1
|
Bou-Nader C, Gaikwad S, Bahmanjah S, Zhang F, Hinnebusch AG, Zhang J. Gcn2 structurally mimics and functionally repurposes the HisRS enzyme for the integrated stress response. Proc Natl Acad Sci U S A 2024; 121:e2409628121. [PMID: 39163341 PMCID: PMC11363354 DOI: 10.1073/pnas.2409628121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/22/2024] [Indexed: 08/22/2024] Open
Abstract
Protein kinase Gcn2 attenuates protein synthesis in response to amino acid starvation while stimulating translation of a transcriptional activator of amino acid biosynthesis. Gcn2 activation requires a domain related to histidyl-tRNA synthetase (HisRS), the enzyme that aminoacylates tRNAHis. While evidence suggests that deacylated tRNA binds the HisRS domain for kinase activation, ribosomal P-stalk proteins have been implicated as alternative activating ligands on stalled ribosomes. We report crystal structures of the HisRS domain of Chaetomium thermophilum Gcn2 that reveal structural mimicry of both catalytic (CD) and anticodon-binding (ABD) domains, which in authentic HisRS bind the acceptor stem and anticodon loop of tRNAHis. Elements for forming histidyl adenylate and aminoacylation are lacking, suggesting that Gcn2HisRS was repurposed for kinase activation, consistent with mutations in the CD that dysregulate yeast Gcn2 function. Substituting conserved ABD residues well positioned to contact the anticodon loop or that form a conserved ABD-CD interface impairs Gcn2 function in starved cells. Mimicry in Gcn2HisRS of two highly conserved structural domains for binding both ends of tRNA-each crucial for Gcn2 function-supports that deacylated tRNAs activate Gcn2 and exemplifies how a metabolic enzyme is repurposed to host new local structures and sequences that confer a novel regulatory function.
Collapse
Affiliation(s)
- Charles Bou-Nader
- Laboratory of Molecular Biology, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD20892
| | - Swati Gaikwad
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD20892
| | - Soheila Bahmanjah
- Laboratory of Molecular Biology, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD20892
| | - Fan Zhang
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD20892
| | - Alan G. Hinnebusch
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD20892
| | - Jinwei Zhang
- Laboratory of Molecular Biology, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD20892
| |
Collapse
|
2
|
Shanmugam R, Anderson R, Schiemann AH, Sattlegger E. Evidence that Xrn1 is in complex with Gcn1, and is required for full levels of eIF2α phosphorylation. Biochem J 2024; 481:481-498. [PMID: 38440860 PMCID: PMC11088878 DOI: 10.1042/bcj20220531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/04/2024] [Accepted: 03/05/2024] [Indexed: 03/06/2024]
Abstract
The protein kinase Gcn2 and its effector protein Gcn1 are part of the general amino acid control signalling (GAAC) pathway best known in yeast for its function in maintaining amino acid homeostasis. Under amino acid limitation, Gcn2 becomes activated, subsequently increasing the levels of phosphorylated eIF2α (eIF2α-P). This leads to the increased translation of transcriptional regulators, such as Gcn4 in yeast and ATF4 in mammals, and subsequent re-programming of the cell's gene transcription profile, thereby allowing cells to cope with starvation. Xrn1 is involved in RNA decay, quality control and processing. We found that Xrn1 co-precipitates Gcn1 and Gcn2, suggesting that these three proteins are in the same complex. Growth under starvation conditions was dependent on Xrn1 but not on Xrn1-ribosome association, and this correlated with reduced eIF2α-P levels. Constitutively active Gcn2 leads to a growth defect due to eIF2α-hyperphosphorylation, and we found that this phenotype was independent of Xrn1, suggesting that xrn1 deletion does not enhance eIF2α de-phosphorylation. Our study provides evidence that Xrn1 is required for efficient Gcn2 activation, directly or indirectly. Thus, we have uncovered a potential new link between RNA metabolism and the GAAC.
Collapse
Affiliation(s)
- Renuka Shanmugam
- School of Natural Sciences, Massey University, Auckland, New Zealand
| | - Reuben Anderson
- School of Natural Sciences, Massey University, Auckland, New Zealand
- School of Natural Sciences, Massey University, Palmerston North, New Zealand
| | - Anja H. Schiemann
- School of Natural Sciences, Massey University, Palmerston North, New Zealand
| | - Evelyn Sattlegger
- School of Natural Sciences, Massey University, Auckland, New Zealand
- School of Natural Sciences, Massey University, Palmerston North, New Zealand
- Maurice Wilkins Centre for Molecular BioDiscovery, Massey University, Palmerston North, New Zealand
| |
Collapse
|
3
|
Mariner BL, Rodriguez AS, Heath OC, McCormick MA. Induction of proteasomal activity in mammalian cells by lifespan-extending tRNA synthetase inhibitors. GeroScience 2024; 46:1755-1773. [PMID: 37749371 PMCID: PMC10828360 DOI: 10.1007/s11357-023-00938-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 09/04/2023] [Indexed: 09/27/2023] Open
Abstract
We have recently shown that multiple tRNA synthetase inhibitors can greatly increase lifespan in multiple models by acting through the conserved transcription factor ATF4. Here, we show that these compounds, and several others of the same class, can greatly upregulate mammalian ATF4 in cells in vitro, in a dose dependent manner. Further, RNASeq analysis of these cells pointed toward changes in protein turnover. In subsequent experiments here we show that multiple tRNA synthetase inhibitors can greatly upregulate activity of the ubiquitin proteasome system (UPS) in cells in an ATF4-dependent manner. The UPS plays an important role in the turnover of many damaged or dysfunctional proteins in an organism. Increasing UPS activity has been shown to enhance the survival of Huntington's disease cell models, but there are few known pharmacological enhancers of the UPS. Additionally, we see separate ATF4 dependent upregulation of macroautophagy upon treatment with tRNA synthetase inhibitors. Protein degradation is an essential cellular process linked to many important human diseases of aging such as Alzheimer's disease and Huntington's disease. These drugs' ability to enhance proteostasis more broadly could have wide-ranging implications in the treatment of important age-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Blaise L Mariner
- Department of Biochemistry and Molecular Biology, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, 87131, USA
- Center for Biomedical Engineering, University of New Mexico, Albuquerque, NM, 87131, USA
- Autophagy, Inflammation and Metabolism Center of Biomedical Research Excellence, Albuquerque, NM, 87131, USA
| | - Antonio S Rodriguez
- Department of Biochemistry and Molecular Biology, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, 87131, USA
| | - Olivia C Heath
- Department of Biochemistry and Molecular Biology, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, 87131, USA
| | - Mark A McCormick
- Department of Biochemistry and Molecular Biology, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, 87131, USA.
- Autophagy, Inflammation and Metabolism Center of Biomedical Research Excellence, Albuquerque, NM, 87131, USA.
| |
Collapse
|
4
|
English AM, Green KM, Moon SL. A (dis)integrated stress response: Genetic diseases of eIF2α regulators. WILEY INTERDISCIPLINARY REVIEWS-RNA 2021; 13:e1689. [PMID: 34463036 DOI: 10.1002/wrna.1689] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 08/03/2021] [Accepted: 08/04/2021] [Indexed: 01/28/2023]
Abstract
The integrated stress response (ISR) is a conserved mechanism by which eukaryotic cells remodel gene expression to adapt to intrinsic and extrinsic stressors rapidly and reversibly. The ISR is initiated when stress-activated protein kinases phosphorylate the major translation initiation factor eukaryotic translation initiation factor 2ɑ (eIF2ɑ), which globally suppresses translation initiation activity and permits the selective translation of stress-induced genes including important transcription factors such as activating transcription factor 4 (ATF4). Translationally repressed messenger RNAs (mRNAs) and noncoding RNAs assemble into cytoplasmic RNA-protein granules and polyadenylated RNAs are concomitantly stabilized. Thus, regulated changes in mRNA translation, stability, and localization to RNA-protein granules contribute to the reprogramming of gene expression that defines the ISR. We discuss fundamental mechanisms of RNA regulation during the ISR and provide an overview of a growing class of genetic disorders associated with mutant alleles of key translation factors in the ISR pathway. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications RNA in Disease and Development > RNA in Disease Translation > Translation Regulation RNA in Disease and Development > RNA in Development.
Collapse
Affiliation(s)
- Alyssa M English
- Department of Human Genetics, Center for RNA Biomedicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Katelyn M Green
- Department of Chemistry, Department of Human Genetics, Center for RNA Biomedicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Stephanie L Moon
- Department of Human Genetics, Center for RNA Biomedicine, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
5
|
Yan LL, Zaher HS. Ribosome quality control antagonizes the activation of the integrated stress response on colliding ribosomes. Mol Cell 2020; 81:614-628.e4. [PMID: 33338396 DOI: 10.1016/j.molcel.2020.11.033] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 11/17/2020] [Accepted: 11/17/2020] [Indexed: 12/28/2022]
Abstract
Stalling during translation triggers ribosome quality control (RQC) to maintain proteostasis. Recently, stalling has also been linked to the activation of integrated stress response (ISR) by Gcn2. How the two processes are coordinated is unclear. Here, we show that activation of RQC by Hel2 suppresses that of Gcn2. We further show that Hel2 and Gcn2 are activated by a similar set of agents that cause ribosome stalling, with maximal activation of Hel2 observed at a lower frequency of stalling. Interestingly, inactivation of one pathway was found to result in the overactivation of the other, suggesting that both are activated by the same signal of ribosome collisions. Notably, the processes do not appear to be in direct competition with each other; ISR prefers a vacant A site, whereas RQC displays no preference. Collectively, our findings provide important details about how multiple pathways that recognize stalled ribosomes coordinate to mount the appropriate response.
Collapse
Affiliation(s)
- Liewei L Yan
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Hani S Zaher
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA.
| |
Collapse
|
6
|
Malvezzi AM, Aricó M, Souza-Melo N, Dos Santos GP, Bittencourt-Cunha P, Holetz FB, Schenkman S. GCN2-Like Kinase Modulates Stress Granule Formation During Nutritional Stress in Trypanosoma cruzi. Front Cell Infect Microbiol 2020; 10:149. [PMID: 32373547 PMCID: PMC7176912 DOI: 10.3389/fcimb.2020.00149] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 03/20/2020] [Indexed: 12/24/2022] Open
Abstract
The integrated stress response in eukaryotic cells is an orchestrated pathway that leads to eukaryotic Initiation Factor 2 alpha subunit (eIF2α) phosphorylation at ser51 and ultimately activates pathways to mitigate cellular damages. Three putative kinases (Tck1, Tck2, and Tck3) are found in the Trypanosoma cruzi genome, the flagellated parasite that causes Chagas disease. These kinases present similarities to other eukaryotic eIF2α kinases, exhibiting a typical insertion loop in the kinase domain of the protein. We found that this insertion loop is conserved among kinase 1 of several T. cruzi strains but differs among various Kinetoplastidae species, suggesting unique roles. Kinase 1 is orthologous of GCN2 of several eukaryotes, which have been implicated in the eIF2α ser51 phosphorylation in situations that mainly affects the nutrients levels. Therefore, we further investigated the responses to nutritional stress of T. cruzi devoid of TcK1 generated by CRISPR/Cas9 gene replacement. In nutrient-rich conditions, replicative T. cruzi epimastigotes depleted of TcK1 proliferate as wild type cells but showed increased levels of polysomes relative to monosomes. Upon nutritional deprivation, the polysomes decreased more than in TcK1 depleted line. However, eIF2α is still phosphorylated in TcK1 depleted line, as in wild type parasites. eIF2α phosphorylation increased at longer incubations times, but KO parasites showed less accumulation of ribonucleoprotein granules containing ATP-dependent RNA helicase involved in mRNA turnover (DHH1) and Poly-A binding protein (PABP1). Additionally, the formation of metacyclic-trypomastigotes is increased in the absence of Tck1 compared to controls. These metacyclics, as well as tissue culture trypomastigotes derived from the TcK1 knockout line, were less infective to mammalian host cells, although replicated faster inside mammalian cells. These results indicate that GCN2-like kinase in T. cruzi affects stress granule formation, independently of eIF2α phosphorylation upon nutrient deprivation. It also modulates the fate of the parasites during differentiation, invasion, and intracellular proliferation.
Collapse
Affiliation(s)
- Amaranta Muniz Malvezzi
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Mirella Aricó
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Normanda Souza-Melo
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Gregory Pedroso Dos Santos
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Paula Bittencourt-Cunha
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | - Sergio Schenkman
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
7
|
Leipheimer J, Bloom ALM, Panepinto JC. Protein Kinases at the Intersection of Translation and Virulence. Front Cell Infect Microbiol 2019; 9:318. [PMID: 31572689 PMCID: PMC6749009 DOI: 10.3389/fcimb.2019.00318] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 08/26/2019] [Indexed: 12/14/2022] Open
Abstract
As free living organisms, fungi are challenged with a variety of environmental insults that threaten their cellular processes. In some cases, these challenges mimic conditions present within mammals, resulting in the accidental selection of virulence factors over evolutionary time. Be it within a host or the soil, fungi must contend with environmental challenges through the production of stress effector proteins while maintaining factors required for viability in any condition. Initiation and upkeep of this balancing act is mainly under the control of kinases that affect the propensity and selectivity of protein translation. This review will focus on kinases in pathogenic fungi that facilitate a virulence phenotype through translational control.
