1
|
Hossain MJ, Nyame P, Monde K. Species-Specific Transcription Factors Associated with Long Terminal Repeat Promoters of Endogenous Retroviruses: A Comprehensive Review. Biomolecules 2024; 14:280. [PMID: 38540701 PMCID: PMC10968565 DOI: 10.3390/biom14030280] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/19/2024] [Accepted: 02/24/2024] [Indexed: 11/11/2024] Open
Abstract
Endogenous retroviruses (ERVs) became a part of the eukaryotic genome through endogenization millions of years ago. Moreover, they have lost their innate capability of virulence or replication. Nevertheless, in eukaryotic cells, they actively engage in various activities that may be advantageous or disadvantageous to the cells. The mechanisms by which transcription is triggered and implicated in cellular processes are complex. Owing to the diversity in the expression of transcription factors (TFs) in cells and the TF-binding motifs of viruses, the comprehensibility of ERV initiation and its impact on cellular functions are unclear. Currently, several factors are known to be related to their initiation. TFs that bind to the viral long-terminal repeat (LTR) are critical initiators. This review discusses the TFs shown to actively associate with ERV stimulation across species such as humans, mice, pigs, monkeys, zebrafish, Drosophila, and yeast. A comprehensive summary of the expression of previously reported TFs may aid in identifying similarities between animal species and endogenous viruses. Moreover, an in-depth understanding of ERV expression will assist in elucidating their physiological roles in eukaryotic cell development and in clarifying their relationship with endogenous retrovirus-associated diseases.
Collapse
Affiliation(s)
| | | | - Kazuaki Monde
- Department of Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan; (M.J.H.); (P.N.)
| |
Collapse
|
2
|
Tec1 and Ste12 transcription factors play a role in adaptation to low pH stress and biofilm formation in the human opportunistic fungal pathogen Candida glabrata. INTERNATIONAL MICROBIOLOGY : THE OFFICIAL JOURNAL OF THE SPANISH SOCIETY FOR MICROBIOLOGY 2022; 25:789-802. [PMID: 35829973 DOI: 10.1007/s10123-022-00264-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 01/18/2023]
Abstract
Eukaryotic cells respond to environmental cues through mitogen activated protein kinase (MAPK) signaling pathways. Each MAPK cascade is specific to particular stimuli and mediates specialized responses through activation of transcription factors. In the budding yeast, Saccharomyces cerevisiae, the pheromone-induced mating pathway and the starvation-responsive invasive growth/filamentation pathway generate their distinct outputs through the transcription factors Ste12 and Tec1, respectively. In this study, we report the functional characterization of these transcription factors in the closely related human opportunistic pathogenic yeast Candida glabrata. Two homologues each for S. cerevisiae TEC1 and STE12 were identified in C. glabrata. Both C. glabrata Tec1 proteins contain the N-terminal TEA DNA-binding domain characteristic of the TEA/ATTS transcription factor family. Similarly, the DNA-binding homeodomain shared by members of the highly conserved fungal Ste12 transcription factor family is present in N-terminus of both C. glabrata Ste12 transcription factors. We show that both C. glabrata STE12 genes are at least partial functional orthologues of S. cerevisiae STE12 as they can rescue the mating defect of haploid S. cerevisiae ste12 null mutant. Knockout of one of the STE12 genes (ORF CAGL0H02145g) leads to decreased biofilm development; a stronger biofilm-impaired phenotype results from loss of both CgSTE12 genes in the double deletion mutant (Cgste12ΔΔ). The transcript levels of one of the TEC1 genes (ORF CAGL0M01716g) were found to be upregulated upon exposure to low pH; its deletion causes slightly increased sensitivity to higher concentrations of acetic acid. Heat shock leads to increase in mRNA levels of one of the STE12 genes (ORF CAGL0M01254g). These findings suggest a role of Tec1 and Ste12 transcription factors in the regulation of some traits (biofilm formation, response to low pH stress and elevated temperature) that contribute to C. glabrata's ability to colonize various host niches and to occasionally cause disease.
Collapse
|
3
|
Tec1, a member of the TEA transcription factors family, is involved in virulence and basidiocarp development in Ustilago maydis. Int Microbiol 2021; 25:17-26. [PMID: 34185162 DOI: 10.1007/s10123-021-00188-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/16/2021] [Accepted: 06/21/2021] [Indexed: 10/21/2022]
Abstract
The life cycle of Ustilago maydis involves alternation of a haploid saprophytic yeast-like stage and a dikaryotic hyphal virulent form. Under in vitro conditions, basidiocarps are formed. Analysis of the transcriptional network of basidiocarp formation revealed the possible involvement of a Tec transcription factor (Tec1, UMAG_02835) in the process. In some Ascomycota, Tec factors are involved in mycelial formation, pathogenesis, and interaction with other regulatory elements, but their role in Basidiomycota species is almost unknown. Accordingly, we proceeded to determine the role of this gene in U. maydis by its mutation. Tec1 was found to be a crucial factor for normal mating, basidiocarp development, and virulence, all of the functions related to the dikaryotic stage dependent of the b genes, whereas dimorphism and resistance to different stress conditions occurring in the haploid stage were not affected in tec1 mutants. The observation that mutants showed a low residual wild-type phenotype suggests the presence of a secondary mechanism that partially compensates the loss of Tec1.
Collapse
|
4
|
Vandermeulen MD, Cullen PJ. New Aspects of Invasive Growth Regulation Identified by Functional Profiling of MAPK Pathway Targets in Saccharomyces cerevisiae. Genetics 2020; 216:95-116. [PMID: 32665277 PMCID: PMC7463291 DOI: 10.1534/genetics.120.303369] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 07/07/2020] [Indexed: 12/21/2022] Open
Abstract
MAPK pathways are drivers of morphogenesis and stress responses in eukaryotes. A major function of MAPK pathways is the transcriptional induction of target genes, which produce proteins that collectively generate a cellular response. One approach to comprehensively understand how MAPK pathways regulate cellular responses is to characterize the individual functions of their transcriptional targets. Here, by examining uncharacterized targets of the MAPK pathway that positively regulates filamentous growth in Saccharomyces cerevisiae (fMAPK pathway), we identified a new role for the pathway in negatively regulating invasive growth. Specifically, four targets were identified that had an inhibitory role in invasive growth: RPI1, RGD2, TIP1, and NFG1/YLR042cNFG1 was a highly induced unknown open reading frame that negatively regulated the filamentous growth MAPK pathway. We also identified SFG1, which encodes a transcription factor, as a target of the fMAPK pathway. Sfg1p promoted cell adhesion independently from the fMAPK pathway target and major cell adhesion flocculin Flo11p, by repressing genes encoding presumptive cell-wall-degrading enzymes. Sfg1p also contributed to FLO11 expression. Sfg1p and Flo11p regulated different aspects of cell adhesion, and their roles varied based on the environment. Sfg1p also induced an elongated cell morphology, presumably through a cell-cycle delay. Thus, the fMAPK pathway coordinates positive and negative regulatory proteins to fine-tune filamentous growth resulting in a nuanced response. Functional analysis of other pathways' targets may lead to a more comprehensive understanding of how signaling cascades generate biological responses.
Collapse
Affiliation(s)
| | - Paul J Cullen
- Department of Biological Sciences, University at Buffalo, New York 14260-1300
| |
Collapse
|
5
|
N-terminal deletion of Swi3 created by the deletion of a dubious ORF YJL175W mitigates protein burden effect in S. cerevisiae. Sci Rep 2020; 10:9500. [PMID: 32528012 PMCID: PMC7289859 DOI: 10.1038/s41598-020-66307-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 05/19/2020] [Indexed: 12/28/2022] Open
Abstract
Extreme overproduction of gratuitous proteins can overload cellular protein production resources, leading to growth defects, a phenomenon known as the protein burden/cost effect. Genetic screening in the budding yeast Saccharomyces cerevisiae has isolated several dubious ORFs whose deletions mitigated the protein burden effect, but individual characterization thereof has yet to be delineated. We found that deletion of the YJL175W ORF yielded an N-terminal deletion of Swi3, a subunit of the SWI/SNF chromatin remodeling complex, and partial loss of function of Swi3. The deletion mutant showed a reduction in transcription of genes encoding highly expressed, secreted proteins and an overall reduction in translation. Mutations in the chromatin remodeling complex could thus mitigate the protein burden effect, likely by reallocating residual cellular resources used to overproduce proteins. This cellular state might also be related to cancer cells, as they frequently harbor mutations in the SWI/SNF complex.
Collapse
|
6
|
Maxwell PH. Diverse transposable element landscapes in pathogenic and nonpathogenic yeast models: the value of a comparative perspective. Mob DNA 2020; 11:16. [PMID: 32336995 PMCID: PMC7175516 DOI: 10.1186/s13100-020-00215-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 04/16/2020] [Indexed: 12/14/2022] Open
Abstract
Genomics and other large-scale analyses have drawn increasing attention to the potential impacts of transposable elements (TEs) on their host genomes. However, it remains challenging to transition from identifying potential roles to clearly demonstrating the level of impact TEs have on genome evolution and possible functions that they contribute to their host organisms. I summarize TE content and distribution in four well-characterized yeast model systems in this review: the pathogens Candida albicans and Cryptococcus neoformans, and the nonpathogenic species Saccharomyces cerevisiae and Schizosaccharomyces pombe. I compare and contrast their TE landscapes to their lifecycles, genomic features, as well as the presence and nature of RNA interference pathways in each species to highlight the valuable diversity represented by these models for functional studies of TEs. I then review the regulation and impacts of the Ty1 and Ty3 retrotransposons from Saccharomyces cerevisiae and Tf1 and Tf2 retrotransposons from Schizosaccharomyces pombe to emphasize parallels and distinctions between these well-studied elements. I propose that further characterization of TEs in the pathogenic yeasts would enable this set of four yeast species to become an excellent set of models for comparative functional studies to address outstanding questions about TE-host relationships.
