1
|
Hu S, Han X, Liu G, Wang S. LncRNAs as potential prognosis/diagnosis markers and factors driving drug resistance of osteosarcoma, a review. Front Endocrinol (Lausanne) 2024; 15:1415722. [PMID: 39015175 PMCID: PMC11249743 DOI: 10.3389/fendo.2024.1415722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 06/17/2024] [Indexed: 07/18/2024] Open
Abstract
Osteosarcoma is a common malignancy that often occurs in children, teenagers and young adults. Although the treatment strategy has improved, the results are still poor for most patients with metastatic or recurrent osteosarcomas. Therefore, it is necessary to identify new and effective prognostic biomarkers and therapeutic targets for diseases. Human genomes contain lncRNAs, transcripts with limited or insufficient capacity to encode proteins. They have been implicated in tumorigenesis, particularly regarding the onset, advancement, resistance to treatment, recurrence and remote dissemination of malignancies. Aberrant lncRNA expression in osteosarcomas has been reported by numerous researchers; lncRNAs have the potential to exhibit either oncogenic or tumor-suppressing behaviors and thus, to govern the advancement of this skeletal cancer. They are suspected to influence osteosarcoma cell growth, replication, invasion, migration, remote dissemination and programmed cell death. Additionally, they have been recognized as clinical markers, and may participate in the development of multidrug resistance. Therefore, the study of lncRNAs in the growth, metastasis, treatment and prognosis of osteosarcoma is very important for the active prevention and treatment of osteosarcoma. Consequently, this work reviews the functions of lncRNAs.
Collapse
Affiliation(s)
- Siwang Hu
- The Orthopedic Center, Wenling First People’s Hospital (The Affiliated Wenling Hospital of Wenzhou Medical University), Wenling, China
| | - Xuebing Han
- Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Gang Liu
- Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Shuangshuang Wang
- Department of Cardiology, Wenling First People’s Hospital (The Affiliated Wenling Hospital of Wenzhou Medical University), Wenling, China
| |
Collapse
|
2
|
Xu M, Qian K, Shao H, Yao Y, Nair V, Ye J, Qin A. 3'UTR of ALV-J can affect viral replication through promoting transcription and mRNA nuclear export. J Virol 2023; 97:e0115223. [PMID: 37902396 PMCID: PMC10688361 DOI: 10.1128/jvi.01152-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/29/2023] [Indexed: 10/31/2023] Open
Abstract
IMPORTANCE 3'UTRs can affect gene transcription and post-transcriptional regulation in multiple ways, further influencing the function of proteins in a unique manner. Recently, ALV-J has been mutating and evolving rapidly, especially the 3'UTR of viral genome. Meanwhile, clinical symptoms caused by ALV-J have changed significantly. In this study, we found that the ALV-J strains containing △-r-TM-type 3'UTR are the most abundant. By constructing ALV-J infectious clones and subgenomic vectors containing different 3'UTRs, we prove that 3'UTRs directly affect viral tissue preference and can promote virus replication as an enhancer. ALV-J strain containing 3'UTR of △-r-TM proliferated fastest in primary cells. All five forms of 3'UTRs can assist intron-containing viral mRNA nuclear export, with similar efficiency. ALV-J mRNA half-life is not influenced by different 3'UTRs. Our results dissect the roles of 3'UTR on regulating viral replication and pathogenicity, providing novel insights into potential anti-viral strategies.
Collapse
Affiliation(s)
- Moru Xu
- Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Kun Qian
- Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
| | - Hongxia Shao
- Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
| | - Yongxiu Yao
- The Pirbright Institute and UK-China Centre of Excellence on Avian Disease Research, Surrey, United Kingdom
| | - Venugopal Nair
- The Pirbright Institute and UK-China Centre of Excellence on Avian Disease Research, Surrey, United Kingdom
| | - Jianqiang Ye
- Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
| | - Aijian Qin
- Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
| |
Collapse
|
3
|
Peng Y, Guo R, Shi B, Li D. The role of long non-coding RNA H19 in infertility. Cell Death Discov 2023; 9:268. [PMID: 37507391 PMCID: PMC10382492 DOI: 10.1038/s41420-023-01567-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 07/05/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
Infertility is defined as the failure to conceive after at least one year of unprotected intercourse. Long non-coding RNAs (lncRNAs) are transcripts that contain more than 200 nucleotides but do not convert into proteins. LncRNAs, particularly lncRNA H19, have been linked to the emergence and progression of various diseases. This review focuses on the role of H19 in infertility caused by polycystic ovary syndrome, endometriosis, uterine fibroids, diminished ovarian reserve, male factor, and assisted reproductive technology-related pathology, highlighting the potential of H19 as a molecular target for the future treatment of infertility.
Collapse
Affiliation(s)
- Yuanyuan Peng
- Center of Reproductive Medicine, Shengjing Hospital of China Medical University, Shenyang, 110004, China
- NHC Key Laboratory of Advanced Reproductive Medicine and Fertility (China Medical University), National Health Commission, Shenyang, 110004, China
| | - Renhao Guo
- Center of Reproductive Medicine, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Bei Shi
- Center of Reproductive Medicine, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
- NHC Key Laboratory of Advanced Reproductive Medicine and Fertility (China Medical University), National Health Commission, Shenyang, 110004, China.
- Department of Physiology, School of Life Sciences, China Medical University, Shenyang, 110122, China.
| | - Da Li
- Center of Reproductive Medicine, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
- NHC Key Laboratory of Advanced Reproductive Medicine and Fertility (China Medical University), National Health Commission, Shenyang, 110004, China.
| |
Collapse
|
4
|
Yang M, Zhang M, Wang Q, Guo X, Geng P, Gu J, Ji W, Zhang L. Six polymorphisms in the lncRNA H19 gene and the risk of cancer: a systematic review and meta-analysis. BMC Cancer 2023; 23:688. [PMID: 37480014 PMCID: PMC10362596 DOI: 10.1186/s12885-023-11164-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 07/08/2023] [Indexed: 07/23/2023] Open
Abstract
BACKGROUND Numerous studies have demonstrated long noncoding RNA (lncRNA) play an important role in the occurrence and progression of cancer, and single nucleotide polymorphisms (SNPs) located in lncRNA are considered to affect cancer suspensibility. Herein, a meta-analysis was carried out to better assess the relationship of H19 polymorphisms and cancer susceptibility. METHODS A literature search was conducted through using PubMed, EMBASE, and Web of Science databases to obtain relevant publications before Aug 23, 2022. The reference lists of the retrieved studies were also investigated to identify additional relevant articles. The pooled odds ratios (ORs) with 95% confidence intervals (CIs) were calculated to appraise the risk of various cancers. RESULTS There appeared to be a remarkable correlation between the rs2107425 variation and decreased cancer risk among Caucasians. Nevertheless, the rs217727 polymorphism was significantly associated with an increased risk of lung cancer, hepatocellular carcinoma and oral squamous cell carcinoma. Also, we found a significant correlation between the rs2839698 polymorphism and increased cancer risk among Asians, gastric cancer, hepatocellular carcinoma, hospital-based control and larger simple size subgroups, respectively. Similarly, the rs3741219 mutation was notably related to cancer risk in higher quality score. As for rs3024270 polymorphism, the homozygous model was markedly linked to cancer risk in overall analysis and population-based controls. There was no significant association between the rs3741216 polymorphism and cancer risk. CONCLUSION H19 rs2839698 and rs3024270 were closely associated with overall cancer risk. H19 rs2107425 was related to lower cancer risk among Caucasians, while the rs2839698 was related to increased cancer risk among Asians. Our results supported that H19 SNPs were significantly correlated with cancer risk.
Collapse
Affiliation(s)
- Maoquan Yang
- School of Clinical Medicine, Affiliated Hospital of Weifang Medical University, Weifang Medical University, Weifang, Shandong, China
- Department of Gastroenterology, Affiliated Hospital of Weifang Medical University, No. 2428, Yuhe Road, Weifang, 261031, Shandong, China
| | - Mingwei Zhang
- Department of Pathology, Shandong University School of Basic Medical Sciences, Jinan, Shandong, China
| | - Qiong Wang
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Department of Gastroenterology, Weifang NO.2 People s Hospital, Weifang, Shandong, China
| | - Xiaojing Guo
- School of Clinical Medicine, Affiliated Hospital of Weifang Medical University, Weifang Medical University, Weifang, Shandong, China
| | - Peizhen Geng
- School of Clinical Medicine, Affiliated Hospital of Weifang Medical University, Weifang Medical University, Weifang, Shandong, China
| | - Jinhua Gu
- School of Clinical Medicine, Affiliated Hospital of Weifang Medical University, Weifang Medical University, Weifang, Shandong, China
| | - Wansheng Ji
- Department of Gastroenterology, Affiliated Hospital of Weifang Medical University, No. 2428, Yuhe Road, Weifang, 261031, Shandong, China.
- Experimental Center for Medical Research, Weifang Medical University, Weifang, Shandong, China.
| | - Li Zhang
- Department of Gastroenterology, Affiliated Hospital of Weifang Medical University, No. 2428, Yuhe Road, Weifang, 261031, Shandong, China.
| |
Collapse
|
5
|
Liao J, Chen B, Zhu Z, Du C, Gao S, Zhao G, Zhao P, Wang Y, Wang A, Schwartz Z, Song L, Hong J, Wagstaff W, Haydon RC, Luu HH, Fan J, Reid RR, He TC, Shi L, Hu N, Huang W. Long noncoding RNA (lncRNA) H19: An essential developmental regulator with expanding roles in cancer, stem cell differentiation, and metabolic diseases. Genes Dis 2023; 10:1351-1366. [PMID: 37397543 PMCID: PMC10311118 DOI: 10.1016/j.gendis.2023.02.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 01/07/2023] [Accepted: 02/08/2023] [Indexed: 07/04/2023] Open
Abstract
Recent advances in deep sequencing technologies have revealed that, while less than 2% of the human genome is transcribed into mRNA for protein synthesis, over 80% of the genome is transcribed, leading to the production of large amounts of noncoding RNAs (ncRNAs). It has been shown that ncRNAs, especially long non-coding RNAs (lncRNAs), may play crucial regulatory roles in gene expression. As one of the first isolated and reported lncRNAs, H19 has gained much attention due to its essential roles in regulating many physiological and/or pathological processes including embryogenesis, development, tumorigenesis, osteogenesis, and metabolism. Mechanistically, H19 mediates diverse regulatory functions by serving as competing endogenous RNAs (CeRNAs), Igf2/H19 imprinted tandem gene, modular scaffold, cooperating with H19 antisense, and acting directly with other mRNAs or lncRNAs. Here, we summarized the current understanding of H19 in embryogenesis and development, cancer development and progression, mesenchymal stem cell lineage-specific differentiation, and metabolic diseases. We discussed the potential regulatory mechanisms underlying H19's functions in those processes although more in-depth studies are warranted to delineate the exact molecular, cellular, epigenetic, and genomic regulatory mechanisms underlying the physiological and pathological roles of H19. Ultimately, these lines of investigation may lead to the development of novel therapeutics for human diseases by exploiting H19 functions.
Collapse
Affiliation(s)
- Junyi Liao
- Departments of Orthopedic Surgery and Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Orthopedic Research Center, Chongqing Medical University, Chongqing 400016, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Bowen Chen
- Departments of Orthopedic Surgery and Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Orthopedic Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Zhenglin Zhu
- Departments of Orthopedic Surgery and Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Orthopedic Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Chengcheng Du
- Departments of Orthopedic Surgery and Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Orthopedic Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Shengqiang Gao
- Departments of Orthopedic Surgery and Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Orthopedic Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Guozhi Zhao
- Departments of Orthopedic Surgery and Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Piao Zhao
- Departments of Orthopedic Surgery and Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Orthopedic Research Center, Chongqing Medical University, Chongqing 400016, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Yonghui Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Clinical Laboratory Medicine, Shanghai Jiaotong University School of Medicine, Shanghai 200000, China
| | - Annie Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Zander Schwartz
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- School of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Lily Song
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Jeffrey Hong
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - William Wagstaff
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- The Medical Scientist Training Program, The University of Chicago Pritzker School of Medicine, Chicago, IL 60637, USA
| | - Rex C. Haydon
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Hue H. Luu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Jiaming Fan
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, Department of Clinical Biochemistry, The School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Russell R. Reid
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Laboratory of Craniofacial Suture Biology and Development, Department of Surgery Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Laboratory of Craniofacial Suture Biology and Development, Department of Surgery Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Lewis Shi
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Ning Hu
- Departments of Orthopedic Surgery and Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Orthopedic Research Center, Chongqing Medical University, Chongqing 400016, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Wei Huang
- Departments of Orthopedic Surgery and Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Orthopedic Research Center, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
6
|
Yuan Y, Wang Y, Niu X, Han Y, Li W, Cheng M, Li Z, Tan J, Zhao Y, Wang W. Association of lncRNA H19 polymorphisms with cancer susceptibility: An updated meta-analysis based on 53 studies. Front Genet 2022; 13:1051766. [PMID: 36588790 PMCID: PMC9794744 DOI: 10.3389/fgene.2022.1051766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/28/2022] [Indexed: 12/15/2022] Open
Abstract
The association between polymorphisms in lncRNA H19 and cancer susceptibility remains to be inconsistent. This study aimed to provide a more precise estimation of the relationship between lncRNA H19 polymorphisms and the risk of cancer based on all available published studies. 53 studies encompassing 32,376 cases and 43,659 controls were included in our meta-analysis by searching the Pubmed, Embase, Web of Science, WanFang, and China National Knowledge Infrastructure databases. Pooled ORs and their 95% CIs were used to estimate the strength between the SNPs in H19 (rs217727, rs2839698, rs2107425, rs3024270, rs2735971, rs3741216, and rs3741219) and cancer susceptibility. The results showed that H19 rs2839698 polymorphism was associated with increased cancer risk in all participants under three genetic models. However, no significant association was identified between the other six SNPs as well as an overall cancer risk. Stratification by ethnicity showed that rs2839698 mutation indicated to be an important hazardous factor for the Asian population. While rs2107425 mutation had a protective effect on the Caucasian population. Stratification by cancer type identified that rs217727 mutation was linked to increased susceptibility to oral squamous cell carcinoma, lung cancer, and hepatocellular carcinoma; whereas rs2839698 mutation was associated with an elevated risk of hematological tumor and digestive system tumor (p < 0.05). Besides, the rs2735971 mutation was connected with the digestive system tumor. In summary, the rs217727, rs2839698, rs2107425 and rs2735971 polymorphisms in H19 have associations with cancer susceptibility.
