1
|
Venkat Ramani MK, Yang W, Irani S, Zhang Y. Simplicity is the Ultimate Sophistication-Crosstalk of Post-translational Modifications on the RNA Polymerase II. J Mol Biol 2021; 433:166912. [PMID: 33676925 PMCID: PMC8184622 DOI: 10.1016/j.jmb.2021.166912] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/23/2021] [Accepted: 02/26/2021] [Indexed: 12/19/2022]
Abstract
The highly conserved C-terminal domain (CTD) of the largest subunit of RNA polymerase II comprises a consensus heptad (Y1S2P3T4S5P6S7) repeated multiple times. Despite the simplicity of its sequence, the essential CTD domain orchestrates eukaryotic transcription and co-transcriptional processes, including transcription initiation, elongation, and termination, and mRNA processing. These distinct facets of the transcription cycle rely on specific post-translational modifications (PTM) of the CTD, in which five out of the seven residues in the heptad repeat are subject to phosphorylation. A hypothesis termed the "CTD code" has been proposed in which these PTMs and their combinations generate a sophisticated landscape for spatiotemporal recruitment of transcription regulators to Pol II. In this review, we summarize the recent experimental evidence understanding the biological role of the CTD, implicating a context-dependent theme that significantly enhances the ability of accurate transcription by RNA polymerase II. Furthermore, feedback communication between the CTD and histone modifications coordinates chromatin states with RNA polymerase II-mediated transcription, ensuring the effective and accurate conversion of information into cellular responses.
Collapse
Affiliation(s)
| | - Wanjie Yang
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, United States
| | - Seema Irani
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, United States
| | - Yan Zhang
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, United States; The Institute for Cellular and Molecular Biology. University of Texas at Austin, Austin, TX 78712, United States.
| |
Collapse
|
2
|
Gupta K, Watson AA, Baptista T, Scheer E, Chambers AL, Koehler C, Zou J, Obong-Ebong I, Kandiah E, Temblador A, Round A, Forest E, Man P, Bieniossek C, Laue ED, Lemke EA, Rappsilber J, Robinson CV, Devys D, Tora L, Berger I. Architecture of TAF11/TAF13/TBP complex suggests novel regulation properties of general transcription factor TFIID. eLife 2017; 6:e30395. [PMID: 29111974 PMCID: PMC5690282 DOI: 10.7554/elife.30395] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 11/03/2017] [Indexed: 11/13/2022] Open
Abstract
General transcription factor TFIID is a key component of RNA polymerase II transcription initiation. Human TFIID is a megadalton-sized complex comprising TATA-binding protein (TBP) and 13 TBP-associated factors (TAFs). TBP binds to core promoter DNA, recognizing the TATA-box. We identified a ternary complex formed by TBP and the histone fold (HF) domain-containing TFIID subunits TAF11 and TAF13. We demonstrate that TAF11/TAF13 competes for TBP binding with TATA-box DNA, and also with the N-terminal domain of TAF1 previously implicated in TATA-box mimicry. In an integrative approach combining crystal coordinates, biochemical analyses and data from cross-linking mass-spectrometry (CLMS), we determine the architecture of the TAF11/TAF13/TBP complex, revealing TAF11/TAF13 interaction with the DNA binding surface of TBP. We identify a highly conserved C-terminal TBP-interaction domain (CTID) in TAF13, which is essential for supporting cell growth. Our results thus have implications for cellular TFIID assembly and suggest a novel regulatory state for TFIID function.
