1
|
Van Thillo Q, De Bie J, Seneviratne JA, Demeyer S, Omari S, Balachandran A, Zhai V, Tam WL, Sweron B, Geerdens E, Gielen O, Provost S, Segers H, Boeckx N, Marshall GM, Cheung BB, Isobe K, Kato I, Takita J, Amos TG, Deveson IW, McCalmont H, Lock RB, Oxley EP, Garwood MM, Dickins RA, Uyttebroeck A, Carter DR, Cools J, de Bock CE. Oncogenic cooperation between TCF7-SPI1 and NRAS(G12D) requires β-catenin activity to drive T-cell acute lymphoblastic leukemia. Nat Commun 2021; 12:4164. [PMID: 34230493 PMCID: PMC8260768 DOI: 10.1038/s41467-021-24442-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 06/18/2021] [Indexed: 02/07/2023] Open
Abstract
Spi-1 Proto-Oncogene (SPI1) fusion genes are recurrently found in T-cell acute lymphoblastic leukemia (T-ALL) cases but are insufficient to drive leukemogenesis. Here we show that SPI1 fusions in combination with activating NRAS mutations drive an immature T-ALL in vivo using a conditional bone marrow transplant mouse model. Addition of the oncogenic fusion to the NRAS mutation also results in a higher leukemic stem cell frequency. Mechanistically, genetic deletion of the β-catenin binding domain within Transcription factor 7 (TCF7)-SPI1 or use of a TCF/β-catenin interaction antagonist abolishes the oncogenic activity of the fusion. Targeting the TCF7-SPI1 fusion in vivo with a doxycycline-inducible knockdown results in increased differentiation. Moreover, both pharmacological and genetic inhibition lead to down-regulation of SPI1 targets. Together, our results reveal an example where TCF7-SPI1 leukemia is vulnerable to pharmacological targeting of the TCF/β-catenin interaction.
Collapse
Affiliation(s)
- Quentin Van Thillo
- Department of Human Genetics, KU Leuven, Leuven, Belgium
- Center for Cancer Biology, VIB, Leuven, Belgium
- Leuvens Kanker Instituut (LKI), KU Leuven - UZ Leuven, Leuven, Belgium
| | - Jolien De Bie
- Department of Human Genetics, KU Leuven, Leuven, Belgium
- Center for Cancer Biology, VIB, Leuven, Belgium
- Center for Human Genetics, UZ Leuven, Leuven, Belgium
| | - Janith A Seneviratne
- Children's Cancer Institute, UNSW Sydney, Lowy Cancer Research Centre, Sydney, NSW, Australia
- School of Women's and Children's Health, UNSW Sydney, Sydney, NSW, Australia
| | - Sofie Demeyer
- Department of Human Genetics, KU Leuven, Leuven, Belgium
- Center for Cancer Biology, VIB, Leuven, Belgium
- Leuvens Kanker Instituut (LKI), KU Leuven - UZ Leuven, Leuven, Belgium
| | - Sofia Omari
- Children's Cancer Institute, UNSW Sydney, Lowy Cancer Research Centre, Sydney, NSW, Australia
- School of Women's and Children's Health, UNSW Sydney, Sydney, NSW, Australia
| | - Anushree Balachandran
- Children's Cancer Institute, UNSW Sydney, Lowy Cancer Research Centre, Sydney, NSW, Australia
- School of Women's and Children's Health, UNSW Sydney, Sydney, NSW, Australia
| | - Vicki Zhai
- Children's Cancer Institute, UNSW Sydney, Lowy Cancer Research Centre, Sydney, NSW, Australia
- School of Women's and Children's Health, UNSW Sydney, Sydney, NSW, Australia
| | - Wai L Tam
- Technology Innovation Lab, VIB, Gent, Belgium
| | - Bram Sweron
- Department of Human Genetics, KU Leuven, Leuven, Belgium
- Center for Cancer Biology, VIB, Leuven, Belgium
| | - Ellen Geerdens
- Department of Human Genetics, KU Leuven, Leuven, Belgium
- Center for Cancer Biology, VIB, Leuven, Belgium
- Leuvens Kanker Instituut (LKI), KU Leuven - UZ Leuven, Leuven, Belgium
| | - Olga Gielen
- Department of Human Genetics, KU Leuven, Leuven, Belgium
- Center for Cancer Biology, VIB, Leuven, Belgium
| | - Sarah Provost
- Department of Human Genetics, KU Leuven, Leuven, Belgium
- Center for Cancer Biology, VIB, Leuven, Belgium
| | - Heidi Segers
- Leuvens Kanker Instituut (LKI), KU Leuven - UZ Leuven, Leuven, Belgium
- Department of Oncology, KU Leuven, Leuven, Belgium
- Department of Pediatric Hemato-Oncology, UZ Leuven, Leuven, Belgium
| | - Nancy Boeckx
- Department of Oncology, KU Leuven, Leuven, Belgium
- Department of Laboratory Medicine, UZ Leuven, Leuven, Belgium
| | - Glenn M Marshall
- Children's Cancer Institute, UNSW Sydney, Lowy Cancer Research Centre, Sydney, NSW, Australia
- School of Women's and Children's Health, UNSW Sydney, Sydney, NSW, Australia
- Kids Cancer Centre, Sydney Children's Hospital, Randwick, NSW, Australia
| | - Belamy B Cheung
- Children's Cancer Institute, UNSW Sydney, Lowy Cancer Research Centre, Sydney, NSW, Australia
- School of Women's and Children's Health, UNSW Sydney, Sydney, NSW, Australia
| | - Kiyotaka Isobe
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Itaru Kato
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Junko Takita
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Timothy G Amos
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Ira W Deveson
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Sydney, NSW, Australia
- St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia
| | - Hannah McCalmont
- Children's Cancer Institute, UNSW Sydney, Lowy Cancer Research Centre, Sydney, NSW, Australia
- School of Women's and Children's Health, UNSW Sydney, Sydney, NSW, Australia
| | - Richard B Lock
- Children's Cancer Institute, UNSW Sydney, Lowy Cancer Research Centre, Sydney, NSW, Australia
- School of Women's and Children's Health, UNSW Sydney, Sydney, NSW, Australia
| | - Ethan P Oxley
- Australian Centre for Blood Diseases, Monash University, Melbourne, VIC, Australia
| | - Maximilian M Garwood
- Australian Centre for Blood Diseases, Monash University, Melbourne, VIC, Australia
| | - Ross A Dickins
- Australian Centre for Blood Diseases, Monash University, Melbourne, VIC, Australia
| | - Anne Uyttebroeck
- Leuvens Kanker Instituut (LKI), KU Leuven - UZ Leuven, Leuven, Belgium
- Department of Oncology, KU Leuven, Leuven, Belgium
- Department of Pediatric Hemato-Oncology, UZ Leuven, Leuven, Belgium
| | - Daniel R Carter
- Children's Cancer Institute, UNSW Sydney, Lowy Cancer Research Centre, Sydney, NSW, Australia
- School of Women's and Children's Health, UNSW Sydney, Sydney, NSW, Australia
- School of Biomedical Engineering, University of Technology, Sydney, NSW, Australia
| | - Jan Cools
- Department of Human Genetics, KU Leuven, Leuven, Belgium.
- Center for Cancer Biology, VIB, Leuven, Belgium.
- Leuvens Kanker Instituut (LKI), KU Leuven - UZ Leuven, Leuven, Belgium.
| | - Charles E de Bock
- Children's Cancer Institute, UNSW Sydney, Lowy Cancer Research Centre, Sydney, NSW, Australia.
- School of Women's and Children's Health, UNSW Sydney, Sydney, NSW, Australia.
| |
Collapse
|
2
|
Pulugulla SH, Workman R, Rutter NW, Yang Z, Adamik J, Lupish B, Macar DA, El Abdouni S, Esposito EX, Galson DL, Camacho CJ, Madura JD, Auron PE. A combined computational and experimental approach reveals the structure of a C/EBPβ-Spi1 interaction required for IL1B gene transcription. J Biol Chem 2018; 293:19942-19956. [PMID: 30355733 DOI: 10.1074/jbc.ra118.005627] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 10/09/2018] [Indexed: 01/19/2023] Open
Abstract
We previously reported that transcription of the human IL1B gene, encoding the proinflammatory cytokine interleukin 1β, depends on long-distance chromatin looping that is stabilized by a mutual interaction between the DNA-binding domains (DBDs) of two transcription factors: Spi1 proto-oncogene at the promoter and CCAAT enhancer-binding protein (C/EBPβ) at a far-upstream enhancer. We have also reported that the C-terminal tail sequence beyond the C/EBPβ leucine zipper is critical for its association with Spi1 via an exposed residue (Arg-232) located within a pocket at one end of the Spi1 DNA-recognition helix. Here, combining in vitro interaction studies with computational docking and molecular dynamics of existing X-ray structures for the Spi1 and C/EBPβ DBDs, along with the C/EBPβ C-terminal tail sequence, we found that the tail sequence is intimately associated with Arg-232 of Spi1. The Arg-232 pocket was computationally screened for small-molecule binding aimed at IL1B transcription inhibition, yielding l-arginine, a known anti-inflammatory amino acid, revealing a potential for disrupting the C/EBPβ-Spi1 interaction. As evaluated by ChIP, cultured lipopolysaccharide (LPS)-activated THP-1 cells incubated with l-arginine had significantly decreased IL1B transcription and reduced C/EBPβ's association with Spi1 on the IL1B promoter. No significant change was observed in direct binding of either Spi1 or C/EBPβ to cognate DNA and in transcription of the C/EBPβ-dependent IL6 gene in the same cells. These results support the notion that disordered sequences extending from a leucine zipper can mediate protein-protein interactions and can serve as druggable targets for regulating gene promoter activity.
Collapse
Affiliation(s)
- Sree H Pulugulla
- From the Departments of Biological Sciences and Biochemistry, Duquesne University, Pittsburgh, Pennsylvania 15282
| | - Riley Workman
- Chemistry and Biochemistry, Duquesne University, Pittsburgh, Pennsylvania 15282
| | - Nathan W Rutter
- Chemistry and Biochemistry, Duquesne University, Pittsburgh, Pennsylvania 15282
| | - Zhiyong Yang
- the Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02115
| | - Juraj Adamik
- the Department of Medicine, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | - Brian Lupish
- From the Departments of Biological Sciences and Biochemistry, Duquesne University, Pittsburgh, Pennsylvania 15282
| | - David A Macar
- From the Departments of Biological Sciences and Biochemistry, Duquesne University, Pittsburgh, Pennsylvania 15282
| | - Samir El Abdouni
- the Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | | | - Deborah L Galson
- the Department of Medicine, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15213,; the Department of Microbiology & Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania 15219
| | - Carlos J Camacho
- the Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Jeffry D Madura
- From the Departments of Biological Sciences and Biochemistry, Duquesne University, Pittsburgh, Pennsylvania 15282; Chemistry and Biochemistry, Duquesne University, Pittsburgh, Pennsylvania 15282
| | - Philip E Auron
- From the Departments of Biological Sciences and Biochemistry, Duquesne University, Pittsburgh, Pennsylvania 15282; the Department of Microbiology & Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania 15219.
| |
Collapse
|
3
|
Nishiyama C. Molecular Mechanism of Allergy-Related Gene Regulation and Hematopoietic Cell Development by Transcription Factors. Biosci Biotechnol Biochem 2014; 70:1-9. [PMID: 16428815 DOI: 10.1271/bbb.70.1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Transcriptional regulation for the genes encoding alpha- and beta-chains of the high-affinity receptor for IgE (FcepsilonRI) have been analyzed in mast cells and regulatory mechanisms are beginning to be elucidated. Transcription factors GATA-1 and PU.1 cooperatively transactivate the alpha-chain gene, and three transcription factors, GATA-1, Oct-1, and MZF-1, are involved in regulation of beta-chain gene expression. No single nucleotide polymorphisms (SNPs) that are functionally related to the allergic diseases have been identified in coding regions of the alpha- and beta-chain genes in a definitive way. However, recent studies on SNPs in the promoter regions have revealed that these genes are probable candidates for new types of allergy-related genes whose transcription levels are affected by transcription factors which discriminate SNPs in the promoters. Another interesting finding on transcription factors functioning in mast cells is that the expression level of PU.1 determines cell fate between mast cells and monocytes.