Collapse
|
7
|
Zhang X, Luo M, Zhang J, Guo B, Singh S, Lin X, Xiong H, Ju S, Wang L, Zhou Y, Zhou J. The role of lncRNA H19 in tumorigenesis and drug resistance of human Cancers. Front Genet 2022; 13:1005522. [PMID: 36246634 PMCID: PMC9555214 DOI: 10.3389/fgene.2022.1005522] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 08/22/2022] [Indexed: 11/23/2022] Open
Abstract
Systemic therapy is one of the most significant cancer treatments. However, drug resistance often appears and has become the primary cause of cancer therapy failure. Regulation of drug target, drug metabolism and drug efflux, cell death escape (apoptosis, autophagy, et al.), epigenetic changes, and many other variables are complicatedly involved in the mechanisms of drug resistance. In various types of cancers, long non-coding RNA H19 (lncRNA H19) has been shown to play critical roles in tumor development, proliferation, metastasis, and multiple drug resistance as well. The efficacy of chemotherapy, endocrine therapy, and targeted therapy are all influenced by the expression of H19, especially in breast cancer, liver cancer, lung cancer and colorectal cancer. Here, we summarize the relationship between lncRNA H19 and tumorigenesis, and illustrate the drug resistance mechanisms caused by lncRNA H19 as well. This review may provide more therapeutic potential targets for future cancer treatments.
Collapse
Affiliation(s)
- Xun Zhang
- Department of Surgical Oncology, The Sir Run Run Shaw Affiliated Hospital, Zhejiang University, Hangzhou, China
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Hangzhou, China
- Zhejiang University School of Medicine, Hangzhou, China
| | - Mingpeng Luo
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Jiahang Zhang
- Department of Surgical Oncology, The Sir Run Run Shaw Affiliated Hospital, Zhejiang University, Hangzhou, China
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Hangzhou, China
- Zhejiang University School of Medicine, Hangzhou, China
| | - Bize Guo
- Zhejiang University School of Medicine, Hangzhou, China
| | - Shreya Singh
- Zhejiang University School of Medicine, Hangzhou, China
| | - Xixi Lin
- Department of Surgical Oncology, The Sir Run Run Shaw Affiliated Hospital, Zhejiang University, Hangzhou, China
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Hangzhou, China
- Zhejiang University School of Medicine, Hangzhou, China
| | - Hanchu Xiong
- Zhejiang University School of Medicine, Hangzhou, China
| | - Siwei Ju
- Department of Surgical Oncology, The Sir Run Run Shaw Affiliated Hospital, Zhejiang University, Hangzhou, China
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Hangzhou, China
- Zhejiang University School of Medicine, Hangzhou, China
| | - Linbo Wang
- Department of Surgical Oncology, The Sir Run Run Shaw Affiliated Hospital, Zhejiang University, Hangzhou, China
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Hangzhou, China
- *Correspondence: Linbo Wang, ; Yulu Zhou, ; Jichun Zhou,
| | - Yulu Zhou
- Department of Surgical Oncology, The Sir Run Run Shaw Affiliated Hospital, Zhejiang University, Hangzhou, China
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Hangzhou, China
- *Correspondence: Linbo Wang, ; Yulu Zhou, ; Jichun Zhou,
| | - Jichun Zhou
- Department of Surgical Oncology, The Sir Run Run Shaw Affiliated Hospital, Zhejiang University, Hangzhou, China
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Hangzhou, China
- *Correspondence: Linbo Wang, ; Yulu Zhou, ; Jichun Zhou,
| |
Collapse
|
8
|
Xie J, Hu Y, Sun D, Liu C, Li Z, Zhu J. Targeting non-coding RNA H19: A potential therapeutic approach in pulmonary diseases. Front Pharmacol 2022; 13:978151. [PMID: 36188624 PMCID: PMC9523668 DOI: 10.3389/fphar.2022.978151] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
Non-coding RNA is still one of the most popular fields in biology research. In recent years, people paid more attention to the roles of H19 in lung diseases, which expressed abnormally in various pathological process. Therefore, this review focus on the regulatory role of H19 in asthma, pulmonary arterial hypertension (PAH), idiopathic pulmonary fibrosis (IPF), lung injury, pneumonia, lung cancer, etc. And the potential therapeutic agents and molecular treatments of H19 are collected. The aim is to demonstrate its underlying mechanism in pulmonary diseases and to guide the basic research targeting H19 into clinical drug translation.
Collapse
Affiliation(s)
- Jinghui Xie
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Yuedi Hu
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Dengdi Sun
- The Key Laboratory of Intelligent Computing and Signal Processing (ICSP), Ministry of Education, School of Artificial Intelligence, Anhui University, Hefei, China
| | - Changan Liu
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Zegeng Li
- Institute of Traditional Chinese Medicine Prevention and Control on Respiratory Disease, Anhui Academy of Chinese Medicine, Hefei, Anhui, China
- Department of Respiratory Medicine, First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, Anhui, China
| | - Jie Zhu
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, China
- Institute of Traditional Chinese Medicine Prevention and Control on Respiratory Disease, Anhui Academy of Chinese Medicine, Hefei, Anhui, China
- Institutes of Integrative Medicine, Fudan University, Shanghai, China
| |
Collapse
|
9
|
ZeinElAbdeen YA, AbdAlSeed A, Youness RA. Decoding Insulin-Like Growth Factor Signaling Pathway From a Non-coding RNAs Perspective: A Step Towards Precision Oncology in Breast Cancer. J Mammary Gland Biol Neoplasia 2022; 27:79-99. [PMID: 35146629 DOI: 10.1007/s10911-022-09511-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 01/24/2022] [Indexed: 12/21/2022] Open
Abstract
Breast cancer (BC) is a highly complex and heterogenous disease. Several oncogenic signaling pathways drive BC oncogenic activity, thus hindering scientists to unravel the exact molecular pathogenesis of such multifaceted disease. This highlights the urgent need to find a key regulator that tunes up such intertwined oncogenic drivers to trim the malignant transformation process within the breast tissue. The Insulin-like growth factor (IGF) signaling pathway is a tenacious axis that is heavily intertwined with BC where it modulates the amplitude and activity of vital downstream oncogenic signaling pathways. Yet, the complexity of the pathway and the interactions driven by its different members seem to aggravate its oncogenicity and hinder its target-ability. In this review, the authors shed the light on the stubbornness of the IGF signaling pathway and its potential regulation by non-coding RNAs in different BC subtypes. Nonetheless, this review also spots light on the possible transport systems available for efficient delivery of non-coding RNAs to their respective targets to reach a personalized treatment code for BC patients.
Collapse
Affiliation(s)
- Yousra Ahmed ZeinElAbdeen
- The Molecular Genetics Research Team, Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University, Main Entrance Al Tagamoa Al Khames, New Cairo CityCairo, 11835, Egypt
| | - Amna AbdAlSeed
- The Molecular Genetics Research Team, Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University, Main Entrance Al Tagamoa Al Khames, New Cairo CityCairo, 11835, Egypt
- University of Khartoum, Al-Gama a Avenue, 11115, Khartoum, Sudan
| | - Rana A Youness
- The Molecular Genetics Research Team, Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University, Main Entrance Al Tagamoa Al Khames, New Cairo CityCairo, 11835, Egypt.
- School of Life and Medical Sciences, University of Hertfordshire Hosted By Global Academic Foundation, New Administrative Capital, Cairo, 11586, Egypt.
| |
Collapse
|
10
|
Nuñez-Olvera SI, Puente-Rivera J, Ramos-Payán R, Pérez-Plasencia C, Salinas-Vera YM, Aguilar-Arnal L, López-Camarillo C. Three-Dimensional Genome Organization in Breast and Gynecological Cancers: How Chromatin Folding Influences Tumorigenic Transcriptional Programs. Cells 2021; 11:75. [PMID: 35011637 PMCID: PMC8750285 DOI: 10.3390/cells11010075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/15/2021] [Accepted: 12/24/2021] [Indexed: 12/19/2022] Open
Abstract
A growing body of research on the transcriptome and cancer genome has demonstrated that many gynecological tumor-specific gene mutations are located in cis-regulatory elements. Through chromosomal looping, cis-regulatory elements interact which each other to control gene expression by bringing distant regulatory elements, such as enhancers and insulators, into close proximity with promoters. It is well known that chromatin connections may be disrupted in cancer cells, promoting transcriptional dysregulation and the expression of abnormal tumor suppressor genes and oncogenes. In this review, we examine the roles of alterations in 3D chromatin interactions. This includes changes in CTCF protein function, cancer-risk single nucleotide polymorphisms, viral integration, and hormonal response as part of the mechanisms that lead to the acquisition of enhancers or super-enhancers. The translocation of existing enhancers, as well as enhancer loss or acquisition of insulator elements that interact with gene promoters, is also revised. Remarkably, similar processes that modify 3D chromatin contacts in gene promoters may also influence the expression of non-coding RNAs, such as long non-coding RNAs (lncRNAs) and microRNAs (miRNAs), which have emerged as key regulators of gene expression in a variety of cancers, including gynecological malignancies.
Collapse
Affiliation(s)
- Stephanie I. Nuñez-Olvera
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
| | - Jonathan Puente-Rivera
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, Mexico City 03100, Mexico;
| | - Rosalio Ramos-Payán
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Culiacan City 80030, Mexico;
| | | | - Yarely M. Salinas-Vera
- Departamento de Bioquímica, Centro de Investigación y Estudios Avanzados, Mexico City 07360, Mexico;
| | - Lorena Aguilar-Arnal
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
| | - César López-Camarillo
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, Mexico City 03100, Mexico;
| |
Collapse
|
11
|
Carpizo DR, Harris CR. Genetic Drivers of Ileal Neuroendocrine Tumors. Cancers (Basel) 2021; 13:cancers13205070. [PMID: 34680217 PMCID: PMC8533727 DOI: 10.3390/cancers13205070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/07/2021] [Accepted: 10/08/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Although ileal neuroendocrine tumors are the most common tumors of the small intestine, they are not well-defined at the genetic level. Unlike most cancers, they have an unusually low number of mutations, and also lack recurrently mutated genes. Moreover ileal NETs have been difficult to study in the laboratory because there were no animal models and because cell lines were generally unavailable. But recent advances, including the first ileal NET mouse model as well as methods for culturing patient tumor samples, have been described and have already helped to identify IGF2 and CDK4 as two of the genetic drivers for this tumor type. These advances may help in the development of new treatments for patients. Abstract The genetic causes of ileal neuroendocrine tumors (ileal NETs, or I-NETs) have been a mystery. For most types of tumors, key genes were revealed by large scale genomic sequencing that demonstrated recurrent mutations of specific oncogenes or tumor suppressors. In contrast, genomic sequencing of ileal NETs demonstrated a distinct lack of recurrently mutated genes, suggesting that the mechanisms that drive the formation of I-NETs may be quite different than the cell-intrinsic mutations that drive the formation of other tumor types. However, recent mouse studies have identified the IGF2 and RB1 pathways in the formation of ileal NETs, which is supported by the subsequent analysis of patient samples. Thus, ileal NETs no longer appear to be a cancer without genetic causes.
Collapse
|
12
|
Tang C, Liu J, Hu Q, Zeng S, Yu L. Metastatic colorectal cancer: Perspectives on long non-coding RNAs and promising therapeutics. Eur J Pharmacol 2021; 908:174367. [PMID: 34303661 DOI: 10.1016/j.ejphar.2021.174367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 07/15/2021] [Accepted: 07/21/2021] [Indexed: 01/06/2023]
Abstract
Metastatic colorectal cancer (mCRC) has long been lethal despite the continuous efforts of researchers worldwide to discover and improve therapeutic regimens. Thanks to the emergence of long non-coding RNAs (lncRNAs), which has strongly reshaped our inherent perspectives on the pathophysiological patterns of disease, research in the field has been reinvigorated. Here, we focus on current understanding of the modes of action of lncRNAs, and review their regulatory roles in metastatic colorectal cancer, and discuss correlated potential lncRNA-based therapeutics. All of the discussed studies share clear and promising perspectives on future diagnostic and therapeutic remedies for metastatic colorectal cancer.
Collapse
Affiliation(s)
- Chunyuan Tang
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Junqing Liu
- The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310022, China
| | - Qingqing Hu
- The Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Jinhua, 322023, China
| | - Su Zeng
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Lushan Yu
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| |
Collapse
|
13
|
Pillay S, Takahashi H, Carninci P, Kanhere A. Antisense RNAs during early vertebrate development are divided in groups with distinct features. Genome Res 2021; 31:995-1010. [PMID: 33795334 PMCID: PMC8168585 DOI: 10.1101/gr.262964.120] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 03/29/2021] [Indexed: 01/15/2023]
Abstract
Long noncoding RNAs or lncRNAs are a class of non-protein-coding RNAs that are >200 nt in length. Almost 50% of lncRNAs during zebrafish development are transcribed in an antisense direction to a protein-coding gene. However, the role of these natural antisense transcripts (NATs) during development remains enigmatic. To understand NATs in early vertebrate development, we took a computational biology approach and analyzed existing as well as novel data sets. Our analysis indicates that zebrafish NATs can be divided into two major classes based on their coexpression patterns with respect to the overlapping protein-coding genes. Group 1 NATs have characteristics similar to maternally deposited RNAs in that their levels decrease as development progresses. Group 1 NAT levels are negatively correlated with that of overlapping sense-strand protein-coding genes. Conversely, Group 2 NATs are coexpressed with overlapping protein-coding genes. In contrast to Group 1, which is enriched in genes involved in developmental pathways, Group 2 protein-coding genes are enriched in housekeeping functions. Group 1 NATs also show larger overlap and higher complementarity with the sense-strand mRNAs compared to other NATs. In addition, our transcriptomics data, quantifying RNA levels from cytoplasmic and nuclear compartments, indicates that Group 1 NATs are more abundant in the cytosol. Based on their expression pattern, cytosolic nature, and their higher complementarity to the overlapping developmental mRNAs, we speculate that Group 1 NATs function post-transcriptionally to silence spurious expression of developmental genes.
