1
|
Zhou YQ, Cheng XX, He S, Liu SQ, Li YQ, Wei PP, Luo CL, Bei JX. A positive feedback loop between PLD1 and NF-κB signaling promotes tumorigenesis of nasopharyngeal carcinoma. J Genet Genomics 2024; 51:997-1006. [PMID: 38885836 DOI: 10.1016/j.jgg.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 06/20/2024]
Abstract
Phospholipase D (PLD) lipid-signaling enzyme superfamily has been widely implicated in various human malignancies, but its role and underlying mechanism remain unclear in nasopharyngeal carcinoma (NPC). Here, we analyze the expressions of 6 PLD family members between 87 NPC and 10 control samples through transcriptome analysis. Our findings reveal a notable upregulation of PLD1 in both NPC tumors and cell lines, correlating with worse disease-free and overall survival in NPC patients. Functional assays further elucidate the oncogenic role of PLD1, demonstrating its pivotal promotion of critical tumorigenic processes such as cell proliferation and migration in vitro, as well as tumor growth in vivo. Notably, our study uncovers a positive feedback loop between PLD1 and the NF-κB signaling pathway to render NPC progression. Specifically, PLD1 enhances NF-κB activity by facilitating the phosphorylation and nuclear translocation of RELA, which in turn binds to the promoter of PLD1, augmenting its expression. Moreover, RELA overexpression markedly rescues the inhibitory effects in PLD1-depleted NPC cells. Importantly, the application of the PLD1 inhibitor, VU0155069, substantially inhibits NPC tumorigenesis in a patient-derived xenograft model. Together, our findings identify PLD1/NF-κB signaling as a positive feedback loop with promising therapeutic and prognostic potential in NPC.
Collapse
Affiliation(s)
- Ya-Qing Zhou
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, P. R. China
| | - Xi-Xi Cheng
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, P. R. China
| | - Shuai He
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, P. R. China
| | - Shu-Qiang Liu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, P. R. China
| | - Yi-Qi Li
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, P. R. China
| | - Pan-Pan Wei
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, P. R. China
| | - Chun-Ling Luo
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, P. R. China.
| | - Jin-Xin Bei
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, P. R. China; Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou 510060, P. R. China; Department of Medical Oncology, National Cancer Centre of Singapore, Singapore.
| |
Collapse
|
2
|
Cao Y, Sun J, Wang X, Zhang X, Tian H, Huang L, Huang Z, Zhang Y, Zhang J, Li L, Zhou S. The double-edged nature of nicotine: toxicities and therapeutic potentials. Front Pharmacol 2024; 15:1427314. [PMID: 39206262 PMCID: PMC11350241 DOI: 10.3389/fphar.2024.1427314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024] Open
Abstract
Nicotine is the primary addictive component of cigarette smoke and is associated with various smoking-related diseases. However, recent research has revealed its broader cognitive-enhancing and anti-inflammatory properties, suggesting its potential therapeutic applications in several conditions. This review aims to examine the double-edged nature of nicotine, encompassing its positive and negative effects. We provide a concise overview of the physiochemical properties and pharmacology of nicotine, including insights into nicotine receptors. Therefore, the article is divided into two main sections: toxicity and therapeutic potential. We comprehensively explored nicotine-related diseases, focusing on specific signaling pathways and the underlying mechanisms that contribute to its effects. Furthermore, we addressed the current research challenges and future development perspectives. This review aims to inspire future researchers to explore the full medical potential of nicotine, which holds significant promise for the clinical management of specific diseases.
Collapse
Affiliation(s)
- Yun Cao
- Key Laboratory of Combustion & Pyrolysis Study of CNTC, China Tobacco Anhui Industrial Co., Ltd., Hefei, China
| | - Jiali Sun
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen, China
| | - Xiaofeng Wang
- Key Laboratory of Combustion & Pyrolysis Study of CNTC, China Tobacco Anhui Industrial Co., Ltd., Hefei, China
| | - Xiaoyu Zhang
- Key Laboratory of Combustion & Pyrolysis Study of CNTC, China Tobacco Anhui Industrial Co., Ltd., Hefei, China
| | - Huijuan Tian
- Key Laboratory of Combustion & Pyrolysis Study of CNTC, China Tobacco Anhui Industrial Co., Ltd., Hefei, China
| | - Lingling Huang
- Department of Obstetrics, Women and Children’s Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Ze Huang
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen, China
| | - Yaping Zhang
- Key Laboratory of Combustion & Pyrolysis Study of CNTC, China Tobacco Anhui Industrial Co., Ltd., Hefei, China
- Key Laboratory of Aerosol Analysis Regulation and Biological Effects of Anhui Province, China Tobacco Anhui Industrial Co., Ltd., Hefei, China
| | - Jin Zhang
- Key Laboratory of Combustion & Pyrolysis Study of CNTC, China Tobacco Anhui Industrial Co., Ltd., Hefei, China
| | - Lin Li
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen, China
| | - Shun Zhou
- Key Laboratory of Combustion & Pyrolysis Study of CNTC, China Tobacco Anhui Industrial Co., Ltd., Hefei, China
- Key Laboratory of Aerosol Analysis Regulation and Biological Effects of Anhui Province, China Tobacco Anhui Industrial Co., Ltd., Hefei, China
| |
Collapse
|
3
|
Park JS, Yang S, Song D, Kim SM, Choi J, Kang HY, Jeong HY, Han G, Min DS, Cho ML, Park SH. A newly developed PLD1 inhibitor ameliorates rheumatoid arthritis by regulating pathogenic T and B cells and inhibiting osteoclast differentiation. Immunol Lett 2023; 263:87-96. [PMID: 37722567 DOI: 10.1016/j.imlet.2023.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 09/13/2023] [Accepted: 09/15/2023] [Indexed: 09/20/2023]
Abstract
Phospholipase D1 (PLD1), which catalyzes the hydrolysis of phosphatidylcholine to phosphatidic acid and choline, plays multiple roles in inflammation. We investigated the therapeutic effects of the newly developed PLD1 inhibitors A2998, A3000, and A3773 in vitro and in vivo rheumatoid arthritis (RA) model. A3373 reduced the levels of LPS-induced TNF-α, IL-6, and IgG in murine splenocytes in vitro. A3373 also decreased the levels of IFN-γ and IL-17 and the frequencies of Th1, Th17 cells and germinal-center B cells, in splenocytes in vitro. A3373 ameliorated the severity of collagen-induced arthritis (CIA) and suppressed infiltration of inflammatory cells into the joint tissues of mice with CIA compared with vehicle-treated mice. Moreover, A3373 prevented systemic bone demineralization in mice with CIA and suppressed osteoclast differentiation and the mRNA levels of osteoclastogenesis markers in vitro. These results suggest that A3373 has therapeutic potential for RA.
Collapse
Affiliation(s)
- Jin-Sil Park
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul 06591, Republic of Korea; Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - SeungCheon Yang
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul 06591, Republic of Korea; Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Doona Song
- Graduate Program of Industrial Pharmaceutical Science, Yonsei University, Incheon 21983, Republic of Korea; Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Sung-Min Kim
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul 06591, Republic of Korea; Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - JeongWon Choi
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul 06591, Republic of Korea; Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Hye Yeon Kang
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul 06591, Republic of Korea; Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Ha Yeon Jeong
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul 06591, Republic of Korea; Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Gyoonhee Han
- Graduate Program of Industrial Pharmaceutical Science, Yonsei University, Incheon 21983, Republic of Korea; Department of Pharmacy, Yonsei University, Incheon 21983, Republic of Korea
| | - Do Sik Min
- Graduate Program of Industrial Pharmaceutical Science, Yonsei University, Incheon 21983, Republic of Korea; Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon 21983, Republic of Korea.
| | - Mi-La Cho
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul 06591, Republic of Korea; Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea Seoul 06591, Republic of Korea.
| | - Sung-Hwan Park
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul 06591, Republic of Korea; Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea.
| |
Collapse
|
4
|
Chen L, Li Z, Wu H. CeDAR: incorporating cell type hierarchy improves cell type-specific differential analyses in bulk omics data. Genome Biol 2023; 24:37. [PMID: 36855165 PMCID: PMC9972684 DOI: 10.1186/s13059-023-02857-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 01/17/2023] [Indexed: 03/02/2023] Open
Abstract
Bulk high-throughput omics data contain signals from a mixture of cell types. Recent developments of deconvolution methods facilitate cell type-specific inferences from bulk data. Our real data exploration suggests that differential expression or methylation status is often correlated among cell types. Based on this observation, we develop a novel statistical method named CeDAR to incorporate the cell type hierarchy in cell type-specific differential analyses of bulk data. Extensive simulation and real data analyses demonstrate that this approach significantly improves the accuracy and power in detecting cell type-specific differential signals compared with existing methods, especially in low-abundance cell types.
Collapse
Affiliation(s)
- Luxiao Chen
- Department of Biostatistics and Bioinformatics, Emory University, GA 30322 Atlanta, USA
| | - Ziyi Li
- Department of Biostatistics, The University of MD Anderson Cancer Center, 77030 Houston, TX, USA
| | - Hao Wu
- Faculty of Computer Science and Control Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen University Town, Shenzhen, 518055 P.R. China
| |
Collapse
|
5
|
Gao Y, Qian Q, Xun G, Zhang J, Sun S, Liu X, Liu F, Ge J, Zhang H, Fu Y, Su S, Wang X, Wang Q. Integrated metabolomics and network analysis reveal changes in lipid metabolisms of tripterygium glycosides tablets in rats with collagen-induced arthritis. Comput Struct Biotechnol J 2023; 21:1828-1842. [PMID: 36923473 PMCID: PMC10009339 DOI: 10.1016/j.csbj.2023.02.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/26/2023] [Accepted: 02/27/2023] [Indexed: 03/04/2023] Open
Abstract
Tripterygium glycosides tablets (TGT) are the commonly used preparation for rheumatoid arthritis (RA). However, the changes in TGT on RA are still unclear at the metabolic level. This study aimed to reveal the biological processes of TGT in collagen-induced arthritis (CIA) rats through integrated metabolomics and network analysis. First, the CIA model in rats was established, and the CIA rats were given three doses of TGT. Then, the endogenous metabolites in the serum from normal rats, CIA rats, and CIA rats treated with varying doses of TGT were detected by UHPLC-QTOF-MS/MS. Next, univariate and multivariate statistical analyses were performed to find the differential metabolites. Finally, differential metabolites, metabolic pathways, and hub genes were analyzed integrally to reveal the biological processes of TGT in CIA rats. The paw diameter, arthritis score, immunoglobulin G (IgG) concentration, CT image, and histological assay showed that TGT had evident therapeutic effects on CIA rats. Untargeted metabolomics revealed that TGT could ameliorate the down-regulation of lipid levels in CIA rats. Four key differential metabolites were found including LysoP(18:0), LysoPA(20:4), LysoPA(18:2), and PS(O-20:0/17:1). The glycerophospholipid metabolic pathway was perturbed in treating CIA with TGT. A total of 24 genes, including PLD1, LPCAT4, AGPAT1, and PLA2G4A, were found to be the hub genes of TGT in CIA rats. In conclusion, the integrated analysis provided a novel and holistic perspective on the biological processes of TGT in CIA rats, which could give helpful guidance for further TGT on RA. Future studies based on human samples are necessary.
