1
|
Porcher L, Vijayraghavan S, McCollum J, Mieczkowski PA, Saini N. Multiple DNA repair pathways prevent acetaldehyde-induced mutagenesis in yeast. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.07.574575. [PMID: 38260495 PMCID: PMC10802451 DOI: 10.1101/2024.01.07.574575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Acetaldehyde is the primary metabolite of alcohol and is present in many environmental sources including tobacco smoke. Acetaldehyde is genotoxic, whereby it can form DNA adducts and lead to mutagenesis. Individuals with defects in acetaldehyde clearance pathways have increased susceptibility to alcohol-associated cancers. Moreover, a mutation signature specific to acetaldehyde exposure is widespread in alcohol and smoking-associated cancers. However, the pathways that repair acetaldehyde-induced DNA damage and thus prevent mutagenesis are vaguely understood. Here, we used Saccharomyces cerevisiae to systematically delete genes in each of the major DNA repair pathways to identify those that alter acetaldehyde-induced mutagenesis. We found that deletion of the nucleotide excision repair (NER) genes, RAD1 or RAD14, led to an increase in mutagenesis upon acetaldehyde exposure. Acetaldehyde-induced mutations were dependent on translesion synthesis as well as DNA inter-strand crosslink (ICL) repair in Δrad1 strains. Moreover, whole genome sequencing of the mutated isolates demonstrated an increase in C→A changes coupled with an enrichment of gCn→A changes in the acetaldehyde-treated Δrad1 isolates. The gCn→A mutation signature has been shown to be diagnostic of acetaldehyde exposure in yeast and in human cancers. We also demonstrated that the deletion of the two DNA-protein crosslink (DPC) repair proteases, WSS1 and DDI1, also led to increased acetaldehyde-induced mutagenesis. Defects in base excision repair (BER) led to a mild increase in mutagenesis, while defects in mismatch repair (MMR), homologous recombination repair (HR) and post replicative repair pathways did not impact mutagenesis upon acetaldehyde exposure. Our results in yeast were further corroborated upon analysis of whole exome sequenced liver cancers, wherein, tumors with defects in ERCC1 and ERCC4 (NER), FANCD2 (ICL repair) or SPRTN (DPC repair) carried a higher gCn→A mutation load than tumors with no deleterious mutations in these genes. Our findings demonstrate that multiple DNA repair pathways protect against acetaldehyde-induced mutagenesis.
Collapse
Affiliation(s)
- Latarsha Porcher
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, 29425, United States of America
| | - Sriram Vijayraghavan
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, 29425, United States of America
| | - James McCollum
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, 29425, United States of America
| | - Piotr A Mieczkowski
- Department of Genetics, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, 27599, United States of America
| | - Natalie Saini
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, 29425, United States of America
| |
Collapse
|
2
|
Comparative Study of Cytotoxicity, DNA Damage and Oxidative Stress Induced by Heavy Metals Cd(II), Hg(II) and Cr(III) in Yeast. Curr Microbiol 2021; 78:1856-1863. [PMID: 33770215 DOI: 10.1007/s00284-021-02454-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 03/10/2021] [Indexed: 01/09/2023]
Abstract
Wide range of applications of heavy metals and improperly discarded their castoffs possess serious threats to environment and human health. In this study, cytotoxicity, DNA damage and oxidative stress induced by Cd(II), Hg(II) and Cr(III) were comparatively studied in yeast Saccharomyces cerevisiae. Cd(II), Hg(II), and Cr(III) all produced strong cytotoxicity resulting in growth inhibition and cell mortality to varying degrees (Hg(II) > Cd(II) > Cr(III)). Hg(II) produced more oxidative stress. Cr(III) caused more serious DNA damage in vitro. Cd(II) also caused both obvious DNA damage and oxidative stress at higher concentration, but not as efficiently as Cd(II) and Hg(II). A further null mutation sensitivity assay showed that the relative sensitivity of rad1∆ to the metals was Cr(III) > Cd(II) > Hg(II), and that of trx1∆ to the metals was Hg(II) > Cd(II) > Cr(III). These data provide a clear evidence that the Cr(III) can cause significant DNA damage and potential genotoxicity; Hg(II) can strongly inhibit SOD activity, produce lipid peroxidation and cause serious membrane injury, suggesting these heavy metals can cause different toxic effects in different ways.
Collapse
|
3
|
Usher J, Chaudhari Y, Attah V, Ho HL, Haynes K. Functional Characterization of a Novel Oxidative Stress Protection Protein in the Pathogenic Yeast Candida glabrata. Front Genet 2020; 11:530915. [PMID: 33101372 PMCID: PMC7545072 DOI: 10.3389/fgene.2020.530915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 08/27/2020] [Indexed: 11/25/2022] Open
Abstract
Candida species are important pathogens of humans and the fourth most commonly isolated pathogen from nosocomial blood stream infections. Although Candida albicans is the principle causative agent of invasive candidosis, the incidence of Candida glabrata infections has rapidly grown. The reason for this increase is not fully understood, but it is clear that the species has a higher innate tolerance to commonly administered azole antifungals, in addition to being highly tolerant to stresses especially oxidative stress. Taking the approach that using the model organism, Saccharomyces cerevisiae, with its intrinsic sensitivity to oxidative stress, we hypothesized that by expressing mediators of stress resistance from C. glabrata in S. cerevisiae, it would result in induced resistance. To test this we transformed, en-masse, the C. glabrata ORFeome library into S. cerevisiae. This resulted in 1,500 stress resistant colonies and the recovered plasmids of 118 ORFs. Sequencing of these plasmids revealed a total of 16 different C. glabrata ORFs. The recovery of genes encoding known stress protectant proteins such as GPD1, GPD2 and TRX3 was predicted and validated the integrity of the screen. Through this screen we identified a C. glabrata unique ORF that confers oxidative stress resistance. We set to characterise this gene herein, examining expression in oxidative stress sensitive strains, comet assays to measure DNA damage and synthetic genetic array analysis to identify genetic interaction maps in the presence and absence of oxidative stress.
Collapse
Affiliation(s)
- Jane Usher
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
- School of Biosciences, University of Exeter, Exeter, United Kingdom
| | - Yogesh Chaudhari
- School of Biosciences, University of Exeter, Exeter, United Kingdom
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | - Victoria Attah
- School of Biosciences, University of Exeter, Exeter, United Kingdom
| | - Hsueh-lui Ho
- School of Biosciences, University of Exeter, Exeter, United Kingdom
| | - Ken Haynes
- School of Biosciences, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
4
|
The role of active-site amino acid residues in the cleavage of DNA and RNA substrates by human apurinic/apyrimidinic endonuclease APE1. Biochim Biophys Acta Gen Subj 2020; 1864:129718. [PMID: 32858086 DOI: 10.1016/j.bbagen.2020.129718] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/10/2020] [Accepted: 08/21/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Human apurinic/apyrimidinic endonuclease APE1 is one of participants of the DNA base excision repair pathway. APE1 processes AP-sites and many other types of DNA damage via hydrolysis of the phosphodiester bond on the 5' side of the lesion. APE1 also acts as an endoribonuclease, i.e., can cleave undamaged RNA. METHODS Using pre-steady-state kinetic analysis we examined the role of certain catalytically important amino acids in APE1 enzymatic pathway and described their involvement in the mechanism of the target nucleotide recognition. RESULTS Comparative analysis of the cleavage efficiency of damaged DNAs containing an abasic site, 5,6-dihydrouridine, or α-anomer of adenosine as well as 3'-5'-exonuclease degradation of undamaged DNA and endonuclease hydrolysis of RNA substrates by mutant APE1 enzymes containing a substitution of an active-site amino acid residue (D210N, N212A, T268D, M270A, or D308A) was performed. Detailed pre-steady-state kinetics of conformational changes of the enzyme and of DNA substrate molecules during recognition and cleavage of the abasic site were studied. CONCLUSIONS It was revealed that substitution T268D significantly disturbed initial DNA binding, whereas Asn212 is critical for the DNA-bending stage and catalysis. Substitution D210N increased the binding efficacy and blocked the catalytic reaction, but D308A decreased the binding efficacy owing to disruption of Mg2+ coordination. Finally, the substitution of Met270 also destabilized the enzyme-substrate complex but did not affect the catalytic reaction. SIGNIFICANCE It was found that the tested substitutions of the active-site amino acid residues affected different stages of the complex formation process as well as the catalytic reaction.
Collapse
|
5
|
Molecular signatures of aneuploidy-driven adaptive evolution. Nat Commun 2020; 11:588. [PMID: 32001709 PMCID: PMC6992709 DOI: 10.1038/s41467-019-13669-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 11/15/2019] [Indexed: 02/06/2023] Open
Abstract
Alteration of normal ploidy (aneuploidy) can have a number of opposing effects, such as unbalancing protein abundances and inhibiting cell growth but also accelerating genetic diversification and rapid adaptation. The interplay of these detrimental and beneficial effects remains puzzling. Here, to understand how cells develop tolerance to aneuploidy, we subject disomic (i.e. with an extra chromosome copy) strains of yeast to long-term experimental evolution under strong selection, by forcing disomy maintenance and daily population dilution. We characterize mutations, karyotype alterations and gene expression changes, and dissect the associated molecular strategies. Cells with different extra chromosomes accumulated mutations at distinct rates and displayed diverse adaptive events. They tended to evolve towards normal ploidy through chromosomal DNA loss and gene expression changes. We identify genes with recurrent mutations and altered expression in multiple lines, revealing a variant that improves growth under genotoxic stresses. These findings support rapid evolvability of disomic strains that can be used to characterize fitness effects of mutations under different stress conditions. Aneuploidy (abnormal chromosome number) can enable rapid adaptation to stress conditions, but it also entails fitness costs from gene imbalance. Here, the authors experimentally evolve yeast while forcing maintenance of aneuploidy to identify the mechanisms that promote tolerance of aneuploidy.