Collapse
Affiliation(s)
- Sanjana Pillay
- Department of Cell, Developmental and Regenerative Biology, Mount Sinai School of Medicine, New York, New York 10029, USA
| | - Hazuki Takahashi
- Laboratory for Transcriptome Technology, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan
| | - Piero Carninci
- Laboratory for Transcriptome Technology, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan
- Fondazione Human Technopole, 20157 Milan, Italy
| | - Aditi Kanhere
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 3GE, United Kingdom
| |
Collapse
|
14
|
Bogard B, Francastel C, Hubé F. Multiple information carried by RNAs: total eclipse or a light at the end of the tunnel? RNA Biol 2020; 17:1707-1720. [PMID: 32559119 PMCID: PMC7714488 DOI: 10.1080/15476286.2020.1783868] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 06/06/2020] [Accepted: 06/12/2020] [Indexed: 12/14/2022] Open
Abstract
The findings that an RNA is not necessarily either coding or non-coding, or that a precursor RNA can produce different types of mature RNAs, whether coding or non-coding, long or short, have challenged the dichotomous view of the RNA world almost 15 years ago. Since then, and despite an increasing number of studies, the diversity of information that can be conveyed by RNAs is rarely searched for, and when it is known, it remains largely overlooked in further functional studies. Here, we provide an update with prominent examples of multiple functions that are carried by the same RNA or are produced by the same precursor RNA, to emphasize their biological relevance in most living organisms. An important consequence is that the overall function of their locus of origin results from the balance between various RNA species with distinct functions and fates. The consideration of the molecular basis of this multiplicity of information is obviously crucial for downstream functional studies when the targeted functional molecule is often not the one that is believed.
Collapse
Affiliation(s)
- Baptiste Bogard
- Université De Paris, Epigenetics and Cell Fate, CNRS, Paris, France
| | | | - Florent Hubé
- Université De Paris, Epigenetics and Cell Fate, CNRS, Paris, France
| |
Collapse
|
15
|
Shermane Lim YW, Xiang X, Garg M, Le MT, Li-Ann Wong A, Wang L, Goh BC. The double-edged sword of H19 lncRNA: Insights into cancer therapy. Cancer Lett 2020; 500:253-262. [PMID: 33221454 DOI: 10.1016/j.canlet.2020.11.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/25/2020] [Accepted: 11/06/2020] [Indexed: 01/03/2023]
Abstract
H19 long non-coding RNA (lncRNA) has many functions in cancer. Some studies have reported that H19 acts as an oncogene and is involved in cancer progression by activating epithelial-mesenchymal transition (EMT), the cell cycle and angiogenesis via mechanisms like microRNA (miRNA) sponging - the binding to and inhibition of miRNA activity. This makes H19 lncRNA a potential target for cancer therapeutics. However, several conflicting studies have also found that H19 suppresses tumour development. In this review, we shed light on the possible reasons for these conflicting findings. We also summarise the current literature on the applications of H19 lncRNA in cancer therapy in many cancers and explore new avenues for future research. This includes the use of H19 in recombinant vectors, chemoresistance, epigenetic regulation, tumour microenvironment alteration and cancer immunotherapy. The relationship between H19 and the master tumour suppressor gene p53 is also explored. In most studies, H19 knockdown via RNA interference (RNAi) or epigenetic silencing inhibits cancer development. Thus, H19 lncRNA could be a promising target for the development of cancer therapeutics. This warrants further investigations into its translational research to improve cancer therapy outcomes.
Collapse
Affiliation(s)
- Yun Wei Shermane Lim
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore; Institute for Digital Medicine and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
| | - Xiaoqiang Xiang
- Department of Clinical Pharmacy, School of Pharmacy, Fudan University, Shanghai, 201203, China.
| | - Manoj Garg
- Amity Institute of Molecular Medicine & Stem Cell Research (AIMMSCR), Amity University, Sector-125, Noida, 201313, India
| | - Minh Tn Le
- Institute for Digital Medicine and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
| | - Andrea Li-Ann Wong
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore; Department of Haematology-Oncology, National University Cancer Institute, Singapore, 119228, Singapore; Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
| | - Lingzhi Wang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore; Institute for Digital Medicine and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.
| | - Boon-Cher Goh
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore; Institute for Digital Medicine and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore; Department of Haematology-Oncology, National University Cancer Institute, Singapore, 119228, Singapore; Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.
| |
Collapse
|
16
|
Gao T, Liu X, He B, Pan Y, Wang S. Long non-coding RNA 91H regulates IGF2 expression by interacting with IGF2BP2 and promotes tumorigenesis in colorectal cancer. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2020; 48:664-671. [PMID: 32070145 DOI: 10.1080/21691401.2020.1727491] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
91H, a long non-coding antisense transcripts located on the position of the H19/IGF2 locus had been suggested to play a critical role in tumour development. However, little study had proved the mechanism in colorectal cancer (CRC). Hence, we performed this study to deeply explore the mechanism of lncRNA 91H in tumour progression. The expression of lncRNA 91H was first detected in CRC tissues and cells which was higher in vitro and in vivo than normal cells or tissues and CRC patients with high lncRNA 91H expression usually had a high risk in tumour metastasis (p < .05). Then, monodansylcadaverine (MDC) staining, scratch wound, migration and invasion assays were conducted which showed to that reduced lncRNA 91H would greatly affect tumour migration, invasion and autophagy. Finally, by RNA pull down and RNA-binding protein immunoprecipitation (RIP) assay, a significant interaction was found between lncRNA 91H and IGF2BP2 which was proved to play an important role in CRC IGF2 expression. All these results suggested lncRNA 91H promotes IGF2 expression by interacting with IGF2BP2 which would provide a new strategy in finding potential CRC diagnostic biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Tianyi Gao
- Department of Clinical Laboratory, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Xiangxiang Liu
- Central Laboratory, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Bangshun He
- Central Laboratory, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yuqin Pan
- Central Laboratory, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Shukui Wang
- Department of Clinical Laboratory, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
17
|
Alipoor B, Parvar SN, Sabati Z, Ghaedi H, Ghasemi H. An updated review of the H19 lncRNA in human cancer: molecular mechanism and diagnostic and therapeutic importance. Mol Biol Rep 2020; 47:6357-6374. [PMID: 32743775 DOI: 10.1007/s11033-020-05695-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 07/26/2020] [Indexed: 12/24/2022]
Abstract
Accumulating evidence has reported that H19 long non-coding RNA (lncRNA) expression level is deregulated in human cancer. It has been also demonstrated that de-regulated levels of H19 could affect cancer biology by various mechanisms including microRNA (miRNA) production (like miR-675), miRNA sponging and epigenetic modifications. Furthermore, lncRNA could act as a potential diagnosis and prognosis biomarkers and also a candidate therapeutic approach for different human cancers. In this narrative review, we shed light on the molecular mechanism of H19 in cancer development and pathogenesis. Moreover, we discussed the expression pattern and diagnostic and therapeutic importance of H19 as a potential biomarker in a range of human malignancies from breast to osteosarcoma cancer.
Collapse
Affiliation(s)
- Behnam Alipoor
- Department of Laboratory Sciences, Faculty of Paramedicine, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Seyedeh Nasrin Parvar
- Department of Biochemistry, Faculty of Medicine, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Zolfaghar Sabati
- Student Research Committee, Abadan Faculty of Medical Sciences, Abadan, Iran
| | - Hamid Ghaedi
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hassan Ghasemi
- Department of Clinical Biochemistry, Abadan Faculty of Medical Sciences, Abadan, Iran.
| |
Collapse
|
18
|
Dai G, Xiao H, Zhao C, Chen H, Liao J, Huang W. LncRNA H19 Regulates BMP2-Induced Hypertrophic Differentiation of Mesenchymal Stem Cells by Promoting Runx2 Phosphorylation. Front Cell Dev Biol 2020; 8:580. [PMID: 32903671 PMCID: PMC7438821 DOI: 10.3389/fcell.2020.00580] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 06/15/2020] [Indexed: 12/11/2022] Open
Abstract
Objectives Bone morphogenetic protein 2 (BMP2) triggers hypertrophic differentiation after chondrogenic differentiation of mesenchymal stem cells (MSCs), which blocked the further application of BMP2-mediated cartilage tissue engineering. Here, we investigated the underlying mechanisms of BMP2-mediated hypertrophic differentiation of MSCs. Materials and Methods In vitro and in vivo chondrogenic differentiation models of MSCs were constructed. The expression of H19 in mouse limb was detected by fluorescence in situ hybridization (FISH) analysis. Transgenes BMP2, H19 silencing, and overexpression were expressed by adenoviral vectors. Gene expression was determined by reverse transcription and quantitative real-time PCR (RT-qPCR), Western blot, and immunohistochemistry. Correlations between H19 expressions and other parameters were calculated with Spearman’s correlation coefficients. The combination of H19 and Runx2 was identified by RNA immunoprecipitation (RIP) analysis. Results We identified that H19 expression level was highest in proliferative zone and decreased gradually from prehypertrophic zone to hypertrophic zone in mouse limbs. With the stimulation of BMP2, the highest expression level of H19 was followed after the peak expression level of Sox9; meanwhile, H19 expression levels were positively correlated with chondrogenic differentiation markers, especially in the late stage of BMP2 stimulation, and negatively correlated with hypertrophic differentiation markers. Our further experiments found that silencing H19 promoted BMP2-triggered hypertrophic differentiation through in vitro and in vivo tests, which indicated the essential role of H19 for maintaining the phenotype of BMP2-induced chondrocytes. In mechanism, we characterized that H19 regulated BMP2-mediated hypertrophic differentiation of MSCs by promoting the phosphorylation of Runx2. Conclusion These findings suggested that H19 regulates BMP2-induced hypertrophic differentiation of MSCs by promoting the phosphorylation of Runx2.
Collapse
Affiliation(s)
- Guangming Dai
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Haozhuo Xiao
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chen Zhao
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hong Chen
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Junyi Liao
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wei Huang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
19
|
Peperstraete E, Lecerf C, Collette J, Vennin C, Raby L, Völkel P, Angrand PO, Winter M, Bertucci F, Finetti P, Lagadec C, Meignan S, Bourette RP, Bourhis XL, Adriaenssens E. Enhancement of Breast Cancer Cell Aggressiveness by lncRNA H19 and its Mir-675 Derivative: Insight into Shared and Different Actions. Cancers (Basel) 2020; 12:cancers12071730. [PMID: 32610610 PMCID: PMC7407157 DOI: 10.3390/cancers12071730] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/11/2020] [Accepted: 06/28/2020] [Indexed: 12/11/2022] Open
Abstract
Breast cancer is a major public health problem and the leading world cause of women death by cancer. Both the recurrence and mortality of breast cancer are mainly caused by the formation of metastasis. The long non-coding RNA H19, the precursor of miR-675, is involved in breast cancer development. The aim of this work was to determine the implication but, also, the relative contribution of H19 and miR-675 to the enhancement of breast cancer metastatic potential. We showed that both H19 and miR-675 increase the invasive capacities of breast cancer cells in xenografted transgenic zebrafish models. In vitro, H19 and miR-675 enhance the cell migration and invasion, as well as colony formation. H19 seems to induce the epithelial-to-mesenchymal transition (EMT), with a decreased expression of epithelial markers and an increased expression of mesenchymal markers. Interestingly, miR-675 simultaneously increases the expression of both epithelial and mesenchymal markers, suggesting the induction of a hybrid phenotype or mesenchymal-to-epithelial transition (MET). Finally, we demonstrated for the first time that miR-675, like its precursor H19, increases the stemness properties of breast cancer cells. Altogether, our data suggest that H19 and miR-675 could enhance the aggressiveness of breast cancer cells through both common and different mechanisms.
Collapse
Affiliation(s)
- Evodie Peperstraete
- University Lille, CNRS, INSERM, CHU Lille, Centre Oscar Lambret, UMR 9020–UMR 1277–Canther–Cancer Heterogeneity, Plasticity and Resistance to Therapies, F-59000 Lille, France; (E.P.); (C.L.); (J.C.); (C.V.); (L.R.); (P.V.); (P.-O.A.); (M.W.); (C.L.); (S.M.); (R.P.B.); (X.L.B.)
| | - Clément Lecerf
- University Lille, CNRS, INSERM, CHU Lille, Centre Oscar Lambret, UMR 9020–UMR 1277–Canther–Cancer Heterogeneity, Plasticity and Resistance to Therapies, F-59000 Lille, France; (E.P.); (C.L.); (J.C.); (C.V.); (L.R.); (P.V.); (P.-O.A.); (M.W.); (C.L.); (S.M.); (R.P.B.); (X.L.B.)
| | - Jordan Collette
- University Lille, CNRS, INSERM, CHU Lille, Centre Oscar Lambret, UMR 9020–UMR 1277–Canther–Cancer Heterogeneity, Plasticity and Resistance to Therapies, F-59000 Lille, France; (E.P.); (C.L.); (J.C.); (C.V.); (L.R.); (P.V.); (P.-O.A.); (M.W.); (C.L.); (S.M.); (R.P.B.); (X.L.B.)
| | - Constance Vennin
- University Lille, CNRS, INSERM, CHU Lille, Centre Oscar Lambret, UMR 9020–UMR 1277–Canther–Cancer Heterogeneity, Plasticity and Resistance to Therapies, F-59000 Lille, France; (E.P.); (C.L.); (J.C.); (C.V.); (L.R.); (P.V.); (P.-O.A.); (M.W.); (C.L.); (S.M.); (R.P.B.); (X.L.B.)
| | - Ludivine Raby
- University Lille, CNRS, INSERM, CHU Lille, Centre Oscar Lambret, UMR 9020–UMR 1277–Canther–Cancer Heterogeneity, Plasticity and Resistance to Therapies, F-59000 Lille, France; (E.P.); (C.L.); (J.C.); (C.V.); (L.R.); (P.V.); (P.-O.A.); (M.W.); (C.L.); (S.M.); (R.P.B.); (X.L.B.)
| | - Pamela Völkel
- University Lille, CNRS, INSERM, CHU Lille, Centre Oscar Lambret, UMR 9020–UMR 1277–Canther–Cancer Heterogeneity, Plasticity and Resistance to Therapies, F-59000 Lille, France; (E.P.); (C.L.); (J.C.); (C.V.); (L.R.); (P.V.); (P.-O.A.); (M.W.); (C.L.); (S.M.); (R.P.B.); (X.L.B.)
| | - Pierre-Olivier Angrand
- University Lille, CNRS, INSERM, CHU Lille, Centre Oscar Lambret, UMR 9020–UMR 1277–Canther–Cancer Heterogeneity, Plasticity and Resistance to Therapies, F-59000 Lille, France; (E.P.); (C.L.); (J.C.); (C.V.); (L.R.); (P.V.); (P.-O.A.); (M.W.); (C.L.); (S.M.); (R.P.B.); (X.L.B.)
| | - Marie Winter
- University Lille, CNRS, INSERM, CHU Lille, Centre Oscar Lambret, UMR 9020–UMR 1277–Canther–Cancer Heterogeneity, Plasticity and Resistance to Therapies, F-59000 Lille, France; (E.P.); (C.L.); (J.C.); (C.V.); (L.R.); (P.V.); (P.-O.A.); (M.W.); (C.L.); (S.M.); (R.P.B.); (X.L.B.)
| | - François Bertucci
- Laboratoire d’Oncologie Prédictive, CRCM, Institut Paoli-Calmettes, INSERM UMR1068, CNRS UMR7258, Aix-Marseille Université, Département d’Oncologie Médicale, Institut Paoli-Calmettes, 13009 Marseille, France; (F.B.); (P.F.)
| | - Pascal Finetti
- Laboratoire d’Oncologie Prédictive, CRCM, Institut Paoli-Calmettes, INSERM UMR1068, CNRS UMR7258, Aix-Marseille Université, Département d’Oncologie Médicale, Institut Paoli-Calmettes, 13009 Marseille, France; (F.B.); (P.F.)
| | - Chann Lagadec
- University Lille, CNRS, INSERM, CHU Lille, Centre Oscar Lambret, UMR 9020–UMR 1277–Canther–Cancer Heterogeneity, Plasticity and Resistance to Therapies, F-59000 Lille, France; (E.P.); (C.L.); (J.C.); (C.V.); (L.R.); (P.V.); (P.-O.A.); (M.W.); (C.L.); (S.M.); (R.P.B.); (X.L.B.)
| | - Samuel Meignan
- University Lille, CNRS, INSERM, CHU Lille, Centre Oscar Lambret, UMR 9020–UMR 1277–Canther–Cancer Heterogeneity, Plasticity and Resistance to Therapies, F-59000 Lille, France; (E.P.); (C.L.); (J.C.); (C.V.); (L.R.); (P.V.); (P.-O.A.); (M.W.); (C.L.); (S.M.); (R.P.B.); (X.L.B.)