Collapse
Key Words
- CDS, Calibrant Delivery System
- CFA, Complete Freund’s adjuvant
- CIA, collagen-induced arthritis
- CUR, curtain gas
- DMARDs, disease-modifying anti-rheumatic drugs
- ESI, electrospray ionization
- FC, fold change
- GS1, nebulizer gas
- GS2, heater gas
- HMDB, Human Metabolome Database
- IDA, Information Dependent Acquisition
- IgG, immunoglobulin G
- Lipid metabolisms
- Metabolomics
- Micro-CT, Micro-computed tomography
- Network analysis
- QC, quality control
- RA, rheumatoid arthritis
- ROC, Receiver operating characteristic
- Rheumatoid arthritis
- TGT, Tripterygium glycosides tablets
- Tripterygium glycosides tablets
- VIP, variable importance in projection
Collapse
Affiliation(s)
- Yanhua Gao
- School of Pharmacy, Hebei Medical University, Shijiazhuang 050017, People's Republic of China
| | - Qi Qian
- School of Pharmacy, Hebei Medical University, Shijiazhuang 050017, People's Republic of China
| | - Ge Xun
- School of Pharmacy, Hebei Medical University, Shijiazhuang 050017, People's Republic of China
| | - Jia Zhang
- School of Pharmacy, Hebei Medical University, Shijiazhuang 050017, People's Republic of China
| | - Shuo Sun
- School of Pharmacy, Hebei Medical University, Shijiazhuang 050017, People's Republic of China
| | - Xin Liu
- School of Pharmacy, Hebei Medical University, Shijiazhuang 050017, People's Republic of China
| | - Fangfang Liu
- School of Pharmacy, Hebei Medical University, Shijiazhuang 050017, People's Republic of China
| | - Jiachen Ge
- School of Pharmacy, Hebei Medical University, Shijiazhuang 050017, People's Republic of China
| | - Huaxing Zhang
- Core Facilities and Centers, Hebei Medical University, Shijiazhuang 050017, People's Republic of China
| | - Yan Fu
- Core Facilities and Centers, Hebei Medical University, Shijiazhuang 050017, People's Republic of China
| | - Suwen Su
- Key Laboratory of Pharmacology and Toxicology for New Drugs, Department of Pharmacology, Hebei Medical University, Shijiazhuang 050017, People's Republic of China
| | - Xu Wang
- School of Pharmacy, Hebei Medical University, Shijiazhuang 050017, People's Republic of China
| | - Qiao Wang
- School of Pharmacy, Hebei Medical University, Shijiazhuang 050017, People's Republic of China
| |
Collapse
|
6
|
Ji X, Sun T, Xie S, Qian H, Song L, Wang L, Liu H, Feng Q. Upregulation of CPNE7 in mesenchymal stromal cells promotes oral squamous cell carcinoma metastasis through the NF-κB pathway. Cell Death Discov 2021; 7:294. [PMID: 34650058 PMCID: PMC8516970 DOI: 10.1038/s41420-021-00684-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 09/01/2021] [Accepted: 09/27/2021] [Indexed: 02/07/2023] Open
Abstract
A remarkable shift in Mesenchymal stromal cells (MSCs) plays an important role in cancer metastasis, but the molecular mechanism is still unclear. CPNE7, a calcium-dependent phospholipid-binding protein, mediates signal transduction and metastasis in many tumours. Here, we demonstrated that MSCs derived from OSCC (OSCC-MSCs) promoted the metastasis of OSCC cells by transwell assay and animal models through epithelial to mesenchymal transition (EMT) (p < 0.05). RNA-sequencing, ELISA, neutralizing antibody and CXCR2 inhibitor assay confirmed that CXCL8 secreted by OSCC-MSCs was associated with the upregulated expression of CPNE7 by immunohistochemical and western blotting (p < 0.05). This is mechanistically linked to the activation of CPNE7 to NF-κB pathway-induced metastasis, including phosphorylated p65 and IκBa. CPNE7 silencing inhibited metastatic abilities and the expression of CXCL8, phosphorylated p65, IκBa, and p65 nuclear translocation by western blotting and immunofluorescence, while CPNE7 overexpression markedly promoted these events (p < 0.05). We also identified that Nucleolin could be bind CPNE7 and IκBa by co-immunoprecipitation. Together, our results suggest that upregulation of CPNE7 in MSCs interacted with surface receptor -Nucleolin and then combined with IκBa to promoted phosphorylated IκBa and p65 nuclear translocation to active NF-κB pathway, and then regulates CXCL8 secretion to promote the metastasis of OSCC cells. Therefore, CPNE7 in MSCs could be promising therapeutic targets in OSCC.
Collapse
Affiliation(s)
- Xiaoli Ji
- Department of Stomatology, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, No.105 Jiefang Road, Jinan, 250013, Shandong, China. .,Department of Oral Mucosal Diseases, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No.44-1 Wenhua Road West, Jinan, 250012, Shandong, China. .,Department of Human Microbiome, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No.44-1 Wenhua Road West, Jinan, 250012, Shandong, China.
| | - Tianyong Sun
- Department of Human Microbiome, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No.44-1 Wenhua Road West, Jinan, 250012, Shandong, China
| | - Shang Xie
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian, Beijing, 100081, China
| | - Hua Qian
- Department of Stomatology, The Second Hospital of Shandong University, No. 247 Beiyuan Road, Jinan, 250033, China
| | - Lixiang Song
- Department of Pediatric Dentistry, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No.44-1 Wenhua Road West, Jinan, 250012, Shandong, China
| | - Lihua Wang
- Department of Human Microbiome, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No.44-1 Wenhua Road West, Jinan, 250012, Shandong, China
| | - Hongwei Liu
- Department of Oral Medicine, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian, Beijing, 100081, China.
| | - Qiang Feng
- Department of Human Microbiome, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No.44-1 Wenhua Road West, Jinan, 250012, Shandong, China. .,NHC Key Laboratory of Otorhinolaryngology (Shandong University), No.44-1 Wenhua Road West, Jinan, Shandong, China, 250012.
| |
Collapse
|
7
|
Zhang Z, Chen X, Gao B, Sun G, Wang Y, Wang J, Zhang T, Qian H, Zhang Y, Huang J, Sun R, Wu J, Zhou L. PLD1 knockdown reduces metastasis and inflammation of fibroblast-like synoviocytes in rheumatoid arthritis by modulating NF-κB and Wnt/β-catenin pathways. Autoimmunity 2021; 54:398-405. [PMID: 34431424 DOI: 10.1080/08916934.2021.1963957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Considered as an autoimmune disease, rheumatoid arthritis (RA) is an chronic inflammatory disorder that causes inflammation of the joints. This study is performed with the aim to clarify the expression of phospholipase D1 (PLD1) in RA and its specific regulation role of RA as well as the underlying mechanisms. In this study, synovial tissue samples were collected from RA patients, and RA-fibroblast-like synoviocytes (FLSs) were subsequently isolated. The expression levels of PLD1 and pathway-related proteins were detected by quantitative reverse transcription polymerase chain reaction (qRT-PCR), western blotting or immunohistochemistry (IHC). Upon shPLD1 treatment, cell viability, proliferation, migration, invasion, and the level of inflammation-related factors were measured by Cell Counting Kit-8 (CCK-8), Edu, wound healing, Transwell and enzyme-linked immunosorbent assay (ELISA). Furthermore, C-reactive protein (CRP), rheumatoid factor (RF), arthritis score and synovial tissue lesions were assessed by collecting the blood or tissues from collagen induced arthritis (CIA) model rats. Our results showed that PLD1 level was increased in RA synovial tissues. Cell viability, proliferation, migration, invasion, and the level of inflammatory factors were reduced upon PLD1 knockdown in RA-FLSs. Moreover, p-IκBα/IκBα, β-catenin, p-IKKβ/IKKβ and TCF-4 were inhibited under PLD1 knockdown treatment. PLD1 knockdown alleviated the collagen-induced addition of arthritis score, CRP and RF, as well as the filling of inflammatory cells and proliferation of synovium in CIA model rat. To sum up, knockdown of PLD1 could reduce RA-FLSs metastasis as well as inflammatory response by modulating the activity of NF-κB and Wnt/β-catenin pathways.
Collapse
Affiliation(s)
- Zhengyu Zhang
- Department of Rheumatology and Immunology, Affiliated Changzhou No. 2 People's Hospital with Nanjing Medical University, Changzhou, China
| | - Xi Chen
- Department of Rheumatology and Immunology, Affiliated Changzhou No. 2 People's Hospital with Nanjing Medical University, Changzhou, China
| | - Bo Gao
- Department of Rheumatology and Immunology, Affiliated Changzhou No. 2 People's Hospital with Nanjing Medical University, Changzhou, China
| | - Guomin Sun
- Department of Rheumatology and Immunology, Affiliated Changzhou No. 2 People's Hospital with Nanjing Medical University, Changzhou, China
| | - Yan Wang
- Department of Rheumatology and Immunology, Affiliated Changzhou No. 2 People's Hospital with Nanjing Medical University, Changzhou, China
| | - Junke Wang
- Department of Rheumatology and Immunology, Affiliated Changzhou No. 2 People's Hospital with Nanjing Medical University, Changzhou, China
| | - Ting Zhang
- Department of Rheumatology and Immunology, Affiliated Changzhou No. 2 People's Hospital with Nanjing Medical University, Changzhou, China
| | - Hao Qian
- Department of Rheumatology and Immunology, Affiliated Changzhou No. 2 People's Hospital with Nanjing Medical University, Changzhou, China
| | - Yu Zhang
- Department of Rheumatology and Immunology, Affiliated Changzhou No. 2 People's Hospital with Nanjing Medical University, Changzhou, China
| | - Jun Huang
- Department of Echocardiography, Affiliated Changzhou No. 2 People's Hospital with Nanjing Medical University, Changzhou, China
| | - Rurong Sun
- Department of Rheumatology and Immunology, The Third Affiliated Hospital of Suzhou University Changzhou First People's Hospital, Changzhou, China
| | - Jiabiao Wu
- Department of Rheumatology, Immunology and Hematology, Changzhou Wujin Hospital Affiliated to Jiangsu University, Changzhou, China
| | - Lei Zhou
- Department of Rheumatology and Immunology, Affiliated Changzhou No. 2 People's Hospital with Nanjing Medical University, Changzhou, China
| |
Collapse
|
8
|
Auclair N, Sané AT, Delvin E, Spahis S, Levy E. Phospholipase D as a Potential Modulator of Metabolic Syndrome: Impact of Functional Foods. Antioxid Redox Signal 2021; 34:252-278. [PMID: 32586106 DOI: 10.1089/ars.2020.8081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Significance: Cardiometabolic disorders (CMD) are composed of a plethora of metabolic dysfunctions such as dyslipidemia, nonalcoholic fatty liver disease, insulin resistance, and hypertension. The development of these disorders is highly linked to inflammation and oxidative stress (OxS), two metabolic states closely related to physiological and pathological conditions. Given the drastically rising CMD prevalence, the discovery of new therapeutic targets/novel nutritional approaches is of utmost importance. Recent Advances: The tremendous progress in methods/technologies and animal modeling has allowed the clarification of phospholipase D (PLD) critical roles in multiple cellular processes, whether directly or indirectly via phosphatidic acid, the lipid product mediating signaling functions. In view of its multiple features and implications in various diseases, PLD has emerged as a drug target. Critical Issues: Although insulin stimulates PLD activity and, in turn, PLD regulates insulin signaling, the impact of the two important PLD isoforms on the metabolic syndrome components remains vague. Therefore, after outlining PLD1/PLD2 characteristics and functions, their role in inflammation, OxS, and CMD has been analyzed and critically reported in the present exhaustive review. The influence of functional foods and nutrients in the regulation of PLD has also been examined. Future Directions: Available evidence supports the implication of PLD in CMD, but only few studies emphasize its mechanisms of action and specific regulation by nutraceutical compounds. Therefore, additional investigations are first needed to clarify the functional role of nutraceutics and, second, to elucidate whether targeting PLDs with food compounds represents an appropriate therapeutic strategy to treat CMD. Antioxid. Redox Signal. 34, 252-278.
