1
|
Pacheco M, D’Orazio KN, Lessen LN, Veltri AJ, Neiman Z, Loll-Krippleber R, Brown GW, Green R. Genetic screens in Saccharomyces cerevisiae identify a role for 40S ribosome recycling factors Tma20 and Tma22 in nonsense-mediated decay. G3 (BETHESDA, MD.) 2024; 14:jkad295. [PMID: 38198768 PMCID: PMC10917514 DOI: 10.1093/g3journal/jkad295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 08/29/2023] [Accepted: 12/06/2023] [Indexed: 01/12/2024]
Abstract
The decay of messenger RNA with a premature termination codon by nonsense-mediated decay (NMD) is an important regulatory pathway for eukaryotes and an essential pathway in mammals. NMD is typically triggered by the ribosome terminating at a stop codon that is aberrantly distant from the poly-A tail. Here, we use a fluorescence screen to identify factors involved in NMD in Saccharomyces cerevisiae. In addition to the known NMD factors, including the entire UPF family (UPF1, UPF2, and UPF3), as well as NMD4 and EBS1, we identify factors known to function in posttermination recycling and characterize their contribution to NMD. These observations in S. cerevisiae expand on data in mammals indicating that the 60S recycling factor ABCE1 is important for NMD by showing that perturbations in factors implicated in 40S recycling also correlate with a loss of NMD.
Collapse
Affiliation(s)
- Miguel Pacheco
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Karole N D’Orazio
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Laura N Lessen
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Anthony J Veltri
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Zachary Neiman
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Raphael Loll-Krippleber
- Department of Biochemistry and Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Grant W Brown
- Department of Biochemistry and Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Rachel Green
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
2
|
Gupta SV, Campos L, Schmidt KH. Mitochondrial superoxide dismutase Sod2 suppresses nuclear genome instability during oxidative stress. Genetics 2023; 225:iyad147. [PMID: 37638880 PMCID: PMC10550321 DOI: 10.1093/genetics/iyad147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 07/14/2023] [Indexed: 08/29/2023] Open
Abstract
Oxidative stress can damage DNA and thereby contribute to genome instability. To avoid an imbalance or overaccumulation of reactive oxygen species (ROS), cells are equipped with antioxidant enzymes that scavenge excess ROS. Cells lacking the RecQ-family DNA helicase Sgs1, which contributes to homology-dependent DNA break repair and chromosome stability, are known to accumulate ROS, but the origin and consequences of this oxidative stress phenotype are not fully understood. Here, we show that the sgs1 mutant exhibits elevated mitochondrial superoxide, increased mitochondrial mass, and accumulation of recombinogenic DNA lesions that can be suppressed by antioxidants. Increased mitochondrial mass in the sgs1Δ mutant is accompanied by increased mitochondrial branching, which was also inducible in wildtype cells by replication stress. Superoxide dismutase Sod2 genetically interacts with Sgs1 in the suppression of nuclear chromosomal rearrangements under paraquat (PQ)-induced oxidative stress. PQ-induced chromosome rearrangements in the absence of Sod2 are promoted by Rad51 recombinase and the polymerase subunit Pol32. Finally, the dependence of chromosomal rearrangements on the Rev1/Pol ζ mutasome suggests that under oxidative stress successful DNA synthesis during DNA break repair depends on translesion DNA synthesis.
Collapse
Affiliation(s)
- Sonia Vidushi Gupta
- Department of Molecular Biosciences, University of South Florida, 4202 East Fowler Avenue, Tampa, FL 33620, USA
| | - Lillian Campos
- Department of Molecular Biosciences, University of South Florida, 4202 East Fowler Avenue, Tampa, FL 33620, USA
| | - Kristina Hildegard Schmidt
- Department of Molecular Biosciences, University of South Florida, 4202 East Fowler Avenue, Tampa, FL 33620, USA
- Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, 12902 USF Magnolia Drive, Tampa, FL 33612, USA
| |
Collapse
|
3
|
Alalam H, Zepeda-Martínez JA, Sunnerhagen P. Global SLAM-seq for accurate mRNA decay determination and identification of NMD targets. RNA (NEW YORK, N.Y.) 2022; 28:905-915. [PMID: 35296539 PMCID: PMC9074897 DOI: 10.1261/rna.079077.121] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/02/2022] [Indexed: 06/14/2023]
Abstract
Gene expression analysis requires accurate measurements of global RNA degradation rates, earlier problematic with methods disruptive to cell physiology. Recently, metabolic RNA labeling emerged as an efficient and minimally invasive technique applied in mammalian cells. Here, we have adapted SH-linked alkylation for the metabolic sequencing of RNA (SLAM-seq) for a global mRNA stability study in yeast using 4-thiouracil pulse-chase labeling. We assign high-confidence half-life estimates for 67.5% of expressed ORFs, and measure a median half-life of 9.4 min. For mRNAs where half-life estimates exist in the literature, their ranking order was in good agreement with previous data, indicating that SLAM-seq efficiently classifies stable and unstable transcripts. We then leveraged our yeast protocol to identify targets of the nonsense-mediated decay (NMD) pathway by measuring the change in RNA half-lives, instead of steady-state RNA level changes. With SLAM-seq, we assign 580 transcripts as putative NMD targets, based on their measured half-lives in wild-type and upf3Δ mutants. We find 225 novel targets, and observe a strong agreement with previous reports of NMD targets, 61.2% of our candidates being identified in previous studies. This indicates that SLAM-seq is a simpler and more economic method for global quantification of mRNA half-lives. Our adaptation for yeast yielded global quantitative measures of the NMD effect on transcript half-lives, high correlation with RNA half-lives measured previously with more technically challenging protocols, and identification of novel NMD regulated transcripts that escaped prior detection.
Collapse
Affiliation(s)
- Hanna Alalam
- Department of Chemistry and Molecular Biology, Lundberg Laboratory, University of Gothenburg, S-405 30 Göteborg, Sweden
| | | | - Per Sunnerhagen
- Department of Chemistry and Molecular Biology, Lundberg Laboratory, University of Gothenburg, S-405 30 Göteborg, Sweden
| |
Collapse
|
4
|
Zinshteyn B, Sinha NK, Enam SU, Koleske B, Green R. Translational repression of NMD targets by GIGYF2 and EIF4E2. PLoS Genet 2021; 17:e1009813. [PMID: 34665823 PMCID: PMC8555832 DOI: 10.1371/journal.pgen.1009813] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 10/29/2021] [Accepted: 09/08/2021] [Indexed: 12/26/2022] Open
Abstract
Translation of messenger RNAs (mRNAs) with premature termination codons produces truncated proteins with potentially deleterious effects. This is prevented by nonsense-mediated mRNA decay (NMD) of these mRNAs. NMD is triggered by ribosomes terminating upstream of a splice site marked by an exon-junction complex (EJC), but also acts on many mRNAs lacking a splice junction after their termination codon. We developed a genome-wide CRISPR flow cytometry screen to identify regulators of mRNAs with premature termination codons in K562 cells. This screen recovered essentially all core NMD factors and suggested a role for EJC factors in degradation of PTCs without downstream splicing. Among the strongest hits were the translational repressors GIGYF2 and EIF4E2. GIGYF2 and EIF4E2 mediate translational repression but not mRNA decay of a subset of NMD targets and interact with NMD factors genetically and physically. Our results suggest a model wherein recognition of a stop codon as premature can lead to its translational repression through GIGYF2 and EIF4E2.
Collapse
Affiliation(s)
- Boris Zinshteyn
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - Niladri K. Sinha
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - Syed Usman Enam
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - Benjamin Koleske
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - Rachel Green
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
- * E-mail:
| |
Collapse
|
5
|
Andjus S, Morillon A, Wery M. From Yeast to Mammals, the Nonsense-Mediated mRNA Decay as a Master Regulator of Long Non-Coding RNAs Functional Trajectory. Noncoding RNA 2021; 7:ncrna7030044. [PMID: 34449682 PMCID: PMC8395947 DOI: 10.3390/ncrna7030044] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/22/2021] [Accepted: 07/25/2021] [Indexed: 12/22/2022] Open
Abstract
The Nonsense-Mediated mRNA Decay (NMD) has been classically viewed as a translation-dependent RNA surveillance pathway degrading aberrant mRNAs containing premature stop codons. However, it is now clear that mRNA quality control represents only one face of the multiple functions of NMD. Indeed, NMD also regulates the physiological expression of normal mRNAs, and more surprisingly, of long non-coding (lnc)RNAs. Here, we review the different mechanisms of NMD activation in yeast and mammals, and we discuss the molecular bases of the NMD sensitivity of lncRNAs, considering the functional roles of NMD and of translation in the metabolism of these transcripts. In this regard, we describe several examples of functional micropeptides produced from lncRNAs. We propose that translation and NMD provide potent means to regulate the expression of lncRNAs, which might be critical for the cell to respond to environmental changes.
Collapse
Affiliation(s)
- Sara Andjus
- ncRNA, Epigenetic and Genome Fluidity, Institut Curie, PSL University, Sorbonne Université, CNRS UMR3244, 26 Rue d’Ulm, CEDEX 05, F-75248 Paris, France;
| | - Antonin Morillon
- ncRNA, Epigenetic and Genome Fluidity, Institut Curie, Sorbonne Université, CNRS UMR3244, 26 Rue d’Ulm, CEDEX 05, F-75248 Paris, France
- Correspondence: (A.M.); (M.W.)
| | - Maxime Wery
- ncRNA, Epigenetic and Genome Fluidity, Institut Curie, Sorbonne Université, CNRS UMR3244, 26 Rue d’Ulm, CEDEX 05, F-75248 Paris, France
- Correspondence: (A.M.); (M.W.)
| |
Collapse
|
6
|
UPF2 leads to degradation of dendritically targeted mRNAs to regulate synaptic plasticity and cognitive function. Mol Psychiatry 2020; 25:3360-3379. [PMID: 31636381 PMCID: PMC7566522 DOI: 10.1038/s41380-019-0547-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 08/13/2019] [Accepted: 08/19/2019] [Indexed: 12/21/2022]
Abstract
Synaptic plasticity requires a tight control of mRNA levels in dendrites. RNA translation and degradation pathways have been recently linked to neurodevelopmental and neuropsychiatric diseases, suggesting a role for RNA regulation in synaptic plasticity and cognition. While the local translation of specific mRNAs has been implicated in synaptic plasticity, the tightly controlled mechanisms that regulate local quantity of specific mRNAs remain poorly understood. Despite being the only RNA regulatory pathway that is associated with multiple mental illnesses, the nonsense-mediated mRNA decay (NMD) pathway presents an unexplored regulatory mechanism for synaptic function and plasticity. Here, we show that neuron-specific disruption of UPF2, an NMD component, in adulthood attenuates learning, memory, spine density, synaptic plasticity (L-LTP), and potentiates perseverative/repetitive behavior in mice. We report that the NMD pathway operates within dendrites to regulate Glutamate Receptor 1 (GLUR1) surface levels. Specifically, UPF2 modulates the internalization of GLUR1 and promotes its local synthesis in dendrites. We identified neuronal Prkag3 mRNA as a mechanistic substrate for NMD that contributes to the UPF2-mediated regulation of GLUR1 by limiting total GLUR1 levels. These data establish that UPF2 regulates synaptic plasticity, cognition, and local protein synthesis in dendrites, providing fundamental insight into the neuron-specific function of NMD within the brain.