Collapse
|
7
|
Conserved Pbp1/Ataxin-2 regulates retrotransposon activity and connects polyglutamine expansion-driven protein aggregation to lifespan-controlling rDNA repeats. Commun Biol 2018; 1:187. [PMID: 30417124 PMCID: PMC6218562 DOI: 10.1038/s42003-018-0187-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 10/09/2018] [Indexed: 12/17/2022] Open
Abstract
Ribosomal DNA (rDNA) repeat instability and protein aggregation are thought to be two major and independent drivers of cellular aging. Pbp1, the yeast ortholog of human ATXN2, maintains rDNA repeat stability and lifespan via suppression of RNA-DNA hybrids. ATXN2 polyglutamine expansion drives neurodegeneration causing spinocerebellar ataxia type 2 and promoting amyotrophic lateral sclerosis. Here, molecular characterization of Pbp1 revealed that its knockout or subjection to disease-modeling polyQ expansion represses Ty1 (Transposons of Yeast) retrotransposons by respectively promoting Trf4-depedendent RNA turnover and Ty1 Gag protein aggregation. This aggregation, but not its impact on retrotransposition, compromises rDNA repeat stability and shortens lifespan by hyper-activating Trf4-dependent turnover of intergenic ncRNA within the repeats. We uncover a function for the conserved Pbp1/ATXN2 proteins in the promotion of retrotransposition, create and describe powerful yeast genetic models of ATXN2-linked neurodegenerative diseases, and connect the major aging mechanisms of rDNA instability and protein aggregation.
Collapse
|
8
|
Boni AC, Ambrósio DL, Cupertino FB, Montenegro-Montero A, Virgilio S, Freitas FZ, Corrocher FA, Gonçalves RD, Yang A, Weirauch MT, Hughes TR, Larrondo LF, Bertolini MC. Neurospora crassa developmental control mediated by the FLB-3 transcription factor. Fungal Biol 2018; 122:570-582. [PMID: 29801802 DOI: 10.1016/j.funbio.2018.01.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 01/16/2018] [Accepted: 01/22/2018] [Indexed: 10/17/2022]
Abstract
Here, we report that the Neurospora crassa FLB-3 protein, the ortholog of the Aspergillus nidulans FlbC transcription factor, is required for developmental control. Deletion of flb-3 leads to changes in hyphae morphology and affects sexual and asexual development. We identified, as putative FLB-3 targets, the N. crassa aba-1, wet-1 and vos-1 genes, orthologs of the ones involved in A. nidulans asexual development and that work downstream of FlbC (abaA, wetA and vosA). In N. crassa, these three genes require FLB-3 for proper expression; however, they appear not to be required for normal development, as demonstrated by gene expression analyses during vegetative growth and asexual development. Moreover, mutant strains in the three genes conidiate well and produce viable conidia. We also determined FLB-3 DNA-binding preferences via protein-binding microarrays (PBMs) and demonstrated by chromatin immunoprecipitation (ChIP) that FLB-3 binds the aba-1, wet-1 and vos-1 promoters. Our data support an important role for FLB-3 in N. crassa development and highlight differences between the regulatory pathways controlled by this transcription factor in different fungal species.
Collapse
Affiliation(s)
- Ana Carolina Boni
- Departamento de Bioquímica e Tecnologia Química, Instituto de Química, UNESP, Universidade Estadual Paulista, 14800-060, Araraquara, SP, Brazil
| | - Daniela Luz Ambrósio
- Departamento de Bioquímica e Tecnologia Química, Instituto de Química, UNESP, Universidade Estadual Paulista, 14800-060, Araraquara, SP, Brazil
| | - Fernanda Barbosa Cupertino
- Departamento de Bioquímica e Tecnologia Química, Instituto de Química, UNESP, Universidade Estadual Paulista, 14800-060, Araraquara, SP, Brazil
| | - Alejandro Montenegro-Montero
- Millennium Institute for Integrative Systems and Synthetic Biology (MIISSB), Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Stela Virgilio
- Departamento de Bioquímica e Tecnologia Química, Instituto de Química, UNESP, Universidade Estadual Paulista, 14800-060, Araraquara, SP, Brazil
| | - Fernanda Zanolli Freitas
- Departamento de Bioquímica e Tecnologia Química, Instituto de Química, UNESP, Universidade Estadual Paulista, 14800-060, Araraquara, SP, Brazil
| | - Flávia Adolfo Corrocher
- Departamento de Bioquímica e Tecnologia Química, Instituto de Química, UNESP, Universidade Estadual Paulista, 14800-060, Araraquara, SP, Brazil
| | - Rodrigo Duarte Gonçalves
- Departamento de Bioquímica e Tecnologia Química, Instituto de Química, UNESP, Universidade Estadual Paulista, 14800-060, Araraquara, SP, Brazil
| | - Ally Yang
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Matthew T Weirauch
- Center for Autoimmune Genomics and Etiology (CAGE) and Divisions of Biomedical Informatics and Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Timothy R Hughes
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Canadian Institutes for Advanced Research, Toronto, ON, Canada
| | - Luis F Larrondo
- Millennium Institute for Integrative Systems and Synthetic Biology (MIISSB), Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Maria Célia Bertolini
- Departamento de Bioquímica e Tecnologia Química, Instituto de Química, UNESP, Universidade Estadual Paulista, 14800-060, Araraquara, SP, Brazil.
| |
Collapse
|
9
|
Pimmett VL, Deng H, Haskins JA, Mercier RJ, LaPointe P, Simmonds AJ. The activity of the Drosophila Vestigial protein is modified by Scalloped-dependent phosphorylation. Dev Biol 2017; 425:58-69. [PMID: 28322734 DOI: 10.1016/j.ydbio.2017.03.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 02/01/2017] [Accepted: 03/14/2017] [Indexed: 12/18/2022]
Abstract
The Drosophila vestigial gene is required for proliferation and differentiation of the adult wing and for differentiation of larval and adult muscle identity. Vestigial is part of a multi-protein transcription factor complex, which includes Scalloped, a TEAD-class DNA binding protein. Binding Scalloped is necessary for translocation of Vestigial into the nucleus. We show that Vestigial is extensively post-translationally modified and at least one of these modifications is required for proper function during development. We have shown that there is p38-dependent phosphorylation of Serine 215 in the carboxyl-terminal region of Vestigial. Phosphorylation of Serine 215 occurs in the nucleus and requires the presence of Scalloped. Comparison of a phosphomimetic and non-phosphorylatable mutant forms of Vestigial shows differences in the ability to rescue the wing and muscle phenotypes associated with a null vestigial allele.
Collapse
Affiliation(s)
- Virginia L Pimmett
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada T6G2H7
| | - Hua Deng
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada T6G2H7; Howard Hughes Medical Institute, Dept. of Physiology, UT Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA
| | - Julie A Haskins
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada T6G2H7
| | - Rebecca J Mercier
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada T6G2H7
| | - Paul LaPointe
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada T6G2H7
| | - Andrew J Simmonds
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada T6G2H7
| |
Collapse
|
10
|
Landin-Malt A, Benhaddou A, Zider A, Flagiello D. An evolutionary, structural and functional overview of the mammalian TEAD1 and TEAD2 transcription factors. Gene 2016; 591:292-303. [PMID: 27421669 DOI: 10.1016/j.gene.2016.07.028] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 07/08/2016] [Accepted: 07/11/2016] [Indexed: 01/22/2023]
Abstract
TEAD proteins constitute a family of highly conserved transcription factors, characterized by a DNA-binding domain called the TEA domain and a protein-binding domain that permits association with transcriptional co-activators. TEAD proteins are unable to induce transcription on their own. They have to interact with transcriptional cofactors to do so. Once TEADs bind their co-activators, the different complexes formed are known to regulate the expression of genes that are crucial for embryonic development, important for organ formation (heart, muscles), and involved in cell death and proliferation. In the first part of this review we describe what is known of the structure of TEAD proteins. We then focus on two members of the family: TEAD1 and TEAD2. First the different transcriptional cofactors are described. These proteins can be classified in three categories: i), cofactors regulating chromatin conformation, ii), cofactors able to bind DNA, and iii), transcriptional cofactors without DNA binding domain. Finally we discuss the recent findings that identified TEAD1 and 2 and its coactivators involved in cancer progression.
Collapse
Affiliation(s)
- André Landin-Malt
- Department of Cell Biology, University of Virginia Health System, Charlottesville, VA 22908, USA.
| | - Ataaillah Benhaddou
- Univ Paris Diderot, Sorbonne Paris Cité, Team Regulation of Cell-Fate Specification in the Mouse, IJM, UMR 7592 CNRS, Paris, France.
| | - Alain Zider
- Univ Paris Diderot, Sorbonne Paris Cité, Team Molecular Oncology and Ovarian Pathologies, IJM, UMR 7592 CNRS, Paris, France.
| | - Domenico Flagiello
- Univ Paris Diderot, Sorbonne Paris Cité, Team Regulation of Cell-Fate Specification in the Mouse, IJM, UMR 7592 CNRS, Paris, France.
| |
Collapse
|
11
|
Aristizabal MJ, Negri GL, Kobor MS. The RNAPII-CTD Maintains Genome Integrity through Inhibition of Retrotransposon Gene Expression and Transposition. PLoS Genet 2015; 11:e1005608. [PMID: 26496706 PMCID: PMC4619828 DOI: 10.1371/journal.pgen.1005608] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Accepted: 09/27/2015] [Indexed: 12/14/2022] Open
Abstract
RNA polymerase II (RNAPII) contains a unique C-terminal domain that is composed of heptapeptide repeats and which plays important regulatory roles during gene expression. RNAPII is responsible for the transcription of most protein-coding genes, a subset of non-coding genes, and retrotransposons. Retrotransposon transcription is the first step in their multiplication cycle, given that the RNA intermediate is required for the synthesis of cDNA, the material that is ultimately incorporated into a new genomic location. Retrotransposition can have grave consequences to genome integrity, as integration events can change the gene expression landscape or lead to alteration or loss of genetic information. Given that RNAPII transcribes retrotransposons, we sought to investigate if the RNAPII-CTD played a role in the regulation of retrotransposon gene expression. Importantly, we found that the RNAPII-CTD functioned to maintaining genome integrity through inhibition of retrotransposon gene expression, as reducing CTD length significantly increased expression and transposition rates of Ty1 elements. Mechanistically, the increased Ty1 mRNA levels in the rpb1-CTD11 mutant were partly due to Cdk8-dependent alterations to the RNAPII-CTD phosphorylation status. In addition, Cdk8 alone contributed to Ty1 gene expression regulation by altering the occupancy of the gene-specific transcription factor Ste12. Loss of STE12 and TEC1 suppressed growth phenotypes of the RNAPII-CTD truncation mutant. Collectively, our results implicate Ste12 and Tec1 as general and important contributors to the Cdk8, RNAPII-CTD regulatory circuitry as it relates to the maintenance of genome integrity.
