1
|
Ismael A, Tian W, Waszczak N, Wang X, Cao Y, Suchkov D, Bar E, Metodiev MV, Liang J, Arkowitz RA, Stone DE. Gβ promotes pheromone receptor polarization and yeast chemotropism by inhibiting receptor phosphorylation. Sci Signal 2016; 9:ra38. [PMID: 27072657 DOI: 10.1126/scisignal.aad4376] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Gradient-directed cell migration (chemotaxis) and growth (chemotropism) are processes that are essential to the development and life cycles of all species. Cells use surface receptors to sense the shallow chemical gradients that elicit chemotaxis and chemotropism. Slight asymmetries in receptor activation are amplified by downstream signaling systems, which ultimately induce dynamic reorganization of the cytoskeleton. During the mating response of budding yeast, a model chemotropic system, the pheromone receptors on the plasma membrane polarize to the side of the cell closest to the stimulus. Although receptor polarization occurs before and independently of actin cable-dependent delivery of vesicles to the plasma membrane (directed secretion), it requires receptor internalization. Phosphorylation of pheromone receptors by yeast casein kinase 1 or 2 (Yck1/2) stimulates their internalization. We showed that the pheromone-responsive Gβγ dimer promotes the polarization of the pheromone receptor by interacting with Yck1/2 and locally inhibiting receptor phosphorylation. We also found that receptor phosphorylation is essential for chemotropism, independently of its role in inducing receptor internalization. A mathematical model supports the idea that the interaction between Gβγ and Yck1/2 results in differential phosphorylation and internalization of the pheromone receptor and accounts for its polarization before the initiation of directed secretion.
Collapse
Affiliation(s)
- Amber Ismael
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Wei Tian
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Nicholas Waszczak
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Xin Wang
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Youfang Cao
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Dmitry Suchkov
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Eli Bar
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Metodi V Metodiev
- School of Biological Sciences, University of Essex, Essex CO4 3SQ, UK
| | - Jie Liang
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Robert A Arkowitz
- CNRS UMR7277/INSERM UMR1091/Université Nice-Sophia Antipolis, Institute of Biology Valrose, 06108 Nice Cedex 2, France
| | - David E Stone
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA.
| |
Collapse
|
2
|
Choudhary P, Loewen MC. Quantification of mutation-derived bias for alternate mating functionalities of the Saccharomyces cerevisiae Ste2p pheromone receptor. J Biochem 2015; 159:49-58. [PMID: 26232403 DOI: 10.1093/jb/mvv072] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 06/15/2015] [Indexed: 01/14/2023] Open
Abstract
Although well documented for mammalian G-protein-coupled receptors, alternate functionalities and associated alternate signalling remain to be unequivocally established for the Saccharomyces cerevisiae pheromone Ste2p receptor. Here, evidence supporting alternate functionalities for Ste2p is re-evaluated, extended and quantified. In particular, strong mating and constitutive signalling mutations, focusing on residues S254, P258 and S259 in TM6 of Ste2p, are stacked and investigated in terms of their effects on classical G-protein-mediated signal transduction associated with cell cycle arrest, and alternatively, their impact on downstream mating projection and zygote formation events. In relative dose response experiments, accounting for systemic and observational bias, mutational-derived functional differences were observed, validating the S254L-derived bias for downstream mating responses and highlighting complex relationships between TM6-mutation derived constitutive signalling and ligand-induced functionalities. Mechanistically, localization studies suggest that alterations to receptor trafficking may contribute to mutational bias, in addition to expected receptor conformational stabilization effects. Overall, these results extend previous observations and quantify the contributions of Ste2p variants to mediating cell cycle arrest versus downstream mating functionalities.
Collapse
Affiliation(s)
- Pooja Choudhary
- Department of Biochemistry, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada and
| | - Michele C Loewen
- Department of Biochemistry, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada and Aquatic and Crop Resources Development, National Research Council of Canada, 110 Gymnasium Place, Saskatoon, SK S7N 0W9, Canada
| |
Collapse
|
3
|
Sartorel E, Barrey E, Lau RK, Thorner J. Plasma membrane aminoglycerolipid flippase function is required for signaling competence in the yeast mating pheromone response pathway. Mol Biol Cell 2015; 26:134-50. [PMID: 25378585 PMCID: PMC4279224 DOI: 10.1091/mbc.e14-07-1193] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 10/17/2014] [Accepted: 10/28/2014] [Indexed: 12/22/2022] Open
Abstract
The class 4 P-type ATPases ("flippases") maintain membrane asymmetry by translocating phosphatidylethanolamine and phosphatidylserine from the outer leaflet to the cytosolic leaflet of the plasma membrane. In Saccharomyces cerevisiae, five related gene products (Dnf1, Dnf2, Dnf3, Drs2, and Neo1) are implicated in flipping of phosphatidylethanolamine, phosphatidylserine, and phosphatidylcholine. In MAT A: cells responding to α-factor, we found that Dnf1, Dnf2, and Dnf3, as well as the flippase-activating protein kinase Fpk1, localize at the projection ("shmoo") tip where polarized growth is occurring and where Ste5 (the central scaffold protein of the pheromone-initiated MAPK cascade) is recruited. Although viable, a MAT A: dnf1∆ dnf2∆ dnf3∆ triple mutant exhibited a marked decrease in its ability to respond to α-factor, which we could attribute to pronounced reduction in Ste5 stability resulting from an elevated rate of its Cln2⋅Cdc28-initiated degradation. Similarly, a MAT A: dnf1∆ dnf3∆ drs2∆ triple mutant also displayed marked reduction in its ability to respond to α-factor, which we could attribute to inefficient recruitment of Ste5 to the plasma membrane due to severe mislocalization of the cellular phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate pools. Thus proper remodeling of plasma membrane aminoglycerolipids and phosphoinositides is necessary for efficient recruitment, stability, and function of the pheromone signaling apparatus.
Collapse
Affiliation(s)
- Elodie Sartorel
- Division of Biochemistry, Biophysics and Structural Biology, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3202
| | - Evelyne Barrey
- Division of Biochemistry, Biophysics and Structural Biology, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3202
| | - Rebecca K Lau
- Division of Biochemistry, Biophysics and Structural Biology, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3202
| | - Jeremy Thorner
- Division of Biochemistry, Biophysics and Structural Biology, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3202
| |
Collapse
|
4
|
Abstract
Cells are naturally surrounded by organized electrical signals in the form of local ion fluxes, membrane potential, and electric fields (EFs) at their surface. Although the contribution of electrochemical elements to cell polarity and migration is beginning to be appreciated, underlying mechanisms are not known. Here we show that an exogenous EF can orient cell polarization in budding yeast (Saccharomyces cerevisiae) cells, directing the growth of mating projections towards sites of hyperpolarized membrane potential, while directing bud emergence in the opposite direction, towards sites of depolarized potential. Using an optogenetic approach, we demonstrate that a local change in membrane potential triggered by light is sufficient to direct cell polarization. Screens for mutants with altered EF responses identify genes involved in transducing electrochemical signals to the polarity machinery. Membrane potential, which is regulated by the potassium transporter Trk1p, is required for polarity orientation during mating and EF response. Membrane potential may regulate membrane charges through negatively charged phosphatidylserines (PSs), which act to position the Cdc42p-based polarity machinery. These studies thus define an electrochemical pathway that directs the orientation of cell polarization.
Collapse
|
5
|
Ste18p is a positive control element in the mating process of Candida albicans. EUKARYOTIC CELL 2014; 13:461-9. [PMID: 24489040 DOI: 10.1128/ec.00320-13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Heterotrimeric G proteins are an important class of eukaryotic signaling molecules that have been identified as central elements in the pheromone response pathways of many fungi. In the fungal pathogen Candida albicans, the STE18 gene (ORF19.6551.1) encodes a potential γ subunit of a heterotrimeric G protein; this protein contains the C-terminal CAAX box characteristic of γ subunits and has sequence similarity to γ subunits implicated in the mating pathways of a variety of fungi. Disruption of this gene was shown to cause sterility of MTLa mating cells and to block pheromone-induced gene expression and shmoo formation; deletion of just the CAAX box residues is sufficient to inactivate Ste18 function in the mating process. Intriguingly, ectopic expression behind the strong ACT1 promoter of either the Gα or the Gβ subunit of the heterotrimeric G protein is able to suppress the mating defect caused by deletion of the Gγ subunit and restore both pheromone-induced gene expression and morphology changes.
Collapse
|
6
|
Zhu M, Torres MP, Kelley JB, Dohlman HG, Wang Y. Pheromone- and RSP5-dependent ubiquitination of the G protein beta subunit Ste4 in yeast. J Biol Chem 2011; 286:27147-55. [PMID: 21685393 DOI: 10.1074/jbc.m111.254193] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ste4 is the β subunit of a heterotrimeric G protein that mediates mating responses in Saccharomyces cerevisiae. Here we show that Ste4 undergoes ubiquitination in response to pheromone stimulation. Ubiquitination of Ste4 is dependent on the E3 ligase Rsp5. Disrupting the activity of Rsp5 abolishes ubiquitination of Ste4 in vivo, and recombinant Rsp5 is capable of ubiquitinating Ste4 in vitro. We find also that Lys-340 is a major ubiquitination site on Ste4, as pheromone-induced ubiquitination of the protein is prevented when this residue is mutated to an arginine. Functionally, ubiquitination does not appear to regulate the stability of Ste4, as blocking ubiquitination has no apparent effect on either the abundance or the half-life of the protein. However, when presented with a concentration gradient of pheromone, Ste4(K340R) mutant cells polarize significantly faster than wild-type cells, indicating that ubiquitination limits pheromone-directed polarized growth. Together, these findings reveal a novel stimulus-dependent posttranslational modification of a Gβ subunit, establish Ste4 as a new substrate of the E3 ligase Rsp5, and demonstrate a role for G protein ubiquitination in cell polarization.