Collapse
Affiliation(s)
- Kapil Gupta
- BrisSynBio Centre, The School of Biochemistry, Faculty of Biomedical SciencesUniversity of BristolBristolUnited Kingdom
- European Molecular Biology LaboratoryGrenobleFrance
| | | | - Tiago Baptista
- Institut de Génétique et de Biologie Moléculaire et Cellulaire IGBMCIllkirchFrance
- Centre National de la Recherche ScientifiqueIllkirchFrance
- Institut National de la Santé et de la Recherche MédicaleIllkirchFrance
- Université de StrasbourgIllkirchFrance
| | - Elisabeth Scheer
- Institut de Génétique et de Biologie Moléculaire et Cellulaire IGBMCIllkirchFrance
- Centre National de la Recherche ScientifiqueIllkirchFrance
- Institut National de la Santé et de la Recherche MédicaleIllkirchFrance
- Université de StrasbourgIllkirchFrance
| | - Anna L Chambers
- BrisSynBio Centre, The School of Biochemistry, Faculty of Biomedical SciencesUniversity of BristolBristolUnited Kingdom
| | | | - Juan Zou
- Wellcome Trust Centre for Cell BiologyUniversity of EdinburghEdinburghUnited Kingdom
- Chair of BioanalyticsInstitute of Biotechnology, Technische Universität BerlinBerlinGermany
| | - Ima Obong-Ebong
- Physical and Theoretical Chemistry LaboratoryOxfordUnited Kingdom
| | - Eaazhisai Kandiah
- European Molecular Biology LaboratoryGrenobleFrance
- Institut de Biologie Structurale IBSGrenobleFrance
| | | | - Adam Round
- European Molecular Biology LaboratoryGrenobleFrance
| | - Eric Forest
- Institut de Biologie Structurale IBSGrenobleFrance
| | - Petr Man
- Institute of MicrobiologyThe Czech Academy of SciencesVestecCzech Republic
- BioCeV - Faculty of ScienceCharles UniversityPragueCzech Republic
| | | | - Ernest D Laue
- Department of BiochemistryUniversity of CambridgeCambridgeUnited Kingdom
| | | | - Juri Rappsilber
- Wellcome Trust Centre for Cell BiologyUniversity of EdinburghEdinburghUnited Kingdom
- Chair of BioanalyticsInstitute of Biotechnology, Technische Universität BerlinBerlinGermany
| | - Carol V Robinson
- Physical and Theoretical Chemistry LaboratoryOxfordUnited Kingdom
| | - Didier Devys
- Institut de Génétique et de Biologie Moléculaire et Cellulaire IGBMCIllkirchFrance
- Centre National de la Recherche ScientifiqueIllkirchFrance
- Institut National de la Santé et de la Recherche MédicaleIllkirchFrance
- Université de StrasbourgIllkirchFrance
| | - Làszlò Tora
- Institut de Génétique et de Biologie Moléculaire et Cellulaire IGBMCIllkirchFrance
- Centre National de la Recherche ScientifiqueIllkirchFrance
- Institut National de la Santé et de la Recherche MédicaleIllkirchFrance
- Université de StrasbourgIllkirchFrance
| | - Imre Berger
- BrisSynBio Centre, The School of Biochemistry, Faculty of Biomedical SciencesUniversity of BristolBristolUnited Kingdom
| |
Collapse
|
3
|
The Ess1 prolyl isomerase: traffic cop of the RNA polymerase II transcription cycle. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:316-33. [PMID: 24530645 DOI: 10.1016/j.bbagrm.2014.02.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Revised: 02/01/2014] [Accepted: 02/03/2014] [Indexed: 11/23/2022]
Abstract
Ess1 is a prolyl isomerase that regulates the structure and function of eukaryotic RNA polymerase II. Ess1 works by catalyzing the cis/trans conversion of pSer5-Pro6 bonds, and to a lesser extent pSer2-Pro3 bonds, within the carboxy-terminal domain (CTD) of Rpb1, the largest subunit of RNA pol II. Ess1 is conserved in organisms ranging from yeast to humans. In budding yeast, Ess1 is essential for growth and is required for efficient transcription initiation and termination, RNA processing, and suppression of cryptic transcription. In mammals, Ess1 (called Pin1) functions in a variety of pathways, including transcription, but it is not essential. Recent work has shown that Ess1 coordinates the binding and release of CTD-binding proteins that function as co-factors in the RNA pol II complex. In this way, Ess1 plays an integral role in writing (and reading) the so-called CTD code to promote production of mature RNA pol II transcripts including non-coding RNAs and mRNAs.
Collapse
|
4
|
Ranuncolo SM, Ghosh S, Hanover JA, Hart GW, Lewis BA. Evidence of the involvement of O-GlcNAc-modified human RNA polymerase II CTD in transcription in vitro and in vivo. J Biol Chem 2012; 287:23549-61. [PMID: 22605332 DOI: 10.1074/jbc.m111.330910] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The RNA polymerase II C-terminal domain (CTD), which serves as a scaffold to recruit machinery involved in transcription, is modified post-translationally. Although the O-GlcNAc modification of RNA polymerase II CTD was documented in 1993, its functional significance remained obscure. We show that O-GlcNAc transferase (OGT) modified CTD serine residues 5 and 7. Drug inhibition of OGT and OGA (N-acetylglucosaminidase) blocked transcription during preinitiation complex assembly. Polymerase II and OGT co-immunoprecipitated, and OGT is a component of the preinitiation complex. OGT shRNA experiments showed that reduction of OGT causes a reduction in transcription and RNA polymerase II occupancy at several B-cell promoters. These data suggest that the cycling of O-GlcNAc on and off of polymerase II occurs during assembly of the preinitiation complex. Our results define unexpected roles for both the CTD and O-GlcNAc in the regulation of transcription initiation in higher eukaryotes.
