1
|
Okamoto M, Yamamoto M. TCR Signals Controlling Adaptive Immunity against Toxoplasma and Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1444:177-193. [PMID: 38467980 DOI: 10.1007/978-981-99-9781-7_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
T cells play a crucial role in adaptive immunity by recognizing and eliminating foreign pathogens and abnormal cells such as cancer cells. T cell receptor (TCR), which is expressed on the surface of T cells, recognizes and binds to specific antigens presented by major histocompatibility complex (MHC) molecules on antigen-presenting cells (APCs). This activation process leads to the proliferation and differentiation of T cells, allowing them to carry out their specific immune response functions. This chapter outlines the TCR signaling pathways that are common to different T cell subsets, as well as the recently elucidated TCR signaling pathway specific to CD8+ T cells and its role in controlling anti-Toxoplasma and anti-tumor immunity.
Collapse
Affiliation(s)
- Masaaki Okamoto
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Laboratory of Immunoparasitology, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Masahiro Yamamoto
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan.
- Laboratory of Immunoparasitology, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan.
- Department of Immunoparasitology, Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan.
| |
Collapse
|
2
|
Souter MN, Awad W, Li S, Pediongco TJ, Meehan BS, Meehan LJ, Tian Z, Zhao Z, Wang H, Nelson A, Le Nours J, Khandokar Y, Praveena T, Wubben J, Lin J, Sullivan LC, Lovrecz GO, Mak JY, Liu L, Kostenko L, Kedzierska K, Corbett AJ, Fairlie DP, Brooks AG, Gherardin NA, Uldrich AP, Chen Z, Rossjohn J, Godfrey DI, McCluskey J, Pellicci DG, Eckle SB. CD8 coreceptor engagement of MR1 enhances antigen responsiveness by human MAIT and other MR1-reactive T cells. J Exp Med 2022; 219:213423. [PMID: 36018322 PMCID: PMC9424912 DOI: 10.1084/jem.20210828] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/24/2022] [Accepted: 07/21/2022] [Indexed: 11/04/2022] Open
Abstract
Mucosal-associated invariant T (MAIT) cells detect microbial infection via recognition of riboflavin-based antigens presented by the major histocompatibility complex class I (MHC-I)-related protein 1 (MR1). Most MAIT cells in human peripheral blood express CD8αα or CD8αβ coreceptors, and the binding site for CD8 on MHC-I molecules is relatively conserved in MR1. Yet, there is no direct evidence of CD8 interacting with MR1 or the functional consequences thereof. Similarly, the role of CD8αα in lymphocyte function remains ill-defined. Here, using newly developed MR1 tetramers, mutated at the CD8 binding site, and by determining the crystal structure of MR1-CD8αα, we show that CD8 engaged MR1, analogous to how it engages MHC-I molecules. CD8αα and CD8αβ enhanced MR1 binding and cytokine production by MAIT cells. Moreover, the CD8-MR1 interaction was critical for the recognition of folate-derived antigens by other MR1-reactive T cells. Together, our findings suggest that both CD8αα and CD8αβ act as functional coreceptors for MAIT and other MR1-reactive T cells.
Collapse
Affiliation(s)
- Michael N.T. Souter
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Wael Awad
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| | - Shihan Li
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Troi J. Pediongco
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Bronwyn S. Meehan
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Lucy J. Meehan
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Zehua Tian
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Zhe Zhao
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Huimeng Wang
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia,State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Adam Nelson
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Jérôme Le Nours
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| | - Yogesh Khandokar
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| | - T. Praveena
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| | - Jacinta Wubben
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| | - Jie Lin
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Lucy C. Sullivan
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - George O. Lovrecz
- Biomedical Manufacturing, Commonwealth Scientific and Industrial Research Organisation, Melbourne, Australia
| | - Jeffrey Y.W. Mak
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Ligong Liu
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Lyudmila Kostenko
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Alexandra J. Corbett
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - David P. Fairlie
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Andrew G. Brooks
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Nicholas A. Gherardin
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Adam P. Uldrich
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Zhenjun Chen
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Jamie Rossjohn
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Australia,Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - Dale I. Godfrey
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - James McCluskey
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Daniel G. Pellicci
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia,Murdoch Children’s Research Institute, Parkville, Melbourne, Australia
| | - Sidonia B.G. Eckle
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| |
Collapse
|
3
|
Van Laethem F, Bhattacharya A, Craveiro M, Lu J, Sun PD, Singer A. MHC-independent αβT cells: Lessons learned about thymic selection and MHC-restriction. Front Immunol 2022; 13:953160. [PMID: 35911724 PMCID: PMC9331304 DOI: 10.3389/fimmu.2022.953160] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 06/24/2022] [Indexed: 12/02/2022] Open
Abstract
Understanding the generation of an MHC-restricted T cell repertoire is the cornerstone of modern T cell immunology. The unique ability of αβT cells to only recognize peptide antigens presented by MHC molecules but not conformational antigens is referred to as MHC restriction. How MHC restriction is imposed on a very large T cell receptor (TCR) repertoire is still heavily debated. We recently proposed the selection model, which posits that newly re-arranged TCRs can structurally recognize a wide variety of antigens, ranging from peptides presented by MHC molecules to native proteins like cell surface markers. However, on a molecular level, the sequestration of the essential tyrosine kinase Lck by the coreceptors CD4 and CD8 allows only MHC-restricted TCRs to signal. In the absence of Lck sequestration, MHC-independent TCRs can signal and instruct the generation of mature αβT cells that can recognize native protein ligands. The selection model thus explains how only MHC-restricted TCRs can signal and survive thymic selection. In this review, we will discuss the genetic evidence that led to our selection model. We will summarize the selection mechanism and structural properties of MHC-independent TCRs and further discuss the various non-MHC ligands we have identified.
Collapse
Affiliation(s)
- François Van Laethem
- Lymphocyte Development Section, Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
- Department of Biological Hematology, Centre Hospitalier Universitaire (CHU) Montpellier, Montpellier, France
- *Correspondence: François Van Laethem, ,
| | - Abhisek Bhattacharya
- Lymphocyte Development Section, Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Marco Craveiro
- Lymphocyte Development Section, Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Jinghua Lu
- Structural Immunology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, United States
| | - Peter D. Sun
- Structural Immunology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, United States
| | - Alfred Singer
- Lymphocyte Development Section, Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
4
|
Xia S, Chen Z, Shen C, Fu TM. Higher-order assemblies in immune signaling: supramolecular complexes and phase separation. Protein Cell 2021; 12:680-694. [PMID: 33835418 PMCID: PMC8403095 DOI: 10.1007/s13238-021-00839-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 03/01/2021] [Indexed: 12/31/2022] Open
Abstract
Signaling pathways in innate and adaptive immunity play vital roles in pathogen recognition and the functions of immune cells. Higher-order assemblies have recently emerged as a central principle that governs immune signaling and, by extension, cellular communication in general. There are mainly two types of higher-order assemblies: 1) ordered, solid-like large supramolecular complexes formed by stable and rigid protein-protein interactions, and 2) liquid-like phase-separated condensates formed by weaker and more dynamic intermolecular interactions. This review covers key examples of both types of higher-order assemblies in major immune pathways. By placing emphasis on the molecular structures of the examples provided, we discuss how their structural organization enables elegant mechanisms of signaling regulation.
Collapse
MESH Headings
- Adaptive Immunity
- Animals
- DEAD Box Protein 58/genetics
- DEAD Box Protein 58/immunology
- DEAD Box Protein 58/metabolism
- DEAD-box RNA Helicases/genetics
- DEAD-box RNA Helicases/immunology
- DEAD-box RNA Helicases/metabolism
- Gene Expression Regulation
- Humans
- Immunity, Innate
- Inflammasomes/genetics
- Inflammasomes/immunology
- Inflammasomes/ultrastructure
- Models, Molecular
- Multiprotein Complexes/genetics
- Multiprotein Complexes/immunology
- Multiprotein Complexes/metabolism
- Protein Conformation
- Protein Interaction Mapping
- Receptors, Antigen, B-Cell/genetics
- Receptors, Antigen, B-Cell/immunology
- Receptors, Antigen, B-Cell/metabolism
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Immunologic/genetics
- Receptors, Immunologic/immunology
- Receptors, Immunologic/metabolism
- Receptors, Tumor Necrosis Factor, Type I/genetics
- Receptors, Tumor Necrosis Factor, Type I/immunology
- Receptors, Tumor Necrosis Factor, Type I/metabolism
- Signal Transduction/immunology
- Toll-Like Receptors/genetics
- Toll-Like Receptors/immunology
- Toll-Like Receptors/metabolism
Collapse
Affiliation(s)
- Shiyu Xia
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, and Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Zhenhang Chen
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH, 43210, USA
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, 43210, USA
| | - Chen Shen
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, and Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Tian-Min Fu
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH, 43210, USA.
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, 43210, USA.
| |
Collapse
|
5
|
Sasai M, Ma JS, Okamoto M, Nishino K, Nagaoka H, Takashima E, Pradipta A, Lee Y, Kosako H, Suh PG, Yamamoto M. Uncovering a novel role of PLCβ4 in selectively mediating TCR signaling in CD8+ but not CD4+ T cells. J Exp Med 2021; 218:212085. [PMID: 33970189 PMCID: PMC8111461 DOI: 10.1084/jem.20201763] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 02/24/2021] [Accepted: 03/23/2021] [Indexed: 11/08/2022] Open
Abstract
Because of their common signaling molecules, the main T cell receptor (TCR) signaling cascades in CD4+ and CD8+ T cells are considered qualitatively identical. Herein, we show that TCR signaling in CD8+ T cells is qualitatively different from that in CD4+ T cells, since CD8α ignites another cardinal signaling cascade involving phospholipase C β4 (PLCβ4). TCR-mediated responses were severely impaired in PLCβ4-deficient CD8+ T cells, whereas those in CD4+ T cells were intact. PLCβ4-deficient CD8+ T cells showed perturbed activation of peripheral TCR signaling pathways downstream of IP3 generation. Binding of PLCβ4 to the cytoplasmic tail of CD8α was important for CD8+ T cell activation. Furthermore, GNAQ interacted with PLCβ4, mediated double phosphorylation on threonine 886 and serine 890 positions of PLCβ4, and activated CD8+ T cells in a PLCβ4-dependent fashion. PLCβ4-deficient mice exhibited defective antiparasitic host defense and antitumor immune responses. Altogether, PLCβ4 differentiates TCR signaling in CD4+ and CD8+ T cells and selectively promotes CD8+ T cell–dependent adaptive immunity.