Collapse
Affiliation(s)
- Ming Zhu
- Department of Biology, Saint Louis University, St. Louis, Missouri 63103, USA
| | | | | | | | | |
Collapse
|
7
|
Cappell SD, Dohlman HG. Selective regulation of MAP kinase signaling by an endomembrane phosphatidylinositol 4-kinase. J Biol Chem 2011; 286:14852-60. [PMID: 21388955 DOI: 10.1074/jbc.m110.195073] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Multiple MAP kinase pathways share components yet initiate distinct biological processes. Signaling fidelity can be maintained by scaffold proteins and restriction of signaling complexes to discreet subcellular locations. For example, the yeast MAP kinase scaffold Ste5 binds to phospholipids produced at the plasma membrane and promotes selective MAP kinase activation. Here we show that Pik1, a phosphatidylinositol 4-kinase that localizes primarily to the Golgi, also regulates MAP kinase specificity but does so independently of Ste5. Pik1 is required for full activation of the MAP kinases Fus3 and Hog1 and represses activation of Kss1. Further, we show by genetic epistasis analysis that Pik1 likely regulates Ste11 and Ste50, components shared by all three MAP kinase pathways, through their interaction with the scaffold protein Opy2. These findings reveal a new regulator of signaling specificity functioning at endomembranes rather than at the plasma membrane.
Collapse
Affiliation(s)
- Steven D Cappell
- Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | |
Collapse
|
8
|
Dynamic localization of Fus3 mitogen-activated protein kinase is necessary to evoke appropriate responses and avoid cytotoxic effects. Mol Cell Biol 2010; 30:4293-307. [PMID: 20584989 DOI: 10.1128/mcb.00361-10] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cellular responses to many external stimuli are mediated by mitogen-activated protein kinases (MAPKs). We investigated whether dynamic intracellular movement contributes to the spatial and temporal characteristics of the responses elicited by a prototypic MAPK, Fus3, in the mating pheromone response pathway in budding yeast (Saccharomyces cerevisiae). Confining Fus3 in the nucleus, via fusion to a histone H2B, reduced MAPK activation and diminished all responses (pheromone-induced gene expression, cell cycle arrest, projection formation, and mating). Elimination of MAPK phosphatases restored more robust outputs for all responses, indicating that nuclear sequestration impedes full MAPK activation but does not abrogate its functional competence. Restricting Fus3 to the plasma membrane, via fusion to a lipid-modified CCaaX motif, led to MAPK hyperactivation yet severely impaired all response outputs. Fus3-CCaaX also caused aberrant cell morphology and a proliferation defect. Unlike similar phenotypes induced by pathway hyperactivation via upstream components, these deleterious effects were independent of the downstream transcription factor Ste12. Thus, appropriate cellular responses require free subcellular MAPK transit to disseminate MAPK activity optimally because preventing dynamic MAPK movement either markedly impaired signal-dependent activation and/or resulted in improper biological outputs.
Collapse
|
9
|
Dse1 may control cross talk between the pheromone and filamentation pathways in yeast. Curr Genet 2009; 55:611-21. [PMID: 19820940 DOI: 10.1007/s00294-009-0274-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Revised: 09/18/2009] [Accepted: 09/20/2009] [Indexed: 10/20/2022]
Abstract
The filamentous/invasive growth pathway is activated by nutrient limitation in the haploid form of the yeast Saccharomyces cerevisiae, whereas exposure to mating-pheromone causes cells to differentiate into gametes. Although these two pathways respond to very different stimuli and generate very different responses, they utilize many of the same signaling components. This implies the need for robust mechanisms to maintain signal fidelity. Dse1 was identified in an allele-specific suppressor screen for proteins that interact with the pheromone-responsive Gbetagamma, and found to bind both to a Gbetagamma-affinity column, and to the shared MEKK, Ste11. Although overexpression of Dse1 stimulated invasive growth and transcription of both filamentation and mating-specific transcriptional reporters, deletion of DSE1 had no effect on these outputs. In contrast, pheromone hyper-induced transcription of the filamentation reporter in cells lacking Dse1 and in cells expressing a mutant form of Gbeta that exhibits diminished interaction with Dse1. Thus, the interaction of Dse1 with both Gbeta and Ste11 may be designed to control cross talk between the pheromone and filamentation pathways.
Collapse
|
10
|
Abstract
Designing the shape and size of a cell is an interesting challenge for synthetic biology. Prolonged exposure to the mating pheromone α-factor induces an unusual morphology in yeast cells: multiple mating projections. The goal of this work was to reproduce the multiple projections phenotype in the absence of α-factor using a gain-of-function approach termed “Alternative Inputs (AIs)”. An alternative input is defined as any genetic manipulation that can activate the signaling pathway instead of the natural input. Interestingly, none of the alternative inputs were sufficient to produce multiple projections although some produced a single projection. Then, we extended our search by creating all combinations of alternative inputs and deletions that were summarized in an AIs-Deletions matrix. We found a genetic manipulation (AI-Ste5p ste2Δ) that enhanced the formation of multiple projections. Following up this lead, we demonstrated that AI-Ste4p and AI-Ste5p were sufficient to produce multiple projections when combined. Further, we showed that overexpression of a membrane-targeted form of Ste5p alone could also induce multiple projections. Thus, we successfully re-engineered the multiple projections mating morphology using alternative inputs without α-factor.
Collapse
Affiliation(s)
- Hiromasa Tanaka
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, California, United States of America
- Center for Complex Biological Systems, University of California Irvine, Irvine, California, United States of America
| | - Tau-Mu Yi
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, California, United States of America
- Center for Complex Biological Systems, University of California Irvine, Irvine, California, United States of America
- * E-mail:
| |
Collapse
|
11
|
Heterotrimeric G-protein subunit function in Candida albicans: both the alpha and beta subunits of the pheromone response G protein are required for mating. EUKARYOTIC CELL 2008; 7:1591-9. [PMID: 18658257 DOI: 10.1128/ec.00077-08] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A pheromone-mediated signaling pathway that couples seven-transmembrane-domain (7-TMD) receptors to a mitogen-activated protein kinase module controls Candida albicans mating. 7-TMD receptors are typically connected to heterotrimeric G proteins whose activation regulates downstream effectors. Two Galpha subunits in C. albicans have been identified previously, both of which have been implicated in aspects of pheromone response. Cag1p was found to complement the mating pathway function of the pheromone receptor-coupled Galpha subunit in Saccharomyces cerevisiae, and Gpa2p was shown to have a role in the regulation of cyclic AMP signaling in C. albicans and to repress pheromone-mediated arrest. Here, we show that the disruption of CAG1 prevented mating, inactivated pheromone-mediated arrest and morphological changes, and blocked pheromone-mediated gene expression changes in opaque cells of C. albicans and that the overproduction of CAG1 suppressed the hyperactive cell cycle arrest exhibited by sst2 mutant cells. Because the disruption of the STE4 homolog constituting the only C. albicans gene for a heterotrimeric Gbeta subunit also blocked mating and pheromone response, it appears that in this fungal pathogen the Galpha and Gbeta subunits do not act antagonistically but, instead, are both required for the transmission of the mating signal.
Collapse
|
12
|
Li L, Shen G, Zhang ZG, Wang YL, Thompson JK, Wang P. Canonical heterotrimeric G proteins regulating mating and virulence of Cryptococcus neoformans. Mol Biol Cell 2007; 18:4201-9. [PMID: 17699592 PMCID: PMC2043552 DOI: 10.1091/mbc.e07-02-0136] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Perturbation of pheromone signaling modulates not only mating but also virulence in Cryptococcus neoformans, an opportunistic human pathogen known to encode three Galpha, one Gbeta, and two Ggamma subunit proteins. We have found that Galphas Gpa2 and Gpa3 exhibit shared and distinct roles in regulating pheromone responses and mating. Gpa2 interacted with the pheromone receptor homolog Ste3alpha, Gbeta subunit Gpb1, and RGS protein Crg1. Crg1 also exhibited in vitro GAP activity toward Gpa2. These findings suggest that Gpa2 regulates mating through a conserved signaling mechanism. Moreover, we found that Ggammas Gpg1 and Gpg2 both regulate pheromone responses and mating. gpg1 mutants were attenuated in mating, and gpg2 mutants were sterile. Finally, although gpa2, gpa3, gpg1, gpg2, and gpg1 gpg2 mutants were fully virulent, gpa2 gpa3 mutants were attenuated for virulence in a murine model. Our study reveals a conserved but distinct signaling mechanism by two Galpha, one Gbeta, and two Ggamma proteins for pheromone responses, mating, and virulence in Cryptococcus neoformans, and it also reiterates that the link between mating and virulence is not due to mating per se but rather to certain mating-pathway components that encode additional functions promoting virulence.
Collapse
Affiliation(s)
- Lie Li
- Departments of *Pediatrics and
- The Research Institute for Children, Louisiana State University Health Sciences Center, New Orleans, LA 70118
| | - Gui Shen
- Departments of *Pediatrics and
- The Research Institute for Children, Louisiana State University Health Sciences Center, New Orleans, LA 70118
| | - Zheng-Guang Zhang
- The Research Institute for Children, Louisiana State University Health Sciences Center, New Orleans, LA 70118
| | - Yan-Li Wang
- The Research Institute for Children, Louisiana State University Health Sciences Center, New Orleans, LA 70118
| | - Jill K. Thompson
- The Research Institute for Children, Louisiana State University Health Sciences Center, New Orleans, LA 70118
| | - Ping Wang
- Departments of *Pediatrics and
- Microbiology, Immunology, and Parasitology, and
- The Research Institute for Children, Louisiana State University Health Sciences Center, New Orleans, LA 70118
| |
Collapse
|
13
|
Birnbaumer L. Expansion of signal transduction by G proteins. The second 15 years or so: from 3 to 16 alpha subunits plus betagamma dimers. BIOCHIMICA ET BIOPHYSICA ACTA 2007; 1768:772-93. [PMID: 17258171 PMCID: PMC1993906 DOI: 10.1016/j.bbamem.2006.12.002] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2006] [Accepted: 12/02/2006] [Indexed: 10/23/2022]
Abstract
The first 15 years, or so, brought the realization that there existed a G protein coupled signal transduction mechanism by which hormone receptors regulate adenylyl cyclases and the light receptor rhodopsin activates visual phosphodiesterase. Three G proteins, Gs, Gi and transducin (T) had been characterized as alphabetagamma heterotrimers, and Gsalpha-GTP and Talpha-GTP had been identified as the sigaling arms of Gs and T. These discoveries were made using classical biochemical approaches, and culminated in the purification of these G proteins. The second 15 years, or so, are the subject of the present review. This time coincided with the advent of powerful recombinant DNA techniques. Combined with the classical approaches, the field expanded the repertoire of G proteins from 3 to 16, discovered the superfamily of seven transmembrane G protein coupled receptors (GPCRs) -- which is not addressed in this article -- and uncovered an amazing repertoire of effector functions regulated not only by alphaGTP complexes but also by betagamma dimers. Emphasis is placed in presenting how the field developed with the hope of conveying why many of the new findings were made.