Collapse
Affiliation(s)
- Jay Leipheimer
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
| | - Amanda L M Bloom
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
| | - John C Panepinto
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
| |
Collapse
|
8
|
Abstract
General control nonderepressible 2 (GCN2) phosphorylates eIF2α, regulating translation in response to nutritional stress. Here, we show that although tRNA stimulates purified, recombinant human GCN2 in vitro, mammalian ribosomes are even more potent GCN2 activators. Hydrogen/deuterium exchange–mass spectrometry (HDX-MS) showed GCN2 interacting with domain II of the uL10 P-stalk protein. The P-stalk is a uL10/P12/P22 pentameric complex that is part of the ribosomal GTPase-associated center. Recombinant human P-stalk greatly stimulates GCN2. Both domain II of uL10 and the C-terminal tails of P1 and P2 are necessary for maximal GCN2 activation. On actively translating ribosomes, the C-terminal tails of P1 and P2 are sequestered by elongation factors, suggesting P-stalk availability could link translational stress to GCN2 activation. Cells dynamically adjust their protein translation profile to maintain homeostasis in changing environments. During nutrient stress, the kinase general control nonderepressible 2 (GCN2) phosphorylates translation initiation factor eIF2α, initiating the integrated stress response (ISR). To examine the mechanism of GCN2 activation, we have reconstituted this process in vitro, using purified components. We find that recombinant human GCN2 is potently stimulated by ribosomes and, to a lesser extent, by tRNA. Hydrogen/deuterium exchange–mass spectrometry (HDX-MS) mapped GCN2–ribosome interactions to domain II of the uL10 subunit of the ribosomal P-stalk. Using recombinant, purified P-stalk, we showed that this domain of uL10 is the principal component of binding to GCN2; however, the conserved 14-residue C-terminal tails (CTTs) in the P1 and P2 P-stalk proteins are also essential for GCN2 activation. The HisRS-like and kinase domains of GCN2 show conformational changes upon binding recombinant P-stalk complex. Given that the ribosomal P-stalk stimulates the GTPase activity of elongation factors during translation, we propose that the P-stalk could link GCN2 activation to translational stress, leading to initiation of ISR.
Collapse
|
9
|
Analysis of eIF2B bodies and their relationships with stress granules and P-bodies. Sci Rep 2018; 8:12264. [PMID: 30115954 PMCID: PMC6095920 DOI: 10.1038/s41598-018-30805-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 08/06/2018] [Indexed: 12/02/2022] Open
Abstract
Eukaryotic cells respond to stress and changes in the environment in part by repressing translation and forming cytoplasmic assemblies called stress granules and P-bodies, which harbor non-translating mRNAs and proteins. A third, but poorly understood, assembly called the eIF2B body can form and contains the eIF2B complex, an essential guanine exchange factor for the translation initiation factor eIF2. Hypomorphic EIF2B alleles can lead to Vanishing White Matter Disease (VWMD), a leukodystrophy that causes progressive white matter loss. An unexplored question is how eIF2B body formation is controlled and whether VWMD alleles in EIF2B alter the formation of eIF2B bodies, stress granules, or P-bodies. To examine these issues, we assessed eIF2B body, stress granule, and P-body induction in wild-type yeast cells and cells carrying VWMD alleles in the EIF2B2 (GCD7) and EIF2B5 (GCD6) subunits of eIF2B. We demonstrate eIF2B bodies are rapidly and reversibly formed independently of stress granules during acute glucose deprivation. VWMD mutations had diverse effects on stress-induced assemblies with some alleles altering eIF2B bodies, and others leading to increased P-body formation. Moreover, some VWMD-causing mutations in GCD7 caused hyper-sensitivity to chronic GCN2 activation, consistent with VWMD mutations causing hyper-sensitivity to eIF2α phosphorylation and thereby impacting VWMD pathogenesis.
Collapse
|
10
|
Han L, Guy MP, Kon Y, Phizicky EM. Lack of 2'-O-methylation in the tRNA anticodon loop of two phylogenetically distant yeast species activates the general amino acid control pathway. PLoS Genet 2018; 14:e1007288. [PMID: 29596413 PMCID: PMC5892943 DOI: 10.1371/journal.pgen.1007288] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 04/10/2018] [Accepted: 03/05/2018] [Indexed: 01/03/2023] Open
Abstract
Modification defects in the tRNA anticodon loop often impair yeast growth and cause human disease. In the budding yeast Saccharomyces cerevisiae and the phylogenetically distant fission yeast Schizosaccharomyces pombe, trm7Δ mutants grow poorly due to lack of 2'-O-methylation of C32 and G34 in the tRNAPhe anticodon loop, and lesions in the human TRM7 homolog FTSJ1 cause non-syndromic X-linked intellectual disability (NSXLID). However, it is unclear why trm7Δ mutants grow poorly. We show here that despite the fact that S. cerevisiae trm7Δ mutants had no detectable tRNAPhe charging defect in rich media, the cells constitutively activated a robust general amino acid control (GAAC) response, acting through Gcn2, which senses uncharged tRNA. Consistent with reduced available charged tRNAPhe, the trm7Δ growth defect was suppressed by spontaneous mutations in phenylalanyl-tRNA synthetase (PheRS) or in the pol III negative regulator MAF1, and by overexpression of tRNAPhe, PheRS, or EF-1A; all of these also reduced GAAC activation. Genetic analysis also demonstrated that the trm7Δ growth defect was due to the constitutive robust GAAC activation as well as to the reduced available charged tRNAPhe. Robust GAAC activation was not observed with several other anticodon loop modification mutants. Analysis of S. pombe trm7 mutants led to similar observations. S. pombe Trm7 depletion also resulted in no observable tRNAPhe charging defect and a robust GAAC response, and suppressors mapped to PheRS and reduced GAAC activation. We speculate that GAAC activation is widely conserved in trm7 mutants in eukaryotes, including metazoans, and might play a role in FTSJ1-mediated NSXLID. The ubiquitous tRNA anticodon loop modifications have important but poorly understood functions in decoding mRNAs in the ribosome to ensure accurate and efficient protein synthesis, and their lack often impairs yeast growth and causes human disease. Here we investigate why ribose methylation of residues 32 and 34 in the anticodon loop is important. Mutations in the corresponding methyltransferase Trm7/FTSJ1 cause poor growth in the budding yeast Saccharomyces cerevisiae and near lethality in the evolutionarily distant fission yeast Schizosaccharomyces pombe, each due to reduced functional tRNAPhe. We previously showed that tRNAPhe anticodon loop modification in yeast and humans required two evolutionarily conserved Trm7 interacting proteins for Cm32 and Gm34 modification, which then stimulated G37 modification. We show here that both S. cerevisiae and S. pombe trm7Δ mutants have apparently normal tRNAPhe charging, but constitutively activate a robust general amino acid control (GAAC) response, acting through Gcn2, which senses uncharged tRNA. We also show that S. cerevisiae trm7Δ mutants grow poorly due in part to constitutive GAAC activation as well as to the uncharged tRNAPhe. We propose that TRM7 is important to prevent constitutive GAAC activation throughout eukaryotes, including metazoans, which may explain non-syndromic X-linked intellectual disability associated with human FTSJ1 mutations.
Collapse
Affiliation(s)
- Lu Han
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester School of Medicine, Rochester, NY, United States of America
| | - Michael P. Guy
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester School of Medicine, Rochester, NY, United States of America
- Department of Chemistry and Biochemistry, Northern Kentucky University, Highland Heights, KY, United States of America
| | - Yoshiko Kon
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester School of Medicine, Rochester, NY, United States of America
| | - Eric M. Phizicky
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester School of Medicine, Rochester, NY, United States of America
- * E-mail:
| |
Collapse
|
11
|
Dasarathy S. Myostatin and beyond in cirrhosis: all roads lead to sarcopenia. J Cachexia Sarcopenia Muscle 2017; 8:864-869. [PMID: 29168629 PMCID: PMC5700432 DOI: 10.1002/jcsm.12262] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 10/06/2017] [Indexed: 12/22/2022] Open
Affiliation(s)
- Srinivasan Dasarathy
- Professor of Medicine, Cleveland Clinic Lerner College of Medicine; Director, Liver Metabolism Research; Staff, Departments of Gastroenterology, Hepatology and Pathobiology, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
12
|
Jennings MD, Kershaw CJ, White C, Hoyle D, Richardson JP, Costello JL, Donaldson IJ, Zhou Y, Pavitt GD. eIF2β is critical for eIF5-mediated GDP-dissociation inhibitor activity and translational control. Nucleic Acids Res 2016; 44:9698-9709. [PMID: 27458202 PMCID: PMC5175340 DOI: 10.1093/nar/gkw657] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 07/08/2016] [Accepted: 07/12/2016] [Indexed: 01/10/2023] Open
Abstract
In protein synthesis translation factor eIF2 binds initiator tRNA to ribosomes and facilitates start codon selection. eIF2 GDP/GTP status is regulated by eIF5 (GAP and GDI functions) and eIF2B (GEF and GDF activities), while eIF2α phosphorylation in response to diverse signals is a major point of translational control. Here we characterize a growth suppressor mutation in eIF2β that prevents eIF5 GDI and alters cellular responses to reduced eIF2B activity, including control of GCN4 translation. By monitoring the binding of fluorescent nucleotides and initiator tRNA to purified eIF2 we show that the eIF2β mutation does not affect intrinsic eIF2 affinities for these ligands, neither does it interfere with eIF2 binding to 43S pre-initiation complex components. Instead we show that the eIF2β mutation prevents eIF5 GDI stabilizing nucleotide binding to eIF2, thereby altering the off-rate of GDP from eIF2•GDP/eIF5 complexes. This enables cells to grow with reduced eIF2B GEF activity but impairs activation of GCN4 targets in response to amino acid starvation. These findings provide support for the importance of eIF5 GDI activity in vivo and demonstrate that eIF2β acts in concert with eIF5 to prevent premature release of GDP from eIF2γ and thereby ensure tight control of protein synthesis initiation.
Collapse
Affiliation(s)
- Martin D Jennings
- Faculty of Biology Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK
| | - Christopher J Kershaw
- Faculty of Biology Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK
| | - Christopher White
- Faculty of Biology Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK
| | - Danielle Hoyle
- Faculty of Biology Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK
| | - Jonathan P Richardson
- Faculty of Biology Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK
| | - Joseph L Costello
- Faculty of Biology Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK
| | - Ian J Donaldson
- Faculty of Biology Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK
| | - Yu Zhou
- Faculty of Biology Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK
| | - Graham D Pavitt
- Faculty of Biology Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK
| |
Collapse
|
13
|
Gorgoni B, Ciandrini L, McFarland MR, Romano MC, Stansfield I. Identification of the mRNA targets of tRNA-specific regulation using genome-wide simulation of translation. Nucleic Acids Res 2016; 44:9231-9244. [PMID: 27407108 PMCID: PMC5100601 DOI: 10.1093/nar/gkw630] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 07/02/2016] [Indexed: 01/11/2023] Open
Abstract
tRNA gene copy number is a primary determinant of tRNA abundance and therefore the rate at which each tRNA delivers amino acids to the ribosome during translation. Low-abundance tRNAs decode rare codons slowly, but it is unclear which genes might be subject to tRNA-mediated regulation of expression. Here, those mRNA targets were identified via global simulation of translation. In-silico mRNA translation rates were compared for each mRNA in both wild-type and a \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{upgreek}
\usepackage{mathrsfs}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
}{}${\rm{tRNA}}_{{\rm{CUG}}}^{{\rm{Gln}}}$\end{document}sup70-65 mutant, which exhibits a pseudohyphal growth phenotype and a 75% slower CAG codon translation rate. Of 4900 CAG-containing mRNAs, 300 showed significantly reduced in silico translation rates in a simulated tRNA mutant. Quantitative immunoassay confirmed that the reduced translation rates of sensitive mRNAs were \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{upgreek}
\usepackage{mathrsfs}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
}{}${\rm{tRNA}}_{{\rm{CUG}}}^{{\rm{Gln}}}$\end{document} concentration-dependent. Translation simulations showed that reduced \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{upgreek}
\usepackage{mathrsfs}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
}{}${\rm{tRNA}}_{{\rm{CUG}}}^{{\rm{Gln}}}$\end{document} concentrations triggered ribosome queues, which dissipated at reduced translation initiation rates. To validate this prediction experimentally, constitutive gcn2 kinase mutants were used to reduce in vivo translation initiation rates. This repaired the relative translational rate defect of target mRNAs in the sup70-65 background, and ameliorated sup70-65 pseudohyphal growth phenotypes. We thus validate global simulation of translation as a new tool to identify mRNA targets of tRNA-specific gene regulation.