Collapse
Affiliation(s)
- Stella M Ranuncolo
- Metabolism Branch, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
5
|
Kanin EI, Kipp RT, Kung C, Slattery M, Viale A, Hahn S, Shokat KM, Ansari AZ. Chemical inhibition of the TFIIH-associated kinase Cdk7/Kin28 does not impair global mRNA synthesis. Proc Natl Acad Sci U S A 2007; 104:5812-7. [PMID: 17392431 PMCID: PMC1851574 DOI: 10.1073/pnas.0611505104] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The process of gene transcription requires the recruitment of a hypophosphorylated form of RNA polymerase II (Pol II) to a gene promoter. The TFIIH-associated kinase Cdk7/Kin28 hyperphosphorylates the promoter-bound polymerase; this event is thought to play a crucial role in transcription initiation and promoter clearance. Studies using temperature-sensitive mutants of Kin28 have provided the most compelling evidence for an essential role of its kinase activity in global mRNA synthesis. In contrast, using a small molecule inhibitor that specifically inhibits Kin28 in vivo, we find that the kinase activity is not essential for global transcription. Unlike the temperature-sensitive alleles, the small-molecule inhibitor does not perturb protein-protein interactions nor does it provoke the disassociation of TFIIH from gene promoters. These results lead us to conclude that other functions of TFIIH, rather than the kinase activity, are critical for global gene transcription.
Collapse
Affiliation(s)
| | | | - Charles Kung
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94143
| | | | - Agnes Viale
- Memorial Sloan–Kettering Cancer Center, New York, NY 10021; and
| | - Steven Hahn
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - Kevan M. Shokat
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94143
| | - Aseem Z. Ansari
- *Department of Biochemistry and
- Genome Center of Wisconsin, University of Wisconsin, Madison, WI 53706
- **To whom correspondence should be addressed at:
Department of Biochemistry and The Genome Center of Wisconsin, University of Wisconsin, 433 Babcock Drive, Madison, WI 53706. E-mail:
| |
Collapse
|
6
|
Prelich G. RNA polymerase II carboxy-terminal domain kinases: emerging clues to their function. EUKARYOTIC CELL 2002; 1:153-62. [PMID: 12455950 PMCID: PMC118035 DOI: 10.1128/ec.1.2.153-162.2002] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Gregory Prelich
- Department of Molecular Genetics, Albert Einstein College of Medicine, Bronx, New York 10461, USA.
| |
Collapse
|
7
|
Keogh MC, Cho EJ, Podolny V, Buratowski S. Kin28 is found within TFIIH and a Kin28-Ccl1-Tfb3 trimer complex with differential sensitivities to T-loop phosphorylation. Mol Cell Biol 2002; 22:1288-97. [PMID: 11839796 PMCID: PMC134711 DOI: 10.1128/mcb.22.5.1288-1297.2002] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2001] [Revised: 11/14/2001] [Accepted: 11/30/2001] [Indexed: 11/20/2022] Open
Abstract
Basal transcription factor TFIIH phosphorylates the RNA polymerase II (RNApII) carboxy-terminal domain (CTD) within the transcription initiation complex. The catalytic kinase subunit of TFIIH is a member of the cyclin-dependent kinase (Cdk) family, designated Kin28 in Saccharomyces cerevisiae and Cdk7 in higher eukaryotes. Together with TFIIH subunits cyclin H and Mat1, Cdk7 kinase is also found in a trimer complex known as Cdk activating kinase (CAK). A yeast trimer complex has not previously been identified, although a Kin28-Ccl1 dimer called TFIIK has been isolated as a breakdown product of TFIIH. Here we show that a trimeric complex of Kin28-Ccl1-Tfb3 exists in yeast extracts. Several Kin28 point mutants that are defective in CTD phosphorylation were created. Consistent with earlier studies, these mutants have no transcriptional defect in vitro. Like other Cdks, Kin28 is activated by phosphorylation on T162 of the T loop. Kin28 T162 mutants have no growth defects alone but do demonstrate synthetic phenotypes when combined with mutant versions of the cyclin partner, Ccl1. Surprisingly, these phosphorylation site mutants appear to destabilize the association of the cyclin subunit within the context of TFIIH but not within the trimer complex.
