1
|
Yahia Y, Pigeot A, El Aabidine AZ, Shah N, Karasu N, Forné I, Krebs S, Blum H, Esnault C, Sexton T, Imhof A, Eick D, Andrau J. RNA polymerase II CTD is dispensable for transcription and required for termination in human cells. EMBO Rep 2023; 24:e56150. [PMID: 37424514 PMCID: PMC10481650 DOI: 10.15252/embr.202256150] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 06/21/2023] [Accepted: 06/27/2023] [Indexed: 07/11/2023] Open
Abstract
The largest subunit of RNA polymerase (Pol) II harbors an evolutionarily conserved C-terminal domain (CTD), composed of heptapeptide repeats, central to the transcriptional process. Here, we analyze the transcriptional phenotypes of a CTD-Δ5 mutant that carries a large CTD truncation in human cells. Our data show that this mutant can transcribe genes in living cells but displays a pervasive phenotype with impaired termination, similar to but more severe than previously characterized mutations of CTD tyrosine residues. The CTD-Δ5 mutant does not interact with the Mediator and Integrator complexes involved in the activation of transcription and processing of RNAs. Examination of long-distance interactions and CTCF-binding patterns in CTD-Δ5 mutant cells reveals no changes in TAD domains or borders. Our data demonstrate that the CTD is largely dispensable for the act of transcription in living cells. We propose a model in which CTD-depleted Pol II has a lower entry rate onto DNA but becomes pervasive once engaged in transcription, resulting in a defect in termination.
Collapse
Affiliation(s)
- Yousra Yahia
- Institut de Génétique Moléculaire de Montpellier (IGMM), CNRS‐UMR5535MontpellierFrance
| | - Alexia Pigeot
- Institut de Génétique Moléculaire de Montpellier (IGMM), CNRS‐UMR5535MontpellierFrance
| | - Amal Zine El Aabidine
- Institut de Génétique Moléculaire de Montpellier (IGMM), CNRS‐UMR5535MontpellierFrance
| | - Nilay Shah
- Department of Molecular Epigenetics, Helmholtz Center MunichCenter of Integrated Protein Science MunichMunichGermany
- Present address:
Neuberg Center for Genomic MedicineNeuberg Supratech Reference LaboratoryGujaratIndia
| | - Nezih Karasu
- Institut de Génétique Moléculaire de Montpellier (IGMM), CNRS‐UMR5535MontpellierFrance
- Institute of Genetics and Molecular and Cellular Biology (IGBMC)IllkirchFrance
| | | | - Stefan Krebs
- Laboratory for Functional Genome Analysis, Gene CenterLudwig‐Maximilians‐UniversitätMunichGermany
| | - Helmut Blum
- Laboratory for Functional Genome Analysis, Gene CenterLudwig‐Maximilians‐UniversitätMunichGermany
| | - Cyril Esnault
- Institut de Génétique Moléculaire de Montpellier (IGMM), CNRS‐UMR5535MontpellierFrance
| | - Tom Sexton
- Institute of Genetics and Molecular and Cellular Biology (IGBMC)IllkirchFrance
| | - Axel Imhof
- Biomedical Center Munich, ZFPMartinsriedGermany
| | - Dirk Eick
- Department of Molecular Epigenetics, Helmholtz Center MunichCenter of Integrated Protein Science MunichMunichGermany
| | | |
Collapse
|
2
|
Gupta K, Watson AA, Baptista T, Scheer E, Chambers AL, Koehler C, Zou J, Obong-Ebong I, Kandiah E, Temblador A, Round A, Forest E, Man P, Bieniossek C, Laue ED, Lemke EA, Rappsilber J, Robinson CV, Devys D, Tora L, Berger I. Architecture of TAF11/TAF13/TBP complex suggests novel regulation properties of general transcription factor TFIID. eLife 2017; 6:e30395. [PMID: 29111974 PMCID: PMC5690282 DOI: 10.7554/elife.30395] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 11/03/2017] [Indexed: 11/13/2022] Open
Abstract
General transcription factor TFIID is a key component of RNA polymerase II transcription initiation. Human TFIID is a megadalton-sized complex comprising TATA-binding protein (TBP) and 13 TBP-associated factors (TAFs). TBP binds to core promoter DNA, recognizing the TATA-box. We identified a ternary complex formed by TBP and the histone fold (HF) domain-containing TFIID subunits TAF11 and TAF13. We demonstrate that TAF11/TAF13 competes for TBP binding with TATA-box DNA, and also with the N-terminal domain of TAF1 previously implicated in TATA-box mimicry. In an integrative approach combining crystal coordinates, biochemical analyses and data from cross-linking mass-spectrometry (CLMS), we determine the architecture of the TAF11/TAF13/TBP complex, revealing TAF11/TAF13 interaction with the DNA binding surface of TBP. We identify a highly conserved C-terminal TBP-interaction domain (CTID) in TAF13, which is essential for supporting cell growth. Our results thus have implications for cellular TFIID assembly and suggest a novel regulatory state for TFIID function.
