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Brian Chew
- Department of Developmental Biology and Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Brittany Meyer
- Department of Developmental Biology and Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Chao Zhou
- Department of Biomedical Engineering, McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Sabine Dietmann
- Department of Developmental Biology and Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Institute for Informatics, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | - Thorold W Theunissen
- Department of Developmental Biology and Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
14
|
Oh SY, Na SB, Kang YK, Do JT. In Vitro Embryogenesis and Gastrulation Using Stem Cells in Mice and Humans. Int J Mol Sci 2023; 24:13655. [PMID: 37686459 PMCID: PMC10563085 DOI: 10.3390/ijms241713655] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/29/2023] [Accepted: 08/31/2023] [Indexed: 09/10/2023] Open
Abstract
During early mammalian embryonic development, fertilized one-cell embryos develop into pre-implantation blastocysts and subsequently establish three germ layers through gastrulation during post-implantation development. In recent years, stem cells have emerged as a powerful tool to study embryogenesis and gastrulation without the need for eggs, allowing for the generation of embryo-like structures known as synthetic embryos or embryoids. These in vitro models closely resemble early embryos in terms of morphology and gene expression and provide a faithful recapitulation of early pre- and post-implantation embryonic development. Synthetic embryos can be generated through a combinatorial culture of three blastocyst-derived stem cell types, such as embryonic stem cells, trophoblast stem cells, and extraembryonic endoderm cells, or totipotent-like stem cells alone. This review provides an overview of the progress and various approaches in studying in vitro embryogenesis and gastrulation in mice and humans using stem cells. Furthermore, recent findings and breakthroughs in synthetic embryos and gastruloids are outlined. Despite ethical considerations, synthetic embryo models hold promise for understanding mammalian (including humans) embryonic development and have potential implications for regenerative medicine and developmental research.
Collapse
Affiliation(s)
| | | | | | - Jeong Tae Do
- Department of Stem Cell Regenerative Biotechnology, Konkuk Institute of Technology, Konkuk University, Seoul 05029, Republic of Korea; (S.Y.O.); (S.B.N.); (Y.K.K.)
| |
Collapse
|
15
|
Hawdon A, Geoghegan ND, Mohenska M, Elsenhans A, Ferguson C, Polo JM, Parton RG, Zenker J. Apicobasal RNA asymmetries regulate cell fate in the early mouse embryo. Nat Commun 2023; 14:2909. [PMID: 37253716 DOI: 10.1038/s41467-023-38436-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 05/03/2023] [Indexed: 06/01/2023] Open
Abstract
The spatial sorting of RNA transcripts is fundamental for the refinement of gene expression to distinct subcellular regions. Although, in non-mammalian early embryogenesis, differential RNA localisation presages cell fate determination, in mammals it remains unclear. Here, we uncover apical-to-basal RNA asymmetries in outer blastomeres of 16-cell stage mouse preimplantation embryos. Basally directed RNA transport is facilitated in a microtubule- and lysosome-mediated manner. Yet, despite an increased accumulation of RNA transcripts in basal regions, higher translation activity occurs at the more dispersed apical RNA foci, demonstrated by spatial heterogeneities in RNA subtypes, RNA-organelle interactions and translation events. During the transition to the 32-cell stage, the biased inheritance of RNA transcripts, coupled with differential translation capacity, regulates cell fate allocation of trophectoderm and cells destined to form the pluripotent inner cell mass. Our study identifies a paradigm for the spatiotemporal regulation of post-transcriptional gene expression governing mammalian preimplantation embryogenesis and cell fate.
Collapse
Affiliation(s)
- Azelle Hawdon
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
| | - Niall D Geoghegan
- Walter and Eliza Hall Institute of Medical Research, Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Monika Mohenska
- Department of Anatomy and Developmental Biology, Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, VIC, 3800, Australia
- Adelaide Centre for Epigenetics, University of Adelaide, Adelaide, South Australia, Australia
- South Australian immunoGENomics Cancer Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Anja Elsenhans
- Department of Biology, University of Duisburg-Essen, Essen, Germany
| | - Charles Ferguson
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - Jose M Polo
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
- Department of Anatomy and Developmental Biology, Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, VIC, 3800, Australia
- Adelaide Centre for Epigenetics, University of Adelaide, Adelaide, South Australia, Australia
- South Australian immunoGENomics Cancer Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Robert G Parton
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
- Centre for Microscopy and Microanalysis, University of Queensland, Brisbane, Queensland, Australia
| | - Jennifer Zenker
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
16
|
Malik V, Zang R, Fuentes-Iglesias A, Huang X, Li D, Fidalgo M, Zhou H, Wang J. Comparative functional genomics identifies unique molecular features of EPSCs. Life Sci Alliance 2022; 5:5/11/e202201608. [PMID: 35961778 PMCID: PMC9378845 DOI: 10.26508/lsa.202201608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 12/03/2022] Open
Abstract
The authors provide a comprehensive resource on proteomics, transcriptomic, and epigenetic level details of EPSCs to shed light on possible molecular pathways regulating their expanded pluripotency potential. Extended pluripotent or expanded potential stem cells (EPSCs) possess superior developmental potential to embryonic stem cells (ESCs). However, the molecular underpinning of EPSC maintenance in vitro is not well defined. We comparatively studied transcriptome, chromatin accessibility, active histone modification marks, and relative proteomes of ESCs and the two well-established EPSC lines to probe the molecular foundation underlying EPSC developmental potential. Despite some overlapping transcriptomic and chromatin accessibility features, we defined sets of molecular signatures that distinguish EPSCs from ESCs in transcriptional and translational regulation as well as metabolic control. Interestingly, EPSCs show similar reliance on pluripotency factors Oct4, Sox2, and Nanog for self-renewal as ESCs. Our study provides a rich resource for dissecting the regulatory network that governs the developmental potency of EPSCs and exploring alternative strategies to capture totipotent stem cells in culture.
Collapse
Affiliation(s)
- Vikas Malik
- Department of Medicine, Columbia Center for Human Development, Columbia Stem Cell Initiative, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Ruge Zang
- Department of Medicine, Columbia Center for Human Development, Columbia Stem Cell Initiative, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Alejandro Fuentes-Iglesias
- Department of Physiology, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela (USC)-Health Research Institute (IDIS), Santiago de Compostela, Spain
| | - Xin Huang
- Department of Medicine, Columbia Center for Human Development, Columbia Stem Cell Initiative, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Dan Li
- Department of Medicine, Columbia Center for Human Development, Columbia Stem Cell Initiative, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Miguel Fidalgo
- Department of Physiology, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela (USC)-Health Research Institute (IDIS), Santiago de Compostela, Spain
| | - Hongwei Zhou
- Department of Medicine, Columbia Center for Human Development, Columbia Stem Cell Initiative, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Jianlong Wang
- Department of Medicine, Columbia Center for Human Development, Columbia Stem Cell Initiative, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|
17
|
Martins TF, Braga Magalhães AF, Verardo LL, Santos GC, Silva Fernandes AA, Gomes Vieira JI, Irano N, dos Santos DB. Functional analysis of litter size and number of teats in pigs: From GWAS to post-GWAS. Theriogenology 2022; 193:157-166. [DOI: 10.1016/j.theriogenology.2022.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 09/03/2022] [Accepted: 09/05/2022] [Indexed: 10/31/2022]
|
18
|
Kobayashi N, Okae H, Hiura H, Kubota N, Kobayashi EH, Shibata S, Oike A, Hori T, Kikutake C, Hamada H, Kaji H, Suyama M, Bortolin-Cavaillé ML, Cavaillé J, Arima T. The microRNA cluster C19MC confers differentiation potential into trophoblast lineages upon human pluripotent stem cells. Nat Commun 2022; 13:3071. [PMID: 35654791 PMCID: PMC9163035 DOI: 10.1038/s41467-022-30775-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 05/13/2022] [Indexed: 02/08/2023] Open
Abstract
The first cell fate commitment during mammalian development is the specification of the inner cell mass and trophectoderm. This irreversible cell fate commitment should be epigenetically regulated, but the precise mechanism is largely unknown in humans. Here, we show that naïve human embryonic stem (hES) cells can transdifferentiate into trophoblast stem (hTS) cells, but primed hES cells cannot. Our transcriptome and methylome analyses reveal that a primate-specific miRNA cluster on chromosome 19 (C19MC) is active in naïve hES cells but epigenetically silenced in primed ones. Moreover, genome and epigenome editing using CRISPR/Cas systems demonstrate that C19MC is essential for hTS cell maintenance and C19MC-reactivated primed hES cells can give rise to hTS cells. Thus, we reveal that C19MC activation confers differentiation potential into trophoblast lineages on hES cells. Our findings are fundamental to understanding the epigenetic regulation of human early development and pluripotency. Little is known about the epigenetic mechanisms of the first cell fate commitment in humans. Here, the authors show that activation of the miRNA cluster C19MC confers differentiation potential into trophoblast lineages on human embryonic stem cells.