Collapse
Affiliation(s)
- Chiharu Nishiyama
- Atopy (Allergy) Research Center, Juntendo University School of Medicine, Japan.
| |
Collapse
|
4
|
Adamik J, Wang KZQ, Unlu S, Su AJA, Tannahill GM, Galson DL, O’Neill LA, Auron PE. Distinct mechanisms for induction and tolerance regulate the immediate early genes encoding interleukin 1β and tumor necrosis factor α. PLoS One 2013; 8:e70622. [PMID: 23936458 PMCID: PMC3731334 DOI: 10.1371/journal.pone.0070622] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 06/19/2013] [Indexed: 12/16/2022] Open
Abstract
Interleukin-1β and Tumor Necrosis Factor α play related, but distinct, roles in immunity and disease. Our study revealed major mechanistic distinctions in the Toll-like receptor (TLR) signaling-dependent induction for the rapidly expressed genes (IL1B and TNF) coding for these two cytokines. Prior to induction, TNF exhibited pre-bound TATA Binding Protein (TBP) and paused RNA Polymerase II (Pol II), hallmarks of poised immediate-early (IE) genes. In contrast, unstimulated IL1B displayed very low levels of both TBP and paused Pol II, requiring the lineage-specific Spi-1/PU.1 (Spi1) transcription factor as an anchor for induction-dependent interaction with two TLR-activated transcription factors, C/EBPβ and NF-κB. Activation and DNA binding of these two pre-expressed factors resulted in de novo recruitment of TBP and Pol II to IL1B in concert with a permissive state for elongation mediated by the recruitment of elongation factor P-TEFb. This Spi1-dependent mechanism for IL1B transcription, which is unique for a rapidly-induced/poised IE gene, was more dependent upon P-TEFb than was the case for the TNF gene. Furthermore, the dependence on phosphoinositide 3-kinase for P-TEFb recruitment to IL1B paralleled a greater sensitivity to the metabolic state of the cell and a lower sensitivity to the phenomenon of endotoxin tolerance than was evident for TNF. Such differences in induction mechanisms argue against the prevailing paradigm that all IE genes possess paused Pol II and may further delineate the specific roles played by each of these rapidly expressed immune modulators.
Collapse
Affiliation(s)
- Juraj Adamik
- Department of Biological Sciences, Duquesne University, Pittsburgh, Pennsylvania, United States of America
| | - Kent Z. Q. Wang
- Department of Biological Sciences, Duquesne University, Pittsburgh, Pennsylvania, United States of America
| | - Sebnem Unlu
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - An-Jey A. Su
- Department of Biological Sciences, Duquesne University, Pittsburgh, Pennsylvania, United States of America
| | | | - Deborah L. Galson
- Division of Hematology/Oncology, Department of Medicine, University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Luke A. O’Neill
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| | - Philip E. Auron
- Department of Biological Sciences, Duquesne University, Pittsburgh, Pennsylvania, United States of America
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
5
|
Qian M, Jin W, Zhu X, Jia X, Yang X, Du Y, Wang K, Zhang J. Structurally differentiated cis-elements that interact with PU.1 are functionally distinguishable in acute promyelocytic leukemia. J Hematol Oncol 2013; 6:25. [PMID: 23547873 PMCID: PMC3618267 DOI: 10.1186/1756-8722-6-25] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2013] [Accepted: 03/18/2013] [Indexed: 01/09/2023] Open
Abstract
Background Transcription factor PU.1, a member of the ETS family, is a master regulator of myeloid differentiation whose functional disruption is often associated with acute myeloid leukemia (AML). Although much has been learned about PU.1 over the past decades, relatively little is known about cis-elements that interact with this factor under physiological or pathological conditions, especially in the whole-genome scale. We aimed to define the cistrome of PU.1 in acute promyelocytic leukemia (APL) cells and characterize the cis-elements bound by PU.1. Methods Chromatin immunoprecipitation with specific antibody coupled with deep sequencing (ChIP-seq) was used to investigate the in vivo PU.1 binding sites at the whole-genome scale in APL-derived NB4 cells. The ChIP-quantitative (q)-PCR and luciferase reporter assays were used to validate the binding events and trans-activity, respectively. Various computational analyses, including motif mining, evolutionary conservation analysis and functional enrichment analysis, were performed to characterize the cis-elements that interacted with PU.1. Results A total of 26,907 significantly enriched binding regions of PU.1 were identified under the false discovery rate 0.1% in NB4 cells. PU.1 bound to various types of genomic regions and acted as a promoter-enhancer dual binding transcription factor. Based on the sequence length and composition, two types of representative motifs were identified in PU.1 binding sites: a long and a short motif. The long motif, characterized by high sequence specificity and binding affinity, predominantly resided in the promoter-distal regions. In contrast, the short one, with strong evolutionary constraint, represented the primary PU.1 cis-elements in the promoter-proximal regions. Interestingly, the short one showed more preference to be correlated with the binding of other factors, especially PML/RARα. Moreover, genes targeted by both PU.1 and PML/RARα were significantly involved in categories associated with oncogenesis, hematopoiesis and the pathogenesis of acute myeloid leukemia. Conclusions Our results demonstrate that structurally differentiated cis-elements that interact with PU.1 are functionally distinguishable in APL, suggesting that the sequence diversity of cis-elements might be a critical mechanism by which cells interpret the genome, and contribute to distinct physiological and/or pathological function.
Collapse
Affiliation(s)
- Maoxiang Qian
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences CAS, Shanghai 200025, China
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Svenson JL, Chike-Harris K, Amria MY, Nowling TK. The mouse and human Fli1 genes are similarly regulated by Ets factors in T cells. Genes Immun 2009; 11:161-72. [PMID: 19829305 DOI: 10.1038/gene.2009.73] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Fli1 is a member of the Ets family of transcription factors and is preferentially expressed in hematopoietic cell lineages. Its expression level is linked to the pathogenesis of lupus. In this study, we identified mechanisms involved in the transcriptional regulation of the mouse and human Fli1 promoters. We show that the Fli1 promoter is upregulated by Ets factors Ets1, Ets2, Fli1 and Elf1 either alone or in combination with GATA factors, but is inhibited by Tel. In vitro binding studies show that Elf1, Tel and Fli1 in T cells bind the three Ets-binding sites in the murine Fli1 proximal promoter. We identified transcription factor-binding sites in the human Fli1 promoter region that function in T cells in a similar manner to those in the mouse promoter. Furthermore, we show similar binding of Ets factors to the endogenous mouse and human Fli1 promoters in T cells and knocking down Ets1 results in an upregulation of Fli1 expression. Together, these results suggest that the human and mouse genes are regulated similarly and that Ets1 may be important in preventing the overexpression of Fli1 in T cells. This report lays the groundwork for identifying targets for manipulating Fli1 expression as a possible therapeutic approach.
Collapse
Affiliation(s)
- J L Svenson
- Division of Rheumatology, Department of Medicine, Children's Research Institute, Medical University of South Carolina, 96 Jonathon Lucas Street, Charleston, SC 29425, USA
| | | | | | | |
Collapse
|
7
|
Involvement of PU.1 in the transcriptional regulation of TNF-alpha. Biochem Biophys Res Commun 2009; 388:102-6. [PMID: 19646961 DOI: 10.1016/j.bbrc.2009.07.126] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2009] [Accepted: 07/24/2009] [Indexed: 11/23/2022]
Abstract
PU.1 is a myeloid- and lymphoid-specific transcription factor that serves many important roles in the development and specific gene regulation of hematopoietic lineages. Mast cells (MC) and dendritic cells (DC) express PU.1 at low and high levels, respectively. Previously, we found that enforced expression of PU.1 in MC resulted in acquisition of DC-like characteristics, including repression of several IgE-mediated responses due to reduced expression of IgE-signaling related molecules. In contrast, PU.1 overexpression in MC up-regulated TNF-alpha production in response to IgE- and LPS-stimulation suggesting that PU.1 positively regulates TNF-alpha expression. However, the role of PU.1 in the expression of TNF-alpha is largely unknown. In the present study, the effects of PU.1 on the TNF-alpha promoter in mouse bone marrow-derived (BM) MC and DC were studied. Real-time PCR, ELISA, and chromatin immunoprecipitation assays indicated that the kinetics and magnitude of TNF-alpha expression levels following LPS- or IgE-stimulation are related to the amount of PU.1 binding to the promoter. In brief, higher and delayed up-regulation of TNF-alpha promoter function was observed in DC, whereas there were lower and rapid responses in MC. When PU.1-overexpressing retrovirus vector was introduced into MC, the amount of PU.1 recruited to the TNF-alpha promoter markedly increased. The knockdown of PU.1 in BMDC by siRNA resulted in a reduction of TNF-alpha protein produced from LPS-stimulated BMDC. These observations indicate that PU.1 transactivates the TNF-alpha promoter and that the amount of PU.1 binding on the promoter is associated with promoter activity.
Collapse
|
8
|
Genetic polymorphism, linkage disequilibrium, haplotype structure and novel allele analysis of CYP2C19 and CYP2D6 in Han Chinese. THE PHARMACOGENOMICS JOURNAL 2009; 9:380-94. [DOI: 10.1038/tpj.2009.31] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
9
|
Ito T, Nishiyama C, Nakano N, Nishiyama M, Usui Y, Takeda K, Kanada S, Fukuyama K, Akiba H, Tokura T, Hara M, Tsuboi R, Ogawa H, Okumura K. Roles of PU.1 in monocyte- and mast cell-specific gene regulation: PU.1 transactivates CIITA pIV in cooperation with IFN-gamma. Int Immunol 2009; 21:803-16. [PMID: 19502584 DOI: 10.1093/intimm/dxp048] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Over-expression of PU.1, a myeloid- and lymphoid-specific transcription factor belonging to the Ets family, induces monocyte-specific gene expression in mast cells. However, the effects of PU.1 on each target gene and the involvement of cytokine signaling in PU.1-mediated gene expression are largely unknown. In the present study, PU.1 was over-expressed in two different types of bone marrow-derived cultured mast cells (BMMCs): BMMCs cultured with IL-3 plus stem cell factor (SCF) and BMMCs cultured with pokeweed mitogen-stimulated spleen-conditioned medium (PWM-SCM). PU.1 over-expression induced expression of MHC class II, CD11b, CD11c and F4/80 on PWM-SCM-cultured BMMCs, whereas IL-3/SCF-cultured BMMCs expressed CD11b and F4/80, but not MHC class II or CD11c. When IFN-gamma was added to the IL-3/SCF-based medium, PU.1 transfectant acquired MHC class II expression, which was abolished by antibody neutralization or in Ifngr(-/-) BMMCs, through the induction of expression of the MHC class II transactivator, CIITA. Real-time PCR detected CIITA mRNA driven by the fourth promoter, pIV, and chromatin immunoprecipitation indicated direct binding of PU.1 to pIV in PU.1-over-expressing BMMCs. PU.1-over-expressing cells showed a marked increase in IL-6 production in response to LPS stimulation in both IL-3/SCF and PWM-SCM cultures. These results suggest that PU.1 overproduction alone is sufficient for both expression of CD11b and F4/80 and for amplification of LPS-induced IL-6 production. However, IFN-gamma stimulation is essential for PU.1-mediated transactivation of CIITA pIV. Reduced expression of mast cell-related molecules and transcription factors GATA-1/2 and up-regulation of C/EBPalpha in PU.1 transfectants indicate that enforced PU.1 suppresses mast cell-specific gene expression through these transcription factors.