Collapse
|
7
|
Nonsense-Mediated mRNA Decay: Pathologies and the Potential for Novel Therapeutics. Cancers (Basel) 2020; 12:cancers12030765. [PMID: 32213869 PMCID: PMC7140085 DOI: 10.3390/cancers12030765] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/19/2020] [Accepted: 03/19/2020] [Indexed: 12/22/2022] Open
Abstract
Nonsense-mediated messenger RNA (mRNA) decay (NMD) is a surveillance pathway used by cells to control the quality mRNAs and to fine-tune transcript abundance. NMD plays an important role in cell cycle regulation, cell viability, DNA damage response, while also serving as a barrier to virus infection. Disturbance of this control mechanism caused by genetic mutations or dys-regulation of the NMD pathway can lead to pathologies, including neurological disorders, immune diseases and cancers. The role of NMD in cancer development is complex, acting as both a promoter and a barrier to tumour progression. Cancer cells can exploit NMD for the downregulation of key tumour suppressor genes, or tumours adjust NMD activity to adapt to an aggressive immune microenvironment. The latter case might provide an avenue for therapeutic intervention as NMD inhibition has been shown to lead to the production of neoantigens that stimulate an immune system attack on tumours. For this reason, understanding the biology and co-option pathways of NMD is important for the development of novel therapeutic agents. Inhibitors, whose design can make use of the many structures available for NMD study, will play a crucial role in characterizing and providing diverse therapeutic options for this pathway in cancer and other diseases.
Collapse
|
8
|
Wu Z, Tantray I, Lim J, Chen S, Li Y, Davis Z, Sitron C, Dong J, Gispert S, Auburger G, Brandman O, Bi X, Snyder M, Lu B. MISTERMINATE Mechanistically Links Mitochondrial Dysfunction with Proteostasis Failure. Mol Cell 2019; 75:835-848.e8. [PMID: 31378462 DOI: 10.1016/j.molcel.2019.06.031] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/04/2019] [Accepted: 06/21/2019] [Indexed: 10/26/2022]
Abstract
Mitochondrial dysfunction and proteostasis failure frequently coexist as hallmarks of neurodegenerative disease. How these pathologies are related is not well understood. Here, we describe a phenomenon termed MISTERMINATE (mitochondrial-stress-induced translational termination impairment and protein carboxyl terminal extension), which mechanistically links mitochondrial dysfunction with proteostasis failure. We show that mitochondrial dysfunction impairs translational termination of nuclear-encoded mitochondrial mRNAs, including complex-I 30kD subunit (C-I30) mRNA, occurring on the mitochondrial surface in Drosophila and mammalian cells. Ribosomes stalled at the normal stop codon continue to add to the C terminus of C-I30 certain amino acids non-coded by mRNA template. C-terminally extended C-I30 is toxic when assembled into C-I and forms aggregates in the cytosol. Enhancing co-translational quality control prevents C-I30 C-terminal extension and rescues mitochondrial and neuromuscular degeneration in a Parkinson's disease model. These findings emphasize the importance of efficient translation termination and reveal unexpected link between mitochondrial health and proteome homeostasis mediated by MISTERMINATE.
Collapse
Affiliation(s)
- Zhihao Wu
- Department of Pathology and Programs in Cancer Biology and Neurosciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Ishaq Tantray
- Department of Pathology and Programs in Cancer Biology and Neurosciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Junghyun Lim
- Department of Pathology and Programs in Cancer Biology and Neurosciences, Stanford University School of Medicine, Stanford, CA, USA; Department of Cancer Biology, Genentech Inc., South San Francisco, CA, USA
| | - Songjie Chen
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Yu Li
- Department of Pathology and Programs in Cancer Biology and Neurosciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Zoe Davis
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
| | - Cole Sitron
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
| | - Jason Dong
- Department of Pathology and Programs in Cancer Biology and Neurosciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Suzana Gispert
- Experimental Neurology, Goethe University Medical School, Goethe, Germany
| | - Georg Auburger
- Experimental Neurology, Goethe University Medical School, Goethe, Germany
| | - Onn Brandman
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
| | - Xiaolin Bi
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Michael Snyder
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Bingwei Lu
- Department of Pathology and Programs in Cancer Biology and Neurosciences, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
9
|
Kishor A, Fritz SE, Hogg JR. Nonsense-mediated mRNA decay: The challenge of telling right from wrong in a complex transcriptome. WILEY INTERDISCIPLINARY REVIEWS-RNA 2019; 10:e1548. [PMID: 31131562 DOI: 10.1002/wrna.1548] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 05/01/2019] [Accepted: 05/07/2019] [Indexed: 12/18/2022]
Abstract
The nonsense-mediated mRNA decay pathway selects and degrades its targets using a dense network of RNA-protein and protein-protein interactions. Together, these interactions allow the pathway to collect copious information about the translating mRNA, including translation termination status, splice junction positions, mRNP composition, and 3'UTR length and structure. The core NMD machinery, centered on the RNA helicase UPF1, integrates this information to determine the efficiency of decay. A picture of NMD is emerging in which many factors contribute to the dynamics of decay complex assembly and disassembly, thereby influencing the probability of decay. The ability of the NMD pathway to recognize mRNP features of diverse potential substrates allows it to simultaneously perform quality control and regulatory functions. In vertebrates, increased transcriptome complexity requires balance between these two functions since high NMD efficiency is desirable for maintenance of quality control fidelity but may impair expression of normal mRNAs. NMD has adapted to this challenge by employing mechanisms to enhance identification of certain potential substrates, while using sequence-specific RNA-binding proteins to shield others from detection. These elaborations on the conserved NMD mechanism permit more sensitive post-transcriptional gene regulation but can have severe deleterious consequences, including the failure to degrade pathogenic aberrant mRNAs in many B cell lymphomas. This article is categorized under: RNA Evolution and Genomics > RNA and Ribonucleoprotein Evolution RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications RNA Turnover and Surveillance > Turnover/Surveillance Mechanisms.
Collapse
Affiliation(s)
- Aparna Kishor
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Sarah E Fritz
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - J Robert Hogg
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
10
|
Poidevin L, Unal D, Belda-Palazón B, Ferrando A. Polyamines as Quality Control Metabolites Operating at the Post-Transcriptional Level. PLANTS 2019; 8:plants8040109. [PMID: 31022874 PMCID: PMC6524035 DOI: 10.3390/plants8040109] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 04/17/2019] [Accepted: 04/19/2019] [Indexed: 01/04/2023]
Abstract
Plant polyamines (PAs) have been assigned a large number of physiological functions with unknown molecular mechanisms in many cases. Among the most abundant and studied polyamines, two of them, namely spermidine (Spd) and thermospermine (Tspm), share some molecular functions related to quality control pathways for tightly regulated mRNAs at the level of translation. In this review, we focus on the roles of Tspm and Spd to facilitate the translation of mRNAs containing upstream ORFs (uORFs), premature stop codons, and ribosome stalling sequences that may block translation, thus preventing their degradation by quality control mechanisms such as the nonsense-mediated decay pathway and possible interactions with other mRNA quality surveillance pathways.
Collapse
Affiliation(s)
- Laetitia Poidevin
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València, 46022 Valencia, Spain.
| | - Dilek Unal
- Biotechnology Application and Research Center, and Department of Molecular Biology, Faculty of Science and Letter, Bilecik Seyh Edebali University, 11230 Bilecik, Turkey.
| | - Borja Belda-Palazón
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València, 46022 Valencia, Spain.
| | - Alejandro Ferrando
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València, 46022 Valencia, Spain.
| |
Collapse
|
11
|
Singh AK, Choudhury SR, De S, Zhang J, Kissane S, Dwivedi V, Ramanathan P, Petric M, Orsini L, Hebenstreit D, Brogna S. The RNA helicase UPF1 associates with mRNAs co-transcriptionally and is required for the release of mRNAs from gene loci. eLife 2019; 8:e41444. [PMID: 30907728 PMCID: PMC6447362 DOI: 10.7554/elife.41444] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Accepted: 03/22/2019] [Indexed: 12/21/2022] Open
Abstract
UPF1 is an RNA helicase that is required for nonsense-mediated mRNA decay (NMD) in eukaryotes, and the predominant view is that UPF1 mainly operates on the 3'UTRs of mRNAs that are directed for NMD in the cytoplasm. Here we offer evidence, obtained from Drosophila, that UPF1 constantly moves between the nucleus and cytoplasm by a mechanism that requires its RNA helicase activity. UPF1 is associated, genome-wide, with nascent RNAs at most of the active Pol II transcription sites and at some Pol III-transcribed genes, as demonstrated microscopically on the polytene chromosomes of salivary glands and by ChIP-seq analysis in S2 cells. Intron recognition seems to interfere with association and translocation of UPF1 on nascent pre-mRNAs, and cells depleted of UPF1 show defects in the release of mRNAs from transcription sites and their export from the nucleus.
Collapse
Affiliation(s)
- Anand K Singh
- School of BiosciencesUniversity of BirminghamBirminghamUnited Kingdom
| | | | - Sandip De
- School of BiosciencesUniversity of BirminghamBirminghamUnited Kingdom
| | - Jie Zhang
- Life SciencesUniversity of WarwickCoventryUnited Kingdom
| | - Stephen Kissane
- School of BiosciencesUniversity of BirminghamBirminghamUnited Kingdom
| | - Vibha Dwivedi
- School of BiosciencesUniversity of BirminghamBirminghamUnited Kingdom
| | | | - Marija Petric
- School of BiosciencesUniversity of BirminghamBirminghamUnited Kingdom
| | - Luisa Orsini
- School of BiosciencesUniversity of BirminghamBirminghamUnited Kingdom
| | | | - Saverio Brogna
- School of BiosciencesUniversity of BirminghamBirminghamUnited Kingdom
| |
Collapse
|
12
|
Karousis ED, Mühlemann O. Nonsense-Mediated mRNA Decay Begins Where Translation Ends. Cold Spring Harb Perspect Biol 2019; 11:cshperspect.a032862. [PMID: 29891560 DOI: 10.1101/cshperspect.a032862] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Nonsense-mediated mRNA decay (NMD) is arguably the best-studied eukaryotic messenger RNA (mRNA) surveillance pathway, yet fundamental questions concerning the molecular mechanism of target RNA selection remain unsolved. Besides degrading defective mRNAs harboring premature termination codons (PTCs), NMD also targets many mRNAs encoding functional full-length proteins. Thus, NMD impacts on a cell's transcriptome and is implicated in a range of biological processes that affect a broad spectrum of cellular homeostasis. Here, we focus on the steps involved in the recognition of NMD targets and the activation of NMD. We summarize the accumulating evidence that tightly links NMD to translation termination and we further discuss the recruitment and activation of the mRNA degradation machinery and the regulation of this complex series of events. Finally, we review emerging ideas concerning the mechanistic details of NMD activation and the potential role of NMD as a general surveyor of translation efficacy.