Collapse
Affiliation(s)
- Barbara Gorgoni
- University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Luca Ciandrini
- DIMNP - UMR 5235 & CNRS, Université de Montpellier, 34095 Montpellier, France.,Laboratoire Charles Coulomb UMR5221 & CNRS, Université de Montpellier, 34095 Montpellier, France
| | - Matthew R McFarland
- University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK
| | - M Carmen Romano
- University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK.,University of Aberdeen, Institute for Complex Systems and Mathematical Biology, King's College, Aberdeen AB24 3UE, UK
| | - Ian Stansfield
- University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK
| |
Collapse
|
14
|
Rao SJ, Meleppattu S, Pal JK. A GCN2-Like eIF2α Kinase (LdeK1) of Leishmania donovani and Its Possible Role in Stress Response. PLoS One 2016; 11:e0156032. [PMID: 27248816 PMCID: PMC4889150 DOI: 10.1371/journal.pone.0156032] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Accepted: 05/09/2016] [Indexed: 12/21/2022] Open
Abstract
Translation regulation in Leishmania parasites assumes significance particularly because they encounter myriad of stresses during their life cycle. The eukaryotic initiation factor 2α (eIF2α) kinases, the well-known regulators of translation initiation in higher eukaryotes have now been found to control various processes in these protozoan parasites as well. Here, we report on cloning and characterization of a GCN2-like eIF2α kinase from L. donovani and also on its modulation during nutrient starvation. We cloned a GCN2-like kinase from L. donovani, which we named as LdeK1 and validated it to be a functional eIF2α kinase by in vitro kinase assay. LdeK1 was found to be localized in the cytoplasm of the promastigotes with a five-fold higher expression in this stage of the parasite as compared to the axenic amastigotes. Phosphorylation of eIF2α and a G1-arrest was observed in response to nutrient starvation in the wild-type parasites. In contrast, phosphorylation was significantly impaired in a dominant-negative mutant of LdeK1 during this stress with a subsequent failure to bring about a G1-arrest during cell cycle. Thus, LdeK1 is a functional GCN2-like kinase of L. donovani which responds to nutrient starvation by phosphorylating its substrate, eIF2α and a G1-arrest in the cell cycle. Nutrient starvation is encountered by the parasites inside the vector which triggers metacyclogenesis. We therefore propose that global translational regulation by activation of LdeK1 followed by eIF2α phosphorylation and G1-arrest during nutrient starvation in the gut of sandfly vector could be one of the mechanisms to retool the cellular machinery required for metacyclogenesis of Leishmania promastigotes.
Collapse
Affiliation(s)
- Shilpa J. Rao
- Cell and Molecular Biology Laboratory, Department of Biotechnology, Savitribai Phule Pune University, Ganeshkhind, Pune-411007, India
- Interdisciplinary School of Health Sciences, Savitribai Phule Pune University, Ganeshkhind, Pune-411007, India
| | - Shimi Meleppattu
- Cell and Molecular Biology Laboratory, Department of Biotechnology, Savitribai Phule Pune University, Ganeshkhind, Pune-411007, India
| | - Jayanta K. Pal
- Cell and Molecular Biology Laboratory, Department of Biotechnology, Savitribai Phule Pune University, Ganeshkhind, Pune-411007, India
- * E-mail:
| |
Collapse
|
15
|
Lageix S, Zhang J, Rothenburg S, Hinnebusch AG. Interaction between the tRNA-binding and C-terminal domains of Yeast Gcn2 regulates kinase activity in vivo. PLoS Genet 2015; 11:e1004991. [PMID: 25695491 PMCID: PMC4335047 DOI: 10.1371/journal.pgen.1004991] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 01/06/2015] [Indexed: 01/05/2023] Open
Abstract
The stress-activated protein kinase Gcn2 regulates protein synthesis by phosphorylation of translation initiation factor eIF2α. Gcn2 is activated in amino acid-deprived cells by binding of uncharged tRNA to the regulatory domain related to histidyl-tRNA synthetase, but the molecular mechanism of activation is unclear. We used a genetic approach to identify a key regulatory surface in Gcn2 that is proximal to the predicted active site of the HisRS domain and likely remodeled by tRNA binding. Mutations leading to amino acid substitutions on this surface were identified that activate Gcn2 at low levels of tRNA binding (Gcd- phenotype), while other substitutions block kinase activation (Gcn- phenotype), in some cases without altering tRNA binding by Gcn2 in vitro. Remarkably, the Gcn- substitutions increase affinity of the HisRS domain for the C-terminal domain (CTD), previously implicated as a kinase autoinhibitory segment, in a manner dampened by HisRS domain Gcd- substitutions and by amino acid starvation in vivo. Moreover, tRNA specifically antagonizes HisRS/CTD association in vitro. These findings support a model wherein HisRS-CTD interaction facilitates the autoinhibitory function of the CTD in nonstarvation conditions, with tRNA binding eliciting kinase activation by weakening HisRS-CTD association with attendant disruption of the autoinhibitory KD-CTD interaction.
Collapse
Affiliation(s)
- Sebastien Lageix
- Laboratory of Gene Regulation and Development, Eunice K. Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Jinwei Zhang
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Stefan Rothenburg
- Division of Biology, Kansas State University, Manhattan, Kansas, United States of America
| | - Alan G. Hinnebusch
- Laboratory of Gene Regulation and Development, Eunice K. Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
16
|
Chien WW, Le Beux C, Rachinel N, Julien M, Lacroix CE, Allas S, Sahakian P, Cornut-Thibaut A, Lionnard L, Kucharczak J, Aouacheria A, Abribat T, Salles G. Differential mechanisms of asparaginase resistance in B-type acute lymphoblastic leukemia and malignant natural killer cell lines. Sci Rep 2015; 5:8068. [PMID: 25626693 PMCID: PMC5389037 DOI: 10.1038/srep08068] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 01/02/2015] [Indexed: 12/02/2022] Open
Abstract
Bacterial L-asparaginase (ASNase), hydrolyzing L-asparagine (Asn), is an important drug for treating patients with acute lymphoblastic leukaemia (ALL) and natural killer (NK) cell lymphoma. Although different native or pegylated ASNase-based chemotherapy are efficient, disease relapse is frequently observed, especially in adult patients. The neo-synthesis of Asn by asparagine synthetase (AsnS) following ASNase treatment, which involves the amino acid response and mitogen-activated protein kinase kinase/extracellular signal-regulated kinase pathways, is believed to be the basis of ASNase-resistance mechanisms. However, AsnS expression has not emerged as an accurate predictive factor for ASNase susceptibility. The aim of this study was to identify possible ASNase sensitivity/resistance-related genes or pathways using a new asparaginase, namely a pegylated r-crisantaspase, with a focus on classic Asn-compensatory responses and cell death under conditions of Asn/L-glutamine limitation. We show that, for B-ALL cell lines, changes in the expression of apoptosis-regulatory genes (especially NFκB-related genes) are associated with ASNase susceptibility. The response of malignant NK cell lines to ASNase may depend on Asn-compensatory mechanisms and other cellular processes such as cleavage of BCL2A1, a prosurvival member of the Bcl-2 protein family. These results suggest that according to cellular context, factors other than AsnS can influence ASNase susceptibility.
Collapse
Affiliation(s)
- Wei-Wen Chien
- Université Claude Bernard Lyon 1, UMR 5239 CNRS ENS HCL, Faculté de Médecine Lyon Sud, 165 Chemin du Grand Revoyet, 69921, BP12, Oullins, FRANCE
| | - Céline Le Beux
- Université Claude Bernard Lyon 1, UMR 5239 CNRS ENS HCL, Faculté de Médecine Lyon Sud, 165 Chemin du Grand Revoyet, 69921, BP12, Oullins, FRANCE
| | - Nicolas Rachinel
- Université Claude Bernard Lyon 1, UMR 5239 CNRS ENS HCL, Faculté de Médecine Lyon Sud, 165 Chemin du Grand Revoyet, 69921, BP12, Oullins, FRANCE
| | - Michel Julien
- Alizeé Pharma, 15 Chemin du Saquin, Espace Européen, Building G, 69130, Ecully, FRANCE
| | - Claire-Emmanuelle Lacroix
- Université Claude Bernard Lyon 1, UMR 5239 CNRS ENS HCL, Faculté de Médecine Lyon Sud, 165 Chemin du Grand Revoyet, 69921, BP12, Oullins, FRANCE
| | - Soraya Allas
- Alizeé Pharma, 15 Chemin du Saquin, Espace Européen, Building G, 69130, Ecully, FRANCE
| | - Pierre Sahakian
- Alizeé Pharma, 15 Chemin du Saquin, Espace Européen, Building G, 69130, Ecully, FRANCE
| | - Aurélie Cornut-Thibaut
- Université Claude Bernard Lyon 1, UMR 5239 CNRS ENS HCL, Faculté de Médecine Lyon Sud, 165 Chemin du Grand Revoyet, 69921, BP12, Oullins, FRANCE
| | - Loïc Lionnard
- Université Claude Bernard Lyon 1, UMR 5239 CNRS ENS HCL, Faculté de Médecine Lyon Sud, 165 Chemin du Grand Revoyet, 69921, BP12, Oullins, FRANCE
| | - Jérôme Kucharczak
- Université Claude Bernard Lyon 1, UMR 5239 CNRS ENS HCL, Faculté de Médecine Lyon Sud, 165 Chemin du Grand Revoyet, 69921, BP12, Oullins, FRANCE
| | - Abdel Aouacheria
- Université Claude Bernard Lyon 1, UMR 5239 CNRS ENS HCL, Faculté de Médecine Lyon Sud, 165 Chemin du Grand Revoyet, 69921, BP12, Oullins, FRANCE
| | - Thierry Abribat
- Alizeé Pharma, 15 Chemin du Saquin, Espace Européen, Building G, 69130, Ecully, FRANCE
| | - Gilles Salles
- 1] Université Claude Bernard Lyon 1, UMR 5239 CNRS ENS HCL, Faculté de Médecine Lyon Sud, 165 Chemin du Grand Revoyet, 69921, BP12, Oullins, FRANCE [2] Hospices Civils de Lyon, Service d'Hématologie, 165 Chemin du Grand Revoyet, 69495 Pierre-Bénite, FRANCE
| |
Collapse
|
17
|
Lageix S, Rothenburg S, Dever TE, Hinnebusch AG. Enhanced interaction between pseudokinase and kinase domains in Gcn2 stimulates eIF2α phosphorylation in starved cells. PLoS Genet 2014; 10:e1004326. [PMID: 24811037 PMCID: PMC4014428 DOI: 10.1371/journal.pgen.1004326] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 03/07/2014] [Indexed: 02/02/2023] Open
Abstract
The stress-activated protein kinase Gcn2 regulates protein synthesis by phosphorylation of translation initiation factor eIF2α, from yeast to mammals. The Gcn2 kinase domain (KD) is inherently inactive and requires allosteric stimulation by adjoining regulatory domains. Gcn2 contains a pseudokinase domain (YKD) required for high-level eIF2α phosphorylation in amino acid starved yeast cells; however, the role of the YKD in KD activation was unknown. We isolated substitutions of evolutionarily conserved YKD amino acids that impair Gcn2 activation without reducing binding of the activating ligand, uncharged tRNA, to the histidyl-tRNA synthetase-related domain of Gcn2. Several such Gcn− substitutions cluster in predicted helices E and I (αE and αI) of the YKD. We also identified Gcd− substitutions, evoking constitutive activation of Gcn2, mapping in αI of the YKD. Interestingly, αI Gcd− substitutions enhance YKD-KD interactions in vitro, whereas Gcn− substitutions in αE and αI suppress both this effect and the constitutive activation of Gcn2 conferred by YKD Gcd− substitutions. These findings indicate that the YKD interacts directly with the KD for activation of kinase function and identify likely sites of direct YKD-KD contact. We propose that tRNA binding to the HisRS domain evokes a conformational change that increases access of the YKD to sites of allosteric activation in the adjoining KD. The survival of all living organisms depends on their capacity to adapt their gene expression program to variations in the environment. When subjected to various stresses, eukaryotic cells down-regulate general protein synthesis by phosphorylation of eukaryotic translation initiation factor 2 alpha (eIF2α). The yeast Saccharomyces cerevisiae has a single eIF2α kinase, Gcn2, activated by uncharged tRNAs accumulating in amino acid starved cells, which bind to a regulatory domain homologous to histidyl-tRNA synthetase. Gcn2 also contains a degenerate, pseudokinase domain (YKD) of largely unknown function, juxtaposed to the authentic, functional kinase domain (KD). Our study demonstrates that direct interaction between the YKD and KD is essential for activation of Gcn2, and identifies likely KD-contact sites in the YKD that can be altered to either impair or constitutively activate kinase function. Our results provide the first functional insights into the regulatory role of the enigmatic YKD of Gcn2.