Collapse
Affiliation(s)
- Norio Kobayashi
- Department of Informative Genetics, Environment and Genome Research Center, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Hiroaki Okae
- Department of Informative Genetics, Environment and Genome Research Center, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan.
| | - Hitoshi Hiura
- Department of Bioscience, Faculty of Life Science, Tokyo University of Agriculture, Tokyo, 156-8502, Japan
| | - Naoto Kubota
- Division of Bioinformatics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan
| | - Eri H Kobayashi
- Department of Informative Genetics, Environment and Genome Research Center, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Shun Shibata
- Department of Informative Genetics, Environment and Genome Research Center, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Akira Oike
- Department of Informative Genetics, Environment and Genome Research Center, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Takeshi Hori
- Department of Biomechanics, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, 101-0062, Japan
| | - Chie Kikutake
- Division of Bioinformatics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan
| | - Hirotaka Hamada
- Department of Informative Genetics, Environment and Genome Research Center, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Hirokazu Kaji
- Department of Biomechanics, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, 101-0062, Japan
| | - Mikita Suyama
- Division of Bioinformatics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan
| | - Marie-Line Bortolin-Cavaillé
- Molecular, Cellular and Developmental biology department (MCD), Centre de Biologie Intégrative (CBI), University of Toulouse, CNRS, UPS, 31062, Toulouse, France
| | - Jérôme Cavaillé
- Molecular, Cellular and Developmental biology department (MCD), Centre de Biologie Intégrative (CBI), University of Toulouse, CNRS, UPS, 31062, Toulouse, France
| | - Takahiro Arima
- Department of Informative Genetics, Environment and Genome Research Center, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan.
| |
Collapse
|
19
|
Kołat D, Kałuzińska Ż, Bednarek AK, Płuciennik E. Determination of WWOX Function in Modulating Cellular Pathways Activated by AP-2α and AP-2γ Transcription Factors in Bladder Cancer. Cells 2022; 11:cells11091382. [PMID: 35563688 PMCID: PMC9106060 DOI: 10.3390/cells11091382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/16/2022] [Accepted: 04/18/2022] [Indexed: 02/07/2023] Open
Abstract
Following the invention of high-throughput sequencing, cancer research focused on investigating disease-related alterations, often inadvertently omitting tumor heterogeneity. This research was intended to limit the impact of heterogeneity on conclusions related to WWOX/AP-2α/AP-2γ in bladder cancer which differently influenced carcinogenesis. The study examined the signaling pathways regulated by WWOX-dependent AP-2 targets in cell lines as biological replicates using high-throughput sequencing. RT-112, HT-1376 and CAL-29 cell lines were subjected to two stable lentiviral transductions. Following CAGE-seq and differential expression analysis, the most important genes were identified and functionally annotated. Western blot was performed to validate the selected observations. The role of genes in biological processes was assessed and networks were visualized. Ultimately, principal component analysis was performed. The studied genes were found to be implicated in MAPK, Wnt, Ras, PI3K-Akt or Rap1 signaling. Data from pathways were collected, explaining the differences/similarities between phenotypes. FGFR3, STAT6, EFNA1, GSK3B, PIK3CB and SOS1 were successfully validated at the protein level. Afterwards, a definitive network was built using 173 genes. Principal component analysis revealed that the various expression of these genes explains the phenotypes. In conclusion, the current study certified that the signaling pathways regulated by WWOX and AP-2α have more in common than that regulated by AP-2γ. This is because WWOX acts as an EMT inhibitor, AP-2γ as an EMT enhancer while AP-2α as a MET inducer. Therefore, the relevance of AP-2γ in targeted therapy is now more evident. Some of the differently regulated genes can find application in bladder cancer treatment.
Collapse
|
20
|
Dong C, Theunissen TW. Generating Trophoblast Stem Cells from Human Naïve Pluripotent Stem Cells. Methods Mol Biol 2022; 2416:91-104. [PMID: 34870832 PMCID: PMC9749490 DOI: 10.1007/978-1-0716-1908-7_7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The placenta is a transient organ that mediates the exchange of nutrients, gases, and waste products between the mother and the developing fetus and is indispensable for a healthy pregnancy. Epithelial cells in the placenta, which are termed trophoblasts, originate from the trophectoderm (TE) compartment of the blastocyst. The human trophoblast lineage consists of several distinct cell types, including the self-renewing and bipotent cytotrophoblast and the terminally differentiated extravillous trophoblast and syncytiotrophoblast. Despite the importance of trophoblast research, it has long been hindered by the scarce accessibility of primary tissue and the lack of a robust in vitro model system. Recently, a culture condition was developed that supports the isolation of bona fide human trophoblast stem cells (hTSCs) from human blastocysts or first-trimester placental tissues. In this chapter, we describe a protocol to derive bona fide hTSCs from naïve human pluripotent stem cells (hPSCs), thus presenting a robust methodology to generate hTSCs from a renewable and widely accessible source. This approach may be used to generate patient-specific hTSCs to study trophoblast-associated pathologies and serves as a powerful experimental platform to study the specification of human TE.
Collapse
Affiliation(s)
- Chen Dong
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA,Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Thorold W. Theunissen
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA,Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA,Corresponding Author: Thorold W. Theunissen, Department of Developmental Biology, Center of Regenerative Medicine, Washington University School of Medicine, 4515 McKinley Ave., St. Louis, MO 63110, USA, Tel: 314-273-3074,
| |
Collapse
|
21
|
Starks RR, Kaur H, Tuteja G. Mapping cis-regulatory elements in the midgestation mouse placenta. Sci Rep 2021; 11:22331. [PMID: 34785717 PMCID: PMC8595355 DOI: 10.1038/s41598-021-01664-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 11/01/2021] [Indexed: 12/22/2022] Open
Abstract
The placenta is a temporary organ that provides the developing fetus with nutrients, oxygen, and protection in utero. Defects in its development, which may be caused by misregulated gene expression, can lead to devastating outcomes for the mother and fetus. In mouse, placental defects during midgestation commonly lead to embryonic lethality. However, the regulatory mechanisms controlling expression of genes during this period have not been thoroughly investigated. Therefore, we generated and analyzed ChIP-seq data for multiple histone modifications known to mark cis-regulatory regions. We annotated active and poised promoters and enhancers, as well as regions generally associated with repressed gene expression. We found that poised promoters were associated with neuronal development genes, while active promoters were largely associated with housekeeping genes. Active and poised enhancers were associated with placental development genes, though only active enhancers were associated with genes that have placenta-specific expression. Motif analysis within active enhancers identified a large network of transcription factors, including those that have not been previously studied in the placenta and are candidates for future studies. The data generated and genomic regions annotated provide researchers with a foundation for future studies, aimed at understanding how specific genes in the midgestation mouse placenta are regulated.
Collapse
Affiliation(s)
- Rebekah R Starks
- Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, 50011, USA.,Bioinformatics and Computational Biology, Iowa State University, Ames, IA, 50011, USA
| | - Haninder Kaur
- Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, 50011, USA
| | - Geetu Tuteja
- Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, 50011, USA. .,Bioinformatics and Computational Biology, Iowa State University, Ames, IA, 50011, USA.
| |
Collapse
|
22
|
Akizawa H, Saito S, Kohri N, Furukawa E, Hayashi Y, Bai H, Nagano M, Yanagawa Y, Tsukahara H, Takahashi M, Kagawa S, Kawahara-Miki R, Kobayashi H, Kono T, Kawahara M. Deciphering two rounds of cell lineage segregations during bovine preimplantation development. FASEB J 2021; 35:e21904. [PMID: 34569650 DOI: 10.1096/fj.202002762rr] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 08/18/2021] [Accepted: 08/23/2021] [Indexed: 12/12/2022]
Abstract
Blastocyst formation gives rise to the inner cell mass (ICM) and trophectoderm (TE) and is followed by the differentiation of the epiblast (Epi) and primitive endoderm (PrE) within the ICM. Although these two-round cell lineage differentiations underpin proper embryogenesis in every mammal, their spatiotemporal dynamics are quite diverse among species. Here, molecular details of the blastocyst stage in cattle were dissected using an optimized in vitro culture method. Blastocyst embryos were placed on agarose gel filled with nutrient-rich media to expose embryos to both gaseous and liquid phases. Embryos derived from this "on-gel" culture were transferred to surrogate mothers on day (D) 10 after fertilization and successfully implanted. Immunofluorescent studies using on-gel-cultured embryos revealed that the proportion of TE cells expressing the pluripotent ICM marker, OCT4, which was beyond 80% on D8, was rapidly reduced after D9 and reached 0% on D9.5. This first lineage segregation process was temporally parallel with the second one, identified by the spatial separation of Epi cells expressing SOX2 and PrE cells expressing SOX17. RNA-seq comparison of TE cells from D8 in vitro fertilized embryos and D14 in vivo embryos revealed that besides drastic reduction of pluripotency-related genes, TE cells highly expressed Wnt, FGF, and VEGF signaling pathways-related genes to facilitate the functional maturation required for feto-maternal interaction. Quantitative PCR analysis of TE cells derived from on-gel culture further confirmed time-dependent increments in the expression of key TE markers. Altogether, the present study provides platforms to understand species-specific strategies for mammalian preimplantation development.
Collapse
Affiliation(s)
- Hiroki Akizawa
- Laboratory of Animal Genetics and Reproduction, Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Shun Saito
- Laboratory of Animal Genetics and Reproduction, Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Nanami Kohri
- Laboratory of Animal Genetics and Reproduction, Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Eri Furukawa
- Laboratory of Theriogenology, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Yoshihiro Hayashi
- Laboratory of Animal Genetics and Reproduction, Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Hanako Bai
- Laboratory of Animal Genetics and Reproduction, Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Masashi Nagano
- Laboratory of Animal Reproduction, Department of Animal Science, School of Veterinary Medicine, Kitasato University, Towada, Japan
| | - Yojiro Yanagawa
- Laboratory of Theriogenology, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Hayato Tsukahara
- Laboratory of Animal Genetics and Reproduction, Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Masashi Takahashi
- Global Station for Food, Land and Water Resources, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido, Japan
| | - Shinjiro Kagawa
- Livestock Research Institute, Aomori Prefectural Industrial Technology Research Center, Aomori, Japan
| | | | - Hisato Kobayashi
- Department of Embryology, Nara Medical University, Kashihara, Japan
| | - Tomohiro Kono
- Department of Bioscience, Tokyo University of Agriculture, Setagaya, Japan
| | - Manabu Kawahara
- Laboratory of Animal Genetics and Reproduction, Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| |
Collapse
|
23
|
Karasek C, Ashry M, Driscoll CS, Knott JG. A tale of two cell-fates: role of the Hippo signaling pathway and transcription factors in early lineage formation in mouse preimplantation embryos. Mol Hum Reprod 2021; 26:653-664. [PMID: 32647873 PMCID: PMC7473788 DOI: 10.1093/molehr/gaaa052] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/18/2020] [Indexed: 12/26/2022] Open
Abstract
In mammals, the first cell-fate decision occurs during preimplantation embryo development when the inner cell mass (ICM) and trophectoderm (TE) lineages are established. The ICM develops into the embryo proper, while the TE lineage forms the placenta. The underlying molecular mechanisms that govern lineage formation involve cell-to-cell interactions, cell polarization, cell signaling and transcriptional regulation. In this review, we will discuss the current understanding regarding the cellular and molecular events that regulate lineage formation in mouse preimplantation embryos with an emphasis on cell polarity and the Hippo signaling pathway. Moreover, we will provide an overview on some of the molecular tools that are used to manipulate the Hippo pathway and study cell-fate decisions in early embryos. Lastly, we will provide exciting future perspectives on transcriptional regulatory mechanisms that modulate the activity of the Hippo pathway in preimplantation embryos to ensure robust lineage segregation.
