1
|
Segovia D, Adams DW, Hoffman N, Safaric Tepes P, Wee TL, Cifani P, Joshua-Tor L, Krainer AR. SRSF1 interactome determined by proximity labeling reveals direct interaction with spliceosomal RNA helicase DDX23. Proc Natl Acad Sci U S A 2024; 121:e2322974121. [PMID: 38743621 PMCID: PMC11126954 DOI: 10.1073/pnas.2322974121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/15/2024] [Indexed: 05/16/2024] Open
Abstract
SRSF1 is the founding member of the SR protein family. It is required-interchangeably with other SR proteins-for pre-mRNA splicing in vitro, and it regulates various alternative splicing events. Dysregulation of SRSF1 expression contributes to cancer and other pathologies. Here, we characterized SRSF1's interactome using proximity labeling and mass spectrometry. This approach yielded 190 proteins enriched in the SRSF1 samples, independently of the N- or C-terminal location of the biotin-labeling domain. The detected proteins reflect established functions of SRSF1 in pre-mRNA splicing and reveal additional connections to spliceosome proteins, in addition to other recently identified functions. We validated a robust interaction with the spliceosomal RNA helicase DDX23/PRP28 using bimolecular fluorescence complementation and in vitro binding assays. The interaction is mediated by the N-terminal RS-like domain of DDX23 and both RRM1 and the RS domain of SRSF1. During pre-mRNA splicing, DDX23's ATPase activity is essential for the pre-B to B spliceosome complex transition and for release of U1 snRNP from the 5' splice site. We show that the RS-like region of DDX23's N-terminal domain is important for spliceosome incorporation, while larger deletions in this domain alter subnuclear localization. We discuss how the identified interaction of DDX23 with SRSF1 and other SR proteins may be involved in the regulation of these processes.
Collapse
Affiliation(s)
- Danilo Segovia
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY11724
- Graduate Program in Molecular and Cellular Biology, Stony Brook University, Stony Brook, NY11794
| | - Dexter W. Adams
- HHMI, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY11724
- W. M. Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY11724
- Graduate Program in Genetics, Stony Brook University, Stony Brook, NY11794
| | | | | | - Tse-Luen Wee
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY11724
| | - Paolo Cifani
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY11724
| | - Leemor Joshua-Tor
- HHMI, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY11724
- W. M. Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY11724
| | | |
Collapse
|
2
|
Campagne S, de Vries T, Malard F, Afanasyev P, Dorn G, Dedic E, Kohlbrecher J, Boehringer D, Cléry A, Allain FHT. An in vitro reconstituted U1 snRNP allows the study of the disordered regions of the particle and the interactions with proteins and ligands. Nucleic Acids Res 2021; 49:e63. [PMID: 33677607 PMCID: PMC8216277 DOI: 10.1093/nar/gkab135] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 02/11/2021] [Accepted: 02/17/2021] [Indexed: 11/17/2022] Open
Abstract
U1 small nuclear ribonucleoparticle (U1 snRNP) plays a central role during RNA processing. Previous structures of U1 snRNP revealed how the ribonucleoparticle is organized and recognizes the pre-mRNA substrate at the exon–intron junction. As with many other ribonucleoparticles involved in RNA metabolism, U1 snRNP contains extensions made of low complexity sequences. Here, we developed a protocol to reconstitute U1 snRNP in vitro using mostly full-length components in order to perform liquid-state NMR spectroscopy. The accuracy of the reconstitution was validated by probing the shape and structure of the particle by SANS and cryo-EM. Using an NMR spectroscopy-based approach, we probed, for the first time, the U1 snRNP tails at atomic detail and our results confirm their high degree of flexibility. We also monitored the labile interaction between the splicing factor PTBP1 and U1 snRNP and validated the U1 snRNA stem loop 4 as a binding site for the splicing regulator on the ribonucleoparticle. Altogether, we developed a method to probe the intrinsically disordered regions of U1 snRNP and map the interactions controlling splicing regulation. This approach could be used to get insights into the molecular mechanisms of alternative splicing and screen for potential RNA therapeutics.