Collapse
Affiliation(s)
- Kapil Gupta
- BrisSynBio Centre, The School of Biochemistry, Faculty of Biomedical SciencesUniversity of BristolBristolUnited Kingdom
- European Molecular Biology LaboratoryGrenobleFrance
| | | | - Tiago Baptista
- Institut de Génétique et de Biologie Moléculaire et Cellulaire IGBMCIllkirchFrance
- Centre National de la Recherche ScientifiqueIllkirchFrance
- Institut National de la Santé et de la Recherche MédicaleIllkirchFrance
- Université de StrasbourgIllkirchFrance
| | - Elisabeth Scheer
- Institut de Génétique et de Biologie Moléculaire et Cellulaire IGBMCIllkirchFrance
- Centre National de la Recherche ScientifiqueIllkirchFrance
- Institut National de la Santé et de la Recherche MédicaleIllkirchFrance
- Université de StrasbourgIllkirchFrance
| | - Anna L Chambers
- BrisSynBio Centre, The School of Biochemistry, Faculty of Biomedical SciencesUniversity of BristolBristolUnited Kingdom
| | | | - Juan Zou
- Wellcome Trust Centre for Cell BiologyUniversity of EdinburghEdinburghUnited Kingdom
- Chair of BioanalyticsInstitute of Biotechnology, Technische Universität BerlinBerlinGermany
| | - Ima Obong-Ebong
- Physical and Theoretical Chemistry LaboratoryOxfordUnited Kingdom
| | - Eaazhisai Kandiah
- European Molecular Biology LaboratoryGrenobleFrance
- Institut de Biologie Structurale IBSGrenobleFrance
| | | | - Adam Round
- European Molecular Biology LaboratoryGrenobleFrance
| | - Eric Forest
- Institut de Biologie Structurale IBSGrenobleFrance
| | - Petr Man
- Institute of MicrobiologyThe Czech Academy of SciencesVestecCzech Republic
- BioCeV - Faculty of ScienceCharles UniversityPragueCzech Republic
| | | | - Ernest D Laue
- Department of BiochemistryUniversity of CambridgeCambridgeUnited Kingdom
| | | | - Juri Rappsilber
- Wellcome Trust Centre for Cell BiologyUniversity of EdinburghEdinburghUnited Kingdom
- Chair of BioanalyticsInstitute of Biotechnology, Technische Universität BerlinBerlinGermany
| | - Carol V Robinson
- Physical and Theoretical Chemistry LaboratoryOxfordUnited Kingdom
| | - Didier Devys
- Institut de Génétique et de Biologie Moléculaire et Cellulaire IGBMCIllkirchFrance
- Centre National de la Recherche ScientifiqueIllkirchFrance
- Institut National de la Santé et de la Recherche MédicaleIllkirchFrance
- Université de StrasbourgIllkirchFrance
| | - Làszlò Tora
- Institut de Génétique et de Biologie Moléculaire et Cellulaire IGBMCIllkirchFrance
- Centre National de la Recherche ScientifiqueIllkirchFrance
- Institut National de la Santé et de la Recherche MédicaleIllkirchFrance
- Université de StrasbourgIllkirchFrance
| | - Imre Berger
- BrisSynBio Centre, The School of Biochemistry, Faculty of Biomedical SciencesUniversity of BristolBristolUnited Kingdom
| |
Collapse
|
3
|
The Ess1 prolyl isomerase: traffic cop of the RNA polymerase II transcription cycle. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:316-33. [PMID: 24530645 DOI: 10.1016/j.bbagrm.2014.02.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Revised: 02/01/2014] [Accepted: 02/03/2014] [Indexed: 11/23/2022]
Abstract
Ess1 is a prolyl isomerase that regulates the structure and function of eukaryotic RNA polymerase II. Ess1 works by catalyzing the cis/trans conversion of pSer5-Pro6 bonds, and to a lesser extent pSer2-Pro3 bonds, within the carboxy-terminal domain (CTD) of Rpb1, the largest subunit of RNA pol II. Ess1 is conserved in organisms ranging from yeast to humans. In budding yeast, Ess1 is essential for growth and is required for efficient transcription initiation and termination, RNA processing, and suppression of cryptic transcription. In mammals, Ess1 (called Pin1) functions in a variety of pathways, including transcription, but it is not essential. Recent work has shown that Ess1 coordinates the binding and release of CTD-binding proteins that function as co-factors in the RNA pol II complex. In this way, Ess1 plays an integral role in writing (and reading) the so-called CTD code to promote production of mature RNA pol II transcripts including non-coding RNAs and mRNAs.
Collapse
|
4
|
Morin P, Storey KB. Evidence for a reduced transcriptional state during hibernation in ground squirrels. Cryobiology 2006; 53:310-8. [PMID: 16979617 DOI: 10.1016/j.cryobiol.2006.08.002] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2006] [Revised: 07/19/2006] [Accepted: 08/04/2006] [Indexed: 10/24/2022]
Abstract
During mammalian hibernation, metabolic rate can be reduced to <5% of the euthermic rate as a result of coordinated suppression of multiple energy expensive metabolic processes. Gene transcription is one of these and the present study examines mechanisms of transcriptional control that could contribute to lowering the rate of gene expression in torpor. Histone deacetylases (HDAC) have been linked to gene silencing and measured HDAC activity was 1.82-fold higher in skeletal muscle of hibernating thirteen-lined ground squirrels, Spermophilus tridecemlineatus, compared with euthermic controls. Western blotting also showed that HDAC1 and HDAC4 protein levels were 1.21-and 1.48-fold higher, respectively, in muscle from torpid animals. Histone H3 was also evaluated by Western blotting. Total histone H3 was unchanged but two forms of covalently modified histone H3 that are associated with active transcription (phosphorylated Ser 10 and acetylated Lys 23) were significantly reduced by 38-39% in muscle during hibernation. Finally, RNA polymerase II activity was measured using a PCR-based approach; activity in muscle from hibernating squirrels was only 57% of the euthermic value. These data support an overall decrease in transcriptional activity in skeletal muscle of hibernating animals that is accomplished by multiple molecular mechanisms.