Collapse
Affiliation(s)
- Tomonobu Ito
- Atopy (Allergy) Research Center, Juntendo University School of Medicine, Bunkyo-ku, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Gupta P, Gurudutta GU, Saluja D, Tripathi RP. PU.1 and partners: regulation of haematopoietic stem cell fate in normal and malignant haematopoiesis. J Cell Mol Med 2009; 13:4349-63. [PMID: 19382896 PMCID: PMC4515051 DOI: 10.1111/j.1582-4934.2009.00757.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
During normal haematopoiesis, cell development and differentiation programs are accomplished by switching ‘on’ and ‘off’ specific set of genes. Specificity of gene expression is primarily achieved by combinatorial control, i.e. through physical and functional interactions among several transcription factors that form sequence-specific multiprotein complexes on regulatory regions (gene promoters and enhancers). Such combinatorial gene switches permit flexibility of regulation and allow numerous developmental decisions to be taken with a limited number of regulators. The haematopoietic-specific Ets family transcription factor PU.1 regulates many lymphoid- and myeloid-specific gene promoters and enhancers by interacting with multiple proteins during haematopoietic development. Such protein–protein interactions regulate DNA binding, subcellular localization, target gene selection and transcriptional activity of PU.1 itself in response to diverse signals including cytokines, growth factors, antigen and cellular stresses. Specific domains of PU.1 interact with many protein motifs such as bHLH, bZipper, zinc fingers and paired domain for regulating its activity. This review focuses on important protein–protein interactions of PU.1 that play a crucial role in regulation of normal as well as malignant haematopoiesis. Precise delineation of PU.1 protein-partner interacting interface may provide an improved insight of the molecular mechanisms underlying haematopoietic stem cell fate regulation. Its interactions with some proteins could be targeted to modulate the aberrant signalling pathways for reversing the malignant phenotype and to control the generation of specific haematopoietic progeny for treatment of haematopoietic disorders.
Collapse
Affiliation(s)
- Pallavi Gupta
- Stem Cell & Gene Therapy Research Group, Institute of Nuclear Medicine & Allied Sciences, DRDO, Delhi, India
| | | | | | | |
Collapse
|
11
|
Joo M, Kwon M, Cho YJ, Hu N, Pedchenko TV, Sadikot RT, Blackwell TS, Christman JW. Lipopolysaccharide-dependent interaction between PU.1 and c-Jun determines production of lipocalin-type prostaglandin D synthase and prostaglandin D2 in macrophages. Am J Physiol Lung Cell Mol Physiol 2009; 296:L771-9. [PMID: 19181746 DOI: 10.1152/ajplung.90320.2008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Previously, we reported that expression of lipocalin-prostaglandin D synthase (L-PGDS) is inducible in macrophages and protects from Pseudomonas pneumonia. Here, we investigated the mechanism by which L-PGDS gene expression is induced in macrophages. A promoter analysis of the murine L-PGDS promoter located a binding site of PU.1, a transcription factor essential for macrophage development and inflammatory gene expression. A chromatin immunoprecipitation assay showed that PU.1 bound to the cognate site in the endogenous L-PGDS promoter in response to LPS. Overexpression of PU.1, but not of PU.1(S148A), a mutant inert to casein kinase II (CKII) or NF-kappaB-inducing kinase (NIK), induced L-PGDS in RAW 264.7 cells. Conversely, siRNA silencing of PU.1 expression blunted productions of L-PGDS and prostaglandin D2 (PGD(2)). LPS treatment induced formation of the complex of PU.1 and cJun on the PU.1 site, but inactivation of cJun by treatment with JNK or p38 kinase inhibitor abolished the complex, and suppressed PU.1 transcriptional activity for L-PGDS gene expression. Together, these results show that PU.1, activated by CKII or NIK, cooperates with MAPK-activated cJun to maximally induce L-PGDS expression in macrophages following LPS treatment, and suggest that PU.1 participates in innate immunity through the production of L-PGDS and PGD(2).
Collapse
Affiliation(s)
- Myungsoo Joo
- School of Oriental Medicine, Pusan National University, Busan, Korea.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Zhu X, Schweitzer BL, Romer EJ, Sulentic CEW, DeKoter RP. Transgenic expression of Spi-C impairs B-cell development and function by affecting genes associated with BCR signaling. Eur J Immunol 2008; 38:2587-99. [PMID: 18792411 DOI: 10.1002/eji.200838323] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Spi-C is an Ets family transcription factor closely related to PU.1 and Spi-B. Expression of Spi-C is developmentally regulated in the B-cell lineage, but its function remains unknown. To determine the function of Spi-C in B-cell development, we generated mice expressing a B-cell-specific Spi-C transgene under the control of the IgH intronic enhancer. Spi-C transgenic mice had 50% fewer B cells than wild-type littermates. Flow cytometric analyses showed that splenic transitional B cells and bone marrow pre-B or immature B cells from transgenic mice were dramatically reduced compared with those of wild type. Both nonspecific and Ag-specific serum IgM levels were significantly increased in transgenic mice, while serum IgG levels were significantly decreased compared with wild type. Spi-C transgenic B cells proliferated poorly after stimulation by anti-IgM or anti-CD40 in vitro, although they responded normally to LPS stimulation. Using real-time RT-PCR, we found that several BCR signaling-related mediators were downregulated at pre-B-cell and mature B-cell stages in transgenic mice, while an inhibitor of BCR signaling was upregulated. Taken together, these data indicate that ectopic expression of Spi-C can impair B-cell development and function by affecting genes associated with BCR signaling.
Collapse
Affiliation(s)
- Xiang Zhu
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0524, USA
| | | | | | | | | |
Collapse
|
13
|
Li L, Fei Z, Ren J, Sun R, Liu Z, Sheng Z, Wang L, Sun X, Yu J, Wang Z, Fei J. Functional imaging of interleukin 1 beta expression in inflammatory process using bioluminescence imaging in transgenic mice. BMC Immunol 2008; 9:49. [PMID: 18710581 PMCID: PMC2529264 DOI: 10.1186/1471-2172-9-49] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2008] [Accepted: 08/19/2008] [Indexed: 01/21/2023] Open
Abstract
Background Interleukin 1 beta (IL-1β) plays an important role in a number of chronic and acute inflammatory diseases. To understand the role of IL-1β in disease processes and develop an in vivo screening system for anti-inflammatory drugs, a transgenic mouse line was generated which incorporated the transgene firefly luciferase gene driven by a 4.5-kb fragment of the human IL-1β gene promoter. Luciferase gene expression was monitored in live mice under anesthesia using bioluminescence imaging in a number of inflammatory disease models. Results In a LPS-induced sepsis model, dramatic increase in luciferase activity was observed in the mice. This transgene induction was time dependent and correlated with an increase of endogenous IL-1β mRNA and pro-IL-1β protein levels in the mice. In a zymosan-induced arthritis model and an oxazolone-induced skin hypersensitivity reaction model, luciferase expression was locally induced in the zymosan injected knee joint and in the ear with oxazolone application, respectively. Dexamethasone suppressed the expression of luciferase gene both in the acute sepsis model and in the acute arthritis model. Conclusion Our data suggest that the transgenic mice model could be used to study transcriptional regulation of the IL-1β gene expression in the inflammatory process and evaluation the effect of anti-inflammatory drug in vivo.
Collapse
Affiliation(s)
- Limei Li
- Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell biology, Shanghai Institutes for Biological Sciences, ChineseAcademy of Sciences, Shanghai, PR China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Listman JA, Race JE, Walker-Kopp N, Unlu S, Auron PE. Inhibition of IL-1beta transcription by peptides derived from the hCMV IE2 transactivator. Mol Immunol 2008; 45:2667-77. [PMID: 18308397 DOI: 10.1016/j.molimm.2007.12.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2007] [Accepted: 12/20/2007] [Indexed: 10/22/2022]
Abstract
The immediate early (IE) proteins of human cytomegalovirus (hCMV) have diverse roles in directing viral and host cell transcription. Among these is the ability of IE2 to induce transcription of the IL1B gene that codes for IL-1beta in monocytes. This function is partially explained by interaction between IE2 and the host cell transcription factor Spi-1/PU.1 (Spi-1). We now show that maximal IE2 function also depends on productive interactions localizing to two C/EBP sites on the IL1B promoter suggesting either bi- or tri-molecular interactions between IE2, Spi-1 and C/EBPbeta at two different locations on the promoter. The IE2 interaction region on Spi-1 was previously mapped to the DNA-binding ETS domain and overlaps the region of Spi-1 that interacts with the transcription factor C/EBPbeta, a factor known to be critical for the induction of IL1B in response to Toll/IL-1 receptor (TIR) family signal transduction. The Spi-1 interacting region of IE2 maps to amino acids 315-328, a sequence that also interacts with the bZIP domain of C/EBPbeta. An expression vector coding for amino acids 291-364 of IE2 can suppress LPS induction of a co-transfected IL1B enhancer-promoter fragment in a monocyte cell line. This inhibition is likely the result of competition between Spi-1 and C/EBPbeta, thus blunting gene induction.
Collapse
|
15
|
Ribas L, Roher N, Martínez M, Balasch JC, Doñate C, Goetz FW, Iliev D, Planas JV, Tort L, Mackenzie S. Characterization and expression of the transcription factor PU.1 during LPS-induced inflammation in the rainbow trout (Oncorhynchus mykiss). FISH & SHELLFISH IMMUNOLOGY 2008; 24:35-45. [PMID: 18083598 DOI: 10.1016/j.fsi.2007.07.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2007] [Revised: 07/14/2007] [Accepted: 07/29/2007] [Indexed: 05/25/2023]
Abstract
The transcription factor PU.1 plays a key role in hematopoietic lineage development and therefore in determining immune cell fate. A full length cDNA transcript of 1237 nucleotides encoding a highly conserved putative protein of 293 amino acids was identified by EST analysis in lipopolysaccharide (LPS) activated trout macrophages. Phylogenetic analyses highlight the significant level of structural conservation of the PU.1 transcription factor reinforcing the importance of this molecule in animal immunity. In trout, the PU.1 mRNA shows a tissue-specific expression pattern and is induced in vivo by LPS in muscle, liver, intestine and brain. Furthermore PU.1 is highly expressed in trout macrophages in primary culture. In situ expression analysis in the head kidney describes a large number of PU.1+ve cells distributed through the tissue in both LPS-treated and control animals. Cellular proliferation examined by BrdU immunohistochemistry (IHC) shows that LPS regulates hematopoietic processes in adult fish by stimulating cellular proliferation 3 days after treatment. These studies provide initial insights into hematopoietic/cellular processes in the head kidney of rainbow trout after in vivo LPS challenge.
Collapse
Affiliation(s)
- Laia Ribas
- Departament de Biologia Cellular, Fisiologia i d'Immunologia, Facultat de Ciencies, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Nowling TK, Fulton JD, Chike-Harris K, Gilkeson GS. Ets factors and a newly identified polymorphism regulate Fli1 promoter activity in lymphocytes. Mol Immunol 2008; 45:1-12. [PMID: 17606295 PMCID: PMC2045641 DOI: 10.1016/j.molimm.2007.05.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2007] [Revised: 05/09/2007] [Accepted: 05/11/2007] [Indexed: 11/26/2022]
Abstract
Fli1 is an Ets family member that is essential for embryonic development. Increasing evidence suggests modulating Fli1 gene expression impacts lymphocyte development/function and is an important mediator in the autoimmune disease lupus. Fli1 is over-expressed in splenic lymphocytes in lupus prone mouse strains and in PBMCs of lupus patients. Presently, it is unknown how Fli1 gene expression is controlled in lymphocytes or how it becomes over-expressed in lupus. Therefore, we examined Fli1 regulation in a murine B cell line and T cell line and identified several cis-regulatory elements within a 230 bp region that contribute to Fli1 promoter activity. Ets factors Elf1, Tel and Fli1 bind in vitro to this region and increase endogenous Fli1 expression when over-expressed in a T cell line. In addition, we determined that a microsatellite located adjacent to the region containing these cis-regulatory elements is polymorphic in three lupus prone mouse strains and that the length of the microsatellite is inversely correlated with promoter activity in a T cell line. These results suggest that several Ets factors, including Fli1 itself, are involved in the transcriptional regulation of Fli1 in lymphocytes. Furthermore, the presence of a polymorphic microsatellite in the Fli1 promoter may contribute to increased Fli1 expression in T cells during lupus disease progression.