Collapse
Affiliation(s)
- Challis Karasek
- Developmental Epigenetics Laboratory, Department of Animal Science, Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, MI, USA
| | - Mohamed Ashry
- Developmental Epigenetics Laboratory, Department of Animal Science, Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, MI, USA
| | - Chad S Driscoll
- Developmental Epigenetics Laboratory, Department of Animal Science, Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, MI, USA
| | - Jason G Knott
- Developmental Epigenetics Laboratory, Department of Animal Science, Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
24
|
Guo G, Stirparo GG, Strawbridge SE, Spindlow D, Yang J, Clarke J, Dattani A, Yanagida A, Li MA, Myers S, Özel BN, Nichols J, Smith A. Human naive epiblast cells possess unrestricted lineage potential. Cell Stem Cell 2021; 28:1040-1056.e6. [PMID: 33831366 PMCID: PMC8189439 DOI: 10.1016/j.stem.2021.02.025] [Citation(s) in RCA: 186] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 09/17/2020] [Accepted: 02/23/2021] [Indexed: 01/04/2023]
Abstract
Classic embryological experiments have established that the early mouse embryo develops via sequential lineage bifurcations. The first segregated lineage is the trophectoderm, essential for blastocyst formation. Mouse naive epiblast and derivative embryonic stem cells are restricted accordingly from producing trophectoderm. Here we show, in contrast, that human naive embryonic stem cells readily make blastocyst trophectoderm and descendant trophoblast cell types. Trophectoderm was induced rapidly and efficiently by inhibition of ERK/mitogen-activated protein kinase (MAPK) and Nodal signaling. Transcriptome comparison with the human embryo substantiated direct formation of trophectoderm with subsequent differentiation into syncytiotrophoblast, cytotrophoblast, and downstream trophoblast stem cells. During pluripotency progression lineage potential switches from trophectoderm to amnion. Live-cell tracking revealed that epiblast cells in the human blastocyst are also able to produce trophectoderm. Thus, the paradigm of developmental specification coupled to lineage restriction does not apply to humans. Instead, epiblast plasticity and the potential for blastocyst regeneration are retained until implantation.
Collapse
Affiliation(s)
- Ge Guo
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Living Systems Institute, University of Exeter, Exeter EX4 4QD, UK.
| | - Giuliano Giuseppe Stirparo
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Living Systems Institute, University of Exeter, Exeter EX4 4QD, UK
| | - Stanley E Strawbridge
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK
| | - Daniel Spindlow
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK
| | - Jian Yang
- Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences, Guangzhou 510530, China
| | - James Clarke
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK
| | - Anish Dattani
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Living Systems Institute, University of Exeter, Exeter EX4 4QD, UK
| | - Ayaka Yanagida
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Living Systems Institute, University of Exeter, Exeter EX4 4QD, UK
| | - Meng Amy Li
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK
| | - Sam Myers
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK
| | - Buse Nurten Özel
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK
| | - Jennifer Nichols
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 1GA, UK.
| | - Austin Smith
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Department of Biochemistry, University of Cambridge, Cambridge CB2 1QR, UK; Living Systems Institute, University of Exeter, Exeter EX4 4QD, UK.
| |
Collapse
|
25
|
Alberio R, Kobayashi T, Surani MA. Conserved features of non-primate bilaminar disc embryos and the germline. Stem Cell Reports 2021; 16:1078-1092. [PMID: 33979595 PMCID: PMC8185373 DOI: 10.1016/j.stemcr.2021.03.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 12/12/2022] Open
Abstract
Post-implantation embryo development commences with a bilaminar disc in most mammals, including humans. Whereas access to early human embryos is limited and subject to greater ethical scrutiny, studies on non-primate embryos developing as bilaminar discs offer exceptional opportunities for advances in gastrulation, the germline, and the basis for evolutionary divergence applicable to human development. Here, we discuss the advantages of investigations in the pig embryo as an exemplar of development of a bilaminar disc embryo with relevance to early human development. Besides, the pig has the potential for the creation of humanized organs for xenotransplantation. Precise genetic engineering approaches, imaging, and single-cell analysis are cost effective and efficient, enabling research into some outstanding questions on human development and for developing authentic models of early human development with stem cells.
Collapse
Affiliation(s)
- Ramiro Alberio
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK.
| | - Toshihiro Kobayashi
- Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Okazaki, Aichi 444-8787, Japan; The Graduate University of Advanced Studies, Okazaki, Aichi 444-8787, Japan
| | - M Azim Surani
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK; Wellcome Trust/Medical Research Council Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK.
| |
Collapse
|
26
|
Fan T, Huang Y. Accessible chromatin reveals regulatory mechanisms underlying cell fate decisions during early embryogenesis. Sci Rep 2021; 11:7896. [PMID: 33846424 PMCID: PMC8042068 DOI: 10.1038/s41598-021-86919-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 03/22/2021] [Indexed: 02/01/2023] Open
Abstract
This study was conducted to investigate epigenetic landscape across multiple species and identify transcription factors (TFs) and their roles in controlling cell fate decision events during early embryogenesis. We made a comprehensively joint-research of chromatin accessibility of five species during embryogenesis by integration of ATAC-seq and RNA-seq datasets. Regulatory roles of candidate early embryonic TFs were investigated. Widespread accessible chromatin in early embryos overlapped with putative cis-regulatory sequences. Sets of cell-fate-determining TFs were identified. YOX1, a key cell cycle regulator, were found to homologous to clusters of TFs that are involved in neuron and epidermal cell-fate determination. Our research provides an intriguing insight into evolution of cell-fate decision during early embryogenesis among organisms.
Collapse
Affiliation(s)
- Tongqiang Fan
- grid.443483.c0000 0000 9152 7385State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an, Hangzhou, 311300 People’s Republic of China
| | - Youjun Huang
- grid.443483.c0000 0000 9152 7385State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an, Hangzhou, 311300 People’s Republic of China
| |
Collapse
|
27
|
Io S, Kabata M, Iemura Y, Semi K, Morone N, Minagawa A, Wang B, Okamoto I, Nakamura T, Kojima Y, Iwatani C, Tsuchiya H, Kaswandy B, Kondoh E, Kaneko S, Woltjen K, Saitou M, Yamamoto T, Mandai M, Takashima Y. Capturing human trophoblast development with naive pluripotent stem cells in vitro. Cell Stem Cell 2021; 28:1023-1039.e13. [PMID: 33831365 DOI: 10.1016/j.stem.2021.03.013] [Citation(s) in RCA: 161] [Impact Index Per Article: 53.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 02/05/2021] [Accepted: 03/15/2021] [Indexed: 01/06/2023]
Abstract
Trophoblasts are extraembryonic cells that are essential for maintaining pregnancy. Human trophoblasts arise from the morula as trophectoderm (TE), which, after implantation, differentiates into cytotrophoblasts (CTs), syncytiotrophoblasts (STs), and extravillous trophoblasts (EVTs), composing the placenta. Here we show that naïve, but not primed, human pluripotent stem cells (PSCs) recapitulate trophoblast development. Naive PSC-derived TE and CTs (nCTs) recreated human and monkey TE-to-CT transition. nCTs self-renewed as CT stem cells and had the characteristics of proliferating villous CTs and CTs in the cell column of the first trimester. Notably, although primed PSCs differentiated into trophoblast-like cells (BMP4, A83-01, and PD173074 [BAP]-treated primed PSCs [pBAPs]), pBAPs were distinct from nCTs and human placenta-derived CT stem cells, exhibiting properties consistent with the amnion. Our findings establish an authentic paradigm for human trophoblast development, demonstrating the invaluable properties of naive human PSCs. Our system provides a platform to study the molecular mechanisms underlying trophoblast development and related diseases.
Collapse
Affiliation(s)
- Shingo Io
- Department of Life Science Frontiers, CiRA, Kyoto University, Kyoto 606-8507, Japan; Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan; Japan Society for the Promotion of Science, Tokyo 102-0083, Japan
| | - Mio Kabata
- Department of Life Science Frontiers, CiRA, Kyoto University, Kyoto 606-8507, Japan
| | - Yoshiki Iemura
- Department of Life Science Frontiers, CiRA, Kyoto University, Kyoto 606-8507, Japan
| | - Katsunori Semi
- Department of Life Science Frontiers, CiRA, Kyoto University, Kyoto 606-8507, Japan
| | - Nobuhiro Morone
- MRC Toxicology Unit, University of Cambridge, Cambridge CB2 1QR, UK
| | - Atsutaka Minagawa
- Department of Cell Growth and Differentiation, CiRA, Kyoto University, Kyoto 606-8507, Japan
| | - Bo Wang
- Department of Cell Growth and Differentiation, CiRA, Kyoto University, Kyoto 606-8507, Japan
| | - Ikuhiro Okamoto
- Department of Anatomy and Cell Biology, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan; Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto 606-8501, Japan
| | - Tomonori Nakamura
- Department of Anatomy and Cell Biology, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan; Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto 606-8501, Japan; The HAKUBI Center for Advanced Research, Kyoto University, Kyoto 606-8501, Japan
| | - Yoji Kojima
- Department of Life Science Frontiers, CiRA, Kyoto University, Kyoto 606-8507, Japan; Department of Anatomy and Cell Biology, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan; Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto 606-8501, Japan
| | - Chizuru Iwatani
- Research Center for Animal Life Science, Shiga University of Medical Science, Shiga 520-2192, Japan
| | - Hideaki Tsuchiya
- Research Center for Animal Life Science, Shiga University of Medical Science, Shiga 520-2192, Japan
| | - Belinda Kaswandy
- Department of Life Science Frontiers, CiRA, Kyoto University, Kyoto 606-8507, Japan
| | - Eiji Kondoh
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Shin Kaneko
- Department of Cell Growth and Differentiation, CiRA, Kyoto University, Kyoto 606-8507, Japan
| | - Knut Woltjen
- Department of Life Science Frontiers, CiRA, Kyoto University, Kyoto 606-8507, Japan
| | - Mitinori Saitou
- Department of Life Science Frontiers, CiRA, Kyoto University, Kyoto 606-8507, Japan; Department of Anatomy and Cell Biology, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan; Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto 606-8501, Japan
| | - Takuya Yamamoto
- Department of Life Science Frontiers, CiRA, Kyoto University, Kyoto 606-8507, Japan; Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto 606-8501, Japan; AMED-CREST, AMED, Tokyo 100-0004, Japan; Medical Risk Avoidance Based on iPS Cells Team, RIKEN Center for Advanced Intelligence Projects (AIP), Kyoto 606-8507, Japan
| | - Masaki Mandai
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Yasuhiro Takashima
- Department of Life Science Frontiers, CiRA, Kyoto University, Kyoto 606-8507, Japan.