Collapse
Affiliation(s)
- Maria J. Aristizabal
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Gian Luca Negri
- Department of Molecular Oncology, BC Cancer Research Center, University of British Columbia, Vancouver, British Columbia, Canada
| | - Michael S. Kobor
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
12
|
Wang P, Lü J, Yu X. Identification of important nodes in directed biological networks: a network motif approach. PLoS One 2014; 9:e106132. [PMID: 25170616 PMCID: PMC4149525 DOI: 10.1371/journal.pone.0106132] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 08/03/2014] [Indexed: 11/18/2022] Open
Abstract
Identification of important nodes in complex networks has attracted an increasing attention over the last decade. Various measures have been proposed to characterize the importance of nodes in complex networks, such as the degree, betweenness and PageRank. Different measures consider different aspects of complex networks. Although there are numerous results reported on undirected complex networks, few results have been reported on directed biological networks. Based on network motifs and principal component analysis (PCA), this paper aims at introducing a new measure to characterize node importance in directed biological networks. Investigations on five real-world biological networks indicate that the proposed method can robustly identify actually important nodes in different networks, such as finding command interneurons, global regulators and non-hub but evolutionary conserved actually important nodes in biological networks. Receiver Operating Characteristic (ROC) curves for the five networks indicate remarkable prediction accuracy of the proposed measure. The proposed index provides an alternative complex network metric. Potential implications of the related investigations include identifying network control and regulation targets, biological networks modeling and analysis, as well as networked medicine.
Collapse
Affiliation(s)
- Pei Wang
- School of Mathematics and Information Sciences, Henan University, Kaifeng, China
- School of Electrical and Computer Engineering, RMIT University, Melbourne, Victoria, Australia
- * E-mail:
| | - Jinhu Lü
- Institute of Systems Science, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, China
| | - Xinghuo Yu
- School of Electrical and Computer Engineering, RMIT University, Melbourne, Victoria, Australia
| |
Collapse
|
13
|
Kemmeren P, Sameith K, van de Pasch L, Benschop J, Lenstra T, Margaritis T, O’Duibhir E, Apweiler E, van Wageningen S, Ko C, van Heesch S, Kashani M, Ampatziadis-Michailidis G, Brok M, Brabers N, Miles A, Bouwmeester D, van Hooff S, van Bakel H, Sluiters E, Bakker L, Snel B, Lijnzaad P, van Leenen D, Groot Koerkamp M, Holstege F. Large-Scale Genetic Perturbations Reveal Regulatory Networks and an Abundance of Gene-Specific Repressors. Cell 2014; 157:740-52. [DOI: 10.1016/j.cell.2014.02.054] [Citation(s) in RCA: 203] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 12/30/2013] [Accepted: 02/25/2014] [Indexed: 11/17/2022]
|
14
|
Zhao XF, Li M, Li YQ, Chen XD, Gao XD. The TEA/ATTS transcription factor YlTec1p represses the yeast-to-hypha transition in the dimorphic yeast Yarrowia lipolytica. FEMS Yeast Res 2012; 13:50-61. [PMID: 23067114 DOI: 10.1111/j.1567-1364.2012.12008.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 09/10/2012] [Accepted: 09/17/2012] [Indexed: 11/29/2022] Open
Abstract
Tec1p in the budding yeast Saccharomyces cerevisiae is important for dimorphic transition. In this study, we identified a homologue of Tec1p, YlTec1p, in the distantly related dimorphic yeast Yarrowia lipolytica. YlTec1p contains an evolutionarily conserved TEA/ATTS DNA-binding domain. Expression of YlTEC1 in S. cerevisiae tec1Δ cells rescued the invasive growth defect and activated a FLO11-lacZ reporter, indicating that YlTec1p is functionally related to Tec1p. However, YlTEC1 expression failed to activate an FRE-lacZ reporter, suggesting that these two transcription factors are different. YlTEC1 plays a negative role in the yeast-to-hypha transition in Y. lipolytica based on gene deletion and overexpression studies. We show that YlTec1p activates rather than represses gene expression in Y. lipolytica by yeast one-hybrid assay, and YlTec1p is critical for the activation of FLO11-lacZ in Y. lipolytica. In addition, YlTec1p localized to the nucleus and its nuclear localization decreased during hyphal growth. We speculate that YlTec1p may normally regulate the expression of a set of target genes that may prevent rather than promote hyphal development in Y. lipolytica. Our study also suggests that YlTEC1 may not be largely regulated by the cAMP-protein kinase A pathway.
Collapse
Affiliation(s)
- Xiao-Feng Zhao
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | | | | | | | | |
Collapse
|
15
|
Magico AC, Bell JB. Identification of a classical bipartite nuclear localization signal in the Drosophila TEA/ATTS protein scalloped. PLoS One 2011; 6:e21431. [PMID: 21731746 PMCID: PMC3121794 DOI: 10.1371/journal.pone.0021431] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2011] [Accepted: 05/27/2011] [Indexed: 11/18/2022] Open
Abstract
Drosophila melanogaster wing development has been shown to rely on the activity of a complex of two proteins, Scalloped (Sd) and Vestigial (Vg). Within this complex, Sd is known to provide DNA binding though its TEA/ATTS domain, while Vg modulates this binding and provides transcriptional activation through N- and C-terminal activation domains. There is also evidence that Sd is required for the nuclear translocation of Vg. Indeed, a candidate sequence which shows consensus to the bipartite family of nuclear localization signals (NLSs) has been identified within Sd previously, though it is not known if it is functional, or if additional unpredicted signals that mediate nuclear transport exist within the protein. By expressing various enhanced green fluorescent protein (eGFP) tagged constructs within Drosophila S2 cells, we demonstrate that this NLS is indeed functional and necessary for the proper nuclear localization of Sd. Additionally, the region containing the NLS is critical for the wildtype function of ectopically expressed Sd, in the context of wing development. Using site-directed mutagenesis, we have identified a group of five amino acids within this NLS which is critical for its function, as well as another group of two which is of lesser importance. Together with data that suggests that this sequence mediates interactions with Importin-α3, we conclude that the identified NLS is likely a classical bipartite signal. Further dissection of Sd has also revealed that a large portion of the C-terminal domain of the protein is required its proper nuclear localization. Finally, a Leptomycin B (LB) sensitive signal which appears to facilitate nuclear export is identified, raising the possibility that Sd also contains a nuclear export signal (NES).
Collapse
Affiliation(s)
- Adam C. Magico
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - John B. Bell
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
- * E-mail:
| |
Collapse
|
16
|
van Wageningen S, Kemmeren P, Lijnzaad P, Margaritis T, Benschop JJ, de Castro IJ, van Leenen D, Groot Koerkamp MJA, Ko CW, Miles AJ, Brabers N, Brok MO, Lenstra TL, Fiedler D, Fokkens L, Aldecoa R, Apweiler E, Taliadouros V, Sameith K, van de Pasch LAL, van Hooff SR, Bakker LV, Krogan NJ, Snel B, Holstege FCP. Functional overlap and regulatory links shape genetic interactions between signaling pathways. Cell 2011; 143:991-1004. [PMID: 21145464 DOI: 10.1016/j.cell.2010.11.021] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2010] [Revised: 09/20/2010] [Accepted: 11/09/2010] [Indexed: 01/30/2023]
Abstract
To understand relationships between phosphorylation-based signaling pathways, we analyzed 150 deletion mutants of protein kinases and phosphatases in S. cerevisiae using DNA microarrays. Downstream changes in gene expression were treated as a phenotypic readout. Double mutants with synthetic genetic interactions were included to investigate genetic buffering relationships such as redundancy. Three types of genetic buffering relationships are identified: mixed epistasis, complete redundancy, and quantitative redundancy. In mixed epistasis, the most common buffering relationship, different gene sets respond in different epistatic ways. Mixed epistasis arises from pairs of regulators that have only partial overlap in function and that are coupled by additional regulatory links such as repression of one by the other. Such regulatory modules confer the ability to control different combinations of processes depending on condition or context. These properties likely contribute to the evolutionary maintenance of paralogs and indicate a way in which signaling pathways connect for multiprocess control.
Collapse
|
17
|
Maere S, Van Dijck P, Kuiper M. Extracting expression modules from perturbational gene expression compendia. BMC SYSTEMS BIOLOGY 2008; 2:33. [PMID: 18402676 PMCID: PMC2386865 DOI: 10.1186/1752-0509-2-33] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2007] [Accepted: 04/10/2008] [Indexed: 12/14/2022]
Abstract
Background Compendia of gene expression profiles under chemical and genetic perturbations constitute an invaluable resource from a systems biology perspective. However, the perturbational nature of such data imposes specific challenges on the computational methods used to analyze them. In particular, traditional clustering algorithms have difficulties in handling one of the prominent features of perturbational compendia, namely partial coexpression relationships between genes. Biclustering methods on the other hand are specifically designed to capture such partial coexpression patterns, but they show a variety of other drawbacks. For instance, some biclustering methods are less suited to identify overlapping biclusters, while others generate highly redundant biclusters. Also, none of the existing biclustering tools takes advantage of the staple of perturbational expression data analysis: the identification of differentially expressed genes. Results We introduce a novel method, called ENIGMA, that addresses some of these issues. ENIGMA leverages differential expression analysis results to extract expression modules from perturbational gene expression data. The core parameters of the ENIGMA clustering procedure are automatically optimized to reduce the redundancy between modules. In contrast to the biclusters produced by most other methods, ENIGMA modules may show internal substructure, i.e. subsets of genes with distinct but significantly related expression patterns. The grouping of these (often functionally) related patterns in one module greatly aids in the biological interpretation of the data. We show that ENIGMA outperforms other methods on artificial datasets, using a quality criterion that, unlike other criteria, can be used for algorithms that generate overlapping clusters and that can be modified to take redundancy between clusters into account. Finally, we apply ENIGMA to the Rosetta compendium of expression profiles for Saccharomyces cerevisiae and we analyze one pheromone response-related module in more detail, demonstrating the potential of ENIGMA to generate detailed predictions. Conclusion It is increasingly recognized that perturbational expression compendia are essential to identify the gene networks underlying cellular function, and efforts to build these for different organisms are currently underway. We show that ENIGMA constitutes a valuable addition to the repertoire of methods to analyze such data.
Collapse
Affiliation(s)
- Steven Maere
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052 Ghent, Belgium.
| | | | | |
Collapse
|
18
|
Divol B, van Rensburg P. PGU1 gene natural deletion is responsible for the absence of endo-polygalacturonase activity in some wine strains of Saccharomyces cerevisiae. FEMS Yeast Res 2007; 7:1328-39. [PMID: 17655687 DOI: 10.1111/j.1567-1364.2007.00284.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The PGU1 gene encodes an endo-polygalacturonase enzyme in Saccharomyces cerevisiae. The literature reports that most S. cerevisiae strains possess this gene, despite a wide range of enzyme activity levels. Nevertheless, a few wine strains lack the PGU1 gene. We investigated the PGU1 locus sequence in these strains. The results indicated that the gene had been replaced by a partial Ty mobile element, whereas the gene promoter was still at the expected location. As all the strains lacking the PGU1 gene experienced the same phenomenon, it was tempting to hypothesize a common phylogenetic origin. However, fingerprints only allowed grouping of a few of them within one cluster.
