1
|
Li D, Sun X, Yu F, Perle MA, Araten D, Boeke J. Application of counter-selectable marker PIGA in engineering designer deletion cell lines and characterization of CRISPR deletion efficiency. Nucleic Acids Res 2021; 49:2642-2654. [PMID: 33591308 PMCID: PMC7969003 DOI: 10.1093/nar/gkab035] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 01/11/2021] [Accepted: 02/15/2021] [Indexed: 12/18/2022] Open
Abstract
The CRISPR/Cas9 system is a technology for genome engineering, which has been applied to indel mutations in genes as well as targeted gene deletion and replacement. Here, we describe paired gRNA deletions along the PIGA locus on the human X chromosome ranging from 17 kb to 2 Mb. We found no compelling linear correlation between deletion size and the deletion efficiency, and there is no substantial impact of topologically associating domains on deletion frequency. Using this precise deletion technique, we have engineered a series of designer deletion cell lines, including one with deletions of two X-chromosomal counterselectable (negative selection) markers, PIGA and HPRT1, and additional cell lines bearing each individual deletion. PIGA encodes a component of the glycosylphosphatidylinositol (GPI) anchor biosynthetic apparatus. The PIGA gene counterselectable marker has unique features, including existing single cell level assays for both function and loss of function of PIGA and the existence of a potent counterselectable agent, proaerolysin, which we use routinely for selection against cells expressing PIGA. These designer cell lines may serve as a general platform with multiple selection markers and may be particularly useful for large scale genome engineering projects such as Genome Project-Write (GP-write).
Collapse
Affiliation(s)
- Donghui Li
- Institute for Systems Genetics and Department of Biochemistry & Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Xiaoji Sun
- Institute for Systems Genetics and Department of Biochemistry & Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
| | - Fangzhou Yu
- Institute for Systems Genetics and Department of Biochemistry & Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
| | - Mary Ann Perle
- Department of Pathology, NYU Langone Health, New York, NY 10016, USA
| | - David Araten
- Division of Hematology, Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, and the New York VA Medical Center, New York, NY 10016, USA
| | - Jef D Boeke
- Institute for Systems Genetics and Department of Biochemistry & Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
- Department of Biomedical Engineering, NYU Tandon School of Engineering, Brooklyn NY 11201, USA
| |
Collapse
|
2
|
Bi-allelic Homology-Directed Repair with Helper-Dependent Adenoviruses. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2019; 15:285-293. [PMID: 31890728 PMCID: PMC6923503 DOI: 10.1016/j.omtm.2019.10.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 10/11/2019] [Indexed: 01/29/2023]
Abstract
We describe a strategy to achieve footprintless bi-allelic homology-directed repair (HDR) using helper-dependent adenoviruses (HDAds). This approach utilizes two HDAds to deliver the donor DNA. These two HDAds are identical except for their selectable marker. One expresses the puromycin N-acetyltransferase-herpes simplex virus I thymidine kinase fusion gene (PACTk), while the other expresses the hygromycin phosphotransferase-herpes simplex virus I thymidine kinase fusion gene (HyTk). Therefore, puromycin and hygromycin double resistance can be used to select for targeted HDAd integration into both alleles. Subsequently, piggyBac-mediated excision of both PACTk and HyTk will confer resistance to gancyclovir, resulting in footprintless HDR at both alleles. However, gene-targeting frequency was not high enough to achieve simultaneous targeting at both alleles. Instead, sequential targeting, whereby the two alleles were targeted one at a time, was required in order to achieve bi-allelic HDR with HDAd.
Collapse
|
3
|
Abstract
Expansions of simple trinucleotide repeats, such as (CGG)n, (CAG)n or (GAA)n, are responsible for more than 40 hereditary disorders in humans including fragile X syndrome, Huntington's disease, myotonic dystrophy, and Friedreich's ataxia. While the mechanisms of repeat expansions were intensively studied for over two decades, the final picture has yet to emerge. It was important, therefore, to develop a mammalian experimental system for studying repeat instability, which would recapitulate repeat instability observed in human pedigrees. Here, we describe a genetically tractable experimental system to study the instability of (CGG)n repeats in cultured mammalian cells (Kononenko et al., Nat Struct Mol Biol 25:669-676, 2018). It is based on a selectable cassette carrying the HyTK gene under the control of the FMR1 promoter with carrier-size (CGG)n repeats in its 5' UTR, which was integrated into the unique RL5 site in murine erythroid leukemia cells. Expansions of these repeats and/or repeat-induced mutagenesis shut down the reporter, which results in the accumulation of ganciclovir-resistance cells. This system is useful for understanding the genetic controls of repeat instability in mammalian cells. In the long run, it can be adjusted to screen for drugs that either alleviate repeat expansions or reactivate the FMR1 promoter.
Collapse
|
4
|
Pentzold C, Shah SA, Hansen NR, Le Tallec B, Seguin-Orlando A, Debatisse M, Lisby M, Oestergaard VH. FANCD2 binding identifies conserved fragile sites at large transcribed genes in avian cells. Nucleic Acids Res 2019; 46:1280-1294. [PMID: 29253234 PMCID: PMC5815096 DOI: 10.1093/nar/gkx1260] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 12/05/2017] [Indexed: 12/14/2022] Open
Abstract
Common Chromosomal Fragile Sites (CFSs) are specific genomic regions prone to form breaks on metaphase chromosomes in response to replication stress. Moreover, CFSs are mutational hotspots in cancer genomes, showing that the mutational mechanisms that operate at CFSs are highly active in cancer cells. Orthologs of human CFSs are found in a number of other mammals, but the extent of CFS conservation beyond the mammalian lineage is unclear. Characterization of CFSs from distantly related organisms can provide new insight into the biology underlying CFSs. Here, we have mapped CFSs in an avian cell line. We find that, overall the most significant CFSs coincide with extremely large conserved genes, from which very long transcripts are produced. However, no significant correlation between any sequence characteristics and CFSs is found. Moreover, we identified putative early replicating fragile sites (ERFSs), which is a distinct class of fragile sites and we developed a fluctuation analysis revealing high mutation rates at the CFS gene PARK2, with deletions as the most prevalent mutation. Finally, we show that avian homologs of the human CFS genes despite their fragility have resisted the general intron size reduction observed in birds suggesting that CFSs have a conserved biological function.
Collapse
Affiliation(s)
- Constanze Pentzold
- Department of Biology; University of Copenhagen; Copenhagen N 2200, Denmark
| | - Shiraz Ali Shah
- Department of Biology; University of Copenhagen; Copenhagen N 2200, Denmark
| | - Niels Richard Hansen
- Department of Mathematical Sciences, University of Copenhagen, Copenhagen 2100, Denmark
| | - Benoît Le Tallec
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), CNRS-UMR8197 - Inserm U1024, Paris F-75005, France
| | - Andaine Seguin-Orlando
- Center for GeoGenetics, Natural History Museum of Denmark; University of Copenhagen; Copenhagen 1350, Denmark.,Danish National High-throughput DNA Sequencing Centre, University of Copenhagen, Øster Farimagsgade 2D, Copenhagen K 1353, Denmark
| | | | - Michael Lisby
- Department of Biology; University of Copenhagen; Copenhagen N 2200, Denmark.,Center for Chromosome Stability, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3b, DK-2200 Copenhagen N, Denmark
| | - Vibe H Oestergaard
- Department of Biology; University of Copenhagen; Copenhagen N 2200, Denmark
| |
Collapse
|
5
|
Twaruschek K, Spörhase P, Michlmayr H, Wiesenberger G, Adam G. New Plasmids for Fusarium Transformation Allowing Positive-Negative Selection and Efficient Cre- loxP Mediated Marker Recycling. Front Microbiol 2018; 9:1954. [PMID: 30258410 PMCID: PMC6143793 DOI: 10.3389/fmicb.2018.01954] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 08/02/2018] [Indexed: 11/14/2022] Open
Abstract
In filamentous fungi such as Fusarium graminearum, disruption of multiple genes of interest in the same strain (e.g., to test for redundant gene function) is a difficult task due to the limited availability of reliable selection markers. We have created a series of transformation vectors that allow antibiotic-based selection of transformants and subsequent negative selection for marker removal using thymidine kinase fusions combined with the Cre-loxP system. The fusion genes contain commonly used C-terminal drug resistance markers, either nptII (G418), nat1 (nourseothricin), or hph (hygromycin B). These resistance genes are fused to the sequence encoding Herpes simplex virus thymidine kinase (HSVtk). Despite the presence of the 1 kb HSVtk gene (about ∼30% increase in total marker size), there is only a slight reduction in transformation efficiency on a molar basis. The fusion genes expressed under the Trichoderma pyruvate kinase (PKI) promoter also confer antibiotic resistance in Escherichia coli, allowing straightforward construction of disruption plasmids. For removal of the loxP flanked resistance cassettes, protoplasts of transformants are directly treated with purified Cre recombinase protein. Loss of the HSVtk containing cassette is selected by restoration of resistance to 5-fluoro-2-deoxyuridine (FdU). As a proof of principle, we demonstrated the efficiency of the HSVtk-based marker removal in Fusarium by reversing the disruption phenotype of the gene responsible for production of the red pigment aurofusarin. We first disrupted the FgPKS12 gene via integration of the loxP-flanked HSVtk-nptII cassette into the promoter or the first intron, thereby generating transformants with a white mycelium phenotype. Using Cre recombinase and FdU, the selection marker was subsequently removed, and the resulting transformants regained red pigmentation despite the remaining loxP site. We also found that it is possible to remove several unselected loxP-flanked cassettes with a single Cre protein treatment, as long as one of them contains a negative selectable HSVtk cassette. The negative selection system can also be used to introduce allele swaps into strains without leaving marker sequences, by first disrupting the gene of interest and then complementing the deletion in situ with genomic DNA containing a different allele.
Collapse
Affiliation(s)
| | | | | | - Gerlinde Wiesenberger
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | | |
Collapse
|
6
|
Sequential and counter-selectable cassettes for fission yeast. BMC Biotechnol 2016; 16:76. [PMID: 27825338 PMCID: PMC5101803 DOI: 10.1186/s12896-016-0307-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 10/21/2016] [Indexed: 01/26/2023] Open
Abstract
Background Fission yeast is one of the most commonly used model organisms for studying genetics. For selection of desirable genotypes, antibiotic resistance cassettes are widely integrated into the genome near genes of interest. In yeasts, this is achieved by PCR amplification of the cassette flanked by short homology sequences, which can be incorporated by homology directed repair. However, the currently available cassettes all share the same tef promoter and terminator sequences. It can therefore be challenging to perform multiple genetic modifications by PCR-based targeting, as existing resistance cassettes in strains can be favored for recombination due to shared homology between the cassettes. Results Here we have generated new selection cassettes that do not recombine with those traditionally used. We achieved this by swapping the tef promoter and terminator sequences in the established antibiotic resistance MX6 cassette series for alternative promoters and/or terminators. The newly created selection cassettes did not recombine with the tef-containing MX6 cassettes already present in the genome, allowing for sequential gene targeting using the PCR-based method. In addition, we have generated a series of plasmids to facilitate the C-terminal tagging of genes with desired epitopes. We also utilized the anti-selection gene HSV-TK, which results in cell death in strains grown on the drug 5-Fluoro-2’-deoxyuridine (FdU, Floxuridin or FUDR). By fusing an antibiotic resistance gene to HSV-TK, we were able to select on the relevant antibiotic as well as counter-select on FdU media to confirm the desired genomic modification had been made. We noted that the efficiency of the counter selection by FdU was enhanced by treatment with hydroxyurea. However, a number of DNA replication checkpoint and homologous recombination mutants, including rad3∆, cds1∆, rad54∆ and rad55∆, exhibited sensitivity to FdU even though those strains did not carry the HSV-TK gene. To remove counter-selectable markers, we introduced the Cre-loxP irreversible recombination method. Finally, utilizing the negative selectable markers, we showed efficient induction of point mutations in an endogenous gene by a two-step transformation method. Conclusions The plasmid constructs and techniques described here are invaluable tools for sequential gene targeting and will simplify construction of fission yeast strains required for study.