Collapse
Affiliation(s)
- Miwa Sasai
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan.,Laboratory of Immunoparasitology, World Premier International Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| | - Ji Su Ma
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan.,Laboratory of Immunoparasitology, World Premier International Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| | - Masaaki Okamoto
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Kohei Nishino
- Division of Cell Signaling, Fujii Memorial Institute of Medical Sciences, Tokushima University, Tokushima, Japan
| | - Hikaru Nagaoka
- Division of Malaria Research, Proteo-Science Center, Ehime University, Ehime, Japan
| | - Eizo Takashima
- Division of Malaria Research, Proteo-Science Center, Ehime University, Ehime, Japan
| | - Ariel Pradipta
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Youngae Lee
- Laboratory of Immunoparasitology, World Premier International Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| | - Hidetaka Kosako
- Division of Cell Signaling, Fujii Memorial Institute of Medical Sciences, Tokushima University, Tokushima, Japan
| | - Pann-Ghill Suh
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, South Korea.,Korea Brain Research Institute, Daegu, South Korea
| | - Masahiro Yamamoto
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan.,Laboratory of Immunoparasitology, World Premier International Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
6
|
Lo WL, Weiss A. Adapting T Cell Receptor Ligand Discrimination Capability via LAT. Front Immunol 2021; 12:673196. [PMID: 33936119 PMCID: PMC8085316 DOI: 10.3389/fimmu.2021.673196] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 03/29/2021] [Indexed: 12/19/2022] Open
Abstract
Self- and non-self ligand discrimination is a core principle underlying T cell-mediated immunity. Mature αβ T cells can respond to a foreign peptide ligand presented by major histocompatibility complex molecules (pMHCs) on antigen presenting cells, on a background of continuously sensed self-pMHCs. How αβ T cells can properly balance high sensitivity and high specificity to foreign pMHCs, while surrounded by a sea of self-peptide ligands is not well understood. Such discrimination cannot be explained solely by the affinity parameters of T cell antigen receptor (TCR) and pMHC interaction. In this review, we will discuss how T cell ligand discrimination may be molecularly defined by events downstream of the TCR-pMHC interaction. We will discuss new evidence in support of the kinetic proofreading model of TCR ligand discrimination, and in particular how the kinetics of specific phosphorylation sites within the adaptor protein linker for activation of T cells (LAT) determine the outcome of TCR signaling. In addition, we will discuss emerging data regarding how some kinases, including ZAP-70 and LCK, may possess scaffolding functions to more efficiently direct their kinase activities.
Collapse
Affiliation(s)
- Wan-Lin Lo
- Division of Rheumatology, Rosalind Russell and Ephraim P. Engleman Arthritis Research Center, Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Arthur Weiss
- Division of Rheumatology, Rosalind Russell and Ephraim P. Engleman Arthritis Research Center, Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
7
|
Rudd CE. How the Discovery of the CD4/CD8-p56 lck Complexes Changed Immunology and Immunotherapy. Front Cell Dev Biol 2021; 9:626095. [PMID: 33791292 PMCID: PMC8005572 DOI: 10.3389/fcell.2021.626095] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 01/11/2021] [Indexed: 12/22/2022] Open
Abstract
The past 25 years have seen enormous progress in uncovering the receptors and signaling mechanisms on T-cells that activate their various effecter functions. Until the late 1980s, most studies on T-cells had focused on the influx of calcium and the levels of cAMP/GMP in T-cells. My laboratory then uncovered the interaction of CD4 and CD8 co-receptors with the protein-tyrosine kinase p56lck which are now widely accepted as the initiators of the tyrosine phosphorylation cascade leading to T-cell activation. The finding explained how immune recognition receptors expressed by many immune cells, which lack intrinsic catalytic activity, can transduce activation signals via non-covalent association with non-receptor tyrosine kinases. The discovery also established the concept that a protein tyrosine phosphorylation cascade operated in T-cells. In this vein, we and others then showed that the CD4- and CD8-p56lck complexes phosphorylate the TCR complexes which led to the identification of other protein-tyrosine kinases such as ZAP-70 and an array of substrates that are now central to studies in T-cell immunity. Other receptors such as B-cell receptor, Fc receptors and others were also subsequently found to use src kinases to control cell growth. In T-cells, p56lck driven phosphorylation targets include co-receptors such as CD28 and CTLA-4 and immune cell-specific adaptor proteins such as LAT and SLP-76 which act to integrate signals proximal to surface receptors. CD4/CD8-p56lck regulated events in T-cells include intracellular calcium mobilization, integrin activation and the induction of transcription factors for gene expression. Lastly, the identification of the targets of p56lck in the TCR and CD28 provided the framework for the development of chimeric antigen receptor (CAR) therapy in the treatment of cancer. In this review, I outline a history of the development of events that led to the development of the "TCR signaling paradigm" and its implications to immunology and immunotherapy.
Collapse
Affiliation(s)
- Christopher E. Rudd
- Division of Immunology-Oncology, Centre de Recherche Hôpital Maisonneuve-Rosemont (CR-HMR), Montreal, QC, Canada
- Department of Microbiology, Infection and Immunology, Faculty of Medicine, Universite de Montreal, Montreal, QC, Canada
- Division of Experimental Medicine, Department of Medicine, McGill University Health Center, McGill University, Montreal, QC, Canada
| |
Collapse
|
8
|
Maruhashi T, Sugiura D, Okazaki IM, Okazaki T. LAG-3: from molecular functions to clinical applications. J Immunother Cancer 2020; 8:jitc-2020-001014. [PMID: 32929051 PMCID: PMC7488795 DOI: 10.1136/jitc-2020-001014] [Citation(s) in RCA: 252] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2020] [Indexed: 12/14/2022] Open
Abstract
To prevent the destruction of tissues owing to excessive and/or inappropriate immune responses, immune cells are under strict check by various regulatory mechanisms at multiple points. Inhibitory coreceptors, including programmed cell death 1 (PD-1) and cytotoxic T lymphocyte antigen 4 (CTLA-4), serve as critical checkpoints in restricting immune responses against self-tissues and tumor cells. Immune checkpoint inhibitors that block PD-1 and CTLA-4 pathways significantly improved the outcomes of patients with diverse cancer types and have revolutionized cancer treatment. However, response rates to such therapies are rather limited, and immune-related adverse events are also observed in a substantial patient population, leading to the urgent need for novel therapeutics with higher efficacy and lower toxicity. In addition to PD-1 and CTLA-4, a variety of stimulatory and inhibitory coreceptors are involved in the regulation of T cell activation. Such coreceptors are listed as potential drug targets, and the competition to develop novel immunotherapies targeting these coreceptors has been very fierce. Among such coreceptors, lymphocyte activation gene-3 (LAG-3) is expected as the foremost target next to PD-1 in the development of cancer therapy, and multiple clinical trials testing the efficacy of LAG-3-targeted therapy are underway. LAG-3 is a type I transmembrane protein with structural similarities to CD4. Accumulating evidence indicates that LAG-3 is an inhibitory coreceptor and plays pivotal roles in autoimmunity, tumor immunity, and anti-infection immunity. In this review, we summarize the current understanding of LAG-3, ranging from its discovery to clinical application.
Collapse
Affiliation(s)
- Takumi Maruhashi
- Laboratory of Molecular Immunology, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Daisuke Sugiura
- Laboratory of Molecular Immunology, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Il-Mi Okazaki
- Laboratory of Molecular Immunology, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Taku Okazaki
- Laboratory of Molecular Immunology, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
9
|
Abstract
Cluster of differentiation 8 (CD8) is a cell surface glycoprotein, which is expressed as 2 forms, αα homodimer or αβ heterodimer. Peptide-loaded major histocompatibility complex class I (pMHC-I) molecules are major ligands for both forms of CD8. CD8αβ is a coreceptor for the T cell receptor (TCR) and binds to the same cognate pMHC-I as the TCR, thus enabling or augmenting T cell responses. The function of CD8αα homodimers is largely unknown. While CD8αβ heterodimer is expressed exclusively on CD8+ T cells, the CD8αα homodimer is present in subsets of T cells and human natural killer (NK) cells. Here, we report that the CD8αα homodimer functions as a coreceptor for KIR3DL1, an inhibitory receptor of NK cells that is specific for certain MHC-I allotypes. CD8αα enhances binding of pMHC-I to KIR3DL1, increases KIR3DL1 clustering at the immunological synapse, and augments KIR3DL1-mediated inhibition of NK cell activation. Additionally, interactions between pMHC-I and CD8αα homodimers regulate KIR3DL1+ NK cell education. Together, these findings reveal another dimension to the modulation of NK cell activity.
Collapse
|
10
|
Courtney AH, Lo WL, Weiss A. TCR Signaling: Mechanisms of Initiation and Propagation. Trends Biochem Sci 2017; 43:108-123. [PMID: 29269020 DOI: 10.1016/j.tibs.2017.11.008] [Citation(s) in RCA: 329] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 11/21/2017] [Accepted: 11/21/2017] [Indexed: 10/18/2022]
Abstract
The mechanisms by which a T cell detects antigen using its T cell antigen receptor (TCR) are crucial to our understanding of immunity and the harnessing of T cells therapeutically. A hallmark of the T cell response is the ability of T cells to quantitatively respond to antigenic ligands derived from pathogens while remaining inert to similar ligands derived from host tissues. Recent studies have revealed exciting properties of the TCR and the behaviors of its signaling effectors that are used to detect and discriminate between antigens. Here we highlight these recent findings, focusing on the proximal TCR signaling molecules Zap70, Lck, and LAT, to provide mechanistic models and insights into the exquisite sensitivity and specificity of the TCR.
Collapse
Affiliation(s)
- Adam H Courtney
- Division of Rheumatology, Rosalind Russell and Ephraim P. Engleman Arthritis Research Center, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Howard Hughes Medical Institute (HHMI), San Francisco, CA 94143, USA
| | - Wan-Lin Lo
- Division of Rheumatology, Rosalind Russell and Ephraim P. Engleman Arthritis Research Center, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Howard Hughes Medical Institute (HHMI), San Francisco, CA 94143, USA
| | - Arthur Weiss
- Division of Rheumatology, Rosalind Russell and Ephraim P. Engleman Arthritis Research Center, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Howard Hughes Medical Institute (HHMI), San Francisco, CA 94143, USA.
| |
Collapse
|
11
|
Impact of a CD4 gene haplotype on the immune response in minipigs. Immunogenetics 2017; 70:209-222. [PMID: 29052750 DOI: 10.1007/s00251-017-1037-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 10/12/2017] [Indexed: 10/18/2022]
Abstract
The cluster of differentiation 4 (CD4) molecule functions as a co-receptor for MHC class II binding to TCR in T helper cells. A CD4 epitope deficiency was identified in the swine MeLiM (melanoblastoma-bearing Libechov minipig) strain, a model for spontaneous cutaneous melanoma development and regression. Extensive sequencing revealed a high genetic variability of CD4 and the existence of several haplotypes segregating in MeLiM. Forty polymorphisms were identified in the coding sequence, out of which 20 correspond to non-synonymous variants and 10 are located in the 3'UTR of CD4 transcripts. One of the haplotypes segregating in the MeLiM explained the epitope deficiency observed. An association analysis between CD4 genotype and several phenotypes related to tumor regression was performed in 267 animals. An association was evidenced between a MeLiM alternative CD4 haplotype and skin and eye depigmentation, as well as the extent of hair depigmentation. Also, seric IgG concentration was shown to be higher in pigs carrying the alternative haplotype at the homozygous state. In conclusion, the genetic variability of the CD4 gene is associated with immune response-related phenotypes in MeLiM minipigs.