- Tumorigenesis and Resistance to Treatment Unit, Centre Oscar Lambret, F-59000 Lille, France
| | - Roland P. Bourette
- University Lille, CNRS, INSERM, CHU Lille, Centre Oscar Lambret, UMR 9020–UMR 1277–Canther–Cancer Heterogeneity, Plasticity and Resistance to Therapies, F-59000 Lille, France; (E.P.); (C.L.); (J.C.); (C.V.); (L.R.); (P.V.); (P.-O.A.); (M.W.); (C.L.); (S.M.); (R.P.B.); (X.L.B.)
| | - Xuefen Le Bourhis
- University Lille, CNRS, INSERM, CHU Lille, Centre Oscar Lambret, UMR 9020–UMR 1277–Canther–Cancer Heterogeneity, Plasticity and Resistance to Therapies, F-59000 Lille, France; (E.P.); (C.L.); (J.C.); (C.V.); (L.R.); (P.V.); (P.-O.A.); (M.W.); (C.L.); (S.M.); (R.P.B.); (X.L.B.)
| | - Eric Adriaenssens
- University Lille, CNRS, INSERM, CHU Lille, Centre Oscar Lambret, UMR 9020–UMR 1277–Canther–Cancer Heterogeneity, Plasticity and Resistance to Therapies, F-59000 Lille, France; (E.P.); (C.L.); (J.C.); (C.V.); (L.R.); (P.V.); (P.-O.A.); (M.W.); (C.L.); (S.M.); (R.P.B.); (X.L.B.)
- Correspondence: ; Tel.: +33-(0)3-20-33-64-06
| |
Collapse
|
20
|
The Good, the Bad, the Question- H19 in Hepatocellular Carcinoma. Cancers (Basel) 2020; 12:cancers12051261. [PMID: 32429417 PMCID: PMC7281302 DOI: 10.3390/cancers12051261] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/06/2020] [Accepted: 05/14/2020] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC), the most common primary liver cancer, is challenging to treat due to its typical late diagnosis, mostly at an advanced stage. Therefore, there is a particular need for research in diagnostic and prognostic biomarkers and therapeutic targets for HCC. The use of long noncoding (lnc) RNAs can widen the list of novel molecular targets improving cancer therapy. In hepatocarcinogenesis, the role of the lncRNA H19, which has been known for more than 30 years now, is still controversially discussed. H19 was described to work either as a tumor suppressor in vitro and in vivo, or to have oncogenic features. This review attempts to survey the conflicting study results and tries to elucidate the potential reasons for the contrary findings, i.e., different methods, models, or readout parameters. This review encompasses in vitro and in vivo models as well as studies on human patient samples. Although the function of H19 in HCC remains elusive, a short outlook summarizes some ideas of using the H19 locus as a novel target for liver cancer therapy.
Collapse
|
21
|
Liu H, Ye D, Chen A, Tan D, Zhang W, Jiang W, Wang M, Zhang X. A pilot study of new promising non-coding RNA diagnostic biomarkers for early-stage colorectal cancers. Clin Chem Lab Med 2020; 57:1073-1083. [PMID: 30978169 DOI: 10.1515/cclm-2019-0052] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 03/12/2019] [Indexed: 12/11/2022]
Abstract
Background Diagnostic biomarkers for the detection of colorectal cancers (CRCs) are lacking. Recent studies have demonstrated that circulating long non-coding RNAs have the potential to serve as biomarkers for the detection of cancers. We analyzed the significance of lncRNAs 91H, PVT-1 and MEG3 in the detection of CRC. Methods We examined the expression levels of 13 candidate lncRNAs in the plasma of 18 CRC patients and 20 non-cancerous controls. Then, we validated our findings by determining the expression levels of six promising lncRNAs in CRC tissues and normal colorectal tissues. Finally, we evaluated the clinical relevance of lncRNAs 91H, PVT-1 and MEG3 in the plasma of 58 CRC patients and 56 non-cancerous controls. Results Our data revealed that the expression levels of lncRNAs 91H, PVT-1 and MEG3 were significantly higher in plasma samples from CRC patients than in those from non-cancerous controls. The combination of 91H, PVT-1 and MEG3 could discriminate CRC patients from non-cancerous controls with an area under the receiver-operating curve (AUC) of 0.877 at a cut-off value of 0.3816, with a sensitivity of 82.76% and 78.57% specificity. More importantly, the combination of lncRNAs shows more sensitivity in the detection of early-stage CRC than the combination of CEA and CA19-9, biomarkers currently used for CRC detection (p < 0.0001). Conclusions lncRNAs 91H, PVT-1 and MEG3 are promising diagnostic biomarkers for early-stage CRC.
Collapse
Affiliation(s)
- Hanshao Liu
- Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, P.R. China.,General Surgery Department, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China.,CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, P.R. China
| | - Deji Ye
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, P.R. China
| | - Aijun Chen
- General Surgery Department, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Dan Tan
- General Surgery Department, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Wenpeng Zhang
- General Surgery Department, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Wenxia Jiang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, P.R. China
| | - Mingliang Wang
- General Surgery Department, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Xiaoren Zhang
- Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, P.R. China.,General Surgery Department, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China.,CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, P.R. China
| |
Collapse
|
22
|
Xia Y, Deng Y, Zhou Y, Li D, Sun X, Gu L, Chen Z, Zhao Q. TSPAN31 suppresses cell proliferation in human cervical cancer through down-regulation of its antisense pairing with CDK4. Cell Biochem Funct 2020; 38:660-668. [PMID: 32207169 DOI: 10.1002/cbf.3526] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 02/28/2020] [Accepted: 03/08/2020] [Indexed: 01/08/2023]
Abstract
Natural antisense transcripts (NAT) are prevalent phenomena in the mammalian genome and play significant regulatory roles in gene expression. While new insights into NAT continue to be revealed, their exact function and their underlying mechanisms in human cancer remain largely unclear. We identified a NAT of CDK4, referred to TSPAN31, which inhibits CDK4 mRNA and protein expression in human cervical cancer by targeting the 3'-untranslated region (3'-UTR) of the CDK4 mRNA. Furthermore, silencing the expression of the TSPAN31 mRNA rescued the TSPAN31 3'-UTR- or the TSPAN31 full-length-induced decrease in CDK4 expression. Noteworthy, we discovered that TSPAN31, as a member of the tetraspanin family, suppressed cell proliferation by down-regulating its antisense pairing with CDK4 and decreasing retinoblastoma protein phosphorylation in human cervical cancer. Therefore, the results of the present study suggest that TSPAN31 may serve as a potential molecular target for the development of novel anti-cancer agents. SIGNIFICANCE OF THE STUDY: Natural antisense transcripts are widely found in the genome and play an important role in the growth and development of cells. TSPAN31 is natural antisense transcript, and CDK4 is an important gene in the regulation of the cell cycle. Therefore, TSPAN31 and CDK4 have great significance in the study of tumour therapeutic targets.
Collapse
Affiliation(s)
- Yingjie Xia
- Department of Biochemistry and Molecular Biology, GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, PR China
| | - Yuanfei Deng
- Department of Biochemistry and Molecular Biology, GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, PR China
| | - Yuting Zhou
- Molecular & Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, USA
| | - Dan Li
- Department of Biochemistry and Molecular Biology, GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, PR China
| | - Xuemeng Sun
- Department of Biochemistry and Molecular Biology, GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, PR China
| | - Lei Gu
- Department of Clinical Medical, Guangzhou Medical University, Guangdong, PR China
| | - Zipeng Chen
- Department of Clinical Medical, Guangzhou Medical University, Guangdong, PR China
| | - Qing Zhao
- Department of Biochemistry and Molecular Biology, GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, PR China
| |
Collapse
|
23
|
Yi T, Wang T, Shi Y, Peng X, Tang S, Zhong L, Chen Y, Li Y, He K, Wang M, Zhao H, Li Q. Long noncoding RNA 91H overexpression contributes to the growth and metastasis of HCC by epigenetically positively regulating IGF2 expression. Liver Int 2020; 40:456-467. [PMID: 31724285 DOI: 10.1111/liv.14300] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 11/01/2019] [Accepted: 11/04/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS Long noncoding RNA 91H is transcribed from the H19/IGF2 locus and contributes to the development of breast and oesophagus cancers by regulating the expression of IGF2, but the regulation mechanism remains poorly characterized. Here, we explored the role of 91H in hepatocellular carcinoma (HCC) and the mechanism of IGF2 expression regulation by 91H. METHODS Firstly, the expression of 91H was analysed in HCC by quantitative RT-PCR, the association of 91H with survival was evaluated by the Kaplan-Meier method and the effect of 91H on the growth and invasion of HCC was investigated by the in vitro and in vivo studies. Then, the association of 91H with the expression of IGF2 was evaluated in HCC tissues, and the effect of 91H on the expression of IGF2 was investigated by 91H knockdown. Finally, the binding of RBBP5 to 91H and the binding of RBBP5, activating H3K4me3 mark and repressive H3K27me3 mark to the P3 and P4 promoters of IGF2 gene were studied by RIP and ChIP respectively. RESULTS The overexpression of 91H was found in HCC and in association with the growth, metastasis and shorter survival time of HCC. The knockdown of 91H down-regulated the IGF2 expression in HCC, and the mechanism was correlated with the decreased enrichment of RBBP5 and H3K4me3 and increased enrichment of H3K27me3 at the bivalent P3 and P4 promoters. CONCLUSIONS The overexpression of 91H promotes tumour growth and metastasis, and is associated with a poor prognosis of HCC at least partially by positively regulating the expression of IGF2 through bivalent histone modification changes characterized by H3K4me3 and H3K27me3 at the P3 and P4 promoters.
Collapse
Affiliation(s)
- Tingzhuang Yi
- Internal Medicine, The First Affiliated Hospital, Jinan University, Guangzhou, P. R. China.,Department of Gastroenterology, Affiliated Hospital of Youjiang Medical University for Nationalities, BaiSe, P. R. China
| | - Tonghua Wang
- Department of Gastroenterology, Affiliated Hospital of Youjiang Medical University for Nationalities, BaiSe, P. R. China.,Department of Gastroenterology, The First Affiliated Hospital, Jinan University, Guangzhou, P. R. China
| | - Ying Shi
- Department of Gastroenterology, The First Affiliated Hospital, Jinan University, Guangzhou, P. R. China
| | - Xiaojuan Peng
- Department of Endocrinology, Affiliated Hospital (Clinical College) of Xiangnan University, Chenzhou, P. R. China
| | - Shaohui Tang
- Department of Gastroenterology, The First Affiliated Hospital, Jinan University, Guangzhou, P. R. China
| | - Lu Zhong
- Department of Gastroenterology, The First Affiliated Hospital, Jinan University, Guangzhou, P. R. China
| | - Yanfang Chen
- Department of Gastroenterology, The First Affiliated Hospital, Jinan University, Guangzhou, P. R. China
| | - Yuting Li
- Department of Gastroenterology, The First Affiliated Hospital, Jinan University, Guangzhou, P. R. China
| | - Kaiyin He
- Department of Gastroenterology, The First Affiliated Hospital, Jinan University, Guangzhou, P. R. China
| | - Min Wang
- Department of Gastroenterology, The First Affiliated Hospital, Jinan University, Guangzhou, P. R. China
| | - Hailiang Zhao
- Department of Gastroenterology, Affiliated Hospital of Youjiang Medical University for Nationalities, BaiSe, P. R. China.,Department of Gastroenterology, The First Affiliated Hospital, Jinan University, Guangzhou, P. R. China
| | - Qing Li
- Department of Interventional vascular surgery, Affiliated Hospital (Clinical College) of Xiangnan University, Chenzhou, P. R. China
| |
Collapse
|
24
|
Huang MC, Chou YH, Shen HP, Ng SC, Lee YC, Sun YH, Hsu CF, Yang SF, Wang PH. The clinicopathological characteristic associations of long non-coding RNA gene H19 polymorphisms with uterine cervical cancer. J Cancer 2019; 10:6191-6198. [PMID: 31772651 PMCID: PMC6856740 DOI: 10.7150/jca.36707] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 09/18/2019] [Indexed: 12/14/2022] Open
Abstract
The purposes of the current study were conducted to explore the relationships among long non-coding RNA gene H19 (LncRNA H19) polymorphisms and clinicopathological characteristics of uterine cervical cancer, and patient prognosis in Taiwan. Five genetic variants of LncRNA H19 rs3024270, rs2839698, rs3741219, rs2107425 and rs217727 were recruited from one hundred and thirty-four patients with invasive cancer, 101 with high-grade cervical intraepithelial neoplasia (CIN) of uterine cervix and 325 controls and their genetic distributions were determined. It indicated no associations of these LncRNA H19 genetic variants with development of cervical cancer. CC/CT in LncRNA H19 rs2839698 exhibited less risk to have pelvic lymph node metastasis [Odds ratio (OR): 0.19, 95% Confidence interval (CI):0.04-0.82, p=0.028)], as compared with TT. Meanwhile, cervical cancer patients with AA/AG in rs3741219 also had less risk to develop pelvic lymph node metastasis (OR: 0.17, 95% CI: 0.05-0.63, p=0.008), large tumor (OR: 0.17, 95% CI: 0.04-0.82, p=0.014) as well as parametrium (OR: 0.26, 95% CI: 0.07-0.95, p=0.045) and vagina invasion (OR: 0.25, 95% CI: 0.07-0.91, p=0.041, as compared to those with GG. However, only positive pelvic lymph node metastasis was related to worse recurrence-free survival and poor overall survival. Conclusively, it indicated no association of LncRNA H19 SNPs with cervical carcinogensis in Taiwanese women. Although genotypes TT in LncRNA H19 rs2839698 and GG in rs3741219 are related to some poor clinicopathological parameters of cervical cancer, only pelvic lymph node status could predict 5 year patient survival significantly.