Collapse
|
7
|
Rathankar N, Nirmala KA, Khanduja V, Nagendra HG. Identification of potential drug targets implicated in Parkinson's disease from human genome: insights of using fused domains in hypothetical proteins as probes. ISRN NEUROLOGY 2011; 2011:265253. [PMID: 22389811 PMCID: PMC3263550 DOI: 10.5402/2011/265253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Accepted: 05/21/2011] [Indexed: 12/31/2022]
Abstract
High-throughput genome sequencing has led to data explosion in sequence databanks, with an imbalance of sequence-structure-function relationships, resulting in a substantial fraction of proteins known as hypothetical proteins. Functions of such proteins can be assigned based on the analysis and characterization of the domains that they are made up of. Domains are basic evolutionary units of proteins and most proteins contain multiple domains. A subset of multidomain proteins is fused domains (overlapping domains), wherein sequence overlaps between two or more domains occur. These fused domains are a result of gene fusion events and their implication in diseases is well established. Hence, an attempt has been made in this paper to identify the fused domain containing hypothetical proteins from human genome homologous to parkinsonian targets present in KEGG database. The results of this research identified 18 hypothetical proteins, with domains fused with ubiquitin domains and having homology with targets present in parkinsonian pathway.
Collapse
Affiliation(s)
- N Rathankar
- Department of Bioinformatics, School of Bioengineering, SRM University, Kattankulathur, Tamil Nadu 603 203, India
| | | | | | | |
Collapse
|
8
|
Bullain SS, Sahin A, Szentirmai O, Sanchez C, Lin N, Baratta E, Waterman P, Weissleder R, Mulligan RC, Carter BS. Genetically engineered T cells to target EGFRvIII expressing glioblastoma. J Neurooncol 2009; 94:373-82. [PMID: 19387557 DOI: 10.1007/s11060-009-9889-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2008] [Accepted: 04/02/2009] [Indexed: 10/20/2022]
Abstract
Glioblastoma remains a significant therapeutic challenge, warranting further investigation of novel therapies. We describe an immunotherapeutic strategy to treat glioblastoma based on adoptive transfer of genetically modified T-lymphocytes (T cells) redirected to kill EGFRvIII expressing gliomas. We constructed a chimeric immune receptor (CIR) specific to EGFRvIII, (MR1-zeta). After in vitro selection and expansion, MR1-zeta genetically modified primary human T-cells specifically recognized EGFRvIII-positive tumor cells as demonstrated by IFN-gamma secretion and efficient tumor lysis compared to control CIRs defective in EGFRvIII binding (MRB-zeta) or signaling (MR1-delzeta). MR1-zeta expressing T cells also inhibited EGFRvIII-positive tumor growth in vivo in a xenografted mouse model. Successful targeting of EGFRvIII-positive tumors via adoptive transfer of genetically modified T cells may represent a new immunotherapy strategy with great potential for clinical applications.
Collapse
Affiliation(s)
- Szofia S Bullain
- Neurosurgical Service, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Singh H, Manuri PR, Olivares S, Dara N, Dawson MJ, Huls H, Hackett PB, Kohn DB, Shpall EJ, Champlin RE, Cooper LJ. Redirecting specificity of T-cell populations for CD19 using the Sleeping Beauty system. Cancer Res 2008; 68:2961-71. [PMID: 18413766 PMCID: PMC2424272 DOI: 10.1158/0008-5472.can-07-5600] [Citation(s) in RCA: 200] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Genetic modification of clinical-grade T cells is undertaken to augment function, including redirecting specificity for desired antigen. We and others have introduced a chimeric antigen receptor (CAR) to enable T cells to recognize lineage-specific tumor antigen, such as CD19, and early-phase human trials are currently assessing safety and feasibility. However, a significant barrier to next-generation clinical studies is developing a suitable CAR expression vector capable of genetically modifying a broad population of T cells. Transduction of T cells is relatively efficient but it requires specialized manufacture of expensive clinical grade recombinant virus. Electrotransfer of naked DNA plasmid offers a cost-effective alternative approach, but the inefficiency of transgene integration mandates ex vivo selection under cytocidal concentrations of drug to enforce expression of selection genes to achieve clinically meaningful numbers of CAR(+) T cells. We report a new approach to efficiently generating T cells with redirected specificity, introducing DNA plasmids from the Sleeping Beauty transposon/transposase system to directly express a CD19-specific CAR in memory and effector T cells without drug selection. When coupled with numerical expansion on CD19(+) artificial antigen-presenting cells, this gene transfer method results in rapid outgrowth of CD4(+) and CD8(+) T cells expressing CAR to redirect specificity for CD19(+) tumor cells.
Collapse
Affiliation(s)
- Harjeet Singh
- Division of Pediatrics, University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - Pallavi R. Manuri
- Division of Pediatrics, University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - Simon Olivares
- Division of Pediatrics, University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - Navid Dara
- Division of Pediatrics, University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - Margaret J. Dawson
- Division of Pediatrics, University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - Helen Huls
- Division of Pediatrics, University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - Perry B. Hackett
- Department of Genetics, Cell Biology and Development, University of Minnesota, St. Paul, Minnesota
| | - Donald B. Kohn
- Division of Research Immunology/Bone Marrow Transplantation, Children's Hospital Los Angeles, Los Angeles, California
| | - Elizabeth J. Shpall
- Division of Cancer Medicine, University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - Richard E. Champlin
- Division of Cancer Medicine, University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - Laurence J.N. Cooper
- Division of Pediatrics, University of Texas M. D. Anderson Cancer Center, Houston, Texas
| |
Collapse
|
10
|
Xu Z, Lee NCO, Dafhnis-Calas F, Malla S, Smith MCM, Brown WRA. Site-specific recombination in Schizosaccharomyces pombe and systematic assembly of a 400kb transgene array in mammalian cells using the integrase of Streptomyces phage phiBT1. Nucleic Acids Res 2007; 36:e9. [PMID: 18096621 PMCID: PMC2248738 DOI: 10.1093/nar/gkm1123] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We have established the integrase of the Streptomyces phage ϕBT1 as a tool for eukaryotic genome manipulation. We show that the ϕBT1 integrase promotes efficient reciprocal and conservative site-specific recombination in vertebrate cells and in Schizosaccharomyces pombe, thus establishing the utility of this protein for genome manipulation in a wide range of eukaryotes. We show that the ϕBT1 integrase can be used in conjunction with Cre recombinase to promote the iterative integration of transgenic DNA. We describe five cycles of iterative integration of a candidate mouse centromeric sequence 80 kb in length into a human mini-chromosome within a human-Chinese hamster hybrid cell line. These results establish the generality of the iterative site-specific integration technique.
Collapse
Affiliation(s)
- Zhengyao Xu
- Institute of Genetics, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK
| | | | | | | | | | | |
Collapse
|
11
|
Singh H, Serrano LM, Pfeiffer T, Olivares S, McNamara G, Smith DD, Al-Kadhimi Z, Forman SJ, Gillies SD, Jensen MC, Colcher D, Raubitschek A, Cooper LJN. Combining adoptive cellular and immunocytokine therapies to improve treatment of B-lineage malignancy. Cancer Res 2007; 67:2872-80. [PMID: 17363611 DOI: 10.1158/0008-5472.can-06-2283] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Currently, the lineage-specific cell-surface molecules CD19 and CD20 present on many B-cell malignancies are targets for both antibody- and cell-based therapies. Coupling these two treatment modalities is predicted to improve the antitumor effect, particularly for tumors resistant to single-agent biotherapies. This can be shown using an immunocytokine, composed of a CD20-specific monoclonal antibody fused to biologically active interleukin 2 (IL-2), combined with ex vivo expanded human umbilical cord blood-derived CD8(+) T cells, that have been genetically modified to be CD19 specific, for adoptive transfer after allogeneic hematopoietic stem-cell transplantation. We show that a benefit of targeted delivery of recombinant IL-2 by the immunocytokine to the CD19(+)CD20(+) tumor microenvironment is improved in vivo persistence of the CD19-specific T cells, and this results in an augmented cell-mediated antitumor effect. Phase I trials are under way using anti-CD20-IL-2 immunocytokine and CD19-specific T cells as monotherapies, and our results warrant clinical trials using combination of these two immunotherapies.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/immunology
- Antigens, CD19/immunology
- Cell Line, Tumor
- Female
- Humans
- Immunoconjugates/immunology
- Immunoconjugates/pharmacology
- Immunotherapy, Adoptive/methods
- Interleukin-2/immunology
- Interleukin-2/pharmacology
- K562 Cells
- Leukemia, B-Cell/immunology
- Leukemia, B-Cell/therapy
- Lymphoma, B-Cell/immunology
- Lymphoma, B-Cell/therapy
- Mice
- Mice, Inbred NOD
- Mice, SCID
- T-Lymphocytes/immunology
Collapse
Affiliation(s)
- Harjeet Singh
- Division of Molecular Medicine, Beckman Research Institute and City of Hope National Medical Center, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Dafhnis-Calas F, Xu Z, Haines S, Malla SK, Smith MCM, Brown WRA. Iterative in vivo assembly of large and complex transgenes by combining the activities of phiC31 integrase and Cre recombinase. Nucleic Acids Res 2005; 33:e189. [PMID: 16361264 PMCID: PMC1316120 DOI: 10.1093/nar/gni192] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We have used the phiC31 integrase to introduce large DNA sequences into a vertebrate genome and measure the efficiency of integration of intact DNA as a function of insert size. Inserts of 110 kb and 140 kb in length may be integrated with about 25% and 10% efficiency respectively. In order to overcome the problems of constructing transgenes longer than approximately 150 kb we have established a method that we call; 'Iterative Site Specific Integration' (ISSI). ISSI combines the activities of phiC31 integrase and Cre recombinase to enable the iterative and serial integration of transgenic DNA sequences. In principle the procedure may be repeated an arbitrary number of times and thereby allow the integration of tracts of DNA many hundreds of kilobase pairs long. In practice it may be limited by the time needed to check the accuracy of integration at each step of the procedure. We describe two ISSI experiments, in one of which we have constructed a complex array of vertebrate centromeric sequences of 150 kb in size. The principle that underlies ISSI is applicable to transgenesis in all organisms. ISSI may thus facilitate the reconstitution of biosynthetic pathways encoded by many different genes in transgenic plants, the assembly of large vertebrate loci as transgenes and the synthesis of complete genomes in bacteria.
Collapse
Affiliation(s)
| | | | | | | | | | - William R. A. Brown
- To whom correspondence should be addressed. Tel: +44 115 849 3244; Fax: +44 115 970 9906;
| |
Collapse
|
13
|
Serrano LM, Pfeiffer T, Olivares S, Numbenjapon T, Bennitt J, Kim D, Smith D, McNamara G, Al-Kadhimi Z, Rosenthal J, Forman SJ, Jensen MC, Cooper LJN. Differentiation of naive cord-blood T cells into CD19-specific cytolytic effectors for posttransplantation adoptive immunotherapy. Blood 2005; 107:2643-52. [PMID: 16352804 PMCID: PMC1895371 DOI: 10.1182/blood-2005-09-3904] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Disease relapse is a barrier to achieving therapeutic success after unrelated umbilical cord-blood transplantation (UCBT) for B-lineage acute lymphoblastic leukemia (B-ALL). While adoptive transfer of donor-derived tumor-specific T cells is a conceptually attractive approach to eliminating residual disease after allogeneic hematopoietic stem cell transplantation, adoptive immunotherapy after UCBT is constrained by the difficulty of generating antigen-specific T cells from functionally naive umbilical cord-blood (UCB)-derived T cells. Therefore, to generate T cells that recognize B-ALL, we have developed a chimeric immunoreceptor to redirect the specificity of T cells for CD19, a B-lineage antigen, and expressed this transgene in UCB-derived T cells. An ex vivo process, which is compliant with current good manufacturing practice for T-cell trials, has been developed to genetically modify and numerically expand UCB-derived T cells into CD19-specific effector cells. These are capable of CD19-restricted cytokine production and cytolysis in vitro, as well as mediating regression of CD19+ tumor and being selectively eliminated in vivo. Moreover, time-lapse microscopy of the genetically modified T-cell clones revealed an ability to lyse CD19+ tumor cells specifically and repetitively. These data provide the rationale for infusing UCB-derived CD19-specific T cells after UCBT to reduce the incidence of CD19+ B-ALL relapse.