Collapse
|
12
|
Courtney AH, Amacher JF, Kadlecek TA, Mollenauer MN, Au-Yeung BB, Kuriyan J, Weiss A. A Phosphosite within the SH2 Domain of Lck Regulates Its Activation by CD45. Mol Cell 2017; 67:498-511.e6. [PMID: 28735895 DOI: 10.1016/j.molcel.2017.06.024] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 03/24/2017] [Accepted: 06/20/2017] [Indexed: 10/19/2022]
Abstract
The Src Family kinase Lck sets a critical threshold for T cell activation because it phosphorylates the TCR complex and the Zap70 kinase. How a T cell controls the abundance of active Lck molecules remains poorly understood. We have identified an unappreciated role for a phosphosite, Y192, within the Lck SH2 domain that profoundly affects the amount of active Lck in cells. Notably, mutation of Y192 blocks critical TCR-proximal signaling events and impairs thymocyte development in retrogenic mice. We determined that these defects are caused by hyperphosphorylation of the inhibitory C-terminal tail of Lck. Our findings reveal that modification of Y192 inhibits the ability of CD45 to associate with Lck in cells and dephosphorylate the C-terminal tail of Lck, which prevents its adoption of an active open conformation. These results suggest a negative feedback loop that responds to signaling events that tune active Lck amounts and TCR sensitivity.
Collapse
Affiliation(s)
- Adam H Courtney
- Division of Rheumatology, Rosalind Russell and Ephraim P. Engleman Arthritis Research Center, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jeanine F Amacher
- Departments of Molecular and Cell Biology and Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Theresa A Kadlecek
- The Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 04143, USA
| | - Marianne N Mollenauer
- The Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 04143, USA
| | - Byron B Au-Yeung
- Division of Rheumatology, Rosalind Russell and Ephraim P. Engleman Arthritis Research Center, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - John Kuriyan
- Departments of Molecular and Cell Biology and Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA; The Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Arthur Weiss
- Division of Rheumatology, Rosalind Russell and Ephraim P. Engleman Arthritis Research Center, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; The Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 04143, USA.
| |
Collapse
|
13
|
Nath A, Li I, Roberts LR, Chan C. Elevated free fatty acid uptake via CD36 promotes epithelial-mesenchymal transition in hepatocellular carcinoma. Sci Rep 2015; 5:14752. [PMID: 26424075 PMCID: PMC4589791 DOI: 10.1038/srep14752] [Citation(s) in RCA: 240] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 09/01/2015] [Indexed: 12/20/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the second-leading cause of cancer-related death worldwide, and the factors influencing HCC progression are poorly understood. Here we reveal that HCC progression via induction of epithelial-mesenchymal transition (EMT) is closely associated with the expression of CD36/fatty acid translocase and elevated free fatty acid (FFA) levels. Although obesity is manifested as elevated FFA levels, the degree of EMT was not associated with the body mass index of the patients, highlighting the specific roles of CD36 and FFA uptake. Treatment of human liver cancer cell lines with FFAs exacerbated the EMT phenotype, whereas chemical inhibition of CD36 mitigated these effects. Furthermore, the Wnt and TGF-β signaling pathways were activated upon FFA treatment, potentially acting as upstream activators of the EMT program. These results provide the first direct evidence associating CD36 and elevated FFAs with HCC progression.
Collapse
Affiliation(s)
- Aritro Nath
- Genetics Program, Michigan State University, 567 Wilson Road, Rm 2240E, East Lansing, Michigan 48824, USA
| | - Irene Li
- Department of Microbiology and Molecular Genetics, Michigan State University, 567 Wilson Road, Rm 2215, East Lansing, Michigan 48824, USA
| | - Lewis R Roberts
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, 200 First St. SW, Rochester, Minnesota 55905, USA
| | - Christina Chan
- Genetics Program, Michigan State University, 567 Wilson Road, Rm 2240E, East Lansing, Michigan 48824, USA.,Department of Microbiology and Molecular Genetics, Michigan State University, 567 Wilson Road, Rm 2215, East Lansing, Michigan 48824, USA.,Department of Chemical Engineering and Materials Science, Michigan State University, 428 South Shaw Lane, Rm 2527, East Lansing, Michigan 48824, USA
| |
Collapse
|
14
|
Xu Q, Chen Y, Zhao WM, Huang ZY, Duan XJ, Tong YY, Zhang Y, Li X, Chang GB, Chen GH. The CD8α gene in duck (Anatidae): cloning, characterization, and expression during viral infection. Mol Biol Rep 2014; 42:431-9. [PMID: 25332128 DOI: 10.1007/s11033-014-3784-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2013] [Accepted: 09/28/2014] [Indexed: 11/27/2022]
Abstract
Cluster of differentiation 8 alpha (CD8α) is critical for cell-mediated immune defense and T-cell development. Although CD8α sequences have been reported for several species, very little is known about CD8α in ducks. To elucidate the mechanisms involved in the innate and adaptive immune responses of ducks, we cloned CD8α coding sequences from domestic, Muscovy, Mallard, and Spotbill ducks using reverse transcription polymerase chain reaction (RT-PCR). Each sequence consisted of 714 nucleotides and encoded a signal peptide, an IgV-like domain, a stalk region, a transmembrane region, and a cytoplasmic tail. We identified 58 nucleotide differences and 37 amino acid differences among the four types of duck; of these, 53 nucleotide and 33 amino acid differences were between Muscovy ducks and the other duck species. The CD8α cDNA sequence from domestic duck consisted of a 61-nucleotide 5' untranslated region (UTR), a 714-nucleotide open reading frame, and an 849-nucleotide 3' UTR. Multiple sequence alignments showed that the amino acid sequence of CD8α is conserved in vertebrates. RT-PCR revealed that expression of CD8α mRNA of domestic ducks was highest in the thymus and very low in the kidney, cerebrum, cerebellum, and muscle. Immunohistochemical analyses detected CD8α on the splenic corpuscle and periarterial lymphatic sheath of the spleen. CD8α mRNA in domestic ducklings was initially up-regulated, and then down-regulated, in the thymus, spleen, and liver after treatment with duck hepatitis virus type I (DHV-1) or the immunostimulant polyriboinosinic polyribocytidylic acid (poly I:C).
Collapse
Affiliation(s)
- Qi Xu
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Xu J, Liu Y, Fu W, Wang J, Wang W, Wang H, Liu J, Ding X, Zhang Q. Association of the porcine cluster of differentiation 4 gene with T lymphocyte subpopulations and its expression in immune tissues. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2014; 26:463-9. [PMID: 25049810 PMCID: PMC4093383 DOI: 10.5713/ajas.2012.12576] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 01/04/2013] [Accepted: 12/17/2012] [Indexed: 02/03/2023]
Abstract
Cluster of differentiation 4 (CD4) is mainly expressed on CD4+ T cells, which plays an important role in immune response. The aim of this study was to detect the association between polymorphisms of the CD4 gene and T lymphocyte subpopulations in pigs, and to investigate the effects of genetic variation on the CD4 gene expression level in immune tissues. Five missense mutations in the CD4 gene were identified using DNA pooling sequencing assays, and two main haplotypes (CCTCC and AGCTG) in strong linkage disequilibrium (with frequencies of 50.26% and 46.34%, respectively) were detected in the population of Large White pigs. Our results indicated that the five SNPs and the two haplotypes were significantly associated with the proportions of CD4−CD8−, CD4+CD8+, CD4+CD8−, CD4+ and CD4+/CD8+ in peripheral blood (p<0.05). Gene expression analysis showed the mRNA level of the CD4 gene in thymus was significantly higher than that in lymph node and spleen (p<0.05). However, no significant difference was observed between animals with CCTCC/CCTCC genotype and animals with AGCTG/AGCTG genotype in the three immune tissues (p>0.05). These results indicate that the CD4 gene may influence T lymphocyte subpopulations and can be considered as a candidate gene affecting immunity in pigs.
Collapse
Affiliation(s)
- Jingen Xu
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yang Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Weixuan Fu
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Jiying Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Wenwen Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Haifei Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Jianfeng Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xiangdong Ding
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Qin Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
16
|
Canton J, Neculai D, Grinstein S. Scavenger receptors in homeostasis and immunity. Nat Rev Immunol 2013; 13:621-34. [PMID: 23928573 DOI: 10.1038/nri3515] [Citation(s) in RCA: 563] [Impact Index Per Article: 51.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Scavenger receptors were originally identified by their ability to recognize and to remove modified lipoproteins; however, it is now appreciated that they carry out a striking range of functions, including pathogen clearance, lipid transport, the transport of cargo within the cell and even functioning as taste receptors. The large repertoire of ligands recognized by scavenger receptors and their broad range of functions are not only due to the wide range of receptors that constitute this family but also to their ability to partner with various co-receptors. The ability of individual scavenger receptors to associate with different co-receptors makes their responsiveness extremely versatile. This Review highlights recent insights into the structural features that determine the function of scavenger receptors and the emerging role that these receptors have in immune responses, notably in macrophage polarization and in the pathogenesis of diseases such as atherosclerosis and Alzheimer's disease.
Collapse
Affiliation(s)
- Johnathan Canton
- Cell Biology Program, Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| | | | | |
Collapse
|
17
|
Weghuber J, Sunzenauer S, Plochberger B, Brameshuber M, Haselgrübler T, Schütz GJ. Temporal resolution of protein-protein interactions in the live-cell plasma membrane. Anal Bioanal Chem 2010; 397:3339-47. [PMID: 20574782 PMCID: PMC2911529 DOI: 10.1007/s00216-010-3854-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Accepted: 05/16/2010] [Indexed: 11/20/2022]
Abstract
We have recently devised a method to quantify interactions between a membrane protein ("bait") and a fluorophore-labeled protein ("prey") directly in the live-cell plasma membrane (Schwarzenbacher et al. Nature Methods 5:1053-1060 2008). The idea is to seed cells on surfaces containing micro-patterned antibodies against the exoplasmic domain of the bait, and monitor the co-patterning of the fluorescent prey via fluorescence microscopy. Here, we characterized the time course of bait and prey micropattern formation upon seeding the cells onto the micro-biochip. Patterns were formed immediately after contact of the cells with the surface. Cells were able to migrate over the chip surface without affecting the micropattern contrast, which remained constant over hours. On single cells, bait contrast may be subject to fluctuations, indicating that the bait can be released from and recaptured on the micropatterns. We conclude that interaction studies can be performed at any time-point ranging from 5 min to several hours post seeding. Monitoring interactions with time opens up the possibility for new assays, which are briefly sketched in the discussion section.
Collapse
Affiliation(s)
- Julian Weghuber
- Biophysics Institute, Johannes Kepler University Linz, Altenbergerstr.69, 4040 Linz, Austria
| | - Stefan Sunzenauer
- Biophysics Institute, Johannes Kepler University Linz, Altenbergerstr.69, 4040 Linz, Austria
| | - Birgit Plochberger
- Biophysics Institute, Johannes Kepler University Linz, Altenbergerstr.69, 4040 Linz, Austria
| | - Mario Brameshuber
- Biophysics Institute, Johannes Kepler University Linz, Altenbergerstr.69, 4040 Linz, Austria
| | - Thomas Haselgrübler
- Biophysics Institute, Johannes Kepler University Linz, Altenbergerstr.69, 4040 Linz, Austria
| | - Gerhard J. Schütz
- Biophysics Institute, Johannes Kepler University Linz, Altenbergerstr.69, 4040 Linz, Austria
| |
Collapse
|
18
|
Collins EJ, Riddle DS. TCR-MHC docking orientation: natural selection, or thymic selection? Immunol Res 2009; 41:267-94. [PMID: 18726714 DOI: 10.1007/s12026-008-8040-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
T cell receptors (TCR) dock on their peptide-major histocompatibility complex (pMHC) targets in a conserved orientation. Since amino acid sidechains are the foundation of specific protein-protein interactions, a simple explanation for the conserved docking orientation is that key amino acids encoded by the TCR and MHC genes have been selected and maintained through evolution in order to preserve TCR/pMHC binding. Expectations that follow from the hypothesis that TCR and MHC evolved to interact are discussed in light of the data that both support and refute them. Finally, an alternative and equally simple explanation for the driving force behind the conserved docking orientation is described.