Collapse
Affiliation(s)
- Pier Morin
- Institute of Biochemistry and Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Ont., Canada K1S 5B6.
| | | |
Collapse
|
5
|
Abstract
In eukaryotes, the core promoter serves as a platform for the assembly of transcription preinitiation complex (PIC) that includes TFIIA, TFIIB, TFIID, TFIIE, TFIIF, TFIIH, and RNA polymerase II (pol II), which function collectively to specify the transcription start site. PIC formation usually begins with TFIID binding to the TATA box, initiator, and/or downstream promoter element (DPE) found in most core promoters, followed by the entry of other general transcription factors (GTFs) and pol II through either a sequential assembly or a preassembled pol II holoenzyme pathway. Formation of this promoter-bound complex is sufficient for a basal level of transcription. However, for activator-dependent (or regulated) transcription, general cofactors are often required to transmit regulatory signals between gene-specific activators and the general transcription machinery. Three classes of general cofactors, including TBP-associated factors (TAFs), Mediator, and upstream stimulatory activity (USA)-derived positive cofactors (PC1/PARP-1, PC2, PC3/DNA topoisomerase I, and PC4) and negative cofactor 1 (NC1/HMGB1), normally function independently or in combination to fine-tune the promoter activity in a gene-specific or cell-type-specific manner. In addition, other cofactors, such as TAF1, BTAF1, and negative cofactor 2 (NC2), can also modulate TBP or TFIID binding to the core promoter. In general, these cofactors are capable of repressing basal transcription when activators are absent and stimulating transcription in the presence of activators. Here we review the roles of these cofactors and GTFs, as well as TBP-related factors (TRFs), TAF-containing complexes (TFTC, SAGA, SLIK/SALSA, STAGA, and PRC1) and TAF variants, in pol II-mediated transcription, with emphasis on the events occurring after the chromatin has been remodeled but prior to the formation of the first phosphodiester bond.
Collapse
Affiliation(s)
- Mary C Thomas
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH 44106-4935, USA
| | | |
Collapse
|
6
|
Rosonina E, Blencowe BJ. Analysis of the requirement for RNA polymerase II CTD heptapeptide repeats in pre-mRNA splicing and 3'-end cleavage. RNA (NEW YORK, N.Y.) 2004; 10:581-9. [PMID: 15037767 PMCID: PMC1370548 DOI: 10.1261/rna.5207204] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2003] [Accepted: 12/18/2003] [Indexed: 05/17/2023]
Abstract
The carboxyl-terminal domain (CTD) of RNA polymerase II (pol II) plays an important role in coupling transcription with precursor messenger RNA (pre-mRNA) processing. Efficient capping, splicing, and 3'-end cleavage of pre-mRNA depend on the CTD. Moreover, specific processing factors are known to associate with this structure. The CTD is therefore thought to act as a platform that facilitates the assembly of complexes required for the processing of nascent transcripts. The mammalian CTD contains 52 tandemly repeated heptapeptides with the consensus sequence YSPTSPS. The C-terminal half of the mammalian CTD contains mostly repeats that diverge from this consensus sequence, whereas the N-terminal half contains mostly repeats that match the consensus sequence. Here, we demonstrate that 22 tandem repeats, from either the conserved or divergent halves of the CTD, are sufficient for approximate wild-type levels of transcription, splicing, and 3'-end cleavage of two different pre-mRNAs, one containing a constitutively spliced intron, and the other containing an intron that depends on an exon enhancer for efficient splicing. In contrast, each block of 22 repeats is not sufficient for efficient inclusion of an alternatively spliced exon in another pre-mRNA. In this case, a longer CTD is important for counteracting the negative effect of a splicing silencer element located within the alternative exon. Our results indicate that the length, rather than the composition of CTD repeats, can be the major determinant in efficient processing of different pre-mRNA substrates. However, the extent of this length requirement depends on specific sequence features within the pre-mRNA substrate.