Collapse
Affiliation(s)
- Evangelos D Karousis
- Department of Chemistry and Biochemistry, University of Bern, CH-3012 Bern, Switzerland
| | - Oliver Mühlemann
- Department of Chemistry and Biochemistry, University of Bern, CH-3012 Bern, Switzerland
| |
Collapse
|
13
|
Dehecq M, Decourty L, Namane A, Proux C, Kanaan J, Le Hir H, Jacquier A, Saveanu C. Nonsense-mediated mRNA decay involves two distinct Upf1-bound complexes. EMBO J 2018; 37:embj.201899278. [PMID: 30275269 DOI: 10.15252/embj.201899278] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 08/10/2018] [Accepted: 08/22/2018] [Indexed: 11/09/2022] Open
Abstract
Nonsense-mediated mRNA decay (NMD) is a translation-dependent RNA degradation pathway involved in many cellular pathways and crucial for telomere maintenance and embryo development. Core NMD factors Upf1, Upf2 and Upf3 are conserved from yeast to mammals, but a universal NMD model is lacking. We used affinity purification coupled with mass spectrometry and an improved data analysis protocol to characterize the composition and dynamics of yeast NMD complexes in yeast (112 experiments). Unexpectedly, we identified two distinct complexes associated with Upf1: Upf1-23 (Upf1, Upf2, Upf3) and Upf1-decapping Upf1-decapping contained the mRNA decapping enzyme, together with Nmd4 and Ebs1, two proteins that globally affected NMD and were critical for RNA degradation mediated by the Upf1 C-terminal helicase region. The fact that Nmd4 association with RNA was partially dependent on Upf1-23 components and the similarity between Nmd4/Ebs1 and mammalian Smg5-7 proteins suggest that NMD operates through conserved, successive Upf1-23 and Upf1-decapping complexes. This model can be extended to accommodate steps that are missing in yeast, to serve for further mechanistic studies of NMD in eukaryotes.
Collapse
Affiliation(s)
- Marine Dehecq
- Génétique des Interactions Macromoléculaires, Genomes and Genetics Department, Institut Pasteur, Paris, France.,Université Pierre et Marie Curie, Paris, France
| | - Laurence Decourty
- Génétique des Interactions Macromoléculaires, Genomes and Genetics Department, Institut Pasteur, Paris, France
| | - Abdelkader Namane
- Génétique des Interactions Macromoléculaires, Genomes and Genetics Department, Institut Pasteur, Paris, France
| | - Caroline Proux
- Transcriptome and Epigenome, CITECH, Institut Pasteur, Paris, France
| | - Joanne Kanaan
- Expression des ARN Messagers Eucaryotes, Biology Department, CNRS UMR8197, Inserm U1024, Institut de Biologie de l'Ecole Normale Supérieure, Paris, France
| | - Hervé Le Hir
- Expression des ARN Messagers Eucaryotes, Biology Department, CNRS UMR8197, Inserm U1024, Institut de Biologie de l'Ecole Normale Supérieure, Paris, France
| | - Alain Jacquier
- Génétique des Interactions Macromoléculaires, Genomes and Genetics Department, Institut Pasteur, Paris, France
| | - Cosmin Saveanu
- Génétique des Interactions Macromoléculaires, Genomes and Genetics Department, Institut Pasteur, Paris, France
| |
Collapse
|
14
|
Abstract
Nonsense-mediated mRNA decay is a eukaryotic pathway that degrades transcripts with premature termination codons (PTCs). In most eukaryotes, thousands of transcripts are degraded by NMD, including many important regulators of developmental and stress response pathways. Transcripts can be targeted to NMD by the presence of an upstream ORF or by introduction of a PTC through alternative splicing. Many factors involved in the recognition of PTCs and the destruction of NMD targets have been characterized. While some are highly conserved, others have been repeatedly lost in eukaryotic lineages. Here, I detail the factors involved in NMD, our current understanding of their interactions and how they have evolved. I outline a classification system to describe NMD pathways based on the presence/absence of key NMD factors. These types of NMD pathways exist in multiple different lineages, indicating the plasticity of the NMD pathway through recurrent losses of NMD factors during eukaryotic evolution. By classifying the NMD pathways in this way, gaps in our understanding are revealed, even within well studied organisms. Finally, I discuss the likely driving force behind the origins of the NMD pathway before the appearance of the last eukaryotic common ancestor: transposable element expansion and the consequential origin of introns.
Collapse
Affiliation(s)
- James P B Lloyd
- ARC Centre of Excellence in Plant Energy Biology, University of Western Australia, Perth, Australia
| |
Collapse
|
15
|
Abstract
Nonsense-mediated mRNA decay is a eukaryotic pathway that degrades transcripts with premature termination codons (PTCs). In most eukaryotes, thousands of transcripts are degraded by NMD, including many important regulators of developmental and stress response pathways. Transcripts can be targeted to NMD by the presence of an upstream ORF or by introduction of a PTC through alternative splicing. Many factors involved in the recognition of PTCs and the destruction of NMD targets have been characterized. While some are highly conserved, others have been repeatedly lost in eukaryotic lineages. Here, I detail the factors involved in NMD, our current understanding of their interactions and how they have evolved. I outline a classification system to describe NMD pathways based on the presence/absence of key NMD factors. These types of NMD pathways exist in multiple different lineages, indicating the plasticity of the NMD pathway through recurrent losses of NMD factors during eukaryotic evolution. By classifying the NMD pathways in this way, gaps in our understanding are revealed, even within well studied organisms. Finally, I discuss the likely driving force behind the origins of the NMD pathway before the appearance of the last eukaryotic common ancestor: transposable element expansion and the consequential origin of introns.
Collapse
Affiliation(s)
- James P B Lloyd
- ARC Centre of Excellence in Plant Energy Biology, University of Western Australia, Perth, Australia
| |
Collapse
|
16
|
Multiple Nonsense-Mediated mRNA Processes Require Smg5 in Drosophila. Genetics 2018; 209:1073-1084. [PMID: 29903866 DOI: 10.1534/genetics.118.301140] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 06/09/2018] [Indexed: 01/09/2023] Open
Abstract
The nonsense-mediated messenger RNA (mRNA) decay (NMD) pathway is a cellular quality control and post-transcriptional gene regulatory mechanism and is essential for viability in most multicellular organisms . A complex of proteins has been identified to be required for NMD function to occur; however, there is an incomplete understanding of the individual contributions of each of these factors to the NMD process. Central to the NMD process are three proteins, Upf1 (SMG-2), Upf2 (SMG-3), and Upf3 (SMG-4), which are found in all eukaryotes, with Upf1 and Upf2 being absolutely required for NMD in all organisms in which their functions have been examined. The other known NMD factors, Smg1, Smg5, Smg6, and Smg7, are more variable in their presence in different orders of organisms and are thought to have a more regulatory role. Here we present the first genetic analysis of the NMD factor Smg5 in Drosophila Surprisingly, we find that unlike the other analyzed Smg genes in this organism, Smg5 is essential for NMD activity. We found this is due in part to a requirement for Smg5 in both the activity of Smg6-dependent endonucleolytic cleavage, as well as an additional Smg6-independent mechanism. Redundancy between these degradation pathways explains why some Drosophila NMD genes are not required for all NMD-pathway activity. We also found that while the NMD component Smg1 has only a minimal role in Drosophila NMD during normal conditions, it becomes essential when NMD activity is compromised by partial loss of Smg5 function. Our findings suggest that not all NMD complex components are required for NMD function at all times, but instead are utilized in a context-dependent manner in vivo.
Collapse
|
17
|
Schuller AP, Zinshteyn B, Enam SU, Green R. Directed hydroxyl radical probing reveals Upf1 binding to the 80S ribosomal E site rRNA at the L1 stalk. Nucleic Acids Res 2018; 46:2060-2073. [PMID: 29253221 PMCID: PMC5829565 DOI: 10.1093/nar/gkx1263] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 12/04/2017] [Accepted: 12/06/2017] [Indexed: 01/02/2023] Open
Abstract
Upf1 is an SF1-family RNA helicase that is essential for the nonsense-mediated decay (NMD) process in eukaryotes. While Upf1 has been shown to interact with 80S ribosomes, the molecular details of this interaction were unknown. Using purified recombinant proteins and high-throughput sequencing combined with Fe-BABE directed hydroxyl radical probing (HTS-BABE) we have characterized the interaction between Upf1 and the yeast 80S ribosome. We identify the 1C domain of Upf1, an alpha-helical insertion in the RecA helicase core, to be essential for ribosome binding, and determine that the L1 stalk of 25S rRNA is the binding site for Upf1 on the ribosome. Using the cleavage sites identified by hydroxyl radical probing and high-resolution structures of both yeast Upf1 and the human 80S ribosome, we provide a model of a Upf1:80S structure. Our model requires that the L1 stalk adopt an open configuration as adopted by an un-rotated, or classical-state, ribosome. Our results shed light on the interaction between Upf1 and the ribosome, and suggest that Upf1 may specifically engage a classical-state ribosome during translation.
Collapse
Affiliation(s)
- Anthony P Schuller
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Boris Zinshteyn
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Syed Usman Enam
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Rachel Green
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
18
|
HTLV-1 Tax plugs and freezes UPF1 helicase leading to nonsense-mediated mRNA decay inhibition. Nat Commun 2018; 9:431. [PMID: 29382845 PMCID: PMC5789848 DOI: 10.1038/s41467-017-02793-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Accepted: 12/28/2017] [Indexed: 12/19/2022] Open
Abstract
Up-Frameshift Suppressor 1 Homolog (UPF1) is a key factor for nonsense-mediated mRNA decay (NMD), a cellular process that can actively degrade mRNAs. Here, we study NMD inhibition during infection by human T-cell lymphotropic virus type I (HTLV-1) and characterise the influence of the retroviral Tax factor on UPF1 activity. Tax interacts with the central helicase core domain of UPF1 and might plug the RNA channel of UPF1, reducing its affinity for nucleic acids. Furthermore, using a single-molecule approach, we show that the sequential interaction of Tax with a RNA-bound UPF1 freezes UPF1: this latter is less sensitive to the presence of ATP and shows translocation defects, highlighting the importance of this feature for NMD. These mechanistic insights reveal how HTLV-1 hijacks the central component of NMD to ensure expression of its own genome. UPF1 is a central protein in nonsense-mediated mRNA decay (NMD), but contribution of its RNA processivity to NMD is unclear. Here, the authors show how the retroviral Tax protein interacts with and inhibits UPF1, and demonstrate that UPF1’s translocase activity contributes to NMD.