Collapse
|
6
|
Yang JL, Chen WY, Mukda S, Yang YR, Sun SF, Chen SD. Oxidative DNA damage is concurrently repaired by base excision repair (BER) and apyrimidinic endonuclease 1 (APE1)-initiated nonhomologous end joining (NHEJ) in cortical neurons. Neuropathol Appl Neurobiol 2019; 46:375-390. [PMID: 31628877 PMCID: PMC7317839 DOI: 10.1111/nan.12584] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 09/13/2019] [Indexed: 12/24/2022]
Abstract
Aims Accumulating studies have suggested that base excision repair (BER) is the major repair pathway of oxidative DNA damage in neurons, and neurons are deficient in other DNA repair pathways, including nucleotide excision repair and homologous recombination repair. However, some studies have demonstrated that neurons could efficiently repair glutamate‐ and menadione‐induced double‐strand breaks (DSBs), suggesting that the DSB repair mechanisms might be implicated in neuronal health. In this study, we hypothesized that BER and nonhomologous end joining (NHEJ) work together to repair oxidative DNA damage in neurons. Methods Immunohistochemistry and confocal microscopy were employed to examine the colocalization of apyrimidinic endonuclease 1 (APE1), histone variant 2AX (γH2AX) and phosphorylated p53‐binding protein (53BP1). APE1 inhibitor and shRNA were respectively applied to suppress APE1 activity and protein expression to determine the correlation of APE1 and DSB formation. The neutral comet assay was used to determine and quantitate the formation of DSB. Results Both γH2AX and 53BP1 were upregulated and colocalized with APE1 in the nuclei of rat cortical neurons subjected to menadione‐induced oxidative insults. Phospho53BP1 foci were efficiently abolished, but γH2AX foci persisted following the suppression of APE1 activity. Comet assays demonstrated that the inhibition of APE1 decreased the DSB formation. Conclusions Our results indicate that APE1 can engage the NHEJ mechanism in the repair of oxidative DNA damage in neurons. These findings provide insights into the mechanisms underlying the efficient repair of oxidative DNA damage in neurons despite the high oxidative burden.
Collapse
Affiliation(s)
- J-L Yang
- Institute for Translation Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - W-Y Chen
- Institute for Translation Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - S Mukda
- Institute for Translation Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.,Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | - Y-R Yang
- Institute for Translation Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - S-F Sun
- Institute for Translation Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - S-D Chen
- Institute for Translation Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.,Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
7
|
Evolution of endonuclease IV protein family: an in silico analysis. 3 Biotech 2019; 9:168. [PMID: 30997305 DOI: 10.1007/s13205-019-1696-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 03/28/2019] [Indexed: 02/07/2023] Open
Abstract
DNA repair is one of the key cellular events which balances between evolvability and integrity of the genome. Endonuclease IV enzymes are class II AP endonucleases under base excision repair pathway which act on abasic site and break the phosphodiester bond at the 5' side. The role and activity of endonuclease IV proteins vary among different organisms; even it is absent in higher eukaryotes. The evolution of this protein family was studied by analyzing all homologs of the endonuclease IV protein family through different in silico techniques including phylogenetic tree generation and model building. The sequence analysis revealed four consensus sequence motifs within the AP2EC domain which are functionally important and conserved throughout the evolution process. It was also observed that the species and endonuclease IV gene evolution shape up differently in most of the organisms. Presence of the mitochondria-targeted signal peptides in fungal species Saccharomyces and Coccidioides suggest a possible endosymbiotic transfer of endonuclease IV genes to lower eukaryotes. Evolutionary changes among various clades in the protein-based phylogenetic tree have been investigated by comparison of homology models which suggests the conservation of overall fold of endonuclease IV proteins except for few alterations in loop orientation in few clades.
Collapse
|
8
|
AP endonuclease EXO-3 deficiency causes developmental delay and abnormal vulval organogenesis, Pvl, through DNA glycosylase-initiated checkpoint activation in Caenorhabditis elegans. Sci Rep 2018; 8:16736. [PMID: 30425296 PMCID: PMC6233223 DOI: 10.1038/s41598-018-35063-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 10/25/2018] [Indexed: 12/27/2022] Open
Abstract
AP endonuclease deficiency causes cell death and embryonic lethality in mammals. However, the physiological roles of AP endonucleases in multicellular organisms remain unclear, especially after embryogenesis. Here, we report novel physiological roles of the AP endonuclease EXO-3 from larval to adult stages in Caenorhabditis elegans, and elucidated the mechanism of the observed phenotypes due to EXO-3 deficiency. The exo-3 mutants exhibited developmental delay, whereas the apn-1 mutants did not. The delay depended on the DNA glycosylase NTH-1 and checkpoint kinase CHK-2. The exo-3 mutants had further developmental delay when treated with AP site-generating agents such as methyl methane sulfonate and sodium bisulfite. The further delay due to sodium bisulfite was dependent on the DNA glycosylase UNG-1. The exo-3 mutants also demonstrated an increase in dut-1 (RNAi)-induced abnormal vulval organogenesis protruding vulva (Pvl), whereas the apn-1 mutants did not. The increase in Pvl was dependent on UNG-1 and CHK-2. Methyl viologen, ndx-1 (RNAi) and ndx-2 (RNAi) enhanced the incidence of Pvl among exo-3 mutants only when combined with dut-1 (RNAi). This further increase in Pvl incidence was independent of NTH-1. These results indicate that EXO-3 prevents developmental delay and Pvl in C. elegans, which are induced via DNA glycosylase-initiated checkpoint activation.
Collapse
|
9
|
Genome Instability Is Promoted by the Chromatin-Binding Protein Spn1 in Saccharomyces cerevisiae. Genetics 2018; 210:1227-1237. [PMID: 30301740 DOI: 10.1534/genetics.118.301600] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 10/02/2018] [Indexed: 02/06/2023] Open
Abstract
Cells expend a large amount of energy to maintain their DNA sequence. DNA repair pathways, cell cycle checkpoint activation, proofreading polymerases, and chromatin structure are ways in which the cell minimizes changes to the genome. During replication, the DNA-damage tolerance pathway allows the replication forks to bypass damage on the template strand. This avoids prolonged replication fork stalling, which can contribute to genome instability. The DNA-damage tolerance pathway includes two subpathways: translesion synthesis and template switch. Post-translational modification of PCNA and the histone tails, cell cycle phase, and local DNA structure have all been shown to influence subpathway choice. Chromatin architecture contributes to maintaining genome stability by providing physical protection of the DNA and by regulating DNA-processing pathways. As such, chromatin-binding factors have been implicated in maintaining genome stability. Using Saccharomyces cerevisiae, we examined the role of Spn1 (Suppresses postrecruitment gene number 1), a chromatin-binding and transcription elongation factor, in DNA-damage tolerance. Expression of a mutant allele of SPN1 results in increased resistance to the DNA-damaging agent methyl methanesulfonate, lower spontaneous and damage-induced mutation rates, along with increased chronological life span. We attribute these effects to an increased usage of the template switch branch of the DNA-damage tolerance pathway in the spn1 strain. This provides evidence for a role of wild-type Spn1 in promoting genome instability, as well as having ties to overcoming replication stress and contributing to chronological aging.
Collapse
|
10
|
Apurinic/apyrimidinic endonuclease Apn1 from Saccharomyces cerevisiae is recruited to the nucleotide incision repair pathway: Kinetic and structural features. Biochimie 2018; 152:53-62. [PMID: 29959063 DOI: 10.1016/j.biochi.2018.06.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 06/19/2018] [Indexed: 12/27/2022]
Abstract
Apurinic/apyrimidinic endonuclease Apn1 of Saccharomyces cerevisiae is known as a key player of the base excision DNA repair (BER) pathway in yeast. BER is initiated by DNA glycosylases, whereas Apn1 can start DNA repair individually in the nucleotide incision repair (NIR) pathway. The aim of this research was to elucidate kinetic and structural dynamic aspects of Apn1 involvement in the NIR process. One of the key characteristics of AP endonuclease's interactions is known to be divalent metal ions playing a part of a cofactor. Well-studied human APE1 employs Mg2+ ions, with metal ion concentration's affecting enzymatic activity exerted by APE1. In our study, we aimed to test the effect of the Mg2+ ion on Apn1's NIR catalysis by examining structural dynamics of DNA during the interaction in real time using the stopped-flow technique. To test NIR activity of Apn1, deoxyribooligonucleotide duplexes containing a 5,6-dihydro-2'-deoxyuridine (DHU) residue were employed as substrates. A 2-aminopurine (2-aPu) residue was a reporter group fluorescence intensity of which was detected during Apn1-DNA interactions. NIR activity of both WT and H83A Apn1 was found to be arrested during the interaction with a DNA duplex containing the 2-aPu residue upstream of DHU. We conducted molecular dynamics simulations to elucidate the structural features of complexes of the enzyme with DHU-containing DNAs. The NIR recruiting S. cerevisiae Apn1 proceeds via multistep rearrangements of the complex of Apn1 with a DHU-containing DNA substrate and results in the incised product of the reaction. For wild-type Apn1, the catalytic rate constants do not depend on the Mg2+ concentration, i.e., they are equal in NIR and BER buffers, with equilibrium association constant Ka being 10-fold higher in NIR buffer. Our data reveal more delicate regulation of Apn1's NIR activity due to the more complicated kinetic mechanism, as compared to BER.
Collapse
|
11
|
Jenkins DM, Powell CD, Smart KA. Dried Yeast: Impact of Dehydration and Rehydration on Brewing Yeast DNA Integrity. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2018. [DOI: 10.1094/asbcj-2010-0629-01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- David M. Jenkins
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, UK
| | | | - Katherine A. Smart
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, UK
| |
Collapse
|
12
|
Antoniali G, Malfatti MC, Tell G. Unveiling the non-repair face of the Base Excision Repair pathway in RNA processing: A missing link between DNA repair and gene expression? DNA Repair (Amst) 2017. [DOI: 10.1016/j.dnarep.2017.06.008] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
13
|
Guan N, Li J, Shin HD, Du G, Chen J, Liu L. Microbial response to environmental stresses: from fundamental mechanisms to practical applications. Appl Microbiol Biotechnol 2017; 101:3991-4008. [PMID: 28409384 DOI: 10.1007/s00253-017-8264-y] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 03/23/2017] [Accepted: 03/27/2017] [Indexed: 10/19/2022]
Abstract
Environmental stresses are usually active during the process of microbial fermentation and have significant influence on microbial physiology. Microorganisms have developed a series of strategies to resist environmental stresses. For instance, they maintain the integrity and fluidity of cell membranes by modulating their structure and composition, and the permeability and activities of transporters are adjusted to control nutrient transport and ion exchange. Certain transcription factors are activated to enhance gene expression, and specific signal transduction pathways are induced to adapt to environmental changes. Besides, microbial cells also have well-established repair mechanisms that protect their macromolecules against damages inflicted by environmental stresses. Oxidative, hyperosmotic, thermal, acid, and organic solvent stresses are significant in microbial fermentation. In this review, we summarize the modus operandi by which these stresses act on cellular components, as well as the corresponding resistance mechanisms developed by microorganisms. Then, we discuss the applications of these stress resistance mechanisms on the production of industrially important chemicals. Finally, we prospect the application of systems biology and synthetic biology in the identification of resistant mechanisms and improvement of metabolic robustness of microorganisms in environmental stresses.