Collapse
Affiliation(s)
- Lisa Marie Serrano
- University of Texas M. D. Anderson Cancer Center, Pediatrics Research Unit 853, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Berger C, Flowers ME, Warren EH, Riddell SR. Analysis of transgene-specific immune responses that limit the in vivo persistence of adoptively transferred HSV-TK-modified donor T cells after allogeneic hematopoietic cell transplantation. Blood 2005; 107:2294-302. [PMID: 16282341 PMCID: PMC1895724 DOI: 10.1182/blood-2005-08-3503] [Citation(s) in RCA: 271] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The introduction of an inducible suicide gene such as the herpes simplex virus thymidine kinase (HSV-TK) might allow exploitation of the antitumor activity of donor T cells after allogeneic hematopoietic cell transplantation (HCT) without graft versus host disease. However, HSV-TK is foreign, and immune responses to gene-modified T cells could lead to their premature elimination. We show that after the infusion of HSV-TK-modified donor T cells to HCT recipients, CD8+ and CD4+ T-cell responses to HSV-TK are rapidly induced and coincide with the disappearance of transferred cells. Cytokine flow cytometry using an overlapping panel of HSV-TK peptides allowed rapid detection and quantitation of HSV-TK-specific T cells in the blood and identified multiple immunogenic epitopes. Repeated infusion of modified T cells boosted the induced HSV-TK-specific T cells, which persisted as memory cells. These studies demonstrate the need for nonimmunogenic suicide genes and identify a strategy for detection of CD4+ and CD8+ T-cell responses to transgene products that should be generally applicable to monitoring patients on gene therapy trials. The potency of gene-modified T cells to elicit robust and durable immune responses imply this approach might be used for vaccination to elicit T-cell responses to viral or tumor antigens.
Collapse
Affiliation(s)
- Carolina Berger
- Fred Hutchinson Cancer Research Center, Clinical Research Division, Seattle, Washington 98109, USA.
| | | | | | | |
Collapse
|
15
|
Malla S, Dafhnis-Calas F, Brookfield JFY, Smith MCM, Brown WRA. Rearranging the centromere of the human Y chromosome with phiC31 integrase. Nucleic Acids Res 2005; 33:6101-13. [PMID: 16246911 PMCID: PMC1266074 DOI: 10.1093/nar/gki922] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We have investigated the ability of the integrase from the Streptomyces φC31 ‘phage to either delete or invert 1 Mb of DNA around the centromere of the human Y chromosome in chicken DT40 hybrid somatic cells. Reciprocal and conservative site-specific recombination was observed in 54% of cells expressing the integrase. The sites failed to recombine in the remaining cells because the sites had been damaged. The sequences of the damaged sites indicated that the damage arose as a result of repair of recombination intermediates by host cell pathways. The liability of recombination intermediates to damage is consistent with what is known about the mechanism of serine recombinase reactions. The structures of the products of the chromosome rearrangements were consistent with the published sequence of the Y chromosome indicating that the assembly of the highly repeated region between the sites is accurate to a resolution of about 50 kb. Mini-chromosomes lacking a centromere were not recovered which also suggested that neo-centromere formation occurs infrequently in vertebrate somatic cells. No ectopic recombination was observed between a φC31 integrase attB site and the chicken genome.
Collapse
Affiliation(s)
| | | | | | | | - William R. A. Brown
- To whom correspondence should be addressed. Tel: +441158493244; Fax: +441159709906;
| |
Collapse
|
16
|
Meaburn KJ, Parris CN, Bridger JM. The manipulation of chromosomes by mankind: the uses of microcell-mediated chromosome transfer. Chromosoma 2005; 114:263-74. [PMID: 16133353 DOI: 10.1007/s00412-005-0014-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2005] [Revised: 05/29/2005] [Accepted: 06/21/2005] [Indexed: 12/20/2022]
Abstract
Microcell-mediated chromosome transfer (MMCT) was a technique originally developed in the 1970s to transfer exogenous chromosome material into host cells. Although, the methodology has not changed considerably since this time it is being used to great success in progressing several different fields in modern day biology. MMCT is being employed by groups all over the world to hunt for tumour suppressor genes associated with specific cancers, DNA repair genes, senescence-inducing genes and telomerase suppression genes. Some of these genomic discoveries are being investigated as potential treatments for cancer. Other fields have taken advantage of MMCT, and these include assessing genomic stability, genomic imprinting, chromatin modification and structure and spatial genome organisation. MMCT has also been a very useful method in construction and manipulation of artificial chromosomes for potential gene therapies. Indeed, MMCT is used to transfer mainly fragmented mini-chromosome between cell types and into embryonic stem cells for the construction of transgenic animals. This review briefly discusses these various uses and some of the consequences and advancements made by different fields utilising MMCT technology.
Collapse
Affiliation(s)
- Karen J Meaburn
- Cell and Chromosome Biology Group, Division of Biosciences, School of Health Sciences and Social Care, Brunel University, Uxbridge UB8 3PH, UK
| | | | | |
Collapse
|
17
|
Krappmann S, Bayram O, Braus GH. Deletion and allelic exchange of the Aspergillus fumigatus veA locus via a novel recyclable marker module. EUKARYOTIC CELL 2005; 4:1298-307. [PMID: 16002655 PMCID: PMC1168958 DOI: 10.1128/ec.4.7.1298-1307.2005] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2005] [Accepted: 04/26/2005] [Indexed: 11/20/2022]
Abstract
Detailed evaluation of gene functions in an asexual fungus requires advanced methods of molecular biology. For the generation of targeted gene deletions in the opportunistic pathogen Aspergillus fumigatus we designed a novel blaster module allowing dominant selection of transformants due to resistance to phleomycin as well as dominant (counter)selection of a Cre recombinase-mediated marker excision event. For validation purposes we have deleted the A. fumigatus pabaA gene in a wild-type isolate by making use of this cassette. The resulting pabaA::loxP strain served as the recipient for subsequent targeting of the velvet locus. Homologous reconstitution of the deleted gene was performed by an allele whose expression is driven in a nitrogen source-dependent manner, as validated by Northern analyses. Overexpression of the veA locus in A. fumigatus does not result in any obvious phenotype, whereas the sporulation capacities of the veA null mutant are reduced on nitrate-containing medium, a phenotype that is completely restored in the reconstituted strain.
Collapse
Affiliation(s)
- Sven Krappmann
- Institute of Microbiology and Genetics, Department of Molecular Microbiology and Genetics, Grisebachstr. 8, D-37077 Göttingen, Germany.
| | | | | |
Collapse
|
18
|
Lee DW, Seong KY, Pratt RJ, Baker K, Aramayo R. Properties of unpaired DNA required for efficient silencing in Neurospora crassa. Genetics 2005; 167:131-50. [PMID: 15166142 PMCID: PMC1470857 DOI: 10.1534/genetics.167.1.131] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The presence of unpaired copies of a gene during meiosis triggers silencing of all copies of the gene in the diploid ascus cell of Neurospora. This phenomenon is called meiotic silencing and on the basis of genetic studies appears to be a post-transcriptional gene silencing (PTGS) mechanism. Previously, meiotic silencing was defined to be induced by the presence of a DNA region lacking an identical segment in the homologous chromosome. However, the determinants of unpaired DNA remained a mystery. Using the Ascospore maturation-1 (Asm-1) gene, we defined what needs to be "unpaired" to silence a gene. For efficient silencing, an unpaired region of DNA needs to be of a sufficient size and contain homology to the reporter transcript. The greater the size of the loop and the larger the homology to the reporter transcript, the better the resulting meiotic silencing is. Conversely, regions not containing homology to the transcript, e.g., intergenic regions, did not silence the reporter. Surprisingly, unpaired fragments lacking a canonical promoter silenced the reporter. Additionally, we detected the unpairing-dependent loss of a transcript during meiotic silencing. Our observations further support a PTGS mechanism for meiotic silencing and offer insight into the evolutionary consequences resulting from this novel meiotic checkpoint.
Collapse
Affiliation(s)
- Dong W Lee
- Department of Biology, College of Science, Texas A&M University, College Station, Texas 77843-3258, USA
| | | | | | | | | |
Collapse
|
19
|
Kahlon KS, Brown C, Cooper LJN, Raubitschek A, Forman SJ, Jensen MC. Specific Recognition and Killing of Glioblastoma Multiforme by Interleukin 13-Zetakine Redirected Cytolytic T Cells. Cancer Res 2004; 64:9160-6. [PMID: 15604287 DOI: 10.1158/0008-5472.can-04-0454] [Citation(s) in RCA: 281] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The interleukin (IL) 13 receptor alpha2 (IL13Ralpha2) is a glioma-restricted cell-surface epitope not otherwise detected within the central nervous system. Here, we describe a novel approach for targeting glioblastoma multiforme (GBM) with IL13Ralpha2-specific cytolytic T cells (CTLs) by their genetic modification to express a membrane-tethered IL13 cytokine chimeric T-cell antigen receptor, or zetakine. Our prototype zetakine incorporates an IL13 E13Y mutein for selective binding to IL13Ralpha2. Human IL13-zetakine(+)CD8(+) CTL transfectants display IL13Ralpha2-specific antitumor effector function including tumor cell cytolysis, T(C)1 cytokine production, and zetakine-regulated autocrine proliferation. The E13Y amino acid substitution of the IL13 mutein of the zetakine endows CTL transfectants with the capacity to discriminate between IL13Ralpha2(+) GBM targets from targets expressing IL13Ralpha1. In vivo, the adoptive transfer of IL13-zetakine(+)CD8(+) CTL clones results in the regression of established human glioblastoma orthotopic xenografts. Pilot clinical trials have been initiated to evaluate the feasibility and safety of local-regional delivery of autologous IL13-zetakine redirected CTL clones in patients with recurrent GBM. Our IL13-zetakine is a prototype of a new class of chimeric immunoreceptors that signal through an engineered immune synapse composed of membrane-tethered cytokine muteins bound to cell-surface cytokine receptors on tumors.
Collapse
MESH Headings
- Animals
- Brain Neoplasms/immunology
- Brain Neoplasms/therapy
- Cell Line, Tumor
- DNA, Complementary/genetics
- Epitopes, T-Lymphocyte/immunology
- Glioblastoma/immunology
- Glioblastoma/therapy
- Humans
- Immunotherapy, Adoptive/methods
- Interleukin-13/genetics
- Interleukin-13/immunology
- Interleukin-13/metabolism
- Interleukin-13 Receptor alpha1 Subunit
- Lymphocyte Activation
- Male
- Mice
- Mice, Inbred NOD
- Mice, SCID
- Receptors, Interleukin/biosynthesis
- Receptors, Interleukin/immunology
- Receptors, Interleukin-13
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/physiology
- Transfection
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Kanwarpal S Kahlon
- Division of Molecular Medicine, Beckman Research Institute, Departments of Pediatric Hematology-Oncology, City of Hope National Medical Center, Duarte, California, USA
| | | | | | | | | | | |
Collapse
|
20
|
Aubert J, Stavridis MP, Tweedie S, O'Reilly M, Vierlinger K, Li M, Ghazal P, Pratt T, Mason JO, Roy D, Smith A. Screening for mammalian neural genes via fluorescence-activated cell sorter purification of neural precursors from Sox1-gfp knock-in mice. Proc Natl Acad Sci U S A 2003; 100 Suppl 1:11836-41. [PMID: 12923295 PMCID: PMC304095 DOI: 10.1073/pnas.1734197100] [Citation(s) in RCA: 196] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The transcription factor Sox1 is the earliest and most specific known marker for mammalian neural progenitors. During fetal development, Sox1 is expressed by proliferating progenitor cells throughout the central nervous system and in no tissue but the lens. We generated a reporter mouse line in which egfp is inserted into the Sox1 locus. Sox1GFP animals faithfully recapitulate the expression of the endogenous gene. We have used the GFP reporter to purify neuroepithelial cells by fluorescence-activated cell sorting from embryonic day 10.5 embryos. RNAs prepared from Sox1GFP+ and Sox1GFP- embryo cells were then used to perform a pilot screen of subtracted cDNAs prepared from differentiating embryonic stem cells and arrayed on a glass chip. Fifteen unique differentially expressed genes were identified, all previously associated with fetal or adult neural tissue. Whole mount in situ hybridization against two genes of previously unknown embryonic expression, Lrrn1 and Musashi2, confirmed the selectivity of this screen for early neuroectodermal markers.