| |
Collapse
|
28
|
Histone demethylase JMJD2B/KDM4B regulates transcriptional program via distinctive epigenetic targets and protein interactors for the maintenance of trophoblast stem cells. Sci Rep 2021; 11:884. [PMID: 33441614 PMCID: PMC7806742 DOI: 10.1038/s41598-020-79601-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 11/23/2020] [Indexed: 12/25/2022] Open
Abstract
Trophoblast stem cell (TSC) is crucial to the formation of placenta in mammals. Histone demethylase JMJD2 (also known as KDM4) family proteins have been previously shown to support self-renewal and differentiation of stem cells. However, their roles in the context of the trophoblast lineage remain unclear. Here, we find that knockdown of Jmjd2b resulted in differentiation of TSCs, suggesting an indispensable role of JMJD2B/KDM4B in maintaining the stemness. Through the integration of transcriptome and ChIP-seq profiling data, we show that JMJD2B is associated with a loss of H3K36me3 in a subset of embryonic lineage genes which are marked by H3K9me3 for stable repression. By characterizing the JMJD2B binding motifs and other transcription factor binding datasets, we discover that JMJD2B forms a protein complex with AP-2 family transcription factor TFAP2C and histone demethylase LSD1. The JMJD2B-TFAP2C-LSD1 complex predominantly occupies active gene promoters, whereas the TFAP2C-LSD1 complex is located at putative enhancers, suggesting that these proteins mediate enhancer-promoter interaction for gene regulation. We conclude that JMJD2B is vital to the TSC transcriptional program and safeguards the trophoblast cell fate via distinctive protein interactors and epigenetic targets.
Collapse
|
29
|
Paul N, Kumaresan A, Das Gupta M, Nag P, Guvvala PR, Kuntareddi C, Sharma A, Selvaraju S, Datta TK. Transcriptomic Profiling of Buffalo Spermatozoa Reveals Dysregulation of Functionally Relevant mRNAs in Low-Fertile Bulls. Front Vet Sci 2021; 7:609518. [PMID: 33506000 PMCID: PMC7829312 DOI: 10.3389/fvets.2020.609518] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 11/13/2020] [Indexed: 12/12/2022] Open
Abstract
Although, it is known that spermatozoa harbor a variety of RNAs that may influence embryonic development, little is understood about sperm transcriptomic differences in relation to fertility, especially in buffaloes. In the present study, we compared the differences in sperm functional attributes and transcriptomic profile between high- and low-fertile buffalo bulls. Sperm membrane and acrosomal integrity were lower (P < 0.05), while protamine deficiency and lipid peroxidation were higher (P < 0.05) in low- compared to high-fertile bulls. Transcriptomic analysis using mRNA microarray technology detected a total of 51,282 transcripts in buffalo spermatozoa, of which 4,050 transcripts were differentially expressed, and 709 transcripts were found to be significantly dysregulated (P < 0.05 and fold change >1) between high- and low-fertile bulls. Majority of the dysregulated transcripts were related to binding activity, transcription, translation, and metabolic processes with primary localization in the cell nucleus, nucleoplasm, and in cytosol. Pathways related to MAPK signaling, ribosome pathway, and oxidative phosphorylation were dysregulated in low-fertile bull spermatozoa. Using bioinformatics analysis, we observed that several genes related to sperm functional attributes were significantly downregulated in low-fertile bull spermatozoa. Validation of the results of microarray analysis was carried out using real-time qPCR expression analysis of selected genes (YBX1, ORAI3, and TFAP2C). The relative expression of these genes followed the same trend in both the techniques. Collectively, this is the first study to report the transcriptomic profile of buffalo spermatozoa and to demonstrate the dysregulation of functionally relevant transcripts in low-fertile bull spermatozoa. The results of the present study open up new avenues for understanding the etiology for poor fertility in buffalo bulls and to identify fertility biomarkers.
Collapse
Affiliation(s)
- Nilendu Paul
- Theriogenology Laboratory, Veterinary Gynaecology and Obstetrics, Southern Regional Station of ICAR - National Dairy Research Institute, Bengaluru, India
| | - Arumugam Kumaresan
- Theriogenology Laboratory, Veterinary Gynaecology and Obstetrics, Southern Regional Station of ICAR - National Dairy Research Institute, Bengaluru, India
| | - Mohua Das Gupta
- Theriogenology Laboratory, Veterinary Gynaecology and Obstetrics, Southern Regional Station of ICAR - National Dairy Research Institute, Bengaluru, India
| | - Pradeep Nag
- Theriogenology Laboratory, Veterinary Gynaecology and Obstetrics, Southern Regional Station of ICAR - National Dairy Research Institute, Bengaluru, India
| | - Pushpa Rani Guvvala
- Reproductive Physiology Laboratory, ICAR - National Institute of Animal Nutrition and Physiology, Bengaluru, India
| | - Channareddi Kuntareddi
- Theriogenology Laboratory, Veterinary Gynaecology and Obstetrics, Southern Regional Station of ICAR - National Dairy Research Institute, Bengaluru, India
| | - Ankur Sharma
- Theriogenology Laboratory, Veterinary Gynaecology and Obstetrics, Southern Regional Station of ICAR - National Dairy Research Institute, Bengaluru, India
| | - Sellappan Selvaraju
- Reproductive Physiology Laboratory, ICAR - National Institute of Animal Nutrition and Physiology, Bengaluru, India
| | - Tirtha Kumar Datta
- Animal Genomics Laboratory, ICAR - National Dairy Research Institute, Karnal, India
| |
Collapse
|
30
|
Posfai E, Schell JP, Janiszewski A, Rovic I, Murray A, Bradshaw B, Yamakawa T, Pardon T, El Bakkali M, Talon I, De Geest N, Kumar P, To SK, Petropoulos S, Jurisicova A, Pasque V, Lanner F, Rossant J. Evaluating totipotency using criteria of increasing stringency. Nat Cell Biol 2021. [PMID: 33420491 DOI: 10.1101/2020.1103.1102.972893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2023]
Abstract
Totipotency is the ability of a single cell to give rise to all of the differentiated cell types that build the conceptus, yet how to capture this property in vitro remains incompletely understood. Defining totipotency relies on a variety of assays of variable stringency. Here, we describe criteria to define totipotency. We explain how distinct criteria of increasing stringency can be used to judge totipotency by evaluating candidate totipotent cell types in mice, including early blastomeres and expanded or extended pluripotent stem cells. Our data challenge the notion that expanded or extended pluripotent states harbour increased totipotent potential relative to conventional embryonic stem cells under in vitro and in vivo conditions.
Collapse
Affiliation(s)
- Eszter Posfai
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada.
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
| | - John Paul Schell
- Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
- Division of Obstetrics and Gynecology, Karolinska Universitetssjukhuset, Stockholm, Sweden
| | - Adrian Janiszewski
- Department of Development and Regeneration, Leuven Stem Cell Institute, KU Leuven, Leuven, Belgium
| | - Isidora Rovic
- Lunenfeld Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
| | - Alexander Murray
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Brian Bradshaw
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Tatsuya Yamakawa
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Tine Pardon
- Department of Development and Regeneration, Leuven Stem Cell Institute, KU Leuven, Leuven, Belgium
| | - Mouna El Bakkali
- Department of Development and Regeneration, Leuven Stem Cell Institute, KU Leuven, Leuven, Belgium
| | - Irene Talon
- Department of Development and Regeneration, Leuven Stem Cell Institute, KU Leuven, Leuven, Belgium
| | - Natalie De Geest
- Department of Development and Regeneration, Leuven Stem Cell Institute, KU Leuven, Leuven, Belgium
| | - Pankaj Kumar
- Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
- Division of Obstetrics and Gynecology, Karolinska Universitetssjukhuset, Stockholm, Sweden
| | - San Kit To
- Department of Development and Regeneration, Leuven Stem Cell Institute, KU Leuven, Leuven, Belgium
| | - Sophie Petropoulos
- Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
- Division of Obstetrics and Gynecology, Karolinska Universitetssjukhuset, Stockholm, Sweden
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Department of Medicine, University of Montreal, Montreal, Quebec, Canada
| | - Andrea Jurisicova
- Lunenfeld Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
- Departments of Obstetrics and Gynecology and Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Vincent Pasque
- Department of Development and Regeneration, Leuven Stem Cell Institute, KU Leuven, Leuven, Belgium.
| | - Fredrik Lanner
- Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden.
- Division of Obstetrics and Gynecology, Karolinska Universitetssjukhuset, Stockholm, Sweden.
- Ming Wai Lau Center for Reparative Medicine, Stockholm Node, Karolinska Institutet, Stockholm, Sweden.
| | - Janet Rossant
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada.
| |
Collapse
|
31
|
Kubota K, Iqbal K, Soares MJ. SATB1 promotion of trophoblast stem cell renewal through regulation of threonine dehydrogenase. Biochim Biophys Acta Gen Subj 2021; 1865:129757. [PMID: 33011339 PMCID: PMC7708522 DOI: 10.1016/j.bbagen.2020.129757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 09/08/2020] [Accepted: 09/28/2020] [Indexed: 11/23/2022]
Abstract
BACKGROUND Trophoblast stem (TS) cell renewal and differentiation are essential processes in placentation. Special AT-rich binding protein 1 (SATB1) is a key regulator of the TS cell stem state. In this study, we identified SATB1 downstream targets and investigated their actions. METHODS RNA-sequencing analysis was performed in Rcho-1 TS cells expressing control or Satb1 short hairpin RNAs (shRNAs) to identify candidate SATB1 targets. Differentially regulated transcripts were validated by reverse transcription-quantitative polymerase chain reaction. The role of a target of SATB1, L-threonine 3-dehydrogenase (TDH), in the regulation of trophoblast cell development was investigated using a loss-of-function approach. RESULTS Among the differentially regulated transcripts in SATB1 knockdown TS cells, were downregulated transcripts known to affect the TS cell stem state and upregulated transcripts characteristic of trophoblast cell differentiation. Tdh expression was exquisitely responsive to SATB1 dysregulation. Tdh expression was high in the TS cell stem state and decreased as TS cells differentiated. Treatment of Rcho-1 TS cells with a TDH inhibitor or a TDH specific shRNA inhibited cell proliferation and attenuated the expression of TS cell stem state-associated transcripts and elevated the expression of trophoblast cell differentiation-associated transcripts. TDH disruption decreased TS cell colony size, Cdx2 expression, and blastocyst outgrowth. CONCLUSIONS Our findings indicate that the actions of SATB1 on TS cell maintenance are mediated, at least in part, through the regulation and actions of TDH. GENERAL SIGNIFICANCE Regulatory pathways controlling TS cell dynamics dictate the functionality of the placenta, pregnancy outcomes, and postnatal health.