Collapse
Affiliation(s)
- Sébastien Campagne
- Institute of Biochemistry, Department of Biology, ETH Zurich, Hönggerbergring 64, CH-8093 Zürich, Switzerland
| | - Tebbe de Vries
- Institute of Biochemistry, Department of Biology, ETH Zurich, Hönggerbergring 64, CH-8093 Zürich, Switzerland
| | - Florian Malard
- Institute of Biochemistry, Department of Biology, ETH Zurich, Hönggerbergring 64, CH-8093 Zürich, Switzerland
| | - Pavel Afanasyev
- Cryo-EM Knowledge Hub (CEMK), ETH Zurich, Hönggerbergring 64, CH-8093 Zürich, Switzerland
| | - Georg Dorn
- Institute of Biochemistry, Department of Biology, ETH Zurich, Hönggerbergring 64, CH-8093 Zürich, Switzerland
| | - Emil Dedic
- Institute of Biochemistry, Department of Biology, ETH Zurich, Hönggerbergring 64, CH-8093 Zürich, Switzerland
| | | | - Daniel Boehringer
- Cryo-EM Knowledge Hub (CEMK), ETH Zurich, Hönggerbergring 64, CH-8093 Zürich, Switzerland
| | - Antoine Cléry
- Institute of Biochemistry, Department of Biology, ETH Zurich, Hönggerbergring 64, CH-8093 Zürich, Switzerland
| | - Frédéric H-T Allain
- Institute of Biochemistry, Department of Biology, ETH Zurich, Hönggerbergring 64, CH-8093 Zürich, Switzerland
| |
Collapse
|
3
|
Structure of SRSF1 RRM1 bound to RNA reveals an unexpected bimodal mode of interaction and explains its involvement in SMN1 exon7 splicing. Nat Commun 2021; 12:428. [PMID: 33462199 PMCID: PMC7813835 DOI: 10.1038/s41467-020-20481-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 11/30/2020] [Indexed: 12/27/2022] Open
Abstract
The human prototypical SR protein SRSF1 is an oncoprotein that contains two RRMs and plays a pivotal role in RNA metabolism. We determined the structure of the RRM1 bound to RNA and found that the domain binds preferentially to a CN motif (N is for any nucleotide). Based on this solution structure, we engineered a protein containing a single glutamate to asparagine mutation (E87N), which gains the ability to bind to uridines and thereby activates SMN exon7 inclusion, a strategy that is used to cure spinal muscular atrophy. Finally, we revealed that the flexible inter-RRM linker of SRSF1 allows RRM1 to bind RNA on both sides of RRM2 binding site. Besides revealing an unexpected bimodal mode of interaction of SRSF1 with RNA, which will be of interest to design new therapeutic strategies, this study brings a new perspective on the mode of action of SRSF1 in cells. SRSF1 is an oncoprotein that plays important roles in RNA metabolism. We reveal the structure of the human SRSF1 RRM1 bound to RNA, and propose a bimodal mode of interaction of the protein with RNA. A single mutation in RRM1 changed SRSF1 specificity for RNA and made it active on SMN2 exon7 splicing.
Collapse
|
4
|
Mucaki EJ, Shirley BC, Rogan PK. Expression Changes Confirm Genomic Variants Predicted to Result in Allele-Specific, Alternative mRNA Splicing. Front Genet 2020; 11:109. [PMID: 32211018 PMCID: PMC7066660 DOI: 10.3389/fgene.2020.00109] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 01/30/2020] [Indexed: 12/11/2022] Open
Abstract
Splice isoform structure and abundance can be affected by either noncoding or masquerading coding variants that alter the structure or abundance of transcripts. When these variants are common in the population, these nonconstitutive transcripts are sufficiently frequent so as to resemble naturally occurring, alternative mRNA splicing. Prediction of the effects of such variants has been shown to be accurate using information theory-based methods. Single nucleotide polymorphisms (SNPs) predicted to significantly alter natural and/or cryptic splice site strength were shown to affect gene expression. Splicing changes for known SNP genotypes were confirmed in HapMap lymphoblastoid cell lines with gene expression microarrays and custom designed q-RT-PCR or TaqMan assays. The majority of these SNPs (15 of 22) as well as an independent set of 24 variants were then subjected to RNAseq analysis using the ValidSpliceMut web beacon (http://validsplicemut.cytognomix.com), which is based on data from the Cancer Genome Atlas and International Cancer Genome Consortium. SNPs from different genes analyzed with gene expression microarray and q-RT-PCR exhibited significant changes in affected splice site use. Thirteen SNPs directly affected exon inclusion and 10 altered cryptic site use. Homozygous SNP genotypes resulting in stronger splice sites exhibited higher levels of processed mRNA than alleles associated with weaker sites. Four SNPs exhibited variable expression among individuals with the same genotypes, masking statistically significant expression differences between alleles. Genome-wide information theory and expression analyses (RNAseq) in tumor exomes and genomes confirmed splicing effects for 7 of the HapMap SNP and 14 SNPs identified from tumor genomes. q-RT-PCR resolved rare splice isoforms with read abundance too low for statistical significance in ValidSpliceMut. Nevertheless, the web-beacon provides evidence of unanticipated splicing outcomes, for example, intron retention due to compromised recognition of constitutive splice sites. Thus, ValidSpliceMut and q-RT-PCR represent complementary resources for identification of allele-specific, alternative splicing.