Collapse
Affiliation(s)
- Sebastien Lageix
- Laboratory of Gene Regulation and Development, Eunice K. Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Stefan Rothenburg
- Kansas State University, Division of Biology, Manhattan, Kansas, United States of America
| | - Thomas E. Dever
- Laboratory of Gene Regulation and Development, Eunice K. Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Alan G. Hinnebusch
- Laboratory of Gene Regulation and Development, Eunice K. Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
18
|
Zinshteyn B, Gilbert WV. Loss of a conserved tRNA anticodon modification perturbs cellular signaling. PLoS Genet 2013; 9:e1003675. [PMID: 23935536 PMCID: PMC3731203 DOI: 10.1371/journal.pgen.1003675] [Citation(s) in RCA: 155] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 06/12/2013] [Indexed: 11/29/2022] Open
Abstract
Transfer RNA (tRNA) modifications enhance the efficiency, specificity and fidelity of translation in all organisms. The anticodon modification mcm(5)s(2)U(34) is required for normal growth and stress resistance in yeast; mutants lacking this modification have numerous phenotypes. Mutations in the homologous human genes are linked to neurological disease. The yeast phenotypes can be ameliorated by overexpression of specific tRNAs, suggesting that the modifications are necessary for efficient translation of specific codons. We determined the in vivo ribosome distributions at single codon resolution in yeast strains lacking mcm(5)s(2)U. We found accumulations at AAA, CAA, and GAA codons, suggesting that translation is slow when these codons are in the ribosomal A site, but these changes appeared too small to affect protein output. Instead, we observed activation of the GCN4-mediated stress response by a non-canonical pathway. Thus, loss of mcm(5)s(2)U causes global effects on gene expression due to perturbation of cellular signaling.
Collapse
Affiliation(s)
- Boris Zinshteyn
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Wendy V. Gilbert
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| |
Collapse
|
19
|
Visweswaraiah J, Lee SJ, Hinnebusch AG, Sattlegger E. Overexpression of eukaryotic translation elongation factor 3 impairs Gcn2 protein activation. J Biol Chem 2012; 287:37757-68. [PMID: 22888004 DOI: 10.1074/jbc.m112.368266] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In eukaryotes, phosphorylation of translation initiation factor 2α (eIF2α) by the kinase Gcn2 (general control nonderepressible 2) is a key response to amino acid starvation. Sensing starvation requires that Gcn2 directly contacts its effector protein Gcn1, and both must contact the ribosome. We have proposed that Gcn2 is activated by uncharged tRNA bound to the ribosomal decoding (A) site, in a manner facilitated by ribosome-bound Gcn1. Protein synthesis requires cyclical association of eukaryotic elongation factors (eEFs) with the ribosome. Gcn1 and Gcn2 are large proteins, raising the question of whether translation and monitoring amino acid availability can occur on the same ribosome. Part of the ribosome-binding domain in Gcn1 has homology to one of the ribosome-binding domains in eEF3, suggesting that these proteins utilize overlapping binding sites on the ribosome and consequently cannot function simultaneously on the same ribosome. Supporting this idea, we found that eEF3 overexpression in Saccharomyces cerevisiae diminished growth on amino acid starvation medium (Gcn(-) phenotype) and decreased eIF2α phosphorylation, and that the growth defect associated with constitutively active Gcn2 was diminished by eEF3 overexpression. Overexpression of the eEF3 HEAT domain, or C terminus, was sufficient to confer a Gcn(-) phenotype, and both fragments have ribosome affinity. eEF3 overexpression did not significantly affect Gcn1-ribosome association, but it exacerbated the Gcn(-) phenotype of Gcn1-M7A that has reduced ribosome affinity. Together, this suggests that eEF3 blocks Gcn1 regulatory function on the ribosome. We propose that the Gcn1-Gcn2 complex only functions on ribosomes with A-site-bound uncharged tRNA, because eEF3 does not occupy these stalled complexes.
Collapse
|
20
|
Reineke LC, Cao Y, Baus D, Hossain NM, Merrick WC. Insights into the role of yeast eIF2A in IRES-mediated translation. PLoS One 2011; 6:e24492. [PMID: 21915340 PMCID: PMC3168509 DOI: 10.1371/journal.pone.0024492] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Accepted: 08/11/2011] [Indexed: 02/05/2023] Open
Abstract
Eukaryotic initiation factor 2A is a single polypeptide that acts to negatively regulate IRES-mediated translation during normal cellular conditions. We have found that eIF2A (encoded by YGR054w) abundance is reduced at both the mRNA and protein level during 6% ethanol stress (or 37°C heat shock) under conditions that mimic the diauxic shift in the yeast Saccharomyces cerevisiae. Furthermore, eIF2A protein is posttranslationally modified during ethanol stress. Unlike ethanol and heat shock stress, H2O2 and sorbitol treatment induce the loss of eIF2A mRNA, but not protein and without protein modification. To investigate the mechanism of eIF2A function we employed immunoprecipitation-mass spectrometry and identified an interaction between eIF2A and eEF1A. The interaction between eIF2A and eEF1A increases during ethanol stress, which correlates with an increase in IRES-mediated translation from the URE2 IRES element. These data suggest that eIF2A acts as a switch to regulate IRES-mediated translation, and eEF1A may be an important mediator of translational activation during ethanol stress.
Collapse
Affiliation(s)
- Lucas C Reineke
- Department of Biochemistry, Case Western Reserve University, School of Medicine, Cleveland, Ohio, United States of America
| | | | | | | | | |
Collapse
|
21
|
Visweswaraiah J, Lageix S, Castilho BA, Izotova L, Kinzy TG, Hinnebusch AG, Sattlegger E. Evidence that eukaryotic translation elongation factor 1A (eEF1A) binds the Gcn2 protein C terminus and inhibits Gcn2 activity. J Biol Chem 2011; 286:36568-79. [PMID: 21849502 DOI: 10.1074/jbc.m111.248898] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The eukaryotic elongation factor 1A (eEF1A) delivers aminoacyl-tRNAs to the ribosomal A-site during protein synthesis. To ensure a continuous supply of amino acids, cells harbor the kinase Gcn2 and its effector protein Gcn1. The ultimate signal for amino acid shortage is uncharged tRNAs. We have proposed a model for sensing starvation, in which Gcn1 and Gcn2 are tethered to the ribosome, and Gcn1 is directly involved in delivering uncharged tRNAs from the A-site to Gcn2 for its subsequent activation. Gcn1 and Gcn2 are large proteins, and these proteins as well as eEF1A access the A-site, leading us to investigate whether there is a functional or physical link between these proteins. Using Saccharomyces cerevisiae cells expressing His(6)-eEF1A and affinity purification, we found that eEF1A co-eluted with Gcn2. Furthermore, Gcn2 co-immunoprecipitated with eEF1A, suggesting that they reside in the same complex. The purified GST-tagged Gcn2 C-terminal domain (CTD) was sufficient for precipitating eEF1A from whole cell extracts generated from gcn2Δ cells, independently of ribosomes. Purified GST-Gcn2-CTD and purified His(6)-eEF1A interacted with each other, and this was largely independent of the Lys residues in Gcn2-CTD known to be required for tRNA binding and ribosome association. Interestingly, Gcn2-eEF1A interaction was diminished in amino acid-starved cells and by uncharged tRNAs in vitro, suggesting that eEF1A functions as a Gcn2 inhibitor. Consistent with this possibility, purified eEF1A reduced the ability of Gcn2 to phosphorylate its substrate, eIF2α, but did not diminish Gcn2 autophosphorylation. These findings implicate eEF1A in the intricate regulation of Gcn2 and amino acid homeostasis.
Collapse
|
22
|
Guanine nucleotide pool imbalance impairs multiple steps of protein synthesis and disrupts GCN4 translational control in Saccharomyces cerevisiae. Genetics 2010; 187:105-22. [PMID: 20980241 DOI: 10.1534/genetics.110.122135] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Purine nucleotides are structural components of the genetic material, function as phosphate donors, participate in cellular signaling, are cofactors in enzymatic reactions, and constitute the main carriers of cellular energy. Thus, imbalances in A/G nucleotide biosynthesis affect nearly the whole cellular metabolism and must be tightly regulated. We have identified a substitution mutation (G388D) that reduces the activity of the GMP synthase Gua1 in budding yeast and the total G-nucleotide pool, leading to precipitous reductions in the GDP/GTP ratio and ATP level in vivo. gua1-G388D strongly reduces the rate of growth, impairs general protein synthesis, and derepresses translation of GCN4 mRNA, encoding a transcriptional activator of diverse amino acid biosynthetic enzymes. Although processing of pre-tRNA(i)(Met) and other tRNA precursors, and the aminoacylation of tRNA(i)(Met) are also strongly impaired in gua1-G388D cells, tRNA(i)(Met)-containing complexes with the macromolecular composition of the eIF2·tRNA(i)(Met.)GTP complex (TC) and the multifactor complex (MFC) required for translation initiation accumulate ∼10-fold in gua1-G388D cells and, to a lesser extent, in wild-type (WT) cells treated with 6-azauracil (6AU). Consistently, addition of an external supply of guanine reverts all the phenotypes of gua1-G388D cells, but not those of gua1-G388D Δhpt1 mutants unable to refill the internal GMP pool through the salvage pathway. These and other findings suggest that a defect in guanine nucleotide biosynthesis evokes a reduction in the rate of general protein synthesis by impairing multiple steps of the process, disrupts the gene-specific reinitiation mechanism for translation of GCN4 mRNA and has far-reaching effects in cell biology and metabolism.
Collapse
|
23
|
The beta/Gcd7 subunit of eukaryotic translation initiation factor 2B (eIF2B), a guanine nucleotide exchange factor, is crucial for binding eIF2 in vivo. Mol Cell Biol 2010; 30:5218-33. [PMID: 20805354 DOI: 10.1128/mcb.00265-10] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Eukaryotic translation initiation factor 2B (eIF2B) is the guanine nucleotide exchange factor (GEF) for eukaryotic translation initiation factor 2, which stimulates formation of the eIF2-GTP-Met-tRNA(i)(Met) ternary complex (TC) in a manner inhibited by phosphorylated eIF2 [eIF2(αP)]. While eIF2B contains five subunits, the ε/Gcd6 subunit is sufficient for GEF activity in vitro. The δ/Gcd2 and β/Gcd7 subunits function with α/Gcn3 in the eIF2B regulatory subcomplex that mediates tight, inhibitory binding of eIF2(αP)-GDP, but the essential functions of δ/Gcd2 and β/Gcd7 are not well understood. We show that the depletion of wild-type β/Gcd7, three lethal β/Gcd7 amino acid substitutions, and a synthetically lethal combination of substitutions in β/Gcd7 and eIF2α all impair eIF2 binding to eIF2B without reducing ε/Gcd6 abundance in the native eIF2B-eIF2 holocomplex. Additionally, β/Gcd7 mutations that impair eIF2B function display extensive allele-specific interactions with mutations in the S1 domain of eIF2α (harboring the phosphorylation site), which binds to eIF2B directly. Consistent with this, β/Gcd7 can overcome the toxicity of eIF2(αP) and rescue native eIF2B function when overexpressed with δ/Gcd2 or γ/Gcd1. In aggregate, these findings provide compelling evidence that β/Gcd7 is crucial for binding of substrate by eIF2B in vivo, beyond its dispensable regulatory role in the inhibition of eIF2B by eIF (αP).
Collapse
|
24
|
eIF5 has GDI activity necessary for translational control by eIF2 phosphorylation. Nature 2010; 465:378-81. [PMID: 20485439 PMCID: PMC2875157 DOI: 10.1038/nature09003] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2009] [Accepted: 03/10/2010] [Indexed: 11/23/2022]
Abstract
In protein synthesis initiation, the eukaryotic translation initiation factor (eIF) 2 (a G protein) functions in its GTP-bound state to deliver initiator methionyl-tRNA (tRNAiMet) to the small ribosomal subunit and is necessary for protein synthesis in all cells1,2. Phosphorylation of eIF2 [eIF2(αP)] is critical for translational control in diverse settings including nutrient deprivation, viral infection and memory formation3,4,5. eIF5 functions in start site selection as a GTPase accelerating protein (GAP) for the eIF2•GTP•tRNAiMet ternary complex (TC) within the ribosome bound pre-initiation complex6,7,8. Here we define new regulatory functions of eIF5 in the recycling of eIF2 from its inactive eIF2•GDP state between successive rounds of translation initiation. Firstly we show that eIF5 stabilizes the binding of GDP to eIF2 and is therefore a bi-functional protein that acts as a GDP dissociation inhibitor (GDI). We find that this activity is independent of the GAP function and identify conserved residues within eIF5 that are necessary for this role. In addition we show that eIF5 is a critical component of the eIF2(αP) regulatory complex that inhibits the activity of the guanine-nucleotide exchange factor (GEF) eIF2B. Together our studies define a new step in the translation initiation pathway, one that is critical for normal translational controls.