Collapse
Affiliation(s)
- Lutz Birnbaumer
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
14
|
Ingolia NT, Murray AW. Positive-feedback loops as a flexible biological module. Curr Biol 2007; 17:668-77. [PMID: 17398098 PMCID: PMC1914375 DOI: 10.1016/j.cub.2007.03.016] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2006] [Revised: 02/12/2007] [Accepted: 03/01/2007] [Indexed: 01/08/2023]
Abstract
BACKGROUND Bistability in genetic networks allows cells to remember past events and to make discrete decisions in response to graded signals. Bistable behavior can result from positive feedback, but feedback loops can have other roles in signal transduction as well. RESULTS We introduced positive feedback into the budding-yeast pheromone response to convert it into a bistable system. In the presence of feedback, transient induction with high pheromone levels caused persistent pathway activation, whereas at lower levels a fraction of cells became persistently active but the rest inactivated completely. We also generated mutations that quantitatively tuned the basal and induced expression levels of the feedback promoter and showed that they qualitatively changed the behavior of the system. Finally, we developed a simple stochastic model of our positive-feedback system and showed the agreement between our simulations and experimental results. CONCLUSIONS The positive-feedback loop can display several different behaviors, including bistability, and can switch between them as a result of simple mutations.
Collapse
Affiliation(s)
- Nicholas T. Ingolia
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138 USA
| | - Andrew W. Murray
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138 USA
- *To whom correspondence should be addressed, E-mail: ; Phone: (617) 496-1350
| |
Collapse
|
15
|
Strickfaden SC, Winters MJ, Ben-Ari G, Lamson RE, Tyers M, Pryciak PM. A mechanism for cell-cycle regulation of MAP kinase signaling in a yeast differentiation pathway. Cell 2007; 128:519-31. [PMID: 17289571 PMCID: PMC1847584 DOI: 10.1016/j.cell.2006.12.032] [Citation(s) in RCA: 177] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2006] [Revised: 10/05/2006] [Accepted: 12/01/2006] [Indexed: 11/17/2022]
Abstract
Yeast cells arrest in the G1 phase of the cell cycle upon exposure to mating pheromones. As cells commit to a new cycle, G1 CDK activity (Cln/CDK) inhibits signaling through the mating MAPK cascade. Here we show that the target of this inhibition is Ste5, the MAPK cascade scaffold protein. Cln/CDK disrupts Ste5 membrane localization by phosphorylating a cluster of sites that flank a small, basic, membrane-binding motif in Ste5. Effective inhibition of Ste5 signaling requires multiple phosphorylation sites and a substantial accumulation of negative charge, which suggests that Ste5 acts as a sensor for high G1 CDK activity. Thus, Ste5 is an integration point for both external and internal signals. When Ste5 cannot be phosphorylated, pheromone triggers an aberrant arrest of cells outside G1 either in the presence or absence of the CDK-inhibitor protein Far1. These findings define a mechanism and physiological benefit of restricting antiproliferative signaling to G1.
Collapse
Affiliation(s)
- Shelly C Strickfaden
- Department of Molecular Genetics and Microbiology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | | | | | | | | | |
Collapse
|
16
|
Shi C, Kaminskyj S, Caldwell S, Loewen MC. A role for a complex between activated G protein-coupled receptors in yeast cellular mating. Proc Natl Acad Sci U S A 2007; 104:5395-400. [PMID: 17369365 PMCID: PMC1838501 DOI: 10.1073/pnas.0608219104] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Cell-cell fusion is a fundamental process that facilitates a wide variety of biological events in organisms ranging from yeast to humans. However, relatively little is actually understood with respect to fusion mechanisms. In the model organism Saccharomyces cerevisiae, mating of opposite-type cells is triggered by pheromone activation of the G protein-coupled receptors, alpha-factor receptor (Ste2p) and a-factor receptor (Ste3p), leading to mitogen-activated protein kinase signaling, growth arrest, and cellular fusion events. Herein we now provide evidence of a role for these receptors in the later cell fusion stage of mating. In vitro assays demonstrated the ability of the receptors to promote mixing of proteoliposomes containing phosphatidylserine, potentially based on a pheromone-dependent interaction between Ste2p and Ste3p that was confirmed by tandem affinity purification and cellular pull-down assays. The cellular mating activity of Ste2p was subsequently probed in vivo. Notably, a receptor-null yeast strain expressing N-terminally truncated Ste2p yielded a phenotype demonstrating wild-type signaling but arrested mating. The arrested prezygotes showed evidence of some cell wall erosion but no membrane juxtaposition at the fusion site. Further, in vitro analyses correlated this mutation with loss of the interaction between Ste2p and Ste3p and inhibition of related lipid mixing. Overall, these results support a role for a complex between activated yeast pheromone receptors in later cell fusion stages of mating, possibly mediating events at the level of cell wall digestion and membrane juxtaposition before membrane fusion.
Collapse
Affiliation(s)
- Chunhua Shi
- *Plant Biotechnology Institute, National Research Council of Canada, 110 Gymnasium Place, Saskatoon, SK, Canada S7N 0W9
| | - Susan Kaminskyj
- Department of Biology, University of Saskatchewan, Saskatoon, SK, Canada S7N 5E5
| | - Sarah Caldwell
- Department of Veterinary Biomedical Science, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada S7N 5B4
| | - Michèle C. Loewen
- *Plant Biotechnology Institute, National Research Council of Canada, 110 Gymnasium Place, Saskatoon, SK, Canada S7N 0W9
- Department of Biochemistry, University of Saskatchewan, Saskatoon, SK, Canada S7N 5E2; and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
17
|
Chasse SA, Flanary P, Parnell SC, Hao N, Cha JY, Siderovski DP, Dohlman HG. Genome-scale analysis reveals Sst2 as the principal regulator of mating pheromone signaling in the yeast Saccharomyces cerevisiae. EUKARYOTIC CELL 2006; 5:330-46. [PMID: 16467474 PMCID: PMC1405904 DOI: 10.1128/ec.5.2.330-346.2006] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A common property of G protein-coupled receptors is that they become less responsive with prolonged stimulation. Regulators of G protein signaling (RGS proteins) are well known to accelerate G protein GTPase activity and do so by stabilizing the transition state conformation of the G protein alpha subunit. In the yeast Saccharomyces cerevisiae there are four RGS-homologous proteins (Sst2, Rgs2, Rax1, and Mdm1) and two Galpha proteins (Gpa1 and Gpa2). We show that Sst2 is the only RGS protein that binds selectively to the transition state conformation of Gpa1. The other RGS proteins also bind Gpa1 and modulate pheromone signaling, but to a lesser extent and in a manner clearly distinct from Sst2. To identify other candidate pathway regulators, we compared pheromone responses in 4,349 gene deletion mutants representing nearly all nonessential genes in yeast. A number of mutants produced an increase (sst2, bar1, asc1, and ygl024w) or decrease (cla4) in pheromone sensitivity or resulted in pheromone-independent signaling (sst2, pbs2, gas1, and ygl024w). These findings suggest that Sst2 is the principal regulator of Gpa1-mediated signaling in vivo but that other proteins also contribute in distinct ways to pathway regulation.
Collapse
Affiliation(s)
- Scott A Chasse
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599-7260, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Roth AF, Nelson B, Boone C, Davis NG. Asg7p-Ste3p inhibition of pheromone signaling: regulation of the zygotic transition to vegetative growth. Mol Cell Biol 2000; 20:8815-25. [PMID: 11073982 PMCID: PMC86523 DOI: 10.1128/mcb.20.23.8815-8825.2000] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The inappropriate expression of the a-factor pheromone receptor (Ste3p) in the MATa cell leads to a striking inhibition of the yeast pheromone response, the result of a functional interaction between Ste3p and some MATa-specific protein. The present work identifies this protein as Asg7p. Normally, expression of Ste3p and Asg7p is limited to distinct haploid mating types, Ste3p to MATalpha cells and Asg7p to MATa cells. Artificial coexpression of the two in the same cell, either a or alpha, leads to dramatic inhibition of the pheromone response. Ste3p-Asg7p coexpression also perturbs the membrane trafficking of Ste3p: Ste3p turnover is slowed, a result of an Asg7p-mediated retardation of the secretory delivery of the newly synthesized receptor to the plasma membrane. However, in the absence of ectopic Ste3p expression, the asg7Delta mutation is without consequence either for pheromone signaling or overall mating efficiency of a cells. Indeed, the sole phenotype that can be assigned to MATa asg7Delta cells is observed following zygotic fusion to its alpha mating partner. Though formed at wild-type efficiency, zygotes from these pairings are morphologically abnormal. The pattern of growth is deranged: emergence of the first mitotic bud is delayed, and, in its place, growth is apparently diverted into a novel structure superficially resembling the polarized mating projection characteristic of haploid cells responding to pheromone. Together these results suggest a mechanism in which, following the zygotic fusion event, Ste3p and Asg7p gain access to one another and together act to repress the pheromone response, promoting the transition of the new diploid cell to vegetative growth.
Collapse
Affiliation(s)
- A F Roth
- Department of Surgery, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | | | | | | |
Collapse
|
19
|
Moskow JJ, Gladfelter AS, Lamson RE, Pryciak PM, Lew DJ. Role of Cdc42p in pheromone-stimulated signal transduction in Saccharomyces cerevisiae. Mol Cell Biol 2000; 20:7559-71. [PMID: 11003652 PMCID: PMC86308 DOI: 10.1128/mcb.20.20.7559-7571.2000] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2000] [Accepted: 07/21/2000] [Indexed: 11/20/2022] Open
Abstract
CDC42 encodes a highly conserved GTPase of the Rho family that is best known for its role in regulating cell polarity and actin organization. In addition, various studies of both yeast and mammalian cells have suggested that Cdc42p, through its interaction with p21-activated kinases (PAKs), plays a role in signaling pathways that regulate target gene transcription. However, recent studies of the yeast pheromone response pathway suggested that prior results with temperature-sensitive cdc42 mutants were misleading and that Cdc42p and the Cdc42p-PAK interaction are not involved in signaling. To clarify this issue, we have identified and characterized novel viable pheromone-resistant cdc42 alleles that retain the ability to perform polarity-related functions. Mutation of the Cdc42p residue Val36 or Tyr40 caused defects in pheromone signaling and in the localization of the Ste20p PAK in vivo and affected binding to the Ste20p Cdc42p-Rac interactive binding (CRIB) domain in vitro. Epistasis analysis suggested that they affect the signaling step at which Ste20p acts, and overproduction of Ste20p rescued the defect. These results suggest that Cdc42p is in fact required for pheromone response and that interaction with the PAK Ste20p is critical for that role. Furthermore, the ste20DeltaCRIB allele, previously used to disrupt the Cdc42p-Ste20p interaction, behaved as an activated allele, largely bypassing the signaling defect of the cdc42 mutants. Additional observations lead us to suggest that Cdc42p collaborates with the SH3-domain protein Bem1p to facilitate signal transduction, possibly by providing a cell surface scaffold that aids in the local concentration of signaling kinases, thus promoting activation of a mitogen-activated protein kinase cascade by Ste20p.