Collapse
Affiliation(s)
- Tamara K Nowling
- Department of Medicine, Division of Rheumatology, Medical University of South Carolina, 96 Jonathan Lucas Street, Ste 912 CSB, Charleston, SC 29425, USA.
| | | | | | | |
Collapse
|
17
|
Houston IB, Huang KJ, Jennings SR, DeKoter RP. PU.1 immortalizes hematopoietic progenitors in a GM-CSF-dependent manner. Exp Hematol 2007; 35:374-384. [PMID: 17309818 DOI: 10.1016/j.exphem.2006.11.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2006] [Revised: 11/03/2006] [Accepted: 11/06/2006] [Indexed: 11/30/2022]
Abstract
OBJECTIVE The Ets family transcription factor PU.1 is essential for both myeloid and lymphoid development. PU.1 was discovered because of its involvement in murine erythroleukemia. We previously described that infection with a retroviral vector encoding PU.1 immortalizes fetal liver progenitor cells in response to granulocyte-macrophage colony-stimulating factor (GM-CSF) signaling. In this study, we sought to characterize PU.1-immortalized progenitor (PIP) cells. METHODS PIP cells were characterized using microscopy, reverse-transcriptase polymerase chain reaction analysis, and flow cytometric analysis. In addition, progenitors were immortalized with a retrovirus containing a PU.1 cDNA flanked by loxP sites. The differentiation potential of immortalized progenitors was tested by Cre-mediated excision of the proviral PU.1 cDNA. RESULTS PIP cells are blastlike in morphology and express cell surface markers indicative of myeloid development. Immortalization of progenitor cells requires both an acidic activation domain and an intact DNA-binding domain of PU.1. Gene expression analysis of PIP cells demonstrated the expression of genes of both myeloid and erythroid lineages. Proliferation of PIP cells was GM-CSF dependent and restricted. Upon Cre-mediated excision of proviral PU.1 cDNA, increased expression of myeloid and erythroid-specific genes was observed; as well as the appearance of both macrophages and erythrocytes in culture. CONCLUSION We demonstrate that ectopic expression of PU.1 is sufficient to immortalize a hematopoietic progenitor with myeloid and erythroid differentiation potential in response to GM-CSF. These data highlight the importance of the level of PU.1 expression at critical stages of hematopoiesis.
Collapse
Affiliation(s)
- Isaac B Houston
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267-0524, USA
| | | | | | | |
Collapse
|
18
|
Azim AC, Wang X, Park GY, Sadikot RT, Cao H, Mathew B, Atchison M, van Breemen RB, Joo M, Christman JW. NF-kappaB-inducing kinase regulates cyclooxygenase 2 gene expression in macrophages by phosphorylation of PU.1. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2007; 179:7868-75. [PMID: 18025233 DOI: 10.4049/jimmunol.179.11.7868] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Selective expression of cyclooxygenase 2 (COX-2) by macrophages could have an important role in the pathobiology of inflammation. We reported a functional synergism between PU.1 and other transcription factors that contributes to COX-2 gene expression in macrophages. PU.1 resides in the nuclear compartment and is activated by phosphorylation to bind to cognate DNA elements containing a 5'-GGAA/T-3' motif, but the involved kinase has not been discovered. We tested the hypothesis that NF-kappaB-inducing kinase (NIK) regulates COX-2 gene expression in macrophages through inducible phosphorylation of PU.1. Our initial experiments showed an in vitro protein-protein binding interaction between myc-NIK and GST-PU.1. Purified myc-NIK had a strong in vitro kinase activity for purified GST-PU.1, and this activity and production of COX-2 protein is blocked by treatment with a nonspecific kinase inhibitor, 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole. We used short interfering RNA to develop a stable NIK knockdown macrophage cell line that had an approximately 50% decrease in COX-2 protein production and decreased generation of PGD(2), and this was correlated with decreased binding of activated PU.1 to the COX-2 promoter in response to treatment with endotoxin. These findings suggest a novel role for NIK in mediating COX-2 gene expression in endotoxin-treated macrophages by a mechanism that involves phosphorylation of PU.1.
Collapse
Affiliation(s)
- Anser C Azim
- Department of Medicine, University of Illinois, Chicago, IL 60612, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Liew CW, Rand KD, Simpson RJY, Yung WW, Mansfield RE, Crossley M, Proetorius-Ibba M, Nerlov C, Poulsen FM, Mackay JP. Molecular Analysis of the Interaction between the Hematopoietic Master Transcription Factors GATA-1 and PU.1. J Biol Chem 2006; 281:28296-306. [PMID: 16861236 DOI: 10.1074/jbc.m602830200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
GATA-1 and PU.1 are transcription factors that control erythroid and myeloid development, respectively. The two proteins have been shown to function in an antagonistic fashion, with GATA-1 repressing PU.1 activity during erythropoiesis and PU.1 repressing GATA-1 function during myelopoiesis. It has also become clear that this functional antagonism involves direct interactions between the two proteins. However, the molecular basis for these interactions is not known, and a number of inconsistencies exist in the literature. We have used a range of biophysical methods to define the molecular details of the GATA-1-PU.1 interaction. A combination of NMR titration data and extensive mutagenesis revealed that the PU.1-Ets domain and the GATA-1 C-terminal zinc finger (CF) form a low affinity interaction in which specific regions of each protein are implicated. Surprisingly, the interaction cannot be disrupted by single alanine substitution mutations, suggesting that binding is distributed over an extended interface. The C-terminal basic tail region of CF appears to be sufficient to mediate an interaction with PU.1-Ets, and neither acetylation nor phosphorylation of a peptide corresponding to this region disrupts binding, indicating that the interaction is not dominated by electrostatic interactions. The CF basic tail shares significant sequence homology with the PU.1 interacting motif from c-Jun, suggesting that GATA-1 and c-Jun might compete to bind PU.1. Taken together, our data provide a molecular perspective on the GATA-1-PU.1 interaction, resolving several issues in the existing data and providing insight into the mechanisms through which these two proteins combine to regulate blood development.
Collapse
Affiliation(s)
- Chu Wai Liew
- School of Molecular and Microbial Biosciences, G08, University of Sydney, New South Wales 2006, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Garrett-Sinha LA, Hou P, Wang D, Grabiner B, Araujo E, Rao S, Yun TJ, Clark EA, Simon MC, Clark MR. Spi-1 and Spi-B control the expression of the Grap2 gene in B cells. Gene 2005; 353:134-46. [PMID: 15936902 DOI: 10.1016/j.gene.2005.04.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2004] [Revised: 03/21/2005] [Accepted: 04/07/2005] [Indexed: 11/16/2022]
Abstract
The Ets family members Spi-1 and Spi-B have been implicated in the regulation of genes important for B cell antigen receptor (BCR) signaling. Mice deficient in Spi-B exhibit reduced B cell proliferation in response to BCR cross-linking and impaired T cell-dependent immune responses. This defect is exacerbated in the presence of Spi-1 haplo-insufficiency (Spi1+/- SpiB-/-). Tyrosine phosphorylation and calcium mobilization induced by BCR engagement is diminished in Spi1+/- SpiB-/- B lymphocytes, although many key BCR signaling proteins are expressed, suggesting that Spi-1 and Spi-B regulate expression of additional, unidentified signaling molecules. We now demonstrate that expression of the adaptor protein Grap2 is impaired in Spi1+/- SpiB+/- and Spi1+/- SpiB-/- B lymphocytes. Analysis of two alternate murine Grap2 promoters revealed a functionally important Spi-1 and Spi-B DNA binding element located in the downstream promoter. Ectopic expression of Grap2 in Grap2-deficient B cells reduced the recruitment of BLNK to Igalpha and the phosphorylation of specific substrates. Regulation of BLNK recruitment was dependent upon the Grap2 proline-rich domain, while modulation of phosphorylation was dependent upon both the proline-rich and SH2 domains. These data indicate that Spi-1 and Spi-B directly regulate the expression of Grap2 and that Grap2 functions to modulate BCR signaling, but that reduced Grap2 expression is unlikely to account for the BCR signaling defects observed in Spi1+/- SpiB-/- B cells.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Animals
- B-Lymphocytes/metabolism
- Base Sequence
- Binding Sites/genetics
- Blotting, Northern
- Blotting, Western
- Cell Line, Tumor
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Down-Regulation/genetics
- Electrophoretic Mobility Shift Assay
- Gene Expression/genetics
- Genotype
- Heterozygote
- Mice
- Mice, Knockout
- Molecular Sequence Data
- Mutation
- Oligonucleotides/genetics
- Oligonucleotides/metabolism
- Promoter Regions, Genetic/genetics
- Protein Binding
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Antigen, B-Cell/metabolism
- Sequence Alignment
- Sequence Homology, Nucleic Acid
- Signal Transduction
- Spleen/cytology
- Spleen/metabolism
- Trans-Activators/genetics
- Trans-Activators/metabolism
- Transcription Factors/genetics
- Transcription Factors/metabolism
Collapse
Affiliation(s)
- Lee Ann Garrett-Sinha
- Department of Biochemistry, State University of New York at Buffalo, 140 Farber Hall, 3435 Main Street, Buffalo, NY 14214, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Gangenahalli GU, Gupta P, Saluja D, Verma YK, Kishore V, Chandra R, Sharma RK, Ravindranath T. Stem Cell Fate Specification: Role of Master Regulatory Switch Transcription Factor PU.1 in Differential Hematopoiesis. Stem Cells Dev 2005; 14:140-52. [PMID: 15910240 DOI: 10.1089/scd.2005.14.140] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
PU.1 is a versatile hematopoietic cell-specific ETS-family transcriptional regulator required for the development of both the inborn and the adaptive immunity, owing to its potential ability to regulate the expression of multiple genes specific for different lineages during normal hematopoiesis. It functions in a cell-autonomous manner to control the proliferation and differentiation, predominantly of lymphomyeloid progenitors, by binding to the promoters of many myeloid genes including the macrophage colony-stimulating factor (M-CSF) receptor, granulocyte-macrophage (GM)-CSF receptor alpha, and CD11b. In B cells, it regulates the immunoglobulin lambda 2-4 and kappa 3' enhancers, and J chain promoters. Besides lineage development, PU.1 also directs homing and long-term engraftment of hematopoietic progenitors to the bone marrow. PU.1 gene disruption causes a cell-intrinsic defect in hematopoietic progenitor cells, recognized by an aberrant myeloid and B lymphoid development. It also immortalizes erythroblasts when overexpressed in many cell lines. Although a number of reviews have been published on its functional significance, in the following review we attempted to consolidate information about the differential participation and role of transcription factor PU.1 at various stages of hematopoietic development beginning from stem cell proliferation, lineage commitment and terminal differentiation into distinct blood cell types, and leukemogenesis.
Collapse
Affiliation(s)
- Gurudutta U Gangenahalli
- Stem Cell Gene Therapy Research Group, Institute of Nuclear Medicine and Allied Sciences (INMAS), DRDO, Delhi-110054, India.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Hsu K, Traver D, Kutok JL, Hagen A, Liu TX, Paw BH, Rhodes J, Berman JN, Zon LI, Kanki JP, Look AT. The pu.1 promoter drives myeloid gene expression in zebrafish. Blood 2004; 104:1291-7. [PMID: 14996705 DOI: 10.1182/blood-2003-09-3105] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PU.1 is a member of the Ets family of transcription factors and plays an essential role in the development of both myeloid and lymphoid cells. To examine zebrafish pu.1 (zpu.1) expression in subpopulations of blood cells during zebrafish development, we linked a 9-kb zebrafish genomic fragment upstream of the zpu.1 initiator codon to green fluorescent protein (GFP) and microinjected this construct to generate stable transgenic lines. GFP-positive fluorescent myeloid precursors were observed migrating from the anterolateral mesoderm in living embryos from 16 to 28 hours after fertilization (hpf) in a pattern that overlaps the expression pattern of endogenous zpu.1 mRNA. Analysis of larval histologic sections revealed GFP-expressing hematopoietic cells in the developing zebrafish kidney. Flow cytometric analysis of cells from adult whole kidney marrow revealed 2 discrete subpopulations of GFP-positive cells, which after cell sorting exhibited either myeloid or early lymphoid morphology. Thus, the zebrafish zpu.1 promoter fragment used here is capable of driving reporter gene expression in subsets of embryonic and adult hematopoietic cells. These transgenic lines will be useful to dissect the cellular and molecular control of myeloid cell differentiation, and this promoter fragment may prove useful in the development of zebrafish models of acute myeloid leukemia.