Collapse
Affiliation(s)
- Nickolas Auclair
- Research Center, CHU Sainte-Justine, Université de Montréal, Montreal, Quebec, Canada.,Department of Pharmacology & Physiology and Université de Montréal, Montreal, Quebec, Canada
| | - Alain T Sané
- Research Center, CHU Sainte-Justine, Université de Montréal, Montreal, Quebec, Canada
| | - Edgard Delvin
- Research Center, CHU Sainte-Justine, Université de Montréal, Montreal, Quebec, Canada
| | - Schohraya Spahis
- Research Center, CHU Sainte-Justine, Université de Montréal, Montreal, Quebec, Canada.,Department of Nutrition, Université de Montréal, Montreal, Quebec, Canada
| | - Emile Levy
- Research Center, CHU Sainte-Justine, Université de Montréal, Montreal, Quebec, Canada.,Department of Pharmacology & Physiology and Université de Montréal, Montreal, Quebec, Canada.,Department of Nutrition, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
9
|
Xu S, Ma Y, Chen Y, Pan F. Role of Forkhead box O3a transcription factor in autoimmune diseases. Int Immunopharmacol 2021; 92:107338. [PMID: 33412391 DOI: 10.1016/j.intimp.2020.107338] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/05/2020] [Accepted: 12/22/2020] [Indexed: 02/07/2023]
Abstract
Forkhead box O3a (FOXO3a) transcription factor, the most important member of Forkhead box O family, is closely related to cell proliferation, apoptosis, autophagy, oxidative stress and aging. The downregulation of FOXO3a has been verified to be associated with the poor prognosis, severer malignancy and chemoresistance in several human cancers. The activity of FOXO3a mainly regulated by phosphorylation of protein kinase B. FOXO3a plays a vital role in promoting the apoptosis of immune cells. FOXO3a could also modulate the activation, differentiation and function of T cells, regulate the proliferation and function of B cells, and mediate dendritic cells tolerance and immunity. FOXO3a accommodates the immune response through targeting nuclear factor kappa-B and FOXP3, as well as regulating the expression of cytokines. Besides, FOXO3a participates in intercellular interactions. FOXO3a inhibits dendritic cells from producing interleukin-6, which inhibits B-cell lymphoma-2 (BCL-2) and BCL-XL expression, thereby sparing resting T cells from apoptosis and increasing the survival of antigen-stimulated T cells. Recently, plentiful evidences further illustrated the significance of FOXO3a in the pathogenesis of autoimmune diseases, including systemic lupus erythematosus, rheumatoid arthritis, inflammatory bowel disease, ankylosing spondylitis, myositis, multiple sclerosis, and systemic sclerosis. In this review, we focused on the biological function of FOXO3a and related signaling pathways regarding immune system, and summarized the potential role of FOXO3a in the pathogenesis, progress and therapeutic potential of autoimmune diseases.
Collapse
Affiliation(s)
- Shanshan Xu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China
| | - Yubo Ma
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China
| | - Yuting Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China
| | - Faming Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China.
| |
Collapse
|
10
|
Yang J, Li Y, Wang L, Zhang Z, Li Z, Jia Q. LncRNA H19 aggravates TNF-α-induced inflammatory injury via TAK1 pathway in MH7A cells. Biofactors 2020; 46:813-820. [PMID: 32525617 DOI: 10.1002/biof.1659] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/19/2020] [Accepted: 01/21/2020] [Indexed: 02/06/2023]
Abstract
Rheumatoid arthritis (RA) is a common chronic autoimmune disease in women. This research aims to disclose the probable function of lncRNA H19 in MH7A cells. The influences of tumor necrosis factor-α (TNF-α) on cell viability, apoptosis, and inflammatory factor expression were, respectively, detected through cell counting kit-8 (CCK-8), flow cytometry, quantitative reverse transcription polymerase chain reaction (qRT-PCR), enzyme-linked immunosorbent assay (ELISA) assay and Western Blot. The levels of H19 and TAK1 were, respectively, tested through qRT-PCR and Western blot. The expression of NF-κB and JNK/p38MAPK pathway-associated proteins was tested through Western blot. We found that TNF-α reduced MH7A cell viability in a concentration-dependent manner and facilitated apoptosis and IL-8, IL-1β, and IL-6 production. Besides, TNF-α treatment raised the level of H19 in MH7A cells. Moreover, H19 silence reduced the levels of inflammatory cytokines, while overexpression of H19 reversed this effect. TNF-α treatment elevated the expression of inflammatory cytokines by up-regulating H19. Furthermore, overexpression of H19 promoted TAK1 phosphorylation. Following studies revealed that H19 activated NF-κB and JNK/p38 MAPK pathways by promoting TAK1 phosphorylation.
Collapse
Affiliation(s)
- Jialiang Yang
- Department of Rheumatology and Immunology, Linyi People's Hospital, Linyi, Shandong, China
| | - Yixuan Li
- Department of Critical Care Medicine, Linyi People's Hospital, Linyi, Shandong, China
| | - Lili Wang
- Department of Rheumatology and Immunology, Linyi People's Hospital, Linyi, Shandong, China
| | - Zhenchun Zhang
- Department of Rheumatology and Immunology, Linyi People's Hospital, Linyi, Shandong, China
| | - Zunzhong Li
- Department of Rheumatology and Immunology, Linyi People's Hospital, Linyi, Shandong, China
| | - Qian Jia
- Department of Rheumatology and Immunology, Linyi People's Hospital, Linyi, Shandong, China
| |
Collapse
|
11
|
Chang Y, Xia L, Song M, Tang M, Patpur BK, Li J, Yang W, Yang C. The in vitro effects of phospholipase D1-mTOR axis in liver fibrogenesis. Life Sci 2020; 251:117595. [PMID: 32240681 DOI: 10.1016/j.lfs.2020.117595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 03/14/2020] [Accepted: 03/26/2020] [Indexed: 11/15/2022]
Abstract
AIMS The activation of hepatic stellate cells (HSCs) plays a central role in liver fibrosis progression. Phospholipase D (PLD) enzymes participate in multiple cellular activities. However, whether and how PLD regulates HSCs activation remain elusive. MAIN METHODS The expression of intrahepatic PLD1 and PLD2 was determined in CCl4-induced mouse liver fibrosis models by western blot and immunohistochemistry. Cell model of liver fibrogenesis was constructed using rat HSCs line (HSC-T6) treated with recombinant transforming growth factor β1 (TGFβ1). Fibrogenesis was evaluated on the aspects of proliferation, expression of pro-fibrogenic markers and migration. The effects mediated by PLD1-mTOR axis on TGFβ1-induced fibrogenesis were evaluated using HSC-T6 treated with small-molecular PLD1 inhibitors, PLD1-SiRNA, rapamycin (mTOR inhibitor) and MHY1485 (mTOR activator). KEY FINDINGS Significant increase of PLD1, not PLD2 was documented in CCl4-induced cirrhotic compared to normal liver tissues. Suppression of PLD1 activities by PLD inhibitors or down-regulation of PLD1 expression in HSC-T6 could significantly restrain TGFβ1-induced fibrogenesis, as reflected by decreased cell proliferation and reduced expression of pro-fibrogenic markers. Besides, either PLD1 inhibitor or PLD1-SiRNA significantly inhibited mTOR activity of HSC-T6. Moreover, PLD1 inhibitors not only exhibited similar effects with rapamycin in TGFβ1-induced fibrogenesis, but also blunted MHY1485 enhanced cell proliferation of HSC-T6. SIGNIFICANCE The PLD1-mTOR axis of HSCs could be therapeutically targeted in advanced liver fibrosis.
Collapse
Affiliation(s)
- Yizhong Chang
- Department of Gastroenterology and Hepatology, Institution of Digestive Diseases, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lu Xia
- Department of Gastroenterology and Hepatology, Institution of Digestive Diseases, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Meiyi Song
- Department of Gastroenterology and Hepatology, Institution of Digestive Diseases, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Min Tang
- Department of Gastroenterology and Hepatology, Institution of Digestive Diseases, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Bhuvanesh Kinish Patpur
- Department of Gastroenterology and Hepatology, Institution of Digestive Diseases, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jing Li
- Department of Gastroenterology and Hepatology, Institution of Digestive Diseases, Tongji Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Wenzhuo Yang
- Department of Gastroenterology and Hepatology, Institution of Digestive Diseases, Tongji Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Changqing Yang
- Department of Gastroenterology and Hepatology, Institution of Digestive Diseases, Tongji Hospital, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
12
|
Yoo HJ, Hwang WC, Min DS. Targeting of Phospholipase D1 Ameliorates Collagen-Induced Arthritis via Modulation of Treg and Th17 Cell Imbalance and Suppression of Osteoclastogenesis. Int J Mol Sci 2020; 21:ijms21093230. [PMID: 32370217 PMCID: PMC7247592 DOI: 10.3390/ijms21093230] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/27/2020] [Accepted: 04/30/2020] [Indexed: 12/20/2022] Open
Abstract
Phospholipase D1 (PLD1) plays a crucial role in various inflammatory and autoimmune diseases. Rheumatoid arthritis (RA) is a chronic and systemic autoimmune disease. However, the role of PLD1 in the pathogenesis of RA remains unknown. Here, we first investigated the role and effects of PLD1 in collagen-induced arthritis (CIA) and found that genetic and pharmacological inhibition of PLD1 in DBA1/J mice with CIA reduced the incidence of CIA, decreased the clinical score, and abrogated disease symptoms including infiltration of leukocytes, synovial inflammation, bone erosion, and cartilage destruction. Moreover, ablation and inhibition of PLD1 suppressed the production of type II collagen-specific IgG2a autoantibody and proinflammatory cytokines, accompanied by an increase in the regulatory T (Treg) cell population and a decrease in the Th17 cell population in CIA mice. The PLD1 inhibitor also promoted differentiation of Treg cells and suppressed differentiation of Th17 cells in vitro. Furthermore, the PLD1 inhibitor attenuated pathologic bone destruction in CIA mice by suppressing osteoclastogenesis and bone resorption. Thus, our findings indicate that the targeting of PLD1 can ameliorate CIA by modulating the imbalance of Treg and Th17 cells and suppressing osteoclastogenesis, which might be a novel strategy to treat autoimmune diseases, such as RA.