Collapse
Affiliation(s)
- J J Moskow
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | |
Collapse
|
20
|
Signal transduction by a nondissociable heterotrimeric yeast G protein. Proc Natl Acad Sci U S A 2000. [PMID: 10725354 PMCID: PMC16219 DOI: 10.1073/pnas.050015797] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Many signal transduction pathways involve heterotrimeric G proteins. The accepted model for activation of heterotrimeric G proteins states that the protein dissociates to the free G(alpha) (GTP)-bound subunit and free G(betagamma) dimer. On GTP hydrolysis, G(alpha) (GDP) then reassociates with G(betagamma) [Gilman, A. G. (1987) Annu. Rev. Biochem. 56, 615-649]. We reexamined this hypothesis, by using the mating G protein of the yeast Saccharomyces cerevisiae encoded by the genes GPA1, STE4, and STE18. In the absence of mating pheromone, the G(alpha) (Gpa1) subunit represses the mating pathway. On activation by binding of pheromone to a serpentine receptor, the G(betagamma) (Ste4, Ste18) dimer transmits the signal to a mitogen-activated protein kinase cascade, leading to gene activation, arrest in the G(1) stage of the cell cycle, production of shmoos (mating projections), and cell fusion. We found that a Ste4-Gpa1 fusion protein transmitted the pheromone signal and activated the mating pathway as effectively as when Ste4 (G(beta)) and Gpa1 (G(alpha)) were coexpressed as separate proteins. Hence, dissociation of this G protein is not required for its activation. Rather, a conformational change in the heterotrimeric complex is likely to be involved in signal transduction.
Collapse
|
21
|
Klein S, Reuveni H, Levitzki A. Signal transduction by a nondissociable heterotrimeric yeast G protein. Proc Natl Acad Sci U S A 2000; 97:3219-23. [PMID: 10725354 PMCID: PMC16219 DOI: 10.1073/pnas.97.7.3219] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Many signal transduction pathways involve heterotrimeric G proteins. The accepted model for activation of heterotrimeric G proteins states that the protein dissociates to the free G(alpha) (GTP)-bound subunit and free G(betagamma) dimer. On GTP hydrolysis, G(alpha) (GDP) then reassociates with G(betagamma) [Gilman, A. G. (1987) Annu. Rev. Biochem. 56, 615-649]. We reexamined this hypothesis, by using the mating G protein of the yeast Saccharomyces cerevisiae encoded by the genes GPA1, STE4, and STE18. In the absence of mating pheromone, the G(alpha) (Gpa1) subunit represses the mating pathway. On activation by binding of pheromone to a serpentine receptor, the G(betagamma) (Ste4, Ste18) dimer transmits the signal to a mitogen-activated protein kinase cascade, leading to gene activation, arrest in the G(1) stage of the cell cycle, production of shmoos (mating projections), and cell fusion. We found that a Ste4-Gpa1 fusion protein transmitted the pheromone signal and activated the mating pathway as effectively as when Ste4 (G(beta)) and Gpa1 (G(alpha)) were coexpressed as separate proteins. Hence, dissociation of this G protein is not required for its activation. Rather, a conformational change in the heterotrimeric complex is likely to be involved in signal transduction.
Collapse
Affiliation(s)
- S Klein
- Department of Biological Chemistry, Alexander Silverman Institute of Life Sciences, The Hebrew University of Jerusalem, Givat Ram, Jerusalem 91904, Israel
| | | | | |
Collapse
|
22
|
Feng Y, Davis NG. Feedback phosphorylation of the yeast a-factor receptor requires activation of the downstream signaling pathway from G protein through mitogen-activated protein kinase. Mol Cell Biol 2000; 20:563-74. [PMID: 10611235 PMCID: PMC85133 DOI: 10.1128/mcb.20.2.563-574.2000] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The two yeast pheromone receptors, the a and alpha-factor receptors, share many functional similarities: both G protein-coupled receptors couple to the same downstream signal transduction pathway, and both receptors undergo feedback regulation involving increased phosphorylation on their C-terminal domains in response to ligand challenge. The present work, which focuses on the signaling mechanism controlling this feedback phosphorylation, indicates one striking difference. While the alpha-factor-induced phosphorylation of the alpha-factor receptor does not require activation of the downstream G protein-directed signaling pathway (B. Zanolari, S. Raths, B. Singer-Kruger, and H. Riezman, Cell 71:755-763, 1992), the a-factor-induced phosphorylation of the a-factor receptor (Ste3p) clearly does. Induced Ste3p phosphorylation was blocked in cells with disruptions of various components of the pheromone response pathway, indicating a requirement of pathway components extending from the G protein down through the mitogen-activated protein kinase (MAPK). Furthermore, Ste3p phosphorylation can be induced in the absence of the a-factor ligand when the signaling pathway is artificially activated, indicating that the liganded receptor is not required as a substrate for induced phosphorylation. While the activation of signaling is critical for the feedback phosphorylation of Ste3p, pheromone-induced gene transcription, one of the major outcomes of pheromone signaling, appears not to be required. This conclusion is indicated by three results. First, ste12Delta cells differ from cells with disruptions of the upstream signaling elements (e.g., ste4Delta, ste20Delta, ste5Delta, ste11Delta, ste7Delta, or fus3Delta kss1Delta cells) in that they clearly retain some capacity for inducing Ste3p phosphorylation. Second, while activated alleles of STE11 and STE12 induce a strong transcriptional response, they fail to induce a-factor receptor phosphorylation. Third, blocking of new pheromone-induced protein synthesis with cycloheximide fails to block phosphorylation. These findings are discussed within the context of a recently proposed model for pheromone signaling (P. M. Pryciak and F. A. Huntress, Genes Dev. 12:2684-2697, 1998): a key step of this model is the activation of the MAPK Fus3p through the G(betagamma)-dependent relocalization of the Ste5p-MAPK cascade to the plasma membrane. Ste3p phosphorylation may involve activated MAPK Fus3p feeding back upon plasma membrane targets.
Collapse
Affiliation(s)
- Y Feng
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | | |
Collapse
|
23
|
Abstract
Oriented cell growth requires the specification of a site for polarized growth and subsequent orientation of the cytoskeleton towards this site. During mating, haploid Saccharomyces cerevisiae cells orient their growth in response to a pheromone gradient overriding an internal landmark for polarized growth, the bud site. This response requires Cdc24p, Far1p, and a heterotrimeric G-protein. Here we show that a two- hybrid interaction between Cdc24p and Gbeta requires Far1p but not pheromone-dependent MAP-kinase signaling, indicating Far1p has a role in regulating the association of Cdc24p and Gbeta. Binding experiments demonstrate that Cdc24p, Far1p, and Gbeta form a complex in which pairwise interactions can occur in the absence of the third protein. Cdc24p localizes to sites of polarized growth suggesting that this complex is localized. In the absence of CDC24-FAR1-mediated chemotropism, a bud site selection protein, Bud1p/Rsr1p, is essential for morphological changes in response to pheromone. These results suggest that formation of a Cdc24p-Far1p-Gbetagamma complex functions as a landmark for orientation of the cytoskeleton during growth towards an external signal.
Collapse
Affiliation(s)
- A Nern
- Division of Cell Biology, MRC Laboratory of Molecular Biology, Cambridge, CB2 2QH, United Kingdom
| | | |
Collapse
|
24
|
Chu DS, Pishvaee B, Payne GS. A modulatory role for clathrin light chain phosphorylation in Golgi membrane protein localization during vegetative growth and during the mating response of Saccharomyces cerevisiae. Mol Biol Cell 1999; 10:713-26. [PMID: 10069813 PMCID: PMC25197 DOI: 10.1091/mbc.10.3.713] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The role of clathrin light chain phosphorylation in regulating clathrin function has been examined in Saccharomyces cerevisiae. The phosphorylation state of yeast clathrin light chain (Clc1p) in vivo was monitored by [32P]phosphate labeling and immunoprecipitation. Clc1p was phosphorylated in growing cells and also hyperphosphorylated upon activation of the mating response signal transduction pathway. Mating pheromone-stimulated hyperphosphorylation of Clc1p was dependent on the mating response signal transduction pathway MAP kinase Fus3p. Both basal and stimulated phosphorylation occurred exclusively on serines. Mutagenesis of Clc1p was used to map major phosphorylation sites to serines 52 and 112, but conversion of all 14 serines in Clc1p to alanines [S(all)A] was necessary to eliminate phosphorylation. Cells expressing the S(all)A mutant Clc1p displayed no defects in Clc1p binding to clathrin heavy chain, clathrin trimer stability, sorting of a soluble vacuolar protein, or receptor-mediated endocytosis of mating pheromone. However, the trans-Golgi network membrane protein Kex2p was not optimally localized in mutant cells. Furthermore, pheromone treatment exacerbated the Kex2p localization defect and caused a corresponding defect in Kex2p-mediated maturation of the alpha-factor precursor. The results reveal a novel requirement for clathrin during the mating response and suggest that phosphorylation of the light chain subunit modulates the activity of clathrin at the trans-Golgi network.
Collapse
Affiliation(s)
- D S Chu
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, California 90095-3717, USA
| | | | | |
Collapse
|
25
|
Pryciak PM, Huntress FA. Membrane recruitment of the kinase cascade scaffold protein Ste5 by the Gbetagamma complex underlies activation of the yeast pheromone response pathway. Genes Dev 1998; 12:2684-97. [PMID: 9732267 PMCID: PMC317142 DOI: 10.1101/gad.12.17.2684] [Citation(s) in RCA: 206] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In the Saccharomyces cerevisiae pheromone response pathway, the Gbetagamma complex activates downstream responses by an unknown mechanism involving a MAP kinase cascade, the PAK-like kinase Ste20, and a Rho family GTPase, Cdc42. Here we show that Gbetagamma must remain membrane-associated after release from Galpha to activate the downstream pathway. We also show that pheromone stimulates translocation of the kinase cascade scaffold protein Ste5 to the cell surface. This recruitment requires Gbetagamma function and the Gbetagamma-binding domain of Ste5, but not the kinases downstream of Gbetagamma, suggesting that it is mediated by Gbetagamma itself. Furthermore, this event has functional significance, as artificial targeting of Ste5 to the plasma membrane, but not intracellular membranes, activates the pathway in the absence of pheromone or Gbetagamma. Remarkably, although independent of Gbetagamma, activation by membrane-targeted Ste5 requires Ste20, Cdc42, and Cdc24, indicating that their participation in this pathway does not require them to be activated by Gbetagamma. Thus, membrane recruitment of Ste5 defines a molecular activity for Gbetagamma. Moreover, our results suggest that this event promotes kinase cascade activation by delivering the Ste5-associated kinases to the cell surface kinase Ste20, whose function may depend on Cdc42 and Cdc24.