Collapse
Affiliation(s)
- Karl Hsu
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Nishiyama C, Nishiyama M, Ito T, Masaki S, Maeda K, Masuoka N, Yamane H, Kitamura T, Ogawa H, Okumura K. Overproduction of PU.1 in mast cell progenitors: its effect on monocyte- and mast cell-specific gene expression. Biochem Biophys Res Commun 2004; 313:516-21. [PMID: 14697219 DOI: 10.1016/j.bbrc.2003.11.145] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The Ets family transcription factor PU.1 is required for development of various lymphoid and myeloid cell lineages, and regulates the expression of several genes in a cell type-specific manner. Mouse bone marrow-derived hematopoietic progenitor cells are programmed to differentiate into mast cells, when the cells are maintained in the presence of pokeweed mitogen-stimulated spleen-conditioned medium. However, by retroviral introduction of PU.1 cDNA, the progenitor cells expressed MHC class II, CD11b, CD11c, and F4/80, and acquired the ability to stimulate T cells. Furthermore, PU.1-overproducing cells exhibited the morphology, in part, similar to that of monocyte. These results indicate that the mast cell progenitors still have the ability to express monocyte-specific genes by increased expression of PU.1.
Collapse
Affiliation(s)
- Chiharu Nishiyama
- Atopy (Allergy) Research Center, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Hirose S, Nishizumi H, Sakano H. Pub, a novel PU.1 binding protein, regulates the transcriptional activity of PU.1. Biochem Biophys Res Commun 2004; 311:351-60. [PMID: 14592421 DOI: 10.1016/j.bbrc.2003.09.212] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PU.1 is a member of the Ets family of transcription factors and plays critical roles in the development of hematopoietic cells such as macrophages and B cells. To elucidate the molecular mechanism(s) underlying the regulation of PU.1 function, we screened for PU.1 interacting proteins using a yeast two-hybrid approach. As a result, a novel PU.1 binding factor, which we termed Pub, was isolated. The Pub protein has one B-box zinc finger domain, followed by a coiled-coil region and a B30.2-like domain, these features being characteristic of the tripartite motif (TRIM) family of protein. The PEST domain of PU.1 was found to interact with the N-terminal portion of Pub, a region that includes the TRIM which is considered to mediate protein-protein interactions. Northern blot and RT-PCR analyses demonstrated that Pub is predominantly expressed in hematopoietic tissues and cells where PU.1 is also expressed. Using a luciferase-based assay, we showed that Pub inhibited the transcriptional activity of PU.1. Moreover, the B-box zinc finger domain of Pub was critical for this inhibitory activity. These data suggest that Pub may be important in regulating the transcriptional activity of PU.1.
Collapse
Affiliation(s)
- Satoshi Hirose
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | | | | |
Collapse
|
25
|
Joo M, Park GY, Wright JG, Blackwell TS, Atchison ML, Christman JW. Transcriptional Regulation of the Cyclooxygenase-2 Gene in Macrophages by PU.1. J Biol Chem 2004; 279:6658-65. [PMID: 14966110 DOI: 10.1074/jbc.m306267200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Macrophages are an abundant source of cyclooxygenase-2 (COX-2) enzymatic products, but a specific mechanism for macrophage COX-2 gene expression has not been described. We examined whether PU.1, a myeloid-specific Ets family transcription factor, is involved. Sequence analysis revealed two potential c-Ets binding sites in the COX-2 promoter (COX-2p) which bind to immunoreactive PU.1. Chromatin immunoprecipitation analysis shows inducible PU.1 binding to these sites in response to lipopolysaccharide, and COX-2 protein production is augmented by ectopic expression of PU.1 but not by PU.1S148A, indicating that PU.1 phosphorylation is likely involved. Interestingly, expression of PU.1 results in acetylation of CCAAT/enhancer-binding protein-beta (C/EBP-beta) and increased production of COX-2 protein. Coimmunoprecipitation experiments suggest a role for p300 in C/EBP-beta acetylation and COX-2 expression. In contrast, E1A inhibits acetylation of C/EBP-beta and is correlated with decreased COX-2 expression. Together, these data suggest that PU.1 is activated by phosphorylation of Ser148 in response to lipopolysaccharide treatment and subsequently binds to sequences in the endogenous COX-2p in a time-dependent manner. Concomitantly, C/EBP-beta becomes acetylated, and expression of the COX-2 gene increases. We speculate that a combinatorial role of PU.1 and C/EBP-beta mediates the robust production of COX-2 products by macrophages which occurs in Gram-negative bacterial sepsis.
Collapse
Affiliation(s)
- Myungsoo Joo
- Department of Medicine, Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37232-2650, USA
| | | | | | | | | | | |
Collapse
|
26
|
McCarthy KM, McDevit D, Andreucci A, Reeves R, Nikolajczyk BS. HMGA1 co-activates transcription in B cells through indirect association with DNA. J Biol Chem 2003; 278:42106-14. [PMID: 12907668 DOI: 10.1074/jbc.m308586200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The immunoglobulin heavy chain enhancer, or mu enhancer, is required for B cell development. Only the appropriate combination of transcription factors results in B cell-specific enhancer activation. HMGA1 (formerly (HMG-I(Y)) is a proposed co-activator of the ETS transcription factors required for mu enhancer activity. HMGA1 associates with the ETS factor PU.1, resulting in changes in PU.1 structure, and enhanced transcriptional synergy with Ets-1 on the mu enhancer in nonlymphoid cells. New data show HMGA1 directly interacts with Ets-1 in addition to PU.1. In vitro HMGA1/Ets-1 interaction facilitates Ets-1/mu enhancer binding in the absence of an HMGA1.Ets-1.DNA complex. To address whether HMGA1 is present in the transcriptionally active mu nucleoprotein complex, we completed DNA pull-down assays to detect protein tethering in the context of protein/DNA interaction. Results show that HMGA1 is not tightly associated with mu enhancer DNA through PU.1 or Ets-1, despite strong associations between these proteins in solution. However, chromatin immunoprecipitation assays show HMGA1 associates with the endogenous enhancer in B cells. Furthermore, antisense HMGA1 substantially decreases mu enhancer activity in B cells. Taken together, these data suggest that HMGA1 functions as a transcriptional mu enhancer co-activator in B cells through indirect association with DNA.
Collapse
Affiliation(s)
- Kevin M McCarthy
- Department of Microbiology, Boston University School of Medicine, Boston, MA 02118, USA
| | | | | | | | | |
Collapse
|
27
|
Carlsson R, Persson C, Leanderson T. SPI-C, a PU-box binding ETS protein expressed temporarily during B-cell development and in macrophages, contains an acidic transactivation domain located to the N-terminus. Mol Immunol 2003; 39:1035-43. [PMID: 12749910 DOI: 10.1016/s0161-5890(03)00032-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Mice deficient for SPI-group ETS transcription factors PU.1 or SPI-B fail to generate lymphocytes or do not mount normal antibody mediated immune responses, respectively. PU.1 expression is restricted to B-, T-lymphocytes and macrophages, while SPI-B is expressed in B- and T-lymphocytes. SPI-C is an ETS transcription factor closely related to PU.1 and SPI-B, and expressed temporarily during B-cell development and in macrophages. By deletion and mutation analysis we show that the SPI-C protein has a transactivation domain located to the N-terminus, and that the transactivation activity is reduced to that of the DNA binding domain (DBD) alone when four aspartic acid residues are mutated to alanines. PU.1 and SPI-B regulate transcription from acidic domains located to the N-terminus and by recruiting the co-activator PIP to adjacent sites in a sequence specific manner. In contrast to PU.1 and PIP, SPI-C and PIP were unable to form a distinct ternary complex on the Ig lambda light chain lambda(2-4) enhancer element, suggesting that SPI-C could act both as a positive and negative transcriptional regulator during B-lymphocyte differentiation.
Collapse
Affiliation(s)
- Robert Carlsson
- Section for Immunology, CMB, Lund University, BMC I:13, 22184, Lund, Sweden.
| | | | | |
Collapse
|
28
|
Dekoninck A, Calomme C, Nizet S, de Launoit Y, Burny A, Ghysdael J, Van Lint C. Identification and characterization of a PU.1/Spi-B binding site in the bovine leukemia virus long terminal repeat. Oncogene 2003; 22:2882-96. [PMID: 12771939 DOI: 10.1038/sj.onc.1206392] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Bovine leukemia virus (BLV) is a B-lymphotropic oncogenic retrovirus whose transcriptional promoter is located in the viral 5' long terminal repeat (LTR). To date, no B-lymphocyte-specific cis-regulatory element has been identified in this region. Since ETS proteins are known to regulate transcription of numerous retroviruses, we searched for the presence in the BLV promoter region of binding sites for PU.1/Spi-1, a B-cell- and macrophage-specific ETS family member. In this report, nucleotide sequence analysis of the viral LTR identified a PUbox located at -95/-84 bp. We demonstrated by gel shift and supershift assays that PU.1 and the related Ets transcription factor Spi-B interacted specifically with this PUbox. A 2-bp mutation (GGAA-->CCAA) within this motif abrogated PU.1/Spi-B binding. This mutation caused a marked decrease in LTR-driven basal gene expression in transient transfection assays of B-lymphoid cell lines, but did not impair the responsiveness of the BLV promoter to the virus-encoded transactivator Tax(BLV). Moreover, ectopically expressed PU.1 and Spi-B proteins transactivated the BLV promoter in a PUbox-dependent manner. Taken together, our results provide the first demonstration of regulation of the BLV promoter by two B-cell-specific Ets transcription factors, PU.1 and Spi-B. The PU.1/Spi-B binding site identified here could play an important role in BLV replication and B-lymphoid tropism.
Collapse
Affiliation(s)
- Ann Dekoninck
- Laboratoire de Virologie Moléculaire, Service de Chimie Biologique, Institut de Biologie et de Médecine Moléculaires (IBMM), Université Libre de Bruxelles, Rue des Profs Jeener et Brachet 12, 6041 Gosselies, Belgium
| | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
The human folate receptor (hFR) type gamma gene is driven by a TATA-less promoter that uses a canonical Sp1 element for basal transcription. Using nuclear extract from 293 (human embryonic) cells, we mapped a second (non-canonical) Sp1 element to which Sp1 bound with a comparable affinity and which overlaps a functional ets binding site (EBS). Mutagenesis experiments revealed that the binding of ets to the EBS activates the promoter synergistically with Sp1 bound at the downstream site; however, binding of Sp1 to the EBS does not contribute to promoter activity. A further increase in Sp1 by inducible expression in recombinant 293 cells resulted in a small but significant decrease in the hFR-gamma promoter activity, but the decrease was abolished when the EBS was deleted from the promoter. In 293 cells, which do not express hFR-gamma, the Sp1 level was relatively high whereas in the hFR-gamma-positive HL60 leukemia cells, the Sp1 level was low and the EBS predominantly bound an ets protein. To account for the above observations, we propose a model in which when the Sp1 level is low, ets out competes Sp1 for binding to the EBS and synergistically enhances the hFR-gamma promoter activity by interacting with Sp1 bound at the canonical site whereas at higher levels, Sp1 represses the promoter by competitively inhibiting the binding of ets. As a partial extension of this model to the regulation of other ets activated genes, we show that Sp1 can predictably bind to a variety of ets elements including those responsive to Ets1 and Spi.1/Pu.1. A dual concentration-dependent action of Sp1 as an activator or a repressor offers a potential mechanism contributing to tissue-specific regulation of ets-dependent genes by Sp1.