Collapse
Affiliation(s)
- Ming-Chao Huang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Obstetrics and Gynecology, Hsinchu MacKay Memorial Hospital, Hsinchu, Taiwan.,Mackay Medicine, Nursing, and Management College, Taipei, Taiwan
| | - Ying-Hsiang Chou
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Medical Imaging and Radiological Sciences, Chung Shan Medical University, Taichung, Taiwan.,Department of Radiation Oncology, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Huang-Pin Shen
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Obstetrics and Gynecology, Chung Shan Medical University Hospital, Taichung, Taiwan.,School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Soo-Cheen Ng
- Department of Obstetrics and Gynecology, Chung Shan Medical University Hospital, Taichung, Taiwan.,School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Yueh-Chun Lee
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Radiation Oncology, Chung Shan Medical University Hospital, Taichung, Taiwan.,School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Yi-Hung Sun
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Obstetrics and Gynecology, Chi-Mei Foundation Medical Center, Tainan, Taiwan
| | - Chun-Fang Hsu
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Obstetrics and Gynecology, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Po-Hui Wang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Obstetrics and Gynecology, Chung Shan Medical University Hospital, Taichung, Taiwan.,School of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
25
|
Holly JMP, Biernacka K, Perks CM. The Neglected Insulin: IGF-II, a Metabolic Regulator with Implications for Diabetes, Obesity, and Cancer. Cells 2019; 8:cells8101207. [PMID: 31590432 PMCID: PMC6829378 DOI: 10.3390/cells8101207] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 09/30/2019] [Accepted: 10/01/2019] [Indexed: 02/07/2023] Open
Abstract
When originally discovered, one of the initial observations was that, when all of the insulin peptide was depleted from serum, the vast majority of the insulin activity remained and this was due to a single additional peptide, IGF-II. The IGF-II gene is adjacent to the insulin gene, which is a result of gene duplication, but has evolved to be considerably more complicated. It was one of the first genes recognised to be imprinted and expressed in a parent-of-origin specific manner. The gene codes for IGF-II mRNA, but, in addition, also codes for antisense RNA, long non-coding RNA, and several micro RNA. Recent evidence suggests that each of these have important independent roles in metabolic regulation. It has also become clear that an alternatively spliced form of the insulin receptor may be the principle IGF-II receptor. These recent discoveries have important implications for metabolic disorders and also for cancer, for which there is renewed acknowledgement of the importance of metabolic reprogramming.
Collapse
Affiliation(s)
- Jeff M P Holly
- Department of Translational Health Science, Bristol Medical School, Faculty of Health Sciences, University of Bristol, Learning & Research Building, Southmead Hospital, Bristol, BS10 5NB, UK.
| | - Kalina Biernacka
- Department of Translational Health Science, Bristol Medical School, Faculty of Health Sciences, University of Bristol, Learning & Research Building, Southmead Hospital, Bristol, BS10 5NB, UK
| | - Claire M Perks
- Department of Translational Health Science, Bristol Medical School, Faculty of Health Sciences, University of Bristol, Learning & Research Building, Southmead Hospital, Bristol, BS10 5NB, UK
| |
Collapse
|
26
|
Hu C, Yang T, Pan J, Zhang J, Yang J, He J, Zou Y. Associations between H19 polymorphisms and neuroblastoma risk in Chinese children. Biosci Rep 2019; 39:BSR20181582. [PMID: 30890582 PMCID: PMC6449514 DOI: 10.1042/bsr20181582] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 01/23/2019] [Accepted: 03/18/2019] [Indexed: 02/07/2023] Open
Abstract
BackgroundH19 polymorphisms have been reported to correlate with an increased susceptibility to a few types of cancers, although their role in neuroblastoma has not yet been clarified.Materials and methods We investigated the association between three single polymorphisms (rs2839698 G>A, rs3024270 C>G, and rs217727 G>A) and neuroblastoma susceptibility in Chinese Han populations. Three hundred ninety-three neuroblastoma patients and 812 healthy controls were enrolled from the Henan and Guangdong provinces. Odds ratios (ORs) and 95% confidence intervals (CIs) were used to determine the strength of the association of interest.Results Separated and combined analyses revealed no associations of the rs2839698 G>A, rs3024270 C>G or rs217727 G>A polymorphisms and neuroblastoma susceptibility. In the stratification analysis, female children with rs3024270 GG genotypes had an increased neuroblastoma risk (adjusted OR = 1.61, 95% CI = 1.04-2.50, P=0.032).Conclusion The rs3024270 GG genotype might contribute to an increased neuroblastoma susceptibility in female Chinese children.
Collapse
Affiliation(s)
- Chao Hu
- Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Tianyou Yang
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Jing Pan
- Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Jiao Zhang
- Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Jiliang Yang
- Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Jing He
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Yan Zou
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| |
Collapse
|
27
|
Zhou H, Ma Y, Zhong D, Yang L. Knockdown of lncRNA HOXD-AS1 suppresses proliferation, migration and invasion and enhances cisplatin sensitivity of glioma cells by sponging miR-204. Biomed Pharmacother 2019; 112:108633. [PMID: 30784927 DOI: 10.1016/j.biopha.2019.108633] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 01/23/2019] [Accepted: 01/28/2019] [Indexed: 01/26/2023] Open
Abstract
Increasing evidence suggests the involvement of long noncoding RNAs (lncRNAs) in various biological process including cancer progression and drug resistance. LncRNA HOXD cluster antisense RNA 1 (HOXD-AS1) had been demonstrated to act as an oncogenic gene, contributing to the development and progression of several cancers. However, its functional role and molecular mechanism underlying glioma progression and cisplatin (DDP) resistance has not been well elucidated. In this study, we found that HOXD-AS1 was up-regulated in glioma tissues and cells and negatively correlated with survival time. HOXD-AS1 knockdown suppressed proliferation, migration and invasion as well as enhanced DDP sensitivity of glioma cells. Moreover, HOXD-AS1 could function as a miR-204 sponge in glioma cells. Overexpression of miR-204 could mimic the functional role of down-regulated HOXD-AS1 in glioma cells. Furthermore, miR-204 inhibition reversed the effect of HOXD-AS1 knockdown on cancer progression and DDP sensitivity of glioma cells. In conclusion, knockdown of HOXD-AS1 suppressed proliferation, migration and invasion and enhanced DDP sensitivity of glioma cells through sequestering miR-204, providing a promising therapeutic target for glioma patients.
Collapse
Affiliation(s)
- Hui Zhou
- Department of neurosurgery, the First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510000, China
| | - Yabin Ma
- Department of neurosurgery, the First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510000, China
| | - Dequan Zhong
- Department of neurosurgery, the First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510000, China
| | - Li Yang
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, 510000, China.
| |
Collapse
|
28
|
Lingling J, Xiangao J, Guiqing H, Jichan S, Feifei S, Haiyan Z. SNHG20 knockdown suppresses proliferation, migration and invasion, and promotes apoptosis in non-small cell lung cancer through acting as a miR-154 sponge. Biomed Pharmacother 2019; 112:108648. [PMID: 30780105 DOI: 10.1016/j.biopha.2019.108648] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/29/2019] [Accepted: 01/29/2019] [Indexed: 12/27/2022] Open
Abstract
Long noncoding RNAs (LncRNAs) play critical roles in the development and progression of cancers. However, little is known about the function and mechanism of lncRNAs in non-small cell lung cancer (NSCLC). In this study, we investigated the expression and functional role of lncRNA small nucleolar RNA host gene 20 (SNHG20) as well as its underlying mechanism in NSCLC. Our results showed that SNHG20 was significantly up-regulated in NSCLC tissues and cells. High SNHG20 expression was implicated with poor prognosis in NSCLC patients. Moreover, SNHG20 knockdown suppressed proliferation, migration and invasion, and induced apoptosis in NSCLC cells. Furthermore, SNHG20 could function as a competing endogenous RNA (ceRNA) to elevate ZEB2 and RUNX2 expression by sponging miR-154. Rescue assays revealed that miR-154 inhibition could reverse the inhibitory effect of SNHG20 silence on proliferation, migration and invasion in NSCLC cells. More importantly, SNHG20 knockdown suppressed tumor growth in NSCLC in vivo through suppressing miR-154 and elevating ZEB2 and RUNX2 expression. In summary, knockdown of lncRNA SNHG20 suppressed proliferation, migration and invasion, and promotes apoptosis through up-regulating ZEB2 and RUNX2 expression by sponging miR-154 in NSCLC, providing a promising therapeutic target for NSCLC patients.
Collapse
Affiliation(s)
- Jin Lingling
- Infections Department, Wenzhou Central Hospital, Wenzhou, 325000, China
| | - Jiang Xiangao
- Infections Department, Wenzhou Central Hospital, Wenzhou, 325000, China.
| | - He Guiqing
- Infections Department, Wenzhou Central Hospital, Wenzhou, 325000, China
| | - Shi Jichan
- Infections Department, Wenzhou Central Hospital, Wenzhou, 325000, China
| | - Su Feifei
- Infections Department, Wenzhou Central Hospital, Wenzhou, 325000, China
| | - Zhu Haiyan
- Infections Department, Wenzhou Central Hospital, Wenzhou, 325000, China
| |
Collapse
|
29
|
Fanelli GN, Gasparini P, Coati I, Cui R, Pakula H, Chowdhury B, Valeri N, Loupakis F, Kupcinskas J, Cappellesso R, Fassan M. LONG-NONCODING RNAs in gastroesophageal cancers. Noncoding RNA Res 2018; 3:195-212. [PMID: 30533569 PMCID: PMC6257886 DOI: 10.1016/j.ncrna.2018.10.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 10/26/2018] [Accepted: 10/26/2018] [Indexed: 02/07/2023] Open
Abstract
Despite continuing improvements in multimodal therapies, gastro-esophageal malignances remain widely prevalent in the population and is characterized by poor overall and disease-free survival rates. Due to the lack of understanding about the pathogenesis and absence of reliable markers, gastro-esophageal cancers are associated with delayed diagnosis. The increasing understanding about cancer's molecular landscape in the recent years, offers the possibility of identifying 'targetable' molecular events and in particular facilitates novel treatment strategies and development of biomarkers for early stage diagnosis. At least 98% of our genome is actively transcribed into non-coding RNAs encompassing long non-coding RNAs (lncRNAs) constituted of transcripts longer than 200 nucleotides with no protein-coding capacity. Many studies have demonstrated that lncRNAs are functional genomic elements playing pivotal roles in main oncogenic processes. LncRNA can act at multiple levels developing a complex molecular network that can modulate directly or indirectly the expression of genes involved in tumorigenesis. In this review, we focus on lncRNAs as emerging players in gastro-esophageal carcinogenesis and critically assess their potential as reliable noninvasive biomarkers and in next generation targeted therapies.
Collapse
Affiliation(s)
- Giuseppe Nicolò Fanelli
- Department of Medicine (DIMED), Surgical Pathology & Cytopathology Unit, University of Padua, Padua, PD, Italy
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Pierluigi Gasparini
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Irene Coati
- Department of Medicine (DIMED), Surgical Pathology & Cytopathology Unit, University of Padua, Padua, PD, Italy
| | - Ri Cui
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Hubert Pakula
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Basudev Chowdhury
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Nicola Valeri
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
- Department of Medicine, The Royal Marsden NHS Trust, London, UK
| | - Fotios Loupakis
- Oncology Unit, Istituto Oncologico Veneto, IOV-IRCCS, Padua, PD, Italy
| | - Juozas Kupcinskas
- Department of Gastroenterology and Institute for Digestive Research, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Rocco Cappellesso
- Department of Medicine (DIMED), Surgical Pathology & Cytopathology Unit, University of Padua, Padua, PD, Italy
| | - Matteo Fassan
- Department of Medicine (DIMED), Surgical Pathology & Cytopathology Unit, University of Padua, Padua, PD, Italy
| |
Collapse
|
30
|
Yu H, Rong L. Emerging role of long non-coding RNA in the development of gastric cancer. World J Gastrointest Oncol 2018; 10:260-270. [PMID: 30254721 PMCID: PMC6147769 DOI: 10.4251/wjgo.v10.i9.260] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 06/14/2018] [Accepted: 06/27/2018] [Indexed: 02/05/2023] Open
Abstract
Gastric cancer is a common, worldwide malignancy and has a poor prognosis due to late diagnosis. Long non-coding RNAs (lncRNAs) are a significant subtype of RNA molecules with a length longer than 200 nucleotides (nt) that rarely encode proteins. In recent decades, deregulation of lncRNAs has been shown to be involved in tumorigenesis and tumor progression in various human carcinomas, including gastric cancer. Accumulating evidence has shown that some lncRNAs may function as diagnostic biomarkers or therapeutic targets for gastric cancer. Thus, exploring the specific functions of lncRNAs will help both gain a better understanding of the pathogenesis and develop novel treatments for gastric cancer. In this review, we highlight the expression and functional roles of lncRNAs in gastric cancer, and analyze the potential applications of lncRNAs as diagnostic markers and therapeutic targets.