Collapse
Affiliation(s)
- Edward J Collins
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, 804 Mary Ellen Jones Building, Chapel Hill, NC 27510, USA.
| | | |
Collapse
|
19
|
Espert L, Denizot M, Grimaldi M, Robert-Hebmann V, Gay B, Varbanov M, Codogno P, Biard-Piechaczyk M. Autophagy is involved in T cell death after binding of HIV-1 envelope proteins to CXCR4. J Clin Invest 2006; 116:2161-72. [PMID: 16886061 PMCID: PMC1523410 DOI: 10.1172/jci26185] [Citation(s) in RCA: 350] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2005] [Accepted: 05/09/2006] [Indexed: 01/16/2023] Open
Abstract
HIV-1 envelope glycoproteins (Env), expressed at the cell surface, induce apoptosis of uninfected CD4+ T cells, contributing to the development of AIDS. Here we demonstrate that, independently of HIV replication, transfected or HIV-infected cells that express Env induced autophagy and accumulation of Beclin 1 in uninfected CD4+ T lymphocytes via CXCR4. The same phenomena occurred in a T cell line and in transfected HEK.293 cells that expressed both wild-type CXCR4 and a truncated form of CD4 that is unable to bind the lymphocyte-specific protein kinase Lck. Env-mediated autophagy is required to trigger CD4+ T cell apoptosis since blockade of autophagy at different steps, by either drugs (3-methyladenine and bafilomycin A1) or siRNAs specific for Beclin 1/Atg6 and Atg7 genes, totally inhibited the apoptotic process. Furthermore, CD4+ T cells still underwent Env-mediated cell death with autophagic features when apoptosis was inhibited. These results suggest that HIV-infected cells can induce autophagy in bystander CD4+ T lymphocytes through contact of Env with CXCR4, leading to apoptotic cell death, a mechanism most likely contributing to immunodeficiency.
Collapse
Affiliation(s)
- Lucile Espert
- Laboratoire Infections Rétrovirales et Signalisation Cellulaire, CNRS UMR 5121, Institut de Biologie, Montpellier, France.
INSERM U504, Villejuif, France
| | - Mélanie Denizot
- Laboratoire Infections Rétrovirales et Signalisation Cellulaire, CNRS UMR 5121, Institut de Biologie, Montpellier, France.
INSERM U504, Villejuif, France
| | - Marina Grimaldi
- Laboratoire Infections Rétrovirales et Signalisation Cellulaire, CNRS UMR 5121, Institut de Biologie, Montpellier, France.
INSERM U504, Villejuif, France
| | - Véronique Robert-Hebmann
- Laboratoire Infections Rétrovirales et Signalisation Cellulaire, CNRS UMR 5121, Institut de Biologie, Montpellier, France.
INSERM U504, Villejuif, France
| | - Bernard Gay
- Laboratoire Infections Rétrovirales et Signalisation Cellulaire, CNRS UMR 5121, Institut de Biologie, Montpellier, France.
INSERM U504, Villejuif, France
| | - Mihayl Varbanov
- Laboratoire Infections Rétrovirales et Signalisation Cellulaire, CNRS UMR 5121, Institut de Biologie, Montpellier, France.
INSERM U504, Villejuif, France
| | - Patrice Codogno
- Laboratoire Infections Rétrovirales et Signalisation Cellulaire, CNRS UMR 5121, Institut de Biologie, Montpellier, France.
INSERM U504, Villejuif, France
| | - Martine Biard-Piechaczyk
- Laboratoire Infections Rétrovirales et Signalisation Cellulaire, CNRS UMR 5121, Institut de Biologie, Montpellier, France.
INSERM U504, Villejuif, France
| |
Collapse
|
20
|
Rahaman SO, Lennon DJ, Febbraio M, Podrez EA, Hazen SL, Silverstein RL. A CD36-dependent signaling cascade is necessary for macrophage foam cell formation. Cell Metab 2006; 4:211-21. [PMID: 16950138 PMCID: PMC1855263 DOI: 10.1016/j.cmet.2006.06.007] [Citation(s) in RCA: 387] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2005] [Revised: 04/10/2006] [Accepted: 06/22/2006] [Indexed: 01/29/2023]
Abstract
Accumulation of macrophage foam cells in atherosclerotic blood vessel intima is a critical component of atherogenesis mediated by scavenger receptor-dependent internalization of oxidized LDL. We demonstrated by coimmunoprecipitation and pull-down assays that the macrophage scavenger receptor CD36 associates with a signaling complex containing Lyn and MEKK2. The MAP kinases JNK1 and JNK2 were specifically phosphorylated in macrophages exposed to oxLDL. Using cells isolated from SRA, TLR2, or CD36 null mice, and phospholipid ligands specific for either SRA or CD36, we showed that JNK activation was mediated by CD36. Both foam cell formation and activation of JNK2 in hyperlipidemic mice were diminished in the absence of CD36. Furthermore, inhibition of Src or JNK blocked oxLDL uptake and inhibited foam cell formation in vitro and in vivo. These findings show that a specific CD36-dependent signaling pathway initiated by oxLDL is necessary for foam cell formation and identify potential targets for antiatherosclerosis therapy.
Collapse
Affiliation(s)
- S Ohidar Rahaman
- Department of Cell Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | | | | | | | | | | |
Collapse
|
21
|
Abstract
Src family kinases are prototypical modular signaling proteins. Their conserved domain organization includes a myristoylated N-terminal segment followed by SH3, SH2, and tyrosine kinase domains, and a short C-terminal tail. Structural dissection of Src kinases has elucidated the canonical mechanisms of phosphotyrosine recognition by the SH2 domain and proline-motif recognition by the SH3 domain. Crystallographic analysis of nearly intact Src kinases in the autoinhibited state has shown that these protein interaction motifs turn inward and lock the kinase in an inactive conformation via intramolecular interactions. The autoinhibited Src kinase structures reveal a mode of domain assembly used by other tyrosine kinases outside the Src family, including Abl and likely Tec family kinases. Furthermore, they illustrate the underlying regulatory principles that have proven to be general among diverse modular signaling proteins. Although there is considerable structural information available for the autoinhibited conformation of Src kinases, how they may assemble into active signaling complexes with substrates and regulators remains largely unexplored.
Collapse
Affiliation(s)
- Titus J Boggon
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Dana-Farber Cancer Institute, 44 Binney St., Boston, MA 02115, USA
| | | |
Collapse
|
22
|
Bijlmakers MJ, Marsh M. Hsp90 is essential for the synthesis and subsequent membrane association, but not the maintenance, of the Src-kinase p56(lck). Mol Biol Cell 2000; 11:1585-95. [PMID: 10793137 PMCID: PMC14869 DOI: 10.1091/mbc.11.5.1585] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Tyrosine kinases of the Src family are synthesized as cytosolic proteins that subsequently translocate to membranes. Little is known of the mechanisms responsible for targeting these proteins to membranes, although a role for the cytosolic chaperone Hsp90 has been proposed. Here, we have studied the involvement of Hsp90 in the synthesis, membrane binding, and maintenance of the Src-kinase Lck. Using specific inhibitors of Hsp90, geldanamycin and radicicol, we found that functional Hsp90 is essential for the stability of newly synthesized, but not mature, Lck. Similar results were obtained for two other Src-kinases, c-Src and Lyn. In contrast, LckY505F and LckDeltaSH2, constitutively active Lck mutants lacking the C-terminal regulatory tyrosine or the entire Src homology 2 domain, respectively, required Hsp90 activity to stabilize the mature proteins. Lck synthesized in the absence of Hsp90 activity was degraded within 30-45 min. This unstable Lck was myristoylated normally but did not associate with membranes or CD4, interactions that normally start within minutes of the completion of Lck synthesis. A construct composed of the N-terminal unique domain of Lck fused to green fluorescent protein did not require Hsp90 activity during synthesis. In addition, this protein associated with membranes efficiently in the absence of Hsp90 activity. Together these data suggest that interaction with Hsp90 is necessary for the correct synthesis and subsequent membrane binding of Lck. However, Hsp90 does not appear to play a direct role in Lck membrane, or CD4, association.
Collapse
Affiliation(s)
- M J Bijlmakers
- Medical Research Council Laboratory for Molecular Cell Biology and Department of Biochemistry, University College London, London, WC1E 6BT, United Kingdom.
| | | |
Collapse
|
23
|
Bosselut R, Zhang W, Ashe JM, Kopacz JL, Samelson LE, Singer A. Association of the adaptor molecule LAT with CD4 and CD8 coreceptors identifies a new coreceptor function in T cell receptor signal transduction. J Exp Med 1999; 190:1517-26. [PMID: 10562325 PMCID: PMC2195704 DOI: 10.1084/jem.190.10.1517] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Linker for activation of T cells (LAT) is an adaptor protein whose tyrosine phosphorylation is critical for transduction of the T cell receptor (TCR) signal. LAT phosphorylation is accomplished by the protein tyrosine kinase ZAP-70, but it is not at all clear how LAT (which is not associated with the TCR) encounters ZAP-70 (which is bound to the TCR). Here we show that LAT associates with surface CD4 and CD8 coreceptors and that its association is promoted by the same coreceptor cysteine motif that mediates Lck binding. In fact, LAT competes with Lck for binding to individual coreceptor molecules but differs from Lck in its preferential association with CD8 rather than CD4 in CD4(+)CD8(+) thymocytes. Importantly, as a consequence of LAT association with surface coreceptors, coengagement of the TCR with surface coreceptors induces LAT phosphorylation and the specific recruitment of downstream signaling mediators to coreceptor-associated LAT molecules. These results point to a new function for CD4 and CD8 coreceptors in TCR signal transduction, namely to promote LAT phosphorylation by ZAP-70 by recruiting LAT to major histocompatibility complex-engaged TCR complexes.
Collapse
Affiliation(s)
- Rémy Bosselut
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Weiguo Zhang
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Jennifer M. Ashe
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Jeffrey L. Kopacz
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Lawrence E. Samelson
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Alfred Singer
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
24
|
Devine L, Kavathas PB. Molecular analysis of protein interactions mediating the function of the cell surface protein CD8. Immunol Res 1999; 19:201-10. [PMID: 10493174 DOI: 10.1007/bf02786488] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The T cell coreceptor CD8 is a cell-surface glycoprotein expressed either as a disulfide-linked homodimer of two CD8alpha monomers, or a heterodimer of CD8alpha and CD8beta. These receptors interact with ligands, such as major histocompatibility complex (MHC) class I, on the outside of the cell, with proteins inside the cell, such as the tyrosine kinase p56lck, and possibly with proteins on the same cell-surface. The molecular details describing such protein interactions can shed light on how the proteins function and the functional differences between the two forms of CD8. Crystal structures, mutational analysis, affinity measurements, and other approaches are providing those details.