Collapse
Affiliation(s)
- Karen M M Kelley
- Department of Biochemistry and Molecular Biology, Medical College of Ohio, 3035 Arlington Avenue, Toledo, OH 43614-5804, USA
| | | | | |
Collapse
|
30
|
Abstract
It is generally accepted that dendritic cells can be generated from either myeloid or lymphoid derived progenitors. Ample information has been collected on the development and nature of myeloid DC type 1 (DC1). In contrast, our current understanding on the origin and function of the lymphoid derived DC type 2 (DC2) is still limited but is increasing rapidly. Here we will summarize recent findings on the developmental origin of the precursor of DC2 (pre-DC2). The presence of pre-DC2 has been revealed in bone marrow, fetal liver, and cord blood, where they develop from hematopoietic stem cells (HSC) most likely via an intermediate pro-DC2 stage. Both in human and mouse, development of pre-DC2 depends on the cytokine FLT3-ligand (FLT3-L). In addition, transcription factors such as Spi-B and members of the basic helix-loop helix (bHLH) family have been shown to be involved in the proper differentiation of HSC into pre-DC2. The human thymus contains a population of cells that closely resembles the peripheral pre-DC2, including interferon (INF)-a production after viral stimulation. Some phenotypic differences have been observed however. Furthermore, we have shown that the thymic microenvironment is able to support development of pre-DC2 from HSC in vivo. A thymus independent pathway of pre-DC2 development exists as well, although at present it is not clear where these extrathymic pre-DC2 are generated. In regard of the absence of a phenotypic defined pro-DC2 population in the thymus, we speculate that development of thymic pre-DC2 may differ from peripheral pre-DC2. The challenge of the near future will be to determine the role of pre-DC2 during thymic T cell development.
Collapse
Affiliation(s)
- Bianca Blom
- Division of Immunology, Plesmanlaan 121, Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
31
|
Walsh JC, DeKoter RP, Lee HJ, Smith ED, Lancki DW, Gurish MF, Friend DS, Stevens RL, Anastasi J, Singh H. Cooperative and antagonistic interplay between PU.1 and GATA-2 in the specification of myeloid cell fates. Immunity 2002; 17:665-76. [PMID: 12433372 DOI: 10.1016/s1074-7613(02)00452-1] [Citation(s) in RCA: 216] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PU.1 and GATA transcription factors appear to antagonize each other's function in the development of distinct lineages of the hematopoietic system. In contrast, we demonstrate that PU.1, like GATA-2, is essential for the generation of mast cells. PU.1-/- hematopoietic progenitors can be propagated in IL-3 and differentiate into mast cells or macrophages upon restoration of PU.1 activity. Using these progenitors and a conditionally activatable PU.1 protein, we show that PU.1 can negatively regulate expression of the GATA-2 gene. In the absence of GATA-2, PU.1 promotes macrophage but not mast cell differentiation. Reexpression of GATA-2 in such progenitors enables the generation of mast cells. We propose a developmental model in which cooperative function or antagonistic crossregulation by PU.1 of GATA-2 promotes distinct myeloid cell fates.
Collapse
Affiliation(s)
- Jonathan C Walsh
- Department of Pharmacology and Physiological Sciences, The University of Chicago, IL 60637, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Li SL, Valente AJ, Qiang M, Schlegel W, Gamez M, Clark RA. Multiple PU.1 sites cooperate in the regulation of p40(phox) transcription during granulocytic differentiation of myeloid cells. Blood 2002; 99:4578-87. [PMID: 12036891 DOI: 10.1182/blood.v99.12.4578] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The p40(phox) protein, a regulatory component of the phagocyte NADPH oxidase, is preferentially expressed in cells of myeloid lineage. We investigated transcriptional regulation of the p40(phox) gene in HL-60 myeloid cells. Deletion analysis of approximately 6 kb of the 5'-flanking sequence of the gene demonstrated that the proximal 106 base pair of the promoter exhibited maximum reporter activity. This region contains 3 potential binding sites for PU.1, a myeloid-restricted member of the ets family of transcription factors. Mutation or deletion of each PU.1 site decreased promoter activity, and the level of activity mediated by each site correlated with its binding avidity for PU.1, as determined by gel shift competition assays. Mutation of all 3 sites abolished promoter activity in myeloid cells. PU.1-dependent expression was also observed in the Raji B-cell line, whereas the moderate level of promoter reporter activity in the nonmyeloid HeLa cell line was independent of PU.1. Chromatin immunoprecipitation assay demonstrated occupation of the PU.1 sites by PU.1 in vivo in HL-60 cells. Cotransfection of the pGL3-p40-106 reporter construct with a dominant-negative PU.1 mutant dramatically reduced promoter activity, whereas the overexpression of PU.1 increased promoter activity. Promoter activity and transcript levels of p40(phox) increased in HL-60 cells during dimethyl sulfoxide-induced differentiation toward the granulocyte phenotype, and this was associated with increased cellular levels of PU.1 protein. Our findings demonstrate that PU.1 binding at multiple sites is required for p40(phox) gene transcription in myeloid cells and that granulocytic differentiation is associated with the coordinated up-regulation of PU.1 and p40(phox) expression.
Collapse
Affiliation(s)
- Sen-Lin Li
- Department of Medicine, University of Texas Health Science Center and the South Texas Veterans Health Care System, Audie L. Murphy Division, San Antonio, 78229-3900, USA
| | | | | | | | | | | |
Collapse
|
33
|
Abstract
During embryogenesis there is a sequential, temporal appearance of increasingly more-complex hematopoietic cells beginning with unipotential progenitors, proceeding to multipotential (myeloid, erythroid and lymphoid) progenitors and culminating with adult-repopulating hematopoietic stem cells. Current research has established an important role for the aorta-gonads-mesonephros region of the mouse embryo in the generation of multipotential progenitors and hematopoietic stem cells. Comparisons of normal and hematopoietic-cell-mutant mouse embryos have revealed several genes pivotal in hematopoietic stem cell generation/function. Other genes have been implicated in the critical generation of lymphoid lineage potential. Thus, an understanding of the cellular and molecular interactions within the midgestation aorta-gonads-mesonephros region offers insight into the mechanisms of hematopoietic lineage specification during ontogeny and perhaps will lead to a more complete knowledge of the adult hematopoietic system.
Collapse
Affiliation(s)
- Kam-Wing Ling
- Department of Cell Biology and Genetics, Erasmus University, PO Box 1738, 3000 DR Rotterdam, The Netherlands
| | | |
Collapse
|
34
|
Silverman ES, Le L, Baron RM, Hallock A, Hjoberg J, Shikanai T, Storm van's Gravesande K, Auron PE, Lu W. Cloning and functional analysis of the mouse 5-lipoxygenase promoter. Am J Respir Cell Mol Biol 2002; 26:475-83. [PMID: 11919084 DOI: 10.1165/ajrcmb.26.4.4747] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
5-lipoxygenase (ALOX5), an enzyme essential for the formation of all leukotrienes, is highly regulated at multiple levels, including gene transcription. The human ALOX5 promoter sequence has been cloned and is well characterized. Several important cis-acting elements have been identified including a G+C-rich sequence approximately 145-179 base pairs (bp) upstream from the ATG start codon. This region contains consensus-binding sites for the transcription factor serum protein 1, a zinc-finger transcription factor (SP1) and early growth-response protein 1, a zinc-finger transcription factor (EGR-1) and is unique in that functionally significant polymorphisms alter these sequences. To further understand the significance of these polymorphisms and other regulatory sequences in the promoter we cloned approximately 2,000 bp of the mouse promoter sequence from a 129/SvJ BAC library for direct comparison with the human gene. Like the human promoter, the mouse Alox5 promoter lacks a TATA box and has multiple start sites. The first 292 bp immediately upstream of the translational start site function as a core promoter that is capable of mediating high basal transcription in RAW cells but not 3T3 cells. There are vast differences in the distribution of consensus cis elements between human and mouse genes; however, three areas of strong homology exist and they contain consensus-binding sites for the SP1, GATA, GGAGA, and ETS family of transcription factors. We show that Sp1/Sp3 is essential for constitutive promoter-reporter activity.
Collapse
Affiliation(s)
- Eric S Silverman
- Pulmonary and Critical Care Division and Genetics Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Toda Y, Tsukada J, Misago M, Kominato Y, Auron PE, Tanaka Y. Autocrine induction of the human pro-IL-1beta gene promoter by IL-1beta in monocytes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 168:1984-91. [PMID: 11823535 DOI: 10.4049/jimmunol.168.4.1984] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
IL-1beta is produced primarily by activated monocytes/macrophages. We report in this study that IL-1beta induces the human pro-IL-1beta (IL1B) gene promoter in human THP-1 monocytic cells. The -131 to +12 minimal IL1B promoter was induced by IL-1beta in a dose-dependent manner. The promoter possesses two important transcription factor binding motifs, one for an ETS family transcription factor Spi-1 (PU.1), and the other a binding site for NF-IL6 (CCAAT/enhancer binding protein beta). Autocrine promoter activity was completely inhibited by mutation of the Spi-1 site. Mutation of the NF-IL6 binding motif caused partial loss of activity. EMSAs using THP-1 cell nuclear extracts indicated that IL-1beta significantly induced Spi-1 binding to its target site within the IL1B promoter that was maximal at 1 h after stimulation, correlating with the kinetics of IL-1beta induction. The importance of Spi-1 was supported by our observation that Spi-1-deficient EL4 thymocytes exhibited IL-1beta-induced activity only after transfection with a Spi-1 expression vector. Moreover, TNFR-associated factor 6 also required Spi-1 to activate the promoter. Transfection studies using Spi-1 mutant constructs showed that the TATA-binding protein binding and glutamine-rich domains of Spi-1 were important for IL-1beta induction, whereas LPS induction required the proline, glutamic acid, serine, and threonine-rich domain containing serine 148 as well as the TATA-binding protein and glutamine-rich domains. We conclude that the IL1B promoter is an IL-1beta-responsive sequence as a result of its ability to bind Spi-1 in response to IL-1beta.
Collapse
Affiliation(s)
- Yoko Toda
- First Department of Internal Medicine, School of Medicine, and School of Health Sciences, University of Occupational and Environmental Health, Kitakyushu, Japan
| | | | | | | | | | | |
Collapse
|
36
|
Li Y, Okuno Y, Zhang P, Radomska HS, Chen H, Iwasaki H, Akashi K, Klemsz MJ, McKercher SR, Maki RA, Tenen DG. Regulation of the PU.1 gene by distal elements. Blood 2001; 98:2958-65. [PMID: 11698277 DOI: 10.1182/blood.v98.10.2958] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The transcription factor PU.1 (also known as Spi-1) plays a critical role in the development of the myeloid lineages, and myeloid cells derived from PU.1(-/-) animals are blocked at the earliest stage of myeloid differentiation. Expression of the PU.1 gene is tightly regulated during normal hematopoietic development, and dysregulation of PU.1 expression can lead to erythroleukemia. However, relatively little is known about how the PU.1 gene is regulated in vivo. Here it is shown that myeloid cell type-specific expression of PU.1 in stable cell lines and transgenic animals is conferred by a 91-kilobase (kb) murine genomic DNA fragment that consists of the entire PU.1 gene (20 kb) plus approximately 35 kb of upstream and downstream sequences, respectively. To further map the important transcriptional regulatory elements, deoxyribonuclease I hypersensitive site mapping studies revealed at least 3 clusters in the PU.1 gene. A 3.5-kb fragment containing one of these deoxyribonuclease I hypersensitive sites, located -14 kb 5' of the transcriptional start site, conferred myeloid cell type-specific expression in stably transfected cell lines, suggesting that within this region is an element important for myeloid specific expression of PU.1. Further analysis of this myeloid-specific regulatory element will provide insight into the regulation of this key transcriptional regulator and may be useful as a tool for targeting expression to the myeloid lineage.