Collapse
Affiliation(s)
- Emanuel Rosonina
- Banting and Best Department of Medical Research, and Department of Molecular and Medical Genetics, University of Toronto, Toronto, Ontario, Canada M5G 1L6
| | | |
Collapse
|
7
|
Korsisaari N, Rossi DJ, Paetau A, Charnay P, Henkemeyer M, Mäkelä TP. Conditional ablation of the Mat1 subunit of TFIIH in Schwann cells provides evidence that Mat1 is not required for general transcription. J Cell Sci 2002; 115:4275-84. [PMID: 12376559 DOI: 10.1242/jcs.00121] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mammalian Mat1 protein has been implicated in cell cycle regulation as part of the Cdk activating kinase (CAK), and in regulation of transcription as a subunit of transcription factor TFIIH. To address the role of Mat1 in vivo, we have used a Cre/loxP system to conditionally ablate Mat1 in adult mitotic and post-mitotic lineages. We found that the mitotic cells of the germ lineage died rapidly upon disruption of Mat1 indicating an absolute requirement of Mat1 in these cells. By contrast, post-mitotic myelinating Schwann cells were able to attain a mature myelinated phenotype in the absence of Mat1. Moreover, mutant animals did not show morphological or physiological signs of Schwann cell dysfunction into early adulthood. Beyond 3 months of age, however, myelinated Schwann cells in the sciatic nerves acquired a severe hypomyelinating morphology with alterations ranging from cells undergoing degeneration to completely denuded axons. This phenotype was coupled to extensive proliferation and remyelination that our evidence suggests was undertaken by the non-myelinated Schwann cell pool. These results indicate that Mat1 is not essential for the transcriptional program underlying the myelination of peripheral axons by Schwann cells and suggest that the function of Mat1 in RNA polymerase II-mediated transcription in these cells is regulatory rather than essential.
Collapse
Affiliation(s)
- Nina Korsisaari
- Haartman Institute and Helsinki University Central Hospital, Biomedicum Helsinki, PO Box 63, Haartmaninkatu 8, 00014 University of Helsinki, Finland
| | | | | | | | | | | |
Collapse
|
8
|
Gu W, Malik S, Ito M, Yuan CX, Fondell JD, Zhang X, Martinez E, Qin J, Roeder RG. A novel human SRB/MED-containing cofactor complex, SMCC, involved in transcription regulation. Mol Cell 1999; 3:97-108. [PMID: 10024883 DOI: 10.1016/s1097-2765(00)80178-1] [Citation(s) in RCA: 229] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
A novel human complex that can either repress activator-dependent transcription mediated by PC4, or, at limiting TFIIH, act synergistically with PC4 to enhance activator-dependent transcription has been purified. This complex contains homologs of a subset of yeast mediator/holoenzyme components (including SRB7, SRB10, SRB11, MED6, and RGR1), homologs of other yeast transcriptional regulatory factors (SOH1 and NUT2), and, significantly, some components (TRAP220, TRAP170/hRGR1, and TRAP100) of a human thyroid hormone receptor-associated coactivator complex. The complex shows direct activator interactions but, unlike yeast mediator, can act independently of the RNA polymerase II CTD. These findings demonstrate both positive and negative functional capabilities for the human complex, emphasize novel (CTD-independent) regulatory mechanisms, and link the complex to other human coactivator complexes.
Collapse
Affiliation(s)
- W Gu
- Laboratory of Biochemistry and Molecular Biology, Rockefeller University, New York, New York 10021, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Connor DA, Falick AM, Shetlar MD. UV Light-induced Cross-linking of Nucleosides, Nucleotides and a Dinucleotide to the Carboxy-terminal Heptad Repeat Peptide of RNA Polymerase II as Studied by Mass Spectrometry. Photochem Photobiol 1998. [DOI: 10.1111/j.1751-1097.1998.tb03244.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Patturajan M, Schulte RJ, Sefton BM, Berezney R, Vincent M, Bensaude O, Warren SL, Corden JL. Growth-related changes in phosphorylation of yeast RNA polymerase II. J Biol Chem 1998; 273:4689-94. [PMID: 9468530 DOI: 10.1074/jbc.273.8.4689] [Citation(s) in RCA: 201] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The largest subunit of RNA polymerase II contains a unique C-terminal domain (CTD) consisting of tandem repeats of the consensus heptapeptide sequence Tyr1-Ser2-Pro3-Thr4-Ser5-Pro6-Ser7. Two forms of the largest subunit can be separated by SDS-polyacrylamide gel electrophoresis. The faster migrating form termed IIA contains little or no phosphate on the CTD, whereas the slower migrating II0 form is multiply phosphorylated. CTD kinases with different phosphoryl acceptor specificities are able to convert IIA to II0 in vitro, and different phosphoisomers have been identified in vivo. In this paper we report the binding specificities of a set of monoclonal antibodies that recognize different phosphoepitopes on the CTD. Monoclonal antibodies like H5 recognize phosphoserine in position 2, whereas monoclonal antibodies like H14 recognize phosphoserine in position 5. The relative abundance of these phosphoepitopes changes when growing yeast enter stationary phase or are heat-shocked. These results indicate that phosphorylation of different CTD phosphoacceptor sites are independently regulated in response to environmental signals.
Collapse
Affiliation(s)
- M Patturajan
- Department of Molecular Biology and Genetics, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Yamaguchi Y, Wada T, Handa H. Interplay between positive and negative elongation factors: drawing a new view of DRB. Genes Cells 1998; 3:9-15. [PMID: 9581978 DOI: 10.1046/j.1365-2443.1998.00162.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
DRB is a classic inhibitor of transcription by RNA polymerase II (pol II). Although it has been demonstrated that DRB inhibits the elongation step of transcription, its mode of action has been elusive. DRB also markedly inhibits human immunodeficiency virus (HIV) transcription, by targeting the elongation which is enhanced by the HIV-encoded transactivator Tat. Two factors essential for DRB action have recently been identified. These factors, positive transcription elongation factor b (P-TEFb) and DRB sensitivity-inducing factor (DSIF), positively and negatively regulate pol II elongation, and are likely to be relevant to the function of Tat. In this review, we summarize the recent findings on these factors, and discuss a possible model for the molecular mechanism of DRB action.