Collapse
Affiliation(s)
- Jerome Aubert
- Institute for Stem Cell Research, University of Edinburgh, King's Buildings, West Mains Road, EH9 3JQ Edinburgh, Scotland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Kutil BL, Seong KY, Aramayo R. Unpaired genes do not silence their paired neighbors. Curr Genet 2003; 43:425-32. [PMID: 12802506 DOI: 10.1007/s00294-003-0412-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2002] [Revised: 04/23/2003] [Accepted: 05/08/2003] [Indexed: 11/25/2022]
Abstract
During meiotic chromosome pairing, a loop of unpaired DNA induces the silencing of all paired and unpaired homologous DNA via meiotic silencing, an RNA-mediated post-transcriptional gene-silencing mechanism. To test the effect of unpaired DNA on adjacent genes, we constructed strains containing the DNA of a transformation marker integrated immediately downstream of the Ascospore maturation-1 ( Asm-1) gene and tested whether this unpaired DNA silences asm-1(+). We conclude that unpaired downstream DNA has no effect on Asm-1 expression during meiosis or ascospore development, which suggests that the silencing signal produced by unpaired DNA does not propagate onto adjacent paired regions.
Collapse
Affiliation(s)
- Brandi L Kutil
- Department of Plant Pathology and Microbiology, College of Agriculture, Texas A&M University, Room 206, Peterson Building, TX 77843-2132, College Station, USA
| | | | | |
Collapse
|
22
|
Bi X, Zhang JZ. Experimental study of thymidine kinase gene therapy of neuroblastoma in vitro and in vivo. Pediatr Surg Int 2003; 19:400-5. [PMID: 12845457 DOI: 10.1007/s00383-003-1019-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/10/2002] [Indexed: 10/26/2022]
Abstract
Neuroblastoma arises as a direct result of genetic disorder; therefore, it should be well treated and conquered by gene therapy in future. In this study, neuroblastoma cell line SH-SY5Y experiments, in vitro and in nude mice in vivo, were subjected to research thymidine kinase suicide gene to treat neuroblastoma. The plasmid LXpsp-hytk and a plasmid LXSH were transduced separately by lipofectin into human neuroblastoma cell line SH-SY5Y. SH-SY5Y-hy and SH-SY5Y-hytk were selected by hygromycin B. Different ganciclovir (GCV) concentration was given to SH-SY5Y-hytk to determine optimal GCV concentration. The cytotoxic effect of GCV on SH-SY5Y-hytk, SH-SY5Y-hy, and SH-SY5Y cells was determined. Scapular subcutaneous tumors were established in nude mice by inoculating 2.5 x 10(6) SH-SY5Y-hytk on their left sides and 2.5 x 10(6) SH-SY5Y-hy cells on their right sides for every mouse of treatment group and control group, respectively. After 1 week, mass grew in both sides of all the mice, and from the eighth day on, every mouse in treatment group received daily intraperitoneal injection of GCV 50 mg/kg body weight for 14 days; every mouse in control group received daily intraperitoneal injection of 1 ml saline for 14 days. On day 22 tumors were excised and weighed on the left and right sides, respectively, and apoptosis was detected by TUNEL method. Apoptotic index was calculated on the left and on the right sides, respectively, for every mouse in treatment group and control group. The lowest concentration of hygromycin B was 60 microg/ml. The cytotoxic effect of GCV on SH-SY5Y-hytk cells was obvious (IC(50)=0.03 microM), whereas GCV showed almost no cytotoxic effect on SH-SY5Y and SH-SY5Y-hy cells (IC(50)>400 microM). SH-SY5Y-hytk was killed by concentrations of 30 microM GCV effectively and it obviously showed the bystander effect, when SH-SY5Y-hytk remained at least 18% in the mixture culture cells. The tumor on the left side was much smaller than that of the right side in control group (p<0.05), and apoptotic index of the left was higher than that of the right in control group (p<0.01). SH-SY5Y-hytk has the bystander effect over 18% SH-SY5Y-hytk of the mixture culture cells at the concentration of 30 microM GCV. The HSV-tk/GCV system was effective in treating SH-SY5Y neuroblastoma cell line in vivo as well. Our findings suggest that thymidine kinase gene therapy could be a potential method for treating neuroblastoma in the future.
Collapse
Affiliation(s)
- Xun Bi
- Capital Institute of Pediatrics, 100020 Beijing, China
| | | |
Collapse
|
23
|
Lee DW, Haag JR, Aramayo R. Construction of strains for rapid homokaryon purification after integration of constructs at the histidine-3 ( his-3) locus of Neurospora crassa. Curr Genet 2003; 43:17-23. [PMID: 12684841 DOI: 10.1007/s00294-002-0366-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2002] [Revised: 11/25/2002] [Accepted: 12/12/2002] [Indexed: 11/30/2022]
Abstract
We report the construction of histidine-3 (his-3) strains of Neurospora crassa containing the hygromycin B phosphotransferase gene of Escherichia coli (hph(+)) fused in-frame to the herpes simplex virus thymidine kinase gene (tk(+); Lupton et al. 1991), integrated at the his-3 locus. We also report the construction of two ampicillin-resistant and two kanamycin-resistant his-3 gene-replacement vector plasmids. The combined use of these strains and plasmids for his-3-targeted gene integration allows for the rapid identification of homokaryotic transformants containing the expected gene replacement event.
Collapse
Affiliation(s)
- Dong W Lee
- Department of Biology, College of Science, Texas A&M University, Room 415, Building BSBW, College Station, TX 77843-3258, USA
| | | | | |
Collapse
|
24
|
McBurney MW, Yang X, Jardine K, Hixon M, Boekelheide K, Webb JR, Lansdorp PM, Lemieux M. The mammalian SIR2alpha protein has a role in embryogenesis and gametogenesis. Mol Cell Biol 2003; 23:38-54. [PMID: 12482959 PMCID: PMC140671 DOI: 10.1128/mcb.23.1.38-54.2003] [Citation(s) in RCA: 498] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The yeast Sir2p protein has an essential role in maintaining telomeric and mating type genes in their transcriptionally inactive state. Mammalian cells have a very large proportion of their genome inactive and also contain seven genes that have regions of homology with the yeast sir2 gene. One of these mammalian genes, sir2alpha, is the presumptive mammalian homologue of the yeast sir2 gene. We set out to determine if sir2alpha plays a role in mammalian gene silencing by creating a strain of mice carrying a null allele of sir2alpha. Animals carrying two null alleles of sir2alpha were smaller than normal at birth, and most died during the early postnatal period. In an outbred background, the sir2alpha null animals often survived to adulthood, but both sexes were sterile. We found no evidence for failure of gene silencing in sir2alpha null animals, suggesting that either SIR2alpha has a different role in mammals than it does in Saccharomyces cerevisiae or that its role in gene silencing in confined to a small subset of mammalian genes. The phenotype of the sir2alpha null animals suggests that the SIR2alpha protein is essential for normal embryogenesis and for normal reproduction in both sexes.
Collapse
Affiliation(s)
- Michael W McBurney
- Ottawa Regional Cancer Centre and Department of Medicine, University of Ottawa, Ontario K1H 1C4, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Koering CE, Pollice A, Zibella MP, Bauwens S, Puisieux A, Brunori M, Brun C, Martins L, Sabatier L, Pulitzer JF, Gilson E. Human telomeric position effect is determined by chromosomal context and telomeric chromatin integrity. EMBO Rep 2002; 3:1055-61. [PMID: 12393752 PMCID: PMC1307600 DOI: 10.1093/embo-reports/kvf215] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
We investigated the influence of telomere proximity and composition on the expression of an EGFP reporter gene in human cells. In transient transfection assays, telomeric DNA does not repress EGFP but rather slightly increases its expression. In contrast, in stable cell lines, the same reporter construct is repressed when inserted at a subtelomeric location. The telomeric repression is transiently alleviated by increasing the dosage of the TTAGGG repeat factor 1 (TRF1). Upon a prolongated treatment with trichostatin A, the derepression of the subtelomeric reporter gene correlates with the delocalization of HP1alpha and HP1beta. In contrast, treating the cells with 5 azacytidin, a demethylating agent, or with sirtinol, an inhibitor of the Sir2 family of deacetylase, has no apparent effect on telomeric repression. Overall, position effects at human chromosome ends are dependent on a specific higher-order organization of the telomeric chromatin. The possible involvement of HP1 isoforms is discussed.
Collapse
Affiliation(s)
- Catherine Elaine Koering
- Laboratoire de Biologie Moléculaire et Cellulaire, UMR5665, Centre National de la Recherche Scientifique, Ecole Normale Supérieure de Lyon, 46 Allée d'Italie, 69364 Lyon cedex 07, France
| | - Alessandra Pollice
- Università degli Studi di Napoli Federico II, Dipartimento di Genetica, Biologia Generale e Molecolare, via Mezzocannone 8, 80134 Naples Italy
- IIGB (International Institute of Genetics and Biophysics), via Marconi 12, 80100 Naples, Italy
- Tel: +33 4 72728453; Fax: +33 4 72728080; or
| | - Maria Pia Zibella
- Università degli Studi di Napoli Federico II, Dipartimento di Genetica, Biologia Generale e Molecolare, via Mezzocannone 8, 80134 Naples Italy
| | - Serge Bauwens
- Unite d'Oncologie Moleculaire, Centre Leon Berard, 28 rue Laennec, 69373 Lyon cedex 08, France
| | - Alain Puisieux
- Unite d'Oncologie Moleculaire, Centre Leon Berard, 28 rue Laennec, 69373 Lyon cedex 08, France
| | - Michele Brunori
- Laboratoire de Biologie Moléculaire et Cellulaire, UMR5665, Centre National de la Recherche Scientifique, Ecole Normale Supérieure de Lyon, 46 Allée d'Italie, 69364 Lyon cedex 07, France
| | - Christine Brun
- Laboratoire de Biologie Moléculaire et Cellulaire, UMR5665, Centre National de la Recherche Scientifique, Ecole Normale Supérieure de Lyon, 46 Allée d'Italie, 69364 Lyon cedex 07, France
| | - Luis Martins
- CEA (Commissariat a l'Energie Atomique), Laboratoire de Radiobiologie et Oncologie, BP6, Fontenay-aux-Roses, France
| | - Laure Sabatier
- CEA (Commissariat a l'Energie Atomique), Laboratoire de Radiobiologie et Oncologie, BP6, Fontenay-aux-Roses, France
| | - John F. Pulitzer
- Università degli Studi di Napoli Federico II, Dipartimento di Genetica, Biologia Generale e Molecolare, via Mezzocannone 8, 80134 Naples Italy
- IIGB (International Institute of Genetics and Biophysics), via Marconi 12, 80100 Naples, Italy
| | - Eric Gilson
- Laboratoire de Biologie Moléculaire et Cellulaire, UMR5665, Centre National de la Recherche Scientifique, Ecole Normale Supérieure de Lyon, 46 Allée d'Italie, 69364 Lyon cedex 07, France
- Tel: +33 4 72728453; Fax: +33 4 72728080; or
| |
Collapse
|
26
|
Spence JM, Critcher R, Ebersole TA, Valdivia MM, Earnshaw WC, Fukagawa T, Farr CJ. Co-localization of centromere activity, proteins and topoisomerase II within a subdomain of the major human X alpha-satellite array. EMBO J 2002; 21:5269-80. [PMID: 12356743 PMCID: PMC129033 DOI: 10.1093/emboj/cdf511] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Dissection of human centromeres is difficult because of the lack of landmarks within highly repeated DNA. We have systematically manipulated a single human X centromere generating a large series of deletion derivatives, which have been examined at four levels: linear DNA structure; the distribution of constitutive centromere proteins; topoisomerase IIalpha cleavage activity; and mitotic stability. We have determined that the human X major alpha-satellite locus, DXZ1, is asymmetrically organized with an active subdomain anchored approximately 150 kb in from the Xp-edge. We demonstrate a major site of topoisomerase II cleavage within this domain that can shift if juxtaposed with a telomere, suggesting that this enzyme recognizes an epigenetic determinant within the DXZ1 chromatin. The observation that the only part of the DXZ1 locus shared by all deletion derivatives is a highly restricted region of <50 kb, which coincides with the topo isomerase II cleavage site, together with the high levels of cleavage detected, identify topoisomerase II as a major player in centromere biology.