Collapse
MESH Headings
- Animals
- Arthritis, Experimental/immunology
- Arthritis, Experimental/metabolism
- Arthritis, Experimental/prevention & control
- Arthritis, Rheumatoid/immunology
- Arthritis, Rheumatoid/metabolism
- Arthritis, Rheumatoid/prevention & control
- Benzimidazoles/pharmacology
- Cell Differentiation/drug effects
- Cell Differentiation/immunology
- Cytokines/blood
- Disease Models, Animal
- Knee Joint/drug effects
- Knee Joint/metabolism
- Knee Joint/pathology
- Male
- Mice, Inbred C57BL
- Mice, Inbred DBA
- Mice, Knockout
- Osteogenesis/drug effects
- Osteogenesis/genetics
- Phospholipase D/antagonists & inhibitors
- Phospholipase D/genetics
- Phospholipase D/metabolism
- Piperidines/pharmacology
- T-Lymphocytes, Regulatory/drug effects
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- Th17 Cells/drug effects
- Th17 Cells/immunology
- Th17 Cells/metabolism
- X-Ray Microtomography
Collapse
Affiliation(s)
- Hyun Jung Yoo
- Department of Molecular Biology, College of Natural Science, Pusan National University, Busan 46241, Korea; (H.J.Y.); (W.C.H.)
| | - Won Chan Hwang
- Department of Molecular Biology, College of Natural Science, Pusan National University, Busan 46241, Korea; (H.J.Y.); (W.C.H.)
- College of Pharmacy, Yonsei University, Incheon 21983, Korea
| | - Do Sik Min
- College of Pharmacy, Yonsei University, Incheon 21983, Korea
- Correspondence: ; Tel.: +82-32-749-4522
| |
Collapse
|
13
|
Crystal structure of human PLD1 provides insight into activation by PI(4,5)P 2 and RhoA. Nat Chem Biol 2020; 16:400-407. [PMID: 32198492 PMCID: PMC7117805 DOI: 10.1038/s41589-020-0499-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 02/10/2020] [Indexed: 11/08/2022]
Abstract
The signal transduction enzyme phospholipase D1 (PLD1) hydrolyzes phosphatidylcholine to generate the lipid second-messenger phosphatidic acid, which plays roles in disease processes such as thrombosis and cancer. PLD1 is directly and synergistically regulated by protein kinase C, Arf and Rho GTPases, and the membrane lipid phosphatidylinositol-4,5-bisphosphate (PIP2). Here, we present a 1.8 Å-resolution crystal structure of the human PLD1 catalytic domain, which is characterized by a globular fold with a funnel-shaped hydrophobic cavity leading to the active site. Adjacent is a PIP2-binding polybasic pocket at the membrane interface that is essential for activity. The C terminus folds into and contributes part of the catalytic pocket, which harbors a phosphohistidine that mimics an intermediate stage of the catalytic cycle. Mapping of PLD1 mutations that disrupt RhoA activation identifies the RhoA-PLD1 binding interface. This structure sheds light on PLD1 regulation by lipid and protein effectors, enabling rationale inhibitor design for this well-studied therapeutic target.
Collapse
|
14
|
Li M, Keenan CR, Lopez-Campos G, Mangum JE, Chen Q, Prodanovic D, Xia YC, Langenbach SY, Harris T, Hofferek V, Reid GE, Stewart AG. A Non-canonical Pathway with Potential for Safer Modulation of Transforming Growth Factor-β1 in Steroid-Resistant Airway Diseases. iScience 2019; 12:232-246. [PMID: 30711747 PMCID: PMC6360516 DOI: 10.1016/j.isci.2019.01.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 03/27/2018] [Accepted: 01/15/2019] [Indexed: 12/15/2022] Open
Abstract
Impaired therapeutic responses to anti-inflammatory glucocorticoids (GC) in chronic respiratory diseases are partly attributable to interleukins and transforming growth factor β1 (TGF-β1). However, previous efforts to prevent induction of GC insensitivity by targeting established canonical and non-canonical TGF-β1 pathways have been unsuccessful. Here we elucidate a TGF-β1 signaling pathway modulating GC activity that involves LIM domain kinase 2-mediated phosphorylation of cofilin1. Severe, steroid-resistant asthmatic airway epithelium showed increased levels of immunoreactive phospho-cofilin1. Phospho-cofilin1 was implicated in the activation of phospholipase D (PLD) to generate the effector(s) (lyso)phosphatidic acid, which mimics the TGF-β1-induced GC insensitivity. TGF-β1 induction of the nuclear hormone receptor corepressor, SMRT (NCOR2), was dependent on cofilin1 and PLD activities. Depletion of SMRT prevented GC insensitivity. This pathway for GC insensitivity offers several promising drug targets that potentially enable a safer approach to the modulation of TGF-β1 in chronic inflammatory diseases than is afforded by global TGF-β1 inhibition. TGF-β1 extensively impairs GC activity Phospho-cofilin1 is a key link in TGF-β1 signaling cascade subserving GC insensitivity Phospho-cofilin1-activated phospholipase D (PLD) reduces GC activity SMRT induction downstream of PLD mediates TGF-β1 impairment of GC activity
Collapse
Affiliation(s)
- Meina Li
- Department of Pharmacology & Therapeutics, School of Biomedical Science, University of Melbourne, Parkville, VIC 3010, Australia
| | - Christine R Keenan
- Department of Pharmacology & Therapeutics, School of Biomedical Science, University of Melbourne, Parkville, VIC 3010, Australia
| | - Guillermo Lopez-Campos
- Health and Biomedical Informatics Centre, Melbourne Medical School, University of Melbourne, Parkville, VIC 3010, Australia; Centre for Experimental Medicine, Queen's University of Belfast, Belfast BT9 7BL, UK
| | - Jonathan E Mangum
- Department of Pharmacology & Therapeutics, School of Biomedical Science, University of Melbourne, Parkville, VIC 3010, Australia
| | - Qianyu Chen
- Department of Pharmacology & Therapeutics, School of Biomedical Science, University of Melbourne, Parkville, VIC 3010, Australia
| | - Danica Prodanovic
- Department of Pharmacology & Therapeutics, School of Biomedical Science, University of Melbourne, Parkville, VIC 3010, Australia
| | - Yuxiu C Xia
- Department of Pharmacology & Therapeutics, School of Biomedical Science, University of Melbourne, Parkville, VIC 3010, Australia
| | - Shenna Y Langenbach
- Department of Pharmacology & Therapeutics, School of Biomedical Science, University of Melbourne, Parkville, VIC 3010, Australia
| | - Trudi Harris
- Department of Pharmacology & Therapeutics, School of Biomedical Science, University of Melbourne, Parkville, VIC 3010, Australia
| | - Vinzenz Hofferek
- Max Plank Institute of Molecular Plant Physiology, Potsdam, Germany; School of Chemistry, University of Melbourne, Parkville, VIC 3010, Australia
| | - Gavin E Reid
- School of Chemistry, University of Melbourne, Parkville, VIC 3010, Australia; Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC 3010, Australia; Bio21 Molecular Science and Biotechnology Institute. University of Melbourne, Parkville, VIC 3010, Australia
| | - Alastair G Stewart
- Department of Pharmacology & Therapeutics, School of Biomedical Science, University of Melbourne, Parkville, VIC 3010, Australia; ARC Centre for Personalised Therapeutics Technologies, Parkville, VIC, Australia.
| |
Collapse
|
15
|
Splenectomy Promotes Macrophage Polarization in a Mouse Model of Concanavalin A- (ConA-) Induced Liver Fibrosis. BIOMED RESEARCH INTERNATIONAL 2019; 2019:5756189. [PMID: 30723740 PMCID: PMC6339718 DOI: 10.1155/2019/5756189] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 12/24/2018] [Indexed: 12/11/2022]
Abstract
Background Splenectomy can improve liver function and survival in patients with autoimmune hepatitis (AIH) and liver cirrhosis. We investigated the underlying mechanism in a mouse model of concanavalin A- (ConA-) induced liver fibrosis. Methods We used ConA to induce immune liver fibrosis in BALB/c mice. Splenectomy was performed alone or with the administration of dexamethasone (DEX). Changes in blood and liver tissues were evaluated. Results Mice treated with ConA for 7 weeks developed advanced liver fibrosis, while splenectomy suppressed liver fibrosis. Although the populations of macrophages/monocytes and M1 macrophages decreased after splenectomy, the inflammatory factors associated with M2 macrophages increased after splenectomy. Furthermore, the population of circulating CD11b+Ly6Chigh myeloid-derived suppressor cells (MDSCs) increased after splenectomy. After ConA treatment, elevated levels of activated and total NF-kBp65/p50 combined with DNA were observed in hepatic tissues. In contrast, the levels of NF-κB p65/p50 decreased after splenectomy. Conclusions Splenectomy may promote the polarization of CD11b+Ly6Chigh MDSCs and the differentiation of M2 macrophages while restricting the level of NF-κB p65-p50 heterodimers. These factors may suppress the progression of liver fibrosis.
Collapse
|
16
|
Lu WJ, Chung CL, Chen RJ, Huang LT, Lien LM, Chang CC, Lin KH, Sheu JR. An Antithrombotic Strategy by Targeting Phospholipase D in Human Platelets. J Clin Med 2018; 7:jcm7110440. [PMID: 30441821 PMCID: PMC6262437 DOI: 10.3390/jcm7110440] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 11/06/2018] [Accepted: 11/13/2018] [Indexed: 01/16/2023] Open
Abstract
Phospholipase D (PLD) is involved in many biological processes. PLD1 plays a crucial role in regulating the platelet activity of mice; however, the role of PLD in the platelet activation of humans remains unclear. Therefore, we investigated whether PLD is involved in the platelet activation of humans. Our data revealed that inhibition of PLD1 or PLD2 using pharmacological inhibitors effectively inhibits platelet aggregation in humans. However, previous studies have showed that PLD1 or PLD2 deletion did not affect mouse platelet aggregation in vitro, whereas only PLD1 deletion inhibited thrombus formation in vivo. Intriguingly, our data also showed that the pharmacological inhibition of PLD1 or PLD2 does not affect mouse platelet aggregation in vitro, whereas the inhibition of only PLD1 delayed thrombus formation in vivo. These findings indicate that PLD may play differential roles in humans and mice. In humans, PLD inhibition attenuates platelet activation, adhesion, spreading, and clot retraction. For the first time, we demonstrated that PLD1 and PLD2 are essential for platelet activation in humans, and PLD plays different roles in platelet function in humans and mice. Our findings also indicate that targeting PLD may provide a safe and alternative therapeutic approach for preventing thromboembolic disorders.