Collapse
Affiliation(s)
- Ningzi Guan
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China.,School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Jianghua Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Hyun-Dong Shin
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Guocheng Du
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Jian Chen
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China. .,Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
14
|
Repair of Oxidative DNA Damage in Saccharomyces cerevisiae. DNA Repair (Amst) 2017; 51:2-13. [PMID: 28189416 DOI: 10.1016/j.dnarep.2016.12.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Revised: 12/22/2016] [Accepted: 12/30/2016] [Indexed: 12/11/2022]
Abstract
Malfunction of enzymes that detoxify reactive oxygen species leads to oxidative attack on biomolecules including DNA and consequently activates various DNA repair pathways. The nature of DNA damage and the cell cycle stage at which DNA damage occurs determine the appropriate repair pathway to rectify the damage. Oxidized DNA bases are primarily repaired by base excision repair and nucleotide incision repair. Nucleotide excision repair acts on lesions that distort DNA helix, mismatch repair on mispaired bases, and homologous recombination and non-homologous end joining on double stranded breaks. Post-replication repair that overcomes replication blocks caused by DNA damage also plays a crucial role in protecting the cell from the deleterious effects of oxidative DNA damage. Mitochondrial DNA is also prone to oxidative damage and is efficiently repaired by the cellular DNA repair machinery. In this review, we discuss the DNA repair pathways in relation to the nature of oxidative DNA damage in Saccharomyces cerevisiae.
Collapse
|
15
|
Suzuki H, Sakabe T, Hirose Y, Eki T. Development and evaluation of yeast-based GFP and luciferase reporter assays for chemical-induced genotoxicity and oxidative damage. Appl Microbiol Biotechnol 2016; 101:659-671. [PMID: 27766356 DOI: 10.1007/s00253-016-7911-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 09/21/2016] [Accepted: 09/28/2016] [Indexed: 11/30/2022]
Abstract
We aimed to develop the bioassays for genotixicity and/or oxidative damage using the recombinant yeast. A genotoxicity assay was developed using recombinant Saccharomyces cerevisiae strain BY4741 with a green fluorescent protein (GFP) reporter plasmid, driven by the DNA damage-responsive RNR3 promoter. Enhanced fluorescence induction was observed in DNA repair-deficient strains treated with methyl methanesulfonate, but not with hydrogen peroxide. A GFP reporter yeast strain driven by the oxidative stress-responsive TRX2 promoter was newly developed to assess oxidative damage, but fluorescence was poorly induced by oxidants. In place of GFP, yeast strains with luciferase gene reporter plasmids (luc2 and luc2CP, encoding stable and unstable luciferase, respectively) were prepared. Transient induction of luciferase activity was clearly detected only in a TRX2 promoter-driven luc2CP reporter strain within 90 min of oxidant exposure. However, luciferase was strongly induced by hydroxyurea in the RNR3 promoter-driven luc2 and GFP reporter strains over 8 h after the exposure, suggesting that the RNR3 promoter is continuously upregulated by DNA damage, whereas the TRX2 promoter is transiently activated by oxidative agents. Luciferase activity levels were also increased in a TRX2-promoter-driven luc2CP reporter strain treated with tert-butyl hydroperoxide and menadione and weakly induced with diamide and diethyl maleate. Weakly enhanced luciferase activity induction was detected in the sod1Δ, sod2Δ, and rad27Δ strains treated with hydrogen peroxide compared with that in the wild-type strain. In conclusion, tests using GFP and stable luciferase reporters are useful for genotoxicity, and oxidative damage can be clearly detected by assay with an unstable luciferase reporter.
Collapse
Affiliation(s)
- Hajime Suzuki
- Molecular Genetics Laboratory, Division of Bioscience and Biotechnology, Department of Environmental and Life Sciences, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi, 441-8580, Japan
| | - Takahiro Sakabe
- Molecular Genetics Laboratory, Division of Bioscience and Biotechnology, Department of Environmental and Life Sciences, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi, 441-8580, Japan
| | - Yuu Hirose
- Molecular Genetics Laboratory, Division of Bioscience and Biotechnology, Department of Environmental and Life Sciences, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi, 441-8580, Japan.,The Electronics-Inspired Interdisciplinary Research Institute (EIIRIS), Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi, 441-8580, Japan
| | - Toshihiko Eki
- Molecular Genetics Laboratory, Division of Bioscience and Biotechnology, Department of Environmental and Life Sciences, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi, 441-8580, Japan.
| |
Collapse
|
16
|
Dyakonova ES, Koval VV, Lomzov AA, Ishchenko AA, Fedorova OS. The role of His-83 of yeast apurinic/apyrimidinic endonuclease Apn1 in catalytic incision of abasic sites in DNA. Biochim Biophys Acta Gen Subj 2015; 1850:1297-309. [PMID: 25766873 DOI: 10.1016/j.bbagen.2015.03.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 02/16/2015] [Accepted: 03/04/2015] [Indexed: 10/23/2022]
Abstract
BACKGROUND The apurinic/apyrimidinic (AP) endonuclease Apn1 from Saccharomyces cerevisiae is a key enzyme involved in the base excision repair (BER) at the cleavage stage of abasic sites (AP sites) in DNA. The crystal structure of Apn1 from S. cerevisiae is unresolved. Based on its high amino acid homology to Escherichia coli Endo IV, His-83 is believed to coordinate one of three Zn2+ ions in Apn1's active site similar to His-69 in Endo IV. Substituting His-83 with Ala is proposed to decrease the AP endonuclease activity of Apn1 owing to weak coordination of Zn2+ ions involved in enzymatic catalysis. METHODS The kinetics of recognition, binding, and incision of DNA substrates with the H83A Apn1 mutant was investigated. The stopped-flow method detecting fluorescence intensity changes of 2-aminopurine (2-aPu) was used to monitor the conformational dynamics of DNA at pre-steady-state conditions. RESULTS We found substituting His-83 with Ala influenced catalytic complex formation and further incision of the damaged DNA strand. The H83A Apn1 catalysis depends not only on the location of the mismatch relative to the abasic site in DNA, but also on the nature of damage. CONCLUSIONS We consider His-83 properly coordinates the active site Zn2+ ion playing a crucial role in catalytic incision stage. Our data prove suppressed enzymatic activity of H83A Apn1 results from the reduced number of active site Zn2+ ions. GENERAL SIGNIFICANCE Our study provides insights into mechanistic specialty of AP site repair by yeast AP endonuclease Apn1 of Endo IV family, which members are not found in mammals, but are present in many microorganisms. The results will provide useful guidelines for design of new anti-fungal and anti-malarial agents.
Collapse
Affiliation(s)
- Elena S Dyakonova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Lavrentyev Ave., 8, Novosibirsk, 630090, Russian Federation
| | - Vladimir V Koval
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Lavrentyev Ave., 8, Novosibirsk, 630090, Russian Federation; Novosibirsk State University, Pirogov St., 2, Novosibirsk, 630090, Russian Federation
| | - Alexander A Lomzov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Lavrentyev Ave., 8, Novosibirsk, 630090, Russian Federation; Novosibirsk State University, Pirogov St., 2, Novosibirsk, 630090, Russian Federation
| | - Alexander A Ishchenko
- Groupe «Réparation de l'ADN», Université Paris-Sud XI, UMR8200 CNRS, Institut Gustave Roussy, Villejuif Cedex F-94805, France
| | - Olga S Fedorova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Lavrentyev Ave., 8, Novosibirsk, 630090, Russian Federation; Novosibirsk State University, Pirogov St., 2, Novosibirsk, 630090, Russian Federation.
| |
Collapse
|
17
|
Wang Z, Yang X, Mazouzi A, Ramotar D. The long N-terminus of the C. elegans DNA repair enzyme APN-1 targets the protein to the nucleus of a heterologous system. Gene 2014; 553:151-7. [PMID: 25307766 DOI: 10.1016/j.gene.2014.10.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 09/18/2014] [Accepted: 10/08/2014] [Indexed: 11/18/2022]
Abstract
We previously isolated from a Caenorhabditis elegans cDNA library, designed for two-hybrid screening, a gene encoding the DNA repair enzyme APN-1 using cross-specie complementation analysis of the Saccharomyces cerevisiae apn1∆ apn2∆ tpp1∆ triple mutant deficient in the ability to repair several types of DNA lesions including apurinic/apyrimidinic (AP) sites. We subsequently purified the APN-1 from this yeast mutant and demonstrated that it possesses four distinct DNA repair activities. However, following the re-annotation of the C. elegans genome we discovered that the functionally active APN-1 encoded by the cDNA from the library might lack 108 amino acid residues from the N-terminus. We therefore synthesized the entire C. elegans apn-1 gene encoding the putative full-length APN-1 and created several N-terminal deletion mutants lacking either 63, 83 or 118 amino acid residues. The full-length APN-1, APN-1 (1-63Δ) and APN-1 (1-83Δ), but not APN-1 (1-118Δ) were stably expressed in the yeast triple mutant and cleaved the AP site substrate. However, only the full-length APN-1 rescued the yeast mutant from the genotoxicity caused by methyl methane sulfonate, a DNA damaging agent that creates AP sites in the genome. The full-length APN-1 was localized to the yeast nucleus, while APN-1 (1-63Δ) and APN-1 (1-83Δ) retained a cytoplasmic distribution. Our data suggest that the N-terminal region has no direct role in the DNA repair functions of APN-1 other than to target the protein to the nucleus and possibly to maintain its stability. Thus, the truncated APN-1, previously isolated from the two-hybrid library, ability to complement the yeast triple mutant depends on the engineered SV40 nuclear localization signal.