Collapse
Affiliation(s)
- Benoit Divol
- Institute for Wine Biotechnology, Stellenbosch University, Matieland, South Africa
| | | |
Collapse
|
19
|
Azakie A, Lamont L, Fineman JR, He Y. Divergent transcriptional enhancer factor-1 regulates the cardiac troponin T promoter. Am J Physiol Cell Physiol 2005; 289:C1522-34. [PMID: 16049055 DOI: 10.1152/ajpcell.00126.2005] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
MCAT elements are essential for cardiac gene expression during development. Avian transcriptional enhancer factor-1 (TEF-1) proteins are muscle-enriched and contribute to MCAT binding activities. However, direct activation of MCAT-driven promoters by TEF-1-related proteins has not been uniformly achieved. Divergent TEF (DTEF)-1 is a unique member of the TEF-1 multigene family with abundant transcripts in the heart but not in skeletal muscle. Herein we show that DTEF-1 proteins are highly expressed in the heart. Protein expression is activated at very early stages of chick embryogenesis (Hamburger-Hamilton stage 4, 16–18 h), after which DTEF-1 becomes abundant in the sinus venosus and is expressed in the trabeculated ventricular myocardium and ventricular outflow tracts. By chromatin immunoprecipitation, DTEF-1 interacts with the cardiac troponin T (cTnT) promoter in vivo. DTEF-1 also interacts with MEF- 2 by coimmunoprecipitation and independently or cooperatively (with MEF-2) trans-activates the cTnT promoter. DTEF-1 isoforms do not activate the cTnT promoter in fibroblasts or skeletal muscle. DTEF-1 expression occurs very early in chick embryogenesis (16–18 h), preceding sarcomeric protein expression, and it activates cardiac promoters. As such, DTEF-1 may be an early marker of the myocardial phenotype. DTEF-1 trans-activates the cTnT promoter in a tissue-specific fashion independent of AT-rich, MEF-2, or GATA sites. The observed spatial pattern suggests decreasing levels of expression from the cardiac inlet to the ventricular outflow tracts, which may mark a cardiogenic or differentiation pathway that parallels the direction of flow through the developing chick heart.
Collapse
Affiliation(s)
- Anthony Azakie
- Department of Surgery, Univ. of California San Francisco, San Francisco, CA 94143, USA
| | | | | | | |
Collapse
|
20
|
Lesage P, Todeschini AL. Happy together: the life and times of Ty retrotransposons and their hosts. Cytogenet Genome Res 2005; 110:70-90. [PMID: 16093660 DOI: 10.1159/000084940] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2003] [Accepted: 03/18/2004] [Indexed: 11/19/2022] Open
Abstract
The aim of this review is to describe the level of intimacy between Ty retrotransposons (Ty1-Ty5) and their host the yeast Saccharomyces cerevisiae. The effects of Ty location in the genome and of host proteins on the expression and mobility of Ty elements are highlighted. After a brief overview of Ty diversity and evolution, we describe the factors that dictate Ty target-site preference and the impact of targeting on Ty and adjacent gene expression. Studies on Ty3 and Ty5 have been especially informative in unraveling the role of host factors (Pol III machinery and silencing proteins, respectively) and integrase in controlling the specificity of integration. In contrast, not much is known regarding Ty1, Ty2 and Ty4, except that their insertion depends on the transcriptional competence of the adjacent Pol III gene and might be influenced by some chromatin components. This review also brings together recent findings on the regulation of Ty1 retrotransposition. A large number of host proteins (over 30) involved in a wide range of cellular processes controls either directly or indirectly Ty1 mobility, primarily at post-transcriptional steps. We focus on several genes for which more detailed analyses have permitted the elaboration of regulatory models. In addition, this review describes new data revealing that repression of Ty1 mobility also involves two forms of copy number control that act at both the trancriptional and post-transcriptional levels. Since S. cerevisiae lacks the conserved pathways for copy number control via transcriptional and post-transcriptional gene silencing found in other eukaryotes, Ty1 copy number control must be via another mechanism whose features are outlined. Ty1 response to stress also implicates activation at both transcriptional and postranscriptional steps of Ty1. Finally, we provide several insights in the role of Ty elements in chromosome evolution and yeast adaptation and discuss the factors that might limit Ty ectopic recombination.
Collapse
Affiliation(s)
- P Lesage
- Institut de Biologie Physico-Chimique, CNRS UPR 9073, Paris, France.
| | | |
Collapse
|
21
|
Abstract
Cells respond to a plethora of signals using a limited set of intracellular signal transduction components. Surprisingly, pathways that transduce distinct signals can share protein components, yet avoid erroneous cross-talk. A highly tractable model system in which to study this paradox is the yeast Saccharomyces cerevisiae, which harbors three mitogen-activated protein kinase (MAPK) signal transduction cascades that share multiple signaling components. In this review we first describe potential mechanisms by which specificity could be achieved by signaling pathways that share components. Second, we summarize key features and components of the yeast MAPK pathways that control the mating pheromone response, filamentous growth, and the response to high osmolarity. Finally, we review biochemical analyses in yeast of mutations that cause cross-talk between these three MAPK pathways and their implications for the mechanistic bases for signaling specificity. Although much remains to be learned, current data indicate that scaffolding and cross pathway inhibition play key roles in the maintenance of fidelity.
Collapse
Affiliation(s)
- Monica A Schwartz
- Department of Biochemistry and Biophysics, University of California, San Francisco, California 94143-2200, USA.
| | | |
Collapse
|
22
|
Gagiano M, Bauer FF, Pretorius IS. The sensing of nutritional status and the relationship to filamentous growth in Saccharomyces cerevisiae. FEMS Yeast Res 2002; 2:433-70. [PMID: 12702263 DOI: 10.1111/j.1567-1364.2002.tb00114.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Heterotrophic organisms rely on the ingestion of organic molecules or nutrients from the environment to sustain energy and biomass production. Non-motile, unicellular organisms have a limited ability to store nutrients or to take evasive action, and are therefore most directly dependent on the availability of nutrients in their immediate surrounding. Such organisms have evolved numerous developmental options in order to adapt to and to survive the permanently changing nutritional status of the environment. The phenotypical, physiological and molecular nature of nutrient-induced cellular adaptations has been most extensively studied in the yeast Saccharomyces cerevisiae. These studies have revealed a network of sensing mechanisms and of signalling pathways that generate and transmit the information on the nutritional status of the environment to the cellular machinery that implements specific developmental programmes. This review integrates our current knowledge on nutrient sensing and signalling in S. cerevisiae, and suggests how an integrated signalling network may lead to the establishment of a specific developmental programme, namely pseudohyphal differentiation and invasive growth.
Collapse
Affiliation(s)
- Marco Gagiano
- Institute for Wine Biotechnology, Department of Viticulture and Oenology, Stellenbosch University, South Africa
| | | | | |
Collapse
|
23
|
Tanoue Y, Yasunami M, Suzuki K, Ohkubo H. Identification and characterization of cell-specific enhancer elements for the mouse ETF/Tead2 gene. Biochem Biophys Res Commun 2001; 289:1010-8. [PMID: 11741291 DOI: 10.1006/bbrc.2001.6104] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have identified and characterized by transient transfection assays the cell-specific 117-bp enhancer sequence in the first intron of the mouse ETF (Embryonic TEA domain-containing factor)/Tead2 gene required for transcriptional activation in ETF/Tead2 gene-expressing cells, such as P19 cells. The 117-bp enhancer contains one GC-rich sequence (5'-GGGGCGGGG-3'), termed the GC box, and two tandemly repeated GA-rich sequences (5'-GGGGGAGGGG-3'), termed the proximal and distal GA elements. Further analyses, including transfection studies and electrophoretic mobility shift assays using a series of deletion and mutation constructs, indicated that Sp1, a putative activator, may be required to predominate over its competition with another unknown putative repressor, termed the GA element-binding factor, for binding to both the GC box, which overlapped with the proximal GA element, and the distal GA element in the 117-bp sequence in order to achieve a full enhancer activity. We also discuss a possible mechanism underlying the cell-specific enhancer activity of the 117-bp sequence.
Collapse
Affiliation(s)
- Y Tanoue
- Institute of Molecular Embryology and Genetics, Kumamoto University, Kuhonji 4-24-1, Kumamoto, 862-0976, Japan
| | | | | | | |
Collapse
|
24
|
Scholes DT, Banerjee M, Bowen B, Curcio MJ. Multiple regulators of Ty1 transposition in Saccharomyces cerevisiae have conserved roles in genome maintenance. Genetics 2001; 159:1449-65. [PMID: 11779788 PMCID: PMC1461915 DOI: 10.1093/genetics/159.4.1449] [Citation(s) in RCA: 199] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Most Ty1 retrotransposons in the genome of Saccharomyces cerevisiae are transpositionally competent but rarely transpose. We screened yeast mutagenized by insertion of the mTn3-lacZ/LEU2 transposon for mutations that result in elevated Ty1 cDNA-mediated mobility, which occurs by cDNA integration or recombination. Here, we describe the characterization of mTn3 insertions in 21 RTT (regulation of Ty1 transposition) genes that result in 5- to 111-fold increases in Ty1 mobility. These 21 RTT genes are EST2, RRM3, NUT2, RAD57, RRD2, RAD50, SGS1, TEL1, SAE2, MED1, MRE11, SCH9, KAP122, and 8 previously uncharacterized genes. Disruption of RTT genes did not significantly increase Ty1 RNA levels but did enhance Ty1 cDNA levels, suggesting that most RTT gene products act at a step after mRNA accumulation but before cDNA integration. The rtt mutations had widely varying effects on integration of Ty1 at preferred target sites. Mutations in RTT101 and NUT2 dramatically stimulated Ty1 integration upstream of tRNA genes. In contrast, a mutation in RRM3 increased Ty1 mobility >100-fold without increasing integration upstream of tRNA genes. The regulation of Ty1 transposition by components of fundamental pathways required for genome maintenance suggests that Ty1 and yeast have coevolved to link transpositional dormancy to the integrity of the genome.