Collapse
Affiliation(s)
- Michael-Christopher Keogh
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
8
|
Douziech M, Forget D, Greenblatt J, Coulombe B. Topological localization of the carboxyl-terminal domain of RNA polymerase II in the initiation complex. J Biol Chem 1999; 274:19868-73. [PMID: 10391932 PMCID: PMC4492719 DOI: 10.1074/jbc.274.28.19868] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The carboxyl-terminal domain (CTD) of the largest subunit of RNA polymerase II (RNAP II) functions at multiple stages of transcription and is involved in the coupling of transcription to pre-mRNA processing. We have used site-specific protein-DNA photocross-linking to determine the position of the CTD along promoter DNA in the transcriptional pre-initiation complex. Comparison of the promoter contacts made by RNAP II with or without the CTD indicate that the CTD approaches promoter DNA downstream of the transcriptional initiation site between positions +16 and +26. Incubation of pre-assembled initiation complexes with antibodies to the CTD prior to UV irradiation led to specific photocross-linking of the IgG heavy chain to nucleotide +17, indicating that the CTD is accessible for protein-protein interactions in a complex containing RNAP II and the general initiation factors. In conjunction with previously published observations, our structural data are fully compatible with the notion that DNA wrapping around RNAP II places the CTD and the RNA exit channel into juxtaposition and provide a rationale for contacts between the SRB-mediator complex and core RNAP II observed in the RNAP II holoenzyme.
Collapse
Affiliation(s)
- M Douziech
- Département de biologie, Faculté des sciences, Université de Sherbrooke, Sherbrooke, Québec, J1K 2R1 Canada
| | | | | | | |
Collapse
|
9
|
McNeil JB, Agah H, Bentley D. Activated transcription independent of the RNA polymerase II holoenzyme in budding yeast. Genes Dev 1998; 12:2510-21. [PMID: 9716404 PMCID: PMC317099 DOI: 10.1101/gad.12.16.2510] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
We investigated whether the multisubunit holoenzyme complex of RNA polymerase II (Pol II) and mediator is universally required for transcription in budding yeast. DeltaCTD Pol II lacking the carboxy-terminal domain of the large subunit cannot assemble with mediator but can still transcribe the CUP1 gene. CUP1 transcripts made by DeltaCTD Pol II initiated correctly and some extended past the normal poly(A) site yielding a novel dicistronic mRNA. Most CUP1 transcripts made by DeltaCTD Pol II were degraded but could be stabilized by deletion of the XRN1 gene. Unlike other genes, transcription of CUP1 and HSP82 also persisted after inactivation of the CTD kinase Kin28 or the mediator subunit Srb4. The upstream-activating sequence (UAS) of the CUP1 promoter was sufficient to drive Cu2+ inducible transcription without Srb4 and heat shock inducible transcription without the CTD. We conclude that the Pol II holoenzyme is not essential for all UAS-dependent activated transcription in yeast.
Collapse
Affiliation(s)
- J B McNeil
- Amgen Institute, Ontario Cancer Institute, Toronto, Ontario M5G 2C1, Canada
| | | | | |
Collapse
|
10
|
Kim E, Du L, Bregman DB, Warren SL. Splicing factors associate with hyperphosphorylated RNA polymerase II in the absence of pre-mRNA. J Cell Biol 1997; 136:19-28. [PMID: 9008700 PMCID: PMC2132468 DOI: 10.1083/jcb.136.1.19] [Citation(s) in RCA: 202] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/1996] [Revised: 11/01/1996] [Indexed: 02/03/2023] Open
Abstract
The carboxy-terminal domain (CTD) of the largest subunit of RNA polymerase II (Pol II) contains multiple tandem copies of the consensus heptapeptide, TyrSerProThrSerProSer. Concomitant with transcription initiation the CTD is phosphorylated. Elongating polymerase has a hyperphosphorylated CTD, but the role of this modification is poorly understood. A recent study revealed that some hyperphosphorylated polymerase molecules (Pol IIo) are nonchromosomal, and hence transcriptionally unengaged (Bregman, D.B., L. Du, S. van der Zee, S.L. Warren. 1995. J. Cell Biol. 129: 287-298). Pol IIo was concentrated in discrete splicing factor domains, suggesting a possible relationship between CTD phosphorylation and splicing factors, but no evidence beyond immunolocalization data was provided to support this idea. Here, we show that Pol IIo co-immunoprecipitates with members of two classes of splicing factors, the Sm snRNPs and non-snRNP SerArg (SR) family proteins. Significantly, Pol IIo's association with splicing factors is maintained in the absence of pre-mRNA, and the polymerase need not be transcriptionally engaged. We also provide definitive evidence that hyperphosphorylation of Pol II's CTD is poorly correlated with its transcriptional activity. Using monoclonal antibodies (mAbs) H5 and H14, which are shown here to recognize phosphoepitopes on Pol II's CTD, we have quantitated the level of Pol IIo at different stages of the cell cycle. The level of Pol IIo is similar in interphase and mitotic cells, which are transcriptionally active and inactive, respectively. Finally, complexes containing Pol IIo and splicing factors can be prepared from mitotic as well as interphase cells. The experiments reported here establish that hyperphosphorylation of the CTD is a good indicator of polymerase's association with snRNP and SR splicing factors, but not of its transcriptional activity. Most importantly, the present study suggests that splicing factors may associate with the polymerase via the hyperphosphorylated CTD.