Collapse
Affiliation(s)
- L Devine
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT 06520-8035, USA
| | | |
Collapse
|
25
|
Leung BL, Haughn L, Veillette A, Hawley RG, Rottapel R, Julius M. TCRαβ-Independent CD28 Signaling and Costimulation Require Non-CD4-Associated Lck. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.163.3.1334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
Whether the sequelae of signals generated through CD28 either directly or in circumstances of costimulation require proximal events mediated by p56lck remains contentious. We demonstrate that CD4−, but not CD4+ clonal variants respond to CD28-specific mAb with both early and late indicators of activation. Forced expression of A418/A420-mutated CD4 or wild-type CD4 in the CD4− variant recapitulated the CD28-mediated responses of the CD4− and CD4+ variants, respectively. The implicated involvement of non-CD4-associated Lck is formally demonstrated by overexpressing S20/S23 Lck or wild-type Lck in CD4+ variants. The former, but not latter, rescues direct CD28 signaling, and supports costimulation. The results demonstrate that constitutive levels of non-CD4-associated Lck functionally limit CD28-mediated signaling.
Collapse
Affiliation(s)
- Bernadine L. Leung
- *Department of Immunology, University of Toronto, and Arthritis and Immune Disorder Research Centre, Toronto, Ontario, Canada
| | - Loralee Haughn
- *Department of Immunology, University of Toronto, and Arthritis and Immune Disorder Research Centre, Toronto, Ontario, Canada
| | - André Veillette
- †McGill Cancer Centre, Departments of Biochemistry, Medicine, and Oncology, McGill University, Montreal, Quebec, Canada
| | - Robert G. Hawley
- ‡Oncology Gene Therapy Program, The Toronto Hospital, and Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada; and
| | | | - Michael Julius
- *Department of Immunology, University of Toronto, and Arthritis and Immune Disorder Research Centre, Toronto, Ontario, Canada
| |
Collapse
|
26
|
Halapi E, Jeddi-Tehrani M, Osterborg A, Mellstedt H. T cell receptor usage in malignant diseases. SPRINGER SEMINARS IN IMMUNOPATHOLOGY 1999; 21:19-35. [PMID: 10389230 DOI: 10.1007/bf00815176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- E Halapi
- deCODE Genetics Inc, Reykjavik, Island
| | | | | | | |
Collapse
|
27
|
Bijlmakers MJ, Marsh M. Trafficking of an acylated cytosolic protein: newly synthesized p56(lck) travels to the plasma membrane via the exocytic pathway. J Cell Biol 1999; 145:457-68. [PMID: 10225948 PMCID: PMC2185081 DOI: 10.1083/jcb.145.3.457] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The Src-related tyrosine kinase p56(lck) (Lck) is primarily expressed in T lymphocytes where it localizes to the cytosolic side of the plasma membrane and associates with the T cell coreceptors CD4 and CD8. As a model for acylated proteins, we studied how this localization of Lck is achieved. We followed newly synthesized Lck by pulse-chase analysis and found that membrane association of Lck starts soon after synthesis, but is not complete until at least 30-45 min later. Membrane-binding kinetics are similar in CD4/CD8-positive and CD4/CD8-negative cells. In CD4-positive T cells, the interaction with CD4 rapidly follows membrane association of Lck. Studying the route via which Lck travels from its site of synthesis to the plasma membrane, we found that: CD4 associates with Lck within 10 min of synthesis, long before CD4 has reached the plasma membrane; Lck associates with intracellular CD4 early after synthesis and with cell surface CD4 at later times; and transport of CD4-bound Lck to the plasma membrane is inhibited by Brefeldin A. These data indicate that the initial association of newly synthesized Lck with CD4, and therefore with membranes, occurs on intracellular membranes of the exocytic pathway. From this location Lck is transported to the plasma membrane.
Collapse
Affiliation(s)
- M J Bijlmakers
- MRC Laboratory for Molecular Cell Biology and Department of Biochemistry, University College London, London WC1E 6BT, United Kingdom
| | | |
Collapse
|
28
|
Abstract
Many solid tumors are characterised by the infiltration of lymphocytes and their presence has been correlated with a more favourable prognosis. These tumor-infiltrating lymphocytes (TIL), have been shown to possess specific cytolytic reactivity towards autologous tumours, thus suggesting that tumour cells may express antigens capable of eliciting an immune response. Expression of such tumour-associated antigens (TAA) in combination with appropriate accessory signals would lead to the in vivo accumulation of T cells with anti-tumour specificity. Analysis of the composition of the specific T-cell receptor (TCR) of TIL could thus provide information on the nature of the antigen(s) recognised by TIL. In this review, different aspects of the presence of clonal T cells in patients with cancer are discussed.
Collapse
Affiliation(s)
- E Halapi
- deCODE Genetics Inc., Reykjavik, Iceland.
| |
Collapse
|
29
|
Gratton S, Julius M, Sékaly RP. lck-Independent Inhibition of T Cell Antigen Response by the HIV gp120. THE JOURNAL OF IMMUNOLOGY 1998. [DOI: 10.4049/jimmunol.161.7.3551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Abstract
Binding of the HIV envelope glycoprotein gp120 to CD4 inhibits T cell activation. We have used a murine T cell clone transfected with either wild-type human CD4 or mutated forms of CD4 to characterize the pathways involved in this inhibitory effect of gp120. Ag-induced proliferation of T cell clones transfected with human CD4 was completely inhibited in the presence of gp120, even though stimulation of this clone is independent of a CD4/MHC class II interaction. In addition, our results demonstrate that the inhibition by gp120 is not due to the sequestration of lck from TCR and does not require activation of lck by gp120. This suggests that CD4 can regulate the initiation of T cell activation independently of its interaction with lck. Moreover, we demonstrate that the nonresponsiveness induced by gp120 can be reversed by soluble CD4 when added early after onset of stimulation and that gp120 exerts its inhibitory effect when cells are in the G0 ≥ 1 phase of the cell cycle.
Collapse
Affiliation(s)
- Sophie Gratton
- *Laboratoire d’Immunologie, Institut de Recherches Cliniques de Montréal, Montréal, Québec, Canada
- †Division of Experimental Medicine, Department of Medicine, McGill University, Montréal, Québec, Canada
| | - Michael Julius
- ‡Department of Immunology, University of Toronto and the Wellesley Hospital Research Institute, Toronto, Ontario, Canada; and
| | - Rafick-Pierre Sékaly
- *Laboratoire d’Immunologie, Institut de Recherches Cliniques de Montréal, Montréal, Québec, Canada
- §Département de Microbiologie et Immunologie, Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
30
|
Bijlmakers MJ, Isobe-Nakamura M, Ruddock LJ, Marsh M. Intrinsic signals in the unique domain target p56(lck) to the plasma membrane independently of CD4. J Cell Biol 1997; 137:1029-40. [PMID: 9166404 PMCID: PMC2136224 DOI: 10.1083/jcb.137.5.1029] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
In T lymphocytes, the Src-family protein tyrosine kinase p56(lck) (Lck) is mostly associated with the cytoplasmic face of the plasma membrane. To determine how this distribution is achieved, we analyzed the location of Lck in lymphoid and in transfected nonlymphoid cells by immunofluorescence. We found that in T cells Lck was targeted correctly, independently of the cell surface proteins CD4 and CD8 with which it interacts. Similarly, in transfected NIH-3T3 fibroblasts, Lck was localized at the plasma membrane, indicating that T cell-specific proteins are not required for targeting. Some variation in subcellular distribution was observed when Lck was expressed in HeLa and MDCK cells. In these cells, Lck associated with both the plasma membrane and the Golgi apparatus, while subsequent expression of CD4 resulted in the loss of Golgi-associated staining. Together, these data indicate that Lck contains intrinsic signals for targeting to the plasma membrane. Furthermore, delivery to this site may be achieved via association with exocytic transport vesicles. A mutant Lck molecule in which the palmitoylation site at cysteine 5 was changed to lysine (LC2) localized to the plasma membrane and the Golgi region in NIH3T3 cells. However, the localization of a mutant in which the palmitoylation site at cysteine 3 was changed to serine (LC1) was indistinguishable from wild-type Lck. Chimeras composed of only the unique domain of Lck linked to either c-Src or the green fluorescent protein similarly localized to the plasma membrane of NIH-3T3 cells. Thus, the targeting of Lck appears to be determined primarily by its unique domain and may be influenced by the use of different palmitoylation sites.
Collapse
Affiliation(s)
- M J Bijlmakers
- Medical Research Council Laboratory for Molecular Cell Biology and Department of Biochemistry, University College London, London WC1E 6BT, United Kingdom
| | | | | | | |
Collapse
|
31
|
Lantz O, Sharara LI, Tilloy F, Andersson A, DiSanto JP. Lineage relationships and differentiation of natural killer (NK) T cells: intrathymic selection and interleukin (IL)-4 production in the absence of NKR-P1 and Ly49 molecules. J Exp Med 1997; 185:1395-401. [PMID: 9126920 PMCID: PMC2196284 DOI: 10.1084/jem.185.8.1395] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
In this report, we have assessed the lineage relationships and cytokine dependency of natural killer (NK) T cells compared with mainstream TCR-alphabeta T cells and NK cells. For this purpose, we studied common gamma chain (gamma c)-deficient mice, which demonstrate a selective defect in CD3- NK cell development relative to conventional TCR-alphabeta T cells. NK thymocytes differentiate in gamma c- mice as shown by the normal percentage of TCR Vbeta8+ CD4-CD8- cells and the normal quantity of thymic Va14-Jalpha281 mRNA that characterize the NK T repertoire. However, gamma c-deficient NK thymocytes fail to coexpress the NK-associated markers NKR-P1 or Ly49, yet retain characteristic expression of the cytokine receptors interleukin (IL)-7R alpha and IL-2Rbeta. Despite these phenotypic abnormalities, gamma c- NK thymocytes could produce normal amounts of IL-4. These results define a maturational progression of NK thymocyte differentiation where intrathymic selection and IL-4-producing capacity can be clearly dissociated from the acquisition of the NK phenotype. Moreover, these data suggest a closer ontogenic relationship of NK T cells to TCR-alphabeta T cells than to NK cells with respect to cytokine dependency. We also failed to detect peripheral NK T cells in these mice, demonstrating that gamma c-dependent interactions are required for export and/or survival of NK T cells from the thymus. These results suggest a stepwise pattern of differentiation for thymically derived NK T cells: primary selection via their invariant TCR to confer the IL-4-producing phenotype, followed by acquisition of NK-associated markers and maturation/export to the periphery.