Collapse
Affiliation(s)
- P M Pryciak
- Department of Molecular Genetics and Microbiology, University of Massachusetts Medical Center, Worcester Foundation Campus, Shrewsbury, Massachusetts 01545, USA.
| | | |
Collapse
|
26
|
Caponigro G, Abedi MR, Hurlburt AP, Maxfield A, Judd W, Kamb A. Transdominant genetic analysis of a growth control pathway. Proc Natl Acad Sci U S A 1998; 95:7508-13. [PMID: 9636180 PMCID: PMC22667 DOI: 10.1073/pnas.95.13.7508] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Genetic selections that use proteinaceous transdominant inhibitors encoded by DNA libraries to cause mutant phenocopies may facilitate genetic analysis in traditionally nongenetic organisms. We performed a selection for random short peptides and larger protein fragments (collectively termed "perturbagens") that inhibit the yeast pheromone response pathway. Peptide and protein fragment perturbagens that permit cell division in the presence of pheromone were recovered. Two perturbagens were derived from proteins required for pheromone response, and an additional two were derived from proteins that may negatively influence the pheromone response pathway. Furthermore, three known components of the pathway were identified as probable perturbagen targets based on physical interaction assays. Thus, by selection for transdominant inhibitors of pheromone response, multiple pathway components were identified either directly as gene fragments or indirectly as the likely targets of specific perturbagens. These results, combined with the results of previous work [Holzmayer, T. A., Pestov, D. G. & Roninson, I. B. (1992) Nucl. Acids. Res. 20, 711-717; Whiteway, M., Dignard, D. & Thomas, D. Y. (1992) Proc. Natl. Acad. Sci. USA 89, 9410-9414; and Gudkov, A. V., Kazarov, A. R., Thimmapaya, R., Axenovich, S. A., Mazo, I. A. & Roninson, I. B. (1994) Proc. Natl. Acad. Sci. USA 91, 3744-3748], suggest that transdominant genetic analysis of the type described here will be broadly applicable.
Collapse
Affiliation(s)
- G Caponigro
- Ventana Genetics, Inc., 421 Wakara Way, Salt Lake City, UT 84108, USA
| | | | | | | | | | | |
Collapse
|
27
|
Xu BE, Kurjan J. Evidence that mating by the Saccharomyces cerevisiae gpa1Val50 mutant occurs through the default mating pathway and a suggestion of a role for ubiquitin-mediated proteolysis. Mol Biol Cell 1997; 8:1649-64. [PMID: 9307963 PMCID: PMC305726 DOI: 10.1091/mbc.8.9.1649] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The yeast G alpha subunit, Gpa1p, plays a negative role in the pheromone response pathway. The gpa1Val50 mutant was previously shown to have a growth defect, consistent with the GTPase defect predicted for this mutation, and greatly reduced mating. Various explanations for the mating defect have been proposed. One approach to analyze the gpa1Val50 mating defect involved epistasis analysis. The low mating of the gpa1Val50 mutant was independent of the pheromone receptor; therefore, it results from intracellular activation of the pathway, consistent with a GTPase defect. This result suggests that gpa1Val50 mating occurs through the default rather than the chemotropic pathway involved in pheromone response. We therefore tested the effect of a spa2 mutation on gpa1Val50 mating, because Spa2p has been implicated in the default pathway. The spa2 mutation greatly reduced the mating of the gpa1Val50 mutant, suggesting that gpa1Val50 mating occurs predominantly through the default pathway. In a second approach to investigate the gpa1Val50 phenotypes, suppressors of the gpa1Val50 mating defect were isolated. Two suppressor genes corresponded to SON1/UFD5 and SEN3, which are implicated in ubiquitin-mediated proteolysis. On the basis of these results, we suggest that a positive component of the default mating pathway is subject to ubiquitin-mediated degradation.
Collapse
Affiliation(s)
- B E Xu
- Department of Microbiology and Molecular Genetics, University of Vermont, College of Medicine, Burlington, USA
| | | |
Collapse
|
28
|
Fujimura-Kamada K, Nouvet FJ, Michaelis S. A novel membrane-associated metalloprotease, Ste24p, is required for the first step of NH2-terminal processing of the yeast a-factor precursor. J Cell Biol 1997; 136:271-85. [PMID: 9015299 PMCID: PMC2134828 DOI: 10.1083/jcb.136.2.271] [Citation(s) in RCA: 133] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/1996] [Revised: 11/08/1996] [Indexed: 02/03/2023] Open
Abstract
Many secreted bioactive signaling molecules, including the yeast mating pheromones a-factor and alpha-factor, are initially synthesized as precursors requiring multiple intracellular processing enzymes to generate their mature forms. To identify new gene products involved in the biogenesis of a-factor in Saccharomyces cerevisiae, we carried out a screen for MA Ta-specific, mating-defective mutants. We have identified a new mutant, ste24, in addition to previously known sterile mutants. During its biogenesis in a wild-type strain, the a-factor precursor undergoes a series of COOH-terminal CAAX modifications, two sequential NH2-terminal cleavage events, and export from the cell. Identification of the a-factor biosynthetic intermediate that accumulates in the ste24 mutant revealed that STE24 is required for the first NH2-terminal proteolytic processing event within the a-factor precursor, which takes place after COOH-terminal CAAX modification is complete. The STE24 gene product contains multiple predicted membrane spans, a zinc metalloprotease motif (HEXXH), and a COOH-terminal ER retrieval signal (KKXX). The HEXXH protease motif is critical for STE24 activity, since STE24 fails to function when conserved residues within this motif are mutated. The identification of Ste24p homologues in a diverse group of organisms, including Escherichia coli, Schizosaccharomyces pombe, Haemophilus influenzae, and Homo sapiens, indicates that Ste24p has been highly conserved throughout evolution. Ste24p and the proteins related to it define a new subfamily of proteins that are likely to function as intracellular, membrane-associated zinc metalloproteases.
Collapse
Affiliation(s)
- K Fujimura-Kamada
- Department of Cell Biology and Anatomy, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | |
Collapse
|
29
|
Stratton HF, Zhou J, Reed SI, Stone DE. The mating-specific G(alpha) protein of Saccharomyces cerevisiae downregulates the mating signal by a mechanism that is dependent on pheromone and independent of G(beta)(gamma) sequestration. Mol Cell Biol 1996; 16:6325-37. [PMID: 8887662 PMCID: PMC231635 DOI: 10.1128/mcb.16.11.6325] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
It has been inferred from compelling genetic evidence that the pheromone-responsive G(alpha) protein of Saccharomyces cerevisiae, Gpa1, directly inhibits the mating signal by binding to its own beta(gamma) subunit. Gpa1 has also been implicated in a distinct but as yet uncharacterized negative regulatory mechanism. We have used three mutant alleles of GPA1, each of which confers resistance to otherwise lethal doses of pheromone, to explore this possibility. Our results indicate that although the G322E allele of GPA1 completely blocks the pheromone response, the E364K allele promotes recovery from pheromone treatment rather than insensitivity to it. This observation suggests that Gpa1, like other G(alpha) proteins, interacts with an effector molecule and stimulates a positive signal--in this case, an adaptive signal. Moreover, the Gpa1-mediated adaptive signal is itself induced by pheromone, is delayed relative to the mating signal, and does not involve sequestration of G(beta)(gamma). The behavior of N388D, a mutant form of Gpa1 predicted to be activated, strongly supports these conclusions. Although N388D cannot sequester beta(gamma), as evidenced by two-hybrid analysis and its inability to complement a Gpa1 null allele under normal growth conditions, it can stimulate adaptation and rescue a gpa1(delta) strain when cells are exposed to pheromone. Considered as a whole, our data suggest that the pheromone-responsive heterotrimeric G protein of S. cerevisiae has a self-regulatory signaling function. Upon activation, the heterotrimer dissociates into its two subunits, one of which stimulates the pheromone response, while the other slowly induces a negative regulatory mechanism that ultimately shuts off the mating signal downstream of the receptor.
Collapse
Affiliation(s)
- H F Stratton
- Laboratory for Molecular Biology, University of Illinois at Chicago 60607, USA
| | | | | | | |
Collapse
|
30
|
Dohlman HG, Song J, Ma D, Courchesne WE, Thorner J. Sst2, a negative regulator of pheromone signaling in the yeast Saccharomyces cerevisiae: expression, localization, and genetic interaction and physical association with Gpa1 (the G-protein alpha subunit). Mol Cell Biol 1996; 16:5194-209. [PMID: 8756677 PMCID: PMC231520 DOI: 10.1128/mcb.16.9.5194] [Citation(s) in RCA: 269] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Sst2 is the prototype for the newly recognized RGS (for regulators of G-protein signaling) family. Cells lacking the pheromone-inducible SST2 gene product fail to resume growth after exposure to pheromone. Conversely, overproduction of Sst2 markedly enhanced the rate of recovery from pheromone-induced arrest in the long-term halo bioassay and detectably dampened signaling in a short-term assay of pheromone response (phosphorylation of Ste4, Gbeta subunit). When the GPA1 gene product (Galpha subunit) is absent, the pheromone response pathway is constitutively active and, consequently, growth ceases. Despite sustained induction of Sst2 (observed with specific anti-Sst2 antibodies), gpa1delta mutants remain growth arrested, indicating that the action of Sst2 requires the presence of Gpa1. The N-terminal domain (residues 3 to 307) of Sst2 (698 residues) has sequence similarity to the catalytic regions of bovine GTPase-activating protein and human neurofibromatosis tumor suppressor protein; segments in the C-terminal domain of Sst2 (between residues 417 and 685) are homologous to other RGS proteins. Both the N- and C-terminal domains were required for Sst2 function in vivo. Consistent with a role for Sst2 in binding to and affecting the activity of Gpa1, the majority of Sst2 was membrane associated and colocalized with Gpa1 at the plasma membrane, as judged by sucrose density gradient fractionation. Moreover, from cell extracts, Sst2 could be isolated in a complex with Gpa1 (expressed as a glutathione S-transferase fusion); this association withstood the detergent and salt conditions required for extraction of these proteins from cell membranes. Also, SST2+ cells expressing a GTPase-defective GPA1 mutant displayed an increased sensitivity to pheromone, whereas sst2 cells did not. These results demonstrate that Sst2 and Gpa1 interact physically and suggest that Sst2 is a direct negative regulator of Gpa1.