Collapse
Affiliation(s)
- Zhiqiang Wang
- Maisonneuve-Rosemont Hospital, Research Center, Université de Montréal, 5415 Boul. de l' Assomption, Montréal, Québec H1T 2M4, Canada
| | - Xiaoming Yang
- Maisonneuve-Rosemont Hospital, Research Center, Université de Montréal, 5415 Boul. de l' Assomption, Montréal, Québec H1T 2M4, Canada
| | - Abdelghani Mazouzi
- Maisonneuve-Rosemont Hospital, Research Center, Université de Montréal, 5415 Boul. de l' Assomption, Montréal, Québec H1T 2M4, Canada
| | - Dindial Ramotar
- Maisonneuve-Rosemont Hospital, Research Center, Université de Montréal, 5415 Boul. de l' Assomption, Montréal, Québec H1T 2M4, Canada.
| |
Collapse
|
18
|
Niesner B, Maheshri N. Using the cre-lox system to randomize target gene expression states and generate diverse phenotypes. Biotechnol Bioeng 2013; 110:2677-86. [DOI: 10.1002/bit.24952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 04/03/2013] [Accepted: 04/22/2013] [Indexed: 11/06/2022]
Affiliation(s)
- Bradley Niesner
- Department of Chemical Engineering; Massachusetts Institute of Technology; Cambridge; Massachusetts; 02139
| | - Narendra Maheshri
- Department of Chemical Engineering; Massachusetts Institute of Technology; Cambridge; Massachusetts; 02139
| |
Collapse
|
19
|
Mahjabeen I, Baig RM, Sabir M, Kayani MA. Genetic and expressional variations of APEX1 are associated with increased risk of head and neck cancer. Mutagenesis 2013; 28:213-8. [PMID: 23408843 DOI: 10.1093/mutage/ges074] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The aetiology of head and neck cancer (HNC) has been shown to be associated with genetic and certain environmental factors that produce DNA damage. Base excision repair (BER) genes are responsible for repair of DNA damage caused by reactive oxygen species and other electrophiles and therefore are good candidate susceptibility genes for HNC. Apurinic/apyrimidinic endonuclease-1 (APEX1) proteins have important functions in the BER pathway. In this case-control study, all exons of the APEX1 gene and its exon/intron boundaries were amplified in 300 HNC cases and 300 matched healthy controls and then analysed by single-stranded conformational polymorphism. Amplified products showing altered mobility patterns were sequenced and analysed. To confirm our observations, we examined APEX1 expression at mRNA level on 50 head and neck squamous cell carcinoma (HNSCC) and 50 normal control samples by quantitative real-time polymerase chain reaction. At germ line level, three novel mutations (13T > G, Ser129Arg and Val131Gly) of APEX1 were observed. The homozygous and heterozygous genotypes of APEX1 13T > G, Ser129Arg and Val131Gly appear to be significantly involved in the development of HNC. In the case of expressional level, APEX1 mRNA expression was positively correlated with tumour size, clinical stage and positive lymph node metastasis. Statistical analysis showed a significantly higher APEX1 mRNA level in HNC tumour tissue than in control samples. Our study demonstrated that APEX1 mutations and deregulation of APEX1 are associated with increased risk of HNC in the Pakistani population.
Collapse
Affiliation(s)
- Ishrat Mahjabeen
- Cancer Genetics Lab, Department of Biosciences, COMSATS Institute of Information Technology, Park Road Chak shazad, Islamabad, Pakistan
| | | | | | | |
Collapse
|
20
|
Hu L, Wang L. Using consensus bayesian network to model the reactive oxygen species regulatory pathway. PLoS One 2013; 8:e56832. [PMID: 23457624 PMCID: PMC3574104 DOI: 10.1371/journal.pone.0056832] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2012] [Accepted: 01/16/2013] [Indexed: 11/22/2022] Open
Abstract
Bayesian network is one of the most successful graph models for representing the reactive oxygen species regulatory pathway. With the increasing number of microarray measurements, it is possible to construct the Bayesian network from microarray data directly. Although large numbers of Bayesian network learning algorithms have been developed, when applying them to learn Bayesian networks from microarray data, the accuracies are low due to that the databases they used to learn Bayesian networks contain too few microarray data. In this paper, we propose a consensus Bayesian network which is constructed by combining Bayesian networks from relevant literatures and Bayesian networks learned from microarray data. It would have a higher accuracy than the Bayesian networks learned from one database. In the experiment, we validated the Bayesian network combination algorithm on several classic machine learning databases and used the consensus Bayesian network to model the 's ROS pathway.
Collapse
Affiliation(s)
- Liangdong Hu
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, Jilin, P. R. China
| | - Limin Wang
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, Jilin, P. R. China
- * E-mail:
| |
Collapse
|
21
|
Abedin Z, Louis-Juste M, Stangl M, Field J. The role of base excision repair genes OGG1, APN1 and APN2 in benzo[a]pyrene-7,8-dione induced p53 mutagenesis. Mutat Res 2013; 750:121-8. [PMID: 23117049 PMCID: PMC3931135 DOI: 10.1016/j.mrgentox.2012.10.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Revised: 10/17/2012] [Accepted: 10/18/2012] [Indexed: 12/17/2022]
Abstract
Lung cancer is primarily caused by exposure to tobacco smoke. Tobacco smoke contains numerous carcinogens, including polycyclic aromatic hydrocarbons (PAH). The most common PAH studied is benzo[a]pyrene (B[a]P). B[a]P is metabolically activated through multiple routes, one of which is catalyzed by aldo-keto reductase (AKR) to B[a]P-7,8-dione (BPQ). BPQ undergoes a futile redox cycle in the presence of NADPH to generate reactive oxygen species (ROS). ROS, in turn, damages DNA. Studies with a yeast p53 mutagenesis system found that the generation of ROS by PAH o-quinones may contribute to lung carcinogenesis because of similarities between the patterns (types of mutations) and spectra (location of mutations) and those seen in lung cancer. The patterns were dominated by G to T transversions, and the spectra in the experimental system have mutations at lung cancer hotspots. To address repair mechanisms that are responsible for BPQ induced damage we observed the effect of mutating two DNA repair genes OGG1 and APE1 (APN1 in yeast) and tested them in a yeast reporter system for p53 mutagenesis. There was an increase in both the mutant frequency and the number of G:C/T:A transversions in p53 treated with BPQ in ogg1 yeast but not in apn1 yeast. Knocking out APN2 increased mutagenesis in the apn1 cells. In addition, we did not find a strand bias on p53 treated with BPQ in ogg1 yeast. These studies suggest that Ogg1 is involved in repairing the oxidative damage caused by BPQ, Apn1 and Apn2 have redundant functions and that the stand bias seen in lung cancer may not be due to impaired repair of oxidative lesions.
Collapse
Affiliation(s)
- Zahidur Abedin
- Department of Pharmacology, Centers for Excellence in Environmental Toxicology and Cancer Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6084, USA
| | - Melissa Louis-Juste
- Department of Pharmacology, Centers for Excellence in Environmental Toxicology and Cancer Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6084, USA
| | - Melissa Stangl
- Department of Pharmacology, Centers for Excellence in Environmental Toxicology and Cancer Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6084, USA
| | - Jeffrey Field
- Department of Pharmacology, Centers for Excellence in Environmental Toxicology and Cancer Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6084, USA
| |
Collapse
|
22
|
Alexander MP, Begins KJ, Crall WC, Holmes MP, Lippert MJ. High levels of transcription stimulate transversions at GC base pairs in yeast. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2013; 54:44-53. [PMID: 23055242 PMCID: PMC5013542 DOI: 10.1002/em.21740] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2012] [Revised: 08/18/2012] [Accepted: 08/22/2012] [Indexed: 06/01/2023]
Abstract
High-levels of transcription through a gene stimulate spontaneous mutation rate, a phenomenon termed transcription-associated mutation (TAM). While transcriptional effects on specific mutation classes have been identified using forward mutation and frameshift-reversion assays, little is yet known about transcription-associated base substitutions in yeast. To address this issue, we developed a new base substitution reversion assay (the lys2-TAG allele). We report a 22-fold increase in overall reversion rate in the high- relative to the low-transcription strain (from 2.1- to 47- × 10(-9) ). While all detectable base substitution types increased in the high-transcription strain, G→T and G→C transversions increased disproportionately by 58- and 52-fold, respectively. To assess a potential role of DNA damage in the TAM events, we measured mutation rates and spectra in individual strains defective in the repair of specific DNA lesions or null for the error-prone translesion DNA polymerase zeta (Pol zeta). Results exclude a role of 8-oxoGuanine, general oxidative damage, or apurinic/apyrimidinic sites in the generation of TAM G→T and G→C transversions. In contrast, the TAM transversions at GC base pairs depend on Pol zeta for occurrence implicating DNA damage, other than oxidative lesions or AP sites, in the TAM mechanism. Results further indicate that transcription-dependent G→T transversions in yeast differ mechanistically from equivalent events in E. coli reported by others. Given their occurrences in repair-proficient cells, transcription-associated G→T and G→C events represent a novel type of transcription-associated mutagenesis in normal cells with potentially important implications for evolution and genetic disease.
Collapse
Affiliation(s)
| | | | | | | | - Malcolm J. Lippert
- Correspondence to: Malcolm J. Lippert, Saint Michael's College, Biology Department, Box 283, 1 Winooski Park, Colchester, VT 05439, USA.
| |
Collapse
|
23
|
Dyakonova ES, Koval VV, Ishchenko AA, Saparbaev MK, Kaptein R, Fedorova OS. Kinetic mechanism of the interaction of Saccharomyces cerevisiae AP-endonuclease 1 with DNA substrates. BIOCHEMISTRY (MOSCOW) 2012; 77:1162-71. [DOI: 10.1134/s0006297912100082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Functional characterization of the Caenorhabditis elegans DNA repair enzyme APN-1. DNA Repair (Amst) 2012; 11:811-22. [PMID: 22819077 DOI: 10.1016/j.dnarep.2012.06.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Revised: 05/17/2012] [Accepted: 06/29/2012] [Indexed: 11/23/2022]
Abstract
Caenorhabditis elegans possesses two distinct DNA repair enzymes EXO-3 and APN-1 that have been identified by cross-specie complementation analysis of the Saccharomyces cerevisiae apn1Δapn2Δtpp1Δ triple mutant deficient in the ability to repair apurinic/apyrimidinc (AP) sites and DNA strand breaks with blocked 3'-ends. While purified EXO-3 directly incises AP sites and removes 3'-blocking groups, such characterization has not been previously reported for APN-1. We recently documented that C. elegans knockdown for apn-1 is unable to maintain integrity of the genome. Despite the presence of EXO-3, the apn-1 knockdown animals are also defective in the division of the P1 blastomere, an observation consistent with the accumulation of unrepaired DNA lesions suggesting a unique role for APN-1 DNA repair functions. Herein, we show that C. elegans APN-1 is stably expressed as GST-fusion protein in S. cerevisiae only when it carries a nuclear localization signal, and with this requirement rescued the DNA repair defects of the S. cerevisiae apn1Δapn2Δtpp1Δ triple mutant. We purified the APN-1 from the yeast expression system and established that it displays AP endonuclease and 3'-diesterase activities. In addition, we showed that APN-1 also possesses a 3'- to 5'-exonuclease and the nucleotide incision repair activity. This latter activity is capable of directly incising DNA at the 5'-side of various oxidatively damaged bases, as previously observed for Escherichia coli endonuclease IV and S. cerevisiae Apn1, underscoring the importance of this family of enzymes in removing these types of lesions. Glycine substitution of the conserved amino acid residue Glu261 of APN-1, corresponding to Glu145 involved in coordinating Zn(2+) ions in the active site pocket of E. coli endonuclease IV, resulted in an inactive variant that lose the ability to rescue the DNA repair defects of S. cerevisiae apn1Δapn2Δtpp1Δ mutant. Interestingly, the Glu261Gly variant did not sustain purification and yielded a truncated polypeptide. These data suggest that the Glu261 residue of APN-1 may have a broader role in maintaining the structure of the protein.