Collapse
|
19
|
Muir VS, Gasch AP, Anderson P. The Substrates of Nonsense-Mediated mRNA Decay in Caenorhabditis elegans. G3 (BETHESDA, MD.) 2018; 8:195-205. [PMID: 29122854 PMCID: PMC5765348 DOI: 10.1534/g3.117.300254] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 11/07/2017] [Indexed: 12/27/2022]
Abstract
Nonsense-mediated mRNA decay (NMD) is a conserved pathway that strongly influences eukaryotic gene expression. Inactivating or inhibiting NMD affects the abundance of a substantial fraction of the transcriptome in numerous species. Transcripts whose abundance is altered in NMD-deficient cells may represent either direct substrates of NMD or indirect effects of inhibiting NMD. We present a genome-wide investigation of the direct substrates of NMD in Caenorhabditis elegans Our goals were (i) to identify mRNA substrates of NMD and (ii) to distinguish those mRNAs from others whose abundance is indirectly influenced by the absence of NMD. We previously demonstrated that Upf1p/SMG-2, the central effector of NMD in all studied eukaryotes, preferentially associates with mRNAs that contain premature translation termination codons. We used this preferential association to distinguish direct from indirect effects by coupling immunopurification of Upf1/SMG-2 with high-throughput mRNA sequencing of NMD-deficient mutants and NMD-proficient controls. We identify 680 substrates of NMD, 171 of which contain novel spliced forms that (i) include sequences of annotated introns and (ii) have not been previously documented in the C. elegans transcriptome. NMD degrades unproductively spliced mRNAs with sufficient efficiency in NMD-proficient strains that such mRNAs were not previously known. Two classes of genes are enriched among the identified NMD substrates: (i) mRNAs of expressed pseudogenes and (ii) mRNAs of gene families whose gene number has recently expanded in the C. elegans genome. Our results identify novel NMD substrates and provide a context for understanding NMD's role in normal gene expression and genome evolution.
Collapse
Affiliation(s)
- Virginia S Muir
- Laboratory of Genetics, University of Wisconsin-Madison, Wisconsin 53706
| | - Audrey P Gasch
- Laboratory of Genetics, University of Wisconsin-Madison, Wisconsin 53706
| | - Philip Anderson
- Laboratory of Genetics, University of Wisconsin-Madison, Wisconsin 53706
| |
Collapse
|
20
|
Dehghani-Tafti S, Sanders CM. DNA substrate recognition and processing by the full-length human UPF1 helicase. Nucleic Acids Res 2017; 45:7354-7366. [PMID: 28541562 PMCID: PMC5499549 DOI: 10.1093/nar/gkx478] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 05/16/2017] [Indexed: 12/31/2022] Open
Abstract
UPF1 is a conserved helicase required for nonsense-mediated decay (NMD) regulating mRNA stability in the cytoplasm. Human UPF1 (hUPF1) is also needed for nuclear DNA replication. While loss of NMD is tolerated, loss of hUPF1 induces a DNA damage response and cell cycle arrest. We have analysed nucleic acid (NA) binding and processing by full-length hUPF1. hUPF1 unwinds non-B and B-form DNA and RNA substrates in vitro. Unlike many helicases involved in genome stability no hUPF1 binding to DNA structures stabilized by inter-base-pair hydrogen bonding was observed. Alternatively, hUPF1 binds to single-stranded NAs (ssNA) with apparent affinity increasing with substrate length and with no preference for binding RNA or DNA or purine compared to pyrimidine polynucleotides. However, the data show a pronounced nucleobase bias with a preference for binding poly (U) or d(T) while d(A) polymers bind with low affinity. Although the data indicate that hUPF1 must bind a ssNA segments to initiate unwinding they also raise the possibility that hUPF1 has significantly reduced affinity for ssNA structures with stacked bases. Overall, the NA processing activities of hUPF1 are consistent with its function in mRNA regulation and suggest that roles in DNA replication could also be influenced by base sequence.
Collapse
Affiliation(s)
- Saba Dehghani-Tafti
- Department of Oncology & Metabolism, Academic Unit of Molecular oncology, University of Sheffield Medical School, Beech Hill Rd, Sheffield, S10 2RX, UK
| | - Cyril M Sanders
- Department of Oncology & Metabolism, Academic Unit of Molecular oncology, University of Sheffield Medical School, Beech Hill Rd, Sheffield, S10 2RX, UK
| |
Collapse
|
21
|
Differential alternative splicing coupled to nonsense-mediated decay of mRNA ensures dietary restriction-induced longevity. Nat Commun 2017; 8:306. [PMID: 28824175 PMCID: PMC5563511 DOI: 10.1038/s41467-017-00370-5] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 06/23/2017] [Indexed: 12/22/2022] Open
Abstract
Alternative splicing (AS) coupled to nonsense-mediated decay (AS-NMD) is a conserved mechanism for post-transcriptional gene regulation. Here we show that, during dietary restriction (DR), AS is enhanced in Caenorhabditis elegans and mice. A splicing mediator hrpu-1 regulates a significant part of these AS events in C. elegans; knocking it down suppresses DR-mediated longevity. Concurrently, due to increased AS, NMD pathway genes are upregulated and knocking down UPF1 homologue smg-2 suppresses DR lifespan. Knockdown of NMD during DR significantly increases the inclusion of PTC-containing introns and the lengths of the 3′UTRs. Finally, we demonstrate that PHA-4/FOXA transcriptionally regulates the AS-NMD genes. Our study suggests that DR uses AS to amplify the proteome, supporting physiological remodelling required for enhanced longevity. This increases the dependence on NMD, but also helps fine-tune the expression of metabolic and splicing mediators. AS-NMD may thus provide an energetically favourable level of dynamic gene expression control during dietary restriction. Alternative splicing coupled to nonsense-mediated decay (AS-NMD) is a conserved mechanism for post-transcriptional gene regulation. Here, the authors provide evidence that AS-NMD is enhanced during dietary restriction (DR) and is required for DR-mediated longevity assurance in C. elegans.
Collapse
|
22
|
Ajiboye AS, Esopi D, Yegnasubramanian S, Denmeade SR. Androgen Receptor Splice Variants Are Not Substrates of Nonsense-Mediated Decay. Prostate 2017; 77:829-837. [PMID: 28224650 PMCID: PMC5400682 DOI: 10.1002/pros.23323] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Accepted: 01/23/2017] [Indexed: 01/24/2023]
Abstract
BACKGROUND Androgen receptor (AR) splice variants have been clinically associated with progressive cancer, castration-resistance, and resistance to AR antagonists and androgen synthesis inhibitors. AR variants can be generated by genomic alterations and alternative splicing, and their expression is androgen-regulated. There has been a suggestion that AR variants bearing premature termination codons and coding for truncated proteins should be regulated by the nonsense-mediated decay (NMD) mRNA surveillance pathway, suggesting that either the NMD pathway is dysfunctional in variant-expressing cell lines or that variants are somehow able to evade degradation by NMD. METHODS We first used siRNA knockdown of the NMD regulator, UPF1, in an NMD reporter assay to determine if this surveillance pathway is functioning normally in AR variant-expressing cell lines. We then used UPF1 knockdown to determine if expression of the AR variants ARV3 and ARV7 is affected by inhibition of NMD. Next, we analyzed androgen regulation of UPF1 and used transcript expression analysis to determine if there is any association between UPF1 expression, resistance, and ARV3 or ARV7 expression. RESULTS We found that the NMD pathway functions normally in the AR variant-expressing cell line 22Rv1 and that inhibition of NMD does not increase expression of ARV3 or ARV7. Furthermore, we found that expression of UPF1 is not androgen-regulated. We also found that UFP1 expression levels do not differentiate castration-sensitive from resistant cell line and that UPF1 expression does not correlate with expression of ARV3 or ARV7 in cells in which these variants are highly expressed. CONCLUSION This study eliminates a possible mechanism of regulation of certain AR variants. Future research into the regulation of AR variants should focus on other mechanisms to better understand the origin of these variants and to possibly inhibit their expression for the resensitization of resistant cancers. Prostate 77:829-837, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- A. Seun Ajiboye
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - David Esopi
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland
| | - Srinivasan Yegnasubramanian
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland
| | - Samuel R. Denmeade
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
23
|
Simms CL, Thomas EN, Zaher HS. Ribosome-based quality control of mRNA and nascent peptides. WILEY INTERDISCIPLINARY REVIEWS-RNA 2016; 8. [PMID: 27193249 DOI: 10.1002/wrna.1366] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 04/25/2016] [Accepted: 04/26/2016] [Indexed: 11/06/2022]
Abstract
Quality control processes are widespread and play essential roles in detecting defective molecules and removing them in order to maintain organismal fitness. Aberrant messenger RNA (mRNA) molecules, unless properly managed, pose a significant hurdle to cellular proteostasis. Often mRNAs harbor premature stop codons, possess structures that present a block to the translational machinery, or lack stop codons entirely. In eukaryotes, the three cytoplasmic mRNA-surveillance processes, nonsense-mediated decay (NMD), no-go decay (NGD), and nonstop decay (NSD), evolved to cope with these aberrant mRNAs, respectively. Nonstop mRNAs and mRNAs that inhibit translation elongation are especially problematic as they sequester valuable ribosomes from the translating ribosome pool. As a result, in addition to RNA degradation, NSD and NGD are intimately coupled to ribosome rescue in all domains of life. Furthermore, protein products produced from all three classes of defective mRNAs are more likely to malfunction. It is not surprising then that these truncated nascent protein products are subject to degradation. Over the past few years, many studies have begun to document a central role for the ribosome in initiating the RNA and protein quality control processes. The ribosome appears to be responsible for recognizing the target mRNAs as well as for recruiting the factors required to carry out the processes of ribosome rescue and nascent protein decay. WIREs RNA 2017, 8:e1366. doi: 10.1002/wrna.1366 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Carrie L Simms
- Department of Biology, Washington University in St. Louis, St. Louis, MO, USA
| | - Erica N Thomas
- Department of Biology, Washington University in St. Louis, St. Louis, MO, USA
| | - Hani S Zaher
- Department of Biology, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
24
|
Hug N, Longman D, Cáceres JF. Mechanism and regulation of the nonsense-mediated decay pathway. Nucleic Acids Res 2016; 44:1483-95. [PMID: 26773057 PMCID: PMC4770240 DOI: 10.1093/nar/gkw010] [Citation(s) in RCA: 352] [Impact Index Per Article: 39.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 12/31/2015] [Indexed: 12/11/2022] Open
Abstract
The Nonsense-mediated mRNA decay (NMD) pathway selectively degrades mRNAs harboring premature termination codons (PTCs) but also regulates the abundance of a large number of cellular RNAs. The central role of NMD in the control of gene expression requires the existence of buffering mechanisms that tightly regulate the magnitude of this pathway. Here, we will focus on the mechanism of NMD with an emphasis on the role of RNA helicases in the transition from NMD complexes that recognize a PTC to those that promote mRNA decay. We will also review recent strategies aimed at uncovering novel trans-acting factors and their functional role in the NMD pathway. Finally, we will describe recent progress in the study of the physiological role of the NMD response.