Collapse
Affiliation(s)
| | | | - Thomas A. Ebersole
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH,
Wellcome Trust Centre for Cell Biology, Institute of Cell and Molecular Biology, University of Edinburgh, King’s Buildings, Mayfield Road, Edinburgh EH9 3JR, UK, Laboratory of Biosystems and Cancer Genome Structure and Function Section, National Cancer Institute, NIH, Building 49, Room 4A56, Bethesda, MD 20892-4471, USA, Department of Biochemistry and Molecular Biology, University of Cadiz, 11510 Puerto Real, Cadiz, Spain and PRESTO of the Japan Science and Technology Corporation, National Institute of Genetics and Graduate University for Advanced Studies, Mishima, Shizuoka 411-8540, Japan Corresponding author e-mail:
| | - Manuel M. Valdivia
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH,
Wellcome Trust Centre for Cell Biology, Institute of Cell and Molecular Biology, University of Edinburgh, King’s Buildings, Mayfield Road, Edinburgh EH9 3JR, UK, Laboratory of Biosystems and Cancer Genome Structure and Function Section, National Cancer Institute, NIH, Building 49, Room 4A56, Bethesda, MD 20892-4471, USA, Department of Biochemistry and Molecular Biology, University of Cadiz, 11510 Puerto Real, Cadiz, Spain and PRESTO of the Japan Science and Technology Corporation, National Institute of Genetics and Graduate University for Advanced Studies, Mishima, Shizuoka 411-8540, Japan Corresponding author e-mail:
| | - William C. Earnshaw
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH,
Wellcome Trust Centre for Cell Biology, Institute of Cell and Molecular Biology, University of Edinburgh, King’s Buildings, Mayfield Road, Edinburgh EH9 3JR, UK, Laboratory of Biosystems and Cancer Genome Structure and Function Section, National Cancer Institute, NIH, Building 49, Room 4A56, Bethesda, MD 20892-4471, USA, Department of Biochemistry and Molecular Biology, University of Cadiz, 11510 Puerto Real, Cadiz, Spain and PRESTO of the Japan Science and Technology Corporation, National Institute of Genetics and Graduate University for Advanced Studies, Mishima, Shizuoka 411-8540, Japan Corresponding author e-mail:
| | - Tatsuo Fukagawa
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH,
Wellcome Trust Centre for Cell Biology, Institute of Cell and Molecular Biology, University of Edinburgh, King’s Buildings, Mayfield Road, Edinburgh EH9 3JR, UK, Laboratory of Biosystems and Cancer Genome Structure and Function Section, National Cancer Institute, NIH, Building 49, Room 4A56, Bethesda, MD 20892-4471, USA, Department of Biochemistry and Molecular Biology, University of Cadiz, 11510 Puerto Real, Cadiz, Spain and PRESTO of the Japan Science and Technology Corporation, National Institute of Genetics and Graduate University for Advanced Studies, Mishima, Shizuoka 411-8540, Japan Corresponding author e-mail:
| | - Christine J. Farr
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH,
Wellcome Trust Centre for Cell Biology, Institute of Cell and Molecular Biology, University of Edinburgh, King’s Buildings, Mayfield Road, Edinburgh EH9 3JR, UK, Laboratory of Biosystems and Cancer Genome Structure and Function Section, National Cancer Institute, NIH, Building 49, Room 4A56, Bethesda, MD 20892-4471, USA, Department of Biochemistry and Molecular Biology, University of Cadiz, 11510 Puerto Real, Cadiz, Spain and PRESTO of the Japan Science and Technology Corporation, National Institute of Genetics and Graduate University for Advanced Studies, Mishima, Shizuoka 411-8540, Japan Corresponding author e-mail:
| |
Collapse
|
27
|
Forsyth NR, Morrison V, Craig NJ, Fitzsimmons SA, Barr NI, Ireland H, Gordon KE, Dowen S, Cuthbert AP, Newbold RF, Bryce SD, Parkinson EK. Functional evidence for a squamous cell carcinoma mortality gene(s) on human chromosome 4. Oncogene 2002; 21:5135-47. [PMID: 12140764 DOI: 10.1038/sj.onc.1205688] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2002] [Revised: 05/15/2002] [Accepted: 05/20/2002] [Indexed: 11/08/2022]
Abstract
Squamous cell carcinoma (SCC) immortality is associated with p53 and INK4A dysfunction, high levels of telomerase and loss of heterozygosity (LOH) of other chromosomes, including chromosome 4. To test for a functional cancer mortality gene on human chromosome 4 we introduced a complete or fragmented copy of the chromosome into SCC lines by microcell-mediated chromosome transfer (MMCT). Human chromosome 4 caused a delayed crisis, specifically in SCC lines with LOH on chromosome 4, but chromosomes 3, 6, 11 and 15 were without effect. The introduction of the telomerase reverse transcriptase into the target lines extended the average telomere terminal fragment length but did not affect the frequency of mortal hybrids following MMCT of chromosome 4. Furthermore, telomerase activity was still present in hybrids displaying the mortal phenotype. The MMCT of chromosomal fragments into BICR6 mapped the mortality gene to between the centromere and 4q23. Deletion analysis of the introduced chromosome in immortal segregants narrowed the candidate interval to 2.7 Mb spanning D4S423 and D4S1557. The results suggest the existence of a gene on human chromosome 4 whose dysfunction contributes to the continuous proliferation of SCC and that this gene operates independently from telomeres, p53 and INK4A.
Collapse
Affiliation(s)
- Nicholas R Forsyth
- Beatson Institute for Cancer Research, CRC Beatson Laboratories, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Eszterhas SK, Bouhassira EE, Martin DIK, Fiering S. Transcriptional interference by independently regulated genes occurs in any relative arrangement of the genes and is influenced by chromosomal integration position. Mol Cell Biol 2002; 22:469-79. [PMID: 11756543 PMCID: PMC139736 DOI: 10.1128/mcb.22.2.469-479.2002] [Citation(s) in RCA: 133] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transcriptional interference is the influence, generally suppressive, of one active transcriptional unit on another unit linked in cis. Its wide occurrence in experimental systems suggests that it may also influence transcription in many loci, but little is known about its precise nature or underlying mechanisms. Here we report a study of the interaction of two nearly identical transcription units juxtaposed in various arrangements. Each reporter gene in the constructs has its own promoter and enhancer and a strong polyadenylation signal. We used recombinase-mediated cassette exchange (RMCE) to insert the constructs into previously tagged genomic sites in cultured cells. This strategy also allows the constructs to be assessed in both orientations with respect to flanking chromatin. In each of the possible arrangements (tandem, divergent, and convergent), the presence of two genes strongly suppresses expression of both genes compared to that of an identical single gene at the same integration site. The suppression is most severe with the convergent arrangement and least severe in total with the divergent arrangement, while the tandem arrangement is most strongly influenced by the integration site and the genes' orientation within the site. These results suggest that transcriptional interference could underlie some position effects and contribute to the regulation of genes in complex loci.
Collapse
Affiliation(s)
- Susan K Eszterhas
- Department of Microbiology and Immunology, Dartmouth Medical School, Lebanon, New Hampshire 03756, USA
| | | | | | | |
Collapse
|
29
|
Berger C, Huang ML, Gough M, Greenberg PD, Riddell SR, Kiem HP. Nonmyeloablative immunosuppressive regimen prolongs In vivo persistence of gene-modified autologous T cells in a nonhuman primate model. J Virol 2001; 75:799-808. [PMID: 11134293 PMCID: PMC113976 DOI: 10.1128/jvi.75.2.799-808.2001] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The in vivo persistence of gene-modified cells can be limited by host immune responses to transgene-encoded proteins. In this study we evaluated in a nonhuman primate model whether the administration of a nonmyeloablative regimen consisting of low-dose total-body irradiation with 200 cGy followed by immunosuppression with mycophenolate mofetil and cyclosporin A for 28 and 35 days, respectively, could be used to facilitate persistence of autologous gene-modified T cells when a transgene-specific immune response had already been established or to induce long-lasting tolerance in unprimed recipients. Two macaques (Macaca nemestrina) received infusions of T cells transduced to express either the enhanced green fluorescent protein and neomycin phosphotransferase genes or the hygromycin phosphotransferase and herpes simplex virus thymidine kinase genes. In the absence of immunosuppression, both macaques developed potent class I major histocompatibility complex-restricted CD8(+) cytotoxic T-lymphocyte (CTL) responses that rapidly eliminated the gene-modified T cells and that persisted long term as memory CTL. Treatment with the nonmyeloablative regimen failed to abrogate preexisting memory CTL responses but interfered with the induction of transgene-specific CTL and facilitated in vivo persistence of gene-modified cells in an unprimed host. However, sustained tolerance to gene-modified T cells was not achieved with this regimen, indicating that further modifications will be required to permit sustained persistence of gene-modified T cells.
Collapse
Affiliation(s)
- C Berger
- Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | | | | | | | | | | |
Collapse
|
30
|
Yee C, Thompson JA, Roche P, Byrd DR, Lee PP, Piepkorn M, Kenyon K, Davis MM, Riddell SR, Greenberg PD. Melanocyte destruction after antigen-specific immunotherapy of melanoma: direct evidence of t cell-mediated vitiligo. J Exp Med 2000; 192:1637-44. [PMID: 11104805 PMCID: PMC2193107 DOI: 10.1084/jem.192.11.1637] [Citation(s) in RCA: 329] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Current strategies for the immunotherapy of melanoma include augmentation of the immune response to tumor antigens represented by melanosomal proteins such as tyrosinase, gp100, and MART-1. The possibility that intentional targeting of tumor antigens representing normal proteins can result in autoimmune toxicity has been postulated but never demonstrated previously in humans. In this study, we describe a patient with metastatic melanoma who developed inflammatory lesions circumscribing pigmented areas of skin after an infusion of MART-1-specific CD8(+) T cell clones. Analysis of the infiltrating lymphocytes in skin and tumor biopsies using T cell-specific peptide-major histocompatibility complex tetramers demonstrated a localized predominance of MART-1-specific CD8(+) T cells (>28% of all CD8 T cells) that was identical to the infused clones (as confirmed by sequencing of the complementarity-determining region 3). In contrast to skin biopsies obtained from the patient before T cell infusion, postinfusion biopsies demonstrated loss of MART-1 expression, evidence of melanocyte damage, and the complete absence of melanocytes in affected regions of the skin. This study provides, for the first time, direct evidence in humans that antigen-specific immunotherapy can target not only antigen-positive tumor cells in vivo but also normal tissues expressing the shared tumor antigen.