Collapse
Affiliation(s)
- Y Yamaguchi
- Department of Biomolecular Engineering, Faculty of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, Japan
| | | | | |
Collapse
|
12
|
Kim E, Du L, Bregman DB, Warren SL. Splicing factors associate with hyperphosphorylated RNA polymerase II in the absence of pre-mRNA. J Cell Biol 1997; 136:19-28. [PMID: 9008700 PMCID: PMC2132468 DOI: 10.1083/jcb.136.1.19] [Citation(s) in RCA: 202] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/1996] [Revised: 11/01/1996] [Indexed: 02/03/2023] Open
Abstract
The carboxy-terminal domain (CTD) of the largest subunit of RNA polymerase II (Pol II) contains multiple tandem copies of the consensus heptapeptide, TyrSerProThrSerProSer. Concomitant with transcription initiation the CTD is phosphorylated. Elongating polymerase has a hyperphosphorylated CTD, but the role of this modification is poorly understood. A recent study revealed that some hyperphosphorylated polymerase molecules (Pol IIo) are nonchromosomal, and hence transcriptionally unengaged (Bregman, D.B., L. Du, S. van der Zee, S.L. Warren. 1995. J. Cell Biol. 129: 287-298). Pol IIo was concentrated in discrete splicing factor domains, suggesting a possible relationship between CTD phosphorylation and splicing factors, but no evidence beyond immunolocalization data was provided to support this idea. Here, we show that Pol IIo co-immunoprecipitates with members of two classes of splicing factors, the Sm snRNPs and non-snRNP SerArg (SR) family proteins. Significantly, Pol IIo's association with splicing factors is maintained in the absence of pre-mRNA, and the polymerase need not be transcriptionally engaged. We also provide definitive evidence that hyperphosphorylation of Pol II's CTD is poorly correlated with its transcriptional activity. Using monoclonal antibodies (mAbs) H5 and H14, which are shown here to recognize phosphoepitopes on Pol II's CTD, we have quantitated the level of Pol IIo at different stages of the cell cycle. The level of Pol IIo is similar in interphase and mitotic cells, which are transcriptionally active and inactive, respectively. Finally, complexes containing Pol IIo and splicing factors can be prepared from mitotic as well as interphase cells. The experiments reported here establish that hyperphosphorylation of the CTD is a good indicator of polymerase's association with snRNP and SR splicing factors, but not of its transcriptional activity. Most importantly, the present study suggests that splicing factors may associate with the polymerase via the hyperphosphorylated CTD.
Collapse
Affiliation(s)
- E Kim
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | | | | | | |
Collapse
|
13
|
Chun RF, Jeang KT. Requirements for RNA polymerase II carboxyl-terminal domain for activated transcription of human retroviruses human T-cell lymphotropic virus I and HIV-1. J Biol Chem 1996; 271:27888-94. [PMID: 8910388 DOI: 10.1074/jbc.271.44.27888] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The carboxyl-terminal domain (CTD) of RNA polymerase (RNAP) II contains multiple repeats with a heptapeptide consensus: Tyr-Ser-Pro-Thr-Ser-Pro-Ser. It has been proposed that phosphorylation of this CTD facilitates clearance and elongation of transcription complexes initiated at the promoters. However, not all transcribed promoters require RNAP II with full-length CTD. Furthermore, different activators can promote capably the transcriptional activity of polymerase II mutants deleted in the CTD. Thus, the role of the RNAP II CTD in transcription and in response to activators remains incompletely understood. To study the role of CTD in the regulated transcription of human retroviruses human-T cell lymphotropic virus I and human immunodeficiency virus 1, we used an alpha-amanitin-resistant system developed previously (Gerber, H. P., Hagmann, M., Seipel, K., Georgiev, O., West, M. A., Litingtung, Y., Schaffner, W., and Corden, J. L. (1995) Nature 374, 660-662). We found that transcription directed by the human T-cell lymphotropic virus I activator protein Tax was strongly promoted by CTD-deficient RNA polymerase II. By contrast, the human immunodeficiency virus 1 activator Tat, which is recruited to the promoter by tethering to a nascent leader RNA, requires CTD-containing polymerase II for transcriptional activity. Biochemically, we characterized that Tat associated with a cellular CTD kinase activity, whereas Tax did not. Concordantly, we found that cellular transcription factor Sp1, which can activate CTD-deficient polymerase II with an efficiency similar to Tax, also failed to bind a CTD kinase. Taken together, these observations address mechanistic corollaries between activators with(out) a linked CTD kinase and regulated transcription by RNA polymerase II moieties with(out) a CTD.