Collapse
Affiliation(s)
- E Kim
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | | | | | | |
Collapse
|
11
|
Yuryev A, Patturajan M, Litingtung Y, Joshi RV, Gentile C, Gebara M, Corden JL. The C-terminal domain of the largest subunit of RNA polymerase II interacts with a novel set of serine/arginine-rich proteins. Proc Natl Acad Sci U S A 1996; 93:6975-80. [PMID: 8692929 PMCID: PMC38919 DOI: 10.1073/pnas.93.14.6975] [Citation(s) in RCA: 295] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Although transcription and pre-mRNA processing are colocalized in eukaryotic nuclei, molecules linking these processes have not previously been described. We have identified four novel rat proteins by their ability to interact with the repetitive C-terminal domain (CTD) of RNA polymerase II in a yeast two-hybrid assay. A yeast homolog of one of the rat proteins has also been shown to interact with the CTD. These CTD-binding proteins are all similar to the SR (serine/arginine-rich) family of proteins that have been shown to be involved in constitutive and regulated splicing. In addition to alternating Ser-Arg domains, these proteins each contain discrete N-terminal or C-terminal CTD-binding domains. We have identified SR-related proteins in a complex that can be immunoprecipitated from nuclear extracts with antibodies directed against RNA polymerase II. In addition, in vitro splicing is inhibited either by an antibody directed against the CTD or by wild-type but not mutant CTD peptides. Thus, these results suggest that the CTD and a set of CTD-binding proteins may act to physically and functionally link transcription and pre-mRNA processing.
Collapse
Affiliation(s)
- A Yuryev
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205-2185, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Egyházi E, Ossoinak A, Pigon A, Holmgren C, Lee JM, Greenleaf AL. Phosphorylation dependence of the initiation of productive transcription of Balbiani ring 2 genes in living cells. Chromosoma 1996; 104:422-33. [PMID: 8601337 DOI: 10.1007/bf00352266] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Using polytene chromosomes of salivary gland cells of Chironomus tentans, phosphorylation state-sensitive antibodies and the transcription and protein kinase inhibitor 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole (DRB), we have visualized the chromosomal distribution of RNA polymerase II (pol II) with hypophosphorylated (pol IIA) and hyperphosphorylated (pol II0) carboxyl-terminal repeat domain (CTD). DRB blocks labeling of the CTD with 32Pi within minutes of its addition, and nuclear pol II0 is gradually converted to IIA; this conversion parallels the reduction in transcription of protein-coding genes. DRB also alters the chromosomal distribution of II0: there is a time-dependent clearance from chromosomes of phosphoCTD (PCTD) after addition of DRB, which coincides in time with the completion and release of preinitiated transcripts. Furthermore, the staining of smaller transcription units is abolished before that of larger ones. The staining pattern of chromosomes with anti-CTD antibodies is not detectably influenced by the DRB treatment, indicating that hypophosphorylated pol IIA is unaffected by the transcription inhibitor. Microinjection of synthetic heptapeptide repeats, anti-CTD and anti-PCTD antibodies into salivary gland nuclei hampered the transcription of BR2 genes, indicating the requirement for CTD and PCTD in transcription in living cells. The results demonstrate that in vivo the protein kinase effector DRB shows parallel effects on an early step in gene transcription and the process of pol II hyperphosphorylation. Our observations are consistent with the proposal that the initiation of productive RNA synthesis is CTD-phosphorylation dependent and also with the idea that the gradual dephosphorylation of transcribing pol II0 is coupled to the completion of nascent pol II gene transcripts.