Collapse
Affiliation(s)
- Nele Hug
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, EH4 2XU, UK
| | - Dasa Longman
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, EH4 2XU, UK
| | - Javier F Cáceres
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, EH4 2XU, UK
| |
Collapse
|
25
|
Fatscher T, Boehm V, Gehring NH. Mechanism, factors, and physiological role of nonsense-mediated mRNA decay. Cell Mol Life Sci 2015; 72:4523-44. [PMID: 26283621 PMCID: PMC11113733 DOI: 10.1007/s00018-015-2017-9] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 07/10/2015] [Accepted: 08/06/2015] [Indexed: 02/04/2023]
Abstract
Nonsense-mediated mRNA decay (NMD) is a translation-dependent, multistep process that degrades irregular or faulty messenger RNAs (mRNAs). NMD mainly targets mRNAs with a truncated open reading frame (ORF) due to premature termination codons (PTCs). In addition, NMD also regulates the expression of different types of endogenous mRNA substrates. A multitude of factors are involved in the tight regulation of the NMD mechanism. In this review, we focus on the molecular mechanism of mammalian NMD. Based on the published data, we discuss the involvement of translation termination in NMD initiation. Furthermore, we provide a detailed overview of the core NMD machinery, as well as several peripheral NMD factors, and discuss their function. Finally, we present an overview of diseases associated with NMD factor mutations and summarize the current state of treatment for genetic disorders caused by nonsense mutations.
Collapse
Affiliation(s)
- Tobias Fatscher
- Institute for Genetics, University of Cologne, Cologne, Germany
| | - Volker Boehm
- Institute for Genetics, University of Cologne, Cologne, Germany
| | - Niels H Gehring
- Institute for Genetics, University of Cologne, Cologne, Germany.
| |
Collapse
|
26
|
He F, Jacobson A. Nonsense-Mediated mRNA Decay: Degradation of Defective Transcripts Is Only Part of the Story. Annu Rev Genet 2015; 49:339-66. [PMID: 26436458 DOI: 10.1146/annurev-genet-112414-054639] [Citation(s) in RCA: 200] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Nonsense-mediated mRNA decay (NMD) is a eukaryotic surveillance mechanism that monitors cytoplasmic mRNA translation and targets mRNAs undergoing premature translation termination for rapid degradation. From yeasts to humans, activation of NMD requires the function of the three conserved Upf factors: Upf1, Upf2, and Upf3. Here, we summarize the progress in our understanding of the molecular mechanisms of NMD in several model systems and discuss recent experiments that address the roles of Upf1, the principal regulator of NMD, in the initial targeting and final degradation of NMD-susceptible mRNAs. We propose a unified model for NMD in which the Upf factors provide several functions during premature termination, including the stimulation of release factor activity and the dissociation and recycling of ribosomal subunits. In this model, the ultimate degradation of the mRNA is the last step in a complex premature termination process.
Collapse
Affiliation(s)
- Feng He
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts 01655; ,
| | - Allan Jacobson
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts 01655; ,
| |
Collapse
|
27
|
Siwaszek A, Ukleja M, Dziembowski A. Proteins involved in the degradation of cytoplasmic mRNA in the major eukaryotic model systems. RNA Biol 2015; 11:1122-36. [PMID: 25483043 DOI: 10.4161/rna.34406] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The process of mRNA decay and surveillance is considered to be one of the main posttranscriptional gene expression regulation platforms in eukaryotes. The degradation of stable, protein-coding transcripts is normally initiated by removal of the poly(A) tail followed by 5'-cap hydrolysis and degradation of the remaining mRNA body by Xrn1. Alternatively, the exosome complex degrades mRNA in the 3'>5'direction. The newly discovered uridinylation-dependent pathway, which is present in many different organisms, also seems to play a role in bulk mRNA degradation. Simultaneously, to avoid the synthesis of incorrect proteins, special cellular machinery is responsible for the removal of faulty transcripts via nonsense-mediated, no-go, non-stop or non-functional 18S rRNA decay. This review is focused on the major eukaryotic cytoplasmic mRNA degradation pathways showing many similarities and pointing out main differences between the main model-species: yeast, Drosophila, plants and mammals.
Collapse
Affiliation(s)
- Aleksandra Siwaszek
- a Institute of Biochemistry and Biophysics ; Polish Academy of Sciences ; Warsaw , Poland
| | | | | |
Collapse
|
28
|
Smith JE, Baker KE. Nonsense-mediated RNA decay--a switch and dial for regulating gene expression. Bioessays 2015; 37:612-23. [PMID: 25820233 DOI: 10.1002/bies.201500007] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Nonsense-mediated RNA decay (NMD) represents an established quality control checkpoint for gene expression that protects cells from consequences of gene mutations and errors during RNA biogenesis that lead to premature termination during translation. Characterization of NMD-sensitive transcriptomes has revealed, however, that NMD targets not only aberrant transcripts but also a broad array of mRNA isoforms expressed from many endogenous genes. NMD is thus emerging as a master regulator that drives both fine and coarse adjustments in steady-state RNA levels in the cell. Importantly, while NMD activity is subject to autoregulation as a means to maintain homeostasis, modulation of the pathway by external cues provides a means to reprogram gene expression and drive important biological processes. Finally, the unanticipated observation that transcripts predicted to lack protein-coding capacity are also sensitive to this translation-dependent surveillance mechanism implicates NMD in regulating RNA function in new and diverse ways.
Collapse
Affiliation(s)
- Jenna E Smith
- Center for RNA Molecular Biology, Case Western Reserve University, Cleveland, OH, USA
| | - Kristian E Baker
- Center for RNA Molecular Biology, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
29
|
Celik A, Kervestin S, Jacobson A. NMD: At the crossroads between translation termination and ribosome recycling. Biochimie 2014; 114:2-9. [PMID: 25446649 DOI: 10.1016/j.biochi.2014.10.027] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 10/27/2014] [Indexed: 10/24/2022]
Abstract
Nonsense-mediated mRNA decay (NMD) is one of three regulatory mechanisms that monitor the cytoplasm for aberrant mRNAs. NMD is usually triggered by premature translation termination codons that arise from mutations, transcription errors, or inefficient splicing, but which also occur in transcripts with alternately spliced isoforms or upstream open reading frames, or in the context of long 3'-UTRs. This surveillance pathway requires detection of the nonsense codon by the eukaryotic release factors (eRF1 and eRF3) and the activities of the Upf proteins, but the exact mechanism by which a nonsense codon is recognized as premature, and the individual roles of the Upf proteins, are poorly understood. In this review, we highlight important differences between premature and normal termination. Based on our current understanding of normal termination and ribosome recycling, we propose a similar mechanism for premature termination events that includes a role for the Upf proteins. In this model, the Upf proteins not only target the mRNA and nascent peptide for degradation, but also assume the role of recycling factors and rescue a ribosome stalled at a premature nonsense codon. The ATPase and helicase activities of Upf1, with the help of Upf2 and Upf3, are thus thought to be the catalytic force in ribosome subunit dissociation and ribosome recycling at an otherwise poorly dissociable termination event. While this model is somewhat speculative, it provides a unified vision for current data and a direction for future research.
Collapse
Affiliation(s)
- Alper Celik
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01655-0122, USA
| | - Stephanie Kervestin
- CNRS FRE3630 Associated with Université Diderot, Sorbonne Paris Cité, Institut de Biologie Physico-Chimique, 75005 Paris, France
| | - Allan Jacobson
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01655-0122, USA.
| |
Collapse
|
30
|
Nizhnikov AA, Antonets KS, Inge-Vechtomov SG, Derkatch IL. Modulation of efficiency of translation termination in Saccharomyces cerevisiae. Prion 2014; 8:247-60. [PMID: 25486049 DOI: 10.4161/pri.29851] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Nonsense suppression is a readthrough of premature termination codons. It typically occurs either due to the recognition of stop codons by tRNAs with mutant anticodons, or due to a decrease in the fidelity of translation termination. In the latter case, suppressors usually promote the readthrough of different types of nonsense codons and are thus called omnipotent nonsense suppressors. Omnipotent nonsense suppressors were identified in yeast Saccharomyces cerevisiae in 1960s, and most of subsequent studies were performed in this model organism. Initially, omnipotent suppressors were localized by genetic analysis to different protein- and RNA-encoding genes, mostly the components of translational machinery. Later, nonsense suppression was found to be caused not only by genomic mutations, but also by epigenetic elements, prions. Prions are self-perpetuating protein conformations usually manifested by infectious protein aggregates. Modulation of translational accuracy by prions reflects changes in the activity of their structural proteins involved in different aspects of protein synthesis. Overall, nonsense suppression can be seen as a "phenotypic mirror" of events affecting the accuracy of the translational machine. However, the range of proteins participating in the modulation of translation termination fidelity is not fully elucidated. Recently, the list has been expanded significantly by findings that revealed a number of weak genetic and epigenetic nonsense suppressors, the effect of which can be detected only in specific genetic backgrounds. This review summarizes the data on the nonsense suppressors decreasing the fidelity of translation termination in S. cerevisiae, and discusses the functional significance of the modulation of translational accuracy.