Collapse
Affiliation(s)
- R F Chun
- Molecular Virology Section, Laboratory of Molecular Microbiology, NIAID, National Institutes of Health, Bethesda, Maryland 20892-0460, USA.
| | | |
Collapse
|
14
|
Egyházi E, Ossoinak A, Pigon A, Holmgren C, Lee JM, Greenleaf AL. Phosphorylation dependence of the initiation of productive transcription of Balbiani ring 2 genes in living cells. Chromosoma 1996; 104:422-33. [PMID: 8601337 DOI: 10.1007/bf00352266] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Using polytene chromosomes of salivary gland cells of Chironomus tentans, phosphorylation state-sensitive antibodies and the transcription and protein kinase inhibitor 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole (DRB), we have visualized the chromosomal distribution of RNA polymerase II (pol II) with hypophosphorylated (pol IIA) and hyperphosphorylated (pol II0) carboxyl-terminal repeat domain (CTD). DRB blocks labeling of the CTD with 32Pi within minutes of its addition, and nuclear pol II0 is gradually converted to IIA; this conversion parallels the reduction in transcription of protein-coding genes. DRB also alters the chromosomal distribution of II0: there is a time-dependent clearance from chromosomes of phosphoCTD (PCTD) after addition of DRB, which coincides in time with the completion and release of preinitiated transcripts. Furthermore, the staining of smaller transcription units is abolished before that of larger ones. The staining pattern of chromosomes with anti-CTD antibodies is not detectably influenced by the DRB treatment, indicating that hypophosphorylated pol IIA is unaffected by the transcription inhibitor. Microinjection of synthetic heptapeptide repeats, anti-CTD and anti-PCTD antibodies into salivary gland nuclei hampered the transcription of BR2 genes, indicating the requirement for CTD and PCTD in transcription in living cells. The results demonstrate that in vivo the protein kinase effector DRB shows parallel effects on an early step in gene transcription and the process of pol II hyperphosphorylation. Our observations are consistent with the proposal that the initiation of productive RNA synthesis is CTD-phosphorylation dependent and also with the idea that the gradual dephosphorylation of transcribing pol II0 is coupled to the completion of nascent pol II gene transcripts.
Collapse
Affiliation(s)
- E Egyházi
- Karolinska Institutet, Department of Cell and Molecular Biology, Laboratory of Medical Cell Biology, S-171 77 Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
15
|
Gerber HP, Hagmann M, Seipel K, Georgiev O, West MA, Litingtung Y, Schaffner W, Corden JL. RNA polymerase II C-terminal domain required for enhancer-driven transcription. Nature 1995; 374:660-2. [PMID: 7715709 DOI: 10.1038/374660a0] [Citation(s) in RCA: 133] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The RNA polymerase II carboxy-terminal domain (CTD) consists of tandem repeats of the sequence Tyr-Ser-Pro-Thr-Ser-Pro-Ser. The CTD may participate in activated transcription through interaction with a high-molecular-weight mediator complex. Such a role would be consistent with observations that some genes are preferentially sensitive to CTD mutations. Here we investigate the function of the mouse RNA polymerase CTD in enhancer-driven transcription. Transcription by alpha-amanitin-resistant CTD-deletion mutants was tested by transient transfection of tissue culture cells in the presence of alpha-amanitin in order to inhibit endogenous RNA polymerase II. Removal of most of the CTD abolishes transcriptional activation by all enhancers tested, whereas transcription from promoters driven by Sp1, a factor that typically activates housekeeping genes from positions proximal to the initiation sites, is not affected. These findings show that the CTD is essential in mediating 'enhancer'-type activation of mammalian transcription.
Collapse
Affiliation(s)
- H P Gerber
- Institut für Molekularbiologie II, Universität Zürich
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Buermeyer AB, Strasheim LA, McMahon SL, Farnham PJ. Identification of cis-acting elements that can obviate a requirement for the C-terminal domain of RNA polymerase II. J Biol Chem 1995; 270:6798-807. [PMID: 7896826 DOI: 10.1074/jbc.270.12.6798] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
We have used an in vitro RNA polymerase II (RNAP II) inhibition-restimulation assay to investigate the inability of a form of RNAP II (RNAP IIB) that lacks the conserved, C-terminal heptapeptide repeat domain (CTD) to transcribe the dihydrofolate reductase (dhfr) promoter. Our previous studies demonstrated promoter-specific responses to RNAP IIB in the inhibition-restimulation assay and suggested the existence of cis-acting elements that alleviate the requirement for the CTD. We have now identified elements from two different classes of promoters that can convert dhfr to a CTD-independent promoter. First, addition of a consensus TATA box to the dhfr promoter resulted in a promoter capable of CTD-independent transcription and increased the promoter's affinity for the general transcription factor TFIID. These results suggest that high affinity for TFIID correlates with an ability to be transcribed by RNAP IIB, supporting a proposed interaction between the CTD and TFIID. Second, transfer of a combination of two elements (located at -25 and +1) from the rep-3b promoter, which does not contain a consensus TATA box but can nonetheless be transcribed by RNAP IIB, into the dhfr promoter also allowed CTD-independent transcription. These elements do not constitute a high affinity binding site for TFIID, indicating that an additional mechanism exists to allow CTD-independent transcription. Thus, elements from two classes of CTD-independent promoters that can obviate a requirement for the CTD appear to function via distinct mechanisms. Our finding that a change in a basal element can affect a requirement for the CTD is consistent with a role for the CTD during the formation of the transcriptional preinitiation complex.