Collapse
Affiliation(s)
- E Egyházi
- Karolinska Institutet, Department of Cell and Molecular Biology, Laboratory of Medical Cell Biology, S-171 77 Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
13
|
Jiang Y, Gralla JD. RNA polymerase II phosphorylation: uncoupling from GAL4-VP16 directed open complex formation and transcription in a reconstituted system. Nucleic Acids Res 1994; 22:4958-62. [PMID: 7800486 PMCID: PMC523763 DOI: 10.1093/nar/22.23.4958] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
An activated transcription system was constructed using substantially purified liver factors, Hela TFIID and GAL4-VP16. The system was used to study the relationship between RNA polymerase II large subunit phosphorylation and other ATP-dependent processes occurring during activated transcription. When C-terminal domain (CTD) kinase activity was inhibited, activator dependent open promoter complex formation proceeded normally. These open complexes could function to produce RNA in the absence of CTD phosphorylation, although the level of RNA produced was changed somewhat. The results demonstrate that RNA polymerase II CTD phosphorylation is not generally required for the formation of activator-dependent, functional open promoter complexes. Taken together with prior results the experiments suggest that a requirement for CTD phosphorylation may be situation-dependent and thus serve a regulatory function.
Collapse
Affiliation(s)
- Y Jiang
- Department of Chemistry and Biochemistry, University of California, Los Angeles 90024-1569
| | | |
Collapse
|
14
|
Li Y, Kornberg RD. Interplay of positive and negative effectors in function of the C-terminal repeat domain of RNA polymerase II. Proc Natl Acad Sci U S A 1994; 91:2362-6. [PMID: 8134400 PMCID: PMC43371 DOI: 10.1073/pnas.91.6.2362] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
RNA polymerase II lacking a C-terminal domain (CTD) was active in transcription with purified proteins from yeast but failed to support transcription in a yeast extract. CTD dependence could be reconstituted in the purified system by addition of two fractions from the extract. An inhibitory fraction abolished transcription by both wild-type and CTD-less RNA polymerases; a stimulatory fraction restored activity of the wild-type polymerase but had a much lesser effect on the CTD-less enzyme. Parallel results were obtained with the use of a kinase inhibitor that prevents phosphorylation of the CTD by RNA polymerase II initiation factor b. The kinase inhibitor abolished transcription by wild-type polymerase in yeast extract but had no significant effect in the purified system. The requirement for both the CTD and kinase action for transcription in an extract indicates that CTD phosphorylation is involved in opposing the negative effector in the extract. Factor b must play a role(s) in addition to phosphorylation of the CTD because it was still required for transcription with polymerase lacking a CTD in the purified system.
Collapse
Affiliation(s)
- Y Li
- Department of Cell Biology, Stanford University School of Medicine, CA 94305
| | | |
Collapse
|
15
|
Abstract
Transcription factor TFIIB is an essential component of the RNA polymerase II initiation complex. TFIIB carries out at least two functions: it interacts directly with the TATA-binding protein (TBP) and helps to recruit RNA polymerase II into the initiation complex. The sequence of TFIIB reveals a potential zinc-binding domain and an imperfect duplication of approximately 70 amino acids. Mutagenesis of cysteine codons within the putative zinc finger results in mutant proteins that bind normally to TBP but are unable to recruit RNA polymerase II-TFIIF into the initiation complex. Changing the two most highly conserved amino acids in the TFIIB repeats reduces the ability of TFIIB to interact with TBP. Therefore, the two functions of TFIIB can be assigned to two separable functional domains of the protein.
Collapse
Affiliation(s)
- S Buratowski
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142
| | | |
Collapse
|
16
|
Serizawa H, Conaway RC, Conaway JW. A carboxyl-terminal-domain kinase associated with RNA polymerase II transcription factor delta from rat liver. Proc Natl Acad Sci U S A 1992; 89:7476-80. [PMID: 1386928 PMCID: PMC49733 DOI: 10.1073/pnas.89.16.7476] [Citation(s) in RCA: 108] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
We previously purified RNA polymerase II transcription factor delta from rat liver and found that it has an associated DNA-dependent ATPase (dATPase) activity. In this report, we show that delta is also closely associated with a protein kinase activity that catalyzes phosphorylation of the largest subunit of RNA polymerase II. Kinase activity copurifies with transcription and DNA-dependent ATPase (dATPase) activities when delta is analyzed by anion- and cation-exchange HPLC as well as by sucrose gradient sedimentation, arguing that delta possesses all three activities. Phosphorylation of the largest subunits of both rat and yeast RNA polymerase II is stimulated by DNA, whereas phosphorylation of a synthetic peptide containing multiple copies of the carboxyl-terminal heptapeptide repeat is not. Although both ATP and GTP appear to function as phosphate donors, GTP is utilized less than 10% as well as ATP. These findings suggest that delta may exert its action in transcription at least in part through a mechanism involving phosphorylation of the largest subunit of RNA polymerase II.