Collapse
Affiliation(s)
- D T Scholes
- Molecular Genetics Program, Wadsworth Center and School of Public Health, State University of New York, Albany, New York 12201-2002, USA
| | | | | | | |
Collapse
|
25
|
Zuzarte PC, Farrance IK, Simpson PC, Wildeman AG. Tumor cell splice variants of the transcription factor TEF-1 induced by SV40 T-antigen transformation. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1517:82-90. [PMID: 11118619 DOI: 10.1016/s0167-4781(00)00261-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The large tumor antigen (TAg) of simian virus 40 is able to transform cells through interactions with cellular proteins, notably p53 and Rb. Among the other proteins that form complexes with TAg is TEF-1, a transcription factor utilized by the viral enhancer to activate expression of the early gene which encodes TAg. We show that fibroblasts contain several alternately spliced TEF-1 mRNAs, the most abundant of which encodes a protein with an additional four amino acid exon compared to the database entry for Hela cell TEF-1. Transformation by TAg induces alternate splicing, producing a more abundant form lacking this exon and matching the published sequence. Splicing variants lacking this exon were detected in mouse pancreatic tumors and in cell lines derived from human pancreatic cancers, in contrast to a single isoform with the exon in normal mouse pancreas. A total of eight splice variants were identified, with the loss of the four amino acid exon typical of transformed cells. These and other data presented suggest that TAg 're-models' host cell transcription factors that are used early in viral infection, and thereby mimics an event that naturally occurs during transformation. The data indicate that TEF-1 alterations may be a hallmark feature of tumorigenesis.
Collapse
Affiliation(s)
- P C Zuzarte
- Department of Molecular Biology and Genetics, University of Guelph, Ontario, Canada
| | | | | | | |
Collapse
|
26
|
Borneman AR, Hynes MJ, Andrianopoulos A. The abaA homologue of Penicillium marneffei participates in two developmental programmes: conidiation and dimorphic growth. Mol Microbiol 2000; 38:1034-47. [PMID: 11123677 DOI: 10.1046/j.1365-2958.2000.02202.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Penicillium marneffei is the only known species of its genus that is dimorphic. At 25 degrees C, P. marneffei exhibits true filamentous growth and undergoes asexual development producing spores borne on complex structures called conidiophores. At 37 degrees C, P. marneffei undergoes a dimorphic transition to produce uninucleate yeast cells that divide by fission. We have cloned a homologue of the Aspergillus nidulans abaA gene encoding an ATTS/TEA DNA-binding domain transcriptional regulator and shown that it is involved in both these developmental programs. Targeted deletion of abaA blocks asexual development at 25 degrees C before spore production, resulting in aberrant conidiophores with reiterated terminal cells. At 37 degrees C, the abaA deletion strain fails to switch correctly from multinucleate filamentous to uninucleate yeast cells. Both the transitional hyphal cells, which produce the yeast cells, and the yeast cells themselves contain multiple nuclei. Expression of the abaA gene is activated during both conidiation and the hyphal-yeast switch. Interestingly, the abaA gene of the filamentous monomorphic fungus A. nidulans can complement both conidiation and dimorphic switching defects in the P. marneffei abaA mutant. In addition, ectopic overexpression of abaA results in anucleate yeast cells and multinucleate vegetative filamentous cells. These data suggest that abaA regulates cell cycle events and morphogenesis in two distinct developmental programmes.
Collapse
Affiliation(s)
- A R Borneman
- Department of Genetics, University of Melbourne, Victoria, Australia 3010
| | | | | |
Collapse
|
27
|
Schweizer A, Rupp S, Taylor BN, Röllinghoff M, Schröppel K. The TEA/ATTS transcription factor CaTec1p regulates hyphal development and virulence in Candida albicans. Mol Microbiol 2000; 38:435-45. [PMID: 11069668 DOI: 10.1046/j.1365-2958.2000.02132.x] [Citation(s) in RCA: 184] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The temporal and spatial expression of stage-specific genes during morphological development of fungi and higher eukaryotes is controlled by transcription factors. In this study, we report the cloning and functional analysis of the Candida albicans TEC1 (CaTEC1) gene, a new member of the TEA/ATTS family of transcription factors that regulates C. albicans virulence. The promoters of the type 4, 5 and 6 proteinase isogenes (SAP4-6) contain repetitive TEA/ATTS consensus sequence motifs. This finding suggests a possible role for a homologue of Saccharomyces cerevisiae TEC1 during the activation of proteinase gene expression in C. albicans. CaTEC1 is predominantly expressed in the hyphal form of C. albicans. In vitro, serum-induced hyphal formation as well as evasion from MPhi after phagocytosis is suppressed in catec1/catec1 mutant cells. Furthermore, expression of the proteinase isogenes SAP4-6 is no longer inducible in these mutant cells. The deletion of the CaTEC1 gene attenuates virulence of C. albicans in a systemic model of murine candidiasis, although both mutant and revertant cells that were prepared from infected tissues or the vaginal mucosa grew in a hyphal morphology in vivo. CaTEC1 complements the pseudohyphal and invasive growth defect of haploid and diploid S. cerevisiae tec1/tec1 mutant cells and strongly activates the promoter of FLO11, a gene required for pseudohyphal growth. This study provides the first evidence pointing to an essential role for a member of the TEA/ATTS transcription factor family that had so far only been ascribed to function during development as a virulence regulator in microbial pathogenesis.
Collapse
Affiliation(s)
- A Schweizer
- Institute of Clinical Microbiology, Immunology and Hygiene, University of Erlangen, Wasserturmstrasse 3, 91054 Erlangen, Germany
| | | | | | | | | |
Collapse
|
28
|
Abstract
Fus3, the mitogen-activated protein kinase (MAPK) of the mating pheromone response pathway, inhibits a post-translational step of Ty1 retrotransposition. Fus3 also inhibits haploid invasive growth by blocking cross-activation of invasive growth gene expression by the pheromone response signal cascade. Here, we show that Fus3 kinase activity and dosage co-ordinately regulate Ty1 transposition and invasive growth. A chromosomal copy of the kinase-defective fus3-K42R allele fails to inhibit either Ty1 transposition or invasive growth. When overexpressed, kinase-defective Fus3 weakly inhibits both Ty1 transposition and invasive growth, but is much less inhibitory than wild-type Fus3 expressed at the same level. Moreover, increasing the dosage of wild-type Fus3 intensifies the inhibition of both Ty1 transposition and invasive growth. To demonstrate that Fus3 regulates Ty1 transposition via its negative regulation of the invasive growth pathway, we show by epistatic analysis that the invasive growth pathway transcription factors Ste12 and Tec1 are both required for Fus3-mediated inhibition of Ty1 transposition. When haploid invasive growth is stimulated by high-copy expression of TEC1, by expression of the dominant hypermorphic allele STE11-4 or by deletion of HOG1, Ty1 transposition is concomitantly activated. In summary, these results demonstrate that the haploid invasive growth pathway activates Ty1 transposition at both transcriptional and post-transcriptional levels and that Fus3 inhibits Ty1 transposition by inhibiting the invasive growth pathway.
Collapse
Affiliation(s)
- D Conte
- Molecular Genetics Program, Wadsworth Center and School of Public Health, State University of New York at Albany, PO Box 22002, Albany, NY 12201-2002, USA
| | | |
Collapse
|
29
|
Mösch HU, Kübler E, Krappmann S, Fink GR, Braus GH. Crosstalk between the Ras2p-controlled mitogen-activated protein kinase and cAMP pathways during invasive growth of Saccharomyces cerevisiae. Mol Biol Cell 1999; 10:1325-35. [PMID: 10233147 PMCID: PMC25273 DOI: 10.1091/mbc.10.5.1325] [Citation(s) in RCA: 147] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The two highly conserved RAS genes of the budding yeast Saccharomyces cerevisiae are redundant for viability. Here we show that haploid invasive growth development depends on RAS2 but not RAS1. Ras1p is not sufficiently expressed to induce invasive growth. Ras2p activates invasive growth using either of two downstream signaling pathways, the filamentation MAPK (Cdc42p/Ste20p/MAPK) cascade or the cAMP-dependent protein kinase (Cyr1p/cAMP/PKA) pathway. This signal branch point can be uncoupled in cells expressing Ras2p mutant proteins that carry amino acid substitutions in the adenylyl cyclase interaction domain and therefore activate invasive growth solely dependent on the MAPK cascade. Both Ras2p-controlled signaling pathways stimulate expression of the filamentation response element-driven reporter gene depending on the transcription factors Ste12p and Tec1p, indicating a crosstalk between the MAPK and the cAMP signaling pathways in haploid cells during invasive growth.
Collapse
Affiliation(s)
- H U Mösch
- Institute for Microbiology and Genetics, Georg-August-University, D-37077 Göttingen, Germany
| | | | | | | | | |
Collapse
|
30
|
Saleh A, Schieltz D, Ting N, McMahon SB, Litchfield DW, Yates JR, Lees-Miller SP, Cole MD, Brandl CJ. Tra1p is a component of the yeast Ada.Spt transcriptional regulatory complexes. J Biol Chem 1998; 273:26559-65. [PMID: 9756893 DOI: 10.1074/jbc.273.41.26559] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The yeast Ada and TBP class of Spt proteins interact in multiple complexes that are required for transcriptional regulation. We have identified Tra1p as a component of these complexes through tandem mass spectrometry analysis of proteins that associate with Ngg1p/Ada3p. TRA1 is an essential gene and encodes a 3744-amino acid protein that is a member of a group of proteins including the catalytic subunit of DNA-dependent protein kinase, ATM and TRRAP, with carboxyl-terminal regions related to phosphatidylinositol 3-kinases. The interaction between Tra1p and Ada/Spt components was verified by the reciprocal coimmunoprecipitation of Ada2p and Tra1p from whole cell extracts in one or more complexes containing Spt7p. Tra1p cofractionated with Ngg1p and Spt7p through consecutive chromatography on Mono Q, DNA-cellulose, and Superose 6 columns. Binding of Tra1p to DNA-cellulose required Ada components. The association of Tra1p with two Ada.Spt complexes was suggested by its cofractionation with Ngg1p and Spt7p in two peaks on the Mono Q column. In the absence of Ada2p, the elution profile of Tra1p shifted to a distinct peak. Despite the similarity of Tra1p to a group of putative protein kinases, we have not detected protein kinase activity within immunoprecipitates of Tra1p or the Ada.Spt complexes.