Collapse
Affiliation(s)
- Anton A Nizhnikov
- a Department of Genetics and Biotechnology ; St. Petersburg State University ; St. Petersburg , Russia
| | | | | | | |
Collapse
|
31
|
Regulation of natural mRNAs by the nonsense-mediated mRNA decay pathway. EUKARYOTIC CELL 2014; 13:1126-35. [PMID: 25038084 DOI: 10.1128/ec.00090-14] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The nonsense-mediated mRNA decay (NMD) pathway is a specialized mRNA degradation pathway that degrades select mRNAs. This pathway is conserved in all eukaryotes examined so far, and it triggers the degradation of mRNAs that prematurely terminate translation. Originally identified as a pathway that degrades mRNAs with premature termination codons as a result of errors during transcription, splicing, or damage to the mRNA, NMD is now also recognized as a pathway that degrades some natural mRNAs. The degradation of natural mRNAs by NMD has been identified in multiple eukaryotes, including Saccharomyces cerevisiae, Drosophila melanogaster, Arabidopsis thaliana, and humans. S. cerevisiae is used extensively as a model to study natural mRNA regulation by NMD. Inactivation of the NMD pathway in S. cerevisiae affects approximately 10% of the transcriptome. Similar percentages of natural mRNAs in the D. melanogaster and human transcriptomes are also sensitive to the pathway, indicating that NMD is important for the regulation of gene expression in multiple organisms. NMD can either directly or indirectly regulate the decay rate of natural mRNAs. Direct NMD targets possess NMD-inducing features. This minireview focuses on the regulation of natural mRNAs by the NMD pathway, as well as the features demonstrated to target these mRNAs for decay by the pathway in S. cerevisiae. We also compare NMD-targeting features identified in S. cerevisiae with known NMD-targeting features in other eukaryotic organisms.
Collapse
|
32
|
Chakrabarti S, Bonneau F, Schüssler S, Eppinger E, Conti E. Phospho-dependent and phospho-independent interactions of the helicase UPF1 with the NMD factors SMG5-SMG7 and SMG6. Nucleic Acids Res 2014; 42:9447-60. [PMID: 25013172 PMCID: PMC4132714 DOI: 10.1093/nar/gku578] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Nonsense-mediated mRNA decay (NMD) is a eukaryotic surveillance pathway that recognizes mRNAs with premature stop codons and targets them for rapid degradation. Evidence from previous studies has converged on UPF1 as the central NMD factor. In human cells, the SMG1 kinase phosphorylates UPF1 at the N-terminal and C-terminal tails, in turn allowing the recruitment of the NMD factors SMG5, SMG6 and SMG7. To understand the molecular mechanisms, we recapitulated these steps of NMD in vitro using purified components. We find that a short C-terminal segment of phosphorylated UPF1 containing the last two Ser-Gln motifs is recognized by the heterodimer of SMG5 and SMG7 14–3–3-like proteins. In contrast, the SMG6 14–3–3-like domain is a monomer. The crystal structure indicates that the phosphoserine binding site of the SMG6 14–3–3-like domain is similar to that of SMG5 and can mediate a weak phospho-dependent interaction with UPF1. The dominant SMG6–UPF1 interaction is mediated by a low-complexity region bordering the 14–3–3-like domain of SMG6 and by the helicase domain and C-terminal tail of UPF1. This interaction is phosphorylation independent. Our study demonstrates that SMG5–SMG7 and SMG6 exhibit different and non-overlapping modes of UPF1 recognition, thus pointing at distinguished roles in integrating the complex NMD interaction network.
Collapse
Affiliation(s)
- Sutapa Chakrabarti
- Max Planck Institute of Biochemistry, Structural Cell Biology Department, Am Klopferspitz 18, D-82152 Martinsried, Germany
| | - Fabien Bonneau
- Max Planck Institute of Biochemistry, Structural Cell Biology Department, Am Klopferspitz 18, D-82152 Martinsried, Germany
| | - Steffen Schüssler
- Max Planck Institute of Biochemistry, Structural Cell Biology Department, Am Klopferspitz 18, D-82152 Martinsried, Germany
| | - Elfriede Eppinger
- Max Planck Institute of Biochemistry, Structural Cell Biology Department, Am Klopferspitz 18, D-82152 Martinsried, Germany
| | - Elena Conti
- Max Planck Institute of Biochemistry, Structural Cell Biology Department, Am Klopferspitz 18, D-82152 Martinsried, Germany
| |
Collapse
|
33
|
Liu C, Karam R, Zhou Y, Su F, Ji Y, Li G, Xu G, Lu L, Wang C, Song M, Zhu J, Wang Y, Zhao Y, Foo WC, Zuo M, Valasek MA, Javle M, Wilkinson MF, Lu Y. The UPF1 RNA surveillance gene is commonly mutated in pancreatic adenosquamous carcinoma. Nat Med 2014; 20:596-8. [PMID: 24859531 PMCID: PMC4048332 DOI: 10.1038/nm.3548] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 03/27/2014] [Indexed: 12/15/2022]
Abstract
Pancreatic adenosquamous carcinoma (ASC) is an enigmatic and aggressive tumor that has a worse prognosis and higher metastatic potential than its adenocarcinoma counterpart. Here we report that ASC tumors frequently harbor somatically acquired mutations in the UPF1 gene, which encodes the core component of the nonsense-mediated RNA decay (NMD) pathway. These tumor-specific mutations alter UPF1 RNA splicing and perturb NMD, leading to upregulated levels of NMD substrate mRNAs. UPF1 mutations are, to our knowledge, the first known unique molecular signatures of pancreatic ASC.
Collapse
Affiliation(s)
- Chen Liu
- 1] Clinical and Translational Cancer Research Center, The Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China. [2] Tongji University School of Life Science and Technology, Shanghai, China. [3]
| | - Rachid Karam
- 1] Department of Reproductive Medicine, School of Medicine, University of California San Diego, La Jolla, California, USA. [2]
| | - YingQi Zhou
- 1] The Third General Surgery Department, Changhai Hospital, Second Military Medical University, Shanghai, China. [2]
| | - Fang Su
- 1] Clinical and Translational Cancer Research Center, The Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China. [2]
| | - Yuan Ji
- 1] Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China. [2]
| | - Gang Li
- The Third General Surgery Department, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - GuoTong Xu
- Clinical and Translational Cancer Research Center, The Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - LiXia Lu
- Clinical and Translational Cancer Research Center, The Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - ChongRen Wang
- Clinical and Translational Cancer Research Center, The Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - MeiYi Song
- Clinical and Translational Cancer Research Center, The Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - JingPing Zhu
- Clinical and Translational Cancer Research Center, The Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - YiRan Wang
- Clinical and Translational Cancer Research Center, The Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - YiFan Zhao
- Clinical and Translational Cancer Research Center, The Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wai Chin Foo
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - MingXin Zuo
- Department of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Mark A Valasek
- Division of Anatomic Pathology, Department of Pathology, University of California San Diego, San Diego, California, USA
| | - Milind Javle
- Department of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Miles F Wilkinson
- 1] Department of Reproductive Medicine, School of Medicine, University of California San Diego, La Jolla, California, USA. [2] Institute for Genomic Medicine, University of California San Diego, La Jolla, California, USA
| | - YanJun Lu
- Clinical and Translational Cancer Research Center, The Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
34
|
Lykke-Andersen J, Bennett EJ. Protecting the proteome: Eukaryotic cotranslational quality control pathways. ACTA ACUST UNITED AC 2014; 204:467-76. [PMID: 24535822 PMCID: PMC3926952 DOI: 10.1083/jcb.201311103] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The correct decoding of messenger RNAs (mRNAs) into proteins is an essential cellular task. The translational process is monitored by several quality control (QC) mechanisms that recognize defective translation complexes in which ribosomes are stalled on substrate mRNAs. Stalled translation complexes occur when defects in the mRNA template, the translation machinery, or the nascent polypeptide arrest the ribosome during translation elongation or termination. These QC events promote the disassembly of the stalled translation complex and the recycling and/or degradation of the individual mRNA, ribosomal, and/or nascent polypeptide components, thereby clearing the cell of improper translation products and defective components of the translation machinery.
Collapse
Affiliation(s)
- Jens Lykke-Andersen
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093
| | | |
Collapse
|
35
|
Multiple transcripts from a 3'-UTR reporter vary in sensitivity to nonsense-mediated mRNA decay in Saccharomyces cerevisiae. PLoS One 2013; 8:e80981. [PMID: 24260526 PMCID: PMC3832414 DOI: 10.1371/journal.pone.0080981] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 10/17/2013] [Indexed: 11/19/2022] Open
Abstract
Nonsense-mediated mRNA decay (NMD) causes accelerated transcript degradation when a premature translation termination codon disrupts the open reading frame (ORF). Although endogenous transcripts that have uninterrupted ORFs are typically insensitive to NMD, some can nonetheless become prone to NMD when translation terminates at out-of-frame premature stop codons. This occurs when introns containing stop codons fail to be spliced, when translation of an upstream ORF (uORF) terminates in the 5′-untranslated region (5′-UTR) or the coding region, or when the 5′-proximal AUG initiation codon is bypassed and translation initiates at a downstream out-of-frame AUG followed by a stop codon. Some 3′-untranslated regions (3′-UTRs) are also known to trigger NMD, but the mechanism is less well understood. To further study the role of 3′-UTRs in NMD, a reporter system was designed to examine 3′-UTRs from candidate genes known to produce NMD-sensitive transcripts. Out of eight that were tested, the 3′-UTRs from MSH4 and SPO16 caused NMD-dependent mRNA destabilization. Both endogenous genes produce multiple transcripts that differ in length at the 3′ end. Detailed studies revealed that the longest of six reporter MSH4-3′-UTR transcripts was NMD-sensitive but five shorter transcripts were insensitive. NMD-dependent degradation of the long transcript required Xrn1, which degrades mRNA from the 5′ end. Sensitivity to NMD was not associated with extensive translational read-through past the normal stop codon. To our knowledge, this is the first example where multiple transcripts containing the same ORF are differentially sensitive to NMD in Saccharomyces cerevisiae. The results provide a proof of principle that long 3′-UTRs can trigger NMD, which suggests a potential link between errors in transcription termination or processing and mRNA decay.
Collapse
|
36
|
Nonsense-mediated mRNA decay: inter-individual variability and human disease. Neurosci Biobehav Rev 2013; 46 Pt 2:175-86. [PMID: 24239855 DOI: 10.1016/j.neubiorev.2013.10.016] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 10/29/2013] [Accepted: 10/30/2013] [Indexed: 01/09/2023]
Abstract
Nonsense-mediated mRNA decay (NMD) is a regulatory pathway that functions to degrade transcripts containing premature termination codons (PTCs) and to maintain normal transcriptome homeostasis. Nonsense and frameshift mutations that generate PTCs cause approximately one-third of all known human genetic diseases and thus NMD has a potentially important role in human disease. In genetic disorders in which the affected genes carry PTC-generating mutations, NMD acts as a double-edge sword. While it can benefit the patient by degrading PTC-containing mRNAs that encode detrimental, dominant-negative truncated proteins, it can also make the disease worse when a PTC-containing mRNA is degraded that encodes a mutant but still functional protein. There is evidence that the magnitude of NMD varies between individuals, which, in turn, has been shown to correlate with both clinical presentations and the patients' responses to drugs that promote read-through of PTCs. In this review, we examine the evidence supporting the existence of inter-individual variability in NMD efficiency and discuss the genetic factors that underlie this variability. We propose that inter-individual variability in NMD efficiency is a common phenomenon in human populations and that an individual's NMD efficiency should be taken into consideration when testing, developing, and making therapeutic decisions for diseases caused by genes harboring PTCs.