Collapse
|
25
|
Morris LP, Degtyareva N, Sheppard C, Heyburn L, Ivanov AA, Kow YW, Doetsch PW. Saccharomyces cerevisiae Apn1 mutation affecting stable protein expression mimics catalytic activity impairment: implications for assessing DNA repair capacity in humans. DNA Repair (Amst) 2012; 11:753-65. [PMID: 22818187 DOI: 10.1016/j.dnarep.2012.06.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 06/18/2012] [Accepted: 06/25/2012] [Indexed: 11/18/2022]
Abstract
Apurinic/apyrimidinic (AP) endonucleases play a major role in the repair of AP sites, oxidative damage and alkylation damage in DNA. We employed Saccharomyces cerevisiae in an unbiased forward genetic screen to identify amino acid substitutions in the major yeast AP endonuclease, Apn1, that impair cellular DNA repair capacity by conferring sensitivity to the DNA alkylating agent methyl methanesulfonate. We report here the identification and characterization of the Apn1 V156E amino acid substitution mutant through biochemical and functional analysis. We found that steady state levels of Apn1 V156E were substantially decreased compared to wild type protein, and that this decrease was due to more rapid degradation of mutant protein compared to wild type. Based on homology to E. coli endonuclease IV and computational modeling, we predicted that V156E impairs catalytic ability. However, overexpression of mutant protein restored DNA repair activity in vitro and in vivo. Thus, the V156E substitution decreases DNA repair capacity by an unanticipated mechanism via increased degradation of mutant protein, leading to substantially reduced cellular levels. Our study provides evidence that the V156 residue plays a critical role in Apn1 structural integrity, but is not involved in catalytic activity. These results have important implications for elucidating structure-function relationships for the endonuclease IV family of proteins, and for employing simple eukaryotic model systems to understand how structural defects in the major human AP endonuclease APE1 may contribute to disease etiology.
Collapse
Affiliation(s)
- Lydia P Morris
- Program in Genetics and Molecular Biology, Graduate Division of Biological and Biomedical Sciences, James T. Laney School of Graduate Studies, Emory University, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Cytotoxicity of orthodontic materials assessed by survival tests in Saccharomyces cerevisiae. Dent Mater 2011; 27:e81-6. [DOI: 10.1016/j.dental.2011.01.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Revised: 09/13/2010] [Accepted: 01/19/2011] [Indexed: 12/26/2022]
|
27
|
Onyango DO, Naguleswaran A, Delaplane S, Reed A, Kelley MR, Georgiadis MM, Sullivan WJ. Base excision repair apurinic/apyrimidinic endonucleases in apicomplexan parasite Toxoplasma gondii. DNA Repair (Amst) 2011; 10:466-75. [PMID: 21353648 DOI: 10.1016/j.dnarep.2011.01.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 01/20/2011] [Accepted: 01/25/2011] [Indexed: 10/18/2022]
Abstract
DNA repair is essential for cell viability and proliferation. In addition to reactive oxygen produced as a byproduct of their own metabolism, intracellular parasites also have to manage oxidative stress generated as a defense mechanism by the host. The spontaneous loss of DNA bases due to hydrolysis and oxidative DNA damage in intracellular parasites is great, but little is known about the type of DNA repair machineries that exist in these early-branching eukaryotes. However, it is clear, processes similar to DNA base excision repair (BER) must exist to rectify spontaneous and host-mediated damage in Toxoplasma gondii. Here we report that T. gondii, an opportunistic protozoan pathogen, possesses two apurinic/apyrimidinic (AP) endonucleases that function in DNA BER. We characterize the enzymatic activities of Toxoplasma exonuclease III (ExoIII, or Ape1) and endonuclease IV (EndoIV, or Apn1), designated TgAPE and TgAPN, respectively. Over-expression of TgAPN in Toxoplasma conferred protection from DNA damage, and viable knockouts of TgAPN were not obtainable. We generated an inducible TgAPN knockdown mutant using a ligand-controlled destabilization domain to establish that TgAPN is critical for Toxoplasma to recover from DNA damage. The importance of TgAPN and the fact that humans lack any observable APN family activity highlights TgAPN as a promising candidate for drug development to treat toxoplasmosis.
Collapse
Affiliation(s)
- David O Onyango
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, 46202, United States
| | | | | | | | | | | | | |
Collapse
|
28
|
Ochi Y, Sugawara H, Iwami M, Tanaka M, Eki T. Sensitive detection of chemical-induced genotoxicity by the Cypridina secretory luciferase reporter assay, using DNA repair-deficient strains of Saccharomyces cerevisiae. Yeast 2011; 28:265-78. [DOI: 10.1002/yea.1837] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Accepted: 11/25/2010] [Indexed: 11/10/2022] Open
|
29
|
Daley JM, Zakaria C, Ramotar D. The endonuclease IV family of apurinic/apyrimidinic endonucleases. Mutat Res 2010; 705:217-27. [PMID: 20667510 DOI: 10.1016/j.mrrev.2010.07.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Revised: 07/03/2010] [Accepted: 07/14/2010] [Indexed: 11/17/2022]
Abstract
Apurinic/apyrimidinic (AP) endonucleases are versatile DNA repair enzymes that possess a variety of nucleolytic activities, including endonuclease activity at AP sites, 3' phosphodiesterase activity that can remove a variety of ligation-blocking lesions from the 3' end of DNA, endonuclease activity on oxidative DNA lesions, and 3' to 5' exonuclease activity. There are two families of AP endonucleases, named for the bacterial counterparts endonuclease IV (EndoIV) and exonuclease III (ExoIII). While ExoIII family members are present in all kingdoms of life, EndoIV members exist in lower organisms but are curiously absent in plants, mammals and some other vertebrates. Here, we review recent research on these enzymes, focusing primarily on the EndoIV family. We address the role(s) of EndoIV members in DNA repair and discuss recent findings from each model organism in which the enzymes have been studied to date.
Collapse
Affiliation(s)
- James M Daley
- Centre de Recherche, Hôpital Maisonneuve-Rosemont, Université de Montréal, 5415 de L'Assomption, Montréal, QC H1T 2M4, Canada
| | | | | |
Collapse
|
30
|
Daley JM, Wilson TE, Ramotar D. Genetic interactions between HNT3/Aprataxin and RAD27/FEN1 suggest parallel pathways for 5' end processing during base excision repair. DNA Repair (Amst) 2010; 9:690-9. [PMID: 20399152 DOI: 10.1016/j.dnarep.2010.03.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Revised: 02/26/2010] [Accepted: 03/22/2010] [Indexed: 10/19/2022]
Abstract
Mutations in Aprataxin cause the neurodegenerative syndrome ataxia oculomotor apraxia type 1. Aprataxin catalyzes removal of adenosine monophosphate (AMP) from the 5' end of a DNA strand, which results from an aborted attempt to ligate a strand break containing a damaged end. To gain insight into which DNA lesions are substrates for Aprataxin action in vivo, we deleted the Saccharomyces cerevisiae HNT3 gene, which encodes the Aprataxin homolog, in combination with known DNA repair genes. While hnt3Delta single mutants were not sensitive to DNA damaging agents, loss of HNT3 caused synergistic sensitivity to H(2)O(2) in backgrounds that accumulate strand breaks with blocked termini, including apn1Delta apn2Delta tpp1Delta and ntg1Delta ntg2Delta ogg1Delta. Loss of HNT3 in rad27Delta cells, which are deficient in long-patch base excision repair (LP-BER), resulted in synergistic sensitivity to H(2)O(2) and MMS, indicating that Hnt3 and LP-BER provide parallel pathways for processing 5' AMPs. Loss of HNT3 also increased the sister chromatid exchange frequency. Surprisingly, HNT3 deletion partially rescued H(2)O(2) sensitivity in recombination-deficient rad51Delta and rad52Delta cells, suggesting that Hnt3 promotes formation of a repair intermediate that is resolved by recombination.
Collapse
Affiliation(s)
- James M Daley
- Centre de Recherche, Hôpital Maisonneuve-Rosemont, Université de Montréal, Montréal, QC H1T 2M4, Canada
| | | | | |
Collapse
|
31
|
Steininger S, Ahne F, Winkler K, Kleinschmidt A, Eckardt-Schupp F, Moertl S. A novel function for the Mre11-Rad50-Xrs2 complex in base excision repair. Nucleic Acids Res 2009; 38:1853-65. [PMID: 20040573 PMCID: PMC2847237 DOI: 10.1093/nar/gkp1175] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The Mre11/Rad50/Xrs2 (MRX) complex in Saccharomyces cerevisiae has well-characterized functions in DNA double-strand break processing, checkpoint activation, telomere length maintenance and meiosis. In this study, we demonstrate an involvement of the complex in the base excision repair (BER) pathway. We studied the repair of methyl-methanesulfonate-induced heat-labile sites in chromosomal DNA in vivo and the in vitro BER capacity for the repair of uracil- and 8-oxoG-containing oligonucleotides in MRX-deficient cells. Both approaches show a clear BER deficiency for the xrs2 mutant as compared to wildtype cells. The in vitro analyses revealed that both subpathways, long-patch and short-patch BER, are affected and that all components of the MRX complex are similarly important for the new function in BER. The investigation of the epistatic relationship of XRS2 to other BER genes suggests a role of the MRX complex downstream of the AP-lyases Ntg1 and Ntg2. Analysis of individual steps in BER showed that base recognition and strand incision are not affected by the MRX complex. Reduced gap-filling activity and the missing effect of aphidicoline treatment, an inhibitor for polymerases, on the BER efficiency indicate an involvement of the MRX complex in providing efficient polymerase activity.