Collapse
Affiliation(s)
- A Saleh
- Department of Biochemistry, University of Western Ontario, London N6A 5C1, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Stewart AF, Suzow J, Kubota T, Ueyama T, Chen HH. Transcription factor RTEF-1 mediates alpha1-adrenergic reactivation of the fetal gene program in cardiac myocytes. Circ Res 1998; 83:43-9. [PMID: 9670917 DOI: 10.1161/01.res.83.1.43] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Alpha1-adrenergic receptor stimulation induces cardiac myocytes to hypertrophy and reactivates many fetal genes, including beta-myosin heavy chain (betaMyHC) and skeletal alpha-actin (SKA), by signaling through myocyte-specific CAT (M-CAT) cis elements, binding sites of the transcriptional enhancer factor-1 (TEF-1) family of transcription factors. To examine functional differences between TEF-1 and related to TEF-1 (RTEF-1) in alpha1-adrenergic reactivation of the fetal program, expression constructs were cotransfected with betaMyHC and SKA promoter/reporter constructs in neonatal rat cardiac myocytes. TEF-I overexpression tended to transactivate a minimal betaMyHC promoter but significantly interfered with a minimal SKA promoter. In contrast, RTEF-1 transactivated both the minimal betaMyHC and SKA promoters. TEF-1 and RTEF-I also affected the alpha1-adrenergic response of the betaMyHC and SKA promoters differently. TEF-1 had no effect. In contrast, RTEF-1 potentiated the alpha1-adrenergic responses of the SKA promoter and of a -3.3-kb betaMyHC promoter. To determine why the promoters responded differently to TEF-1 and RTEF-1, promoters with mutated M-CAT elements were tested in the same way. The betaMyHC promoter required an intact M-CAT element to respond to TEF-1 and RTEF-1, whereas the SKA promoter M-CAT was required for the TEF-1 response but not for the RTEF-1 response, suggesting that SKA promoter-specific cofactors may be involved. By competition gel shift assay, the M-CAT of the minimal betaMyHC promoter had a lower affinity than that of the SKA promoter, which partly explains the different responses of these promoters to TEF-1. These results highlight functional differences between TEF-1 and RTEF-1 and suggest a novel function of RTEF-1 in mediating the alpha1-adrenergic response in hypertrophic cardiac myocytes.
Collapse
Affiliation(s)
- A F Stewart
- Department of Medicine, University of Pittsburgh, PA 15213, USA. als6+@pitt.edu
| | | | | | | | | |
Collapse
|
32
|
Jacquemin P, Sapin V, Alsat E, Evain-Brion D, Dollé P, Davidson I. Differential expression of the TEF family of transcription factors in the murine placenta and during differentiation of primary human trophoblasts in vitro. Dev Dyn 1998; 212:423-36. [PMID: 9671946 DOI: 10.1002/(sici)1097-0177(199807)212:3<423::aid-aja10>3.0.co;2-1] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
We describe the molecular cloning of murine (m) Transcriptional Enhancer Factor (TEF)-5 belonging to the TEF family of transcription factors. We show that mTEF-5 is specifically expressed in trophoblast giant cells and other extra-embryonic structures at early stages of development. At later stages, mTEF-5 is specifically expressed in the labyrinthine region of the placenta and in several embryonic tissues. We further show that the other mTEFs are differentially expressed in extraembryonic structures and in the mature placenta. Interestingly, human (h)TEF-5 is specifically expressed in the differentiated syncytiotrophoblast of the human term placenta and its expression is upregulated during the differentiation of cytotrophoblasts to syncytiotrophoblast in vitro, whereas that of hTEF-1 is down-regulated. Together with previous results describing hTEF-binding sites in the human placental lactogen-B gene enhancer, these novel observations support a role for hTEF-5 in the regulation of this gene. We further propose that the hTEF factors may play a more general role in placental gene regulation and development.
Collapse
Affiliation(s)
- P Jacquemin
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, Illkirch, France
| | | | | | | | | | | |
Collapse
|
33
|
Oehlen L, Cross FR. The mating factor response pathway regulates transcription of TEC1, a gene involved in pseudohyphal differentiation of Saccharomyces cerevisiae. FEBS Lett 1998; 429:83-8. [PMID: 9657388 DOI: 10.1016/s0014-5793(98)00568-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The transcription factor Tec1 is involved in pseudohyphal differentiation and agar-invasive growth of Saccharomyces cerevisiae cells. The sole element in the TEC1 promoter that has thus far been shown to control Tec1 function is the filament response element. We find that the TEC1 promoter also contains several pheromone response element sequences which are likely to be functional: TEC1 transcription is induced by mating factor, cell cycle regulated and dependent on the Ste4, Ste18 and Ste5 components of the mating factor signal transduction pathway. Using alleles of the transcription factor Ste12 that are defective in DNA binding, transcriptional induction or cooperativity with other transcription factors, we find little correlation between TEC1 transcript levels and agar-invasive growth.
Collapse
Affiliation(s)
- L Oehlen
- The Rockefeller University, New York, NY 10021, USA
| | | |
Collapse
|
34
|
Hall LN, Rossini L, Cribb L, Langdale JA. GOLDEN 2: a novel transcriptional regulator of cellular differentiation in the maize leaf. THE PLANT CELL 1998; 10:925-36. [PMID: 9634581 PMCID: PMC144032 DOI: 10.1105/tpc.10.6.925] [Citation(s) in RCA: 127] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The differentiation of distinct cell types within the leaf is essential for normal plant development. We characterized previously a transposon-induced mutant of maize (bundle sheath defective1) that disrupts the differentiation of a single photosynthetic cell type in the leaf. In this study, we show that this mutation is allelic to golden2 (g2), a lesion first reported 70 years ago. We cloned G2 by using Suppressor-mutator as a molecular tag. The gene encodes a 2. 2-kb transcript that is present throughout the wild-type leaf but is most abundant in C4 leaf blade tissue. Gene sequence data showed the existence of a bipartite nuclear localization signal encoded by the first exon, and we determined that G2 reporter gene fusions are targeted to the nucleus in onion epidermal cells. Further sequence analysis indicated the presence of a novel motif within the deduced protein sequence that shares features with TEA DNA binding domains. Therefore, we propose that G2 acts as a novel transcriptional regulator of cellular differentiation in the maize leaf.
Collapse
Affiliation(s)
- L N Hall
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, United Kingdom
| | | | | | | |
Collapse
|
35
|
Crauwels M, Winderickx J, de Winde JH, Thevelein JM. Identification of genes with nutrient-controlled expression by PCR-mapping in the yeast Saccharomyces cerevisiae. Yeast 1997; 13:973-84. [PMID: 9271111 DOI: 10.1002/(sici)1097-0061(199708)13:10<973::aid-yea146>3.0.co;2-s] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We have used RNA fingerprinting by the mRNA Differential Display technique to identify new genes in the yeast Saccharomyces cerevisiae, expression of which is controlled by specific nutrient conditions. mRNA was isolated from cells grown on glucose medium into exponential and stationary phase, and from cells starved for nitrogen on glucose-containing medium. To avoid interference with the large number of glucose-repressible genes, a glucose-repression-deficient strain was used. Twenty different sets of arbitrary primers chosen at random were used for PCR-amplification of reverse transcriptase generated cDNAs, which resulted in six highly reproducible gene expression patterns. The validity of the approach was confirmed by sequencing PCR products of genes with known expression patterns, SUP44/RPS4, CTT1, SSA3, HSP30 and HSP104, and genes with related functions, TEF1 and TEF3, encoding translation elongation factors. In all cases the specificity of the responses was confirmed by Northern blot analysis. The results show that the PCR-mapping method is highly useful for the identification of new genes expressed under specific conditions in the yeast S. cerevisiae.
Collapse
Affiliation(s)
- M Crauwels
- Laboratorium voor Moleculaire Celbiologie, Katholieke Universiteit Leuven, Leuven-Heverlee, Flanders, Belgium
| | | | | | | |
Collapse
|
36
|
Jacquemin P, Martial JA, Davidson I. Human TEF-5 is preferentially expressed in placenta and binds to multiple functional elements of the human chorionic somatomammotropin-B gene enhancer. J Biol Chem 1997; 272:12928-37. [PMID: 9148898 DOI: 10.1074/jbc.272.20.12928] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
We report the cloning of a cDNA encoding the human transcription factor hTEF-5, containing the TEA/ATTS DNA binding domain and related to the TEF family of transcription factors. hTEF-5 is expressed in skeletal and cardiac muscle, but the strongest expression is observed in the placenta and in placenta-derived JEG-3 choriocarcinoma cells. In correlation with its placental expression, we show that hTEF-5 binds to several functional enhansons of the human chorionic somatomammotropin (hCS)-B gene enhancer. We define a novel functional element in this enhancer comprising tandemly repeated sites to which hTEF-5 binds cooperatively. In the corresponding region of the hCS-A enhancer, which is known to be inactive, this element is inactivated by a naturally occurring single base mutation that disrupts hTEF-5 binding. We further show that the binding of the previously described placental protein f/chorionic somatomammotropin enhancer factor-1 to TEF-binding sites is disrupted by monoclonal antibodies directed against the TEA domain and that this factor is a proteolytic degradation product of the TEF factors. These results strongly suggest that hTEF-5 regulates the activity of the hCS-B gene enhancer.
Collapse
Affiliation(s)
- P Jacquemin
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, Collège de France, B.P. 163-67404 Illkirch Cédex, France
| | | | | |
Collapse
|
37
|
Deshpande N, Chopra A, Rangarajan A, Shashidhara LS, Rodrigues V, Krishna S. The human transcription enhancer factor-1, TEF-1, can substitute for Drosophila scalloped during wingblade development. J Biol Chem 1997; 272:10664-8. [PMID: 9099715 DOI: 10.1074/jbc.272.16.10664] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The human transcription enhancer factor-1 (TEF-1) belongs to a family of evolutionarily conserved proteins that have a DNA binding TEA domain. TEF-1 shares a 98% homology with Drosophila scalloped (sd) in the DNA binding domain and a 50% similarity in the activation domain. We have expressed human TEF-1 in Drosophila under the hsp-70 promoter and find that it can substitute for Sd function. The transformants rescue the wingblade defects as well as the lethality of loss-of-function alleles. Observation of reporter activity in the imaginal wing discs of the enhancer-trap alleles suggests that TEF-1 is capable of promoting sd gene regulation. The functional capability of the TEF-1 product was assessed by comparing the extent of rescue by heat shock (hs)-TEF-1 with that of hs-sd. The finding that TEF-1 can function in vivo during wingblade development offers a potent genetic system for the analysis of its function and in the identification of the molecular partners of TEF-1.