Collapse
Affiliation(s)
- Hang Yu
- Department of Endoscopic Center, Peking University First Hospital, Beijing 100034, China
| | - Long Rong
- Department of Endoscopic Center, Peking University First Hospital, Beijing 100034, China
| |
Collapse
|
31
|
Fan X, Ashraf UM, Drummond CA, Shi H, Zhang X, Kumarasamy S, Tian J. Characterization of a Long Non-Coding RNA, the Antisense RNA of Na/K-ATPase α1 in Human Kidney Cells. Int J Mol Sci 2018; 19:ijms19072123. [PMID: 30037072 PMCID: PMC6073804 DOI: 10.3390/ijms19072123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 07/17/2018] [Accepted: 07/19/2018] [Indexed: 01/19/2023] Open
Abstract
Non-coding RNAs are important regulators of protein-coding genes. The current study characterized an antisense long non-coding RNA, ATP1A1-AS1, which is located on the opposite strand of the Na/K-ATPase α1 gene. Our results show that four splice variants are expressed in human adult kidney cells (HK2 cells) and embryonic kidney cells (HEK293 cells). These variants can be detected in both cytosol and nuclear fractions. We also found that the inhibition of DNA methylation has a differential effect on the expression of ATP1A1-AS1 and its sense gene. To investigate the physiological role of this antisense gene, we overexpressed the ATP1A1-AS1 transcripts, and examined their effect on Na/K-ATPase expression and related signaling function in human kidney cells. The results showed that overexpression of the ATP1A1-AS1-203 transcript in HK2 cells reduced the Na/K-ATPase α1 (ATP1A1) gene expression by approximately 20% (p < 0.05), while reducing the Na/K-ATPase α1 protein synthesis by approximately 22% (p < 0.05). Importantly, overexpression of the antisense RNA transcript attenuated ouabain-induced Src activation in HK2 cells. It also inhibited the cell proliferation and potentiated ouabain-induced cell death. These results demonstrate that the ATP1A1-AS1 gene is a moderate negative regulator of Na/K-ATPase α1, and can modulate Na/K-ATPase-related signaling pathways in human kidney cells.
Collapse
Affiliation(s)
- Xiaoming Fan
- Department of Medicine, University of Toledo, Toledo, OH 43614, USA.
| | - Usman M Ashraf
- Department of Physiology and Pharmacology, Center for Hypertension and Personalized Medicine, University of Toledo, Toledo, OH 43614, USA.
| | - Christopher A Drummond
- Department of Medicine, University of Toledo, Toledo, OH 43614, USA.
- MPI Research, Mattawan, MI 49071, USA.
| | - Huilin Shi
- Department of Medicine, University of Toledo, Toledo, OH 43614, USA.
| | - Xiaolu Zhang
- Department of Medicine, University of Toledo, Toledo, OH 43614, USA.
| | - Sivarajan Kumarasamy
- Department of Physiology and Pharmacology, Center for Hypertension and Personalized Medicine, University of Toledo, Toledo, OH 43614, USA.
| | - Jiang Tian
- Department of Medicine, University of Toledo, Toledo, OH 43614, USA.
| |
Collapse
|
32
|
Yılmaz Susluer S, Kayabasi C, Ozmen Yelken B, Asik A, Celik D, Balci Okcanoglu T, Serin Senger S, Biray Avci C, Kose S, Gunduz C. Analysis of long non-coding RNA (lncRNA) expression in hepatitis B patients. Bosn J Basic Med Sci 2018; 18:150-161. [PMID: 29669510 DOI: 10.17305/bjbms.2018.2800] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 02/16/2018] [Accepted: 02/17/2018] [Indexed: 12/28/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) have been implicated in numerous biological processes, including epigenetic regulation, cell-cycle control, and transcriptional/translational regulation of gene expression. Differential expression of lncRNAs and disruption of the regulatory processes are recognized as critical steps in cancer development. The role of lncRNAs in hepatitis B virus (HBV) infection is not well understood. Here we analyzed the expression of 135 lncRNAs in plasma samples of 82 HBV patients (classified as chronic patients, inactive carriers, or resolved patients) at diagnosis and at 12 months of treatment in relation to control group (81 healthy volunteers). We also investigated the effect of small interfering RNA (siRNA)-mediated silencing of lincRNA-SFMBT2 on HBV-positive human liver cancer cell line. lncRNA expression was analyzed by quantitative reverse transcription-polymerase chain reaction (qRT-PCR). Chemically synthesized siRNAs were transfected into the cell lines using Lipofectamine 2000 Reagent (Thermo Fisher Scientific). HBV DNA and HBsAg and HBeAg were detected in transfected cultures by real-time PCR and ELISA, respectively, using commercial kits. We observed changes in lncRNA expression in all three HBV groups, compared to control group. Most notably, the expression of anti-NOS2A, lincRNA-SFMBT2, and Zfhx2as was significantly increased and expression of Y5 lncRNA was decreased in chronic HBV patients. A decreased Y5 expression and increased lincRNA-SFMBT2 expression were observed in inactive HBsAg carriers. The expression of HOTTIP, MEG9, and PCAT-32 was increased in resolved HBV patients, and no significant change in the expression of Y5 was observed, compared to control group. siRNA-mediated inhibition of lincRNA-SFMBT2 decreased the level of HBV DNA in human liver cancer cells. Further research is needed to confirm the prognostic as well as therapeutic role of these lncRNAs in HBV patients.
Collapse
Affiliation(s)
- Sunde Yılmaz Susluer
- Department of Medical Biology, Faculty of Medicine, Ege University, Izmir, Turkey.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Wang J, Ye C, Xiong H, Shen Y, Lu Y, Zhou J, Wang L. Dysregulation of long non-coding RNA in breast cancer: an overview of mechanism and clinical implication. Oncotarget 2018; 8:5508-5522. [PMID: 27732939 PMCID: PMC5354927 DOI: 10.18632/oncotarget.12537] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Accepted: 10/03/2016] [Indexed: 01/16/2023] Open
Abstract
Long non-coding RNAs (lncRNAs), which occupy nearly 98% of genome, have crucial roles in cancer development, including breast cancer. Breast cancer is a disease with high incidence. Despite of recent progress in understanding the molecular mechanisms and combined therapy strategies, the functions and mechanisms of lncRNAs in breast cancer remains unclear. This review presents the currently basic knowledge and research approaches of lncRNAs. We also highlight the latest advances of seven classic lncRNAs and three novel lncRNAs in breast cancer, elucidating their mechanisms and possible therapeutic targets. Additionally, association between lncRNA and specific molecular subtype of breast cancer is reported. Lastly, we briefly delineate the potential roles of lncRNAs in clinical applications as biomarkers and treatment targets.
Collapse
Affiliation(s)
- Ji Wang
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang, China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Chenyang Ye
- Cancer Institute (Key Laboratory of Cancer Prevention & Intervention, National Ministry of Education), Second Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hanchu Xiong
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang, China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Yong Shen
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yi Lu
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang, China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Jichun Zhou
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang, China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Linbo Wang
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang, China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, Zhejiang, China
| |
Collapse
|
34
|
Gao T, Liu X, He B, Nie Z, Zhu C, Zhang P, Wang S. Exosomal lncRNA 91H is associated with poor development in colorectal cancer by modifying HNRNPK expression. Cancer Cell Int 2018; 18:11. [PMID: 29410604 PMCID: PMC5781274 DOI: 10.1186/s12935-018-0506-2] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 01/10/2018] [Indexed: 02/07/2023] Open
Abstract
Background Exosomes mediated transfer of lncRNA 91H may play a critical role in the development of CRC. However, few studies have proved the mechanism. So we performed this study to deeply explore the biological functions of exosomal 91H in the development and progression of CRC. Methods The association between lncRNA 91H and exosomes was detected in vitro and vivo. Then RNA pulldown and RIP were used to detect how lncRNA 91H affect CRC IGF2 express. At last, clinic pathological significance of exosomal 91H was evaluated by Cox proportional hazards model. Results We found that serum lncRNA 91H expression was closely related to cancer exosomes in vitro and vivo which may enhance tumor-cell migration and invasion in tumor development by modifying HNRNPK expression. Then the clinic pathological significance of exosomal 91H was evaluated which demonstrated that CRC patients with high lncRNA 91H expression usually showed a higher risk in tumor recurrence and metastasis than patients with low lncRNA 91H expression (P < 0.05). Conclusion All these data suggested that exosomal lncRNA 91H enhancing CRC metastasis by modifying HNRNPK expression might be an early plasma-based biomarker for CRC recurrence or metastasis. Further large-scale studies are needed to confirm our findings.
Collapse
Affiliation(s)
- Tianyi Gao
- 1Department of Clinical Laboratory, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, 210006 Jiangsu China
| | - Xiangxiang Liu
- 2Central Laboratory, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, 210006 Jiangsu China
| | - Bangshun He
- 2Central Laboratory, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, 210006 Jiangsu China
| | - Zhenlin Nie
- 1Department of Clinical Laboratory, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, 210006 Jiangsu China
| | - Chengbin Zhu
- 1Department of Clinical Laboratory, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, 210006 Jiangsu China
| | - Pei Zhang
- 1Department of Clinical Laboratory, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, 210006 Jiangsu China
| | - Shukui Wang
- 1Department of Clinical Laboratory, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, 210006 Jiangsu China.,2Central Laboratory, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, 210006 Jiangsu China
| |
Collapse
|
35
|
Pasculli B, Barbano R, Parrella P. Epigenetics of breast cancer: Biology and clinical implication in the era of precision medicine. Semin Cancer Biol 2018; 51:22-35. [PMID: 29339244 DOI: 10.1016/j.semcancer.2018.01.007] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 12/15/2017] [Accepted: 01/11/2018] [Indexed: 02/09/2023]
Abstract
In the last years, mortality from breast cancer has declined in western countries as a consequence of a more widespread screening resulting in earlier detection, as well as an improved molecular classification and advances in adjuvant treatment. Nevertheless, approximately one third of breast cancer patients will develop distant metastases and eventually die for the disease. There is now a compelling body of evidence suggesting that epigenetic modifications comprising DNA methylation and chromatin remodeling play a pivotal role since the early stages of breast cancerogenesis. In addition, recently, increasing emphasis is being placed on the property of ncRNAs to finely control gene expression at multiple levels by interacting with a wide array of molecules such that they might be designated as epigenetic modifiers. In this review, we summarize the current knowledge about the involvement of epigenetic modifications in breast cancer, and provide an overview of the significant association of epigenetic traits with the breast cancer clinicopathological features, emphasizing the potentiality of epigenetic marks to become biomarkers in the context of precision medicine.
Collapse
Affiliation(s)
- Barbara Pasculli
- Laboratory of Oncology, IRCCS "Casa Sollievo della Sofferenza", 71013, San Giovanni Rotondo, FG, Italy.
| | - Raffaela Barbano
- Laboratory of Oncology, IRCCS "Casa Sollievo della Sofferenza", 71013, San Giovanni Rotondo, FG, Italy.
| | - Paola Parrella
- Laboratory of Oncology, IRCCS "Casa Sollievo della Sofferenza", 71013, San Giovanni Rotondo, FG, Italy.
| |
Collapse
|
36
|
Kapinova A, Kubatka P, Zubor P, Golubnitschaja O, Dankova Z, Uramova S, Pilchova I, Caprnda M, Opatrilova R, Richnavsky J, Kruzliak P, Danko J. The hypoxia-responsive long non-coding RNAs may impact on the tumor biology and subsequent management of breast cancer. Biomed Pharmacother 2018; 99:51-58. [PMID: 29324312 DOI: 10.1016/j.biopha.2017.12.104] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 12/20/2017] [Accepted: 12/28/2017] [Indexed: 02/09/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are DNA transcripts longer than 200 nucleotides without protein-coding potential. As they are key regulators of gene expression at chromatic, transcriptional and posttranscriptional level, they play important role in various biological and pathological processes. Dysregulation of lncRNAs has been observed in several diseases including cancer. Breast cancer is heterogeneous disease with many molecular subtypes specific in different prognosis and treatment responses. Hypoxia, a common micro-environmental feature of rapidly growing tumour is associated with metastases, recurrences and resistance to therapy. Aberrant expression of hypoxia related lncRNAs significantly correlates with poor outcomes in cancer patients, as the lncRNAs play an important regulatory role in the breast cancer-cell survival. Thus, a better understanding of lncRNAs role in the hypoxic conditions of breast cancer is crucial for precise understanding of the tumorigenesis, disease features and poor clinical outcome, especially in highly aggressive breast cancer subtypes (HER2-positive and triple-negative types). Moreover, lncRNAs may represent tumour marker predicting prognosis and therapeutic targets improving precise and personalized therapy for better patient´s survival. In this review, we summarize the recent information on lncRNAs in breast cancer with special focus on the hypoxia-responsive lncRNAs and their potential impact on the prognosis, therapy algorithms and individual outcomes. Presented data helps in better understanding of the specific mechanisms predicting new therapeutic agents and strategies for the pharmacological intervention.
Collapse
Affiliation(s)
- Andrea Kapinova
- Division of Oncology, Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia.
| | - Peter Kubatka
- Division of Oncology, Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia; Department of Medical Biology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Pavol Zubor
- Division of Oncology, Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia; Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine in Martin and Martin University Hospital, Comenius University in Bratislava, Martin, Slovakia
| | - Olga Golubnitschaja
- Radiological Clinic, Rheinische Friedrich-Wilhelms-Universität Bonn, Germany; Breast Cancer Research Centre, Rheinische Friedrich-Wilhelms-Universität Bonn, Germany; Centre for Integrated Oncology, Cologne-Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Germany
| | - Zuzana Dankova
- Division of Oncology, Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Sona Uramova
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine in Martin and Martin University Hospital, Comenius University in Bratislava, Martin, Slovakia
| | - Ivana Pilchova
- Division of Neuroscience, Biomedical Center Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Martin Caprnda
- 1st Department of Internal Medicine, Faculty of Medicine, Comenius University in Bratislava and University Hospital, Bratislava, Slovakia
| | - Radka Opatrilova
- Department of Chemical Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic
| | - Jan Richnavsky
- Department of Gynecology and Obstetrics, Faculty of Medicine, Pavol Jozef Safarik University and The First Private Hospital Saca, Kosice, Slovakia
| | - Peter Kruzliak
- Department of Chemical Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic.
| | - Jan Danko
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine in Martin and Martin University Hospital, Comenius University in Bratislava, Martin, Slovakia
| |
Collapse
|
37
|
Association of genetic variants in lncRNA H19 with risk of colorectal cancer in a Chinese population. Oncotarget 2018; 7:25470-7. [PMID: 27027436 PMCID: PMC5041918 DOI: 10.18632/oncotarget.8330] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 03/10/2016] [Indexed: 02/06/2023] Open
Abstract
Objective The long non-coding RNA (lncRNA) gene, H19, has been involving in multiple biological functions, which also plays a vital role in colorectal cancer carcinogenesis. However, the association between genetic variants in H19 and colorectal cancer susceptibility has not been reported. In this study, we aim to explore whether H19 polymorphisms are related to the susceptibility of colorectal cancer. Methods We conducted a case-control study to evaluate the association between four selected single nucleotide polymorphisms (SNPs) (rs2839698, rs3024270, rs217727, and rs2735971) in H19 and the risk of colorectal cancer in a Chinese population. Results We found that individuals with rs2839698 A allele had a significantly increased risk of colorectal cancer, compared to those carrying G allele [odds ratio (OR) = 1.20, 95% confidence interval (CI) = 1.05–1.36 in additive model]. Further stratified analyses revealed that colon tumor site, well differentiated grade and Duke's stage of C/D were significantly associated with colorectal cancer risk (P < 0.05). Additionally, bioinformatic analysis showed that rs2839698 may change the crucial folding structures and alter the target microRNAs of H19. Conclusions Our results provided the evidence that rs2839698 in H19 was associated with elevated risk of colorectal cancer, which may be a potential biomarker for predicting colorectal cancer susceptibility.