Collapse
Affiliation(s)
- Kaiyu Kubota
- Institute for Reproduction and Perinatal Research, University of Kansas Medical Center, Kansas City, Kansas 66160, United States of America; Department of Pathology & Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160, United States of America
| | - Khursheed Iqbal
- Institute for Reproduction and Perinatal Research, University of Kansas Medical Center, Kansas City, Kansas 66160, United States of America; Department of Pathology & Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160, United States of America
| | - Michael J Soares
- Institute for Reproduction and Perinatal Research, University of Kansas Medical Center, Kansas City, Kansas 66160, United States of America; Department of Pathology & Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160, United States of America; Department of Pediatrics, University of Kansas Medical Center, Kansas City, Kansas 66160, United States of America; Department of Obstetrics and Gynecology, University of Kansas Medical Center, Kansas City, Kansas 66160, United States of America; Center for Perinatal Research, Children's Mercy Research Institute, Children's Mercy, Kansas City, MO 64108, United States of America.
| |
Collapse
|
32
|
Posfai E, Schell JP, Janiszewski A, Rovic I, Murray A, Bradshaw B, Yamakawa T, Pardon T, El Bakkali M, Talon I, De Geest N, Kumar P, To SK, Petropoulos S, Jurisicova A, Pasque V, Lanner F, Rossant J. Evaluating totipotency using criteria of increasing stringency. Nat Cell Biol 2021; 23:49-60. [PMID: 33420491 DOI: 10.1038/s41556-020-00609-2] [Citation(s) in RCA: 104] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 11/17/2020] [Indexed: 01/28/2023]
Abstract
Totipotency is the ability of a single cell to give rise to all of the differentiated cell types that build the conceptus, yet how to capture this property in vitro remains incompletely understood. Defining totipotency relies on a variety of assays of variable stringency. Here, we describe criteria to define totipotency. We explain how distinct criteria of increasing stringency can be used to judge totipotency by evaluating candidate totipotent cell types in mice, including early blastomeres and expanded or extended pluripotent stem cells. Our data challenge the notion that expanded or extended pluripotent states harbour increased totipotent potential relative to conventional embryonic stem cells under in vitro and in vivo conditions.
Collapse
Affiliation(s)
- Eszter Posfai
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada.
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
| | - John Paul Schell
- Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
- Division of Obstetrics and Gynecology, Karolinska Universitetssjukhuset, Stockholm, Sweden
| | - Adrian Janiszewski
- Department of Development and Regeneration, Leuven Stem Cell Institute, KU Leuven, Leuven, Belgium
| | - Isidora Rovic
- Lunenfeld Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
| | - Alexander Murray
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Brian Bradshaw
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Tatsuya Yamakawa
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Tine Pardon
- Department of Development and Regeneration, Leuven Stem Cell Institute, KU Leuven, Leuven, Belgium
| | - Mouna El Bakkali
- Department of Development and Regeneration, Leuven Stem Cell Institute, KU Leuven, Leuven, Belgium
| | - Irene Talon
- Department of Development and Regeneration, Leuven Stem Cell Institute, KU Leuven, Leuven, Belgium
| | - Natalie De Geest
- Department of Development and Regeneration, Leuven Stem Cell Institute, KU Leuven, Leuven, Belgium
| | - Pankaj Kumar
- Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
- Division of Obstetrics and Gynecology, Karolinska Universitetssjukhuset, Stockholm, Sweden
| | - San Kit To
- Department of Development and Regeneration, Leuven Stem Cell Institute, KU Leuven, Leuven, Belgium
| | - Sophie Petropoulos
- Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
- Division of Obstetrics and Gynecology, Karolinska Universitetssjukhuset, Stockholm, Sweden
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Department of Medicine, University of Montreal, Montreal, Quebec, Canada
| | - Andrea Jurisicova
- Lunenfeld Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
- Departments of Obstetrics and Gynecology and Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Vincent Pasque
- Department of Development and Regeneration, Leuven Stem Cell Institute, KU Leuven, Leuven, Belgium.
| | - Fredrik Lanner
- Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden.
- Division of Obstetrics and Gynecology, Karolinska Universitetssjukhuset, Stockholm, Sweden.
- Ming Wai Lau Center for Reparative Medicine, Stockholm Node, Karolinska Institutet, Stockholm, Sweden.
| | - Janet Rossant
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada.
| |
Collapse
|
33
|
Shibata S, Kobayashi EH, Kobayashi N, Oike A, Okae H, Arima T. Unique features and emerging in vitro models of human placental development. Reprod Med Biol 2020; 19:301-313. [PMID: 33071632 PMCID: PMC7542016 DOI: 10.1002/rmb2.12347] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/21/2020] [Accepted: 08/21/2020] [Indexed: 12/13/2022] Open
Abstract
Background The placenta is an essential organ for the normal development of mammalian fetuses. Most of our knowledge on the molecular mechanisms of placental development has come from the analyses of mice, especially histopathological examination of knockout mice. Choriocarcinoma and immortalized cell lines have also been used for basic research on the human placenta. However, these cells are quite different from normal trophoblast cells. Methods In this review, we first provide an overview of mouse and human placental development with particular focus on the differences in the anatomy, transcription factor networks, and epigenetic characteristics between these species. Next, we discuss pregnancy complications associated with abnormal placentation. Finally, we introduce emerging in vitro models to study the human placenta, including human trophoblast stem (TS) cells, trophoblast and endometrium organoids, and artificial embryos. Main findings The placental structure and development differ greatly between humans and mice. The recent establishment of human TS cells and trophoblast and endometrial organoids enhances our understanding of the mechanisms underlying human placental development. Conclusion These in vitro models will greatly advance our understanding of human placental development and potentially contribute to the elucidation of the causes of infertility and other pregnancy complications.
Collapse
Affiliation(s)
- Shun Shibata
- Department of Informative Genetics Tohoku University Graduate School of Medicine Sendai Japan
| | - Eri H Kobayashi
- Department of Informative Genetics Tohoku University Graduate School of Medicine Sendai Japan
| | - Norio Kobayashi
- Department of Informative Genetics Tohoku University Graduate School of Medicine Sendai Japan
| | - Akira Oike
- Department of Informative Genetics Tohoku University Graduate School of Medicine Sendai Japan
| | - Hiroaki Okae
- Department of Informative Genetics Tohoku University Graduate School of Medicine Sendai Japan
| | - Takahiro Arima
- Department of Informative Genetics Tohoku University Graduate School of Medicine Sendai Japan
| |
Collapse
|
34
|
Ullah R, Naz A, Akram HS, Ullah Z, Tariq M, Mithani A, Faisal A. Transcriptomic analysis reveals differential gene expression, alternative splicing, and novel exons during mouse trophoblast stem cell differentiation. Stem Cell Res Ther 2020; 11:342. [PMID: 32762732 PMCID: PMC7409654 DOI: 10.1186/s13287-020-01848-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 07/15/2020] [Accepted: 07/22/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Differentiation of mouse trophoblast stem cells (TSCs) to trophoblast giant cells (TGCs) has been widely used as a model system to study placental development and function. While several differentially expressed genes, including regulators of TSC differentiation, have been identified, a comprehensive analysis of the global expression of genes and splice variants in the two cell types has not been reported. RESULTS Here, we report ~ 7800 differentially expressed genes in TGCs compared to TSCs which include regulators of the cell cycle, apoptosis, cytoskeleton, cell mobility, embryo implantation, metabolism, and various signaling pathways. We show that several mitotic proteins, including Aurora A kinase, were downregulated in TGCs and that the activity of Aurora A kinase is required for the maintenance of TSCs. We also identify hitherto undiscovered, cell-type specific alternative splicing events in 31 genes in the two cell types. Finally, we also report 19 novel exons in 12 genes which are expressed in both TSCs and TGCs. CONCLUSIONS Overall, our results uncover several potential regulators of TSC differentiation and TGC function, thereby providing a valuable resource for developmental and molecular biologists interested in the study of stem cell differentiation and embryonic development.
Collapse
Affiliation(s)
- Rahim Ullah
- Department of Biology, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, Pakistan
| | - Ambreen Naz
- Department of Biology, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, Pakistan
| | - Hafiza Sara Akram
- Department of Biology, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, Pakistan
| | - Zakir Ullah
- Virginia Commonwealth University, Richmond, USA
| | - Muhammad Tariq
- Department of Biology, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, Pakistan
| | - Aziz Mithani
- Department of Biology, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, Pakistan.
| | - Amir Faisal
- Department of Biology, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, Pakistan.
| |
Collapse
|
35
|
Persistent Human KIT Receptor Signaling Disposes Murine Placenta to Premature Differentiation Resulting in Severely Disrupted Placental Structure and Functionality. Int J Mol Sci 2020; 21:ijms21155503. [PMID: 32752102 PMCID: PMC7432075 DOI: 10.3390/ijms21155503] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 07/28/2020] [Accepted: 07/30/2020] [Indexed: 12/12/2022] Open
Abstract
Activating mutations in the human KIT receptor is known to drive severe hematopoietic disorders and tumor formation spanning various entities. The most common mutation is the substitution of aspartic acid at position 816 to valine (D816V), rendering the receptor constitutively active independent of ligand binding. As the role of the KIT receptor in placental signaling cascades is poorly understood, we analyzed the impact of KITD816V expression on placental development using a humanized mouse model. Placentas from KITD816V animals present with a grossly changed morphology, displaying a reduction in labyrinth and spongiotrophoblast layer and an increase in the Parietal Trophoblast Giant Cell (P-TGC) layer. Elevated differentiation to P-TGCs was accompanied with reduced differentiation to other Trophoblast Giant Cell (TGC) subtypes and by severe decrease in proliferation. The embryos display growth retardation and die in utero. KITD816V-trophoblast stem cells (TSC) differentiate much faster compared to wild type (WT) controls. In undifferentiated KITD816V-TSCs, levels of Phosphorylated Extracellular-signal Regulated Kinase (P-ERK) and Phosphorylated Protein Kinase B (P-AKT) are comparable to wildtype cultures differentiating for 3–6 days. Accordingly, P-TGC markers Placental Lactogen 1 (PL1) and Proliferin (PLF) are upregulated as well. The results reveal that KIT signaling orchestrates the fine-tuned differentiation of the placenta, with special emphasis on P-TGC differentiation. Appropriate control of KIT receptor action is therefore essential for placental development and nourishment of the embryo.