Collapse
Affiliation(s)
- A B Buermeyer
- McArdle Laboratory for Cancer Research, Medical School, University of Wisconsin, Madison 53706
| | | | | | | |
Collapse
|
17
|
Serizawa H, Mäkelä TP, Conaway JW, Conaway RC, Weinberg RA, Young RA. Association of Cdk-activating kinase subunits with transcription factor TFIIH. Nature 1995; 374:280-2. [PMID: 7885450 DOI: 10.1038/374280a0] [Citation(s) in RCA: 287] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The RNA polymerase II large subunit contains an essential carboxy-terminal domain (CTD) believed to be involved in the response to regulators during transcription initiation. The CTD is phosphorylated on a portion of RNA polymerase II molecules in vivo and it can be phosphorylated by the general transcription factor TFIIH in vitro. A highly purified TFIIH from rat liver has been described; this, like human and yeast TFIIH, contains associated CTD kinase and helicase activities. We report here that two polypeptides of the purified mammalian TFIIH are the MO15/Cdk7 kinase and cyclin H subunits of the Cdk-activating kinase Cak, previously identified as a positive regulator of Cdc2 and Cdk2. TFIIH and Cak preparations are each capable of phosphorylating recombinant CTD and recombinant Cdk2 proteins. The presence of Cak in TFIIH indicates that Cak may have roles in transcriptional regulation and in cell-cycle control.
Collapse
Affiliation(s)
- H Serizawa
- Whitehead Institute for Biomedical Research, Nine Cambridge Center, Massachusetts 02142
| | | | | | | | | | | |
Collapse
|
18
|
Rice SA, Long MC, Lam V, Spencer CA. RNA polymerase II is aberrantly phosphorylated and localized to viral replication compartments following herpes simplex virus infection. J Virol 1994; 68:988-1001. [PMID: 8289400 PMCID: PMC236537 DOI: 10.1128/jvi.68.2.988-1001.1994] [Citation(s) in RCA: 121] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
During lytic infection, herpes simplex virus subverts the host cell RNA polymerase II transcription machinery to efficiently express its own genome while repressing the expression of most cellular genes. The mechanism by which RNA polymerase II is directed to the viral delayed-early and late genes is still unresolved. We report here that RNA polymerase II is preferentially localized to viral replication compartments early after infection with herpes simplex virus type 1. Concurrent with recruitment of RNA polymerase II into viral compartments is a rapid and aberrant phosphorylation of the large subunit carboxy-terminal domain (CTD). Aberrant phosphorylation of the CTD requires early viral gene expression but is not dependent on viral DNA replication or on the formation of viral replication compartments. Localization of RNA polymerase II and modifications to the CTD may be instrumental in favoring transcription of viral genes and repressing specific transcription of cellular genes.
Collapse
Affiliation(s)
- S A Rice
- Department of Biochemistry, University of Alberta, Edmonton, Canada
| | | | | | | |
Collapse
|
19
|
Bakó L, Nuotio S, Dudits D, Schell J, Koncz C. RNAPII: a specific target for the cell cycle kinase complex. Results Probl Cell Differ 1994; 20:25-64. [PMID: 8036318 DOI: 10.1007/978-3-540-48037-2_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Affiliation(s)
- L Bakó
- Institute of Plant Physiology, Hungarian Academy of Sciences, Szeged
| | | | | | | | | |
Collapse
|
20
|
Kang ME, Dahmus ME. RNA polymerases IIA and IIO have distinct roles during transcription from the TATA-less murine dihydrofolate reductase promoter. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(19)74568-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
21
|
Abstract
A speculative model is presented that proposes specific mechanisms for effecting co-transcriptional splice site selection in pre-mRNAs. The model envisions that certain splicing factors containing arginine-rich, positively charged regions bind via these positive patches to the hyperphosphorylated, negatively charged tail of elongating RNA polymerase II. Thus tethered to the transcription machinery, these splicing factors gain access to signals in nascent transcripts as they emerge from the polymerase.
Collapse
Affiliation(s)
- A L Greenleaf
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710
| |
Collapse
|
22
|
Abstract
RNA polymerase II interacts with transcription factors to initiate the synthesis of mRNA. These interactions are cyclic, involving multiple RNA polymerase subunits and general transcription factors. Phosphorylation of the RNA polymerase II carboxyl-terminal domain may regulate these interactions.
Collapse
Affiliation(s)
- J L Corden
- Howard Hughes Medical Institute, Johns Hopkins Medical School, Baltimore, MD 21205
| |
Collapse
|
23
|
Zawel L, Reinberg D. Initiation of transcription by RNA polymerase II: a multi-step process. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1993; 44:67-108. [PMID: 8434126 DOI: 10.1016/s0079-6603(08)60217-2] [Citation(s) in RCA: 287] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- L Zawel
- Department of Biochemistry, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, Piscataway 08854
| | | |
Collapse
|
24
|
Abstract
Multiple protein factors are necessary to mediate transcription by RNA polymerase II. Recently, a number of advances have been made in our understanding of how general transcription factors collectively modulate basal transcription in the context of different promoter environments and how this process is activated and repressed by accessory components.