Collapse
Affiliation(s)
- Y Li
- Harvard Institutes of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Kihara-Negishi F, Yamamoto H, Suzuki M, Yamada T, Sakurai T, Tamura T, Oikawa T. In vivo complex formation of PU.1 with HDAC1 associated with PU.1-mediated transcriptional repression. Oncogene 2001; 20:6039-47. [PMID: 11593411 DOI: 10.1038/sj.onc.1204756] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2001] [Revised: 06/19/2001] [Accepted: 06/26/2001] [Indexed: 11/08/2022]
Abstract
We previously reported that overexpression of PU.1, a member of the Ets family of transcription factors, induces differentiation inhibition and apoptosis associated with c-Myc down-regulation in murine erythroleukemia (MEL) cells. To understand the molecular mechanism by which c-Myc is down-regulated due to overexpression of PU.1, we performed luciferase reporter assays using the mouse c-myc promoter. PU.1 repressed the activities of not only the c-myc promoter but also several other promoters. Experiments with deletion mutants of PU.1 revealed that the C-terminal region spanning amino acids (aa) 123-272 including the PEST and ETS domains but not the activation domain was sufficient for this transcriptional repression. It was unlikely that the repression was due to sequestration of a limited amount of CBP/p300 nor pCAF, because overexpression of these co-activators did not relieve PU.1-mediated transcriptional repression. Instead, it was found that the C-terminal aa 101-272 of PU.1 formed a complex with mSin3A and HDAC1 in vivo, which was speculated to be associated with the repression. The C-terminal region of PU.1 also formed a complex with the basic transcription factor TBP in vitro and in vivo. Our results suggest that overexpression of PU.1 induces transcriptional repression in several gene promoters including the c-myc promoter which may be mediated by its complex formation with HDACs.
Collapse
Affiliation(s)
- F Kihara-Negishi
- Department of Cell Genetics, Sasaki Institute, 2-2, Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | | | | | | | | | | | | |
Collapse
|
38
|
Garrett-Sinha LA, Dahl R, Rao S, Barton KP, Simon MC. PU.1 exhibits partial functional redundancy with Spi-B, but not with Ets-1 or Elf-1. Blood 2001; 97:2908-12. [PMID: 11313289 DOI: 10.1182/blood.v97.9.2908] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previously it was shown that the Ets proteins, PU.1 and Spi-B, exhibit functional redundancy in B lymphocytes. To investigate the possibility that PU.1 or Spi-B or both share overlapping roles with Ets-1 or Elf-1, PU.1(+/-)Ets-1(-/-), PU.1(+/-)Elf-1(-/-), and Spi-B(-/-)Ets-1(-/-) animals were generated. No blood cell defects were observed in these animals except those previously reported for Ets-1(-/-) mice. Therefore, no genetic overlap was detected between PU.1 or Spi-B with Ets-1 or Elf-1. In contrast, the results confirmed functional redundancy for PU.1 and Spi-B in that PU.1(+/-)Spi-B(-/-) bone marrow progenitors yielded smaller colonies in methylcellulose cultures than did wild-type, PU.1(+/-) or Spi-B(-/-) progenitors. In addition, PU.1(+/-)Spi-B(+/+), PU.1(+/-)Spi-B(+/-), and PU.1(+/-) Spi-B(-/-) mice displayed extramedullary splenic hematopoiesis. In summary, PU.1 and Spi-B regulate common target genes required for proliferation of hematopoietic progenitors or their committed descendants, whereas Ets-1 or Elf-1 do not appear to regulate shared target genes with PU.1 or Spi-B.
Collapse
Affiliation(s)
- L A Garrett-Sinha
- Department of Medicine and Pathology, University of Chicago, IL, USA
| | | | | | | | | |
Collapse
|
39
|
Akbarzadeh S, Layton JE. Granulocyte colony-stimulating factor receptor: Structure and function. VITAMINS & HORMONES 2001; 63:159-94. [PMID: 11358114 DOI: 10.1016/s0083-6729(01)63006-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Affiliation(s)
- S Akbarzadeh
- Ludwig Institute for Cancer Research, Melbourne Tumour Biology Branch, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | | |
Collapse
|
40
|
Maroulakou IG, Bowe DB. Expression and function of Ets transcription factors in mammalian development: a regulatory network. Oncogene 2000; 19:6432-42. [PMID: 11175359 DOI: 10.1038/sj.onc.1204039] [Citation(s) in RCA: 151] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The Ets transcription factor family is involved in a variety of mammalian developmental processes at the cellular, tissue and organ levels. They are implicated in cellular proliferation, differentiation, migration, apoptosis and cell - cell interactions. This article reviews recent studies that demonstrate the integral importance of Ets in the dosage dependent regulation of development. The expression of many Ets genes is associated with mesenchymal - epithelial interactions and changes in extracellular matrix proteins. These inductive processes contribute to tissue remodeling and integrity, particularly during embryonic development. Overlapping as well as unique patterns of Ets expression are evident in developing tissues, including development of the lymphoid and myeloid lineages, brain and central nervous system, bone and mammary gland. Integration of these data will allow the development of predictive models for the regulation of complex developmental processes.
Collapse
Affiliation(s)
- I G Maroulakou
- Center for Molecular and Structural Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, SC 29403, USA
| | | |
Collapse
|
41
|
Hural JA, Kwan M, Henkel G, Hock MB, Brown MA. An intron transcriptional enhancer element regulates IL-4 gene locus accessibility in mast cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 165:3239-49. [PMID: 10975840 DOI: 10.4049/jimmunol.165.6.3239] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The cell type-specific expression of a gene is dependent on developmentally regulated modifications in chromatin structure that allow accessibility of basal and inducible transcription factors. In this study, we demonstrate that a cis-acting element in the second intron of the murine IL-4 gene has a dual function in regulating transcription in mast cells as well as chromatin accessibility of the IL-4 gene locus through its influence on the methylation state of the gene. Previous studies have shown that mast cell-restricted transcription factors GATA-1/2 and PU.1 associate with the intron element and regulate its activity. In this study, we use DNase I footprinting and mutational analyses to identify two additional sites that contribute to the element's ability to enhance transcription. One of these sites associates preferentially with STAT5a and STAT5b. We also demonstrate that deletion of the element or mutation of the GATA binding site in the context of a stably integrated IL-4 genomic construct prevents maintenance of a demethylated locus in IL-4-producing mast cells. These data indicate that, analogous to Ig and TCR intron regulatory elements, the intron enhancer has an essential role in maintaining developmentally regulated demethylation at the IL-4 gene locus. In addition, they indicate that members of the GATA family of transcription factors likely play an important role in these processes.
Collapse
Affiliation(s)
- J A Hural
- Graduate Program in Immunology and Molecular Pathogenesis, Emory University, Atlanta, GA 30322, USA
| | | | | | | | | |
Collapse
|
42
|
Yang Z, Wara-Aswapati N, Chen C, Tsukada J, Auron PE. NF-IL6 (C/EBPbeta ) vigorously activates il1b gene expression via a Spi-1 (PU.1) protein-protein tether. J Biol Chem 2000; 275:21272-7. [PMID: 10801783 DOI: 10.1074/jbc.m000145200] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Two classes of transcription factors, ETS and bZIP, stand out as key mediators of monocyte commitment and differentiation. The ETS domain factor Spi-1 (also called PU.1) and the bZIP factor NF-IL6 (also called C/EBPbeta) have been shown to be involved in the transcriptional regulation of interleukin-1beta gene (il1b) and other monocyte-specific genes. We now show that these two factors strongly cooperate on the il1b core promoter (-59/+12) in the absence of direct NF-IL6 binding to DNA. Transient transfection assays, using mutated il1b core promoters, showed that the Spi-1, but not the NF-IL6, binding site is absolutely required for functional cooperativity. Furthermore, the NF-IL6 transactivation domain (TAD) is functionally indispensable and more critical than that of Spi-1. Additionally, TAD-deficient NF-IL6 functions as a dominant negative for Spi-1-mediated activation, suggesting the involvement of the bZIP DNA binding domain. This is supported by the demonstration of in vitro interaction between the NF-IL6 bZIP and Spi-1 winged helix-turn-helix (wHTH) DNA binding domains, arguing that NF-IL6 vigorously activates the il1b core promoter via protein-tethered transactivation mediated by Spi-1.
Collapse
Affiliation(s)
- Z Yang
- New England Baptist Bone & Joint Institute, Division of Hematology and Oncology, Beth Israel Deaconess Medical Center, Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
43
|
Abstract
Human monocyte/neutrophil elastase inhibitor (MNEI) is a specific inhibitor of the neutrophil azurophil granule proteases including elastase. To understand the physiological mechanisms that regulate expression of MNEI, we dissected a 1.0 kb region upstream of exon 1. On transient transfection, promoter activity of MNEI-luciferase constructs was highest in U937 myeloid cells, followed by K562 hematopoietic cells, followed by HeLa cervical carcinoma cells, indicating that the MNEI promoter is most active in myeloid cells and is also active in non-myeloid cells. Three transcription factor binding elements, which confer the majority of activity, are located within the first 180 base pairs of the promoter, one of which, located at -128, was active in U937 and K562 cells but inactive in non-myeloid HeLa cells. The three proximal elements were identified by transient transfection, mutation, gel shift and competition assays as Sp1 at -170, PU.1/Spi-1 at -128, and Sp1 at -66. The trans-acting factors that bind and control these elements were detected, and their identity confirmed by antibody supershift assays. Further upstream at -821, an additional regulatory element was identified controlled by NF-kappaB, which supports the highest levels of MNEI transcriptional activity. In U937 cells, reporter gene expression by the MNEI-luciferase construct that included the NF-kappaB element was two- to three-fold greater than the construct without the element. In addition, treatment of myeloid cells with lipopolysaccharide, a complex glycolipid of gram-negative bacteria, activated NF-kappaB to bind the -821 element, together suggesting that enhancement of expression of the anti-inflammatory MNEI gene is linked to innate immune responses to bacterial infection.
Collapse
Affiliation(s)
- W Zeng
- The Center for Blood Research and the Department of Pediatrics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
44
|
Pendergraft WF, Alcorta DA, Segelmark M, Yang JJ, Tuttle R, Jennette JC, Falk RJ, Preston GA. ANCA antigens, proteinase 3 and myeloperoxidase, are not expressed in endothelial cells. Kidney Int 2000; 57:1981-90. [PMID: 10792617 DOI: 10.1046/j.1523-1755.2000.00048.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND One hypothesis for the pathogenesis of vasculitis associated with antineutrophil cytoplasmic autoantibodies (ANCAs) proposes that ANCAs bind to ANCA antigens, such as proteinase 3 (PR3) or myeloperoxidase (MPO), which are produced by endothelial cells and expressed on their surfaces. There are conflicting reports, however, on whether endothelial cells express the ANCA antigen PR3, and there are no reports on endothelial expression of MPO. The aim of this study was to determine the presence or absence of PR3 and MPO mRNA in both venous and arterial endothelial cells, employing standard reverse transcription-polymerase chain reaction (RT-PCR) techniques and also the quantitative and highly specific method, TaqMan PCR. METHODS RT-PCR (with 3 primer sets) and TaqMan PCR, a method for detecting low copy transcripts, were used to probe for PR3 and MPO transcripts in human endothelial cells from umbilical vein (HUVEC) and artery (HUAEC) and from lung microvascular (HLMVEC). Cells were treated with interferon-gamma (200 units/mL) or tumor necrosis factor-alpha (3 or 10 ng/mL) or both. RESULTS Transcripts for PR3 and/or MPO were not detected in HUVEC, HUAEC, and HLMVEC by standard RT-PCR. Analyses for PR3 protein confirmed that PR3 is not expressed in HUVEC. HUVEC and HUAEC were negative for PR3 and MPO by TaqMan PCR. CONCLUSIONS PR3 and MPO are not expressed in HUVEC, HUAEC, or HLMVEC. Endothelial cell presentation of endogenous PR3 and MPO antigens is not involved in the pathogenesis of ANCA-associated vasculitis. Alternative explanations need to be explored to determine the pathogenic effect of ANCAs.