Collapse
Affiliation(s)
- Cassian Yee
- Clinical Research Division, Fred Hutchinson Cancer Research Center, the
- Department of Medicine, University of Washington, Seattle, Washington 98109
| | - John A. Thompson
- Department of Medicine, University of Washington, Seattle, Washington 98109
| | - Patrick Roche
- Department of Pathology, Mayo Clinic, Rochester, Minnesota 55905
| | - David R. Byrd
- Department of Surgery, University of Washington, Seattle, Washington 98109
| | - Peter P. Lee
- Department of Microbiology and Immunology, Stanford University, Stanford, California 94305
| | - Michael Piepkorn
- Department of Medicine, University of Washington, Seattle, Washington 98109
| | - Karla Kenyon
- Clinical Research Division, Fred Hutchinson Cancer Research Center, the
| | - Mark M. Davis
- Department of Microbiology and Immunology, Stanford University, Stanford, California 94305
| | - Stanley R. Riddell
- Clinical Research Division, Fred Hutchinson Cancer Research Center, the
- Department of Medicine, University of Washington, Seattle, Washington 98109
| | - Philip D. Greenberg
- Clinical Research Division, Fred Hutchinson Cancer Research Center, the
- Department of Medicine, University of Washington, Seattle, Washington 98109
| |
Collapse
|
31
|
Dickinson P, Kimber WL, Kilanowski FM, Webb S, Stevenson BJ, Porteous DJ, Dorin JR. Enhancing the efficiency of introducing precise mutations into the mouse genome by hit and run gene targeting. Transgenic Res 2000; 9:55-66. [PMID: 10853269 DOI: 10.1023/a:1008915026660] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The creation of precise clinical mutations by targeting is important in elucidating disease pathogenesis using mouse models. 'Hit and run' gene targeting is an elegant method to achieve this goal. This uses first a positive selection to introduce the targeting vector carrying the required mutation and then a negative selection to identify clones which have removed vector and wild-type sequences by intrachromosomal recombination. However, this approach has only been successfully used in a handful of cases. We used this procedure to introduce precise clinical mutations into the exon 10 region of the cystic fibrosis transmembrane conductance regulator (Cftr) gene. Using a CMV promoter driven hygromycin/thymidine kinase (hyg/tk) fusion gene as both our dominant and negative selectable marker, we targeted the Cftr locus very efficiently but only identified false runs after the negative selection step. This defect in thymidine kinase induced toxicity to gancyclovir correlated with methylation of the transgene. Consequently we devised a stringent screening procedure to select only true 'run' clones. Unfortunately these 'run' clones had lost the mutation so we altered the vector design to bias the run step to retain the mutation and used a different tk selection cassette with a HSVtk promoter sequence. This new vector design allowed both efficient 'hit and run' for two cystic fibrosis (CF) mutations with no false positives and successful germline transmission of the novel G480C missense mutation.
Collapse
Affiliation(s)
- P Dickinson
- MRC Human Genetics Unit, Western General Hospital, Edinburgh
| | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
DNA replication starts at multiple discrete sites across the human chromosomal c-myc region, including two or more sites within 2.4 kb upstream of the c-myc gene. The corresponding 2.4-kb c-myc origin fragment confers autonomously replicating sequence (ARS) activity on plasmids, which specifically initiate replication in the origin fragment in vitro and in vivo. To test whether the region that displays plasmid replicator activity also acts as a chromosomal replicator, HeLa cell sublines that each contain a single copy of the Saccharomyces cerevisiae FLP recombinase target (FRT) sequence flanked by selectable markers were constructed. A clonal line containing a single unrearranged copy of the transduced c-myc origin was produced by cotransfecting a donor plasmid containing the 2.4-kb c-myc origin fragment and FRT, along with a plasmid expressing the yeast FLP recombinase, into cells containing a chromosomal FRT acceptor site. The amount of short nascent DNA strands at the chromosomal acceptor site was quantitated before and after targeted integration of the origin fragment. Competitive PCR quantitation showed that the c-myc origin construct substantially increased the amount of nascent DNA relative to that at the unoccupied acceptor site and to that after the insertion of non-myc DNA. The abundance of nascent strands was greatest close to the c-myc insert of the integrated donor plasmid, and significant increases in nascent strand abundance were observed at sites flanking the insertion. These results provide biochemical and genetic evidence for the existence of chromosomal replicators in metazoan cells and are consistent with the presence of chromosomal replicator activity in the 2.4-kb region of c-myc origin DNA.
Collapse
Affiliation(s)
- M Malott
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, Ohio 45345, USA
| | | |
Collapse
|
33
|
Beltinger C, Fulda S, Kammertoens T, Meyer E, Uckert W, Debatin KM. Herpes simplex virus thymidine kinase/ganciclovir-induced apoptosis involves ligand-independent death receptor aggregation and activation of caspases. Proc Natl Acad Sci U S A 1999; 96:8699-704. [PMID: 10411938 PMCID: PMC17579 DOI: 10.1073/pnas.96.15.8699] [Citation(s) in RCA: 127] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Suicide gene therapy systems such as the herpes simplex thymidine kinase/ganciclovir system (TK/GCV) may kill cancer cells by apoptosis through as yet undefined mechanisms. Here we show that TK/GCV treatment induces p53 accumulation and increases cell surface expression of CD95 and tumor necrosis factor receptor, which is likely to involve p53-mediated translocation of CD95 to the cell surface. TK/GCV-induced apoptosis involves CD95-L-independent CD95 aggregation leading to the formation of a Fas-associated death domain protein (FADD) and caspase-8-containing, death-inducing signaling complex. Dominant negative FADD, the caspase-8 inhibitor zIETD-fmk [Z-Ile-Glu(OMe)-Thr-Asp(OMe)-fluoromethylketone], and zVAD-fmk (Z-Val-Ala-Asp-fluoromethylketone) partially abrogate TK/GCV-induced apoptosis. In addition to apoptosis induction, TK/GCV treatment strongly sensitizes for CD95-L-, TNF-, and TNF-related, apoptosis-inducing, ligand (TRAIL)-induced cell death in constitutively resistant cells. These findings may be used to increase the efficacy of TK/GCV and other suicide gene therapy systems for the treatment of cancer.
Collapse
Affiliation(s)
- C Beltinger
- Universitäts-Kinderklinik, 89075 Ulm, Germany
| | | | | | | | | | | |
Collapse
|
34
|
Foster GA, Stringer BM. Genetic regulatory elements introduced into neural stem and progenitor cell populations. Brain Pathol 1999; 9:547-67. [PMID: 10416993 PMCID: PMC8098454 DOI: 10.1111/j.1750-3639.1999.tb00541.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The genetic manipulation of neural cells has advantage in both basic biology and medicine. Its utility has provided a clearer understanding of how the survival, connectivity, and chemical phenotype of neurones is regulated during, and after, embryogenesis. Much of this achievement has come from the recent generation by genetic means of reproducible and representative supplies of precursor cells which can then be analyzed in a variety of paradigms. Furthermore, advances made in the clinical use of transplantation for neurodegenerative disease have created a demand for an abundant, efficacious and safe supply of neural cells for grafting. This review describes how genetic methods, in juxtaposition to epigenetic means, have been used advantageously to achieve this goal. In particular, we detail how gene transfer techniques have been developed to enable cell immortalization, manipulation of cell differentiation and commitment, and the controlled selection of cells for purification or safety purposes. In addition, it is now also possible to genetically modify antigen presentation on cell surfaces. Finally, there is detailed the transfer of therapeutic products to discrete parts of the central nervous system (CNS), using neural cells as elegant and sophisticated delivery vehicles. In conclusion, once the epigenetic and genetic controls over neural cell production, differentiation and death have been more fully determined, providing a mixture of hard-wired elements and more flexibly expressed characteristics becomes feasible. Optimization of the contributions and interactions of these two controlling systems should lead to improved cell supplies for neurotransplantation.
Collapse
Affiliation(s)
- G A Foster
- Cardiff School of Biosciences, University of Wales, UK.
| | | |
Collapse
|
35
|
Li X, Commane M, Burns C, Vithalani K, Cao Z, Stark GR. Mutant cells that do not respond to interleukin-1 (IL-1) reveal a novel role for IL-1 receptor-associated kinase. Mol Cell Biol 1999; 19:4643-52. [PMID: 10373513 PMCID: PMC84262 DOI: 10.1128/mcb.19.7.4643] [Citation(s) in RCA: 180] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mutagenized human 293 cells containing an interleukin-1 (IL-1)-regulated herpes thymidine kinase gene, selected in IL-1 and gancyclovir, have yielded many independent clones that are unresponsive to IL-1. The four clones analyzed here carry recessive mutations and represent three complementation groups. Mutant A in complementation group I1 lacks IL-1 receptor-associated kinase (IRAK), while the mutants in the other two groups are defective in unknown components that function upstream of IRAK. Expression of exogenous IRAK in I1A cells (I1A-IRAK) restores their responsiveness to IL-1. Neither NFkappaB nor Jun kinase is activated in IL-1-treated I1A cells, but these responses are restored in I1A-IRAK cells, indicating that IRAK is required for both. To address the role of the kinase activity of IRAK in IL-1 signaling, its ATP binding site was mutated (K239A), completely abolishing kinase activity. In transfected I1A cells, IRAK-K239A was still phosphorylated upon IL-1 stimulation and, surprisingly, still complemented all the defects in the mutant cells. Therefore, IRAK must be phosphorylated by a different kinase, and phospho-IRAK must play a role in IL-1-mediated signaling that does not require its kinase activity.
Collapse
Affiliation(s)
- X Li
- Department of Molecular Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | | | | | | | | | | |
Collapse
|
36
|
Liu K, Li L, Nisson PE, Gruber C, Jessee J, Cohen SN. Reversible tumorigenesis induced by deficiency of vasodilator-stimulated phosphoprotein. Mol Cell Biol 1999; 19:3696-703. [PMID: 10207093 PMCID: PMC84183 DOI: 10.1128/mcb.19.5.3696] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Random homozygous knockout (RHKO) is an antisense RNA strategy capable of identifying genes whose homozygous functional inactivation yields a selectable phenotype in cells growing in culture. Using this approach, we isolated NIH 3T3 fibroblast clones that showed the ability to form colonies on 0.5% agar and tumors in nude mice. The gene inactivated in one of these clones was found to encode VASP (vasodilator-stimulated phosphoprotein), a previously identified protein that binds to components of the cadherin-catenin junctional complex and has been implicated in cell-cell interactions, the formation of actin filaments, and the transmission of signals at the cytoskeleton-membrane interface. Fibroblasts made deficient in VASP by RHKO showed loss of contact inhibition, and consequently, continued cell division past confluence. Restoration of VASP function by reversal of RHKO yielded cells that had lost the neoplastic capabilities acquired during RHKO. Overproduction of VASP mRNA in the sense or antisense orientation from expression constructs introduced by transfection into naive NIH 3T3 fibroblasts also resulted in neoplastic transformation, implying that normal cell growth may require the maintenance of VASP expression within a narrow range. Our results implicate VASP in tumorigenesis and/or cancer progression.
Collapse
Affiliation(s)
- K Liu
- Departments of Genetics, Stanford University School of Medicine, Stanford, California 94305-5120, USA
| | | | | | | | | | | |
Collapse
|
37
|
Petersson M, Charo J, Salazar-Onfray F, Noffz G, Mohaupt M, Qin Z, Klein G, Blankenstein T, Kiessling R. Constitutive IL-10 Production Accounts for the High NK Sensitivity, Low MHC Class I Expression, and Poor Transporter Associated with Antigen Processing (TAP)-1/2 Function in the Prototype NK Target YAC-1. THE JOURNAL OF IMMUNOLOGY 1998. [DOI: 10.4049/jimmunol.161.5.2099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
Tumor cells that are treated with rIL-10 or transfected with the IL-10 gene show phenotypic changes. These include low but peptide-inducible expression of MHC class I, low sensitivity to specific CTL-mediated lysis, and increased NK sensitivity. In vitro-established mouse tumor lines were screened for IL-10 expression and production, and a large proportion of plasmocytomas or T cell lymphomas were found to produce IL-10. Since one of these lines was the prototype NK target cell YAC-1, we investigated whether the high IL-10 production of this cell line was related to its high NK sensitivity and its defects in MHC class I expression. The decrease in H-2 expression following the in vitro culture of in vivo-passaged YAC-1 cells was accompanied by a gradual increase in IL-10 production, whereas the reverse was found when passing in vitro-grown YAC-1 in vivo as an ascites tumor in syngenic mice. In addition, differences in YAC-1 MHC class I expression correlated with alterations in the functional activity of TAP-1/2 proteins. YAC-1 cells that were transduced with a retroviral IL-10 antisense construct (Y-IL-10 AS) only produced about half of the IL-10 that was produced by YAC-1 transduced with the control construct (Y-IL-10 Mock). Relative to Y-IL-10 Mock cells, the expression of H-2 on Y-IL-10 AS cells was markedly increased, and NK sensitivity was decreased. These data argue for a mechanism wherein IL-10 production is causally related to the low H-2 expression, decreased TAP function, and high NK sensitivity of YAC-1 cells.