Collapse
|
38
|
Shi JY, Huang H, Zhang YN, Long YX, Yiu SM. Predicting binary, discrete and continued lncRNA-disease associations via a unified framework based on graph regression. BMC Med Genomics 2017; 10:65. [PMID: 29322937 PMCID: PMC5763297 DOI: 10.1186/s12920-017-0305-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND In human genomes, long non-coding RNAs (lncRNAs) have attracted more and more attention because their dysfunctions are involved in many diseases. However, the associations between lncRNAs and diseases (LDA) still remain unknown in most cases. While identifying disease-related lncRNAs in vivo is costly, computational approaches are promising to not only accelerate the possible identification of associations but also provide clues on the underlying mechanism of various lncRNA-caused diseases. Former computational approaches usually only focus on predicting new associations between lncRNAs having known associations with diseases and other lncRNA-associated diseases. They also only work on binary lncRNA-disease associations (whether the pair has an association or not), which cannot reflect and reveal other biological facts, such as the number of proteins involved in LDA or how strong the association is (i.e., the intensity of LDA). RESULTS To address abovementioned issues, we propose a graph regression-based unified framework (GRUF). In particular, our method can work on lncRNAs, which have no previously known disease association and diseases that have no known association with any lncRNAs. Also, instead of only a binary answer for the association, our method tries to uncover more biological relationship between a pair of lncRNA and disease, which may provide better clues for researchers. We compared GRUF with three state-of-the-art approaches and demonstrated the superiority of GRUF, which achieves 5%~16% improvement in terms of the area under the receiver operating characteristic curve (AUC). GRUF also provides a predicted confidence score for the predicted LDA, which reveals the significant correlation between the score and the number of RNA-Binding Proteins involved in LDAs. Lastly, three out of top-5 LDA candidates generated by GRUF in novel prediction are verified indirectly by medical literature and known biological facts. CONCLUSIONS The proposed GRUF has two advantages over existing approaches. Firstly, it can be used to work on lncRNAs that have no known disease association and diseases that have no known association with any lncRNAs. Secondly, instead of providing a binary answer (with or without association), GRUF works for both discrete and continued LDA, which help revealing the pathological implications between lncRNAs and diseases.
Collapse
Affiliation(s)
- Jian-Yu Shi
- School of Life Sciences, Northwestern Polytechnical University, Xi’an, 710072 China
| | - Hua Huang
- School of Software and Microelectronics, Northwestern Polytechnical University, Xi’an, 710072 China
| | - Yan-Ning Zhang
- School of Computer Science, Northwestern Polytechnical University, Xi’an, 710072 China
| | - Yu-Xi Long
- School of Computer Science, Northwestern Polytechnical University, Xi’an, 710072 China
| | - Siu-Ming Yiu
- Department of Computer Science, the University of Hong Kong, Hong Kong, 999077 China
| |
Collapse
|
39
|
Regulation of Human Breast Cancer by the Long Non-Coding RNA H19. Int J Mol Sci 2017; 18:ijms18112319. [PMID: 29099749 PMCID: PMC5713288 DOI: 10.3390/ijms18112319] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 10/27/2017] [Accepted: 10/30/2017] [Indexed: 02/01/2023] Open
Abstract
Breast cancer is one of the most common causes of cancer related deaths in women. Despite the progress in early detection and use of new therapeutic targets associated with development of novel therapeutic options, breast cancer remains a major problem in public health. Indeed, even if the survival rate has improved for breast cancer patients, the number of recurrences within five years and the five-year relative survival rate in patients with metastasis remain dramatic. Thus, the discovery of new molecular actors involved in breast progression is essential to improve the management of this disease. Numerous data indicate that long non-coding RNA are implicated in breast cancer development. The oncofetal lncRNA H19 was the first RNA identified as a riboregulator. Studying of this lncRNA revealed its implication in both normal development and diseases. In this review, we summarize the different mechanisms of action of H19 in human breast cancer.
Collapse
|
40
|
Napoli S, Piccinelli V, Mapelli SN, Pisignano G, Catapano CV. Natural antisense transcripts drive a regulatory cascade controlling c-MYC transcription. RNA Biol 2017; 14:1742-1755. [PMID: 28805496 PMCID: PMC5731802 DOI: 10.1080/15476286.2017.1356564] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Cis-natural antisense transcripts (cis-NATs) are long noncoding RNAs transcribed from the opposite strand and overlapping coding and noncoding genes on the sense strand. cis-NATs are widely present in the human genome and can be involved in multiple mechanisms of gene regulation. Here, we describe the presence of cis-NATs in the 3′ distal region of the c-MYC locus and investigate their impact on transcriptional regulation of this key oncogene in human cancers. We found that cis-NATs are produced as consequence of the activation of cryptic transcription initiation sites in the 3′ distal region downstream of the c-MYC 3′UTR. The process is tightly regulated and leads to the formation of two main transcripts, NAT6531 and NAT6558, which differ in their ability to fold into stem-loop secondary structures. NAT6531 acts as a substrate for DICER and as a source of small RNAs capable of modulating c-MYC transcription. This complex system, based on the interplay between cis-NATs and NAT-derived small RNAs, may represent an important layer of epigenetic regulation of the expression of c-MYC and other genes in human cells.
Collapse
Affiliation(s)
- Sara Napoli
- a Tumor Biology and Experimental Therapeutics Program , Institute of Oncology Research (IOR), Università della Svizzera italiana (USI) , Bellinzona , Switzerland
| | - Valentina Piccinelli
- a Tumor Biology and Experimental Therapeutics Program , Institute of Oncology Research (IOR), Università della Svizzera italiana (USI) , Bellinzona , Switzerland
| | - Sarah N Mapelli
- a Tumor Biology and Experimental Therapeutics Program , Institute of Oncology Research (IOR), Università della Svizzera italiana (USI) , Bellinzona , Switzerland
| | - Giuseppina Pisignano
- a Tumor Biology and Experimental Therapeutics Program , Institute of Oncology Research (IOR), Università della Svizzera italiana (USI) , Bellinzona , Switzerland
| | - Carlo V Catapano
- a Tumor Biology and Experimental Therapeutics Program , Institute of Oncology Research (IOR), Università della Svizzera italiana (USI) , Bellinzona , Switzerland.,b Department of Oncology , Faculty of Biology and Medicine, University of Lausanne , Lausanne , Switzerland
| |
Collapse
|
41
|
Liao J, Yu X, Hu X, Fan J, Wang J, Zhang Z, Zhao C, Zeng Z, Shu Y, Zhang R, Yan S, Li Y, Zhang W, Cui J, Ma C, Li L, Yu Y, Wu T, Wu X, Lei J, Wang J, Yang C, Wu K, Wu Y, Tang J, He BC, Deng ZL, Luu HH, Haydon RC, Reid RR, Lee MJ, Wolf JM, Huang W, He TC. lncRNA H19 mediates BMP9-induced osteogenic differentiation of mesenchymal stem cells (MSCs) through Notch signaling. Oncotarget 2017; 8:53581-53601. [PMID: 28881833 PMCID: PMC5581132 DOI: 10.18632/oncotarget.18655] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 05/23/2017] [Indexed: 12/29/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are multipotent progenitor cells that can undergo self-renewal and differentiate into multiple lineages. Osteogenic differentiation from MSCs is a well-orchestrated process and regulated by multiple signaling pathways. We previously demonstrated that BMP9 is one of the most potent osteogenic factors. However, molecular mechanism through which BMP9 governs osteoblastic differentiation remains to be fully understood. Increasing evidence indicates noncoding RNAs (ncRNAs) may play important regulatory roles in many physiological and/or pathologic processes. In this study, we investigate the role of lncRNA H19 in BMP9-regulated osteogenic differentiation of MSCs. We demonstrated that H19 was sharply upregulated at the early stage of BMP9 stimulation of MSCs, followed by a rapid decease and gradual return to basal level. This process was correlated with BMP9-induced expression of osteogenic markers. Interestingly, either constitutive H19 expression or silencing H19 expression in MSCs significantly impaired BMP9-induced osteogenic differentiation in vitro and in vivo, which was effectively rescued by the activation of Notch signaling. Either constitutive H19 expression or silencing H19 expression led to the increased expression of a group of miRNAs that are predicted to target Notch ligands and receptors. Thus, these results indicate that lncRNA H19 functions as an important mediator of BMP9 signaling by modulating Notch signaling-targeting miRNAs. Our findings suggest that the well-coordinated biphasic expression of lncRNA H19 may be essential in BMP9-induced osteogenic differentiation of MSCs, and that dysregulated H19 expression may impair normal osteogenesis, leading to pathogenic processes, such as bone tumor development.
Collapse
Affiliation(s)
- Junyi Liao
- Departments of Orthopaedic Surgery, Blood Transfusion, Nephrology, and General Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA
| | - Xinyi Yu
- Departments of Orthopaedic Surgery, Blood Transfusion, Nephrology, and General Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA
| | - Xue Hu
- Departments of Orthopaedic Surgery, Blood Transfusion, Nephrology, and General Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA
| | - Jiaming Fan
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA.,Ministry of Education Key Laboratory of Diagnostic Medicine, and The Affiliated Hospitals of Chongqing Medical University, Chongqing, China
| | - Jing Wang
- Departments of Orthopaedic Surgery, Blood Transfusion, Nephrology, and General Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA
| | - Zhicai Zhang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA.,Department of Orthopaedic Surgery, Union Hospital of Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Chen Zhao
- Departments of Orthopaedic Surgery, Blood Transfusion, Nephrology, and General Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA
| | - Zongyue Zeng
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA.,Ministry of Education Key Laboratory of Diagnostic Medicine, and The Affiliated Hospitals of Chongqing Medical University, Chongqing, China
| | - Yi Shu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA.,Ministry of Education Key Laboratory of Diagnostic Medicine, and The Affiliated Hospitals of Chongqing Medical University, Chongqing, China
| | - Ruyi Zhang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA.,Ministry of Education Key Laboratory of Diagnostic Medicine, and The Affiliated Hospitals of Chongqing Medical University, Chongqing, China
| | - Shujuan Yan
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA.,Ministry of Education Key Laboratory of Diagnostic Medicine, and The Affiliated Hospitals of Chongqing Medical University, Chongqing, China
| | - Yasha Li
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA.,Ministry of Education Key Laboratory of Diagnostic Medicine, and The Affiliated Hospitals of Chongqing Medical University, Chongqing, China
| | - Wenwen Zhang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA.,Department of Laboratory Medicine and Clinical Diagnostics, The Affiliated Yantai Hospital, Binzhou Medical University, Yantai, China
| | - Jing Cui
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA.,Ministry of Education Key Laboratory of Diagnostic Medicine, and The Affiliated Hospitals of Chongqing Medical University, Chongqing, China
| | - Chao Ma
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA.,Departments of Neurosurgery, and Otolaryngology-Head & Neck Surgery, The Affiliated Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Li Li
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA.,Department of Biomedical Engineering, School of Bioengineering, Chongqing University, Chongqing, China
| | - Yichun Yu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA.,Department of Emergency Medicine, Beijing Hospital, Beijing, China
| | - Tingting Wu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA.,Departments of Neurosurgery, and Otolaryngology-Head & Neck Surgery, The Affiliated Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xingye Wu
- Departments of Orthopaedic Surgery, Blood Transfusion, Nephrology, and General Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA
| | - Jiayan Lei
- Departments of Orthopaedic Surgery, Blood Transfusion, Nephrology, and General Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA
| | - Jia Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA.,Ministry of Education Key Laboratory of Diagnostic Medicine, and The Affiliated Hospitals of Chongqing Medical University, Chongqing, China
| | - Chao Yang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA.,Ministry of Education Key Laboratory of Diagnostic Medicine, and The Affiliated Hospitals of Chongqing Medical University, Chongqing, China
| | - Ke Wu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA.,Ministry of Education Key Laboratory of Diagnostic Medicine, and The Affiliated Hospitals of Chongqing Medical University, Chongqing, China
| | - Ying Wu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA.,Department of Immunology and Microbiology, Beijing University of Chinese Medicine, Beijing, China
| | - Jun Tang
- Cytate Institute for Precision Medicine & Innovation, Guangzhou Cytate Biomedical Technologies Inc., Guangzhou, China
| | - Bai-Cheng He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA.,Ministry of Education Key Laboratory of Diagnostic Medicine, and The Affiliated Hospitals of Chongqing Medical University, Chongqing, China
| | - Zhong-Liang Deng
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA.,Ministry of Education Key Laboratory of Diagnostic Medicine, and The Affiliated Hospitals of Chongqing Medical University, Chongqing, China
| | - Hue H Luu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA
| | - Rex C Haydon
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA
| | - Russell R Reid
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA.,Department of Surgery, Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL, USA
| | - Michael J Lee
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA
| | - Jennifer Moriatis Wolf
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA
| | - Wei Huang
- Departments of Orthopaedic Surgery, Blood Transfusion, Nephrology, and General Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA.,Ministry of Education Key Laboratory of Diagnostic Medicine, and The Affiliated Hospitals of Chongqing Medical University, Chongqing, China
| |
Collapse
|
42
|
Li Z, Xu C, Ding B, Gao M, Wei X, Ji N. Long non-coding RNA MALAT1 promotes proliferation and suppresses apoptosis of glioma cells through derepressing Rap1B by sponging miR-101. J Neurooncol 2017; 134:19-28. [PMID: 28551849 DOI: 10.1007/s11060-017-2498-5] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 05/20/2017] [Indexed: 01/17/2023]
Abstract
Long non-coding RNAs (lncRNAs) have been recently shown to be dysregulated and closely related to several cancers. Here, we aimed to elucidate the function and the possible molecular mechanisms of lncRNA Metastasis-associated lung Adenocarcinoma transcript-1 (MALAT1) in human glioma. Quantitative real-time PCR (qRT-PCR) was used to detect the expressions of MALAT1, miR-101 and Rap1B mRNA in U251 and U87 cells. The protein level of Rap1B was examined by western blot assays. Moreover, the proliferation and apoptosis of U251 and U87 cells were determined by CCK-8 assay and flow cytometry analysis, respectively. Additionally, the targets of miR-101 were identified by target prediction and luciferase reporter assays. The results demonstrated that MALAT1 and Rap1B were upregulated, while miR-101 expression was downregulated in glioma cell lines U251 and U87. MALAT1 and Rap1B knockdown could inhibit proliferation and induce apoptosis of glioma cells. Moreover, MALAT1 promoted the Rap1B expression by sponging miR-101 in U251 and U87 cells. Furthermore, miR-101 downregulation or Rap1B overexpression reversed the proliferation inhibitory and apoptosis induction of glioma cell lines caused by MALAT1 knockdown. Taken together, MALAT1 promotes proliferation and suppresses apoptosis of glioma cells through derepressing Rap1B by sponging miR-101. The present study elucidates a novel MALAT1-miR-101-Rap1B regulatory axis in glioma, contributing to a better understanding of the glioma pathogenesis and providing a promising therapeutic target for glioma patients.