Collapse
|
25
|
Ye J, Kumanova M, Hart LS, Sloane K, Zhang H, De Panis DN, Bobrovnikova-Marjon E, Diehl JA, Ron D, Koumenis C. The GCN2-ATF4 pathway is critical for tumour cell survival and proliferation in response to nutrient deprivation. EMBO J 2010; 29:2082-96. [PMID: 20473272 PMCID: PMC2892366 DOI: 10.1038/emboj.2010.81] [Citation(s) in RCA: 510] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Accepted: 04/07/2010] [Indexed: 01/11/2023] Open
Abstract
The transcription factor ATF4 regulates the expression of genes involved in amino acid metabolism, redox homeostasis and ER stress responses, and it is overexpressed in human solid tumours, suggesting that it has an important function in tumour progression. Here, we report that inhibition of ATF4 expression blocked proliferation and survival of transformed cells, despite an initial activation of cytoprotective macroautophagy. Knockdown of ATF4 significantly reduced the levels of asparagine synthetase (ASNS) and overexpression of ASNS or supplementation of asparagine in trans, reversed the proliferation block and increased survival in ATF4 knockdown cells. Both amino acid and glucose deprivation, stresses found in solid tumours, activated the upstream eukaryotic initiation factor 2alpha (eIF2alpha) kinase GCN2 to upregulate ATF4 target genes involved in amino acid synthesis and transport. GCN2 activation/overexpression and increased phospho-eIF2alpha were observed in human and mouse tumours compared with normal tissues and abrogation of ATF4 or GCN2 expression significantly inhibited tumour growth in vivo. We conclude that the GCN2-eIF2alpha-ATF4 pathway is critical for maintaining metabolic homeostasis in tumour cells, making it a novel and attractive target for anti-tumour approaches.
Collapse
Affiliation(s)
- Jiangbin Ye
- Department of Radiation Oncology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Monika Kumanova
- Department of Radiation Oncology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Lori S Hart
- Department of Radiation Oncology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Kelly Sloane
- Department of Radiation Oncology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Haiyan Zhang
- Department of Radiation Oncology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Diego N De Panis
- Department of Radiation Oncology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Ekaterina Bobrovnikova-Marjon
- Department of Cancer Biology and Abramson Cancer Research Institute, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - J Alan Diehl
- Department of Cancer Biology and Abramson Cancer Research Institute, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - David Ron
- Department of Medicine, Skirball Institute of Biomolecular Medicine, New York School of Medicine, New York, NY, USA
| | - Constantinos Koumenis
- Department of Radiation Oncology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
26
|
A network of hydrophobic residues impeding helix alphaC rotation maintains latency of kinase Gcn2, which phosphorylates the alpha subunit of translation initiation factor 2. Mol Cell Biol 2008; 29:1592-607. [PMID: 19114556 DOI: 10.1128/mcb.01446-08] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Kinase Gcn2 is activated by amino acid starvation and downregulates translation initiation by phosphorylating the alpha subunit of translation initiation factor 2 (eIF2alpha). The Gcn2 kinase domain (KD) is inert and must be activated by tRNA binding to the adjacent regulatory domain. Previous work indicated that Saccharomyces cerevisiae Gcn2 latency results from inflexibility of the hinge connecting the N and C lobes and a partially obstructed ATP-binding site in the KD. Here, we provide strong evidence that a network of hydrophobic interactions centered on Leu-856 also promotes latency by constraining helix alphaC rotation in the KD in a manner relieved during amino acid starvation by tRNA binding and autophosphorylation of Thr-882 in the activation loop. Thus, we show that mutationally disrupting the hydrophobic network in various ways constitutively activates eIF2alpha phosphorylation in vivo and bypasses the requirement for a key tRNA binding motif (m2) and Thr-882 in Gcn2. In particular, replacing Leu-856 with any nonhydrophobic residue activates Gcn2, while substitutions with various hydrophobic residues maintain kinase latency. We further provide strong evidence that parallel, back-to-back dimerization of the KD is a step on the Gcn2 activation pathway promoted by tRNA binding and autophosphorylation. Remarkably, mutations that disrupt the L856 hydrophobic network or enhance hinge flexibility eliminate the need for the conserved salt bridge at the parallel dimer interface, implying that KD dimerization facilitates the reorientation of alphaC and remodeling of the active site for enhanced ATP binding and catalysis. We propose that hinge remodeling, parallel dimerization, and reorientation of alphaC are mutually reinforcing conformational transitions stimulated by tRNA binding and secured by the ensuing autophosphorylation of T882 for stable kinase activation.
Collapse
|
27
|
Buchan JR, Muhlrad D, Parker R. P bodies promote stress granule assembly in Saccharomyces cerevisiae. ACTA ACUST UNITED AC 2008; 183:441-55. [PMID: 18981231 PMCID: PMC2575786 DOI: 10.1083/jcb.200807043] [Citation(s) in RCA: 399] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Recent results indicate that nontranslating mRNAs in eukaryotic cells exist in distinct biochemical states that accumulate in P bodies and stress granules, although the nature of interactions between these particles is unknown. We demonstrate in Saccharomyces cerevisiae that RNA granules with similar protein composition and assembly mechanisms as mammalian stress granules form during glucose deprivation. Stress granule assembly is dependent on P-body formation, whereas P-body assembly is independent of stress granule formation. This suggests that stress granules primarily form from mRNPs in preexisting P bodies, which is also supported by the kinetics of P-body and stress granule formation both in yeast and mammalian cells. These observations argue that P bodies are important sites for decisions of mRNA fate and that stress granules, at least in yeast, primarily represent pools of mRNAs stalled in the process of reentry into translation from P bodies.
Collapse
Affiliation(s)
- J Ross Buchan
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, University of Arizona, Tucson, AZ 85721, USA
| | | | | |
Collapse
|
28
|
Singh CR, Udagawa T, Lee B, Wassink S, He H, Yamamoto Y, Anderson JT, Pavitt GD, Asano K. Change in nutritional status modulates the abundance of critical pre-initiation intermediate complexes during translation initiation in vivo. J Mol Biol 2007; 370:315-30. [PMID: 17512538 PMCID: PMC2041914 DOI: 10.1016/j.jmb.2007.04.034] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2007] [Revised: 04/06/2007] [Accepted: 04/10/2007] [Indexed: 10/23/2022]
Abstract
In eukaryotic translation initiation, eIF2GTP-Met-tRNA(i)(Met) ternary complex (TC) interacts with eIF3-eIF1-eIF5 complex to form the multifactor complex (MFC), while eIF2GDP associates with eIF2B for guanine nucleotide exchange. Gcn2p phosphorylates eIF2 to inhibit eIF2B. Here we evaluate the abundance of eIFs and their pre-initiation intermediate complexes in gcn2 deletion mutant grown under different conditions. We show that ribosomes are three times as abundant as eIF1, eIF2 and eIF5, while eIF3 is half as abundant as the latter three and hence, the limiting component in MFC formation. By quantitative immunoprecipitation, we estimate that approximately 15% of the cellular eIF2 is found in TC during rapid growth in a complex rich medium. Most of the TC is found in MFC, and important, approximately 40% of the total eIF2 is associated with eIF5 but lacks tRNA(i)(Met). When the gcn2Delta mutant grows less rapidly in a defined complete medium, TC abundance increases threefold without altering the abundance of each individual factor. Interestingly, the TC increase is suppressed by eIF5 overexpression and Gcn2p expression. Thus, eIF2B-catalyzed TC formation appears to be fine-tuned by eIF2 phosphorylation and the novel eIF2/eIF5 complex lacking tRNA(i)(Met).
Collapse
Affiliation(s)
- Chingakham Ranjit Singh
- Molecular Cellular and Developmental Biology Program, Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Tsuyoshi Udagawa
- Molecular Cellular and Developmental Biology Program, Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Bumjun Lee
- Molecular Cellular and Developmental Biology Program, Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Sarah Wassink
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53201, USA
| | - Hui He
- Molecular Cellular and Developmental Biology Program, Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Yasufumi Yamamoto
- Molecular Cellular and Developmental Biology Program, Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - James T. Anderson
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53201, USA
| | - Graham D. Pavitt
- Faculty of Life Sciences, The University of Manchester, Manchester, M13 9PT, United Kingdom
| | - Katsura Asano
- Molecular Cellular and Developmental Biology Program, Division of Biology, Kansas State University, Manhattan, KS 66506, USA
- Corresponding author: Katsura Asano, e-mail address,
| |
Collapse
|
29
|
Campbell SG, Hoyle NP, Ashe MP. Dynamic cycling of eIF2 through a large eIF2B-containing cytoplasmic body: implications for translation control. J Cell Biol 2005; 170:925-34. [PMID: 16157703 PMCID: PMC2171431 DOI: 10.1083/jcb.200503162] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2005] [Accepted: 08/03/2005] [Indexed: 11/22/2022] Open
Abstract
The eukaryotic translation initiation factor 2B (eIF2B) provides a fundamental controlled point in the pathway of protein synthesis. eIF2B is the heteropentameric guanine nucleotide exchange factor that converts eIF2, from an inactive guanosine diphosphate-bound complex to eIF2-guanosine triphosphate. This reaction is controlled in response to a variety of cellular stresses to allow the rapid reprogramming of cellular gene expression. Here we demonstrate that in contrast to other translation initiation factors, eIF2B and eIF2 colocalize to a specific cytoplasmic locus. The dynamic nature of this locus is revealed through fluorescence recovery after photobleaching analysis. Indeed eIF2 shuttles into these foci whereas eIF2B remains largely resident. Three different strategies to decrease the guanine nucleotide exchange function of eIF2B all inhibit eIF2 shuttling into the foci. These results implicate a defined cytoplasmic center of eIF2B in the exchange of guanine nucleotides on the eIF2 translation initiation factor. A focused core of eIF2B guanine nucleotide exchange might allow either greater activity or control of this elementary conserved step in the translation pathway.
Collapse
Affiliation(s)
- Susan G Campbell
- Faculty of Life Science, The University of Manchester, Manchester, M13 9PT, England, UK
| | | | | |
Collapse
|
30
|
Magazinnik T, Anand M, Sattlegger E, Hinnebusch AG, Kinzy TG. Interplay between GCN2 and GCN4 expression, translation elongation factor 1 mutations and translational fidelity in yeast. Nucleic Acids Res 2005; 33:4584-92. [PMID: 16100380 PMCID: PMC1185573 DOI: 10.1093/nar/gki765] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Genetic screens in Saccharomyces cerevisiae have identified the roles of ribosome components, tRNAs and translation factors in translational fidelity. These screens rely on the suppression of altered start codons, nonsense codons or frameshift mutations in genes involved in amino acid or nucleotide metabolism. Many of these genes are regulated by the General Amino Acid Control (GAAC) pathway. Upon amino acid starvation, the kinase GCN2 induces the GAAC cascade via increased translation of the transcriptional activator GCN4 controlled by upstream open reading frames (uORFs). Overexpression of the GCN2 or GCN4 genes enhances the sensitivity of translation fidelity assays that utilize genes regulated by GCN4, such as the suppression of a +1 insertion by S.cerevisiae translation elongation factor 1A (eEF1A) mutants. Paromomycin and the prion [PSI+], which reduce translational fidelity, do not increase GCN4 expression to induce the suppression phenotype and in fact reduce derepression. eEF1A mutations that reduce translation, however, reduce expression of GCN4 under non-starvation conditions. These eEF1A mutants also reduce HIS4 mRNA expression. Taken together, this system improves in vivo strategies for the analysis of translational fidelity and further provides new information on the interplay among translation fidelity, altered elongation and translational control via uORFs.
Collapse
Affiliation(s)
- Tanya Magazinnik
- Department of Molecular Genetics, Microbiology and Immunology, UMDNJ Robert Wood Johnson Medical SchoolPiscataway, NJ 08854, USA
| | - Monika Anand
- Department of Molecular Genetics, Microbiology and Immunology, UMDNJ Robert Wood Johnson Medical SchoolPiscataway, NJ 08854, USA
| | - Evelyn Sattlegger
- Laboratory of Gene Regulation and Development, NICHD, National Institutes of HealthBethesda, MD 20892, USA
| | - Alan G. Hinnebusch
- Laboratory of Gene Regulation and Development, NICHD, National Institutes of HealthBethesda, MD 20892, USA
| | - Terri Goss Kinzy
- Department of Molecular Genetics, Microbiology and Immunology, UMDNJ Robert Wood Johnson Medical SchoolPiscataway, NJ 08854, USA
- The Cancer Institute of New Jersey, NICHD, National Institutes of HealthBethesda, MD 20892, USA
- To whom correspondence should be addressed. Tel: +1 732 235 5450; Fax: +1 732 235 5223;
| |
Collapse
|
31
|
Fang R, Xiong Y, Singleton CK. IfkA, a presumptive eIF2 alpha kinase of Dictyostelium, is required for proper timing of aggregation and regulation of mound size. BMC DEVELOPMENTAL BIOLOGY 2003; 3:3. [PMID: 12697064 PMCID: PMC154100 DOI: 10.1186/1471-213x-3-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2003] [Accepted: 04/09/2003] [Indexed: 11/23/2022]
Abstract
BACKGROUND The transition from growth to development in Dictyostelium is initiated by amino acid starvation of growing amobae. In other eukaryotes, a key sensor of amino acid starvation and mediator of the resulting physiological responses is the GCN2 protein, an eIF2alpha kinase. GCN2 downregulates the initiation of translation of bulk mRNA and enhances translation of specific mRNAs by phosphorylating the translation initiation factor eIF2alpha. Two eIF2alpha kinases were identified in Dictyostelium and studied herein. RESULTS Neither of the eIF2alpha kinases appeared to be involved in sensing amino acid starvation to initiate development. However, one of the kinases, IfkA, was shown to phosphorylate eIF2alpha from 1 to 7 hours after the onset of development, resulting in a shift from polysomes to free ribosomes for bulk mRNA. In the absence of the eIF2alpha phosphorylation, ifkA null cells aggregated earlier than normal and formed mounds and ultimately fruiting bodies that were larger than normal. The early aggregation phenotype in ifkA null cells reflected an apparent, earlier than normal establishment of the cAMP pulsing system. The large mound phenotype resulted from a reduced extracellular level of Countin, a component of the counting factor that regulates mound size. In wild type cells, phosphorylation of eIF2alpha by IfkA resulted in a specific stabilization and enhanced translational efficiency of countin mRNA even though reduced translation resulted for bulk mRNA. CONCLUSIONS IfkA is an eIF2alpha kinase of Dictyostelium that normally phosphorylates eIF2alpha from 1 to 7 hours after the onset of development, or during the preaggregation phase. This results in an overall reduction in the initiation of protein synthesis during this time frame and a concomitant reduction in the number of ribosomes associated with most mRNAs. For some mRNAs, however, initiation of protein synthesis is enhanced or stabilized under the conditions of increased eIF2alpha phosphorylation. This includes countin mRNA.