Collapse
Affiliation(s)
- Wan Jung Lu
- Department of Medical Research, Taipei Medical University Hospital, Taipei 110, Taiwan.
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan.
- Graduate Institute of Metabolism and Obesity Sciences, College of Public Health and Nutrition, Taipei Medical University, Taipei 110, Taiwan.
| | - Chi Li Chung
- Division of Pulmonary Medicine, Department of Internal Medicine, Taipei Medical University Hospital, Taipei 110, Taiwan.
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei 110, Taiwan.
| | - Ray Jade Chen
- Division of General Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei 110, Taiwan.
- School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan.
| | - Li Ting Huang
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan.
| | - Li Ming Lien
- School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan.
- Department of Neurology, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei 111, Taiwan.
| | - Chao Chien Chang
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan.
| | - Kuan Hung Lin
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan.
- Central Laboratory, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei 111, Taiwan.
- Institute of Biomedical Sciences, Mackay Medical College, New Taipei City 252, Taiwan.
| | - Joen Rong Sheu
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan.
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan.
| |
Collapse
|
17
|
Urbahn MA, Kaup SC, Reusswig F, Krüger I, Spelleken M, Jurk K, Klier M, Lang PA, Elvers M. Phospholipase D1 regulation of TNF-alpha protects against responses to LPS. Sci Rep 2018; 8:10006. [PMID: 29968773 PMCID: PMC6030188 DOI: 10.1038/s41598-018-28331-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 06/14/2018] [Indexed: 01/18/2023] Open
Abstract
Sepsis is a systemic inflammatory disorder with organ dysfunction and represents the leading cause of mortality in non-coronary intensive care units. A key player in septic shock is Tumor Necrosis Factor-alpha (TNF-α). Phospholipase (PL)D1 is involved in the regulation of TNF-α upon ischemia/reperfusion injury in mice. In this study we analyzed the impact of PLD1 in the regulation of TNF-α, inflammation and organ damage in experimental sepsis. PLD1 deficiency increased survival of mice and decreased vital organ damage after LPS injections. Decreased TNF-α plasma levels and reduced migration of leukocytes and platelets into lungs was associated with reduced apoptosis in lung and liver tissue of PLD1 deficient mice. PLD1 deficient platelets contribute to preserved outcome after LPS-induced sepsis because platelets exhibit an integrin activation defect suggesting reduced platelet activation in PLD1 deficient mice. Furthermore, reduced thrombin generation of PLD1 deficient platelets might be responsible for reduced fibrin formation in lungs suggesting reduced disseminated intravascular coagulation (DIC). The analysis of Pld1fl/fl-PF4-Cre mice revealed that migration of neutrophils and cell apoptosis in septic animals is not due to platelet-mediated processes. The present study has identified PLD1 as a regulator of innate immunity that may be a new target to modulate sepsis.
Collapse
Affiliation(s)
- Marc-Andre Urbahn
- Department of Vascular and Endovascular Surgery, Heinrich-Heine-University University Medical Center, Moorenstraße.5, 40225, Düsseldorf, Germany
| | - Sonja Charlotte Kaup
- Department of Vascular and Endovascular Surgery, Heinrich-Heine-University University Medical Center, Moorenstraße.5, 40225, Düsseldorf, Germany
| | - Friedrich Reusswig
- Department of Vascular and Endovascular Surgery, Heinrich-Heine-University University Medical Center, Moorenstraße.5, 40225, Düsseldorf, Germany
| | - Irena Krüger
- Department of Vascular and Endovascular Surgery, Heinrich-Heine-University University Medical Center, Moorenstraße.5, 40225, Düsseldorf, Germany
| | - Martina Spelleken
- Department of Vascular and Endovascular Surgery, Heinrich-Heine-University University Medical Center, Moorenstraße.5, 40225, Düsseldorf, Germany
| | - Kerstin Jurk
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Mainz, Germany
| | - Meike Klier
- Department of Vascular and Endovascular Surgery, Heinrich-Heine-University University Medical Center, Moorenstraße.5, 40225, Düsseldorf, Germany
| | - Philipp A Lang
- Department of Molecular Medicine II, Heinrich Heine University, Düsseldorf, Germany
| | - Margitta Elvers
- Department of Vascular and Endovascular Surgery, Heinrich-Heine-University University Medical Center, Moorenstraße.5, 40225, Düsseldorf, Germany.
| |
Collapse
|
18
|
Abstract
Phospholipases are lipolytic enzymes that hydrolyze phospholipid substrates at specific ester bonds. Phospholipases are widespread in nature and play very diverse roles from aggression in snake venom to signal transduction, lipid mediator production, and metabolite digestion in humans. Phospholipases vary considerably in structure, function, regulation, and mode of action. Tremendous advances in understanding the structure and function of phospholipases have occurred in the last decades. This introductory chapter is aimed at providing a general framework of the current understanding of phospholipases and a discussion of their mechanisms of action and emerging biological functions.
Collapse
|
19
|
Bailin N, Nan C, Peizhi L, Kun H, Xiwen Z, Guosheng R, Jianping G, Wenfeng Z. Changes of Foxo3a in PBMCs and its associations with stress hyperglycemia in acute obstructive suppurative cholangitis patients. Oncotarget 2017; 8:76783-76796. [PMID: 29100348 PMCID: PMC5652742 DOI: 10.18632/oncotarget.20011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 06/29/2017] [Indexed: 12/13/2022] Open
Abstract
Objective The levels of Foxo3a in the peripheral blood mononuclears cells (PBMCs) before and after treatment were detected in acute obstructive suppurative cholangitis (AOSC) patients to evaluate the associations between Foxo3a and stress hyperglycemia (SHG). Methods PBMCs were obtained from AOSC patients (n=28) on admission (AP), from patients at 1 week after cure (RP) and from healthy volunteers (HV) (n=14) to evaluate the relationship between the protein levels of Foxo3a and the serum levels of glucose. Signaling pathways, which link inflammation and glycometabolism, simultaneously affecting the expression of Foxo3a, were detected. In addition, cytokines were detected in PBMCs and AOSC mouse models, which were pre-treated with Foxo3a agonist. Results The levels of glucose and p-Foxo3a in the AP were significantly higher than those in the RP and HV, where as the levels of Foxo3a in the AP were lower than those in the RP and HV. Foxo3a levels in the AP normalized against RP were strongly negatively correlated with the glucose levels in the AP normalized against RP. The levels of sphingosine-1-phosphate receptor 2 (S1PR2) in the AP were higher than those in the RP and HV. In addition, inhibition of Foxo3a phosphorylation, coupled with the down-regulation of S1PR2, attenuated the LPS-induced inflammatory response in the PBMCs and AOSC mouse models. Conclusions Foxo3a is correlated with the dysregulation of glucose homeostasis in the pathogenesis of AOSC-induced sepsis by inhibiting the activation of PI3K/Akt-S1PR2 and NF-κB pathways, hinting at a switched role and therapeutic potentialities in the early stage of sepsis.
Collapse
Affiliation(s)
- Niu Bailin
- Department of Emergency and Department of Intensive Care Unit, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Chen Nan
- Chongqing Key Laboratory of Hepatobiliary Surgery and Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China.,Department of Anesthesia, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Li Peizhi
- Chongqing Key Laboratory of Hepatobiliary Surgery and Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - He Kun
- Chongqing Key Laboratory of Hepatobiliary Surgery and Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Zhu Xiwen
- Chongqing Key Laboratory of Hepatobiliary Surgery and Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Ren Guosheng
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Gong Jianping
- Chongqing Key Laboratory of Hepatobiliary Surgery and Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Zhang Wenfeng
- Chongqing Key Laboratory of Hepatobiliary Surgery and Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| |
Collapse
|
20
|
Klier M, Gowert NS, Jäckel S, Reinhardt C, Elvers M. Phospholipase D1 is a regulator of platelet-mediated inflammation. Cell Signal 2017; 38:171-181. [PMID: 28711718 DOI: 10.1016/j.cellsig.2017.07.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 06/29/2017] [Accepted: 07/10/2017] [Indexed: 01/01/2023]
Abstract
Glycoprotein (GP)Ib is not only required for stable thrombus formation but for platelet-mediated inflammatory responses. Phospholipase (PL)D1 is essential for GPIb-dependent aggregate formation under high shear conditions while nothing is known about PLD1-induced regulation of GPIb in platelet-mediated inflammation and the underlying mechanisms. This study aimed to investigate the relevance of PLD1 for platelet-mediated endothelial and leukocyte recruitment and activation in vitro and in vivo. Pld1-/- platelets showed strongly reduced adhesion to TNFα stimulated endothelial cells (ECs) under high shear conditions ex vivo. Normal cytoskeletal reorganization of Pld1-/- platelets but reduced integrin activation after adhesion to inflamed ECs confirmed that defective integrin activation is responsible for reduced platelet adhesion to ECs. This, together with significantly reduced CD40L expression on platelets led to reduced chemotactic and adhesive properties of ECs in vitro. Under flow conditions, recruitment of leukocytes to collagen-adherent platelets was reduced. Under inflammatory conditions in vivo, reduced platelet and leukocyte recruitment and arrest to the injured carotid artery was observed in Pld1-/- mice. In a second in vivo model of venous thrombosis, platelet adhesion to activated endothelial cells was reduced while leukocyte recruitment was attenuated in PLD1 deficient mice. Mechanistically, PLD1 modulates PLCγ2 phosphorylation and integrin activation via Src kinases without affecting vWF binding to GPIb. Thus, PLD1 is important for GPIb-induced inflammatory processes of platelets and might be a promising target to reduce platelet-mediated inflammation.