Collapse
Affiliation(s)
- Max Petersson
- *Microbiology and Tumor Biology Center (MTC), Karolinska Institute, Stockholm, Sweden
| | - Jehad Charo
- *Microbiology and Tumor Biology Center (MTC), Karolinska Institute, Stockholm, Sweden
| | - Flavio Salazar-Onfray
- *Microbiology and Tumor Biology Center (MTC), Karolinska Institute, Stockholm, Sweden
| | - Gabriele Noffz
- †Max-Delbruck Center for Molecular Medicine (MDC), Berlin-Buch, Germany; and
| | - Mariette Mohaupt
- †Max-Delbruck Center for Molecular Medicine (MDC), Berlin-Buch, Germany; and
| | - Zhihai Qin
- †Max-Delbruck Center for Molecular Medicine (MDC), Berlin-Buch, Germany; and
| | - George Klein
- *Microbiology and Tumor Biology Center (MTC), Karolinska Institute, Stockholm, Sweden
| | - Thomas Blankenstein
- †Max-Delbruck Center for Molecular Medicine (MDC), Berlin-Buch, Germany; and
| | - Rolf Kiessling
- *Microbiology and Tumor Biology Center (MTC), Karolinska Institute, Stockholm, Sweden
- ‡Department of Experimental Oncology, Radiumhemmet, Karolinska Hospital, Stockholm, Sweden
| |
Collapse
|
38
|
Ballantyne J, Henry DL, Muller JR, Briere F, Snapper CM, Kehry M, Marcu KB. Efficient Recombination of a Switch Substrate Retrovector in CD40-Activated B Lymphocytes: Implications for the Control of CH Gene Switch Recombination. THE JOURNAL OF IMMUNOLOGY 1998. [DOI: 10.4049/jimmunol.161.3.1336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
Maturing B lymphocytes possess a recombination activity that switches the class of heavy chain Ig. The nature of the recombination activity, its molecular requirements and regulation remain elusive questions about B lymphocyte biology and development. Class switch recombination is controlled by cytokine response elements that are required to differentially activate CH gene transcription before their subsequent recombination. Here, we show that cultures of purified murine and human B cells, stimulated only by CD40 receptor engagement, possess a potent switch recombination activity. CD40 ligand-stimulated murine and human B lymphocytes were infected with recombinant retroviruses containing Sμ and Sγ2b sequences. Chromosomally integrated switch substrate retrovectors (SSRs), harboring constitutively transcribed S sequences, underwent extensive recombinations restricted to their S sequences with structural features akin to endogenous switching. SSR recombination commenced 4 days postinfection (5 days poststimulation) with extensive switch sequence recombination over the next 2 to 3 days. In contrast, endogenous Sγ2b and Sγ1 sequences did not undergo appreciable switch recombination upon CD40 signaling alone. As expected, IL-4 induced endogenous Sμ to Sγ1 switching, while endogenous Sμ to Sγ2b fusions remained undetectable. Surprisingly, IL-4 enhanced the onset of SSR recombination in CD40-stimulated murine B cells, with S-S products appearing only 2 days postinfection and reaching a maximum within 2 to 3 days. The efficiency of switch recombination with SSRs ressembles that seen for endogenous CH class switching.
Collapse
Affiliation(s)
- Jack Ballantyne
- *Department of Biochemistry and Cell Biology, Institute for Cell and Developmental Biology, State University of New York, Stony Brook, NY 11794
| | - Diane L. Henry
- *Department of Biochemistry and Cell Biology, Institute for Cell and Developmental Biology, State University of New York, Stony Brook, NY 11794
| | - Jurgen R. Muller
- *Department of Biochemistry and Cell Biology, Institute for Cell and Developmental Biology, State University of New York, Stony Brook, NY 11794
| | - Francine Briere
- †Laboratory for Immunological Research, Schering-Plough, Dardilly, France
| | - Clifford M. Snapper
- ‡Department of Pathology, F. Edward Hebert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814; and
| | - Marilyn Kehry
- §Department of Immunological Diseases, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT 06877
| | - Kenneth B. Marcu
- *Department of Biochemistry and Cell Biology, Institute for Cell and Developmental Biology, State University of New York, Stony Brook, NY 11794
| |
Collapse
|
39
|
Kodaira H, Kume A, Ogasawara Y, Urabe M, Kitano K, Kakizuka A, Ozawa K. Fas and mutant estrogen receptor chimeric gene: a novel suicide vector for tamoxifen-inducible apoptosis. Jpn J Cancer Res 1998; 89:741-7. [PMID: 9738981 PMCID: PMC5921882 DOI: 10.1111/j.1349-7006.1998.tb03279.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Several cancer gene therapy strategies involve suicide genes to kill the neoplasm, or to regulate effector cells such as lymphocytes. We have developed an inducible apoptosis system with a Fas-estrogen receptor fusion protein (MfasER) for rapid elimination of transduced cells. In the present study, we further improved this molecular switch for estrogen-inducible apoptosis to overcome concerns with the wild-type estrogen receptor and its natural ligand, 17beta-estradiol (E2). The ligand-binding domain of MfasER was replaced with that of a mutant estrogen receptor which is unable to bind estrogen yet retains affinity for a synthetic ligand, 4-hydroxytamoxifen (Tm). The resultant fusion protein (MfasTmR) and MfasER were expressed in L929 cells for examination of their ligand specificities. Tm induced apoptosis in MfasTmR-expressing cells (L929MfasTmR) at 10(-8) M or higher concentrations, but induced no apoptosis in MfasER-expressing cells (L929MfasER) at up to 10(-6) M. On the other hand, E2 induced apoptosis in L929MfasER at concentrations as low as 10(-10)-10(-9) M, while it did so partially in L929MfasTmR at concentrations greater than 10(-7) M. Thus, L929MfasTmR cells were highly susceptible to Tm, but refractory to E2, with 100-1,000 times more tolerance than L929MfasER. These results suggest that the MfasTmR/Tm system would induce apoptosis in the target cells more safely in vivo, working independently of endogenous estrogen.
Collapse
Affiliation(s)
- H Kodaira
- Division of Genetic Therapeutics, Center for Molecular Medicine, Jichi Medical School, Tochigi
| | | | | | | | | | | | | |
Collapse
|
40
|
Karreman C. New positive/negative selectable markers for mammalian cells on the basis of Blasticidin deaminase-thymidine kinase fusions. Nucleic Acids Res 1998; 26:2508-10. [PMID: 9580709 PMCID: PMC147567 DOI: 10.1093/nar/26.10.2508] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Two positive and negative selectable markers were created for use in mammalian cells. They are based on two genes for the resistance to Blasticidin S (BlaS) and on the thymidine kinase (Tk) gene of herpes simplex virus (HSV). The markers can be selected positively by their ability to induce BlaS resistance and negatively on the induced sensitivity towards gancyclovir (GANC). Both constructs are also expressed in Escherichia coli and transfer BlaS resistance to this organism as well, making these markers very suitable for the construction of shuttle vectors.
Collapse
Affiliation(s)
- C Karreman
- GSF-National Research Center for Environment and Health, Institute of Clinical Molecular Biology and Tumour Genetics, Marchioninistrasse 25, 81377 Munich, Germany.
| |
Collapse
|
41
|
Noffz G, Qin Z, Kopf M, Blankenstein T. Neutrophils but Not Eosinophils Are Involved in Growth Suppression of IL-4-Secreting Tumors. THE JOURNAL OF IMMUNOLOGY 1998. [DOI: 10.4049/jimmunol.160.1.345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Abstract
Local expression of IL-4 by gene-modified tumor cells increases their immunogenicity by inducing an inflammatory response that is dominated by eosinophils. Eosinophils have been implicated as antitumor effector cells because the application of a granulocyte-depleting Ab inhibited rejection of IL-4 transfected tumors. This Ab did not discriminate between eosinophils and neutrophils and, therefore, this experiment could not exclude neutrophils as primary effector cells, whereas eosinophils were innocent bystander cells in IL-4 transfected tumors. We analyzed tumor growth suppression and granulocyte infiltration in IL-5-deficient (IL-5−/−) mice that had a deficiency of eosinophils, using two tumor lines (B16-F10 and MCA205) transfected to secrete IL-4. IL-4-expressing tumors were at least as efficiently rejected in IL-5−/− mice as in wild-type mice, despite an almost complete absence of tumor-infiltrating eosinophils. However, neutrophils were present in undiminished amounts and their depletion partially restored tumor growth. Furthermore, the growth of IL-5-secreting tumors was not impaired in either wild-type or IL-5−/− mice, even though it induced eosinophilia in both mouse strains. These findings demonstrate that eosinophils can be induced in IL-5−/− mice by exogenous IL-5 and argue against a compensatory effect of neutrophils in the absence of eosinophils. We conclude that 1) infiltration of IL-4 transfected tumors by eosinophils is completely IL-5 dependent, 2) eosinophils have no tumoricidal activity, and 3) neutrophils are responsible, at least in part, for tumor suppression.
Collapse
Affiliation(s)
- Gabriele Noffz
- *Max-Delbrück-Centrum für Molekulare Medizin, Berlin, Germany; and
| | - Zhihai Qin
- *Max-Delbrück-Centrum für Molekulare Medizin, Berlin, Germany; and
| | - Manfred Kopf
- †Basel Institute for Immunology, Basel, Switzerland
| | | |
Collapse
|
42
|
Kwon ED, Hurwitz AA, Foster BA, Madias C, Feldhaus AL, Greenberg NM, Burg MB, Allison JP. Manipulation of T cell costimulatory and inhibitory signals for immunotherapy of prostate cancer. Proc Natl Acad Sci U S A 1997; 94:8099-103. [PMID: 9223321 PMCID: PMC21563 DOI: 10.1073/pnas.94.15.8099] [Citation(s) in RCA: 299] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The identification of potentially useful immune-based treatments for prostate cancer has been severely constrained by the scarcity of relevant animal research models for this disease. Moreover, some of the most critical mechanisms involved in complete and proper antitumoral T cell activation have only recently been identified for experimental manipulation, namely, components involved in the costimulatory pathway for T cell activation. Thus, we have established a novel syngeneic murine prostate cancer model that permits us to examine two distinct manipulations intended to elicit an antiprostate cancer response through enhanced T cell costimulation: (i) provision of direct costimulation by prostate cancer cells transduced to express the B7.1 ligand and (ii) in vivo antibody-mediated blockade of the T cell CTLA-4, which prevents T cell down-regulation. In the present study we found that a tumorigenic prostate cancer cell line, TRAMPC1 (pTC1), derived from transgenic mice, is rejected by syngeneic C57BL/6 mice, but not athymic mice, after this cell line is transduced to express the costimulatory ligand B7.1. Also, we demonstrated that in vivo antibody-mediated blockade of CTLA-4 enhances antiprostate cancer immune responses. The response raised by anti-CTLA-4 administration ranges from marked reductions in wild-type pTC1 growth to complete rejection of these cells. Collectively, these experiments suggest that appropriate manipulation of T cell costimulatory and inhibitory signals may provide a fundamental and highly adaptable basis for prostate cancer immunotherapy. Additionally, the syngeneic murine model that we introduce provides a comprehensive system for further testing of immune-based treatments for prostate cancer.