Collapse
Affiliation(s)
- Sylvia Steininger
- Institute of Radiation Biology, Helmholtz Centre Munich - German Research Centre for Environmental Health, Ingolstaedter Landstrasse 1, D-85764 Neuherberg, Germany
| | | | | | | | | | | |
Collapse
|
32
|
Mániková D, Vlasáková D, Loduhová J, Letavayová L, Vigašová D, Krascsenitsová E, Vlčková V, Brozmanová J, Chovanec M. Investigations on the role of base excision repair and non-homologous end-joining pathways in sodium selenite-induced toxicity and mutagenicity in Saccharomyces cerevisiae. Mutagenesis 2009; 25:155-62. [DOI: 10.1093/mutage/gep056] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
|
33
|
Murphy TM, Belmonte M, Shu S, Britt AB, Hatteroth J. Requirement for abasic endonuclease gene homologues in Arabidopsis seed development. PLoS One 2009; 4:e4297. [PMID: 19172180 PMCID: PMC2627920 DOI: 10.1371/journal.pone.0004297] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2008] [Accepted: 12/22/2008] [Indexed: 11/29/2022] Open
Abstract
Arabidopsis thaliana has three genes, Ape1L, Ape2, and Arp, that show homology to abasic (apurinic/apyrimidinic) endonuclease genes of bacterial, yeast, or animal cells. In bacteria, yeast, and animals, abasic endonucleases function in base excision repair of oxidized and other modified DNA bases. Here we report that plants with knock-out mutations in any one of Ape1L, Ape2, or Arp show no apparent differences from wild type in growth rate, growth habit, and fertility. However, coincident knock-out mutations in Ape1L and Ape2 are lethal and lead to abortion of developing embryos. Mutations of Arp are not deleterious, even in combination with one of the other two mutations. The results are consistent with the interpretation that the process of base excision repair, involving at least one intact copy of Ape1L or Ape2, is required in the process of embryogenesis.
Collapse
Affiliation(s)
- Terence M Murphy
- Section of Plant Biology, University of California Davis, Davis, California, United States of America.
| | | | | | | | | |
Collapse
|
34
|
Shkolnik K, Ben-Dor S, Galiani D, Hourvitz A, Dekel N. Molecular characterization and bioinformatics analysis of Ncoa7B, a novel ovulation-associated and reproduction system-specific Ncoa7 isoform. Reproduction 2008; 135:321-33. [PMID: 18299425 DOI: 10.1530/rep-07-0402] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In the present work, we employed bioinformatics search tools to select ovulation-associated cDNA clones with a preference for those representing putative novel genes. Detailed characterization of one of these transcripts, 6C3, by real-time PCR and RACE analyses led to identification of a novel ovulation-associated gene, designated Ncoa7B. This gene was found to exhibit a significant homology to the Ncoa7 gene that encodes a conserved tissue-specific nuclear receptor coactivator. Unlike Ncoa7, Ncoa7B possesses a unique and highly conserved exon at the 5' end and encodes a protein with a unique N-terminal sequence. Extensive bioinformatics analysis has revealed that Ncoa7B has one identifiable domain, TLDc, which has recently been suggested to be involved in protection from oxidative DNA damage. An alignment of TLDc domain containing proteins was performed, and the closest relative identified was OXR1, which also has a corresponding, highly related short isoform, with just a TLDc domain. Moreover, Ncoa7B expression, as seen to date, seems to be restricted to mammals, while other TLDc family members have no such restriction. Multiple tissue analysis revealed that unlike Ncoa7, which was abundant in a variety of tissues with the highest expression in the brain, Ncoa7B mRNA expression is restricted to the reproductive system organs, particularly the uterus and the ovary. The ovarian expression of Ncoa7B was stimulated by human chorionic gonadotropin. Additionally, using real-time PCR, we demonstrated the involvement of multiple signaling pathways for Ncoa7B expression on preovulatory follicles.
Collapse
Affiliation(s)
- Ketty Shkolnik
- Department of, Biological Regulation, Weizmann Institute of Science, PO Box 26, Rehovot 76100, Israel
| | | | | | | | | |
Collapse
|
35
|
Abstract
Oxygen radicals, or reactive oxygen species (ROS) act as primary or secondary messengers to promote cell growth or death. Many instances demonstrate an important direct role of ROS in development because redox status regulates key transcription factors that influence cell signaling pathways involved in proliferation, differentiation, and apoptosis. Therefore, oxidative stress can alter many important reactions that affect embryonic development both positively and negatively. During particular periods in development, the embryo is more or less susceptible to oxidative stress, and teratogens, which can modify redox status, such as thalidomide, phenytoin, and ethanol, will disrupt fetal development. Various events in pregnancy such as diabetes also alter the redox state. Fortunately, antioxidants can obviate these effects through modification of gene expression, transcription factor signaling, and cell cycle alterations. A better understanding of ROS-mediated reactions and their impact on embryonic development is important to ensure optimal outcomes.
Collapse
Affiliation(s)
- Phyllis A Dennery
- Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
36
|
Tounekti K, Aouida M, Leduc A, Poschmann J, Yang X, Belhadj O, Ramotar D. Deletion of the chromatin remodeling gene SPT10 sensitizes yeast cells to a subclass of DNA-damaging agents. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2006; 47:707-17. [PMID: 17078097 DOI: 10.1002/em.20260] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The Saccharomyces cerevisiae SPT10 protein possesses a DNA-binding domain that is fused to a putative histone acetyltransferase domain. It binds specifically to upstream-activating sequence elements in the core histone promoters and plays a direct role in histone gene regulation. SPT10 is also required for cell-cycle-specific K56 acetylation at histone genes, allowing the recruitment of the nucleosome remodeling factor Snf5 and subsequent regulation of gene transcription. We reisolated the SPT10 gene in a functional genome-wide screen designed to identify haploid yeast mutants that are hypersensitive to the antitumor drug bleomycin, which acts by damaging DNA. In addition to bleomycin, we show that spt10Delta mutants are also hypersensitive to a limited set of genotoxic agents that create DNA strand breaks, but not to 254-nm ultraviolet light or 4-nitroquinoline-1-oxide, which generate helix distortion. The hypersensitivities of the spt10Delta mutant to the genotoxic agents are rescued by a single copy plasmid carrying the SPT10 gene. We further showed that spt10Delta mutants displayed a modest twofold increase spontaneous mutant frequency, as compared to the parent. Following exposure to bleomycin, these mutants accumulate unrepaired lesions, e.g., DNA strand breaks with blocked 3'-ends in the chromosomal DNA. This defect is not due to the altered expression level or the enzymatic activities of a key DNA repair enzyme, APN1, which is known to repair DNA strand breaks with blocked ends. We propose that SPT10 mediates repair of a subset of DNA lesions by acetylating histones to promote recruitment of DNA repair enzymes.
Collapse
Affiliation(s)
- Kaouther Tounekti
- Laboratoire de Biochimie et de Biotechnologie, Faculte des Sciences de Tunis, Université Tunis El-Manar, Tunis, Tunisia
| | | | | | | | | | | | | |
Collapse
|
37
|
Tanihigashi H, Yamada A, Igawa E, Ikeda S. The role of Schizosaccharomyces pombe DNA repair enzymes Apn1p and Uve1p in the base excision repair of apurinic/apyrimidinic sites. Biochem Biophys Res Commun 2006; 347:889-94. [PMID: 16857169 DOI: 10.1016/j.bbrc.2006.06.191] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2006] [Accepted: 06/26/2006] [Indexed: 11/29/2022]
Abstract
In Schizosaccharomyces pombe the repair of apurinic/apyrimidinic (AP) sites is mainly initiated by AP lyase activity of DNA glycosylase Nth1p. In contrast, the major AP endonuclease Apn2p functions by removing 3'-alpha,beta-unsaturated aldehyde ends induced by Nth1p, rather than by incising the AP sites. S. pombe possesses other minor AP endonuclease activities derived from Apn1p and Uve1p. In this study, we investigated the function of these two enzymes in base excision repair (BER) for methyl methanesulfonate (MMS) damage using the nth1 and apn2 mutants. Deletion of apn1 or uve1 from nth1Delta cells did not affect sensitivity to MMS. Exogenous expression of Apn1p failed to suppress the MMS sensitivity of nth1Delta cells. Although Apn1p and Uve1p incised the oligonucleotide containing an AP site analogue, these enzymes could not initiate repair of the AP sites in vivo. Despite this, expression of Apn1p partially restored the MMS sensitivity of apn2Delta cells, indicating that the enzyme functions as a 3'-phosphodiesterase to remove 3'-blocked ends. Localization of Apn1p in the nucleus and cytoplasm hints at an additional function of the enzyme other than nuclear DNA repair. Heterologous expression of Saccharomyces cerevisiae homologue of Apn1p completely restored the MMS resistance of the nth1Delta and apn2Delta cells. This result confirms a difference in the major pathway for processing the AP site between S. pombe and S. cerevisiae cells.
Collapse
Affiliation(s)
- Haruna Tanihigashi
- Department of Biochemistry, Faculty of Science, Okayama University of Science, 1-1 Ridaicho, Okayama 700-0005, Japan
| | | | | | | |
Collapse
|
38
|
Phadnis N, Mehta R, Meednu N, Sia EA. Ntg1p, the base excision repair protein, generates mutagenic intermediates in yeast mitochondrial DNA. DNA Repair (Amst) 2006; 5:829-39. [PMID: 16730479 DOI: 10.1016/j.dnarep.2006.04.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2006] [Revised: 04/12/2006] [Accepted: 04/13/2006] [Indexed: 11/25/2022]
Abstract
Mitochondrial DNA is predicted to be highly prone to oxidative damage due to its proximity to free radicals generated by oxidative phosphorylation. Base excision repair (BER) is the primary repair pathway responsible for repairing oxidative damage in nuclear and mitochondrial genomes. In yeast mitochondria, three N-glycosylases have been identified so far, Ntg1p, Ogg1p and Ung1p. Ntg1p, a broad specificity N-glycosylase, takes part in catalyzing the first step of BER that involves the removal of the damaged base. In this study, we examined the role of Ntg1p in maintaining yeast mitochondrial genome integrity. Using genetic reporters and assays to assess mitochondrial mutations, we found that loss of Ntg1p suppresses mitochondrial point mutation rates, frameshifts and recombination rates. We also observed a suppression of respiration loss in the ntg1-Delta cells in response to ultraviolet light exposure implying an overlap between BER and UV-induced damage in the yeast mitochondrial compartment. Over-expression of the BER AP endonuclease, Apn1p, did not significantly affect the mitochondrial mutation rate in the presence of Ntg1p, whereas Apn1p over-expression in an ntg1-Delta background increased the frequency of mitochondrial mutations. In addition, loss of Apn1p also suppressed mitochondrial point mutations. Our work suggests that both Ntg1p and Apn1p generate mutagenic intermediates in the yeast mitochondrial genome.