Collapse
Affiliation(s)
- Rui Fang
- Department of Biological Sciences, Vanderbilt University, VU Station B 351634, Nashville TN 37235-1634, USA
| | - Yanhua Xiong
- Department of Biological Sciences, Vanderbilt University, VU Station B 351634, Nashville TN 37235-1634, USA
| | - Charles K Singleton
- Department of Biological Sciences, Vanderbilt University, VU Station B 351634, Nashville TN 37235-1634, USA
| |
Collapse
|
32
|
Qiu H, Hu C, Dong J, Hinnebusch AG. Mutations that bypass tRNA binding activate the intrinsically defective kinase domain in GCN2. Genes Dev 2002; 16:1271-80. [PMID: 12023305 PMCID: PMC186288 DOI: 10.1101/gad.979402] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The protein kinase GCN2 is activated in amino acid-starved cells on binding of uncharged tRNA to a histidyl-tRNA synthetase (HisRS)-related domain. We isolated two point mutations in the protein kinase (PK) domain, R794G and F842L, that permit strong kinase activity in the absence of tRNA binding. These mutations also bypass the requirement for ribosome binding, dimerization, and association with the GCN1/GCN20 regulatory complex, suggesting that all of these functions facilitate tRNA binding to wild-type GCN2. While the isolated wild-type PK domain was completely inert, the mutant PK was highly active in vivo and in vitro. These results identify an inhibitory structure intrinsic to the PK domain that must be overcome on tRNA binding by interactions with a regulatory region, most likely the N terminus of the HisRS segment. As Arg 794 and Phe 842 are predicted to lie close to one another and to the active site, they may participate directly in misaligning active site residues. Autophosphorylation of the activation loop was stimulated by R794G and F842L, and the autophosphorylation sites remained critical for GCN2 function in the presence of these mutations. Our results imply a two-step activation mechanism involving distinct conformational changes in the PK domain.
Collapse
Affiliation(s)
- Hongfang Qiu
- Laboratory of Gene Regulation and Development, National Institute of Child Health and Human Development, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
33
|
Carr-Schmid A, Pfund C, Craig EA, Kinzy TG. Novel G-protein complex whose requirement is linked to the translational status of the cell. Mol Cell Biol 2002; 22:2564-74. [PMID: 11909951 PMCID: PMC133728 DOI: 10.1128/mcb.22.8.2564-2574.2002] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2001] [Revised: 11/14/2001] [Accepted: 01/11/2002] [Indexed: 11/20/2022] Open
Abstract
G proteins, which bind and hydrolyze GTP, are involved in regulating a variety of critical cellular processes, including the process of protein synthesis. Many members of the subfamily of elongation factor class G proteins interact with the ribosome and function to regulate discrete steps during the process of protein synthesis. Despite sequence similarity to factors involved in translation, a role for the yeast Hbs1 protein has not been defined. In this work we have identified a genetic relationship between genes encoding components of the translational apparatus and HBS1. HBS1, while not essential for viability, is important for efficient growth and protein synthesis under conditions of limiting translation initiation. The identification of an Hbs1p-interacting factor, Dom34p, which shares a similar genetic relationship with components of the translational apparatus, suggests that Hbs1p and Dom34p may function as part of a complex that facilitates gene expression. Dom34p contains an RNA binding motif present in several ribosomal proteins and factors that regulate translation of specific mRNAs. Thus, Hbs1p and Dom34p may function together to help directly or indirectly facilitate the expression either of specific mRNAs or under certain cellular conditions.
Collapse
Affiliation(s)
- Anne Carr-Schmid
- Department of Molecular Genetics and Microbiology, UMDNJ Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA
| | | | | | | |
Collapse
|
34
|
Thompson SR, Gulyas KD, Sarnow P. Internal initiation in Saccharomyces cerevisiae mediated by an initiator tRNA/eIF2-independent internal ribosome entry site element. Proc Natl Acad Sci U S A 2001; 98:12972-7. [PMID: 11687653 PMCID: PMC60809 DOI: 10.1073/pnas.241286698] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Internal initiation of translation can be mediated by specific internal ribosome entry site (IRES) elements that are located in certain mammalian and viral mRNA molecules. Thus far, these mammalian cellular and viral IRES elements have not been shown to function in the yeast Saccharomyces cerevisiae. We report here that a recently discovered IRES located in the genome of cricket paralysis virus can direct the efficient translation of a second URA3 cistron in dicistronic mRNAs in S. cerevisiae, thereby conferring uracil-independent growth. Curiously, the IRES functions poorly in wild-type yeast but functions efficiently either in the presence of constitutive expression of the eIF2 kinase GCN2 or in cells that have two initiator tRNA(met) genes disrupted. Both of these conditions have been shown to lower the amounts of ternary eIF2-GTP/initiator tRNA(met) complexes. Furthermore, tRNA(met)-independent initiation was also observed in translation-competent extracts prepared from S. cerevisiae in the presence of edeine, a compound that has been shown to interfere with start codon recognition by ribosomal subunits carrying ternary complexes. Therefore, the cricket paralysis virus IRES is likely to recruit ribosomes by internal initiation in S. cerevisiae in the absence of eIF2 and initiator tRNA(met), by the same mechanism of factor-independent ribosome recruitment used in mammalian cells. These findings will allow the use of yeast genetics to determine the mechanism of internal ribosome entry.
Collapse
Affiliation(s)
- S R Thompson
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | |
Collapse
|
35
|
Krishnamoorthy T, Pavitt GD, Zhang F, Dever TE, Hinnebusch AG. Tight binding of the phosphorylated alpha subunit of initiation factor 2 (eIF2alpha) to the regulatory subunits of guanine nucleotide exchange factor eIF2B is required for inhibition of translation initiation. Mol Cell Biol 2001; 21:5018-30. [PMID: 11438658 PMCID: PMC87228 DOI: 10.1128/mcb.21.15.5018-5030.2001] [Citation(s) in RCA: 257] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Translation initiation factor 2 (eIF2) is a heterotrimeric protein that transfers methionyl-initiator tRNA(Met) to the small ribosomal subunit in a ternary complex with GTP. The eIF2 phosphorylated on serine 51 of its alpha subunit [eIF2(alphaP)] acts as competitive inhibitor of its guanine nucleotide exchange factor, eIF2B, impairing formation of the ternary complex and thereby inhibiting translation initiation. eIF2B is comprised of catalytic and regulatory subcomplexes harboring independent eIF2 binding sites; however, it was unknown whether the alpha subunit of eIF2 directly contacts any eIF2B subunits or whether this interaction is modulated by phosphorylation. We found that recombinant eIF2alpha (glutathione S-transferase [GST]-SUI2) bound to the eIF2B regulatory subcomplex in vitro, in a manner stimulated by Ser-51 phosphorylation. Genetic data suggest that this direct interaction also occurred in vivo, allowing overexpressed SUI2 to compete with eIF2(alphaP) holoprotein for binding to the eIF2B regulatory subcomplex. Mutations in SUI2 and in the eIF2B regulatory subunit GCD7 that eliminated inhibition of eIF2B by eIF2(alphaP) also impaired binding of phosphorylated GST-SUI2 to the eIF2B regulatory subunits. These findings provide strong evidence that tight binding of phosphorylated SUI2 to the eIF2B regulatory subcomplex is crucial for the inhibition of eIF2B and attendant downregulation of protein synthesis exerted by eIF2(alphaP). We propose that this regulatory interaction prevents association of the eIF2B catalytic subcomplex with the beta and gamma subunits of eIF2 in the manner required for GDP-GTP exchange.
Collapse
Affiliation(s)
- T Krishnamoorthy
- Laboratory of Gene Regulation and Development, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
36
|
Qiu H, Dong J, Hu C, Francklyn CS, Hinnebusch AG. The tRNA-binding moiety in GCN2 contains a dimerization domain that interacts with the kinase domain and is required for tRNA binding and kinase activation. EMBO J 2001; 20:1425-38. [PMID: 11250908 PMCID: PMC145529 DOI: 10.1093/emboj/20.6.1425] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
GCN2 stimulates translation of GCN4 mRNA in amino acid-starved cells by phosphorylating translation initiation factor 2. GCN2 is activated by binding of uncharged tRNA to a domain related to histidyl-tRNA synthetase (HisRS). The HisRS-like region contains two dimerization domains (HisRS-N and HisRS-C) required for GCN2 function in vivo but dispensable for dimerization by full-length GCN2. Residues corresponding to amino acids at the dimer interface of Escherichia coli HisRS were required for dimerization of recombinant HisRS-N and for tRNA binding by full-length GCN2, suggesting that HisRS-N dimerization promotes tRNA binding and kinase activation. HisRS-N also interacted with the protein kinase (PK) domain, and a deletion impairing this interaction destroyed GCN2 function without reducing tRNA binding; thus, HisRS-N-PK interaction appears to stimulate PK function. The C-terminal domain of GCN2 (C-term) interacted with the PK domain in a manner disrupted by an activating PK mutation (E803V). These results suggest that the C-term is an autoinhibitory domain, counteracted by tRNA binding. We conclude that multiple domain interactions, positive and negative, mediate the activation of GCN2 by uncharged tRNA.
Collapse
Affiliation(s)
| | | | | | - Christopher S. Francklyn
- Laboratory of Eukaryotic Gene Regulation, National Institute of Child Health and Human Development, Bethesda, MD 20892 and
Department of Biochemistry, University of Vermont, College of Medicine, C-444, Burlington, VT 05405, USA Corresponding author e-mail:
| | - Alan G. Hinnebusch
- Laboratory of Eukaryotic Gene Regulation, National Institute of Child Health and Human Development, Bethesda, MD 20892 and
Department of Biochemistry, University of Vermont, College of Medicine, C-444, Burlington, VT 05405, USA Corresponding author e-mail:
| |
Collapse
|
37
|
Ashe MP, De Long SK, Sachs AB. Glucose depletion rapidly inhibits translation initiation in yeast. Mol Biol Cell 2000; 11:833-48. [PMID: 10712503 PMCID: PMC14814 DOI: 10.1091/mbc.11.3.833] [Citation(s) in RCA: 313] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Glucose performs key functions as a signaling molecule in the yeast Saccharomyces cerevisiae. Glucose depletion is known to regulate gene expression via pathways that lead to derepression of genes at the transcriptional level. In this study, we have investigated the effect of glucose depletion on protein synthesis. We discovered that glucose withdrawal from the growth medium led to a rapid inhibition of protein synthesis and that this effect was readily reversed upon readdition of glucose. Neither the inhibition nor the reactivation of translation required new transcription. This inhibition also did not require activation of the amino acid starvation pathway or inactivation of the TOR kinase pathway. However, mutants in the glucose repression (reg1, glc7, hxk2, and ssn6), hexose transporter induction (snf3 rgt2), and cAMP-dependent protein kinase (tpk1(w) and tpk2(w)) pathways were resistant to the inhibitory effects of glucose withdrawal on translation. These findings highlight the intimate connection between the nutrient status of the cell and its translational capacity. They also help to define a new area of posttranscriptional regulation in yeast.