Collapse
Affiliation(s)
- O Lantz
- Institut National de la Santé et de la Recherche Medicale U267, Hôpital Paul Brousse, Villejuif, France
| | | | | | | | | |
Collapse
|
32
|
Greenway A, Azad A, Mills J, McPhee D. Human immunodeficiency virus type 1 Nef binds directly to Lck and mitogen-activated protein kinase, inhibiting kinase activity. J Virol 1996; 70:6701-8. [PMID: 8794306 PMCID: PMC190712 DOI: 10.1128/jvi.70.10.6701-6708.1996] [Citation(s) in RCA: 102] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
It is now well established that human immunodeficiency virus type I (HIV-1) Nef contributes substantially to disease pathogenesis by augmenting virus replication and markedly perturbing T-cell function. The effect of Nef on host cell activation could be explained in part by its interaction with specific cellular proteins involved in signal transduction, including at least a member of the src family kinase, Lck, and the serine/threonine kinase, mitogen-activated protein kinase (MAPK). Recombinant Nef directly interacted with purified Lck and MAPK in coprecipitation experiments and binding assays. A proline-rich repeat sequence [(Pxx)4] in Nef occurring between amino acid residues 69 to 78 is highly conserved and bears strong resemblance to a defined consensus sequence identified as an SH3 binding domain present in several proteins which can interact with the SH3 domain of various signalling and cytoskeletal proteins. Binding and coprecipitation assays with short synthetic peptides corresponding to the proline-rich repeat sequence [(Pxx)4] of Nef and the SH2, SH3, or SH2 and SH3 domains of Lck revealed that the interaction between these two proteins is at least in part mediated by the proline repeat sequence of Nef and the SH3 domain of Lck. In addition to direct binding to full-length Nef, MAPK was also shown to bind the same proline repeat motif. Nef protein significantly decreased the in vitro kinase activity of Lck and MAPK. Inhibition of key members of signalling cascades, including those emanating from the T-cell receptor, by the HIV-1 Nef protein undoubtedly alters the ability of the infected T cell to respond to antigens or cytokines, facilitating HIV-1 replication and contributing to HIV-1-induced disease pathogenesis.
Collapse
Affiliation(s)
- A Greenway
- AIDS Cellular Biology Unit, Macfarlane Burnet Centre for Medical Research, Fairfield, Victoria, Australia
| | | | | | | |
Collapse
|
33
|
Timson Gauen LK, Linder ME, Shaw AS. Multiple features of the p59fyn src homology 4 domain define a motif for immune-receptor tyrosine-based activation motif (ITAM) binding and for plasma membrane localization. J Cell Biol 1996; 133:1007-15. [PMID: 8655574 PMCID: PMC2120852 DOI: 10.1083/jcb.133.5.1007] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The src family tyrosine kinase p59fyn binds to a signaling motif contained in subunits of the TCR known as the immune-receptor tyrosine-based activation motif (ITAM). This is a specific property of p59fyn because two related src family kinases, p60src and p56lck, do not bind to ITAMs. In this study, we identify the residues of p59fyn that are required for binding to ITAMs. We previously demonstrated that the first 10 residues of p59fyn direct its association with the ITAM. Because this region of src family kinases also directs their fatty acylation and membrane association (Resh, M.D. 1993, Biochim. Biophys. Acta 1155:307-322; Resh, M.D. 1994. Cell. 76:411-413), we determined whether fatty acylation and membrane association of p59fyn correlates with its ability to bind ITAMs. Four residues (Gly2, Cys3, Lys7, and Lys9) were required for efficient binding of p59fyn to the TCR. Interestingly, the same four residues are present in p56lyn, the other src family tyrosine kinase known to bind to the ITAM, suggesting that this set of residues constitutes an ITAM recognition motif. These residues were also required for efficient fatty acylation (myristoylation at Gly2 and palmitoylation at Cys3), and plasma membrane targeting of p59fyn. Thus, the signals that direct p59fyn fatty acylation and plasma membrane targeting also direct its specific ability to bind to TCR proteins.
Collapse
Affiliation(s)
- L K Timson Gauen
- Center for Immunology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | |
Collapse
|
34
|
Bell GM, Fargnoli J, Bolen JB, Kish L, Imboden JB. The SH3 domain of p56lck binds to proline-rich sequences in the cytoplasmic domain of CD2. J Exp Med 1996; 183:169-78. [PMID: 8551220 PMCID: PMC2192399 DOI: 10.1084/jem.183.1.169] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
CD2, a cell surface glycoprotein expressed on T cells and natural killer cells, can couple to signaling pathways that result in T cell proliferation. An Src-like protein tyrosine kinase, p56lck, coprecipitates with CD2, and perturbation of CD2 by monoclonal antibodies results in an increase in the activity of p56lck, suggesting that an interaction with p56lck contributes to CD2-mediated signaling. Herein, we investigate the mechanism by which CD2 associates with p56lck. We demonstrate that CD2 and p56lck associate when coexpressed in nonlymphoid cells, that this association requires the cytoplasmic domain of CD2, and that the SH3 domain of p56lck mediates its interactions with CD2. Using truncation mutants of CD2, we identify two regions in the cytoplasmic domain of CD2 involved in binding p56lck. Each region contains a proline-rich sequence that, in the form of a synthetic peptide, directly binds p56lck. Thus, proline-rich sequences in the cytoplasmic domain of CD2 allow this transmembrane receptor to bind to the SH3 domain of p56lck.
Collapse
Affiliation(s)
- G M Bell
- Department of Medicine, Veterans Affairs Medical Center, San Francisco, California, USA
| | | | | | | | | |
Collapse
|
35
|
Gervais FG, Veillette A. The unique amino-terminal domain of p56lck regulates interactions with tyrosine protein phosphatases in T lymphocytes. Mol Cell Biol 1995; 15:2393-401. [PMID: 7739523 PMCID: PMC230468 DOI: 10.1128/mcb.15.5.2393] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The catalytic activity of p56lck is repressed by phosphorylation of a conserved carboxy-terminal tyrosine residue (tyrosine 505). Accumulating data show that this phosphorylation is mediated by the tyrosine protein kinase p50csk and that it is reversed by the transmembrane tyrosine protein phosphatase CD45. Recent studies have indicated that dephosphorylation of tyrosine 505 in resting T cells is necessary for the initiation of antigen-induced T-cell activation. To better understand this phenomenon, we have characterized the factors regulating tyrosine 505 phosphorylation in an antigen-specific T-cell line (BI-141). As is the case for other T-cell lines, Lck molecules from unstimulated BI-141 cells exhibited a pronounced dephosphorylation of the inhibitory carboxyl-terminal tyrosine. This state could be corrected by incubation of cells with the tyrosine protein phosphatase inhibitor pervanadate, suggesting that it reflected the unrestricted action of tyrosine protein phosphatases. In structure-function analyses, mutation of the site of Lck myristylation (glycine 2) partially restored phosphorylation at tyrosine 505 in BI-141 cells. Since the myristylation-defective mutant also failed to stably associate with cellular membranes, this effect was most probably the consequence of removal of p56lck from the vicinity of membrane phosphatases like CD45. Deletion of the unique domain of Lck, or its replacement by the equivalent sequence from p59fyn, also increased the extent of tyrosine 505 phosphorylation in vivo. This effect was unrelated to changes in Lck membrane association and therefore was potentially related to defects in crucial protein-protein interactions at the membrane. In contrast, deletion of the SH3 or SH2 domain, or mutation of the phosphotransfer motif (lysine 273) or the site of autophosphorylation (tyrosine 394), had no impact on phosphate occupancy at tyrosine 505. In combination, these results indicated that the hypophosphorylation of the inhibitory tyrosine of p56(lck) in T lymphocytes is likely the result of the predominant action of tyrosine protein phosphatases. Moreover, they showed that both the amino-terminal myristylation signal and the unique domain of p56(lck) play critical roles in this process.
Collapse
Affiliation(s)
- F G Gervais
- McGill Cancer Centre, Department of Biochemistry, Montréal, Canada
| | | |
Collapse
|
36
|
Salghetti S, Mariani R, Skowronski J. Human immunodeficiency virus type 1 Nef and p56lck protein-tyrosine kinase interact with a common element in CD4 cytoplasmic tail. Proc Natl Acad Sci U S A 1995; 92:349-53. [PMID: 7831289 PMCID: PMC42737 DOI: 10.1073/pnas.92.2.349] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The human immunodeficiency virus type 1 nef gene induces endocytosis of CD4 antigen and disrupts the association between CD4 and p56lck protein-tyrosine kinase (EC 2.7.1.112). We demonstrate that in T cells these effects of the viral protein require a cluster of hydrophobic amino acids in a membrane-proximal region of the CD4 cytoplasmic tail; other amino acids in the C-terminal segment of CD4 cytoplasmic tail also contribute to the interaction. Mutations in CD4 that prevent down-modulation by Nef also decrease CD4 association with p56lck and prevent Nef-induced disruption of CD4-p56lck complexes. Together, the overlap in CD4 sequences required for interaction with Nef and p56lck and the tight correlation between Nef-induced CD4 down-modulation and disruption of CD4-p56lck association suggest that Nef, or cellular factors recruited by Nef, interact with this segment of CD4 to displace p56lck from the complex and induce CD4 endocytosis.
Collapse
|
37
|
Cinek T, Hilgert I, Horejsí V. An alternative way of CD4 and CD8 association with protein kinases of the Src family. Immunogenetics 1995; 41:110-6. [PMID: 7806282 DOI: 10.1007/bf00182321] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The T-lymphocyte co-receptors of MHC glycoproteins CD4 and CD8 are known to be associated with the protein tyrosine kinase Lck via cysteine-containing sequences in the cytoplasmic domains of CD4 and CD8 and in the N-terminal domain of Lck. Here we demonstrate that a fraction of CD4 and CD8 molecules are associated with very large, detergent-resistant complexes containing several glycosylphosphatidylinositol-anchored proteins, (glyco)lipids, and protein tyrosine kinases Lck and Fyn but apparently no other major transmembrane proteins. Association of Lck and Fyn with these large complexes is, in contrast to simple CD4/CD8-Lck complexes, not sensitive to alkylation with iodoacetamide. These large complexes therefore represent an alternative way of association of CD4 and CD8 with the protein tyrosine kinases, which may play a role in signaling through these receptors.
Collapse
Affiliation(s)
- T Cinek
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Praha
| | | | | |
Collapse
|
38
|
Signals determining protein tyrosine kinase and glycosyl-phosphatidylinositol-anchored protein targeting to a glycolipid-enriched membrane fraction. Mol Cell Biol 1994. [PMID: 8035816 DOI: 10.1128/mcb.14.8.5384] [Citation(s) in RCA: 161] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Glycosyl-phosphatidylinositol (GPI)-anchored membrane proteins and certain protein tyrosine kinases associate with a Triton X-100-insoluble, glycolipid-enriched membrane fraction in MDCK cells. Also, certain protein tyrosine kinases have been shown to associate with GPI-anchored proteins in other cell types. To characterize the interaction between GPI-anchored proteins and protein tyrosine kinases, GPI-anchored proteins were coexpressed with p56lck in HeLa cells. Both proteins were shown to target independently to the glycolipid-enriched membranes. Coimmunoprecipitation of GPI-anchored proteins and p56lck occurred only when both proteins were located in the glycolipid-enriched membranes, and gentle disruption of these membranes abolished the interaction. The GPI anchor was found to be the targeting signal for this membrane fraction in GPI-anchored proteins. Analysis of mutants indicated that p56lck was nearly quantitatively palmitoylated at Cys-5 but not palmitoylated at Cys-3. The nonpalmitoylated cysteine at position 3 was very important for association of p56lck with the membrane fraction, while palmitoylation at Cys-5 promoted only a low level of interaction. Because other src family protein tyrosine kinases that are associated with GPI-anchored proteins always contain a Cys-3, we propose that this residue, in addition to the N-terminal myristate, is part of a common signal targeting these proteins to a membrane domain that has been linked to transmembrane signaling.