Collapse
|
37
|
Intra- and intermolecular regulatory interactions in Upf1, the RNA helicase central to nonsense-mediated mRNA decay in yeast. Mol Cell Biol 2013; 33:4672-84. [PMID: 24100012 DOI: 10.1128/mcb.01136-13] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
RNA helicases are involved in almost every aspect of RNA metabolism, yet very little is known about the regulation of this class of enzymes. In Saccharomyces cerevisiae, the stability and translational fidelity of nonsense-containing mRNAs are controlled by the group I RNA helicase Upf1 and the proteins it interacts with, Upf2 and Upf3. Combining the yeast two-hybrid system with genetic analysis, we show here that the cysteine- and histidine-rich (CH) domain and the RNA helicase domain of yeast Upf1 can engage in two new types of molecular interactions: an intramolecular interaction between these two domains and self-association of each of these domains. Multiple observations indicate that these molecular interactions are crucial for Upf1 regulation. First, coexpression of the CH domain and the RNA helicase domain in trans can reconstitute Upf1 function in both promoting nonsense-mediated mRNA decay (NMD) and preventing nonsense suppression. Second, mutations that disrupt Upf1 intramolecular interaction cause loss of Upf1 function. These mutations weaken Upf2 interaction and, surprisingly, promote Upf1 self-association. Third, the genetic defects resulting from deficiency in Upf1 intramolecular interaction or RNA binding are suppressed by expression of Upf2. Collectively, these data reveal a set of sequential molecular interactions and their roles in regulating Upf1 function during activation of NMD and suggest that cis intramolecular interaction and trans self-association may be general mechanisms for regulation of RNA helicase functions.
Collapse
|
38
|
Longman D, Hug N, Keith M, Anastasaki C, Patton EE, Grimes G, Cáceres JF. DHX34 and NBAS form part of an autoregulatory NMD circuit that regulates endogenous RNA targets in human cells, zebrafish and Caenorhabditis elegans. Nucleic Acids Res 2013; 41:8319-31. [PMID: 23828042 PMCID: PMC3783168 DOI: 10.1093/nar/gkt585] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The nonsense-mediated mRNA decay (NMD) pathway selectively degrades mRNAs harboring premature termination codons but also regulates the abundance of cellular RNAs. We sought to identify transcripts that are regulated by two novel NMD factors, DHX34 and neuroblastoma amplified sequence (NBAS), which were identified in a genome-wide RNA interference screen in Caenorhabditis elegans and later shown to mediate NMD in vertebrates. We performed microarray expression profile analysis in human cells, zebrafish embryos and C. elegans that were individually depleted of these factors. Our analysis revealed that a significant proportion of genes are co-regulated by DHX34, NBAS and core NMD factors in these three organisms. Further analysis indicates that NMD modulates cellular stress response pathways and membrane trafficking across species. Interestingly, transcripts encoding different NMD factors were sensitive to DHX34 and NBAS depletion, suggesting that these factors participate in a conserved NMD negative feedback regulatory loop, as was recently described for core NMD factors. In summary, we find that DHX34 and NBAS act in concert with core NMD factors to co-regulate a large number of endogenous RNA targets. Furthermore, the conservation of a mechanism to tightly control NMD homeostasis across different species highlights the importance of the NMD response in the control of gene expression.
Collapse
Affiliation(s)
- Dasa Longman
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK
| | | | | | | | | | | | | |
Collapse
|
39
|
Colak D, Ji SJ, Porse BT, Jaffrey SR. Regulation of axon guidance by compartmentalized nonsense-mediated mRNA decay. Cell 2013; 153:1252-65. [PMID: 23746841 PMCID: PMC3685487 DOI: 10.1016/j.cell.2013.04.056] [Citation(s) in RCA: 150] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 03/05/2013] [Accepted: 04/30/2013] [Indexed: 12/13/2022]
Abstract
Growth cones enable axons to navigate toward their targets by responding to extracellular signaling molecules. Growth-cone responses are mediated in part by the local translation of axonal messenger RNAs (mRNAs). However, the mechanisms that regulate local translation are poorly understood. Here we show that Robo3.2, a receptor for the Slit family of guidance cues, is synthesized locally within axons of commissural neurons. Robo3.2 translation is induced by floor-plate-derived signals as axons cross the spinal cord midline. Robo3.2 is also a predicted target of the nonsense-mediated mRNA decay (NMD) pathway. We find that NMD regulates Robo3.2 synthesis by inducing the degradation of Robo3.2 transcripts in axons that encounter the floor plate. Commissural neurons deficient in NMD proteins exhibit aberrant axonal trajectories after crossing the midline, consistent with misregulation of Robo3.2 expression. These data show that local translation is regulated by mRNA stability and that NMD acts locally to influence axonal pathfinding.
Collapse
Affiliation(s)
- Dilek Colak
- Department of Pharmacology, Weill Medical College, Cornell University, New York, NY 10065, USA
| | | | | | | |
Collapse
|
40
|
Zhao C, Waalwijk C, de Wit PJGM, Tang D, van der Lee T. RNA-Seq analysis reveals new gene models and alternative splicing in the fungal pathogen Fusarium graminearum. BMC Genomics 2013; 14:21. [PMID: 23324402 PMCID: PMC3577648 DOI: 10.1186/1471-2164-14-21] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 12/29/2012] [Indexed: 11/11/2022] Open
Abstract
Background The genome of Fusarium graminearum has been sequenced and annotated previously, but correct gene annotation remains a challenge. In addition, posttranscriptional regulations, such as alternative splicing and RNA editing, are poorly understood in F. graminearum. Here we took advantage of RNA-Seq to improve gene annotations and to identify alternative splicing and RNA editing in F. graminearum. Results We identified and revised 655 incorrectly predicted gene models, including revisions of intron predictions, intron splice sites and prediction of novel introns. 231 genes were identified with two or more alternative splice variants, mostly due to intron retention. Interestingly, the expression ratios between different transcript isoforms appeared to be developmentally regulated. Surprisingly, no RNA editing was identified in F. graminearum. Moreover, 2459 novel transcriptionally active regions (nTARs) were identified and our analysis indicates that many of these could be missed genes. Finally, we identified the 5′ UTR and/or 3′ UTR sequences of 7666 genes. A number of representative novel gene models and alternatively spliced genes were validated by reverse transcription polymerase chain reaction and sequencing of the generated amplicons. Conclusions We have developed novel and efficient strategies to identify alternatively spliced genes and incorrect gene models based on RNA-Seq data. Our study identified hundreds of alternatively spliced genes in F. graminearum and for the first time indicated that alternative splicing is developmentally regulated in filamentous fungi. In addition, hundreds of incorrect predicted gene models were identified and revised and thousands of nTARs were discovered in our study, which will be helpful for the future genomic and transcriptomic studies in F. graminearum.
Collapse
Affiliation(s)
- Chunzhao Zhao
- Plant Research International, P.O. Box 6708 PB, Wageningen, The Netherlands
| | | | | | | | | |
Collapse
|
41
|
Rosains J, Mango SE. Genetic characterization of smg-8 mutants reveals no role in C. elegans nonsense mediated decay. PLoS One 2012; 7:e49490. [PMID: 23166684 PMCID: PMC3500306 DOI: 10.1371/journal.pone.0049490] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Accepted: 10/12/2012] [Indexed: 12/02/2022] Open
Abstract
The nonsense mediated decay (NMD) pathway degrades mRNAs bearing premature translation termination codons. In mammals, SMG-8 has been implicated in the NMD pathway, in part by its association with SMG-1 kinase. Here we use four independent assays to show that C. elegans smg-8 is not required to degrade nonsense-containing mRNAs. We examine the genetic requirement for smg-8 to destabilize the endogenous, natural NMD targets produced by alternative splicing of rpl-7a and rpl-12. We test smg-8 for degradation of the endogenous, NMD target generated by unc-54(r293), which lacks a normal polyadenylation site. We probe the effect of smg-8 on the exogenous NMD target produced by myo-3::GFP, which carries a long 3′ untranslated region that destabilizes mRNAs. None of these known NMD targets is influenced by smg-8 mutations. In addition, smg-8 animals lack classical Smg mutant phenotypes such as a reduced brood size or abnormal vulva. We conclude that smg-8 is unlikely to encode a component critical for NMD.
Collapse
Affiliation(s)
- Jacqueline Rosains
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachussetts, United States of America
| | - Susan E. Mango
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachussetts, United States of America
- * E-mail:
| |
Collapse
|
42
|
Abstract
Although most mRNA molecules derived from protein-coding genes are destined to be translated into functional polypeptides, some are eliminated by cellular quality control pathways that collectively perform the task of mRNA surveillance. In the nonsense-mediated decay (NMD) pathway premature translation termination promotes the recruitment of a set of factors that destabilize a targeted mRNA. The same factors also seem to have key roles in repressing the translation of the mRNA, dissociating its terminating ribosome and messenger ribonucleoproteins (mRNPs), promoting the degradation of its truncated polypeptide product and possibly even feeding back to the site of transcription to interfere with splicing of the primary transcript.
Collapse
|
43
|
Abstract
There are three predominant forms of co-translational mRNA surveillance: nonsense-mediated decay (NMD), no-go decay (NGD) and nonstop decay (NSD). Although discussion of these pathways often focuses on mRNA fate, there is growing consensus that there are other important outcomes of these processes that must be simultaneously considered. Here, we seek to highlight similarities between NMD, NGD and NSD and their probable origins on the ribosome during translation.
Collapse
|
44
|
Withers JB, Beemon KL. The structure and function of the rous sarcoma virus RNA stability element. J Cell Biochem 2012; 112:3085-92. [PMID: 21769913 DOI: 10.1002/jcb.23272] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
For simple retroviruses, such as the Rous sarcoma virus (RSV), post-transcriptional control elements regulate viral RNA splicing, export, stability, and packaging into virions. These RNA sequences interact with cellular host proteins to regulate and facilitate productive viral infections. One such element, known as the RSV stability element (RSE), is required for maintaining stability of the full-length unspliced RNA. This viral RNA serves as the mRNA for the Gag and Pol proteins and also as the genome packaged in progeny virions. When the RSE is deleted from the viral RNA, the unspliced RNA becomes unstable and is degraded in a Upf1-dependent manner. Current evidence suggests that the RSE inhibits recognition of the viral gag termination codon by the nonsense-mediated mRNA decay (NMD) pathway. We believe that the RSE acts as an insulator to NMD, thereby preventing at least one of the required functional steps that target an mRNA for degradation. Here, we discuss the history of the RSE and the current model of how the RSE is interacting with cellular NMD factors.