Collapse
Affiliation(s)
- M P Ashe
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720, USA
| | | | | |
Collapse
|
38
|
Lopinski JD, Dinman JD, Bruenn JA. Kinetics of ribosomal pausing during programmed -1 translational frameshifting. Mol Cell Biol 2000; 20:1095-103. [PMID: 10648594 PMCID: PMC85227 DOI: 10.1128/mcb.20.4.1095-1103.2000] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
In the Saccharomyces cerevisiae double-stranded RNA virus, programmed -1 ribosomal frameshifting is responsible for translation of the second open reading frame of the essential viral RNA. A typical slippery site and downstream pseudoknot are necessary for this frameshifting event, and previous work has demonstrated that ribosomes pause over the slippery site. The translational intermediate associated with a ribosome paused at this position is detected, and, using in vitro translation and quantitative heelprinting, the rates of synthesis, the ribosomal pause time, the proportion of ribosomes paused at the slippery site, and the fraction of paused ribosomes that frameshift are estimated. About 10% of ribosomes pause at the slippery site in vitro, and some 60% of these continue in the -1 frame. Ribosomes that continue in the -1 frame pause about 10 times longer than it takes to complete a peptide bond in vitro. Altering the rate of translational initiation alters the rate of frameshifting in vivo. Our in vitro and in vivo experiments can best be interpreted to mean that there are three methods by which ribosomes pass the frameshift site, only one of which results in frameshifting.
Collapse
Affiliation(s)
- J D Lopinski
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York 14260, USA
| | | | | |
Collapse
|
39
|
Donzé O, Picard D. Hsp90 binds and regulates Gcn2, the ligand-inducible kinase of the alpha subunit of eukaryotic translation initiation factor 2 [corrected]. Mol Cell Biol 1999; 19:8422-32. [PMID: 10567567 PMCID: PMC84941 DOI: 10.1128/mcb.19.12.8422] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The protein kinase Gcn2 stimulates translation of the yeast transcription factor Gcn4 upon amino acid starvation. Using genetic and biochemical approaches, we show that Gcn2 is regulated by the molecular chaperone Hsp90 in budding yeast Saccharomyces cerevisiae. Specifically, we found that (i) several Hsp90 mutant strains exhibit constitutive expression of a GCN4-lacZ reporter plasmid; (ii) Gcn2 and Hsp90 form a complex in vitro as well as in vivo; (iii) the specific inhibitors of Hsp90, geldanamycin and macbecin I, enhance the association of Gcn2 with Hsp90 and inhibit its kinase activity in vitro; (iv) in vivo, macbecin I strongly reduces the levels of Gcn2; (v) in a strain expressing the temperature-sensitive Hsp90 mutant G170D, both the accumulation and activity of Gcn2 are abolished at the restrictive temperature; and (vi) the Hsp90 cochaperones Cdc37, Sti1, and Sba1 are required for the response to amino acid starvation. Taken together, these data identify Gcn2 as a novel target for Hsp90, which plays a crucial role for the maturation and regulation of Gcn2.
Collapse
Affiliation(s)
- O Donzé
- Département de Biologie Cellulaire, Université de Genève, Sciences III, CH-1211 Geneva 4, Switzerland
| | | |
Collapse
|
40
|
Shi Y, Vattem KM, Sood R, An J, Liang J, Stramm L, Wek RC. Identification and characterization of pancreatic eukaryotic initiation factor 2 alpha-subunit kinase, PEK, involved in translational control. Mol Cell Biol 1998; 18:7499-509. [PMID: 9819435 PMCID: PMC109330 DOI: 10.1128/mcb.18.12.7499] [Citation(s) in RCA: 631] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/1998] [Accepted: 09/06/1998] [Indexed: 11/20/2022] Open
Abstract
In response to various environmental stresses, eukaryotic cells down-regulate protein synthesis by phosphorylation of the alpha subunit of eukaryotic translation initiation factor 2 (eIF-2alpha). In mammals, the phosphorylation was shown to be carried out by eIF-2alpha kinases PKR and HRI. We report the identification and characterization of a cDNA from rat pancreatic islet cells that encodes a new related kinase, which we term pancreatic eIF-2alpha kinase, or PEK. In addition to a catalytic domain with sequence and structural features conserved among eIF-2alpha kinases, PEK contains a distinctive amino-terminal region 550 residues in length. Using recombinant PEK produced in Escherichia coli or Sf-9 insect cells, we demonstrate that PEK is autophosphorylated on both serine and threonine residues and that the recombinant enzyme can specifically phosphorylate eIF-2alpha on serine-51. Northern blot analyses indicate that PEK mRNA is expressed in all tissues examined, with highest levels in pancreas cells. Consistent with our mRNA assays, PEK activity was predominantly detected in pancreas and pancreatic islet cells. The regulatory role of PEK in protein synthesis was demonstrated both in vitro and in vivo. The addition of recombinant PEK to reticulocyte lysates caused a dose-dependent inhibition of translation. In the Saccharomyces model system, PEK functionally substituted for the endogenous yeast eIF-2alpha kinase, GCN2, by a process requiring the serine-51 phosphorylation site in eIF-2alpha. We also identified PEK homologs from both Caenorhabditis elegans and the puffer fish Fugu rubripes, suggesting that this eIF-2alpha kinase plays an important role in translational control from nematodes to mammals.
Collapse
Affiliation(s)
- Y Shi
- Diabetes Research, Endocrine Division, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285, USA.
| | | | | | | | | | | | | |
Collapse
|
41
|
Qiu H, Garcia-Barrio MT, Hinnebusch AG. Dimerization by translation initiation factor 2 kinase GCN2 is mediated by interactions in the C-terminal ribosome-binding region and the protein kinase domain. Mol Cell Biol 1998; 18:2697-711. [PMID: 9566889 PMCID: PMC110649 DOI: 10.1128/mcb.18.5.2697] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The protein kinase GCN2 stimulates translation of the transcriptional activator GCN4 in yeast cells starved for amino acids by phosphorylating translation initiation factor 2. Several regulatory domains, including a pseudokinase domain, a histidyl-tRNA synthetase (HisRS)-related region, and a C-terminal (C-term) segment required for ribosome association, have been identified in GCN2. We used the yeast two-hybrid assay, coimmunoprecipitation analysis, and in vitro binding assays to investigate physical interactions between the different functional domains of GCN2. A segment containing about two thirds of the protein kinase (PK) catalytic domain and another containing the C-term region of GCN2 interacted with themselves in the two-hybrid assay, and both the PK and the C-term domains could be coimmunoprecipitated with wild-type GCN2 from yeast cell extracts. In addition, in vitro-translated PK and C-term segments showed specific binding in vitro to recombinant glutathione S-transferase (GST)-PK and GST-C-term fusion proteins, respectively. Wild-type GCN2 could be coimmunoprecipitated with a full-length LexA-GCN2 fusion protein from cell extracts, providing direct evidence for dimerization by full-length GCN2 molecules. Deleting the C-term or PK segments abolished or reduced, respectively, the yield of GCN2-LexA-GCN2 complexes. These results provide in vivo and in vitro evidence that GCN2 dimerizes through self-interactions involving the C-term and PK domains. The PK domain showed pairwise in vitro binding interactions with the pseudokinase, HisRS, and C-term domains; additionally, the HisRS domain interacted with the C-term region. We propose that physical interactions between the PK domain and its flanking regulatory regions and dimerization through the PK and C-term domains both play important roles in restricting GCN2 kinase activity to amino acid-starved cells.
Collapse
Affiliation(s)
- H Qiu
- Laboratory of Eukaryotic Gene Regulation, National Institute of Child Health and Human Development, Bethesda, Maryland 20892-2716, USA
| | | | | |
Collapse
|
42
|
Dever TE, Sripriya R, McLachlin JR, Lu J, Fabian JR, Kimball SR, Miller LK. Disruption of cellular translational control by a viral truncated eukaryotic translation initiation factor 2alpha kinase homolog. Proc Natl Acad Sci U S A 1998; 95:4164-9. [PMID: 9539707 PMCID: PMC22459 DOI: 10.1073/pnas.95.8.4164] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/1998] [Indexed: 02/07/2023] Open
Abstract
Phosphorylation of eukaryotic translation initiation factor 2alpha (eIF2alpha) is a common cellular mechanism to limit protein synthesis in stress conditions. Baculovirus PK2, which resembles the C-terminal half of a protein kinase domain, was found to inhibit both human and yeast eIF2alpha kinases. Insect cells infected with wild-type, but not pk2-deleted, baculovirus exhibited reduced eIF2alpha phosphorylation and increased translational activity. The negative regulatory effect of human protein kinase RNA-regulated (PKR), an eIF2alpha kinase, on virus production was counteracted by PK2, indicating that baculoviruses have evolved a unique strategy for disrupting a host stress response. PK2 was found in complex with PKR and blocked kinase autophosphorylation in vivo, suggesting a mechanism of kinase inhibition mediated by interaction between truncated and intact kinase domains.
Collapse
Affiliation(s)
- T E Dever
- Laboratory of Eukaryotic Gene Regulation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-2716, USA.
| | | | | | | | | | | | | |
Collapse
|
43
|
Romano PR, Garcia-Barrio MT, Zhang X, Wang Q, Taylor DR, Zhang F, Herring C, Mathews MB, Qin J, Hinnebusch AG. Autophosphorylation in the activation loop is required for full kinase activity in vivo of human and yeast eukaryotic initiation factor 2alpha kinases PKR and GCN2. Mol Cell Biol 1998; 18:2282-97. [PMID: 9528799 PMCID: PMC121479 DOI: 10.1128/mcb.18.4.2282] [Citation(s) in RCA: 212] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/1997] [Accepted: 12/22/1997] [Indexed: 02/07/2023] Open
Abstract
The human double-stranded RNA-dependent protein kinase (PKR) is an important component of the interferon response to virus infection. The activation of PKR is accompanied by autophosphorylation at multiple sites, including one in the N-terminal regulatory region (Thr-258) that is required for full kinase activity. Several protein kinases are activated by phosphorylation in the region between kinase subdomains VII and VIII, referred to as the activation loop. We show that Thr-446 and Thr-451 in the PKR activation loop are required in vivo and in vitro for high-level kinase activity. Mutation of either residue to Ala impaired translational control by PKR in yeast cells and COS1 cells and led to tumor formation in mice. These mutations also impaired autophosphorylation and eukaryotic initiation factor 2 subunit alpha (eIF2alpha) phosphorylation by PKR in vitro. Whereas the Ala-446 substitution substantially reduced PKR function, the mutant kinase containing Ala-451 was completely inactive. PKR specifically phosphorylated Thr-446 and Thr-451 in synthetic peptides in vitro, and mass spectrometry analysis of PKR phosphopeptides confirmed that Thr-446 is an autophosphorylation site in vivo. Substitution of Glu-490 in subdomain X of PKR partially restored kinase activity when combined with the Ala-451 mutation. This finding suggests that the interaction between subdomain X and the activation loop, described previously for MAP kinase, is a regulatory feature conserved in PKR. We found that the yeast eIF2alpha kinase GCN2 autophosphorylates at Thr-882 and Thr-887, located in the activation loop at exactly the same positions as Thr-446 and Thr-451 in PKR. Thr-887 was more critically required than was Thr-882 for GCN2 kinase activity, paralleling the relative importance of Thr-446 and Thr-451 in PKR. These results indicate striking similarities between GCN2 and PKR in the importance of autophosphorylation and the conserved Thr residues in the activation loop.
Collapse
Affiliation(s)
- P R Romano
- Laboratory of Eukaryotic Gene Regulation, National Institute of Child Health and Human Development, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Kawagishi-Kobayashi M, Silverman JB, Ung TL, Dever TE. Regulation of the protein kinase PKR by the vaccinia virus pseudosubstrate inhibitor K3L is dependent on residues conserved between the K3L protein and the PKR substrate eIF2alpha. Mol Cell Biol 1997; 17:4146-58. [PMID: 9199350 PMCID: PMC232268 DOI: 10.1128/mcb.17.7.4146] [Citation(s) in RCA: 105] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The mammalian double-stranded RNA-activated protein kinase PKR is a component of the cellular antiviral defense mechanism and phosphorylates Ser-51 on the alpha subunit of the translation factor eIF2 to inhibit protein synthesis. To identify the molecular determinants that specify substrate recognition by PKR, we performed a mutational analysis on the vaccinia virus K3L protein, a pseudosubstrate inhibitor of PKR. High-level expression of PKR is lethal in the yeast Saccharomyces cerevisiae because PKR phosphorylates eIF2alpha and inhibits protein synthesis. We show that coexpression of vaccinia virus K3L can suppress the growth-inhibitory effects of PKR in yeast, and using this system, we identified both loss-of-function and hyperactivating mutations in K3L. Truncation of, or point mutations within, the C-terminal portion of the K3L protein, homologous to residues 79 to 83 in eIF2alpha, abolished PKR inhibitory activity, whereas the hyperactivating mutation, K3L-H47R, increased the homology between the K3L protein and eIF2alpha adjacent to the phosphorylation site at Ser-51. Biochemical and yeast two-hybrid analyses revealed that the suppressor phenotype of the K3L mutations correlated with the affinity of the K3L protein for PKR and was inversely related to the level of eIF2alpha phosphorylation in the cell. These results support the idea that residues conserved between the pseudosubstrate K3L protein and the authentic substrate eIF2alpha play an important role in substrate recognition, and they suggest that PKR utilizes sequences both near and over 30 residues from the site of phosphorylation for substrate recognition. Finally, by reconstituting part of the mammalian antiviral defense mechanism in yeast, we have established a genetically useful system to study viral regulators of PKR.