Collapse
Affiliation(s)
- Zhenjiang Li
- Department of Neurosurgery, Huaihe Hospital of Henan University, No.1 Baogonghu North Road, Gulou District, Kaifeng, 475000, China.
| | - Chenyang Xu
- Department of Neurosurgery, Huaihe Hospital of Henan University, No.1 Baogonghu North Road, Gulou District, Kaifeng, 475000, China
| | - Bingqian Ding
- Department of Neurosurgery, Huaihe Hospital of Henan University, No.1 Baogonghu North Road, Gulou District, Kaifeng, 475000, China.
| | - Ming Gao
- Department of Neurosurgery, Huaihe Hospital of Henan University, No.1 Baogonghu North Road, Gulou District, Kaifeng, 475000, China
| | - Xinting Wei
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450003, China
| | - Nan Ji
- Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing, 100071, China
| |
Collapse
|
43
|
Seiler J, Breinig M, Caudron-Herger M, Polycarpou-Schwarz M, Boutros M, Diederichs S. The lncRNA VELUCT strongly regulates viability of lung cancer cells despite its extremely low abundance. Nucleic Acids Res 2017; 45:5458-5469. [PMID: 28160600 PMCID: PMC5435915 DOI: 10.1093/nar/gkx076] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 01/24/2017] [Accepted: 01/26/2017] [Indexed: 01/22/2023] Open
Abstract
Little is known about the function of most non-coding RNAs (ncRNAs). The majority of long ncRNAs (lncRNAs) is expressed at very low levels and it is a matter of intense debate whether these can be of functional relevance. Here, we identified lncRNAs regulating the viability of lung cancer cells in a high-throughput RNA interference screen. Based on our previous expression profiling, we designed an siRNA library targeting 638 lncRNAs upregulated in human cancer. In a functional siRNA screen analyzing the viability of lung cancer cells, the most prominent hit was a novel lncRNA which we called Viability Enhancing LUng Cancer Transcript (VELUCT). In silico analyses confirmed the non-coding properties of the transcript. Surprisingly, VELUCT was below the detection limit in total RNA from NCI-H460 cells by RT-qPCR as well as RNA-Seq, but was robustly detected in the chromatin-associated RNA fraction. It is an extremely low abundant lncRNA with an RNA copy number of less than one copy per cell. Blocking transcription with actinomycin D revealed that VELUCT RNA was highly unstable which may partially explain its low steady-state concentration. Despite its extremely low abundance, loss-of-function of VELUCT with three independent experimental approaches in three different lung cancer cell lines led to a significant reduction of cell viability: Next to four individual siRNAs, also two complex siPOOLs as well as two antisense oligonucleotides confirmed the strong and specific phenotype. In summary, the extremely low abundant lncRNA VELUCT is essential for regulation of cell viability in several lung cancer cell lines. Hence, VELUCT is the first example for a lncRNA that is expressed at a very low level, but has a strong loss-of-function phenotype. Thus, our study proves that at least individual low-abundant lncRNAs can play an important functional role.
Collapse
Affiliation(s)
- Jana Seiler
- Division of RNA Biology & Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Marco Breinig
- Division of Signaling and Functional Genomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Maïwen Caudron-Herger
- Division of RNA Biology & Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Michael Boutros
- Division of Signaling and Functional Genomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sven Diederichs
- Division of RNA Biology & Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Cancer Research, Dept. of Thoracic Surgery, Medical Center – University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), Freiburg, Germany
| |
Collapse
|
44
|
Pope C, Mishra S, Russell J, Zhou Q, Zhong XB. Targeting H19, an Imprinted Long Non-Coding RNA, in Hepatic Functions and Liver Diseases. Diseases 2017; 5:E11. [PMID: 28933364 PMCID: PMC5456333 DOI: 10.3390/diseases5010011] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 03/03/2017] [Indexed: 12/17/2022] Open
Abstract
H19 is a long non-coding RNA regulated by genomic imprinting through methylation at the locus between H19 and IGF2. H19 is important in normal liver development, controlling proliferation and impacting genes involved in an important network controlling fetal development. H19 also plays a major role in disease progression, particularly in hepatocellular carcinoma. H19 participates in the epigenetic regulation of many processes impacting diseases, such as activating the miR-200 pathway by histone acetylation to inhibit the epithelial-mesenchymal transition to suppress tumor metastasis. Furthermore, H19's normal regulation is disturbed in diseases, such as hepatocellular carcinoma. In this disease, aberrant epigenetic maintenance results in biallelic expression of IGF2, leading to uncontrolled cellular proliferation. This review aims to further research utilizing H19 for drug discovery and the treatment of liver diseases by focusing on both the epigenetic regulation of H19 and how H19 regulates normal liver functions and diseases, particularly by epigenetic mechanisms.
Collapse
Affiliation(s)
- Chad Pope
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, 69 N Eagleville Road, Storrs, CT 06269, USA.
| | - Shashank Mishra
- Department of Physiology and Neurobiology, University of Connecticut, 75 N Eagleville Road, Storrs, CT 06269, USA.
| | - Joshua Russell
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, 69 N Eagleville Road, Storrs, CT 06269, USA.
| | - Qingqing Zhou
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, 69 N Eagleville Road, Storrs, CT 06269, USA.
| | - Xiao-Bo Zhong
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, 69 N Eagleville Road, Storrs, CT 06269, USA.
| |
Collapse
|
45
|
The Interplay of LncRNA-H19 and Its Binding Partners in Physiological Process and Gastric Carcinogenesis. Int J Mol Sci 2017; 18:ijms18020450. [PMID: 28230721 PMCID: PMC5343984 DOI: 10.3390/ijms18020450] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Revised: 02/12/2017] [Accepted: 02/16/2017] [Indexed: 02/07/2023] Open
Abstract
Long non-coding RNA (lncRNA), a novel and effective modulator in carcinogenesis, has become a study hotspot in recent years. The imprinted oncofetal lncRNA H19 is one of the first identified imprinted lncRNAs with a high expression level in embryogenesis but is barely detectable in most tissues after birth. Aberrant alterations of H19 expression have been demonstrated in various tumors, including gastric cancer (GC), implicating a crucial role of H19 in cancer progression. As one of the top malignancies in the world, GC has already become a serious concern to public health with poor prognosis. The regulatory roles of H19 in gastric carcinogenesis have been explored by various research groups, which leads to the development of GC therapy. This review comprehensively summarizes the current knowledge of H19 in tumorigenesis, especially in GC pathogenesis, with emphasis on the underneath molecular mechanisms depicted from its functional partners. Furthermore, the accumulated knowledge of H19 will provide better understanding on targeted therapy of GC.
Collapse
|
46
|
Insights from Global Analyses of Long Noncoding RNAs in Breast Cancer. CURRENT PATHOBIOLOGY REPORTS 2017; 5:23-34. [PMID: 28616363 DOI: 10.1007/s40139-017-0122-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW The goal of this review was to compare and contrast the results and implications from several recent transcriptomic studies that analyzed the expression of lncRNAs in breast cancer. How many lncRNAs are dysregulated in breast cancer? Do dysregulated lncRNAs contribute to breast cancer etiology? Are lncRNAs viable biomarkers in breast cancer? RECENT FINDINGS Transcriptomic profiling of breast cancer tissues, mostly from The Cancer Genome Atlas, identified thousands of long noncoding RNAs that are expressed and dysregulated in breast cancer. The expression of lncRNAs alone can divide patients into molecular subtypes. Subsequent functional studies demonstrated that several of these lncRNAs have important roles in breast cancer cell biology. SUMMARY Thousands of lncRNAs are dysregulated in breast cancer that can be developed as biomarkers for prognostic or therapeutic purposes. The reviewed reports provide a roadmap to guide functional studies to discover lncRNAs with critical biological functions relating to breast cancer development and progression.
Collapse
|
47
|
The long non-coding RNA 91H increases aggressive phenotype of breast cancer cells and up-regulates H19/IGF2 expression through epigenetic modifications. Cancer Lett 2017; 385:198-206. [DOI: 10.1016/j.canlet.2016.10.023] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 10/13/2016] [Accepted: 10/14/2016] [Indexed: 11/22/2022]
|
48
|
The Significance of Long Noncoding RNA H19 in Predicting Progression and Metastasis of Cancers: A Meta-Analysis. BIOMED RESEARCH INTERNATIONAL 2016; 2016:5902678. [PMID: 27672656 PMCID: PMC5031821 DOI: 10.1155/2016/5902678] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 07/31/2016] [Accepted: 08/15/2016] [Indexed: 12/14/2022]
Abstract
Recently, numerous studies indicate that H19 plays a key role in tumorigenesis, but the results have been disputed, especially in the aspects of tumor progression and metastasis. Therefore, we performed this meta-analysis to systematically summarize the relationship between H19 and cancers. We searched PubMed, the Cochrane Library, CNKI, and Chinese Wan Fang to identify eligible studies. Odds ratios and 95% confidence intervals were calculated to assess the effect size. A total of 13 studies were enrolled in this meta-analysis, which was performed by Revman5.3 and Stata11.0 software. Our meta-analysis showed that the expression of H19 was associated with distant metastasis in nongastrointestinal tumors (OR = 3.85, 95% CI = 1.31–11.36, P = 0.01) and, in gastrointestinal tumors (OR = 0.34, 95% CI = 0.15–0.78, P = 0.01), lymph node metastasis (OR = 2.04, 95% CI = 1.19–3.48, P = 0.009). Moreover, in gastric cancer, H19 expression was significantly related to histological grade (OR = 0.50, 95% CI = 0.29–0.86, P = 0.01), TNM stage (OR = 0.19, 95% CI = 0.11–0.33, P < 0.01), and tumor invasion depth (OR = 0.11, 95% CI = 0.04–0.27, P < 0.01). Therefore, H19 could serve as a potential marker for progression and metastasis evaluation of cancers.
Collapse
|
49
|
|
50
|
Van Grembergen O, Bizet M, de Bony EJ, Calonne E, Putmans P, Brohée S, Olsen C, Guo M, Bontempi G, Sotiriou C, Defrance M, Fuks F. Portraying breast cancers with long noncoding RNAs. SCIENCE ADVANCES 2016; 2:e1600220. [PMID: 27617288 PMCID: PMC5010371 DOI: 10.1126/sciadv.1600220] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 08/05/2016] [Indexed: 05/24/2023]
Abstract
Evidence is emerging that long noncoding RNAs (lncRNAs) may play a role in cancer development, but this role is not yet clear. We performed a genome-wide transcriptional survey to explore the lncRNA landscape across 995 breast tissue samples. We identified 215 lncRNAs whose genes are aberrantly expressed in breast tumors, as compared to normal samples. Unsupervised hierarchical clustering of breast tumors on the basis of their lncRNAs revealed four breast cancer subgroups that correlate tightly with PAM50-defined mRNA-based subtypes. Using multivariate analysis, we identified no less than 210 lncRNAs prognostic of clinical outcome. By analyzing the coexpression of lncRNA genes and protein-coding genes, we inferred potential functions of the 215 dysregulated lncRNAs. We then associated subtype-specific lncRNAs with key molecular processes involved in cancer. A correlation was observed, on the one hand, between luminal A-specific lncRNAs and the activation of phosphatidylinositol 3-kinase, fibroblast growth factor, and transforming growth factor-β pathways and, on the other hand, between basal-like-specific lncRNAs and the activation of epidermal growth factor receptor (EGFR)-dependent pathways and of the epithelial-to-mesenchymal transition. Finally, we showed that a specific lncRNA, which we called CYTOR, plays a role in breast cancer. We confirmed its predicted functions, showing that it regulates genes involved in the EGFR/mammalian target of rapamycin pathway and is required for cell proliferation, cell migration, and cytoskeleton organization. Overall, our work provides the most comprehensive analyses for lncRNA in breast cancers. Our findings suggest a wide range of biological functions associated with lncRNAs in breast cancer and provide a foundation for functional investigations that could lead to new therapeutic approaches.
Collapse
Affiliation(s)
- Olivier Van Grembergen
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB–Cancer Research Center (U-CRC), Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| | - Martin Bizet
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB–Cancer Research Center (U-CRC), Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
- Machine Learning Group, Computer Science Department, Université Libre de Bruxelles, 1050 Brussels, Belgium
- Interuniversity Institute of Bioinformatics Brussels, Université Libre de Bruxelles–Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Eric J. de Bony
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB–Cancer Research Center (U-CRC), Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| | - Emilie Calonne
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB–Cancer Research Center (U-CRC), Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| | - Pascale Putmans
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB–Cancer Research Center (U-CRC), Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| | - Sylvain Brohée
- Breast Cancer Translational Research Laboratory, Jules Bordet Institute, Université Libre de Bruxelles, 1000 Brussels, Belgium
| | - Catharina Olsen
- Machine Learning Group, Computer Science Department, Université Libre de Bruxelles, 1050 Brussels, Belgium
| | - Mingzhou Guo
- Department of Gastroenterology and Hepatology, Chinese People’s Liberation Army General Hospital, Beijing 100853, China
| | - Gianluca Bontempi
- Machine Learning Group, Computer Science Department, Université Libre de Bruxelles, 1050 Brussels, Belgium
- Interuniversity Institute of Bioinformatics Brussels, Université Libre de Bruxelles–Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Christos Sotiriou
- Breast Cancer Translational Research Laboratory, Jules Bordet Institute, Université Libre de Bruxelles, 1000 Brussels, Belgium
| | - Matthieu Defrance
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB–Cancer Research Center (U-CRC), Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
- Interuniversity Institute of Bioinformatics Brussels, Université Libre de Bruxelles–Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - François Fuks
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB–Cancer Research Center (U-CRC), Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| |
Collapse
|