Collapse
Affiliation(s)
- H Serizawa
- Program in Molecular and Cell Biology, Oklahoma Medical Research Foundation, Oklahoma City 73104
| | | | | |
Collapse
|
17
|
The HIP1 initiator element plays a role in determining the in vitro requirement of the dihydrofolate reductase gene promoter for the C-terminal domain of RNA polymerase II. Mol Cell Biol 1992. [PMID: 1569952 DOI: 10.1128/mcb.12.5.2250] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We examined the ability of purified RNA polymerase (RNAP) II lacking the carboxy-terminal heptapeptide repeat domain (CTD), called RNAP IIB, to transcribe a variety of promoters in HeLa extracts in which endogenous RNAP II activity was inhibited with anti-CTD monoclonal antibodies. Not all promoters were efficiently transcribed by RNAP IIB, and transcription did not correlate with the in vitro strength of the promoter or with the presence of a consensus TATA box. This was best illustrated by the GC-rich, non-TATA box promoters of the bidirectional dihydrofolate reductase (DHFR)-REP-encoding locus. Whereas the REP promoter was transcribed by RNAP IIB, the DHFR promoter remained inactive after addition of RNAP IIB to the antibody-inhibited reactions. However, both promoters were efficiently transcribed when purified RNAP with an intact CTD was added. We analyzed a series of promoter deletions to identify which cis elements determine the requirement for the CTD of RNAP II. All of the promoter deletions of both DHFR and REP retained the characteristics of their respective full-length promoters, suggesting that the information necessary to specify the requirement for the CTD is contained within approximately 65 bp near the initiation site. Furthermore, a synthetic minimal promoter of DHFR, consisting of a single binding site for Sp1 and a binding site for the HIP1 initiator cloned into a bacterial vector sequence, required RNAP II with an intact CTD for activity in vitro. Since the synthetic minimal promoter of DHFR and the smallest REP promoter deletion are both activated by Sp1, the differential response in this assay does not result from upstream activators. However, the sequences around the start sites of DHFR and REP are not similar and our data suggest that they bind different proteins. Therefore, we propose that specific initiator elements are important for determination of the requirement of some promoters for the CTD.
Collapse
|
18
|
Buermeyer AB, Thompson NE, Strasheim LA, Burgess RR, Farnham PJ. The HIP1 initiator element plays a role in determining the in vitro requirement of the dihydrofolate reductase gene promoter for the C-terminal domain of RNA polymerase II. Mol Cell Biol 1992; 12:2250-9. [PMID: 1569952 PMCID: PMC364397 DOI: 10.1128/mcb.12.5.2250-2259.1992] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
We examined the ability of purified RNA polymerase (RNAP) II lacking the carboxy-terminal heptapeptide repeat domain (CTD), called RNAP IIB, to transcribe a variety of promoters in HeLa extracts in which endogenous RNAP II activity was inhibited with anti-CTD monoclonal antibodies. Not all promoters were efficiently transcribed by RNAP IIB, and transcription did not correlate with the in vitro strength of the promoter or with the presence of a consensus TATA box. This was best illustrated by the GC-rich, non-TATA box promoters of the bidirectional dihydrofolate reductase (DHFR)-REP-encoding locus. Whereas the REP promoter was transcribed by RNAP IIB, the DHFR promoter remained inactive after addition of RNAP IIB to the antibody-inhibited reactions. However, both promoters were efficiently transcribed when purified RNAP with an intact CTD was added. We analyzed a series of promoter deletions to identify which cis elements determine the requirement for the CTD of RNAP II. All of the promoter deletions of both DHFR and REP retained the characteristics of their respective full-length promoters, suggesting that the information necessary to specify the requirement for the CTD is contained within approximately 65 bp near the initiation site. Furthermore, a synthetic minimal promoter of DHFR, consisting of a single binding site for Sp1 and a binding site for the HIP1 initiator cloned into a bacterial vector sequence, required RNAP II with an intact CTD for activity in vitro. Since the synthetic minimal promoter of DHFR and the smallest REP promoter deletion are both activated by Sp1, the differential response in this assay does not result from upstream activators. However, the sequences around the start sites of DHFR and REP are not similar and our data suggest that they bind different proteins. Therefore, we propose that specific initiator elements are important for determination of the requirement of some promoters for the CTD.