Collapse
Affiliation(s)
- H G Dohlman
- Department of Pharmacology, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06536-0812, USA
| | | | | | | | | |
Collapse
|
31
|
Couve A, Hirsch JP. Loss of sustained Fus3p kinase activity and the G1 arrest response in cells expressing an inappropriate pheromone receptor. Mol Cell Biol 1996; 16:4478-85. [PMID: 8754848 PMCID: PMC231446 DOI: 10.1128/mcb.16.8.4478] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The yeast pheromone response pathway is mediated by two G protein-linked receptors, each of which is expressed only in its specific cell type. The STE3DAF mutation results in inappropriate expression of the a-factor receptor in MATa cells. Expression of this receptor in the inappropriate cell type confers resistance to pheromone-induced G1 arrest, a phenomenon that we have termed receptor inhibition. The ability of STE3DAF cells to cycle in the presence of pheromone was found to correlate with reduced phosphorylation of the cyclin-dependent kinase inhibitor Far1p. Measurement of Fus3p mitogen-activated protein (MAP) kinase activity in wild-type and STE3DAF cells showed that induction of Fus3p activity was the same in both strains at times of up to 1 h after pheromone treatment. However, after 2 or more hours, Fus3p activity declined in STE3DAF cells but remained high in wild-type cells. The level of inducible FUS1 RNA paralleled the changes seen in Fus3p activity. Short-term activation of the Fus3p MAP kinase is therefore sufficient for the early transcriptional induction response to pheromone, but sustained activation is required for cell cycle arrest. Escape from the cell cycle arrest response was not seen in wild-type cells treated with low doses of pheromone, indicating that receptor inhibition is not simply a result of weak signaling but rather acts selectively at late times during the response. STE3DAF was found to inhibit the pheromone response pathway at a step between the G beta subunit and Ste5p, the scaffolding protein that binds the components of the MAP kinase phosphorylation cascade. Overexpression of Ste20p, a kinase thought to act between the G protein and the MAP kinase cascade, suppressed the STE3DAF phenotype. These findings are consistent with a model in which receptor inhibition acts by blocking the signaling pathway downstream of G protein dissociation and upstream of MAP kinase cascade activation, at a step that could directly involve Ste20p.
Collapse
Affiliation(s)
- A Couve
- Department of Cell Biology and Anatomy, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | |
Collapse
|
32
|
Pryciak PM, Hartwell LH. AKR1 encodes a candidate effector of the G beta gamma complex in the Saccharomyces cerevisiae pheromone response pathway and contributes to control of both cell shape and signal transduction. Mol Cell Biol 1996; 16:2614-26. [PMID: 8649369 PMCID: PMC231252 DOI: 10.1128/mcb.16.6.2614] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Mating pheromones of Saccharomyces cerevisiae control both signal transduction events and changes in cell shape. The G beta gamma complex of the pheromone receptor-coupled G protein activates the signal transduction pathway, leading to transcriptional induction and cell cycle arrest, but how pheromone-dependent signalling leads to cell shape changes is unclear. We used a two-hybrid system to search for proteins that interact with the G beta gamma complex and that might be involved in cell shape changes. We identified the ankyrin repeat-containing protein Akr1p and show here that it interacts with the free G beta gamma complex. This interaction may be regulated by pheromone, since Akr1p is excluded from the G alpha beta gamma heterotrimer. Both haploid and diploid cells lacking Akr1p grow slowly and develop deformed buds or projections, suggesting that this protein participates in the control of cell shape. In addition, Akr1p has a negative influence on the pheromone response pathway. Epistasis analysis demonstrates that this negative effect does not act on the G beta gamma complex but instead affects the kinase cascade downstream of G beta gamma, so that the kinase Ste20p and components downstream of Ste20p (e.g., Ste11p and Ste7p) are partially activated in cells lacking Akr1p. Although the elevated signalling is eliminated by deletion of Ste20p (or components downstream of Ste20p), the growth and morphological abnormalities of cells lacking Akr1p are not rescued by deletion of any of the known pheromone response pathway components. We therefore propose that Akr1p negatively affects the activity of a protein that both controls cell shape and contributes to the pheromone response pathway upstream of Ste20p but downstream of G beta gamma. Specifically, because recent evidence suggests that Bem1p, Cdc24p, and Cdc42p can act in the pheromone response pathway, we suggest that Akr1p affects the functions of these proteins, by preventing them from activating mating-specific targets including the pheromone-responsive kinase cascade, until G beta gamma is activated by pheromone.
Collapse
Affiliation(s)
- P M Pryciak
- Department of Genetics, University of Washington, Seattle 98195-7360, USA.
| | | |
Collapse
|
33
|
Clark KL, Feldmann PJ, Dignard D, Larocque R, Brown AJ, Lee MG, Thomas DY, Whiteway M. Constitutive activation of the Saccharomyces cerevisiae mating response pathway by a MAP kinase kinase from Candida albicans. MOLECULAR & GENERAL GENETICS : MGG 1995; 249:609-21. [PMID: 8544826 DOI: 10.1007/bf00418030] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The HST7 gene of Candida albicans encodes a protein with structural similarity to MAP kinase kinases. Expression of this gene in Saccharomyces cerevisiae complements disruption of the Ste7 MAP kinase kinase required for both mating in haploid cells and pseudohyphal growth in diploids. However, Hst7 expression does not complement loss of either the Pbs2 (Hog4) MAP kinase kinase required for response to high osmolarity, or loss of the Mkk1 and Mkk2 MAP kinase kinases required for proper cell wall biosynthesis. Intriguingly, HST7 acts as a hyperactive allele of STE7; expression of Hst7 activates the mating pathway even in the absence of upstream signaling components including the Ste7 regulator Ste11, elevates the basal level of the pheromone-inducible FUS1 gene, and amplifies the pseudohyphal growth response in diploid cells. Thus Hst7 appears to be at least partially independent of upstream activators or regulators, but selective in its activity on downstream target MAP kinases. Creation of Hst7/Ste7 hybrid proteins revealed that the C-terminal two-thirds of Hst7, which contains the protein kinase domain, is sufficient to confer this partial independence of upstream activators.
Collapse
Affiliation(s)
- K L Clark
- Eukaryotic Genetics Group, Biotechnology Research Institute, National Research Council Canada, Montreal, Quebec, Canada
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Yashar B, Irie K, Printen JA, Stevenson BJ, Sprague GF, Matsumoto K, Errede B. Yeast MEK-dependent signal transduction: response thresholds and parameters affecting fidelity. Mol Cell Biol 1995; 15:6545-53. [PMID: 8524219 PMCID: PMC230907 DOI: 10.1128/mcb.15.12.6545] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Ste7p and Mkk1p are MEK (MAPK/ERK kinase) family members that function in the mating and cell integrity signal transduction pathways in Saccharomyces cerevisiae. We selected STE7 and MKK1 mutations that stimulated their respective pathways in the absence of an inductive signal. Strikingly, serine-to-proline substitutions at analogous positions in Ste7p (position 368) and Mkk1p (position 386) were recovered by independent genetic screens. Such an outcome suggests that this substitution in other MEKs would exhibit similar properties. The Ste7p-P368 variant has higher basal enzymatic activity than Ste7p but still requires induction to reach full activation. The higher activity associated with Ste7p-P368 allows it to compensate for defects in the cell integrity pathway, but it does so only when it is overproduced or when Ste5p is missing. This behavior suggests that Ste5p, which has been proposed to be a tether for the kinases in the mating pathway, contributes to Ste7p specificity.
Collapse
Affiliation(s)
- B Yashar
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill 27599, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Dorer R, Pryciak PM, Hartwell LH. Saccharomyces cerevisiae cells execute a default pathway to select a mate in the absence of pheromone gradients. J Biophys Biochem Cytol 1995; 131:845-61. [PMID: 7490289 PMCID: PMC2200002 DOI: 10.1083/jcb.131.4.845] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
During conjugation, haploid S. cerevisiae cells find one another by polarizing their growth toward each other along gradients of pheromone (chemotropism). We demonstrate that yeast cells exhibit a second mating behavior: when their receptors are saturated with pheromone, wild-type a cells execute a default pathway and select a mate at random. These matings are less efficient than chemotropic matings, are induced by the same dose of pheromone that induces shmoo formation, and appear to use a site near the incipient bud site for polarization. We show that the SPA2 gene is specifically required for the default pathway: spa2 delta mutants cannot mate if pheromone concentrations are high and gradients are absent, but can mate if gradients are present. ste2 delta, sst2 delta, and far1 delta mutants are chemotropism-defective and therefore must choose a mate by using a default pathway; consistent with this deduction, these strains require SPA2 to mate. In addition, our results suggest that far1 mutants are chemotropism-defective because their mating polarity is fixed at the incipient bud site, suggesting that the FAR1 gene is required for inhibiting the use of the incipient bud site during chemotropic mating. These observations reveal a molecular relationship between the mating and budding polarity pathways.
Collapse
Affiliation(s)
- R Dorer
- Department of Genetics, University of Washington, Seattle 98195-7360, USA
| | | | | |
Collapse
|
36
|
Zhao ZS, Leung T, Manser E, Lim L. Pheromone signalling in Saccharomyces cerevisiae requires the small GTP-binding protein Cdc42p and its activator CDC24. Mol Cell Biol 1995; 15:5246-57. [PMID: 7565673 PMCID: PMC230772 DOI: 10.1128/mcb.15.10.5246] [Citation(s) in RCA: 159] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Pheromone signalling in Saccharomyces cerevisiae is mediated by the STE4-STE18 G-protein beta gamma subunits. A possible target for the subunits is Ste20p, whose structural homolog, the serine/threonine kinase PAK, is activated by GTP-binding p21s Cdc42 and Rac1. The putative Cdc42p-binding domain of Ste20p, expressed as a fusion protein, binds human and yeast GTP-binding Cdc42p. Cdc42p is required for alpha-factor-induced activation of FUS1.cdc24ts strains defective for Cdc42p GDP/GTP exchange show no pheromone induction at restrictive temperatures but are partially rescued by overexpression of Cdc42p, which is potentiated by Cdc42p12V mutants. Epistatic analysis indicates that CDC24 and CDC42 lie between STE4 and STE20 in the pathway. The two-hybrid system revealed that Ste4p interacts with Cdc24p. We propose that Cdc42p plays a pivotal role both in polarization of the cytoskeleton and in pheromone signalling.