Collapse
Affiliation(s)
- N Deshpande
- National Centre for Biological Sciences, TIFR Center, Bangalore 560012, India
| | | | | | | | | | | |
Collapse
|
38
|
Hung W, Olson KA, Breitkreutz A, Sadowski I. Characterization of the basal and pheromone-stimulated phosphorylation states of Ste12p. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 245:241-51. [PMID: 9151949 DOI: 10.1111/j.1432-1033.1997.00241.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The Saccharomyces cerevisiae transcription factor Ste12p is required for basal and activated expression of pheromone-responsive genes, and for invasive growth in haploid cells. In diploid yeast, Ste12p is implicated in pseudohyphal development. The ability of Ste12p to effect these various responses in three different cell types must require stringent regulation of its transcriptional activation function and interaction with additional transcription factors. We have examined the phosphorylation state of Ste12p in untreated and pheromone-treated haploid cells, and found eight constitutively phosphorylated peptides. Phosphorylation at the constitutive sites does not require the protein kinases of the pheromone-response pathway. Treatment of haploid yeast with mating pheromone causes the appearance of novel relatively minor phosphorylations on Ste12p. Brief [35S]methionine labeling reveals novel pheromone-dependent, electrophoretically slower migrating Ste12p species. Similarly, the sole difference we observe in tryptic phosphopeptides generated from Ste12p from pheromone-treated and untreated cells is the transient appearance of two novel minor hydrophobic phosphopeptides. The pheromone-dependent phosphorylation of Ste12p requires an intact pheromone-response pathway and localization of Ste12p to the nucleus, but does not require the Ste12p DNA-binding domain. We conclude from these experiments that the pheromone-response pathway induces the formation of specific hyperphosphorylation on Ste12p, which can only be detected as apparently minor modifications in vivo. We argue that, if Ste12p is regulated by direct pheromone-responsive phosphorylation, then that phosphorylation must be represented by the two novel phosphopeptides. However, we cannot exclude the possibility that pheromone-responsive transcription is controlled by direct phosphorylation of a target other than Ste12p.
Collapse
Affiliation(s)
- W Hung
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada
| | | | | | | |
Collapse
|
39
|
Mösch HU, Fink GR. Dissection of filamentous growth by transposon mutagenesis in Saccharomyces cerevisiae. Genetics 1997; 145:671-84. [PMID: 9055077 PMCID: PMC1207852 DOI: 10.1093/genetics/145.3.671] [Citation(s) in RCA: 200] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Diploid Saccharomyces cerevisiae strains starved for nitrogen undergo a developmental transition from growth as single yeast form (YF) cells to a multicellular form consisting of filaments of pseudohyphal (PH) cells. Filamentous growth is regulated by an evolutionarily conserved signaling pathway that includes the small GTP-binding proteins Ras2p and Cdc42p, the protein kinases Ste20p, Ste11p and Ste7p, and the transcription factor Ste12p. Here, we designed a genetic screen for mutant strains defective for filamentous growth (dfg) to identify novel targets of the filamentation signaling pathway, and we thereby identified 16 different genes, CDC39, STE12, TEC1, WHI3, NAB1, DBR1, CDC55, SRV2, TPM1, SPA2, BNI1, DFG5, DFG9, DFG10, BUD8 and DFG16, mutations that block filamentous growth. Phenotypic analysis of dfg mutant strains genetically dissects filamentous growth into the cellular processes of signal transduction, bud site selection, cell morphogenesis and invasive growth. Epistasis tests between dfg mutant alleles and dominant activated alleles of the RAS2 and STE11 genes, RAS2Val19 and STE11-4, respectively, identify putative targets for the filamentation signaling pathway. Several of the genes described here have homologues in filamentous fungi, where they also regulate fungal development.
Collapse
Affiliation(s)
- H U Mösch
- Institute for Microbiology, Georg-August-University Göttingen, Germany
| | | |
Collapse
|
40
|
Jacquemin P, Hwang JJ, Martial JA, Dollé P, Davidson I. A novel family of developmentally regulated mammalian transcription factors containing the TEA/ATTS DNA binding domain. J Biol Chem 1996; 271:21775-85. [PMID: 8702974 DOI: 10.1074/jbc.271.36.21775] [Citation(s) in RCA: 106] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
We describe the molecular cloning of two novel human and murine transcription factors containing the TEA/ATTS DNA binding domain and related to transcriptional enhancer factor-1 (TEF-1). These factors bind to the consensus TEA/ATTS cognate binding site exemplified by the GT-IIC and Sph enhansons of the SV40 enhancer but differ in their ability to bind cooperatively to tandemly repeated sites. The human TEFs are differentially expressed in cultured cell lines and the mouse (m)TEFs are differentially expressed in embryonic and extra-embryonic tissues in early post-implantation embryos. Strikingly, at later stages of embryogenesis, mTEF-3 is specifically expressed in skeletal muscle precursors, whereas mTEF-1 is expressed not only in developing skeletal muscle but also in the myocardium. Together with previous data, these results point to important, partially redundant, roles for these TEF proteins in myogenesis and cardiogenesis. In addition, mTEF-1 is strongly coexpressed with mTEF-4 in mitotic neuroblasts, while accentuated mTEF-4 expression is also observed in the gut and the nephrogenic region of the kidney. These observations suggest additional roles for the TEF proteins in central nervous system development and organogenesis.
Collapse
Affiliation(s)
- P Jacquemin
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, Collège de France, B.P. 163-67404 Illkirch Cédex, France
| | | | | | | | | |
Collapse
|
41
|
Hsu DK, Guo Y, Alberts GF, Copeland NG, Gilbert DJ, Jenkins NA, Peifley KA, Winkles JA. Identification of a murine TEF-1-related gene expressed after mitogenic stimulation of quiescent fibroblasts and during myogenic differentiation. J Biol Chem 1996; 271:13786-95. [PMID: 8662936 DOI: 10.1074/jbc.271.23.13786] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Fibroblast growth factor (FGF)-1 binding to cell surface receptors stimulates an intracellular signaling pathway that ultimately promotes the transcriptional activation of specific genes. We have used a mRNA differential display method to identify FGF-1-inducible genes in mouse NIH 3T3 fibroblasts. Here, we report that one of these genes, FGF-regulated (FR)-19, is predicted to encode a member of the transcriptional enhancer factor (TEF)-1 family of structurally related DNA-binding proteins. Specifically, the deduced FR-19 amino acid sequence has approximately89, 77, and 68% overall identity to chicken TEF-1A, mouse TEF-1, and mouse embryonic TEA domain-containing factor, respectively. Gel mobility shift experiments indicate that FR-19, like TEF-1, can bind the GT-IIC motif found in the SV40 enhancer. The FR-19 gene maps in the distal region of mouse chromosome 6, and analysis of several FR-19 cDNA clones indicates that at least two FR-19 isoforms may be expressed from this locus. FGF-1 induction of FR-19 mRNA expression in mouse fibroblasts is first detectable at 4 h after FGF-1 addition and is dependent on de novo RNA and protein synthesis. FGF-2, calf serum, platelet-derived growth factor-BB, and phorbol 12-myristate 13-acetate can also induce FR-19 mRNA levels. We have also found that FR-19 mRNA expression increases during mouse C2C12 myoblast differentiation in vitro. The FR-19 gene is expressed in vivo in a tissue-specific manner, with a relatively high level detected in lung. These results indicate that increased expression of a TEF-1-related protein may be important for both mitogen-stimulated fibroblast proliferation and skeletal muscle cell differentiation.
Collapse
Affiliation(s)
- D K Hsu
- Department of Molecular Biology, Holland Laboratory, American Red Cross, Rockville, Maryland 20855, USA
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Azakie A, Larkin SB, Farrance IK, Grenningloh G, Ordahl CP. DTEF-1, a novel member of the transcription enhancer factor-1 (TEF-1) multigene family. J Biol Chem 1996; 271:8260-5. [PMID: 8626520 DOI: 10.1074/jbc.271.14.8260] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
M-CAT motifs mediate muscle-specific transcriptional activity via interaction with binding factors that are antigenically and biochemically related to vertebrate transcription enhancer factor-1 (TEF-1), a member of the TEA/ATTS domain family of transcription factors. M-CAT binding activities present in cardiac and skeletal muscle tissues cannot be fully accounted for by existing cloned isoforms of TEF-1. TEF-1-related cDNAs isolated from heart libraries indicate that at least three classes of TEF-1-related cDNAs are expressed in these and other tissues. One class are homologues of the human TEF-1 originally cloned from HeLa cells (Xiao, J. H., Davidson, I., Matthes, H., Garnier, J. M., and Chambon, P. (1991) Cell 65, 551-568). A second class represents homologues of the avian TEF-1-related gene previously isolated (Stewart, A. F., Larkin, S. B., Farrance, I. K., Mar, J. H., Hall, D. E., and Ordahl, C. P. (1994) J. Biol. Chem. 269, 3147-3150). The third class consists of a novel, divergent TEF-1 cDNA, named DTEF-1, and its preliminary characterization is described here. Two isoforms of DTEF-1 (DTEF-1A and DTEF-1B) were isolated as 1.9-kilobase pair clones with putative open reading frames of 433 and 432 amino acids whose differences are attributable to alternative splicing at the C terminus of the TEA DNA binding domain. Cardiac muscle contains high levels of DTEF-1 transcripts, but unexpectedly low levels are detected in skeletal muscle. DTEF-1 transcripts are present at intermediate levels in gizzard and lung, and at low levels in kidney. DTEF-1A is a sequence-specific M-CAT-binding factor. The distinct spatial pattern of expression, and unusual amino acid sequence in its DNA binding domain, may indicate a particular role for DTEF-1 in cell-specific gene regulation. Recent work also suggests that at least one more TEF-1-related gene exists in vertebrates. We propose a naming system for the four TEF-1 gene family members identified to date that preserves existing nomenclature and provides a means for extending that nomenclature as additional family members may be identified.
Collapse
Affiliation(s)
- A Azakie
- Department of Surgery, Cardiovascular Research Institute, University of California, San Francisco, 94143, USA. 674
| | | | | | | | | |
Collapse
|
43
|
Gavrias V, Andrianopoulos A, Gimeno CJ, Timberlake WE. Saccharomyces cerevisiae TEC1 is required for pseudohyphal growth. Mol Microbiol 1996; 19:1255-63. [PMID: 8730867 DOI: 10.1111/j.1365-2958.1996.tb02470.x] [Citation(s) in RCA: 132] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Diverse eukaryotic organisms share developmental transcription factors with homologous DNA-binding domains. We showed that the developmental regulator AbaA, a member of the ATTS/TEA (AbaA, TEF-1, TEC1, Scalloped/TEF-1, TEC1, AbaA) class of transcription factors of the filamentous fungus Aspergillus nidulans, induces pseudohyphal development in the yeast Saccharomyces cerevisiae. The S. cerevisiae homologue of AbaA, TEC1p, is required for this morphological transition. We provide evidence that TEC1p functions in co-operation with STE12p to induce pseudohyphal development.