Collapse
Affiliation(s)
- Naina Phadnis
- Department of Biology, University of Rochester, NY 14627-0211, USA
| | | | | | | |
Collapse
|
39
|
|
40
|
Liu X, Liu J. The mechanism of base excision repair in Chlamydiophila pneumoniae. DNA Repair (Amst) 2005; 4:1295-305. [PMID: 16085468 DOI: 10.1016/j.dnarep.2005.06.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2004] [Revised: 06/16/2005] [Accepted: 06/24/2005] [Indexed: 01/11/2023]
Abstract
Repair of damaged DNA is of great importance in maintaining genome integrity, and there are several pathways for repair of damaged DNA in almost all organisms. Base excision repair (BER) is a main process for repairing DNA carrying slightly damaged bases. Several proteins are required for BER; these include DNA glycosylases, AP endonuclease, DNA polymerase, and DNA ligase. In some bacteria the single-stranded specific exonuclease, RecJ, is also involved in BER. In this research, six Chlamydiophila pneumoniae (C. pneumoniae) genes, encoding uracil DNA glycosylase (CpUDG), endonuclease IV (CpEndoIV), DNA polymerase I (CpDNApolI), endonuclease III (CpEndoIII), single-stranded specific exonuclease RecJ (CpRecJ), and DNA ligase (CpDNALig), were inserted into the expression vector pET28a. All proteins, except for CpDNALig, were successfully expressed in E. coli, and purified proteins were characterized in vitro. C. pneumoniae BER was reconstituted in vitro with CpUDG, CpEndoIV, CpDNApolI and E. coli DNA ligase (EcDNALig). After uracil removal by CpUDG, the AP site could be repaired by two BER pathways that involved in the replacement of either one (short patch BER) or multiple nucleotides (long patch BER) at the lesion site. CpEndoIII promoted short patch BER via its 5'-deoxyribophosphodiesterase (5'-dRPase) activity, while CpRecJ had little effect on short patch BER. The flap structure generated during DNA extension could be removed by the 5'-exonuclease activity of CpDNApolI. Based on these observations, we propose a probable mechanism for BER in C. pneumoniae.
Collapse
Affiliation(s)
- Xipeng Liu
- College of Life Sciences and Technology, Shanghai Jiaotong University, No. 1954 Hua-Shan Road, Shanghai 200030, China
| | | |
Collapse
|
41
|
Shatilla A, Leduc A, Yang X, Ramotar D. Identification of two apurinic/apyrimidinic endonucleases from Caenorhabditis elegans by cross-species complementation. DNA Repair (Amst) 2005; 4:655-70. [PMID: 15907773 DOI: 10.1016/j.dnarep.2005.02.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2005] [Revised: 02/18/2005] [Accepted: 02/22/2005] [Indexed: 11/27/2022]
Abstract
The Saccharomyces cerevisiae mutant strain YW778, which lacks apurinic/apyrimidinic (AP) endonuclease and 3'-diesterase DNA repair activities, displays high levels of spontaneous mutations and hypersensitivities to several DNA damaging agents. We searched a cDNA library derived from the nematode Caenorhabditis elegans for gene products that would rescue the DNA repair defects of this yeast mutant. We isolated two genes, apn-1 and exo-3, encoding proteins that have not been previously characterized. Both APN-1 and EXO-3 share significant identity with the functionally established Escherichia coli AP endonucleases, endonuclease IV and exonuclease III, respectively. Strain YW778 expressing either apn-1 or exo-3 shows parental levels of spontaneous mutations, as well as resistance to DNA damaging agents that produce AP sites and DNA single strand breaks with blocked 3'-ends. Using an in vitro assay, we show that the apn-1 and exo-3 genes independently express AP endonuclease activity in the yeast mutant. We further characterize the EXO-3 protein and three of its mutated variants E68A, D190A, and H279A. The E68A variant retains both AP endonuclease and 3'-diesterase repair activities in vitro, yet severely lacks the ability to protect strain YW778 from spontaneous and drug-induced DNA lesions, suggesting that this variant E68A may possess a defect that interferes with the repair process in vivo. In contrast, D190A and H279A are completely devoid of DNA repair activities and fail to rescue the genetic instability of strain YW778. Our data strongly suggest that EXO-3 and APN-1 are enzymes possessing intrinsic AP endonuclease and 3'-diesterase activities.
Collapse
Affiliation(s)
- Andrea Shatilla
- University of Montreal, Maisonneuve-Rosemont Hospital, Guy-Bernier Research Centre, 5415 de l'Assomption, Montreal, Que., Canada H1T 2M4
| | | | | | | |
Collapse
|
42
|
Faure V, Saparbaev M, Dumy P, Constant JF. Action of multiple base excision repair enzymes on the 2'-deoxyribonolactone. Biochem Biophys Res Commun 2005; 328:1188-95. [PMID: 15708002 DOI: 10.1016/j.bbrc.2005.01.082] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2005] [Indexed: 01/25/2023]
Abstract
Free radical attack on the sugar-phosphate backbone generates oxidized apurinic/apyrimidinic (AP) residues in DNA. 2'-deoxyribonolactone (dL) is a C1'-oxidized AP site damage generated by UV and gamma-irradiation, and certain anticancer drugs. If not repaired dL produces G-->A transitions in Escherichia coli. In the base excision repair (BER) pathway, AP endonucleases are the major enzymes responsible for 5'-incision of the regular AP site (dR) and dL. DNA glycosylases with associated AP lyase activity can also efficiently cleave regular AP sites. Here, we report that dL is a substrate for AP endonucleases but not for DNA glycosylases/AP lyases. The kinetic parameters of the dL-incision were similar to those of the dR. DNA glycosylases such as E. coli formamidopyrimidine-DNA glycosylase, mismatch-specific uracil-DNA glycosylase, and human alkylpurine-DNA N-glycosylase bind strongly to dL without cleaving it. We show that dL cross-links with the human proteins 8-oxoguanine-DNA (hOGG1) and thymine glycol-DNA glycosylases (hNth1), and dR cross-links with Nth and hNth1. These results suggest that dL and dR induced genotoxicity might be strengthened by BER pathway in vivo.
Collapse
Affiliation(s)
- Virginie Faure
- LEDSS-UMR 5616, ICMG-FR 2607, BP 53, Université Joseph Fourier, 38041 Grenoble Cedex 9, France
| | | | | | | |
Collapse
|
43
|
Fraser JLA, Neill E, Davey S. Fission yeast Uve1 and Apn2 function in distinct oxidative damage repair pathways in vivo. DNA Repair (Amst) 2004; 2:1253-67. [PMID: 14599746 DOI: 10.1016/j.dnarep.2003.08.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In Schizosaccharomyces pombe, the endonuclease Uve1 functions as the first step in an alternate UV photo-product repair pathway that is distinct from nucleotide excision repair (NER). Based upon the broad substrate specificity of Uve1 in vitro, and the observation that Uve1 mutants accumulate spontaneous mutations at an elevated rate in vivo, we and others have hypothesized that this protein might have a function in a mutation avoidance pathway other than UV photo-product repair. We show here that fission yeast Uve1 also functions in oxidative damage repair in vivo. We have determined the spectrum of spontaneous mutations that arise in uve1 null (uve1 degrees ) cells and have observed that both G-->T(C-->A) and T-->G(A-->C) transversions occur at an increased rate relative to wildtype cells. These mutations are indicative of unrepaired oxidative DNA damage and are very similar to the mutation spectrum observed in 8-oxoguanine glycosylase (OGG1) mutants in Saccharomyces cerevisiae. We have generated an apn2 null (apn2 degrees ) strain and shown that it is mildly sensitive to H(2)O(2). Furthermore we have also shown that apn2 degrees cells have an elevated rate of spontaneous mutation that is similar to uve1 degrees. The phenotype of apn2 degrees uve1 degrees double mutants indicates that these genes define distinct spontaneous mutation avoidance pathways. While uve1 degrees cells show only a modest sensitivity to the oxidizing agent hydrogen peroxide (H(2)O(2)), both uve1 degrees and apn2 degrees cells also display a marked increased in mutation rate following exposure to H(2)O(2) doses. Collectively these data demonstrate that Uve1 is a component of multiple alternate repair pathways in fission yeast and suggest a possible role for Uve1 in a general alternate incision repair pathway in eukaryotes.
Collapse
Affiliation(s)
- J Lee A Fraser
- Department of Pathology, Queen's University, ON, Kingston, Canada K7L 3N6
| | | | | |
Collapse
|
44
|
Schürer KA, Rudolph C, Ulrich HD, Kramer W. Yeast MPH1 Gene Functions in an Error-Free DNA Damage Bypass Pathway That Requires Genes From Homologous Recombination, but Not From Postreplicative Repair. Genetics 2004. [DOI: 10.1093/genetics/166.4.1673] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Abstract
The MPH1 gene from Saccharomyces cerevisiae, encoding a member of the DEAH family of proteins, had been identified by virtue of the spontaneous mutator phenotype of respective deletion mutants. Genetic analysis suggested that MPH1 functions in a previously uncharacterized DNA repair pathway that protects the cells from damage-induced mutations. We have now analyzed genetic interactions of mph1 with a variety of mutants from different repair systems with respect to spontaneous mutation rates and sensitivities to different DNA-damaging agents. The dependence of the mph1 mutator phenotype on REV3 and REV1 and the synergy with mutations in base and nucleotide excision repair suggest an involvement of MPH1 in error-free bypass of lesions. However, although we observed an unexpected partial suppression of the mph1 mutator phenotype by rad5, genetic interactions with other mutations in postreplicative repair imply that MPH1 does not belong to this pathway. Instead, mutations from the homologous recombination pathway were found to be epistatic to mph1 with respect to both spontaneous mutation rates and damage sensitivities. Determination of spontaneous mitotic recombination rates demonstrated that mph1 mutants are not deficient in homologous recombination. On the contrary, in an sgs1 background we found a pronounced hyperrecombination phenotype. Thus, we propose that MPH1 is involved in a branch of homologous recombination that is specifically dedicated to error-free bypass.