Collapse
Affiliation(s)
- Z S Zhao
- Institute of Molecular and Cell Biology, National University of Singapore, Kent Ridge
| | | | | | | |
Collapse
|
37
|
Dohlman HG, Apaniesk D, Chen Y, Song J, Nusskern D. Inhibition of G-protein signaling by dominant gain-of-function mutations in Sst2p, a pheromone desensitization factor in Saccharomyces cerevisiae. Mol Cell Biol 1995; 15:3635-43. [PMID: 7791771 PMCID: PMC230601 DOI: 10.1128/mcb.15.7.3635] [Citation(s) in RCA: 165] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Genetic analysis of cell-cell signaling in Saccharomyces cerevisiae has led to the identification of a novel factor, known as Sst2p, that promotes recovery after pheromone-induced growth arrest (R. K. Chan and C. A. Otte, Mol. Cell. Biol. 2:11-20, 1982). Loss-of-function mutations lead to increased pheromone sensitivity, but this phenotype is partially suppressed by overexpression of the G protein alpha subunit gene (GPA1). Suppression is allele specific, however, suggesting that there is direct interaction between the two gene products. To test this model directly, we isolated and characterized several dominant gain-of-function mutants of SST2. These mutations block the normal pheromone response, including a loss of pheromone-stimulated gene transcription, cell cycle growth arrest, and G protein myristoylation. Although the SST2 mutations confer a pheromone-resistant phenotype, they do not prevent downstream activation by overexpression of G beta (STE4), a constitutively active G beta mutation (STE4Hpl), or a disruption of GPA1. None of the SST2 alleles affects the expression or stability of G alpha. These results point to the G protein alpha subunit as being the direct target of Sst2p action and underscore the importance of this novel desensitization factor in G-protein-mediated signaling.
Collapse
Affiliation(s)
- H G Dohlman
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06536-0812, USA
| | | | | | | | | |
Collapse
|
38
|
Biochemical and genetic analysis of dominant-negative mutations affecting a yeast G-protein gamma subunit. Mol Cell Biol 1994. [PMID: 8007961 DOI: 10.1128/mcb.14.7.4571] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Heterotrimeric guanine nucleotide-binding proteins (G proteins) consisting of alpha, beta, and gamma subunits mediate signalling between cell surface receptors and intracellular effectors in eukaryotic cells. To define signalling functions of G gamma subunits (STE18 gene product) involved in pheromone response and mating in the yeast Saccharomyces cerevisiae, we isolated and characterized dominant-negative STE18 alleles. We obtained dominant-negative mutations that disrupt C-terminal sequences required for prenylation of G gamma precursors (CAAX box) and that affect residues in the N-terminal half of Ste18p. Overexpression of mutant G gamma subunits in wild-type cells blocked signal transduction; this effect was suppressed upon overexpression of G beta subunits. Mutant G gamma subunits may therefore sequester G beta subunits into nonproductive G beta gamma dimers. Because mutant G gamma subunits blocked the constitutive signal resulting from disruption of the G alpha subunit gene (GPA1), they are defective in functions required for downstream signalling. Ste18p bearing a C107Y substitution in the CAAX box displayed reduced electrophoretic mobility, consistent with a prenylation defect. G gamma subunits carrying N-terminal substitutions had normal electrophoretic mobilities, suggesting that these proteins were prenylated. G gamma subunits bearing substitutions in their N-terminal region or C-terminal CAAX box (C107Y) supported receptor-G protein coupling in vitro, whereas C-terminal truncations caused partial defects in receptor coupling.
Collapse
|
39
|
Grishin AV, Weiner JL, Blumer KJ. Biochemical and genetic analysis of dominant-negative mutations affecting a yeast G-protein gamma subunit. Mol Cell Biol 1994; 14:4571-8. [PMID: 8007961 PMCID: PMC358829 DOI: 10.1128/mcb.14.7.4571-4578.1994] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Heterotrimeric guanine nucleotide-binding proteins (G proteins) consisting of alpha, beta, and gamma subunits mediate signalling between cell surface receptors and intracellular effectors in eukaryotic cells. To define signalling functions of G gamma subunits (STE18 gene product) involved in pheromone response and mating in the yeast Saccharomyces cerevisiae, we isolated and characterized dominant-negative STE18 alleles. We obtained dominant-negative mutations that disrupt C-terminal sequences required for prenylation of G gamma precursors (CAAX box) and that affect residues in the N-terminal half of Ste18p. Overexpression of mutant G gamma subunits in wild-type cells blocked signal transduction; this effect was suppressed upon overexpression of G beta subunits. Mutant G gamma subunits may therefore sequester G beta subunits into nonproductive G beta gamma dimers. Because mutant G gamma subunits blocked the constitutive signal resulting from disruption of the G alpha subunit gene (GPA1), they are defective in functions required for downstream signalling. Ste18p bearing a C107Y substitution in the CAAX box displayed reduced electrophoretic mobility, consistent with a prenylation defect. G gamma subunits carrying N-terminal substitutions had normal electrophoretic mobilities, suggesting that these proteins were prenylated. G gamma subunits bearing substitutions in their N-terminal region or C-terminal CAAX box (C107Y) supported receptor-G protein coupling in vitro, whereas C-terminal truncations caused partial defects in receptor coupling.
Collapse
Affiliation(s)
- A V Grishin
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110
| | | | | |
Collapse
|
40
|
MOT2 encodes a negative regulator of gene expression that affects basal expression of pheromone-responsive genes in Saccharomyces cerevisiae. Mol Cell Biol 1994. [PMID: 8164669 DOI: 10.1128/mcb.14.5.3139] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pheromones induce haploid cells of Saccharomyces cerevisiae to differentiate into a mating-competent state. Ste11p is one of several protein kinases required to transmit the pheromone-induced signal and to maintain basal expression of certain mating-specific genes in the absence of pheromone stimulation. To identify potential regulators of Ste11p, we screened for suppressors that restored mating and basal transcriptional competence to a strain with a conditionally functional Ste11p. This screen uncovered a novel gene we call MOT2, for modulator of transcription. A mot2 deletion mutation leads to modest increases in the basal amounts of mRNA for several pheromone-responsive genes. Yet mot2 deletion does not affect the signal transmission activity of the pathway in either the presence or absence of pheromone stimulation. Therefore, we propose that Mot2p, directly or indirectly, represses basal transcription of certain mating-specific genes. Because mot2 deletion mutants also have a conditional cell lysis phenotype, we expect that Mot2p regulatory effects may be more global than for mating-specific gene expression.
Collapse
|
41
|
Genetic identification of residues involved in association of alpha and beta G-protein subunits. Mol Cell Biol 1994. [PMID: 8164677 DOI: 10.1128/mcb.14.5.3223] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The GPA1, STE4, and STE18 genes of Saccharomyces cerevisiae encode the alpha, beta, and gamma subunits, respectively, of a G protein involved in the mating response pathway. We have found that mutations G124D, W136G, W136R, and delta L138 and double mutations W136R L138F and W136G S151C of the Ste4 protein cause constitutive activation of the signaling pathway. The W136R L138F and W136G S151C mutant Ste4 proteins were tested in the two-hybrid protein association assay and found to be defective in association with the Gpa1 protein. A mutation at position E307 of the Gpa1 protein both suppresses the constitutive signaling phenotype of some mutant Ste4 proteins and allows the mutant alpha subunit to physically associate with a specific mutant G beta subunit. The mutation in the Gpa1 protein is adjacent to the hinge, or switch, region that is required for the conformational change which triggers subunit dissociation, but the mutation does not affect the interaction of the alpha subunit with the wild-type beta subunit. Yeast cells constructed to contain only the mutant alpha and beta subunits mate and respond to pheromones, although they exhibit partial induction of the pheromone response pathway. Because the ability of the modified G alpha subunit to suppress the Ste4 mutations is allele specific, it is likely that the residues defined by this analysis play a direct role in G-protein subunit association.
Collapse
|
42
|
Whiteway M, Clark KL, Leberer E, Dignard D, Thomas DY. Genetic identification of residues involved in association of alpha and beta G-protein subunits. Mol Cell Biol 1994; 14:3223-9. [PMID: 8164677 PMCID: PMC358689 DOI: 10.1128/mcb.14.5.3223-3229.1994] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The GPA1, STE4, and STE18 genes of Saccharomyces cerevisiae encode the alpha, beta, and gamma subunits, respectively, of a G protein involved in the mating response pathway. We have found that mutations G124D, W136G, W136R, and delta L138 and double mutations W136R L138F and W136G S151C of the Ste4 protein cause constitutive activation of the signaling pathway. The W136R L138F and W136G S151C mutant Ste4 proteins were tested in the two-hybrid protein association assay and found to be defective in association with the Gpa1 protein. A mutation at position E307 of the Gpa1 protein both suppresses the constitutive signaling phenotype of some mutant Ste4 proteins and allows the mutant alpha subunit to physically associate with a specific mutant G beta subunit. The mutation in the Gpa1 protein is adjacent to the hinge, or switch, region that is required for the conformational change which triggers subunit dissociation, but the mutation does not affect the interaction of the alpha subunit with the wild-type beta subunit. Yeast cells constructed to contain only the mutant alpha and beta subunits mate and respond to pheromones, although they exhibit partial induction of the pheromone response pathway. Because the ability of the modified G alpha subunit to suppress the Ste4 mutations is allele specific, it is likely that the residues defined by this analysis play a direct role in G-protein subunit association.