Collapse
|
39
|
Rodgers W, Crise B, Rose JK. Signals determining protein tyrosine kinase and glycosyl-phosphatidylinositol-anchored protein targeting to a glycolipid-enriched membrane fraction. Mol Cell Biol 1994; 14:5384-91. [PMID: 8035816 PMCID: PMC359057 DOI: 10.1128/mcb.14.8.5384-5391.1994] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Glycosyl-phosphatidylinositol (GPI)-anchored membrane proteins and certain protein tyrosine kinases associate with a Triton X-100-insoluble, glycolipid-enriched membrane fraction in MDCK cells. Also, certain protein tyrosine kinases have been shown to associate with GPI-anchored proteins in other cell types. To characterize the interaction between GPI-anchored proteins and protein tyrosine kinases, GPI-anchored proteins were coexpressed with p56lck in HeLa cells. Both proteins were shown to target independently to the glycolipid-enriched membranes. Coimmunoprecipitation of GPI-anchored proteins and p56lck occurred only when both proteins were located in the glycolipid-enriched membranes, and gentle disruption of these membranes abolished the interaction. The GPI anchor was found to be the targeting signal for this membrane fraction in GPI-anchored proteins. Analysis of mutants indicated that p56lck was nearly quantitatively palmitoylated at Cys-5 but not palmitoylated at Cys-3. The nonpalmitoylated cysteine at position 3 was very important for association of p56lck with the membrane fraction, while palmitoylation at Cys-5 promoted only a low level of interaction. Because other src family protein tyrosine kinases that are associated with GPI-anchored proteins always contain a Cys-3, we propose that this residue, in addition to the N-terminal myristate, is part of a common signal targeting these proteins to a membrane domain that has been linked to transmembrane signaling.
Collapse
Affiliation(s)
- W Rodgers
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut
| | | | | |
Collapse
|
40
|
The T-cell antigen CD5 acts as a receptor and substrate for the protein-tyrosine kinase p56lck. Mol Cell Biol 1994. [PMID: 7513045 DOI: 10.1128/mcb.14.5.2862] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
CD5 is a T-cell-specific antigen which binds to the B-cell antigen CD72 and acts as a coreceptor in the stimulation of T-cell growth. CD5 associates with the T-cell receptor zeta chain (TcR zeta)/CD3 complex and is rapidly phosphosphorylated on tyrosine residues as a result of TcR zeta/CD3 ligation. However, despite this, the mechanism by which CD5 generates intracellular signals is unclear. In this study, we demonstrate that CD5 is coupled to the protein-tyrosine kinase p56lck and can act as a substrate for p56lck. Coexpression of CD5 with p56lck in the baculovirus expression system resulted in the phosphorylation of CD5 on tyrosine residues. Further, anti-CD5 and anti-p56lck coprecipitated each other in a variety of detergents, including Nonidet P-40 and Triton X-100. Anti-CD5 also precipitated the kinase from various T cells irrespective of the expression of TcR zeta/CD3 or CD4. No binding between p59fyn(T) and CD5 was detected in T cells. The binding of p56lck to CD5 induced a 10- to 15-fold increase in p56lck catalytic activity, as measured by in vitro kinase analysis. In vivo labelling with 32P(i) also showed a four- to fivefold increase in Y-394 occupancy in p56lck when associated with CD5. The use of glutathione S-transferase-Lck fusion proteins in precipitation analysis showed that the SH2 domain of p56lck could recognize CD5 as expressed in the baculovirus expression system. CD5 interaction with p56lck represents a novel variant of a receptor-kinase complex in which receptor can also serve as substrate. The CD5-p56lck interaction is likely to play roles in T-cell signalling and T-B collaboration.
Collapse
|
41
|
Shum L, Reeves SA, Kuo AC, Fromer ES, Derynck R. Association of the transmembrane TGF-alpha precursor with a protein kinase complex. J Biophys Biochem Cytol 1994; 125:903-16. [PMID: 8188754 PMCID: PMC2120079 DOI: 10.1083/jcb.125.4.903] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
A variety of growth factors including transforming growth factor-alpha (TGF-alpha) are synthesized as transmembrane precursors. The short cytoplasmic domain of the transmembrane TGF-alpha precursor lacks any apparent motif associated with signal transduction. However, the sequence conservation of this cytoplasmic domain and its abundance of cysteine residues, reminiscent of the cytoplasmic domains of CD4 and CD8, suggest a biological function. In this study, we showed that transmembrane TGF-alpha was rapidly internalized after interaction with a specific antibody and that this internalization was greatly decreased when the COOH-terminal 31 amino acids were removed. Chemical cross-linking experiments revealed two associated proteins of 86 and 106 kD which coimmunoprecipitated with the TGF-alpha precursor. The association of p86 was dependent on the presence of the COOH-terminal cytoplasmic 31 amino acids of the TGF-alpha precursor, whereas p106 still remained associated when this segment was deleted. In addition, p106 was tyrosine-phosphorylated and exposed on the cell surface. The protein complex associated with transmembrane TGF-alpha displayed kinase activities towards tyrosine, serine, and threonine residues. These activities were not associated with transmembrane TGF-alpha when the COOH-terminal segment was truncated. The association of a protein kinase complex with transmembrane TGF-alpha may provide the basic elements for a "reverse" mode of signaling through the cytoplasmic domain of this growth factor, which may lead to two-directional communication during ligand-receptor interaction.
Collapse
Affiliation(s)
- L Shum
- Department of Growth and Development, Anatomy, University of California at San Francisco 94143-0640
| | | | | | | | | |
Collapse
|
42
|
Raab M, Yamamoto M, Rudd CE. The T-cell antigen CD5 acts as a receptor and substrate for the protein-tyrosine kinase p56lck. Mol Cell Biol 1994; 14:2862-70. [PMID: 7513045 PMCID: PMC358654 DOI: 10.1128/mcb.14.5.2862-2870.1994] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
CD5 is a T-cell-specific antigen which binds to the B-cell antigen CD72 and acts as a coreceptor in the stimulation of T-cell growth. CD5 associates with the T-cell receptor zeta chain (TcR zeta)/CD3 complex and is rapidly phosphosphorylated on tyrosine residues as a result of TcR zeta/CD3 ligation. However, despite this, the mechanism by which CD5 generates intracellular signals is unclear. In this study, we demonstrate that CD5 is coupled to the protein-tyrosine kinase p56lck and can act as a substrate for p56lck. Coexpression of CD5 with p56lck in the baculovirus expression system resulted in the phosphorylation of CD5 on tyrosine residues. Further, anti-CD5 and anti-p56lck coprecipitated each other in a variety of detergents, including Nonidet P-40 and Triton X-100. Anti-CD5 also precipitated the kinase from various T cells irrespective of the expression of TcR zeta/CD3 or CD4. No binding between p59fyn(T) and CD5 was detected in T cells. The binding of p56lck to CD5 induced a 10- to 15-fold increase in p56lck catalytic activity, as measured by in vitro kinase analysis. In vivo labelling with 32P(i) also showed a four- to fivefold increase in Y-394 occupancy in p56lck when associated with CD5. The use of glutathione S-transferase-Lck fusion proteins in precipitation analysis showed that the SH2 domain of p56lck could recognize CD5 as expressed in the baculovirus expression system. CD5 interaction with p56lck represents a novel variant of a receptor-kinase complex in which receptor can also serve as substrate. The CD5-p56lck interaction is likely to play roles in T-cell signalling and T-B collaboration.
Collapse
Affiliation(s)
- M Raab
- Division of Tumor Immunology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115
| | | | | |
Collapse
|
43
|
The SH3 domain of p56lck is involved in binding to phosphatidylinositol 3'-kinase from T lymphocytes. Mol Cell Biol 1994. [PMID: 7504174 DOI: 10.1128/mcb.13.12.7408] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Many of the Src-like tyrosine kinases are thought to participate in multiprotein complexes that modulate transmembrane signalling through tyrosine phosphorylation. We have used in vitro binding studies employing bacterially expressed glutathione S-transferase-p56lck fusion proteins and cell extracts to map regions on p56lck that are involved in binding to phosphatidylinositol 3'-kinase (PI3K). Deletions within the SH3 domain of p56lck abolished binding of PI3K activity from T-cell lysates, whereas deletion of the SH2 domain caused only a slight reduction in the level of PI3K activity bound to p56lck sequences. The binding of PI3K from T-cell extracts to p56lck was not blocked by antiphosphotyrosine antibodies, but p56lck-bound PI3K activity was sensitive to phosphatase treatment. The SH3 domain of p56lck also bound the majority of PI3K activity from uninfected chicken embryo fibroblasts. However, a drastically different binding specificity was observed with use of extracts of Rous sarcoma virus v-src-transformed cells, in which the majority of PI3K activity bound to the SH2 domain of p56lck in a phosphotyrosine-dependent manner. These results suggest that are two modes of PI3K binding to p56lck, and presumably to other Src-like tyrosine kinases. In one mode, PI3K from T cells or uninfected chicken embryo fibroblasts binds predominantly to the SH3 domain of p56lck. In the other mode, involving PI3K from Rous sarcoma virus-transformed cells, binding is largely phosphotyrosine dependent and requires the SH2 domain of p56lck.
Collapse
|
44
|
Abstract
This chapter discusses human immunodeficiency virus type 1 (HIV-1) associated with CD4 downmodulation. It also discusses the structure and function of CD4 and p56lck and factors involved in hiv-1-associated cd4 downmodulation. There are, at present, at least three HIV-1 gene products known to be involved in cell surface CD4 downmodulation. These are Nef, Vpu, and gp160. Whereas Nef is expressed during the early phase of HIV-1 gene expression, both Vpu and gp160, which appear to act coordinately, are expressed during the late phase. This functional convergence of HIV-1 proteins on cell surface CD4 downmodulation, whether specific or nonspecific in activity, suggests that this event is of critical importance in the life cycle of HIV-1. Further elucidation of the mechanisms that underlie CD4 cell surface downmodulation may lead to the development of novel strategies aimed at preventing such events, and potentially to the development of new therapeutic approaches.
Collapse
Affiliation(s)
- R Geleziunas
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
| | | | | |
Collapse
|
45
|
Vogel LB, Fujita DJ. The SH3 domain of p56lck is involved in binding to phosphatidylinositol 3'-kinase from T lymphocytes. Mol Cell Biol 1993; 13:7408-17. [PMID: 7504174 PMCID: PMC364812 DOI: 10.1128/mcb.13.12.7408-7417.1993] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Many of the Src-like tyrosine kinases are thought to participate in multiprotein complexes that modulate transmembrane signalling through tyrosine phosphorylation. We have used in vitro binding studies employing bacterially expressed glutathione S-transferase-p56lck fusion proteins and cell extracts to map regions on p56lck that are involved in binding to phosphatidylinositol 3'-kinase (PI3K). Deletions within the SH3 domain of p56lck abolished binding of PI3K activity from T-cell lysates, whereas deletion of the SH2 domain caused only a slight reduction in the level of PI3K activity bound to p56lck sequences. The binding of PI3K from T-cell extracts to p56lck was not blocked by antiphosphotyrosine antibodies, but p56lck-bound PI3K activity was sensitive to phosphatase treatment. The SH3 domain of p56lck also bound the majority of PI3K activity from uninfected chicken embryo fibroblasts. However, a drastically different binding specificity was observed with use of extracts of Rous sarcoma virus v-src-transformed cells, in which the majority of PI3K activity bound to the SH2 domain of p56lck in a phosphotyrosine-dependent manner. These results suggest that are two modes of PI3K binding to p56lck, and presumably to other Src-like tyrosine kinases. In one mode, PI3K from T cells or uninfected chicken embryo fibroblasts binds predominantly to the SH3 domain of p56lck. In the other mode, involving PI3K from Rous sarcoma virus-transformed cells, binding is largely phosphotyrosine dependent and requires the SH2 domain of p56lck.