Collapse
Affiliation(s)
- K Anke Schürer
- Department of Molecular Genetics and Preparative Molecular Biology, Institute for Microbiology and Genetics, University of Göttingen, D-37077 Göttingen, Germany
| | - Christian Rudolph
- Department of Molecular Genetics and Preparative Molecular Biology, Institute for Microbiology and Genetics, University of Göttingen, D-37077 Göttingen, Germany
| | - Helle D Ulrich
- Max-Planck-Institute for Terrestrial Microbiology, D-35043 Marburg, Germany
| | - Wilfried Kramer
- Department of Molecular Genetics and Preparative Molecular Biology, Institute for Microbiology and Genetics, University of Göttingen, D-37077 Göttingen, Germany
| |
Collapse
|
45
|
Boiteux S, Guillet M. Abasic sites in DNA: repair and biological consequences in Saccharomyces cerevisiae. DNA Repair (Amst) 2004; 3:1-12. [PMID: 14697754 DOI: 10.1016/j.dnarep.2003.10.002] [Citation(s) in RCA: 371] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Apurinic/apyrimidinic (AP) sites are one of the most frequent spontaneous lesions in DNA. They are potentially mutagenic and lethal lesions that can block DNA replication and transcription. In addition, cleavage of AP sites by AP endonucleases or AP lyases generates DNA single-strand breaks (SSBs) with 5'- or 3'-blocked ends, respectively. Therefore, we suggest that AP sites and 3'- or 5'-blocked SSBs, we name "honorary AP sites", constitute a single class of lesions. In this review, we describe the different mechanisms used by the budding yeast Saccharomyces cerevisiae to remove or tolerate AP sites and related SSBs. In wild-type cells, AP sites are primarily repaired by the base excision repair (BER) pathway, with the nucleotide excision repair (NER) pathway as a back up activity. BER is initiated by one of the two AP endonucleases, Apn1 or Apn2. Three DNA N-glycosylases/AP lyases, Ntg1, Ntg2 and Ogg1, can also incise AP sites in DNA. Rad27, a structure specific endonuclease, is involved in the repair of 5'-blocked ends, whereas Apn1, Apn2 and Rad1-Rad10 are involved in the removal of 3'-blocked ends using their 3'-phosphodiesterase and 3'-flap endonuclease activities, respectively. AP sites can stall DNA replication forks, as well as they block in vitro DNA synthesis by DNA polymerase delta. Restart of stalled forks can occur through a recombination-associated pathway initiated by the Mus81-Mms4 endonuclease or mutagenic translesion DNA synthesis (TLS). The mutagenic bypass of AP sites is a two-polymerases affair with an inserter DNA polymerase (Poldelta, Poleta or Rev1) and an extender DNA polymerase (Polzeta). Under normal growth conditions, inactivation of Apn1, Apn2 and Rad1-Rad10 causes cell death. Therefore, the burden of spontaneous AP sites is not compatible with life, in the absence of excision repair pathways. These results in yeast demonstrate that AP sites are critical endogenous DNA damages that cause genetic instability and by analogy could be associated with degenerative pathologies in human.
Collapse
Affiliation(s)
- Serge Boiteux
- CEA, DSV, Département de Radiobiologie et Radiopathologie, UMR 217 CNRS, "Radiobiologie Moléculaire et Cellulaire", BP 6, F-92265, Fontenay aux Roses, France.
| | | |
Collapse
|
46
|
García-Rubio M, Huertas P, González-Barrera S, Aguilera A. Recombinogenic Effects of DNA-Damaging Agents Are Synergistically Increased by Transcription inSaccharomyces cerevisiae: New Insights Into Transcription-Associated Recombination. Genetics 2003; 165:457-66. [PMID: 14573461 PMCID: PMC1462770 DOI: 10.1093/genetics/165.2.457] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
AbstractHomologous recombination of a particular DNA sequence is strongly stimulated by transcription, a phenomenon observed from bacteria to mammals, which we refer to as transcription-associated recombination (TAR). TAR might be an accidental feature of DNA chemistry with important consequences for genetic stability. However, it is also essential for developmentally regulated processes such as class switching of immunoglobulin genes. Consequently, it is likely that TAR embraces more than one mechanism. In this study we tested the possibility that transcription induces recombination by making DNA more susceptible to recombinogenic DNA damage. Using different plasmid-chromosome and direct-repeat recombination constructs in which transcription is driven from either the PGAL1- or the Ptet-regulated promoters, we haveshown that either 4-nitroquinoline-N-oxide (4-NQO) or methyl methanesulfonate (MMS) produces a synergistic increase of recombination when combined with transcription. 4-NQO and MMS stimulated recombination of a transcriptionally active DNA sequence up to 12,800- and 130-fold above the spontaneous levels observed in the absence of transcription, whereas 4-NQO and MMS alone increased recombination 193- and 4.5-fold, respectively. Our results provide evidence that TAR is due, at least in part, to the ability of transcription to enhance the accessibility of DNA to exogenous chemicals and internal metabolites responsible for recombinogenic lesions. We discuss possible parallelisms between the mechanisms of induction of recombination and mutation by transcription.
Collapse
Affiliation(s)
- M García-Rubio
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41012 Sevilla, Spain
| | | | | | | |
Collapse
|
47
|
Karumbati AS, Deshpande RA, Jilani A, Vance JR, Ramotar D, Wilson TE. The role of yeast DNA 3'-phosphatase Tpp1 and rad1/Rad10 endonuclease in processing spontaneous and induced base lesions. J Biol Chem 2003; 278:31434-43. [PMID: 12783866 DOI: 10.1074/jbc.m304586200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tpp1 is a DNA 3'-phosphatase in Saccharomyces cerevisiae that is believed to act during strand break repair. It is homologous to one domain of mammalian polynucleotide kinase/3'-phosphatase. Unlike in yeast, we found that Tpp1 could confer resistance to methylmethane sulfonate when expressed in bacteria that lack abasic endonuclease/3'-phosphodiesterase function. This species difference was due to the absence of delta-lyase activity in S. cerevisiae, since expression of bacterial Fpg conferred Tpp1-dependent resistance to methylmethane sulfonate in yeast lacking the abasic endonucleases Apn1 and Apn2. In contrast, beta-only lyases increased methylmethane sulfonate sensitivity independently of Tpp1, which was explained by the inability of Tpp1 to cleave 3' alpha,beta-unsaturated aldehydes. In parallel experiments, mutations of TPP1 and RAD1, encoding part of the Rad1/Rad10 3'-flap endonuclease, caused synthetic growth defects in yeast strains lacking Apn1. In contrast, Fpg expression led to a partial rescue of apn1 apn2 rad1 synthetic lethality by converting lesions into Tpp1-cleavable 3'-phosphates. The collected experiments reveal a profound toxicity of strand breaks with irreparable 3' blocking lesions, and extend the function of the Rad1/Rad10 salvage pathway to 3'-phosphates. They further demonstrate a role for Tpp1 in repairing endogenously created 3'-phosphates. The source of these phosphates remains enigmatic, however, because apn1 tpp1 rad1 slow growth could be correlated with neither the presence of a yeast delta-lyase, the activity of the 3'-phosphate-generating enzyme Tdp1, nor levels of endogenous oxidation.
Collapse
Affiliation(s)
- Anandi S Karumbati
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan 48109-0602, USA
| | | | | | | | | | | |
Collapse
|
48
|
Leduc A, He CH, Ramotar D. Disruption of the Saccharomyces cerevisiae cell-wall pathway gene SLG1 causes hypersensitivity to the antitumor drug bleomycin. Mol Genet Genomics 2003; 269:78-89. [PMID: 12715156 DOI: 10.1007/s00438-003-0812-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2002] [Accepted: 12/30/2002] [Indexed: 11/29/2022]
Abstract
Bleomycin is an antitumor drug that damages DNA via a free radical-dependent mechanism, and yeast mutants defective in DNA repair are hypersensitive to the drug. To identify possible pathways that may contribute to bleomycin resistance in yeast, we characterized a panel of bleomycin-sensitive mutants that were previously isolated by insertion mutagenesis using the transposon miniTn3::Leu2::LacZ::AMP( R). One of these mutants harbored a single insertion in the SLG1 gene, which encodes a cell membrane protein that senses cell wall stress, and functions to maintain cell wall function by activating the protein kinase C signaling pathway. Deletion of the SLG1 gene in parental strains caused hypersensitivity to bleomycin, and this correlated with an accumulation of damaged DNA. A plasmid that expresses the native SLG1 gene or that increases PKC1 gene dosage restored bleomycin resistance to the slg1Delta mutant. Two-dimensional gel electrophoresis revealed that exposure to bleomycin triggered the expression of certain proteins, presumably to maintain cell wall function, in a Slg1-dependent manner. In addition, mutants lacking cell wall function were found to be hypersensitive to bleomycin. We conclude that mutants deficient in proteins that maintain cell wall function are severely compromised in their ability to limit bleomycin entry into the cell. Therefore, these mutants are burdened with increased genotoxicity upon exposure to bleomycin in the medium. Our results show that major mechanisms other than DNA repair are operating in yeast to mediate bleomycin resistance.
Collapse
Affiliation(s)
- A Leduc
- Centre de Recherche Guy Bernier, Maisonneuve-Rosemont Hospital, 5415 de l'Assomption, Montreal, Quebec H1T 2M4, Canada
| | | | | |
Collapse
|
49
|
Maclean MJ, Aamodt R, Harris N, Alseth I, Seeberg E, Bjørås M, Piper PW. Base excision repair activities required for yeast to attain a full chronological life span. Aging Cell 2003; 2:93-104. [PMID: 12882322 DOI: 10.1046/j.1474-9728.2003.00041.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The chronological life span of yeast, the survival of stationary (G0) cells over time, provides a model for investigating certain of the factors that may influence the aging of non-dividing cells and tissues in higher organisms. This study measured the effects of defined defects in the base excision repair (BER) system for DNA repair on this life span. Stationary yeast survives longer when it is pre-grown on respiratory, as compared to fermentative (glucose), media. It is also less susceptible to viability loss as the result of defects in DNA glycosylase/AP lyases (Ogg1p, Ntg1p, Ntg2p), apurinic/apyrimidinic (AP) endonucleases (Apn1p, Apn2p) and monofunctional DNA glycosylase (Mag1p). Whereas single BER glycosylase/AP lyase defects exerted little influence over such optimized G0 survival, this survival was severely shortened with the loss of two or more such enzymes. Equally, the apn1delta and apn2delta single gene deletes survived as well as the wild type, whereas a apn1delta apn2delta double mutant totally lacking in any AP endonuclease activity survived poorly. Both this shortened G0 survival and the enhanced mutagenicity of apn1delta apn2delta cells were however rescued by the over-expression of either Apn1p or Apn2p. The results highlight the vital importance of BER in the prevention of mutation accumulation and the attainment of the full yeast chronological life span. They also reveal an appreciable overlap in the G0 maintenance functions of the different BER DNA glycosylases and AP endonucleases.
Collapse
Affiliation(s)
- Morag J Maclean
- Department of Biochemistry and Molecular Biology, University College London, Gower Street, London WC 1E 6BT, UK
| | | | | | | | | | | | | |
Collapse
|
50
|
Demple B, DeMott MS. Dynamics and diversions in base excision DNA repair of oxidized abasic lesions. Oncogene 2002; 21:8926-34. [PMID: 12483509 DOI: 10.1038/sj.onc.1206178] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Bruce Demple
- Department of Cancer Cell Biology, Harvard School of Public Health, Boston, MA 02115, USA.
| | | |
Collapse
|