Collapse
|
36
|
Ming H, Sun J, Pasquariello R, Gatenby L, Herrick JR, Yuan Y, Pinto CR, Bondioli KR, Krisher RL, Jiang Z. The landscape of accessible chromatin in bovine oocytes and early embryos. Epigenetics 2020; 16:300-312. [PMID: 32663104 DOI: 10.1080/15592294.2020.1795602] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Chromatin reorganization governs the regulation of gene expression during preimplantation development. However, the landscape of chromatin dynamics in this period has not been explored in bovine. In this study, we constructed a genome-wide map of accessible chromatin in bovine oocytes and early embryos using an improved assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-seq) which revealed unique features of the accessible chromatin during bovine early embryo development. We found that chromatin accessibility is low in oocytes and 2-/4-cell embryos, followed by a significant increase in embryos during major embryonic genome activation (EGA), and peaked in elongating day 14 embryos. Genome-wide characteristics of open chromatin showed that ATAC-seq signals in both transcription start sites (TSS) and transcription end sites (TES) were strong. Additionally, the distal ATAC-seq peaks were enriched in repeat elements in a type-specific and stage-specific manner. We further unveiled a series of transcription factor (TF) motifs with distinct variation of enrichment from distal ATAC-seq peaks. By integrated analysis of chromatin accessibility with transcriptomes and DNA methylomes in bovine early embryos, we showed that promoter accessibility was positively correlated with gene expression, especially during major EGA, and was strongly correlated to DNA methylation and CpG density. Finally, we identified the critical chromatin signatures and TFs that differ between in vivo and in vitro derived blastocysts, which provides insights to the potential mechanisms leading to low quality of embryos produced in vitro. Together, this comprehensive analysis revealed critical features of chromatin landscape and epigenetic reprogramming during bovine preimplantation embryo development.
Collapse
Affiliation(s)
- Hao Ming
- School of Animal Sciences, AgCenter, Louisiana State University , Baton Rouge, LA, USA
| | - Jiangwen Sun
- Department of Computer Science, Old Dominion University , Norfolk, VA, USA
| | | | - Lauren Gatenby
- School of Animal Sciences, AgCenter, Louisiana State University , Baton Rouge, LA, USA
| | - Jason R Herrick
- Colorado Center for Reproductive Medicine , Lone Tree, CO, USA
| | - Ye Yuan
- Colorado Center for Reproductive Medicine , Lone Tree, CO, USA
| | - Carlos R Pinto
- Department of Theriogenology, School of Veterinary Medicine, Louisiana State University , Baton Rouge, LA, USA
| | - Kenneth R Bondioli
- School of Animal Sciences, AgCenter, Louisiana State University , Baton Rouge, LA, USA
| | | | - Zongliang Jiang
- School of Animal Sciences, AgCenter, Louisiana State University , Baton Rouge, LA, USA
| |
Collapse
|
37
|
Mariani L, Weinand K, Gisselbrecht SS, Bulyk ML. MEDEA: analysis of transcription factor binding motifs in accessible chromatin. Genome Res 2020; 30:736-748. [PMID: 32424069 PMCID: PMC7263192 DOI: 10.1101/gr.260877.120] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 04/10/2020] [Indexed: 12/15/2022]
Abstract
Deciphering the interplay between chromatin accessibility and transcription factor (TF) binding is fundamental to understanding transcriptional regulation, control of cellular states, and the establishment of new phenotypes. Recent genome-wide chromatin accessibility profiling studies have provided catalogs of putative open regions, where TFs can recognize their motifs and regulate gene expression programs. Here, we present motif enrichment in differential elements of accessibility (MEDEA), a computational tool that analyzes high-throughput chromatin accessibility genomic data to identify cell-type-specific accessible regions and lineage-specific motifs associated with TF binding therein. To benchmark MEDEA, we used a panel of reference cell lines profiled by ENCODE and curated by the ENCODE Project Consortium for the ENCODE-DREAM Challenge. By comparing results with RNA-seq data, ChIP-seq peaks, and DNase-seq footprints, we show that MEDEA improves the detection of motifs associated with known lineage specifiers. We then applied MEDEA to 610 ENCODE DNase-seq data sets, where it revealed significant motifs even when absolute enrichment was low and where it identified novel regulators, such as NRF1 in kidney development. Finally, we show that MEDEA performs well on both bulk and single-cell ATAC-seq data. MEDEA is publicly available as part of our Glossary-GENRE suite for motif enrichment analysis.
Collapse
Affiliation(s)
- Luca Mariani
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Kathryn Weinand
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA.,Bioinformatics and Integrative Genomics PhD Program, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Stephen S Gisselbrecht
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Martha L Bulyk
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA.,Bioinformatics and Integrative Genomics PhD Program, Harvard University, Cambridge, Massachusetts 02138, USA.,Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
38
|
Xiao L, Ma L, Wang Z, Yu Y, Lye SJ, Shan Y, Wei Y. Deciphering a distinct regulatory network of TEAD4, CDX2 and GATA3 in humans for trophoblast transition from embryonic stem cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118736. [PMID: 32389642 DOI: 10.1016/j.bbamcr.2020.118736] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 04/29/2020] [Accepted: 05/02/2020] [Indexed: 11/25/2022]
Abstract
The placenta is an essential organ for the fetus, but its regulatory mechanism for formation of functional trophoblast lineage remains elusive in humans. Although widely known in mice, TEAD4 and its downstream targets CDX2 and GATA3 have not been determined in human models. In this work, we used a human model of trophoblast transition from BAP (BMP4, A83-01 and PD173074)-treated human embryonic stem cells (hESCs) and performed multiple gain- and loss-of-function tests of TEAD4, CDX2 or GATA3 to study their roles during this process. Although hESCs with TEAD4 deletion maintain pluripotency, their trophoblast transition potentials are attenuated. This impaired trophoblast transition could be rescued by separately overexpressing TEAD4, CDX2 or GATA3. Furthermore, trophoblast transition from hESCs is also attenuated by knockout of CDX2 but remains unaffected with deletion of GATA3. However, CDX2-overexpressed hESCs maintain pluripotency, whereas overexpression of GATA3 in hESCs leads to spontaneous differentiation including trophoblast lineage. In brief, our findings using a human model of trophoblast transition from BAP-treated hESCs reveal transcription roles of TEAD4, CDX2 and GATA in humans that are different from those in mice. We hope that this evidence can aid in understanding the distinct transcriptional network regulating trophoblast development in humans.
Collapse
Affiliation(s)
- Lu Xiao
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Lishi Ma
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Zhijian Wang
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Yanhong Yu
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Stephen J Lye
- Research Centre for Women's and Infants' Health, Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, M5T 3H7, Canada; Department of Obstetrics & Gynecology, University of Toronto, Toronto M5G1L4, Canada; Department of Physiology, University of Toronto, Toronto M5G1L4, Canada
| | - Yongli Shan
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China.
| | - Yanxing Wei
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China; Research Centre for Women's and Infants' Health, Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, M5T 3H7, Canada.
| |
Collapse
|
39
|
Bauersachs S, Mermillod P, Almiñana C. The Oviductal Extracellular Vesicles' RNA Cargo Regulates the Bovine Embryonic Transcriptome. Int J Mol Sci 2020; 21:ijms21041303. [PMID: 32075098 PMCID: PMC7072903 DOI: 10.3390/ijms21041303] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/11/2020] [Accepted: 02/12/2020] [Indexed: 12/11/2022] Open
Abstract
Oviductal extracellular vesicles (oEVs) are emerging as key players in the gamete/embryo–oviduct interactions that contribute to successful pregnancy. Various positive effects of oEVs on gametes and early embryos have been found in vitro. To determine whether these effects are associated with changes of embryonic gene expression, the transcriptomes of embryos supplemented with bovine fresh (FeEVs) or frozen (FoEVs) oEVs during in vitro culture compared to controls without oEVs were analyzed by low-input RNA sequencing. Analysis of RNA-seq data revealed 221 differentially expressed genes (DEGs) between FoEV treatment and control, 67 DEGs for FeEV and FoEV treatments, and minor differences between FeEV treatment and control (28 DEGs). An integrative analysis of mRNAs and miRNAs contained in oEVs obtained in a previous study with embryonic mRNA alterations pointed to direct effects of oEV cargo on embryos (1) by increasing the concentration of delivered transcripts; (2) by translating delivered mRNAs to proteins that regulate embryonic gene expression; and (3) by oEV-derived miRNAs which downregulate embryonic mRNAs or modify gene expression in other ways. Our study provided the first high-throughput analysis of the embryonic transcriptome regulated by oEVs, increasing our knowledge on the impact of oEVs on the embryo and revealing the oEV RNA components that potentially regulate embryonic development.