Collapse
Affiliation(s)
- A B Buermeyer
- McArdle Laboratory for Cancer Research, University of Wisconsin, Madison 53706
| | | | | | | | | |
Collapse
|
19
|
Factors involved in specific transcription by mammalian RNA polymerase II: purification and analysis of transcription factor IIA and identification of transcription factor IIJ. Mol Cell Biol 1992. [PMID: 1729613 DOI: 10.1128/mcb.12.1.413] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The previously described transcription factor IIA (TFIIA) protein fraction was separated into two factors that affect transcription, TFIIA and TFIIJ. TFIIA was found to have a stimulatory effect, and TFIIJ was found to be required for transcription. The requirement of TFIIJ was observed when bacterially produced purified human or yeast (Saccharomyces cerevisiae) TATA-binding protein (TBP) was used in lieu of the endogenous HeLa cell TFIID complex, suggesting that TFIIJ may be part of the TFIID complex. The stimulatory activity of TFIIA was found also to be dependent on the source of the TBP. Transcription reactions reconstituted with TFIID were stimulated by TFIIA; however, when human or yeast TBP was used instead of TFIID, TFIIA had no effect. TFIIA was found to interact with the TBP and was extensively purified by the use of affinity chromatography on columns containing immobilized recombinant yeast TBP. TFIIA is a heterotrimer composed of polypeptides of 34, 19, and 14 kDa. These three polypeptides were required to isolate, by using the gel mobility shift assay, a stable complex between TBP and the TATA box sequence.
Collapse
|
20
|
Cortes P, Flores O, Reinberg D. Factors involved in specific transcription by mammalian RNA polymerase II: purification and analysis of transcription factor IIA and identification of transcription factor IIJ. Mol Cell Biol 1992; 12:413-21. [PMID: 1729613 PMCID: PMC364136 DOI: 10.1128/mcb.12.1.413-421.1992] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The previously described transcription factor IIA (TFIIA) protein fraction was separated into two factors that affect transcription, TFIIA and TFIIJ. TFIIA was found to have a stimulatory effect, and TFIIJ was found to be required for transcription. The requirement of TFIIJ was observed when bacterially produced purified human or yeast (Saccharomyces cerevisiae) TATA-binding protein (TBP) was used in lieu of the endogenous HeLa cell TFIID complex, suggesting that TFIIJ may be part of the TFIID complex. The stimulatory activity of TFIIA was found also to be dependent on the source of the TBP. Transcription reactions reconstituted with TFIID were stimulated by TFIIA; however, when human or yeast TBP was used instead of TFIID, TFIIA had no effect. TFIIA was found to interact with the TBP and was extensively purified by the use of affinity chromatography on columns containing immobilized recombinant yeast TBP. TFIIA is a heterotrimer composed of polypeptides of 34, 19, and 14 kDa. These three polypeptides were required to isolate, by using the gel mobility shift assay, a stable complex between TBP and the TATA box sequence.
Collapse
Affiliation(s)
- P Cortes
- Department of Biochemistry, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, Piscataway 08854-5635
| | | | | |
Collapse
|
21
|
Flores O, Lu H, Killeen M, Greenblatt J, Burton ZF, Reinberg D. The small subunit of transcription factor IIF recruits RNA polymerase II into the preinitiation complex. Proc Natl Acad Sci U S A 1991; 88:9999-10003. [PMID: 1946469 PMCID: PMC52854 DOI: 10.1073/pnas.88.22.9999] [Citation(s) in RCA: 141] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
We found that transcription factor IIF mediates the association of RNA polymerase II with promoter sequences containing transcription factors IID, IIB, and IIA (DAB complex). The resulting DNA-protein complex contained RNA polymerase II and the two subunits of transcription factor IIF (RAP 30 and RAP 74). Cloned human RAP 30 was sufficient for the recruitment of RNA polymerase II to the DAB complex. This ability of RAP 30 to recruit RNA polymerase to a promoter is also a characteristic of sigma factors in prokaryotes.
Collapse
Affiliation(s)
- O Flores
- Department of Biochemistry, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, Piscataway 08854
| | | | | | | | | | | |
Collapse
|