Collapse
Affiliation(s)
- Johanna B Withers
- Department of Biology, The Johns Hopkins University, 3400 N. Charles St., Baltimore, Maryland 21218, USA
| | | |
Collapse
|
45
|
Delhi P, Queiroz R, Inchaustegui D, Carrington M, Clayton C. Is there a classical nonsense-mediated decay pathway in trypanosomes? PLoS One 2011; 6:e25112. [PMID: 21957477 PMCID: PMC3177853 DOI: 10.1371/journal.pone.0025112] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Accepted: 08/24/2011] [Indexed: 11/18/2022] Open
Abstract
In many eukaryotes, messenger RNAs with premature termination codons are destroyed by a process called "nonsense-mediated decay", which requires the RNA helicase Upf1 and also, usually, an interacting factor, Upf2. Recognition of premature termination codons may rely on their distance from either a splice site or the polyadenylation site, and long 3'-untranslated regions can trigger mRNA decay. The protist Trypanosoma brucei relies heavily on mRNA degradation to determine mRNA levels, and 3'-untranslated regions play a major role in control of mRNA decay. We show here that trypanosomes have a homologue of Upf1, TbUPF1, which interacts with TbUPF2 and (in an RNA-dependent fashion) with poly(A) binding protein 1, PABP1. Introduction of a premature termination codon in either an endogenous gene or a reporter gene decreased mRNA abundance, as expected for nonsense-mediated decay, but a dependence of this effect on TbUPF1 could not be demonstrated, and depletion of TbUPF1 by over 95% had no effect on parasite growth or the mRNA transcriptome. Further investigations of the reporter mRNA revealed that increases in open reading frame length tended to increase mRNA abundance. In contrast, inhibition of translation, either using 5'-secondary structures or by lengthening the 5'-untranslated region, usually decreased reporter mRNA abundance. Meanwhile, changing the length of the 3'-untranslated region had no consistent effect on mRNA abundance. We suggest that in trypanosomes, translation per se may inhibit mRNA decay, and interactions with multiple RNA-binding proteins preclude degradation based on 3'-untranslated region length alone.
Collapse
Affiliation(s)
- Praveen Delhi
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, Hedielberg, Germany
- * E-mail: (PD); (CC)
| | - Rafael Queiroz
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, Hedielberg, Germany
| | - Diana Inchaustegui
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, Hedielberg, Germany
| | - Mark Carrington
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Christine Clayton
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, Hedielberg, Germany
- * E-mail: (PD); (CC)
| |
Collapse
|
46
|
Karijolich J, Yu YT. Converting nonsense codons into sense codons by targeted pseudouridylation. Nature 2011; 474:395-8. [PMID: 21677757 PMCID: PMC3381908 DOI: 10.1038/nature10165] [Citation(s) in RCA: 274] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Accepted: 04/28/2011] [Indexed: 11/09/2022]
Abstract
All three translation termination codons, or nonsense codons, contain a uridine residue at the first position of the codon. Here, we demonstrate that pseudouridylation (conversion of uridine into pseudouridine (Ψ), ref. 4) of nonsense codons suppresses translation termination both in vitro and in vivo. In vivo targeting of nonsense codons is accomplished by the expression of an H/ACA RNA capable of directing the isomerization of uridine to Ψ within the nonsense codon. Thus, targeted pseudouridylation represents a novel approach for promoting nonsense suppression in vivo. Remarkably, we also show that pseudouridylated nonsense codons code for amino acids with similar properties. Specifically, ΨAA and ΨAG code for serine and threonine, whereas ΨGA codes for tyrosine and phenylalanine, thus suggesting a new mode of decoding. Our results also suggest that RNA modification, as a naturally occurring mechanism, may offer a new way to expand the genetic code.
Collapse
Affiliation(s)
- John Karijolich
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, New York 14642, USA
| | | |
Collapse
|
47
|
Perturbation of thymocyte development in nonsense-mediated decay (NMD)-deficient mice. Proc Natl Acad Sci U S A 2011; 108:10638-43. [PMID: 21670277 DOI: 10.1073/pnas.1019352108] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The random nature of T-cell receptor-β (TCR-β) recombination needed to generate immunological diversity dictates that two-thirds of alleles will be out-of-frame. Transcripts derived from nonproductive rearrangements are cleared by the nonsense-mediated mRNA decay (NMD) pathway, the process by which cells selectively degrade transcripts harboring premature termination codons. Here, we demonstrate that the fetal thymus in transgenic mice that ubiquitously express a dominant-negative form of Rent1/hUpf1, an essential trans-effector of NMD, shows decreased cell number, reduced CD4CD8 double-positive thymocytes, diminished expression of TCR-β, and increased expression of CD25, suggesting a defect in pre-TCR signaling. Transgenic fetal thymocytes also demonstrated diminished endogenous Vβ-to-DβJβ rearrangements, whereas Dβ-to-Jβ rearrangements were unperturbed, suggesting that inhibition of NMD induces premature shut-off of TCR-β rearrangement. Developmental arrest of thymocytes is prevented by the introduction of a fully rearranged TCR-β transgene that precludes generation of out-of-frame transcripts, suggesting direct mRNA-mediated trans-dominant effects. These data document that NMD has been functionally incorporated into developmental programs during eukaryotic evolution.
Collapse
|
48
|
Anastasaki C, Longman D, Capper A, Patton EE, Cáceres JF. Dhx34 and Nbas function in the NMD pathway and are required for embryonic development in zebrafish. Nucleic Acids Res 2011; 39:3686-94. [PMID: 21227923 PMCID: PMC3089463 DOI: 10.1093/nar/gkq1319] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
The nonsense-mediated mRNA decay (NMD) pathway is a highly conserved surveillance mechanism that is present in all eukaryotes. It prevents the synthesis of truncated proteins by selectively degrading mRNAs harbouring premature termination codons (PTCs). The core NMD effectors were originally identified in genetic screens in Saccharomyces cerevisae and in the nematode Caenorhabditis elegans, and subsequently by homology searches in other metazoans. A genome-wide RNAi screen in C. elegans resulted in the identification of two novel NMD genes that are essential for proper embryonic development. Their human orthologues, DHX34 and NAG/NBAS, are required for NMD in human cells. Here, we find that the zebrafish genome encodes orthologues of DHX34 and NAG/NBAS. We show that the morpholino-induced depletion of zebrafish Dhx34 and Nbas proteins results in severe developmental defects and reduced embryonic viability. We also found that Dhx34 and Nbas are required for degradation of PTC-containing mRNAs in zebrafish embryos. The phenotypes observed in both Dhx34 and Nbas morphants are similar to defects in Upf1, Smg-5- or Smg-6- depleted embryos, suggesting that these factors affect the same pathway and confirming that zebrafish embryogenesis requires an active NMD pathway.
Collapse
Affiliation(s)
- Corina Anastasaki
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh EH4 2XU, UK
| | | | | | | | | |
Collapse
|
49
|
Belasco JG. All things must pass: contrasts and commonalities in eukaryotic and bacterial mRNA decay. Nat Rev Mol Cell Biol 2010; 11:467-78. [PMID: 20520623 PMCID: PMC3145457 DOI: 10.1038/nrm2917] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Despite its universal importance for controlling gene expression, mRNA degradation was initially thought to occur by disparate mechanisms in eukaryotes and bacteria. This conclusion was based on differences in the structures used by these organisms to protect mRNA termini and in the RNases and modifying enzymes originally implicated in mRNA decay. Subsequent discoveries have identified several striking parallels between the cellular factors and molecular events that govern mRNA degradation in these two kingdoms of life. Nevertheless, some key distinctions remain, the most fundamental of which may be related to the different mechanisms by which eukaryotes and bacteria control translation initiation.
Collapse
Affiliation(s)
- Joel G Belasco
- Kimmel Center for Biology and Medicine at the Skirball Institute and Department of Microbiology, New York University School of Medicine, New York, 10016, USA.
| |
Collapse
|
50
|
Mekouar M, Blanc-Lenfle I, Ozanne C, Da Silva C, Cruaud C, Wincker P, Gaillardin C, Neuvéglise C. Detection and analysis of alternative splicing in Yarrowia lipolytica reveal structural constraints facilitating nonsense-mediated decay of intron-retaining transcripts. Genome Biol 2010; 11:R65. [PMID: 20573210 PMCID: PMC2911113 DOI: 10.1186/gb-2010-11-6-r65] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2010] [Revised: 06/15/2010] [Accepted: 06/23/2010] [Indexed: 11/10/2022] Open
Abstract
Background Hemiascomycetous yeasts have intron-poor genomes with very few cases of alternative splicing. Most of the reported examples result from intron retention in Saccharomyces cerevisiae and some have been shown to be functionally significant. Here we used transcriptome-wide approaches to evaluate the mechanisms underlying the generation of alternative transcripts in Yarrowia lipolytica, a yeast highly divergent from S. cerevisiae. Results Experimental investigation of Y. lipolytica gene models identified several cases of alternative splicing, mostly generated by intron retention, principally affecting the first intron of the gene. The retention of introns almost invariably creates a premature termination codon, as a direct consequence of the structure of intron boundaries. An analysis of Y. lipolytica introns revealed that introns of multiples of three nucleotides in length, particularly those without stop codons, were underrepresented. In other organisms, premature termination codon-containing transcripts are targeted for degradation by the nonsense-mediated mRNA decay (NMD) machinery. In Y. lipolytica, homologs of S. cerevisiae UPF1 and UPF2 genes were identified, but not UPF3. The inactivation of Y. lipolytica UPF1 and UPF2 resulted in the accumulation of unspliced transcripts of a test set of genes. Conclusions Y. lipolytica is the hemiascomycete with the most intron-rich genome sequenced to date, and it has several unusual genes with large introns or alternative transcription start sites, or introns in the 5' UTR. Our results suggest Y. lipolytica intron structure is subject to significant constraints, leading to the under-representation of stop-free introns. Consequently, intron-containing transcripts are degraded by a functional NMD pathway.
Collapse
Affiliation(s)
- Meryem Mekouar
- INRA UMR1319 Micalis - AgroParisTech, Biologie intégrative du métabolisme lipidique microbien, Bât, CBAI, 78850 Thiverval-Grignon, France
| | | | | | | | | | | | | | | |
Collapse
|