Collapse
Affiliation(s)
- M Whiteway
- National Research Council, Biotechnology Research Institute, Montreal, Quebec, Canada
| | | | | | | | | |
Collapse
|
43
|
Mutational activation of the STE5 gene product bypasses the requirement for G protein beta and gamma subunits in the yeast pheromone response pathway. Mol Cell Biol 1994. [PMID: 8289786 DOI: 10.1128/mcb.14.2.1054] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The STE5 gene encodes an essential element of the pheromone response pathway which is known to act either after the G subunit encoded by the STE4 gene or at the same step. Mutations in STE5, designated STE5Hyp, that partially activate the pathway in the absence of pheromone were isolated. One allele (STE5Hyp-2) was shown to cause a single amino acid substitution near the N terminus of the predicted STE5 protein. Immunoblotting with anti-Ste5 antibodies indicated that the phenotype was not due to an increased level of the mutant STE5 protein. A multicopy episomal plasmid containing a STE5Hyp allele partially suppressed both the block in pheromone-inducible transcription and the sterility phenotype caused by null alleles of the STE2, STE4, or STE18 gene, indicating that the STE5 product acts after the receptor (STE2 product) and after the G protein beta and gamma subunits (STE4 and STE18 products, respectively). However, the phenotypes of the STE5Hyp mutations were less pronounced in ste4 and ste18 mutants, suggesting that the STE5Hyp-generated signal partially depends on the proposed G beta gamma complex. The STE5Hyp alleles did not suppress ste7, ste11, ste12, or fus3 kss1 null mutants, consistent with previous findings that the STE5 product acts before the protein kinases encoded by STE7, STE11, FUS3, and KSS1 and the transcription factor encoded by STE12. The mating defects of the ste2 deletion mutant and the temperature-sensitive ste4-3 mutant were also suppressed by overexpression of wild-type STE5. The slow-growth phenotype manifested by cells carrying STE5Hyp alleles was enhanced by the sst2-1 mutation; this effect was eliminated in ste4 mutants. These results provide the first evidence that the STE5 gene product performs its function after the G protein subunits.
Collapse
|
44
|
AFR1 acts in conjunction with the alpha-factor receptor to promote morphogenesis and adaptation. Mol Cell Biol 1993. [PMID: 8413281 DOI: 10.1128/mcb.13.11.6876] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mating pheromone receptors activate a G-protein signaling pathway that induces changes in transcription, cell division, and morphogenesis needed for the conjunction of Saccharomyces cerevisiae. The C terminus of the alpha-factor pheromone receptor functions in two complex processes, adaptation and morphogenesis. Adaptation to alpha-factor may occur through receptor desensitization, and alpha-factor-induced morphogenesis forms the conjugation bridge between mating cells. A plasmid overexpression strategy was used to isolate a new gene, AFR1, which acts together with the receptor C terminus to promote adaptation. The expression of AFR1 was highly induced by alpha-factor. Unexpectedly, cells lacking AFR1 showed a defect in alpha-factor-stimulated morphogenesis that was similar to the morphogenesis defect observed in cells producing C-terminally truncated alpha-factor receptors. In contrast, AFR1 overexpression resulted in longer projections of morphogenesis, which suggests that this gene may directly stimulate morphogenesis. These results indicate that AFR1 encodes a developmentally regulated function that coordinates both the regulation of receptor signaling and the induction of morphogenesis during conjugation.
Collapse
|
45
|
Konopka JB. AFR1 acts in conjunction with the alpha-factor receptor to promote morphogenesis and adaptation. Mol Cell Biol 1993; 13:6876-88. [PMID: 8413281 PMCID: PMC364750 DOI: 10.1128/mcb.13.11.6876-6888.1993] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Mating pheromone receptors activate a G-protein signaling pathway that induces changes in transcription, cell division, and morphogenesis needed for the conjunction of Saccharomyces cerevisiae. The C terminus of the alpha-factor pheromone receptor functions in two complex processes, adaptation and morphogenesis. Adaptation to alpha-factor may occur through receptor desensitization, and alpha-factor-induced morphogenesis forms the conjugation bridge between mating cells. A plasmid overexpression strategy was used to isolate a new gene, AFR1, which acts together with the receptor C terminus to promote adaptation. The expression of AFR1 was highly induced by alpha-factor. Unexpectedly, cells lacking AFR1 showed a defect in alpha-factor-stimulated morphogenesis that was similar to the morphogenesis defect observed in cells producing C-terminally truncated alpha-factor receptors. In contrast, AFR1 overexpression resulted in longer projections of morphogenesis, which suggests that this gene may directly stimulate morphogenesis. These results indicate that AFR1 encodes a developmentally regulated function that coordinates both the regulation of receptor signaling and the induction of morphogenesis during conjugation.
Collapse
Affiliation(s)
- J B Konopka
- Department of Microbiology, State University of New York at Stony Brook 11794-5222
| |
Collapse
|
46
|
Dohlman HG, Goldsmith P, Spiegel AM, Thorner J. Pheromone action regulates G-protein alpha-subunit myristoylation in the yeast Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 1993; 90:9688-92. [PMID: 8415763 PMCID: PMC47635 DOI: 10.1073/pnas.90.20.9688] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Myristic acid (C14:0) is added to the N-terminal glycine residue of the alpha subunits of certain receptor-coupled guanine nucleotide-binding regulatory proteins (G proteins). The G alpha subunit (GPA1 gene product) coupled to yeast pheromone receptors exists as a pool of both myristoylated and unmyristolyated species. After treatment of MATa cells with alpha factor, the myristoylated form of Gpa1p increases dramatically, and the unmyristoylated form decreases concomitantly. This pheromone-stimulated shift depends on the function of STE2 (alpha-factor receptor), STE11 (a protein kinase in the response pathway), and NMT1 (myristoyl-CoA:protein N-myristoyltransferase) genes and uses the existing pool of fatty acids (is not blocked by cerulenin). Myristoylated Gpa1p persists long after pheromone is removed. Because myristoylation is essential for proper G alpha-G beta gamma association and receptor coupling, pheromone-dependent stimulation of Gpa1p myristoylation may be an important contributing factor in adaptation after signal transmission.
Collapse
Affiliation(s)
- H G Dohlman
- Department of Molecular and Cell Biology, University of California, Berkeley 94720
| | | | | | | |
Collapse
|
47
|
Guan K, Farh L, Marshall TK, Deschenes RJ. Normal mitochondrial structure and genome maintenance in yeast requires the dynamin-like product of the MGM1 gene. Curr Genet 1993; 24:141-8. [PMID: 7916673 DOI: 10.1007/bf00324678] [Citation(s) in RCA: 118] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The isolation and characterization of MGM1, an yeast gene with homology to members of the dynamin gene family, is described. The MGM1 gene is located on the right arm of chromosome XV between STE4 and PTP2. Sequence analysis revealed a single open reading frame of 902 residues capable of encoding a protein with an approximate molecular mass of 101 kDa. Loss of MGM1 resulted in slow growth on rich medium, failure to grow on non-fermentable carbon sources, and loss of mitochondrial DNA. The mitochondria also appeared abnormal when visualized with an antibody to a mitochondrial-matrix marker. MGM1 encodes a dynamin-like protein involved in the propagation of functional mitochondria in yeast.
Collapse
Affiliation(s)
- K Guan
- Department of Biochemistry, University of Michigan, Ann Arbor 48109-0606
| | | | | | | |
Collapse
|
48
|
Davis NG, Horecka JL, Sprague GF. Cis- and trans-acting functions required for endocytosis of the yeast pheromone receptors. J Cell Biol 1993; 122:53-65. [PMID: 8391002 PMCID: PMC2119599 DOI: 10.1083/jcb.122.1.53] [Citation(s) in RCA: 206] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The Saccharomyces cerevisiae a-factor receptor (STE3) is subject to two modes of endocytosis: a constitutive process that occurs in the absence of ligand and a regulated process that is triggered by binding of ligand. Both processes result in delivery of the receptor to the vacuole for degradation. Receptor mutants deleted for part of the COOH-terminal cytoplasmic domain are disabled for constitutive, but not ligand-dependent internalization. Trans-acting mutants that impair constitutive endocytosis have been isolated. One of these, ren1-1, is blocked at a late step in the endocytic pathway, as receptor accumulates in a prevacuolar endosome-like compartment. REN1 is identical to VPS2, a gene required for delivery of newly synthesized vacuolar enzymes to the vacuole. Based on this identity, we suggest a model in which the transport pathways to the vacuole--the endocytic pathway and the vacuolar biogenesis pathway--merge at an intermediate endocytic compartment. As receptor also accumulates at the surface of ren1 cells, receptor may recycle from the putative endosome to the surface, or REN1 may also be required to carry out an early step in endocytosis.
Collapse
Affiliation(s)
- N G Davis
- Institute of Molecular Biology, University of Oregon, Eugene 97403
| | | | | |
Collapse
|
49
|
Ryba NJ, Findlay JB, Reid JD. The molecular cloning of the squid (Loligo forbesi) visual Gq-alpha subunit and its expression in Saccharomyces cerevisiae. Biochem J 1993; 292 ( Pt 2):333-41. [PMID: 8503868 PMCID: PMC1134214 DOI: 10.1042/bj2920333] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The sequence of the alpha-subunit of the major G-protein from the squid (Loligo forbesi) retina was predicted from its cDNA to be a member of the Gq subclass. The abundance of the squid Gq-alpha in the squid photoreceptor membranes suggests that the protein functions in phototransduction; the sequence of this G-protein is consistent with it mediating the light-dependent activation of a phospholipase C. The squid G-alpha was expressed in the yeast Saccharomyces cerevisiae, where it was unable to replace the function of GPA1, the yeast G-alpha homologue that regulates the mating response, suggesting that Gq-alpha was unable to interact with the endogenous G-beta gamma (STE4-STE18).
Collapse
Affiliation(s)
- N J Ryba
- Department of Biochemistry and Molecular Biology, University of Leeds, U.K
| | | | | |
Collapse
|
50
|
Pheromone-induced signal transduction in Saccharomyces cerevisiae requires the sequential function of three protein kinases. Mol Cell Biol 1993. [PMID: 8455599 DOI: 10.1128/mcb.13.4.2069] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Protein phosphorylation plays an important role in pheromone-induced differentiation processes of haploid yeast cells. Among the components necessary for signal transduction are the STE7 and STE11 kinases and either one of the redundant FUS3 and KSS1 kinases. FUS3 and presumably KSS1 are phosphorylated and activated during pheromone induction by a STE7-dependent mechanism. Pheromone also induces the accumulation of STE7 in a hyperphosphorylated form. This modification of STE7 requires the STE11 kinase, which is proposed to act before STE7 during signal transmission. Surprisingly, STE7 hyperphosphorylation also requires a functional FUS3 (or KSS1) kinase. Using in vitro assays for FUS3 phosphorylation, we show that pheromone activates STE7 even in the absence of FUS3 and KSS1. Therefore, STE7 activation must precede modification of FUS3 (and KSS1). These findings suggest that STE7 hyperphosphorylation is a consequence of its activation but not the determining event.
Collapse
|