Collapse
Affiliation(s)
- Meike Klier
- Department of Vascular and Endovascular Surgery, Heinrich-Heine University Medical Center, Düsseldorf, Germany
| | - Nina Sarah Gowert
- Department of Vascular and Endovascular Surgery, Heinrich-Heine University Medical Center, Düsseldorf, Germany
| | - Sven Jäckel
- German Center for Cardiovascular Research (DZHK), Partner Site RheinMain, Mainz, Germany.; Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Mainz, Germany
| | - Christoph Reinhardt
- German Center for Cardiovascular Research (DZHK), Partner Site RheinMain, Mainz, Germany.; Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Mainz, Germany
| | - Margitta Elvers
- Department of Vascular and Endovascular Surgery, Heinrich-Heine University Medical Center, Düsseldorf, Germany.
| |
Collapse
|
21
|
Phospholipase D1 expression analysis in relapsing-remitting multiple sclerosis patients. Neurol Sci 2017; 38:865-872. [DOI: 10.1007/s10072-017-2857-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 02/16/2017] [Indexed: 10/20/2022]
|
22
|
Kang DW, Yang ES, Noh YN, Hwang WC, Jo SY, Suh YA, Park WS, Choi KY, Min DS. MicroRNA-320a and microRNA-4496 attenuate Helicobacter pylori cytotoxin-associated gene A (CagA)-induced cancer-initiating potential and chemoresistance by targeting β-catenin and ATP-binding cassette, subfamily G, member 2. J Pathol 2017; 241:614-625. [PMID: 28008607 DOI: 10.1002/path.4866] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 12/01/2016] [Accepted: 12/15/2016] [Indexed: 01/04/2023]
Abstract
Infection with Helicobacter pylori is closely linked to an increased risk of gastric cancer. Although cytotoxin-associated gene A (CagA), a major virulence factor of H. pylori, is known to be a causal factor for gastric carcinogenesis, the molecular link between CagA and gastric cancer-initiating cell (CIC)-like properties remains elusive. Here, we demonstrate that CagA is required for increased expression of β-catenin and its target CIC markers via downregulation of microRNA (miR)-320a and miR-4496. CagA promoted gastric CIC properties and was responsible for chemoresistance. miR-320a and miR-4496 attenuated the in vitro self-renewal and tumour-initiating capacity of CagA-expressing CICs by targeting β-catenin. Moreover, miR-320a and miR-4496 decreased CagA-induced chemoresistance by targeting ATP-binding cassette, subfamily G, member 2 (ABCG2) at the transcriptional and post-transcriptional levels, respectively. Combination therapy with 5-fluorouracil and miR-320a/miR-4496 suppressed gastric tumourigenesis and metastatic potential in an orthotopic mouse model, probably via suppression of CagA-induced CIC properties and chemoresistance. Our results provide novel evidence that CIC properties, chemoresistance and tumourigenesis associated with H. pylori are linked to CagA-induced upregulation of β-catenin and ABCG2. These data provide novel insights into the molecular mechanisms of CagA-induced carcinogenisis and the therapeutic potential of of miR-320a and miR-4496. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Dong Woo Kang
- Department of Molecular Biology, College of Natural Science, Pusan National University, Busan, Republic of Korea.,Institute of Innovative Cancer Research, Asan Institute for Life Science, Asan Medical Centre, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Eun Sun Yang
- Department of Molecular Biology, College of Natural Science, Pusan National University, Busan, Republic of Korea
| | - Yu Na Noh
- Department of Molecular Biology, College of Natural Science, Pusan National University, Busan, Republic of Korea
| | - Won Chan Hwang
- Department of Molecular Biology, College of Natural Science, Pusan National University, Busan, Republic of Korea
| | - Se-Young Jo
- Institute of Innovative Cancer Research, Asan Institute for Life Science, Asan Medical Centre, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Young-Ah Suh
- Institute of Innovative Cancer Research, Asan Institute for Life Science, Asan Medical Centre, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Won Sang Park
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Kang-Yell Choi
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea.,Translational Research Centre for Protein Function Control, Yonsei University, Seoul, Republic of Korea
| | - Do Sik Min
- Department of Molecular Biology, College of Natural Science, Pusan National University, Busan, Republic of Korea.,Translational Research Centre for Protein Function Control, Yonsei University, Seoul, Republic of Korea
| |
Collapse
|
23
|
Kliminski V, Uziel O, Kessler-Icekson G. Popdc1/Bves Functions in the Preservation of Cardiomyocyte Viability While Affecting Rac1 Activity and Bnip3 Expression. J Cell Biochem 2016; 118:1505-1517. [PMID: 27886395 DOI: 10.1002/jcb.25810] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 11/23/2016] [Indexed: 01/15/2023]
Abstract
The Popeye domain containing1, also called Bves (Popdc1/Bves), is a transmembrane protein that functions in muscle regeneration, heart rate regulation, hypoxia tolerance, and ischemia preconditioning. The expression of Popdc1/Bves is elevated in cardiomyocytes maintained in serum free defined medium. We hypothesized that Popdc1/Bves is important for cardiomyocyte survival under the stress of serum deprivation and investigated the mechanisms involved. A deficit in Popdc1/Bves, achieved by siRNA-mediated gene silencing, results in cardiomyocyte injury and death, upregulation of the pro-apoptotic protein Bcl-2/adenovirus E1B 19-kDa interacting protein3 (Bnip3), as well as reduction in Rac1-GTPase activity and in Akt phosphorylation. Combined Popdc1/Bves and Bnip3 silencing attenuated cell injury and prevented Bnip3 upregulation induced by the silencing of Popdc1/Bves alone. Chromatin immunoprecipitation indicated an increased binding of the transcription factor FoxO3 to the Bnip3 promoter although augmentation of FoxO3 in the nuclei was not detected. By contrast, the transcription factor NFκB was excluded from the nuclei of Popdc1/Bves deficient cardiomyocytes and exhibited decreased binding to the Bnip3 promoter. The data indicates that Popdc1/Bves plays a role in the preservation of cardiomyocyte viability under serum deficiency through the alteration of Rac1 activity and the regulation of Bnip3 expression by FoxO3 and NFκB transcription factors pointing to Popdc1/Bves as a potential target to enhance heart protection. J. Cell. Biochem. 118: 1505-1517, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Vitaly Kliminski
- The Felsenstein Medical Research Center, Sackler Faculty of Medicine and Rabin Medical Center, Tel-Aviv University, Tel-Aviv, Israel
| | - Orit Uziel
- The Felsenstein Medical Research Center, Sackler Faculty of Medicine and Rabin Medical Center, Tel-Aviv University, Tel-Aviv, Israel
| | - Gania Kessler-Icekson
- The Felsenstein Medical Research Center, Sackler Faculty of Medicine and Rabin Medical Center, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
24
|
Kang DW, Lee SW, Hwang WC, Lee BH, Choi YS, Suh YA, Choi KY, Min DS. Phospholipase D1 Acts through Akt/TopBP1 and RB1 to Regulate the E2F1-Dependent Apoptotic Program in Cancer Cells. Cancer Res 2016; 77:142-152. [PMID: 27793841 DOI: 10.1158/0008-5472.can-15-3032] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 10/10/2016] [Accepted: 10/23/2016] [Indexed: 01/11/2023]
Abstract
The RB1/E2F1 signaling pathway is frequently deregulated in colorectal cancer and has been suggested to intersect with Wnt/β-catenin and PI3K/Akt pathways, but molecular evidence for this link is lacking. In this study, we demonstrate that phospholipase D1 (PLD1), a transcriptional target of β-catenin/TCF4, orchestrates functional interactions between these pathways during intestinal tumor development. Overexpression of PLD1 in intestinal epithelial cells protected cells from apoptosis induced by PLD1 ablation in the Apcmin/+ mouse model of intestinal tumorigenesis. Mechanistic investigations revealed that genetic and pharmacologic targeting of PLD1 promote the E2F1-dependent apoptotic program via both miR-192/4465-mediated downregulation of RB1 and inhibition of Akt-TopBP1 pathways. Moreover, the miRNA-RB1 axis and Akt pathway also contributed to the PLD1-mediated self-renewal capacity of colon cancer-initiating cells. Finally, PLD1-driven E2F1 target gene expression positively correlated with tumor stage in patients with colorectal cancer. Overall, our findings suggest that PLD1 mediates cross-talk between multiple major signaling pathways to promote the survival and malignancy of colon cancer cells and may therefore represent an ideal signaling node for therapeutic targeting. Cancer Res; 77(1); 142-52. ©2016 AACR.
Collapse
Affiliation(s)
- Dong Woo Kang
- Institute of Innovative Cancer Research, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.,Department of Molecular Biology, Pusan National University, Busan, Republic of Korea
| | - Shin Wha Lee
- Institute of Innovative Cancer Research, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.,Department of Obstetrics and Gynecology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Won Chan Hwang
- Department of Molecular Biology, Pusan National University, Busan, Republic of Korea
| | - Bo Hui Lee
- Department of Statistics, College of Natural Science, Pusan National University, Busan, Republic of Korea
| | - Yong-Seok Choi
- Department of Statistics, College of Natural Science, Pusan National University, Busan, Republic of Korea
| | - Young-Ah Suh
- Institute of Innovative Cancer Research, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Kang-Yell Choi
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea.,Translational Research Center for Protein Function Control, Yonsei University, Seoul, Republic of Korea
| | - Do Sik Min
- Department of Molecular Biology, Pusan National University, Busan, Republic of Korea. .,Translational Research Center for Protein Function Control, Yonsei University, Seoul, Republic of Korea.,Genetic Engineering Institute, Pusan National University, Busan, Republic of Korea
| |
Collapse
|
25
|
Dluzen DF, Noren Hooten N, Zhang Y, Kim Y, Glover FE, Tajuddin SM, Jacob KD, Zonderman AB, Evans MK. Racial differences in microRNA and gene expression in hypertensive women. Sci Rep 2016; 6:35815. [PMID: 27779208 PMCID: PMC5078799 DOI: 10.1038/srep35815] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 10/06/2016] [Indexed: 12/20/2022] Open
Abstract
Systemic arterial hypertension is an important cause of cardiovascular disease morbidity and mortality. African Americans are disproportionately affected by hypertension, in fact the incidence, prevalence, and severity of hypertension is highest among African American (AA) women. Previous data suggests that differential gene expression influences individual susceptibility to selected diseases and we hypothesized that this phenomena may affect health disparities in hypertension. Transcriptional profiling of peripheral blood mononuclear cells from AA or white, normotensive or hypertensive females identified thousands of mRNAs differentially-expressed by race and/or hypertension. Predominant gene expression differences were observed in AA hypertensive females compared to AA normotensives or white hypertensives. Since microRNAs play important roles in regulating gene expression, we profiled global microRNA expression and observed differentially-expressed microRNAs by race and/or hypertension. We identified novel mRNA-microRNA pairs potentially involved in hypertension-related pathways and differently-expressed, including MCL1/miR-20a-5p, APOL3/miR-4763-5p, PLD1/miR-4717-3p, and PLD1/miR-4709-3p. We validated gene expression levels via RT-qPCR and microRNA target validation was performed in primary endothelial cells. Altogether, we identified significant gene expression differences between AA and white female hypertensives and pinpointed novel mRNA-microRNA pairs differentially-expressed by hypertension and race. These differences may contribute to the known disparities in hypertension and may be potential targets for intervention.