Collapse
Affiliation(s)
- Stefan Bauersachs
- Genetics and Functional Genomics, VetSuisse Faculty Zurich, University of Zurich, 8315 Lindau (ZH), Switzerland;
| | - Pascal Mermillod
- UMR85 PRC, INRA, CNRS 7247, Université de Tours, IFCE, 37380 Nouzilly, France;
| | - Carmen Almiñana
- Genetics and Functional Genomics, VetSuisse Faculty Zurich, University of Zurich, 8315 Lindau (ZH), Switzerland;
- UMR85 PRC, INRA, CNRS 7247, Université de Tours, IFCE, 37380 Nouzilly, France;
- Correspondence:
| |
Collapse
|
40
|
Kaiser F, Kubaczka C, Graf M, Langer N, Langkabel J, Arévalo L, Schorle H. Choice of factors and medium impinge on success of ESC to TSC conversion. Placenta 2019; 90:128-137. [PMID: 32056544 DOI: 10.1016/j.placenta.2019.12.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/18/2019] [Accepted: 12/20/2019] [Indexed: 11/16/2022]
Abstract
INTRODUCTION The first lineage separation in mammalian development occurs when totipotent cells of the zygote give rise to the inner cell mass and the trophectoderm. The lineages are strictly separated by an epigenetic barrier. In vitro derivatives of these lineages embryonic stem cells (ESC) and trophoblast stem cells (TSC) are used to study the requirements needed to overcome the barrier in ESC to TSC conversion approaches. METHODS Different combinations of TSC transcription factors were induced in ESC for three days. Cells were kept in TS medium with fetal bovine serum (FBS) or the chemically defined TX medium. Obtained cells were analysed for OCT4 levels, TSC surface marker levels, expression of TSC markers and methylation status of Elf5, Oct4 and Nanog promoters. Further, long-term culture stability and in vitro and in vivo differentiation was tested. RESULTS Overexpression of Gata3, Eomes, Tfap2c, Ets2 and Cdx2 in ESC resulted in induction of TSC fate. Overexpression of Cdx2 or four factors (Gata3, Eomes, Tfap2c and Ets2) resulted in complete conversion only when cells were cultured in TX medium. The obtained induced TSC (iTSC) display characteristics of bona fide TSC in terms of marker expression and promoter methylation patterns. The generated converted cells were shown to display self-renewal and to be capable to differentiate into TSC derivatives in vitro and in vivo. CONCLUSION Gata3, Eomes, Tfap2c, Ets2 and Cdx2 overexpression in ESC resulted in stable iTSC fate independent of culture conditions. For four factors or Cdx2 alone, TX medium is required for complete TSC conversion.
Collapse
Affiliation(s)
- Franziska Kaiser
- Institute of Pathology, Department of Developmental Pathology, University Medical School, Bonn, Germany
| | - Caroline Kubaczka
- Institute of Pathology, Department of Developmental Pathology, University Medical School, Bonn, Germany
| | - Monika Graf
- Institute of Pathology, Department of Developmental Pathology, University Medical School, Bonn, Germany
| | - Nina Langer
- Institute of Pathology, Department of Developmental Pathology, University Medical School, Bonn, Germany
| | - Jan Langkabel
- Institute of Pathology, Department of Developmental Pathology, University Medical School, Bonn, Germany
| | - Lena Arévalo
- Institute of Pathology, Department of Developmental Pathology, University Medical School, Bonn, Germany
| | - Hubert Schorle
- Institute of Pathology, Department of Developmental Pathology, University Medical School, Bonn, Germany.
| |
Collapse
|
41
|
Dong C, Fischer LA, Theunissen TW. Recent insights into the naïve state of human pluripotency and its applications. Exp Cell Res 2019; 385:111645. [PMID: 31585117 DOI: 10.1016/j.yexcr.2019.111645] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/12/2019] [Accepted: 09/21/2019] [Indexed: 01/06/2023]
Abstract
The past decade has seen significant interest in the isolation of pluripotent stem cells corresponding to various stages of mammalian embryonic development. Two distinct and well-defined pluripotent states can be derived from mouse embryos: "naïve" pluripotent cells with properties of pre-implantation epiblast, and "primed" pluripotent cells, resembling post-implantation epiblast. Prompted by the successful interconversion between these two stem cell states in the mouse system, several groups have devised strategies for inducing a naïve state of pluripotency in human pluripotent stem cells. Here, we review recent insights into the naïve state of human pluripotency, focusing on two methods that confer defining transcriptomic and epigenomic signatures of the pre-implantation embryo. The isolation of naïve human pluripotent stem cells offers a window into early developmental mechanisms that cannot be adequately modeled in primed cells, such as X chromosome reactivation, metabolic reprogramming, and the regulation of hominid-specific transposable elements. We outline key unresolved questions regarding naïve human pluripotency, including its extrinsic and intrinsic control mechanisms, potential for embryonic and extraembryonic differentiation, and general utility as a model system for human development and disease.
Collapse
Affiliation(s)
- Chen Dong
- Department of Developmental Biology and Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Laura A Fischer
- Department of Developmental Biology and Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Thorold W Theunissen
- Department of Developmental Biology and Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
42
|
Quan X, Zhao M, Yang X, Zhu Y, Tian X. AP2γ mediated downregulation of lncRNA LINC00511 as a ceRNA suppresses trophoblast invasion by regulating miR-29b-3p/Cyr61 axis. Biomed Pharmacother 2019; 120:109269. [PMID: 31542614 DOI: 10.1016/j.biopha.2019.109269] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/17/2019] [Accepted: 07/24/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Long noncoding RNA LINC00511 has been identified to be aberrant expression and may as a tumor oncogene in various carcinomas. However, the potential role of LINC00511 in the onset of Preeclampsia (PE) pathogenesis remains unexplored. METHODS Placental tissues from patients with PE were collected to detect expression levels of LINC00511 by qRT-PCR. Human HTR-8/SVneo trophoblast cell line was cultured, CCK-8 assay, wound healing assay and transwell assay were performed to determine the regulation of trophoblast biological function by LINC00511. Bioinformatics analysis, chromatin immunoprecipitation (ChIP), luciferases reporter assay were performed to verify the regulatory mechanism of LINC00511. RESULTS LINC00511 was aberrantly down-regulated in placental tissues of PE patients. Overexpression of LINC00511 promoted trophoblast cell proliferation, migration and invasion. The transcription factor AP2γ directly binds to the promoter region of LINC00511 to activate transcription. In addition, LINC00511 was enriched in cytoplasm and functioned as a molecular spong for miR-29b-3p, antagonizing its ability to repress Cyr61 protein translation. CONCLUSION This study demonstrated that AP2γ mediated downregulation of LINC00511 suppresses trophoblast invasion by regulating miR-29b-3p/ Cyr61 axis.
Collapse
Affiliation(s)
- Xiaozhen Quan
- Department of Reproductive Center, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang 441021, China
| | - Meng Zhao
- Department of Reproductive Center, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang 441021, China
| | - Xuezhou Yang
- Department of Reproductive Center, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang 441021, China
| | - Yan Zhu
- Department of Obstetrics and Gynecology, Xiangyang Central Hospital, Affiliated Hospital Of Hubei University of Arts and Science, Xiangyang 441021, China.
| | - Xiaolong Tian
- Department of Reproductive Center, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang 441021, China.
| |
Collapse
|
43
|
Hemberger M, Hanna CW, Dean W. Mechanisms of early placental development in mouse and humans. Nat Rev Genet 2019; 21:27-43. [PMID: 31534202 DOI: 10.1038/s41576-019-0169-4] [Citation(s) in RCA: 249] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2019] [Indexed: 02/08/2023]
Abstract
The importance of the placenta in supporting mammalian development has long been recognized, but our knowledge of the molecular, genetic and epigenetic requirements that underpin normal placentation has remained remarkably under-appreciated. Both the in vivo mouse model and in vitro-derived murine trophoblast stem cells have been invaluable research tools for gaining insights into these aspects of placental development and function, with recent studies starting to reshape our view of how a unique epigenetic environment contributes to trophoblast differentiation and placenta formation. These advances, together with recent successes in deriving human trophoblast stem cells, open up new and exciting prospects in basic and clinical settings that will help deepen our understanding of placental development and associated disorders of pregnancy.
Collapse
Affiliation(s)
- Myriam Hemberger
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Canada. .,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada. .,Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, Canada. .,Epigenetics Programme, The Babraham Institute, Babraham Research Campus, Cambridge, UK. .,Centre for Trophoblast Research, University of Cambridge, Cambridge, UK.
| | - Courtney W Hanna
- Epigenetics Programme, The Babraham Institute, Babraham Research Campus, Cambridge, UK.,Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| | - Wendy Dean
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Canada. .,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada. .,Epigenetics Programme, The Babraham Institute, Babraham Research Campus, Cambridge, UK. .,Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, Calgary, Canada.
| |
Collapse
|
44
|
Sanz G, Daniel N, Aubrière MC, Archilla C, Jouneau L, Jaszczyszyn Y, Duranthon V, Chavatte-Palmer P, Jouneau A. Differentiation of derived rabbit trophoblast stem cells under fluid shear stress to mimic the trophoblastic barrier. Biochim Biophys Acta Gen Subj 2019; 1863:1608-1618. [PMID: 31278960 DOI: 10.1016/j.bbagen.2019.07.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/18/2019] [Accepted: 07/02/2019] [Indexed: 01/05/2023]
Abstract
BACKGROUND The placenta controls exchanges between the mother and the fetus and therefore fetal development and growth. The maternal environment can lead to disturbance of placental functions, with consequences on the health of the offspring. Since the rabbit placenta is very close to that of humans, rabbit models can provide biomedical data to study human placental function. Yet, to limit the use of animal experiments and to investigate the mechanistic aspects of placental function, we developed a new cell culture model in which rabbit trophoblast cells are differentiated from rabbit trophoblast stem cells. METHODS Rabbit trophoblast stems cells were derived from blastocysts and differentiated onto a collagen gel and in the presence of a flow of culture medium to mimic maternal blood flow. Transcriptome analysis was performed on the stem and differentiated cells. RESULTS Our culture model allows the differentiation of trophoblast stem cells. In particular, the fluid shear stress enhances microvilli formation on the differentiated cell surface, lipid droplets formation and fusion of cytotrophoblasts into syncytiotrophoblasts. In addition, the transcriptome analysis confirms the early trophoblast identity of the derived stem cells and reveals upregulation of signaling pathways involved in trophoblast differentiation. CONCLUSION Thereby, the culture model allows mimicking the in vivo conditions in which maternal blood flow exerts a shear stress on trophoblast cells that influences their phenotype. GENERAL SIGNIFICANCE Our culture model can be used to study the differentiation of trophoblast stem cells into cytotrophoblasts and syncytiotrophoblasts, as well as the trophoblast function in physiological and pathological conditions.