Collapse
Affiliation(s)
- V Gavrias
- Myco Pharmaceuticals Inc., Cambridge, Massachusetts 02139, USA
| | | | | | | |
Collapse
|
44
|
Yockey CE, Smith G, Izumo S, Shimizu N. cDNA cloning and characterization of murine transcriptional enhancer factor-1-related protein 1, a transcription factor that binds to the M-CAT motif. J Biol Chem 1996; 271:3727-36. [PMID: 8631987 DOI: 10.1074/jbc.271.7.3727] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The M-CAT motif is a cis-regulatory DNA sequence that is essential for muscle-specific transcription of several genes. Previously, we had shown that both muscle-specific (A1) and ubiquitous (A2) factors bind to an essential M-CAT motif in the myosin heavy chain beta gene and that the ubiquitous factor is transcriptional enhancer factor (TEF)-1. Here we report the isolation of mouse cDNAs encoding two forms (a and b) of a TEF-1-related protein, TEFR1. The TEFR1a cDNA encodes a 427-amino acid protein. The coding region of TEFR1b is identical to 1a in both nucleotide and predicted amino acid sequence except for the absence of 43 amino acids downstream of the TEA DNA-binding domain. Three TEFR1 transcripts (approximately 7, approximately 3.5, and approximately 2 kilobase pairs) are enriched in differentiated skeletal muscle (myotubes) relative to undifferentiated skeletal muscle (myoblasts) and non-muscle cells in culture. In situ hybridization analysis indicated that TEFR1 transcripts are enriched in the skeletal muscle lineage during mouse embryogenesis. Transient expression of fusion proteins of TEFR1 and the yeast GAL4 DNA-binding domain in cell lines activated the expression of chloramphenicol acetyltransferase (CAT) reporter constructs containing GAL4 binding sites, indicating that TEFR1 contains an activation domain. An anti-TEFR1 polyclonal antibody supershifted the muscle-specific M-CAT.A1 factor complex in gel mobility shift assays, suggesting that TEFR1 is a major component of this complex. Our results suggest that TEFR1 might play a role in the embryonic development of skeletal muscle in the mouse.
Collapse
Affiliation(s)
- C E Yockey
- Molecular Medicine Division, Beth Israel Hospital and Department of Medicine, Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | | | |
Collapse
|
45
|
Berger LC, Smith DB, Davidson I, Hwang JJ, Fanning E, Wildeman AG. Interaction between T antigen and TEA domain of the factor TEF-1 derepresses simian virus 40 late promoter in vitro: identification of T-antigen domains important for transcription control. J Virol 1996; 70:1203-12. [PMID: 8551581 PMCID: PMC189929 DOI: 10.1128/jvi.70.2.1203-1212.1996] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The large tumor antigen (TAg) of simian virus 40 regulates transcription of the viral genes. The early promoter is repressed when TAg binds to the origin and DNA replication begins, whereas the late promoter is activated by TAg through both replication-dependent and -independent mechanisms. Previously it was shown that activation is diminished when a site in the viral enhancer to which the factor TEF-1 binds is disrupted. We show here that the NH2-terminal region of TAg binds to the TEA domain of TEF-1, a DNA binding domain also found in the Drosophila scalloped and the Saccharomyces cerevisiae TEC1 proteins. The interaction inhibits DNA binding by TEF-1 and activates transcription in vitro from a subset of naturally occurring late start sites. These sites are also activated by mutations in the DNA motifs to which TEF-1 binds. Therefore, TEF-1 appears to function as a repressor of late transcription, and its involvement in the early-to-late shift in viral transcription is discussed. The mutation of Ser-189 in TAg, which reduces transformation efficiency in certain assays, disrupts the interaction with TEF-1. Thus, TEF-1 might also regulate genes involved in growth control.
Collapse
Affiliation(s)
- L C Berger
- Department of Molecular Biology and Genetics, University of Guelph, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
46
|
Eberhardt NL, Jiang SW, Shepard AR, Arnold AM, Trujillo MA. Hormonal and cell-specific regulation of the human growth hormone and chorionic somatomammotropin genes. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1996; 54:127-63. [PMID: 8768074 DOI: 10.1016/s0079-6603(08)60362-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- N L Eberhardt
- Department of Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | | | | | | |
Collapse
|
47
|
Yasunami M, Suzuki K, Houtani T, Sugimoto T, Ohkubo H. Molecular characterization of cDNA encoding a novel protein related to transcriptional enhancer factor-1 from neural precursor cells. J Biol Chem 1995; 270:18649-54. [PMID: 7629195 DOI: 10.1074/jbc.270.31.18649] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
We identified a novel cDNA related to that of transcriptional enhancer factor-1 (TEF-1) during the course of isolation and characterization of cDNAs, whose mRNAs are preferentially expressed in the mouse neural precursor cells. The putative polypeptide, termed embryonic TEA domain-containing factor (ETF), deduced from the nucleotide sequence contains 445 amino acids and shares 66% amino acid identity with mouse and human TEF-1 proteins. The primary structure of the TEA domain, a probable DNA-binding domain, and the specific DNA binding activity to the GT-IIC motif of ETF are indistinguishable from those of the known vertebrate TEF-1 proteins. However, the expression of the ETF gene is strictly regulated in developing embryos and is limited to certain tissues, such as the hindbrain of a 10-day-old mouse embryo, in contrast to the ubiquitous expression pattern of the TEF-1 gene. These results suggest that ETF is a novel mammalian member of the TEA domain-containing transcription factor family and may be involved in the gene regulation of the neural development. We have discussed the possible existence of multiple subtypes of the mammalian TEF-1 family proteins, which may play different roles in cellular and development gene regulation.
Collapse
Affiliation(s)
- M Yasunami
- Institute of Molecular Embryology and Genetics, Kumamoto University School of Medicine, Japan
| | | | | | | | | |
Collapse
|
48
|
Jiang SW, Eberhardt NL. Involvement of a protein distinct from transcription enhancer factor-1 (TEF-1) in mediating human chorionic somatomammotropin gene enhancer function through the GT-IIC enhanson in choriocarcinoma and COS cells. J Biol Chem 1995; 270:13906-15. [PMID: 7775450 DOI: 10.1074/jbc.270.23.13906] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Previous studies suggested that transcription enhancer factor-1 (TEF-1) was involved in mediating the human chorionic somatomammotropin (hCS) gene enhancer (CSEn) function (Jiang, S.-W., and Eberhardt, N. L. (1994) J. Biol. Chem. 269, 10384-10392). We now show that an unrelated protein (CSEF-1) found in BeWo and COS-1 cells binds to the GT-IIC enhanson in CSEn and is correlated with CSEn activity in these cells. TEF-1 and CSEF-1 were distinguished by differential migration as GT-IIC complexes, thermal stability, molecular mass, and cross-reactivity with chicken TEF-1 antibodies. TEF-1 and CSEF-1 bound to the GT-IIC and Sph-I/Sph-II enhansons with identical binding properties, and in vitro generated TEF-1 competed with CSEF-1 binding to the GT-IIC motif, suggesting that their actions might be mutually exclusive. Up- and down-regulation of TEF-1 levels by expression systems and antisense oligonucleotides demonstrated that TEF-1 inhibited the hCS promoter in a manner independent of the enhancer or a known TEF-1 DNA binding site. The data suggest that TEF-1 may provide a counter-regulatory stimulus to the actions of CSEF-1, which may be involved in mediating enhancer stimulatory activity.
Collapse
Affiliation(s)
- S W Jiang
- Department of Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | |
Collapse
|
49
|
Song JM, Cheung E, Rabinowitz JC. Nucleotide sequence and characterization of the Saccharomyces cerevisiae RPL19A gene encoding a homolog of the mammalian ribosomal protein L19. Yeast 1995; 11:383-9. [PMID: 7785339 DOI: 10.1002/yea.320110411] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
A gene designated RPL19A has been identified in the region downstream from the 3'-end of the Saccharomyces cerevisiae MIS1 gene encoding the mitochondrial C1-tetrahydrofolate synthase. The gene codes for the yeast ribosomal protein YL19 which exhibits 57.5% identify with the mammalian ribosomal protein L19. RPL19A is one of two functional copies of the YL19 gene located on chromosome II. The disruption of RPL19A has no effect on the growth of the yeast. The RPL19A gene contains an intron located near the 5'-end. The 5'-flanking region contains one similar and one complete UASrpg upstream activating sequence. RPL19A was also found to be adjacent to the chromosome II AAC3 gene, encoding the mitochondrial ADP/ATP carrier protein.
Collapse
Affiliation(s)
- J M Song
- Department of Molecular and Cell Biology, University of California, Berkeley 94720, USA
| | | | | |
Collapse
|
50
|
Löhning C, Ciriacy M. The TYE7 gene of Saccharomyces cerevisiae encodes a putative bHLH-LZ transcription factor required for Ty1-mediated gene expression. Yeast 1994; 10:1329-39. [PMID: 7900422 DOI: 10.1002/yea.320101010] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
In Saccharomyces cerevisiae, expression of a gene adjacent to the retrotransposon Ty1 is often mediated by Ty-internal sequences. We have identified novel mutants, tye7, which are affected in Ty1-mediated expression of ADH2 through a Ty1 sequence distal to the 5' long terminal repeat sequence. The TYE7 gene has been isolated and characterized. It encodes a 33 kDa protein whose N-terminal third is extremely rich in serine residues (28%). Within its C-terminal sequence, a remarkable similarity to Myc and Max proteins can be found. Thus, TYE7 is a potential member of the basic region/helix-loop-helix/leucine-zipper protein family. TYE7 function is not essential for growth. It may primarily function as a transcriptional activator in Ty1-mediated gene expression, as has been confirmed by the activation of reporter gene expression by a LexA-TYE7 hybrid protein. ADH2 activation by defined Ty1 derivatives revealed that TYE7 acts positively through the more distal Ty1 enhancer element (region D), and negatively in a region between A (the 5' proximal enhancer element) and D.
Collapse
Affiliation(s)
- C Löhning
- Institut für Mikrobiologie, Heinrich-Heine-Universität, Düsseldorf, Germany
| | | |
Collapse
|