Collapse
Affiliation(s)
- Douglas F. Dluzen
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Nicole Noren Hooten
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Yongqing Zhang
- Laboratory of Genetics and Genomics; National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Yoonseo Kim
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Frank E. Glover
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Salman M. Tajuddin
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Kimberly D. Jacob
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Alan B. Zonderman
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Michele K. Evans
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| |
Collapse
|
26
|
Zou L, Zhang G, Liu L, Chen C, Cao X, Cai J. Relationship between PI3K pathway and angiogenesis in CIA rat synovium. Am J Transl Res 2016; 8:3141-3147. [PMID: 27508035 PMCID: PMC4969451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 05/30/2016] [Indexed: 06/06/2023]
Abstract
To investigate the expression of hypoxia inducible factor (HIF-1α) and vascular endothelial growth factor (VEGF) in the synovium of collagen-induced arthritis (CIA) joint, and whether the PI3K pathway regulates angiogenesis in rheumatoid arthritis or not. A randomized controlled according to the principle of the rats were divided into normal control group (10 rats) and the experimental group (40 rats). The experimental group rats were established as type II collagen plus adjuvant Freund's complete adjuvant-induced arthritis model. HIF-1α and VEGF proteins' expression in serum of CIA rats group and normal control group were detected by ELISA. Microvessel density (MVD) in synovial tissue of CIA rats group and normal control group were detected by immunohistochemistry (IHC) staining. The protein expression of PTEN, PI3K, and AKT in synovial tissue were detected by Western Blot. Compared with normal control group, toes and ankle swelling and arthritis index (AI) of CIA rat increased, and the expression of VEGF and HIF-1α proteins in peripheral serum increased, IHC showed that MVD was significantly higher than that of the control group, and the difference was statistically significant (p<0.05). Western Blot results showed that PI3K and AKT proteins expression in CIA synovial tissue of rats increased, while the expression of PTEN protein decreased. Correlation analysis showed that VEGF and HIF-1 levels in the peripheral serum of CIA rats were positively correlated with arthritis index (AI); the contents of HIF-1α and VEGF in the peripheral serum of CIA rats were positively correlated with MVD in synovium tissue. The CIA rat model regulated the expression of HIF-1α and VEGF proteins in peripheral serum by PI3K signaling pathway, and then regulated neovascularization in RA.
Collapse
Affiliation(s)
- Lin Zou
- Department of Traumatic Orthopedic Surgery, The General Hospital of Jinan Military Command Jinan 250031, Shandong, China
| | - Guichun Zhang
- Department of Traumatic Orthopedic Surgery, The General Hospital of Jinan Military Command Jinan 250031, Shandong, China
| | - Lifeng Liu
- Department of Traumatic Orthopedic Surgery, The General Hospital of Jinan Military Command Jinan 250031, Shandong, China
| | - Chen Chen
- Department of Traumatic Orthopedic Surgery, The General Hospital of Jinan Military Command Jinan 250031, Shandong, China
| | - Xuecheng Cao
- Department of Traumatic Orthopedic Surgery, The General Hospital of Jinan Military Command Jinan 250031, Shandong, China
| | - Jinfang Cai
- Department of Traumatic Orthopedic Surgery, The General Hospital of Jinan Military Command Jinan 250031, Shandong, China
| |
Collapse
|
27
|
Friday SC, Fox DA. Phospholipase D enzymes facilitate IL-17- and TNFα-induced expression of proinflammatory genes in rheumatoid arthritis synovial fibroblasts (RASF). Immunol Lett 2016; 174:9-18. [DOI: 10.1016/j.imlet.2016.04.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 04/01/2016] [Accepted: 04/01/2016] [Indexed: 11/30/2022]
|
28
|
Deng W, Feng X, Li X, Wang D, Sun L. Hypoxia-inducible factor 1 in autoimmune diseases. Cell Immunol 2016; 303:7-15. [DOI: 10.1016/j.cellimm.2016.04.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 04/06/2016] [Accepted: 04/06/2016] [Indexed: 12/29/2022]
|
29
|
Park MH, Bae SS, Choi KY, Min DS. Phospholipase D2 promotes degradation of hypoxia-inducible factor-1α independent of lipase activity. Exp Mol Med 2015; 47:e196. [PMID: 26611735 PMCID: PMC4673472 DOI: 10.1038/emm.2015.87] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 08/19/2015] [Accepted: 09/08/2015] [Indexed: 01/04/2023] Open
Abstract
Hypoxia-inducible factor-1α (HIF-1α) is a key transcriptional mediator that coordinates the expression of various genes involved in tumorigenesis in response to changes in oxygen tension. The stability of HIF-1α protein is determined by oxygen-dependent prolyl hydroxylation, which is required for binding of the von Hippel-Lindau protein (VHL), the recognition component of an E3 ubiquitin ligase that targets HIF-1α for ubiquitination and degradation. Here, we demonstrate that PLD2 protein itself interacts with HIF-1α, prolyl hydroxylase (PHD) and VHL to promote degradation of HIF-1α via the proteasomal pathway independent of lipase activity. PLD2 increases PHD2-mediated hydroxylation of HIF-1α by increasing the interaction of HIF-1α with PHD2. Moreover, PLD2 promotes VHL-dependent HIF-1α degradation by accelerating the association between VHL and HIF-1α. The interaction of the pleckstrin homology domain of PLD2 with HIF-1α also promoted degradation of HIF-1α and decreased expression of its target genes. These results indicate that PLD2 negatively regulates the stability of HIF-1α through the dynamic assembly of HIF-1α, PHD2 and VHL.
Collapse
Affiliation(s)
- Mi Hee Park
- Department of Molecular Biology, College of Natural Science, Pusan National University, Busan, Republic of Korea
| | - Sun Sik Bae
- Department of Pharmacology, School of Medicine, Pusan National University, Busan, Republic of Korea
| | - Kang-Yell Choi
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
- Translational Research Center for Protein Function Control, Yonsei University, Seoul, Republic of Korea
| | - Do Sik Min
- Department of Molecular Biology, College of Natural Science, Pusan National University, Busan, Republic of Korea
- Translational Research Center for Protein Function Control, Yonsei University, Seoul, Republic of Korea
- Genetic Engineering Institute, Pusan National University, Busan, Republic of Korea
| |
Collapse
|
30
|
Shin SY, Kim YS, Lee SY, Bae WJ, Park YD, Hyun YC, Kang K, Kim EC. Expression of Phospholipase D in Periodontitis and Its Role in the Inflammatory and Osteoclastic Response by Nicotine- and Lipopolysaccharide-Stimulated Human Periodontal Ligament Cells. J Periodontol 2015; 86:1405-16. [PMID: 26334245 DOI: 10.1902/jop.2015.150123] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND The aim of the present study is to investigate the expression of phospholipase D (PLD) 1 and PLD2 in periodontal patients and in human periodontal ligament cells (HPDLCs) exposed to nicotine plus lipopolysaccharide (LPS) from Porphyromonas gingivalis (Toll-like receptor 2 ligand). Furthermore, the effects of PLD isoform inhibition on the inflammatory response and osteoclast differentiation and its mechanisms were determined. METHODS Proinflammatory mediators were examined by reverse transcription-polymerase chain reaction and enzyme-linked immunosorbent assay. To silence the gene expression of the PLD isoforms, cells were transfected with small interfering RNA (siRNA) targeting PLD1 or PLD2. Mouse bone marrow-derived macrophages (BMMs) were used as osteoclast precursor cells for in vitro osteoclastogenesis. Western blot analysis and immunofluorescence were used to assess signaling pathways. RESULTS Chronic smokers with periodontitis exhibited significantly higher PLD1 and PLD2 messenger RNA (mRNA) expression than non-smokers with periodontitis and healthy controls. Nicotine and LPS upregulated PLD1 and PLD2 mRNA expression in a dose-dependent manner in HPDLCs. Pharmacologic and siRNA-mediated inhibition of PLD1 and PLD2 attenuated the nicotine- and LPS-induced upregulation of inducible nitric oxide (NO) synthase and cyclooxygenase-2, production of NO, and prostaglandin E2, and mRNA expression and secretion of tumor necrosis factor-α, interleukin (IL)-1β, and IL-8. The conditioned media from HPDLCs treated with PLD isoform inhibitors or siRNA against PLD inhibited receptor activator of nuclear factor-κB (NF-κB) ligand-mediated osteoclast differentiation, as well as protein expression of nuclear factor of activated T cells c1 and c-Fos, in BMMs. In addition, PLD isoform inhibitors and siRNA inhibited the nicotine- and LPS-induced activation of phosphoinositide 3-kinase, protein kinase C, p38, extracellular signal-regulated kinase, c-Jun N-terminal protein kinase, mitogen-activated protein kinase, and NF-κB. CONCLUSION To the best of the authors' knowledge, this study is the first to demonstrate that PLD isoform inhibition has anti-inflammatory and antiosteoclastogenic effects and thus may be a therapeutic target for the treatment of periodontitis.
Collapse
Affiliation(s)
- Seung-Yun Shin
- Department of Periodontology, School of Dentistry, Kyung Hee University, Seoul, Republic of Korea
| | - Young-Suk Kim
- Department of Oral and Maxillofacial Pathology and Research Center for Tooth and Periodontal Regeneration, School of Dentistry, Kyung Hee University
| | - So-Youn Lee
- Department of Oral and Maxillofacial Pathology and Research Center for Tooth and Periodontal Regeneration, School of Dentistry, Kyung Hee University
| | - Won-Jung Bae
- Department of Oral and Maxillofacial Pathology and Research Center for Tooth and Periodontal Regeneration, School of Dentistry, Kyung Hee University
| | - Yong-Duk Park
- Department of Preventive and Society Dentistry, School of Dentistry, Kyung Hee University
| | - Yong-Cheol Hyun
- Department of Preventive and Society Dentistry, School of Dentistry, Kyung Hee University
| | - KyungLhi Kang
- Department of Periodontology, School of Dentistry, Kyung Hee University, Seoul, Republic of Korea
| | - Eun-Cheol Kim
- Department of Oral and Maxillofacial Pathology and Research Center for Tooth and Periodontal Regeneration, School of Dentistry, Kyung Hee University
| |
Collapse
|
31
|
Kang DW, Choi CY, Cho YH, Tian H, Di Paolo G, Choi KY, Min DS. Targeting phospholipase D1 attenuates intestinal tumorigenesis by controlling β-catenin signaling in cancer-initiating cells. ACTA ACUST UNITED AC 2015; 212:1219-37. [PMID: 26122663 PMCID: PMC4516794 DOI: 10.1084/jem.20141254] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 05/11/2015] [Indexed: 12/20/2022]
Abstract
Kang et al. show that genetic or pharmacological inactivation of the enzyme phospholipase D1 (PLD1) disrupts colitis-associated intestinal tumorigenesis by suppressing the self-renewal capacity of colon cancer stem cells. Expression of the Wnt target gene phospholipase D1 (PLD1) is up-regulated in various carcinomas, including colorectal cancer (CRC). However, the mechanistic significance of its elevated expression in intestinal tumorigenesis remains unknown. In this study, we show that genetic and pharmacological targeting of PLD1 disrupts spontaneous and colitis-associated intestinal tumorigenesis in ApcMin/+ and azoxymethane/dextran sodium sulfate mice models. Intestinal epithelial cell–specific PLD1 overexpression in ApcMin/+ mice accelerated tumorigenesis with increased proliferation and nuclear β-catenin levels compared with ApcMin/+ mice. Moreover, PLD1 inactivation suppressed the self-renewal capacity of colon cancer–initiating cells (CC-ICs) by decreasing expression of β-catenin via E2F1-induced microRNA (miR)-4496 up-regulation. Ultimately, low expression of PLD1 coupled with a low level of CC-IC markers was predictive of a good prognosis in CRC patients, suggesting in vivo relevance. Collectively, our data reveal that PLD1 has a crucial role in intestinal tumorigenesis via its modulation of the E2F1–miR-4496–β-catenin signaling pathway. Modulation of PLD1 expression and activity represents a promising therapeutic strategy for the treatment of intestinal tumorigenesis.