Collapse
Affiliation(s)
- W F Pendergraft
- Division of Nephrology and Hypertension, Department of Medicine, University of North Carolina at Chapel Hill, 27599, USA
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Lust JA, Donovan KA. The role of interleukin-1 beta in the pathogenesis of multiple myeloma. Hematol Oncol Clin North Am 1999; 13:1117-25. [PMID: 10626139 DOI: 10.1016/s0889-8588(05)70115-5] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Interleukin-1 beta has potent OAF activity, can increase the expression of adhesion molecules, and can induce paracrine IL-6 production (see Fig. 1). These biologic effects of IL-1 beta closely parallel several of the clinical features of human myeloma, such as osteolytic bone lesions, homing of myeloma cells to the bone marrow, and IL-6-induced cell growth. The increased production of adhesion molecules could explain why myeloma cells are found predominantly in the bone marrow. These fixed monoclonal plasma cells could subsequently stimulate osteoclasts through the production of IL-1 beta and paracrine generation of IL-6, resulting in osteolytic disease. Also, IL-6 produced by either a paracrine or autocrine mechanism can support the growth of the myeloma cells that may be manifested clinically by an elevated labeling index. In the future, continued follow-up of IL-1 beta-positive and IL-1 beta-negative MGUS patients should determine whether aberrant expression of IL-1 beta by monoclonal plasma cells is a critical genetic event in the progression of MGUS to myeloma. Because MGUS is relatively common in the general population and myeloma is incurable in almost all cases, identification of MGUS patients who are likely to progress to active myeloma will be important in the development of new therapeutic strategies. For example, an effective chemopreventive agent that prevents or delays the transition from MGUS to myeloma could have a major effect on the treatment of patients with monoclonal gammopathies.
Collapse
Affiliation(s)
- J A Lust
- Division of Hematology and Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | | |
Collapse
|
46
|
Rao S, Garrett-Sinha LA, Yoon J, Simon MC. The Ets factors PU.1 and Spi-B regulate the transcription in vivo of P2Y10, a lymphoid restricted heptahelical receptor. J Biol Chem 1999; 274:34245-52. [PMID: 10567398 DOI: 10.1074/jbc.274.48.34245] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To investigate the in vivo functions of PU.1 and Spi-B, two highly related Ets transcription factors, we previously generated PU. 1(+/+)Spi-B(-/-) and PU.1(+/-)Spi-B(-/-) mice and demonstrated a significant decrease in B-cell receptor (BCR) signaling in mutants. Major components of BCR signaling appear to be expressed at normal levels in these mice, implying that PU.1 and Spi-B cooperate in the transcription of additional target genes important for antigen receptor signaling. We used subtractive hybridization to identify novel in vivo PU.1/Spi-B target genes and determined that the expression of a heptahelical receptor, P2Y10, is dramatically reduced in PU.1(+/-)Spi-B(-/-) B-cells. Further analysis shows that P2Y10 expression is restricted to lymphoid cells and parallels that of Spi-B in B-lymphocytes. Lastly, the P2Y10 promoter contains a PU. 1/Spi-B binding site functionally required for efficient transcription in B-cells. Thus, P2Y10 is likely to be a direct in vivo transcriptional target for PU.1 and Spi-B and provides a unique model to explore transcriptional regulation by this Ets factor subfamily. Furthermore, P2Y10 suggests an intriguing connection between heterotrimeric G-proteins and BCR signaling.
Collapse
MESH Headings
- 3T3 Cells
- Amino Acid Sequence
- Animals
- B-Lymphocytes/metabolism
- Binding Sites
- Binding, Competitive
- Blotting, Northern
- Cell Lineage
- DNA/genetics
- DNA/metabolism
- DNA, Complementary/genetics
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- DNA-Binding Proteins/physiology
- Gene Expression
- Mice
- Mice, Knockout
- Molecular Sequence Data
- Promoter Regions, Genetic
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/metabolism
- Proto-Oncogene Proteins/physiology
- RNA, Messenger/genetics
- RNA, Messenger/isolation & purification
- RNA, Messenger/metabolism
- Receptors, Antigen, B-Cell/genetics
- Receptors, Antigen, B-Cell/metabolism
- Sequence Homology, Amino Acid
- Tissue Distribution
- Trans-Activators/genetics
- Trans-Activators/metabolism
- Trans-Activators/physiology
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Transcription Factors/physiology
- Transcription, Genetic
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- S Rao
- Department of Pathology, The University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | |
Collapse
|
47
|
Abstract
The proliferation and differentiation of erythroid cells is a highly regulated process that is controlled primarily at the level of interaction of erythropoietin (Epo) with its specific cell surface receptor (EpoR). However, this process is deregulated in mice infected with the Friend spleen focus-forming virus (SFFV). Unlike normal erythroid cells, erythroid cells from SFFV-infected mice are able to proliferate and differentiate in the absence of Epo, resulting in erythroid hyperplasia and leukemia. Over the past 20 years, studies have been carried out to identify the viral genes responsible for the pathogenicity of SFFV and to understand how expression of these genes leads to the deregulation of erythropoiesis in infected animals. The studies have revealed that SFFV encodes a unique envelope glycoprotein which interacts specifically with the EpoR at the cell surface, resulting in activation of the receptor and subsequent activation of erythroid signal transduction pathways. This leads to the proliferation and differentiation of erythroid precursor cells in the absence of Epo. Although the precise mechanism by which the viral protein activates the EpoR is not yet known, it has been proposed that it causes dimerization of the receptor, resulting in constitutive activation of Epo signal transduction pathways. While interaction of the SFFV envelope glycoprotein with the EpoR leads to Epo-independent erythroid hyperplasia, this is not sufficient to transform these cells. Transformation requires the viral activation of the cellular gene Sfpi-1, whose product is thought to block erythroid cell differentiation. By understanding how SFFV can deregulate erythropoiesis, we may gain insights into the causes and treatment of related diseases in man.
Collapse
Affiliation(s)
- S K Ruscetti
- National Cancer Institute, Frederick Cancer Research and Development Center, MD 21702-1201, USA.
| |
Collapse
|
48
|
Pio F, Assa-Munt N, Yguerabide J, Maki RA. Mutants of ETS domain PU.1 and GGAA/T recognition: free energies and kinetics. Protein Sci 1999; 8:2098-109. [PMID: 10548056 PMCID: PMC2144130 DOI: 10.1110/ps.8.10.2098] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The ETS family members display specific DNA binding site preferences. As an example, PU.1 and ETS-1 recognize different DNA sequences with a core element centered over 5'-GGAA-3' and 5'-GGAA/T-3', respectively. To understand the molecular basis of this recognition, we carried out site-directed mutagenesis experiments followed by DNA binding studies that use electrophoretic mobility shift assay (EMSA) and surface plasmon resonance methods. EMSA experiments identified amino acid changes A231S and/or N236Y as being important for PU.1 recognition of both 5'-GGAA-3' and 5'-GGAT-3' containing oligonucleotides. To confirm these data and obtain accurate binding parameters, we performed kinetic studies using surface plasmon resonance on these mutants. The N236Y substitution revealed a weak protein-DNA interaction with the 5'-GGAA-3' containing oligonucleotide caused by a faster release of the protein from the DNA (k(off) tenfold higher than the wild-type protein). With the double mutant A231S-N236Y, we obtained an increase in binding affinity and stability toward both 5'-GGAA-3' and 5'-GGAT-3' containing oligonucleotides. We propose that substitution of alanine for serine introduces an oxygen atom that can accept hydrogen and interact with potential water molecules or other atoms to make an energetically favorable hydrogen bond with both 5'-GGAA-3' and 5'-GGAT-3' oligonucleotides. The free energy of dissociation for the double mutant A231S-N236Y with 5'-GGAA-3' (delta deltaG((A231S-N236Y) - (N236Y)) = -1.2 kcal mol confirm the stabilizing effect of this mutant in the protein-DNA complex formation. We conclude that N236Y mutation relaxes the specificity toward 5'-GGAA-3' and 5'-GGAT-3' sequences, while A231S mutation modulates the degree of specificity toward 5'-GGAA-3' and 5'GGAT-3' sequences. This study explains why wild-type PU.1 does not recognize 5'-GGAT-3' sequences and in addition broadens our understanding of 5'-GGAA/T-3' recognition by ETS protein family members.
Collapse
Affiliation(s)
- F Pio
- The Burnham Institute, La Jolla, California 92037, USA.
| | | | | | | |
Collapse
|
49
|
Barbeau B, Barat C, Bergeron D, Rassart E. The GATA-1 and Spi-1 transcriptional factors bind to a GATA/EBS dual element in the Fli-1 exon 1. Oncogene 1999; 18:5535-45. [PMID: 10523830 DOI: 10.1038/sj.onc.1202913] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Fli-1 is a proto-oncogene which is rearranged in tumors induced by three different retroviruses, Cas-Br-E, F-MuLV, and 10A1. This gene is a member of the Ets gene family, a class of transcription factors that recognize and bind to a DNA motif known as the Ets binding site (EBS). Our laboratory has previously cloned and characterized the promoter region of both human and mouse Fli-1 genes. We had then identified several regulatory elements conserved between the two species. Two of them, an exon 1 GATA/EBS dual element and an EBS element located in the 5' end of intron 1, were analysed in the present study. EMSA analysis performed with nuclear extracts from different cell lines showed that the EBS element in intron 1 (EBSi) was bound by one potential Ets-related ubiquitous factor. The GATA/EBS element was bound by several factors that seemed Ets-related, one of which was found to be specifically expressed in hematopoietic cells. the GATA/EBS dual element was thus chosen for further analysis. A human Fli-1-derived genomic fragment containing the GATA/EBS led to enhanced transcription when positioned upstream of the SV40 promoter in the erythroleukemic HEL cell line. In addition, an increasing number of GATA/EBS oligonucleotides upstream of this same promoter resulted in a copy number-dependent increase in luciferase activity which was greatly reduced when the EBS consensus sequence was mutated. One of the factors binding to the GATA/EBS region was identified to be Spi-1 by supershift analysis and was also shown to bind to the EBS element of the human Ets-2 gene. Supershift analysis also demonstrated the binding of the GATA-1 factor to the GATA/EBS dual element. Our results suggest that Spi-1 and GATA-1 might play a key role in the regulation of Fli-1.
Collapse
Affiliation(s)
- B Barbeau
- Laboratoire de biologie moléculaire, Département des Sciences Biologiques, Université du Québec à Montréal, Montréal, Québec, Canada
| | | | | | | |
Collapse
|
50
|
Housby JN, Cahill CM, Chu B, Prevelige R, Bickford K, Stevenson MA, Calderwood SK. Non-steroidal anti-inflammatory drugs inhibit the expression of cytokines and induce HSP70 in human monocytes. Cytokine 1999; 11:347-58. [PMID: 10328874 DOI: 10.1006/cyto.1998.0437] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Recent studies have shown that the non-steroidal anti-inflammatory drugs (NSAIDs) activate heat shock transcription factor (HSF1) from a latent cytoplasmic form to a nuclear, DNA binding state. As HSF1 can function as both an activator of heat shock genes and a repressor of non-heat shock genes such as IL1B and c- fos, we have examined the potential role of HSF1 in the effects of NSAIDs on gene expression in a human monocytic cell line THP-1. We found that two members of the NSAIDs, sodium salicylate and sulindac repress the IL1B promoter to similar degree to heat shock or HSF1 overexpression. In addition, sodium salicylate and additional NSAIDs used at concentrations that activate HSF1 also inhibited the expression of other monocytic genes (TNF-alpha, IL-1beta, IL-6, IL-8, IL-10, ICAM-1) activated by exposure to a pro-inflammatory stimulus (lipopolysaccharide, LPS). At least in the case of the IL1B promoter, repression did not seem to involve another factor whose activity is affected by the NSAIDs, NFkappaB as the IL1B promoter fragment used in our studies is not NFkappaB responsive and binds specifically to HSF1. Exposure to NSAIDs had a complex effect on HSP gene expression and while sulindac activated the stress responsive HSP70B promoter, sodium salicylate did not. In addition, only a subset of the NSAIDs induced HSP70 mRNA species. These findings reflect the properties of HSF1 which can be activated to at least two DNA binding forms only one of which activates heat shock promoters and suggest that individual NSAID family members may differentially induce one or other of these forms. Overall therefore, exposure to NSAIDs leads to a profound switch in gene expression in monocytic cells, with suppression of genes involved in macrophage activation and induction of stress genes and HSF1 appears to play a regulatory role in these effects.
Collapse
Affiliation(s)
- J N Housby
- Dana Farber Cancer Institute and Joint Center for Radiation Therapy, Jimmy Fund Laboratories 205, Harvard Medical School, 44 Binney Street, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|