Collapse
Affiliation(s)
- L B Vogel
- Department of Medical Biochemistry, University of Calgary Medical Centre, Alberta, Canada
| | | |
Collapse
|
46
|
Nakayama T, Wiest DL, Abraham KM, Munitz TI, Perlmutter RM, Singer A. Decreased signaling competence as a result of receptor overexpression: overexpression of CD4 reduces its ability to activate p56lck tyrosine kinase and to regulate T-cell antigen receptor expression in immature CD4+CD8+ thymocytes. Proc Natl Acad Sci U S A 1993; 90:10534-8. [PMID: 7902564 PMCID: PMC47811 DOI: 10.1073/pnas.90.22.10534] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Thymic selection of the developing T-cell repertoire occurs in immature CD4+CD8+ thymocytes, with the fate of individual thymocytes determined by the specificity of T-cell antigen receptor they express. However, T-cell antigen receptor expression in immature CD4+CD8+ thymocytes is actively down-regulated in CD4+CD8+ thymocytes by CD4-mediated tyrosine kinase signals that are generated in the thymus as a result of CD4 engagement by intrathymic ligands. In the present study we have examined the effect of CD4 overexpression in CD4+CD8+ thymocytes on activation of CD4-associated p56lck tyrosine kinase and regulation of T-cell antigen receptor expression. Augmented CD4 expression in CD4+CD8+ thymocytes did not result in commensurate increases in associated p56lck molecules, so that CD4 expression was quantitatively disproportionate to that of its associated signaling molecule p56lck. Interestingly, we found that CD4 overexpression significantly interfered with the ability of CD4 crosslinking to activate associated p56lck molecules and significantly interfered with the ability of CD4 to regulate T-cell antigen receptor expression. Thus, this study provides an example in which receptor overexpression leads to decreased receptor signaling competence.
Collapse
Affiliation(s)
- T Nakayama
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | | | | | | | | | | |
Collapse
|
47
|
Palmitylation of an amino-terminal cysteine motif of protein tyrosine kinases p56lck and p59fyn mediates interaction with glycosyl-phosphatidylinositol-anchored proteins. Mol Cell Biol 1993. [PMID: 8413237 DOI: 10.1128/mcb.13.10.6385] [Citation(s) in RCA: 162] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cross-linking of glycosyl-phosphatidylinositol (GPI)-anchored membrane proteins on T cells can trigger cell activation. We and others have shown an association between GPI-anchored proteins and the protein tyrosine kinases (PTKs) p56lck and p59fyn, suggesting a pathway for signaling through GPI-anchored proteins. Studies of decay-accelerating factor (DAF) or CD59 in either the C32 cell line or the HeLa cell line transfected with PTK cDNA demonstrated that the GPI-anchored proteins associated noncovalently with p56lck and p59fyn but not with p60src. Nonmyristylated versions of p56lck and p59fyn also failed to associate with the GPI-anchored proteins. Mutational analysis of the PTK demonstrated that the association with the GPI-anchored proteins mapped to the unique amino-terminal domains of the PTK. A chimeric PTK consisting of the 10 amino-terminal residues of p56lck or p59fyn replacing the corresponding amino acids in p60src was sufficient for association with DAF, but the converse constructs containing the first 10 amino acids of p60src plus the remainder of p56lck or p59fyn did not associate with DAF. Mutation of cysteine to serine at positions 3 and 6 in p59fyn or positions 3 and 5 in p56lck abolished the association of these kinases with DAF. Mutation of serine to cysteine at positions 3 and 6 in p60src conferred on p60src the ability to associate with DAF. Direct labeling with [3H]palmitate demonstrated palmitylation of this amino-terminal cysteine motif in p56lck. Thus, palmitylation of the amino-terminal cysteine residue(s) together with myristylation of the amino-terminal glycine residue defines important motifs for the association of PTKs with GPI-anchored proteins.
Collapse
|
48
|
Pelchen-Matthews A, Parsons IJ, Marsh M. Phorbol ester-induced downregulation of CD4 is a multistep process involving dissociation from p56lck, increased association with clathrin-coated pits, and altered endosomal sorting. J Exp Med 1993; 178:1209-22. [PMID: 8376930 PMCID: PMC2191214 DOI: 10.1084/jem.178.4.1209] [Citation(s) in RCA: 127] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The phorbol ester phorbol myristate acetate (PMA) induces a rapid downregulation of CD4 from the surface of T cells and lymphocytic cell lines, as well as from CD4-transfected nonlymphoid cells. Here we have studied the mechanisms of this phorbol ester-induced CD4 modulation. Using HeLa-CD4 or NIH-3T3-CD4 cells, in which the endocytosis of CD4 is not influenced by the protein tyrosine kinase p56lck, we show that PMA enhanced the uptake of CD4, increasing the rate of CD4 endocytosis three to five-fold, and doubling the proportion of CD4 found inside the cells. Trafficking of a CD4 mutant lacking the major portion of the cytoplasmic domain, as well as fluid phase endocytosis were not affected by PMA treatment. Studies in which clathrin-coated pits were disrupted through the use of hypertonic media indicated that both the constitutive and PMA-induced CD4 uptake occurred through coated vesicles. Electron microscopy demonstrated directly that PMA increases the association of CD4 with coated pits. Immunofluorescent staining of internalized CD4 showed that PMA also diverted CD4 from the early endosome-plasma membrane recycling pathway to a mannose 6-phosphate receptor-containing late endosomal compartment. In lymphoid or p56lck-expressing transfected cells, these effects were preceded by the PMA-induced dissociation of CD4 and p56lck, which released CD4 and made possible increased endocytosis and altered intracellular trafficking. Together these results indicate that phorbol esters have multiple effects on the normal endocytosis and trafficking of CD4, and suggest that phosphorylation may influence the interaction of CD4 with coated pits.
Collapse
Affiliation(s)
- A Pelchen-Matthews
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, England
| | | | | |
Collapse
|
49
|
Shenoy-Scaria AM, Gauen LK, Kwong J, Shaw AS, Lublin DM. Palmitylation of an amino-terminal cysteine motif of protein tyrosine kinases p56lck and p59fyn mediates interaction with glycosyl-phosphatidylinositol-anchored proteins. Mol Cell Biol 1993; 13:6385-92. [PMID: 8413237 PMCID: PMC364697 DOI: 10.1128/mcb.13.10.6385-6392.1993] [Citation(s) in RCA: 87] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Cross-linking of glycosyl-phosphatidylinositol (GPI)-anchored membrane proteins on T cells can trigger cell activation. We and others have shown an association between GPI-anchored proteins and the protein tyrosine kinases (PTKs) p56lck and p59fyn, suggesting a pathway for signaling through GPI-anchored proteins. Studies of decay-accelerating factor (DAF) or CD59 in either the C32 cell line or the HeLa cell line transfected with PTK cDNA demonstrated that the GPI-anchored proteins associated noncovalently with p56lck and p59fyn but not with p60src. Nonmyristylated versions of p56lck and p59fyn also failed to associate with the GPI-anchored proteins. Mutational analysis of the PTK demonstrated that the association with the GPI-anchored proteins mapped to the unique amino-terminal domains of the PTK. A chimeric PTK consisting of the 10 amino-terminal residues of p56lck or p59fyn replacing the corresponding amino acids in p60src was sufficient for association with DAF, but the converse constructs containing the first 10 amino acids of p60src plus the remainder of p56lck or p59fyn did not associate with DAF. Mutation of cysteine to serine at positions 3 and 6 in p59fyn or positions 3 and 5 in p56lck abolished the association of these kinases with DAF. Mutation of serine to cysteine at positions 3 and 6 in p60src conferred on p60src the ability to associate with DAF. Direct labeling with [3H]palmitate demonstrated palmitylation of this amino-terminal cysteine motif in p56lck. Thus, palmitylation of the amino-terminal cysteine residue(s) together with myristylation of the amino-terminal glycine residue defines important motifs for the association of PTKs with GPI-anchored proteins.
Collapse
Affiliation(s)
- A M Shenoy-Scaria
- Department of Pathology, Washington University School of Medicine, St. Louis, Missouri 63110
| | | | | | | | | |
Collapse
|
50
|
Vincent MJ, Raja NU, Jabbar MA. Human immunodeficiency virus type 1 Vpu protein induces degradation of chimeric envelope glycoproteins bearing the cytoplasmic and anchor domains of CD4: role of the cytoplasmic domain in Vpu-induced degradation in the endoplasmic reticulum. J Virol 1993; 67:5538-49. [PMID: 8350411 PMCID: PMC237957 DOI: 10.1128/jvi.67.9.5538-5549.1993] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The human immunodeficiency virus type 1 (HIV-1) Vpu protein is a transmembrane phosphoprotein which induces rapid degradation of CD4 in the endoplasmic reticulum (ER). To identify sequences in CD4 for Vpu-induced degradation, we generated four chimeric envelope glycoproteins having the ectodomain of HIV-1 gp160, the anchor domain of CD4, and 38, 25, 24, and 18 amino acids (aa) of the CD4 cytoplasmic domain. Using the vaccinia virus-T7 RNA polymerase expression system, we analyzed the expression of chimeric proteins in the presence and absence of Vpu. In singly transfected cells, the chimeric envelope glycoproteins having 38, 24, and 18 aa of the CD4 cytoplasmic domain were endoproteolytically cleaved and biologically active in the fusion of HeLa CD4+ cells. However, one of the chimeras having 25 aa of the CD4 cytoplasmic tail was retained in the ER using the transmembrane ER retention signal and was defective in membrane fusion. Furthermore, biochemical analyses of the coexpressing cells revealed that the Vpu protein induced degradation of the envelope glycoproteins having 38, 25, and 24 aa of the CD4 cytoplasmic tail and degradation occurred in the ER. Consequently, the fusion-competent glycoproteins did not induce the formation of syncytia in HeLa CD4+ cells expressing Vpu. However, the HIV-1 gp160 and chimeric envelope glycoprotein having the membrane-proximal 18 aa of the CD4 cytoplasmic tail were stable and fusion competent in cells expressing Vpu. In addition, we examined the stability of CD4 molecules in the presence of Vpu. Coexpression analyses revealed that the Vpu protein induced degradation of CD4 whereas mutant CD4 having the membrane-proximal 18 aa of the cytoplasmic domain was relatively stable in the presence of Vpu. Taken together, these studies have elucidated that the Vpu protein requires sequences or sequence determinants in the cytoplasmic domain of CD4 to induce degradation of the glycoproteins in the cell.
Collapse
Affiliation(s)
- M J Vincent
- Department of Molecular Biology, Cleveland Clinic Foundation, Ohio 44195
| | | | | |
Collapse
|