Collapse
Affiliation(s)
- Dong Woo Kang
- Department of Molecular Biology, College of Natural Science, Pusan National University, Busan 609-735, Republic of Korea Institute for Innovative Cancer Research, Asan Medical Center, University of Ulsan College of Medicine, Seoul 138-736, Republic of Korea
| | - Chi Yeol Choi
- Department of Molecular Biology, College of Natural Science, Pusan National University, Busan 609-735, Republic of Korea
| | - Yong-Hee Cho
- Department of Biotechnology, College of Life Science and Biotechnology, and Translational Research Center for Protein Function Control, Yonsei University, Seoul 120-749, Republic of Korea
| | - Huasong Tian
- Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY 10065
| | - Gilbert Di Paolo
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032
| | - Kang-Yell Choi
- Department of Biotechnology, College of Life Science and Biotechnology, and Translational Research Center for Protein Function Control, Yonsei University, Seoul 120-749, Republic of Korea Department of Biotechnology, College of Life Science and Biotechnology, and Translational Research Center for Protein Function Control, Yonsei University, Seoul 120-749, Republic of Korea
| | - Do Sik Min
- Department of Molecular Biology, College of Natural Science, Pusan National University, Busan 609-735, Republic of Korea Department of Biotechnology, College of Life Science and Biotechnology, and Translational Research Center for Protein Function Control, Yonsei University, Seoul 120-749, Republic of Korea
| |
Collapse
|
32
|
Osorio-Caballero M, Perdigón-Palacio C, García-López G, Flores-Herrera O, Olvera-Sánchez S, Morales-Méndez I, Sosa-González I, Acevedo JF, Guzmán-Grenfell AM, Molina-Hernández A, Díaz NF, Flores-Herrera H. Escherichia coli-induced temporal and differential secretion of heat-shock protein 70 and interleukin-1β by human fetal membranes in a two-compartment culture system. Placenta 2014; 36:262-9. [PMID: 25600910 DOI: 10.1016/j.placenta.2014.12.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 11/26/2014] [Accepted: 12/15/2014] [Indexed: 01/21/2023]
Abstract
INTRODUCTION Escherichia coli is recognized as an etiological bacteria associated with chorioamnionitis and the preterm premature rupture of fetal membranes. This pathological condition induces pro-inflammatory cytokines and degradative metalloproteinases, which are considered biological markers secreted in an acute stage of infection. Heat-shock proteins (HSPs) are an important component of the innate immunity response and are found in different pathological conditions. They have not been previously measured in human fetal membranes in response to infectious conditions. We hypothesized that the choriodecidual tissue and amniotic epithelium secreted temporal and differential Hsp-60, Hsp-70, and interleukin (IL)-1β mediated by E. coli infection. METHODS Fetal membranes were mounted in a two-compartment culture system and infected with two passes of live E. coli at different doses (10², 10⁴, 10⁵, and 10⁶ colony-forming units (CFU)/mL) and intervals of incubation (3, 6, and 24 h). The culture medium was collected, and Hsp-60, Hsp-70, and IL-1β were assessed using the enzyme-linked immunosorbent assay (ELISA) method. RESULTS After 3 and 6 h of infection, E. coli induced an increase in Hsp-70 secretion in the choriodecidual tissue. However, after 24 h of incubation, Hsp-70 was downregulated and we observed an increase in IL-1β secretion. By contrast, E. coli induced a lower Hsp-60 secretion in the amnion compared to Hsp-70. DISCUSSION Human fetal membranes responded actively to E. coli infection, with an increase in Hsp-70 during the first hours of infection. After 24 h, there was an increase in the liberation of IL-1β.
Collapse
Affiliation(s)
- M Osorio-Caballero
- Department of Obstetrics and Gynecology, National Institute of Perinatology "Isidro Espinosa de los Reyes", Montes Urales #800, Col. Lomas de Virreyes cp, 11000 Mexico City, Mexico
| | - C Perdigón-Palacio
- Department of Biochemistry and Molecular Biology, National Institute of Perinatology "Isidro Espinosa de los Reyes", Mexico City, Mexico
| | - G García-López
- Department of Cellular Biology, National Institute of Perinatology "Isidro Espinosa de los Reyes", Mexico City, Mexico
| | - O Flores-Herrera
- Department of Biochemistry, School of Medicine, UNAM. Apdo. Postal 70-159, Copilco, Coyoacán, Mexico City, Mexico
| | - S Olvera-Sánchez
- Department of Biochemistry, School of Medicine, UNAM. Apdo. Postal 70-159, Copilco, Coyoacán, Mexico City, Mexico
| | - I Morales-Méndez
- Department of Infectology and Immunology, National Institute of Perinatology "Isidro Espinosa de los Reyes", Mexico City, Mexico
| | - I Sosa-González
- Department of Infectology and Immunology, National Institute of Perinatology "Isidro Espinosa de los Reyes", Mexico City, Mexico
| | - J F Acevedo
- Department of Obstetrics and Gynecology, University of Texas SouthWestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75235, USA
| | - A M Guzmán-Grenfell
- Department of Biochemistry and Molecular Biology, National Institute of Perinatology "Isidro Espinosa de los Reyes", Mexico City, Mexico
| | - A Molina-Hernández
- Department of Cellular Biology, National Institute of Perinatology "Isidro Espinosa de los Reyes", Mexico City, Mexico
| | - N F Díaz
- Department of Cellular Biology, National Institute of Perinatology "Isidro Espinosa de los Reyes", Mexico City, Mexico
| | - H Flores-Herrera
- Department of Biochemistry and Molecular Biology, National Institute of Perinatology "Isidro Espinosa de los Reyes", Mexico City, Mexico.
| |
Collapse
|
33
|
Liu M, Du K, Fu Z, Zhang S, Wu X. Hypoxia-inducible factor 1-alpha up-regulates the expression of phospholipase D2 in colon cancer cells under hypoxic conditions. Med Oncol 2014; 32:394. [DOI: 10.1007/s12032-014-0394-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 11/20/2014] [Indexed: 10/24/2022]
|
34
|
Lei Q, Qiang F, Chao D, Di W, Guoqian Z, Bo Y, Lina Y. Amelioration of hypoxia and LPS-induced intestinal epithelial barrier dysfunction by emodin through the suppression of the NF-κB and HIF-1α signaling pathways. Int J Mol Med 2014; 34:1629-39. [PMID: 25318952 DOI: 10.3892/ijmm.2014.1965] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Accepted: 09/25/2014] [Indexed: 12/22/2022] Open
Abstract
Intestinal barrier dysfunction occurs in critical illnesses and involves the inflammatory and hypoxic injury of intestinal epithelial cells. Researchers are still defining the underlying mechanisms and evaluating therapeutic strategies for restoring intestinal barrier function. The anti-inflammatory drug, emodin, has been shown to exert a protective effect on intestinal barrier function; however, its mechanisms of action remain unknown. In this study, we investigated the protective effects of emodin on intestinal barrier function and the underlying mechanisms in intestinal epithelial cells challenged with lipopolysaccharide (LPS) and hypoxia/reoxygenation (HR). To induce barrier dysfunction, Caco-2 monolayers were subjected to HR with or without LPS treatment. Transepithelial electrical resistance and paracellular permeability were measured to evaluate barrier function. The expression of the tight junction (TJ) proteins, zonula occludens (ZO)-1, occludin, and claudin-1, as well as that of hypoxia-inducible factor (HIF)-1α, phosphor-IκB-α, phosphor-nuclear factor (NF)-κB p65 and cyclooxygenase (COX)-2 was determined by western blot analysis. The results revealed that emodin markedly attenuated the decrease in transepithelial electrical resistance and the increase in paracellular permeability in the Caco-2 monolayers treated with LPS and subjected to HR. Emodin also markedly alleviated the damage caused by LPS and HR (manifested by a decrease in the expression of the TJ protein, ZO-1), and inhibited the expression of HIF-1α, IκB-α, NF-κB and COX-2 in a dose-dependent manner. In conclusion, our data suggest that emodin attenuates LPS- and HR-induced intestinal epithelial barrier dysfunction by inhibiting the HIF-1α and NF-κB signaling pathways and preventing the damage caused to the TJ barrier (shown by the decrease in the expression of ZO-1).
Collapse
Affiliation(s)
- Qi Lei
- Department of ICU, Tianjin Huanhu Hospital, Tianjin, P.R. China
| | - Fu Qiang
- Department of ICU, Tianjin 4th Central Hospital, Tianjin, P.R. China
| | - Du Chao
- Department of ICU, Tianjin Medical University, Nankai Hospital, Tianjin, P.R. China
| | - Wu Di
- Department of ICU, Tianjin Huanhu Hospital, Tianjin, P.R. China
| | - Zhang Guoqian
- Clinical Laboratory, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, P.R. China
| | - Yuan Bo
- Graduate College, Tianjin Medical University, Tianjin, P.R. China
| | - Yan Lina
- Graduate College, Tianjin Medical University, Tianjin, P.R. China
| |
Collapse
|
35
|
Kang DW, Choi KY, Min DS. Functional regulation of phospholipase D expression in cancer and inflammation. J Biol Chem 2014; 289:22575-22582. [PMID: 24990948 DOI: 10.1074/jbc.r114.569822] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Phospholipase D (PLD) regulates downstream effectors by generating phosphatidic acid. Growing links of dysregulation of PLD to human disease have spurred interest in therapeutics that target its function. Aberrant PLD expression has been identified in multiple facets of complex pathological states, including cancer and inflammatory diseases. Thus, it is important to understand how the signaling network of PLD expression is regulated and contributes to progression of these diseases. Interestingly, small molecule PLD inhibitors can suppress PLD expression as well as enzymatic activity of PLD and have been shown to be effective in pathological mice models, suggesting the potential for use of PLD inhibitors as therapeutics against cancer and inflammation. Here, we summarize recent scientific developments regarding the regulation of PLD expression and its role in cancer and inflammatory processes.
Collapse
Affiliation(s)
- Dong Woo Kang
- Department of Molecular Biology, College of Natural Science, Pusan National University, Busan 609-735
| | - Kang-Yell Choi
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, and; Translational Research Center for Protein Function Control, Yonsei University, Seoul 120-749, Korea
| | - Do Sik Min
- Department of Molecular Biology, College of Natural Science, Pusan National University, Busan 609-735,; Translational Research Center for Protein Function Control, Yonsei University, Seoul 120-749, Korea.
| |
Collapse
|