Collapse
Affiliation(s)
- L Zawel
- Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, Piscataway
| | | |
Collapse
|
25
|
Koleske AJ, Buratowski S, Nonet M, Young RA. A novel transcription factor reveals a functional link between the RNA polymerase II CTD and TFIID. Cell 1992; 69:883-94. [PMID: 1591782 DOI: 10.1016/0092-8674(92)90298-q] [Citation(s) in RCA: 146] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The RNA polymerase II large subunit carboxy-terminal domain (CTD) plays a role in transcription initiation, but its mechanism of action is not well understood. We have investigated the function of the SRB2 gene, which was isolated as a dominant suppressor of CTD truncation mutations. The allele specificity of this suppressor indicates that SRB2 and the CTD are involved in the same function. Indeed, cells lacking SRB2 and cells lacking a large portion of the CTD exhibit the same set of conditional growth phenotypes and exhibit very similar defects in gene expression in vivo. The SRB2 protein is a novel transcription factor that has an important role in basal and activated transcription in vitro and is essential for efficient establishment of the transcription initiation apparatus. Template commitment experiments suggest that SRB2 becomes physically associated with the transcription initiation complex. We find that SRB2 binds specifically to TFIID. As SRB2 and the RNA polymerase II CTD are involved in the same function, these results reveal a functional link between the CTD and the TATA-binding factor. This study implicates the CTD in recruitment of RNA polymerase II to the transcription initiation complex.
Collapse
Affiliation(s)
- A J Koleske
- Whitehead Institute for Biomedical Research, Nine Cambridge Center, Massachusetts 02142
| | | | | | | |
Collapse
|
26
|
Reese J, Katzenellenbogen B. Characterization of a temperature-sensitive mutation in the hormone binding domain of the human estrogen receptor. Studies in cell extracts and intact cells and their implications for hormone-dependent transcriptional activation. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)50174-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
27
|
Affiliation(s)
- M Carey
- University of California Los Angeles School of Medicine
| |
Collapse
|
28
|
Lee JM, Greenleaf AL. CTD kinase large subunit is encoded by CTK1, a gene required for normal growth of Saccharomyces cerevisiae. Gene Expr 1991; 1:149-67. [PMID: 1820212 PMCID: PMC5952209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/1991] [Accepted: 05/24/1991] [Indexed: 12/28/2022]
Abstract
We previously purified a yeast protein kinase that specifically hyperphosphorylates the carboxyl-terminal repeat domain (CTD) of RNA polymerase II largest subunit and showed that this CTD kinase consists of three subunits of 58, 38, and 32 kDa. We have now cloned, sequenced, and characterized CTK1, the gene encoding the 58 kDa alpha subunit. The CTK1 gene product contains a central domain homologous to catalytic subunits of other protein kinases, notably yeast CDC28, suggesting that the 58 kDa subunit is catalytic. Cells that carry a disrupted version of the CTK1 gene lack the characterized CTD kinase activity, grow slowly and are cold-sensitive, demonstrating that the CTK1 gene product is essential for CTD kinase activity and normal growth. While ctk1 mutant cells do contain phosphorylated forms of the RNA polymerase II largest subunit, these forms differ from those found in wild type cells, implicating CTK1 as a component of the physiologically significant CTD phosphorylating machinery. As befitting an enzyme with a nuclear function, the N-terminal region of the CTK1 protein contains a nuclear targeting signal.
Collapse
Affiliation(s)
- J M Lee
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710
| | | |
Collapse
|
29
|
Chao DM, Young RA. Tailored tails and transcription initiation: the carboxyl terminal domain of RNA polymerase II. Gene Expr 1991; 1:1-4. [PMID: 1820203 PMCID: PMC5952194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- D M Chao
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142
| | | |
Collapse
|
30
|
Peterson CL, Kruger W, Herskowitz I. A functional interaction between the C-terminal domain of RNA polymerase II and the negative regulator SIN1. Cell 1991; 64:1135-43. [PMID: 2004420 DOI: 10.1016/0092-8674(91)90268-4] [Citation(s) in RCA: 155] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The C-terminal domain (CTD) of the largest subunit of yeast RNA polymerase II contains 26-27 tandem copies of a conserved heptapeptide of unknown function. Yeast strains whose CTD contains ten heptamers are viable but defective for transcription of the INO1 gene and cold sensitive for growth. Deletion of the SIN1 gene, which codes for a DNA-binding protein that negatively regulates HO transcription, restores INO1 transcription and reduces the cold sensitivity of such strains. A SIN1 deletion suppresses the lethality of a CTD with nine heptamer repeats but not with seven repeats. These observations indicate a functional relationship between SIN1 and the CTD: the CTD might remove SIN1 from DNA, or removal of SIN1 may be a prerequisite for function of the CTD. The SWI1, SWI2, and SWI3 genes, whose products activate HO transcription by antagonizing SIN1, are also required for INO1 transcription and may assist the CTD. In addition, an intact CTD binds nonspecifically to DNA in vitro.
Collapse
Affiliation(s)
- C L Peterson
- Department of Biochemistry and Biophysics, University of California, San Francisco 94143-0448
| | | | | |
Collapse
|