Collapse
Affiliation(s)
- E D Kwon
- Laboratory of Kidney and Electrolyte Metabolism, National Heart, Lung, and Blood Institute, National Institutes of Health, Room 1N105, Building 9, 9 Memorial Drive, MSC-0951 Bethesda, MD 20892-0951, USA.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Sachs MS, Selker EU, Lin B, Roberts CJ, Luo Z, Vaught-Alexander D, Margolin BS. Expression of herpes virus thymidine kinase in Neurospora crassa. Nucleic Acids Res 1997; 25:2389-95. [PMID: 9171090 PMCID: PMC146768 DOI: 10.1093/nar/25.12.2389] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The expression of thymidine kinase in fungi, which normally lack this enzyme, will greatly aid the study of DNA metabolism and provide useful drug-sensitive phenotypes. The herpes simplex virus type-1 thymidine kinase gene ( tk ) was expressed in Neurospora crassa. tk was expressed as a fusion to N.crassa arg-2 regulatory sequences and as a hygromycin phosphotransferase-thymidine kinase fusion gene under the control of cytomegalovirus and SV40 sequences. Only strains containing tk showed thymidine kinase enzyme activity. In strains containing the arg-2 - tk gene, both the level of enzyme activity and the level of mRNA were reduced by growth in arginine medium, consistent with control through arg-2 regulatory sequences. Expression of thymidine kinase in N.crassa facilitated radioactive labeling of replicating DNA following addition of [3H]thymidine or [14C]thymidine to the growth medium. Thymidine labeling of DNA enabled demonstration that hydroxyurea can be used to block replication and synchronize the N.crassa mitotic cycle. Strains expressing thymidine kinase were also more sensitive than strains lacking thymidine kinase to anticancer and antiviral nucleoside drugs that are activated by thymidine kinase, including 5-fluoro-2'-deoxyuridine, 1-(2-deoxy-2-fluoro-beta-D-arabinofuranosyl)-5-iodouridine and trifluorothymidine. Finally, expression of thymidine kinase in N. crassa enabled incorporation of bromodeoxyuridine into DNA at levels sufficient to separate newly replicated DNA from old DNA using equilibrium centrifugation.
Collapse
Affiliation(s)
- M S Sachs
- Department of Biochemistry and Molecular Biology, Oregon Graduate Institute of Science and Technology, PO Box 91000, Portland, OR 97291-1000, USA.
| | | | | | | | | | | | | |
Collapse
|
44
|
Westerman KA, Leboulch P. Reversible immortalization of mammalian cells mediated by retroviral transfer and site-specific recombination. Proc Natl Acad Sci U S A 1996; 93:8971-6. [PMID: 8799138 PMCID: PMC38579 DOI: 10.1073/pnas.93.17.8971] [Citation(s) in RCA: 146] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
A procedure of reversible immortalization of primary cells was devised by retrovirus-mediated transfer of an oncogene that could be subsequently excised by site-specific recombination. This study focused on the early stages of immortalization: global induction of proliferation and life span extension of cell populations. Comparative analysis of Cre/LoxP and FLP/FRT recombination in this system indicated that only Cre/LoxP operates efficiently in primary cells. Pure populations of cells in which the oncogene is permanently excised were obtained, following differential selection of the cells. Cells reverted to their preimmortalized state, as indicated by changes in growth characteristics and p53 levels, and their fate conformed to the telomere hypothesis of replicative cell senescence. By permitting temporary and controlled expansion of primary cell populations without retaining the transferred oncogene, this strategy may facilitate gene therapy manipulations of cells unresponsive to exogenous growth factors and make practical gene targeting by homologous recombination in somatic cells. The combination of retroviral transfer and site-specific recombination should also extend gene expression studies to situations previously inaccessible to experimentation.
Collapse
Affiliation(s)
- K A Westerman
- Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Cambridge 02139, USA
| | | |
Collapse
|
45
|
Heller R, Brown KE, Burgtorf C, Brown WR. Mini-chromosomes derived from the human Y chromosome by telomere directed chromosome breakage. Proc Natl Acad Sci U S A 1996; 93:7125-30. [PMID: 8692956 PMCID: PMC38947 DOI: 10.1073/pnas.93.14.7125] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
We have used telomeric DNA to break two acrocentric derivatives of the human Y chromosome into mini-chromosomes that are small enough to be size- fractionated by pulsed-field gel electrophoresis. One of the mini-chromosomes is about 7 Mb in size and sequence-tagged site analysis of this molecule suggests that it corresponds to a simple truncation of the short arm of the Y chromosome. Five of the mini-chromosomes are derived from the long arm, are all rearranged by more than a simple truncation, and range in size from 4.0 Mb to 9 Mb. We have studied the mitotic stabilities of these mini-chromosomes and shown that they are stably maintained by cells proliferating in culture for about 100 cell divisions.
Collapse
Affiliation(s)
- R Heller
- Cancer Research Campaign Chromosome Molecular Biology Group, Biochemistry Department, Oxford University, England
| | | | | | | |
Collapse
|
46
|
Speevak MD, Chevrette M. Human chromosome 3 mediates growth arrest and suppression of apoptosis in microcell hybrids. Mol Cell Biol 1996; 16:2214-25. [PMID: 8628288 PMCID: PMC231209 DOI: 10.1128/mcb.16.5.2214] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Chemotherapeutic treatment of tumor cells leads either to tumor cell death (usually by apoptosis) or to the formation of drug-resistant subpopulations. Known mechanisms of cancer cell drug resistance include gene amplification and increased expression of drug transporters. On the other hand, normal cells survive many forms of chemotherapy with minimal damage probably because of their capacity for growth arrest and stringent control of apoptosis. Microcell hybrids between B78 (murine melanoma) and HSF5 (normal human fibroblasts) were analyzed to identify a new human chromosomal region involved in the promotion of drug-induced growth arrest and suppression of apoptosis. In these hybrids, the presence of human chromosome 3 was strongly associated with suppression of apoptosis via G1 and G2 growth arrest during exposure to the antimetabolite N-phosphonoacetyl-L-aspartate (PALA), suggesting that a gene(s) on chromosome 3 serves an antiproliferative role in a drug-responsive growth arrest pathway.
Collapse
Affiliation(s)
- M D Speevak
- Department of Biochemistry, Faculty of Medicine, University of Ottawa, Ontario, Canada
| | | |
Collapse
|
47
|
Karreman S, Hauser H, Karreman C. On the use of double FLP recognition targets (FRTs) in the LTR of retroviruses for the construction of high producer cell lines. Nucleic Acids Res 1996; 24:1616-24. [PMID: 8649977 PMCID: PMC145857 DOI: 10.1093/nar/24.9.1616] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
A pilot experiment for the construction of a hamster derived, high producer cell line using site specific recombination is described. In the experiment chromosomal loci with intrinsic high expression characteristics were sought via infection with a retroviral construct, containing double FRT sites and subsequent screening for overproduction of an encoded markergene. These sites were then targeted with a second vector, that recombined via the FLP/FRT system from Saccharomyces cerevisiae yielding cells that had the second construct at exactly the same position as the first. By using retroviral vectors with double and single FRT sites, respectively, stable clones can be created that can no longer be excised with FLP.
Collapse
Affiliation(s)
- S Karreman
- Gesellschaft für Biotechnologische Forschung, Department of Gene Regulation and Differentiation, Braunschweig, Germany
| | | | | |
Collapse
|
48
|
Natarajan D, Boulter CA. A lacZ-hygromycin fusion gene and its use in a gene trap vector for marking embryonic stem cells. Nucleic Acids Res 1995; 23:4003-4. [PMID: 7479052 PMCID: PMC307326 DOI: 10.1093/nar/23.19.4003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Affiliation(s)
- D Natarajan
- Department of Genetics, University of Cambridge, UK
| | | |
Collapse
|
49
|
Genetic analysis of a transcriptional activation pathway by using hepatoma cell variants. Mol Cell Biol 1994. [PMID: 7935424 DOI: 10.1128/mcb.14.11.7086] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A hierarchy of liver-enriched transcription factors plays an important role in activating expression of many hepatic genes. In particular, hepatocyte nuclear factor 4 (HNF-4) is a major activator of the gene encoding HNF-1, and HNF-1 itself activates expression of more than 20 liver genes. To dissect this activation pathway genetically, we prepared somatic cell variants that were deficient in expression of the liver-specific alpha 1-antitrypsin (alpha 1AT) gene, which requires both HNF-1 and HNF-4 for high-level gene activity. This was accomplished in two steps. First, hepatoma transfectants that stably expressed two selectable markers under alpha 1AT promoter control were prepared; second, variant sublines that could no longer express either transgene were isolated by direct selection. In this report, we demonstrate that the variants contain defects in the HNF-4/HNF-1 activation pathway. These defects functioned in trans, as expression of many liver genes was affected, but the variant phenotypes were recessive to wild type in somatic cell hybrids. Three different variant classes could be discriminated by their phenotypic responses to ectopic expression of either HNF-4 or HNF-1. Two variant clones appeared specifically deficient in HNF-4 expression, as transfection with an HNF-4 expression cassette fully restored their hepatic phenotypes. Another line activated HNF-1 in response to forced HNF-4 expression, but activation of downstream genes failed to occur. One clone was unresponsive to either HNF-1 or HNF-4. Using the variants, we demonstrate further that the chromosomal genes encoding alpha 1AT, aldolase B, and alpha-fibrinogen display strict requirements for HNF-1 activation in vivo, while other liver genes were unaffected by the presence or absence of HNF-1 or HNF-4. We also provide evidence for the existence of an autoregulatory loop in which HNF-1 regulates its own expression through activation of HNF-4.
Collapse
|
50
|
Bulla GA, Fournier RE. Genetic analysis of a transcriptional activation pathway by using hepatoma cell variants. Mol Cell Biol 1994; 14:7086-94. [PMID: 7935424 PMCID: PMC359242 DOI: 10.1128/mcb.14.11.7086-7094.1994] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
A hierarchy of liver-enriched transcription factors plays an important role in activating expression of many hepatic genes. In particular, hepatocyte nuclear factor 4 (HNF-4) is a major activator of the gene encoding HNF-1, and HNF-1 itself activates expression of more than 20 liver genes. To dissect this activation pathway genetically, we prepared somatic cell variants that were deficient in expression of the liver-specific alpha 1-antitrypsin (alpha 1AT) gene, which requires both HNF-1 and HNF-4 for high-level gene activity. This was accomplished in two steps. First, hepatoma transfectants that stably expressed two selectable markers under alpha 1AT promoter control were prepared; second, variant sublines that could no longer express either transgene were isolated by direct selection. In this report, we demonstrate that the variants contain defects in the HNF-4/HNF-1 activation pathway. These defects functioned in trans, as expression of many liver genes was affected, but the variant phenotypes were recessive to wild type in somatic cell hybrids. Three different variant classes could be discriminated by their phenotypic responses to ectopic expression of either HNF-4 or HNF-1. Two variant clones appeared specifically deficient in HNF-4 expression, as transfection with an HNF-4 expression cassette fully restored their hepatic phenotypes. Another line activated HNF-1 in response to forced HNF-4 expression, but activation of downstream genes failed to occur. One clone was unresponsive to either HNF-1 or HNF-4. Using the variants, we demonstrate further that the chromosomal genes encoding alpha 1AT, aldolase B, and alpha-fibrinogen display strict requirements for HNF-1 activation in vivo, while other liver genes were unaffected by the presence or absence of HNF-1 or HNF-4. We also provide evidence for the existence of an autoregulatory loop in which HNF-1 regulates its own expression through activation of HNF-4.
Collapse
Affiliation(s)
- G A Bulla
- Department of Molecular Medicine, Fred Hutchinson Cancer Research Center, Seattle, Washington 98104, USA
| | | |
Collapse
|