Collapse
Affiliation(s)
- M Kawagishi-Kobayashi
- Laboratory of Eukaryotic Gene Regulation, National Institute of Child Health and Human Development, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
45
|
Pavitt GD, Yang W, Hinnebusch AG. Homologous segments in three subunits of the guanine nucleotide exchange factor eIF2B mediate translational regulation by phosphorylation of eIF2. Mol Cell Biol 1997; 17:1298-313. [PMID: 9032257 PMCID: PMC231855 DOI: 10.1128/mcb.17.3.1298] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
eIF2B is a five-subunit guanine nucleotide exchange factor that is negatively regulated by phosphorylation of the alpha subunit of its substrate, eIF2, leading to inhibition of translation initiation. To analyze this regulatory mechanism, we have characterized 29 novel mutations in the homologous eIF2B subunits encoded by GCD2, GCD7, and GCN3 that reduce or abolish inhibition of eIF2B activity by eIF2 phosphorylated on its alpha subunit [eIF2(alphaP)]. Most, if not all, of the mutations decrease sensitivity to eIF2(alphaP) without excluding GCN3, the nonessential subunit, from eIF2B; thus, all three proteins are critical for regulation of eIF2B by eIF2(alphaP). The mutations are clustered at both ends of the homologous region of each subunit, within two segments each of approximately 70 amino acids in length. Several mutations alter residues at equivalent positions in two or all three subunits. These results imply that structurally similar segments in GCD2, GCD7, and GCN3 perform related functions in eIF2B regulation. We propose that these segments form a single domain in eIF2B that makes multiple contacts with the alpha subunit of eIF2, around the phosphorylation site, allowing eIF2B to detect and respond to phosphoserine at residue 51. Most of the eIF2 is phosphorylated in certain mutants, suggesting that these substitutions allow eIF2B to accept phosphorylated eIF2 as a substrate for nucleotide exchange.
Collapse
Affiliation(s)
- G D Pavitt
- Laboratory of Eukaryotic Gene Regulation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
46
|
Machin NA, Lee JM, Chamany K, Barnes G. Dosage suppressors of a benomyl-dependent tubulin mutant: evidence for a link between microtubule stability and cellular metabolism. Genetics 1996; 144:1363-73. [PMID: 8978026 PMCID: PMC1207690 DOI: 10.1093/genetics/144.4.1363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
To identify factors important for the regulation of microtubule stability in yeast, dosage suppressors of the hyperstable microtubule phenotype of the budding yeast tub2-150 beta-tubulin mutation were isolated. Of the two suppressors reported here, one (JSN2) encodes a tRNAVal, and the other (JSN3) is an antimorphic allele of the methionine biosynthesis transcription factor Met4p. Furthermore, growth of tub2-150 mutants and suppression of tub2-150 mutants by JSN3 are sensitive to levels of methionine in the growth medium. We explore several possible explanations for these findings, including the potential involvement of the general amino acid control and the involvement of Cbflp, a component of yeast kinetochores that is also necessary for Met4p-mediated transcription.
Collapse
Affiliation(s)
- N A Machin
- Department of Molecular and Cell Biology, University of California, Berkeley, USA
| | | | | | | |
Collapse
|
47
|
Yang W, Hinnebusch AG. Identification of a regulatory subcomplex in the guanine nucleotide exchange factor eIF2B that mediates inhibition by phosphorylated eIF2. Mol Cell Biol 1996; 16:6603-16. [PMID: 8887689 PMCID: PMC231662 DOI: 10.1128/mcb.16.11.6603] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Eukaryotic translation initiation factor 2B (eIF2B) is a five-subunit complex that catalyzes guanine nucleotide exchange on eIF2. Phosphorylation of the alpha subunit of eIF2 [creating eIF2(alphaP]) converts eIF2 x GDP from a substrate to an inhibitor of eIF2B. We showed previously that the inhibitory effect of eIF2(alphaP) can be decreased by deletion of the eIF2B alpha subunit (encoded by GCN3) and by point mutations in the beta and delta subunits of eIF2B (encoded by GCD7 and GCD2, respectively). These findings, plus sequence similarities among GCD2, GCD7, and GCN3, led us to propose that these proteins comprise a regulatory domain that interacts with eIF2(alphaP) and mediates the inhibition of eIF2B activity. Supporting this hypothesis, we report here that overexpression of GCD2, GCD7, and GCN3 specifically reduced the inhibitory effect of eIF2(alphaP) on translation initiation in vivo. The excess GCD2, GCD7, and GCN3 were coimmunoprecipitated from cell extracts, providing physical evidence that these three proteins can form a stable subcomplex. Formation of this subcomplex did not compensate for a loss of eIF2B function by mutation and in fact lowered eIF2B activity in strains lacking eIF2(alphaP). These findings indicate that the trimeric subcomplex does not possess guanine nucleotide exchange activity; we propose, instead, that it interacts with eIF2(alphaP) and prevents the latter from inhibiting native eIF2B. Overexpressing only GCD2 and GCD7 also reduced eIF2(alphaP) toxicity, presumably by titrating GCN3 from eIF2B and producing the four-subunit form of eIF2B that is less sensitive to eIF2(alphaP). This interpretation is supported by the fact that overexpressing GCD2 and GCD7 did not reduce eIF2(alphaP) toxicity in a strain lacking GCN3; however, it did suppress the impairment of eIF2B caused by the gcn3c-R104K mutation. An N-terminally truncated GCD2 protein interacted with other eIF2B subunits only when GCD7 and GCN3 were overexpressed, in accordance with the idea that the portion of GCD2 homologous to GCD7 and GCN3 is sufficient for complex formation by these three proteins. Together, our results provide strong evidence that GCN3, GCD7, and the C-terminal half of GCD2 comprise the regulatory domain in eIF2B.
Collapse
Affiliation(s)
- W Yang
- Laboratory of Eukaryotic Gene Regulation, National Institute of Child Health and Human Development, Bethesda, Maryland 20892-2785, USA
| | | |
Collapse
|
48
|
Dever TE, Yang W, Aström S, Byström AS, Hinnebusch AG. Modulation of tRNA(iMet), eIF-2, and eIF-2B expression shows that GCN4 translation is inversely coupled to the level of eIF-2.GTP.Met-tRNA(iMet) ternary complexes. Mol Cell Biol 1995; 15:6351-63. [PMID: 7565788 PMCID: PMC230887 DOI: 10.1128/mcb.15.11.6351] [Citation(s) in RCA: 111] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
To understand how phosphorylation of eukaryotic translation initiation factor (eIF)-2 alpha in Saccharomyces cerevisiae stimulates GCN4 mRNA translation while at the same time inhibiting general translation initiation, we examined the effects of altering the gene dosage of initiator tRNA(Met), eIF-2, and the guanine nucleotide exchange factor for eIF-2, eIF-2B. Overexpression of all three subunits of eIF-2 or all five subunits of eIF-2B suppressed the effects of eIF-2 alpha hyperphosphorylation on both GCN4-specific and general translation initiation. Consistent with eIF-2 functioning in translation as part of a ternary complex composed of eIF-2, GTP, and Met-tRNA(iMet), reduced gene dosage of initiator tRNA(Met) mimicked phosphorylation of eIF-2 alpha and stimulated GCN4 translation. In addition, overexpression of a combination of eIF-2 and tRNA(iMet) suppressed the growth-inhibitory effects of eIF-2 hyperphosphorylation more effectively than an increase in the level of either component of the ternary complex alone. These results provide in vivo evidence that phosphorylation of eIF-2 alpha reduces the activities of both eIF-2 and eIF-2B and that the eIF-2.GTP. Met-tRNA(iMet) ternary complex is the principal component limiting translation in cells when eIF-2 alpha is phosphorylated on serine 51. Analysis of eIF-2 alpha phosphorylation in the eIF-2-overexpressing strain also provides in vivo evidence that phosphorylated eIF-2 acts as a competitive inhibitor of eIF-2B rather than forming an excessively stable inactive complex. Finally, our results demonstrate that the concentration of eIF-2-GTP. Met-tRNA(iMet) ternary complexes is the cardinal parameter determining the site of reinitiation on GCN4 mRNA and support the idea that reinitiation at GCN4 is inversely related to the concentration of ternary complexes in the cell.
Collapse
Affiliation(s)
- T E Dever
- Section on Molecular Genetics of Lower Eukaryotes, National Institute of Child Health and Human Development, Bethesda, Maryland 20892-2785, USA
| | | | | | | | | |
Collapse
|
49
|
Wek SA, Zhu S, Wek RC. The histidyl-tRNA synthetase-related sequence in the eIF-2 alpha protein kinase GCN2 interacts with tRNA and is required for activation in response to starvation for different amino acids. Mol Cell Biol 1995; 15:4497-506. [PMID: 7623840 PMCID: PMC230689 DOI: 10.1128/mcb.15.8.4497] [Citation(s) in RCA: 371] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Protein kinase GCN2 is a multidomain protein that contains a region homologous to histidyl-tRNA synthetases juxtaposed to the kinase catalytic moiety. Previous studies have shown that in response to histidine starvation, GCN2 phosphorylates eukaryotic initiation factor 2 (eIF-2), to induce the translational expression of GCN4, a transcriptional activator of genes subject to the general amino acid control. It was proposed that the synthetase-related sequences of GCN2 stimulate the activity of the kinase by interacting directly with uncharged tRNA that accumulates during amino acid limitation. In addition to histidine starvation, expression of GCN4 is also regulated by a number of other amino acid limitations. Questions that we posed in this report are whether uncharged tRNA is the most direct regulator of GCN2 and whether the function of this kinase is required to recognize each of the different amino acid starvation signals. We show that GCN2 phosphorylation of eIF-2, and the resulting general amino acid control pathway, is stimulated in response to starvation for each of several different amino acids, in addition to histidine limitation. Cells containing a defective aminoacyl-tRNA synthetase also stimulated GCN2 phosphorylation of eIF-2 in the absence of amino acid starvation, indicating that uncharged tRNA levels are the most direct regulator of GCN2 kinase. Using a Northwestern blot (RNA binding) assay, we show that uncharged tRNA can bind to the synthetase-related domain of GCN2. Mutations in the motif 2 sequence conserved among class II synthetases, including histidyl-tRNA synthetases, impair the ability of this synthetase-related domain to bind tRNA and abolish GCN2 phosphorylation of eIF-2 required to stimulate the general amino acid control response. These in vivo and in vitro experiments indicate that synthetase-related sequences regulate GCN2 kinase function by monitoring the levels of multiple uncharged tRNAs that accumulate during amino acid limitations.
Collapse
Affiliation(s)
- S A Wek
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis 46202-5122, USA
| | | | | |
Collapse
|
50
|
Romano PR, Green SR, Barber GN, Mathews MB, Hinnebusch AG. Structural requirements for double-stranded RNA binding, dimerization, and activation of the human eIF-2 alpha kinase DAI in Saccharomyces cerevisiae. Mol Cell Biol 1995; 15:365-78. [PMID: 7799945 PMCID: PMC231972 DOI: 10.1128/mcb.15.1.365] [Citation(s) in RCA: 110] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The protein kinase DAI is activated upon viral infection of mammalian cells and inhibits protein synthesis by phosphorylation of the alpha subunit of translation initiation factor 2 (eIF-2 alpha). DAI is activated in vitro by double-stranded RNAs (dsRNAs), and binding of dsRNA is dependent on two copies of a conserved sequence motif located N terminal to the kinase domain in DAI. High-level expression of DAI in Saccharomyces cerevisiae cells is lethal because of hyperphosphorylation of eIF-2 alpha; at lower levels, DAI can functionally replace the protein kinase GCN2 and stimulate translation of GCN4 mRNA. These two phenotypes were used to characterize structural requirements for DAI function in vivo, by examining the effects of amino acid substitutions at matching positions in the two dsRNA-binding motifs and of replacing one copy of the motif with the other. We found that both copies of the dsRNA-binding motif are required for high-level kinase function and that the N-terminal copy is more important than the C-terminal copy for activation of DAI in S. cerevisiae. On the basis of these findings, we conclude that the requirements for dsRNA binding in vitro and for activation of DAI kinase function in vivo closely coincide. Two mutant alleles containing deletions of the first or second binding motif functionally complemented when coexpressed in yeast cells, strongly suggesting that the active form of DAI is a dimer. In accord with this conclusion, overexpression of four catalytically inactive alleles containing different deletions in the protein kinase domain interfered with wild-type DAI produced in the same cells. Interestingly, three inactivating point mutations in the kinase domain were all recessive, suggesting that dominant interference involves the formation of defective heterodimers rather than sequestration of dsRNA activators by mutant enzymes. We suggest that large structural alterations in the kinase domain impair an interaction between the two protomers in a DAI dimer that is necessary for activation by dsRNA or for catalysis of eIF-2 alpha phosphorylation.
Collapse
Affiliation(s)
- P R Romano
- Section on Molecular Genetics of Lower Eukaryotes, National Institute of Child Health and Human Development, Bethesda, Maryland 20892
| | | | | | | | | |
Collapse
|