Collapse
Affiliation(s)
- Guenhaël Sanz
- UMR BDR, INRA, ENVA, Université Paris-Saclay, 78350 Jouy-en-Josas, France.
| | - Nathalie Daniel
- UMR BDR, INRA, ENVA, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | | | - Catherine Archilla
- UMR BDR, INRA, ENVA, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Luc Jouneau
- UMR BDR, INRA, ENVA, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Yan Jaszczyszyn
- Plateforme de Séquençage I2BC, CNRS, UMR9198, 91198 Gif-sur-Yvette, France
| | | | | | - Alice Jouneau
- UMR BDR, INRA, ENVA, Université Paris-Saclay, 78350 Jouy-en-Josas, France.
| |
Collapse
|
45
|
Vogtmann R, Kühnel E, Dicke N, Verkaik-Schakel RN, Plösch T, Schorle H, Stojanovska V, Herse F, Köninger A, Kimmig R, Winterhager E, Gellhaus A. Human sFLT1 Leads to Severe Changes in Placental Differentiation and Vascularization in a Transgenic hsFLT1/rtTA FGR Mouse Model. Front Endocrinol (Lausanne) 2019; 10:165. [PMID: 30949132 PMCID: PMC6437783 DOI: 10.3389/fendo.2019.00165] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 02/27/2019] [Indexed: 12/24/2022] Open
Abstract
The anti-angiogenic soluble fms-like tyrosine kinase 1 (sFLT1) is one of the candidates in the progression of preeclampsia, often associated with fetal growth restriction (FGR). Therapeutic agents against preeclampsia with/without FGR, as well as adequate transgenic sFLT1 mouse models for testing such agents, are still missing. Much is known about sFLT1-mediated endothelial dysfunction in several tissues; however, the influence of sFLT1 on placental and fetal development is currently unknown. We hypothesize that sFLT1 is involved in the progression of FGR by influencing placental differentiation and vascularization and is a prime candidate for interventional strategies. Therefore, we generated transgenic inducible human sFLT1/reverse tetracycline-controlled transactivator (hsFLT1/rtTA) mice, in which hsFLT1 is ubiquitously overexpressed during pregnancy in dams and according to the genetics in hsFLT1/rtTA homozygous and heterozygous fetuses. Induction of hsFLT1 led to elevated hsFLT1 levels in the serum of dams and on mRNA level in all placentas and hetero-/homozygous fetuses, resulting in FGR in all fetuses at term. The strongest effects in respect to FGR were observed in the hsFLT1/rtTA homozygous fetuses, which exhibited the highest hsFLT1 levels. Only fetal hsFLT1 expression led to impaired placental morphology characterized by reduced placental efficiency, enlarged maternal sinusoids, reduced fetal capillaries, and impaired labyrinthine differentiation, associated with increased apoptosis. Besides impaired placental vascularization, the expression of several transporter systems, such as glucose transporter 1 and 3 (Glut-1; Glut-3); amino acid transporters, solute carrier family 38, member one and two (Slc38a1; Slc38a2); and most severely the fatty acid translocase Cd36 and fatty acid binding protein 3 (Fabp3) was reduced upon hsFLT1 expression, associated with an accumulation of phospholipids in the maternal serum. Moreover, the Vegf pathway showed alterations, resulting in reduced Vegf, Vegfb, and Plgf protein levels and increased Bad and Caspase 9 mRNA levels. We suggest that hsFLT1 exerts an inhibitory influence on placental vascularization by reducing Vegf signaling, which leads to apoptosis in fetal vessels, impairing placental differentiation, and the nutrient exchange function of the labyrinth. These effects were more pronounced when both the dam and the fetus expressed hsFLT1 and ultimately result in FGR and resemble the preeclamptic phenotype in humans.
Collapse
Affiliation(s)
- Rebekka Vogtmann
- Department of Gynecology and Obstetrics, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Elisabeth Kühnel
- Department of Gynecology and Obstetrics, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Nikolai Dicke
- Department of Developmental Pathology, Institute of Pathology, University Medical School, Bonn, Germany
| | - Rikst Nynke Verkaik-Schakel
- Department of Obstetrics and Gynecology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Torsten Plösch
- Department of Obstetrics and Gynecology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Hubert Schorle
- Department of Developmental Pathology, Institute of Pathology, University Medical School, Bonn, Germany
| | - Violeta Stojanovska
- Department of Obstetrics and Gynecology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Florian Herse
- Experimental and Clinical Research Center, Charité Medical Faculty, and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Angela Köninger
- Department of Gynecology and Obstetrics, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Rainer Kimmig
- Department of Gynecology and Obstetrics, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Elke Winterhager
- EM Unit, Imaging Center Essen, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Alexandra Gellhaus
- Department of Gynecology and Obstetrics, University Hospital Essen, University Duisburg-Essen, Essen, Germany
- *Correspondence: Alexandra Gellhaus
| |
Collapse
|
46
|
Abstract
Establishing the different lineages of the early mammalian embryo takes place over several days and several rounds of cell divisions from the fertilized egg. The resulting blastocyst contains the pluripotent cells of the epiblast, from which embryonic stem cells can be derived, as well as the extraembryonic lineages required for a mammalian embryo to survive in the uterine environment. The dynamics of the cellular and genetic interactions controlling the initiation and maintenance of these lineages in the mouse embryo are increasingly well understood through application of the tools of single-cell genomics, gene editing, and in vivo imaging. Exploring the similarities and differences between mouse and human development will be essential for translation of these findings into new insights into human biology, derivation of stem cells, and improvements in fertility treatments.
Collapse
Affiliation(s)
- Janet Rossant
- Program in Stem Cell and Developmental Biology, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
47
|
Hong YJ, Hong K, Byun S, Choi HW, Do JT. Reprogramming of Extraembryonic Trophoblast Stem Cells into Embryonic Pluripotent State by Fusion with Embryonic Stem Cells. Stem Cells Dev 2018; 27:1350-1359. [PMID: 29993328 DOI: 10.1089/scd.2018.0034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Pluripotential reprogramming has been examined using various technologies, including nuclear transfer, cell fusion, and direct reprogramming. Many studies have used differentiated cells for reprogramming experiments, and nearly all type of somatic cells can acquire pluripotency. However, within the embryo, other cells types are present in addition to somatic cells. The blastocyst stage embryo consists of two main types of cells, inner cell mass and trophectoderm (TE). TE cells are the first differentiated form of the totipotent zygote and differ from epiblast cells. Thus, we examined whether extraembryonic cells can be reprogrammed using a cell-cell fusion method. Trophoblast stem cells (TSCs), which can be obtained from the TE, are known to acquire pluripotency by transcription factor Oct4 overexpression or somatic cell nuclear transfer. In this study, we demonstrated that TSCs can acquire pluripotent properties by cell fusion with embryonic stem cells (ESCs). TSC-ESC hybrids reactivated Oct4-GFP and displayed self-renewal properties. They expressed the pluripotency markers Oct4 and Nanog, whereas the expression of Cdx2 and Tead4, trophoblast lineage markers, was diminished. Moreover, these cells developed into three germ layers similarly to other pluripotent stem cells. RNA-seq analysis showed that global gene expression patterns of TSC-ESC hybrids are more similar to ESCs than TSCs. Thus, we demonstrated that TSCs successfully complete reprogramming and acquire pluripotency by cell fusion-induced reprogramming.
Collapse
Affiliation(s)
- Yean Ju Hong
- 1 Department of Stem Cell and Regenerative Biotechnology, KU Institute of Science and Technology, Konkuk University , Seoul, Republic of Korea
| | - Kwonho Hong
- 1 Department of Stem Cell and Regenerative Biotechnology, KU Institute of Science and Technology, Konkuk University , Seoul, Republic of Korea
| | - Seki Byun
- 1 Department of Stem Cell and Regenerative Biotechnology, KU Institute of Science and Technology, Konkuk University , Seoul, Republic of Korea
| | - Hyun Woo Choi
- 2 Department of Animal Science, Chonbuk National University , Jeonju-si, Republic of Korea
| | - Jeong Tae Do
- 1 Department of Stem Cell and Regenerative Biotechnology, KU Institute of Science and Technology, Konkuk University , Seoul, Republic of Korea
| |
Collapse
|
48
|
Pfeffer PL. Building Principles for Constructing a Mammalian Blastocyst Embryo. BIOLOGY 2018; 7:biology7030041. [PMID: 30041494 PMCID: PMC6164496 DOI: 10.3390/biology7030041] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 07/19/2018] [Accepted: 07/20/2018] [Indexed: 12/16/2022]
Abstract
The self-organisation of a fertilised egg to form a blastocyst structure, which consists of three distinct cell lineages (trophoblast, epiblast and hypoblast) arranged around an off-centre cavity, is unique to mammals. While the starting point (the zygote) and endpoint (the blastocyst) are similar in all mammals, the intervening events have diverged. This review examines and compares the descriptive and functional data surrounding embryonic gene activation, symmetry-breaking, first and second lineage establishment, and fate commitment in a wide range of mammalian orders. The exquisite detail known from mouse embryogenesis, embryonic stem cell studies and the wealth of recent single cell transcriptomic experiments are used to highlight the building principles underlying early mammalian embryonic development.
Collapse
Affiliation(s)
- Peter L Pfeffer
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand.
| |
Collapse
|
49
|
TFAP2C regulates transcription in human naive pluripotency by opening enhancers. Nat Cell Biol 2018; 20:553-564. [PMID: 29695788 PMCID: PMC5926822 DOI: 10.1038/s41556-018-0089-0] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 03/20/2018] [Indexed: 02/08/2023]
Abstract
Naïve and primed pluripotent hESCs bear transcriptional similarity to pre- and post-implantation epiblast and thus constitute a developmental model for understanding the earliest pluripotent stages in human embryo development. To identify new transcription factors that differentially regulate the unique pluripotent stages, we mapped open chromatin using ATAC-Seq and found enrichment of the AP2 transcription factor binding motif at naïve-specific open chromatin. We determined that the AP2 family member TFAP2C is upregulated during primed to naïve reversion and becomes widespread at naïve-specific enhancers. TFAP2C functions to maintain pluripotency and repress neuroectodermal differentiation during the transition from primed to naïve by facilitating the opening of enhancers proximal to pluripotency factors. Additionally, we identify a previously undiscovered naïve-specific POU5F1 (OCT4) enhancer enriched for TFAP2C binding. Taken together, TFAP2C establishes and maintains naïve human pluripotency and regulates OCT4 expression by mechanisms that are distinct from mouse.
Collapse
|
50
|
Abstract
Tissue-specific transcription factors primarily act to define the phenotype of the cell. The power of a single transcription factor to alter cell fate is often minimal, as seen in gain-of-function analyses, but when multiple transcription factors cooperate synergistically it potentiates their ability to induce changes in cell fate. By contrast, transcription factor function is often dispensable in the maintenance of cell phenotype, as is evident in loss-of-function assays. Why does this phenomenon, commonly known as redundancy, occur? Here, I discuss the role that transcription factor networks play in collaboratively regulating stem cell fate and differentiation by providing multiple explanations for their functional redundancy.
Collapse
Affiliation(s)
- Hitoshi Niwa
- Department of Pluripotent Stem Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan
| |
Collapse
|