Collapse
Affiliation(s)
- Eliseos J Mucaki
- Department of Biochemistry, University of Western Ontario, London, ON, Canada
| | | | - Peter K Rogan
- Department of Biochemistry, University of Western Ontario, London, ON, Canada.,CytoGnomix, London, ON, Canada.,Department of Oncology University of Western Ontario, London, ON, Canada.,Department of Computer Science, University of Western Ontario, London, ON, Canada
| |
Collapse
|
5
|
Jobbins AM, Reichenbach LF, Lucas CM, Hudson AJ, Burley GA, Eperon IC. The mechanisms of a mammalian splicing enhancer. Nucleic Acids Res 2019; 46:2145-2158. [PMID: 29394380 PMCID: PMC5861446 DOI: 10.1093/nar/gky056] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 01/19/2018] [Indexed: 12/21/2022] Open
Abstract
Exonic splicing enhancer (ESE) sequences are bound by serine & arginine-rich (SR) proteins, which in turn enhance the recruitment of splicing factors. It was inferred from measurements of splicing around twenty years ago that Drosophila doublesex ESEs are bound stably by SR proteins, and that the bound proteins interact directly but with low probability with their targets. However, it has not been possible with conventional methods to demonstrate whether mammalian ESEs behave likewise. Using single molecule multi-colour colocalization methods to study SRSF1-dependent ESEs, we have found that that the proportion of RNA molecules bound by SRSF1 increases with the number of ESE repeats, but only a single molecule of SRSF1 is bound. We conclude that initial interactions between SRSF1 and an ESE are weak and transient, and that these limit the activity of a mammalian ESE. We tested whether the activation step involves the propagation of proteins along the RNA or direct interactions with 3' splice site components by inserting hexaethylene glycol or abasic RNA between the ESE and the target 3' splice site. These insertions did not block activation, and we conclude that the activation step involves direct interactions. These results support a model in which regulatory proteins bind transiently and in dynamic competition, with the result that each ESE in an exon contributes independently to the probability that an activator protein is bound and in close proximity to a splice site.
Collapse
Affiliation(s)
- Andrew M Jobbins
- Leicester Institute of Structural & Chemical Biology and Department of Molecular & Cell Biology, University of Leicester, UK
| | | | - Christian M Lucas
- Leicester Institute of Structural & Chemical Biology and Department of Molecular & Cell Biology, University of Leicester, UK
| | - Andrew J Hudson
- Leicester Institute of Structural & Chemical Biology and Department of Chemistry, University of Leicester, UK
| | - Glenn A Burley
- Department of Pure and Applied Chemistry, University of Strathclyde, UK
| | - Ian C Eperon
- Leicester Institute of Structural & Chemical Biology and Department of Molecular & Cell Biology, University of Leicester, UK
| |
Collapse
|
6
|
Sithole N, Williams CA, Vaughan AM, Kenyon JC, Lever AML. DDX17 Specifically, and Independently of DDX5, Controls Use of the HIV A4/5 Splice Acceptor Cluster and Is Essential for Efficient Replication of HIV. J Mol Biol 2018; 430:3111-3128. [PMID: 30131116 PMCID: PMC6119765 DOI: 10.1016/j.jmb.2018.06.052] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 06/26/2018] [Accepted: 06/27/2018] [Indexed: 12/11/2022]
Abstract
HIV splicing involves five splice donor and eight splice acceptor sequences which, together with cryptic splice sites, generate over 100 mRNA species. Ninety percent of both partially spliced and fully spliced transcripts utilize the intrinsically weak A4/A5 3' splice site cluster. We show that DDX17, but not its close paralog DDX5, specifically controls the usage of this splice acceptor group. In its absence, production of the viral envelope protein and other regulatory and accessory proteins is grossly reduced, while Vif, which uses the A1 splice acceptor, is unaffected. This is associated with a profound decrease in viral export from the cell. Loss of Vpu expression causing upregulation of cellular Tetherin compounds the phenotype. DDX17 utilizes distinct RNA binding motifs for its role in efficient HIV replication, and we identify RNA binding motifs essential for its role, while the Walker A, Walker B (DEAD), Q motif and the glycine doublet motif are all dispensable. We show that DDX17 interacts with SRSF1/SF2 and the heterodimeric auxiliary factor U2AF65/35, which are essential splicing factors in the generation of Rev and Env/Vpu transcripts.
Collapse
Affiliation(s)
- Nyaradzai Sithole
- Department of Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Claire A Williams
- Department of Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Aisling M Vaughan
- Department of Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Julia C Kenyon
- Department of Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK; Department of Microbiology and Immunology, National University of Singapore, Singapore 117545
| | - Andrew M L Lever
- Department of Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK; Department of Medicine, National University of Singapore, Singapore 119228.
| |
Collapse
|
7
|
Aubol BE, Hailey KL, Fattet L, Jennings PA, Adams JA. Redirecting SR Protein Nuclear Trafficking through an Allosteric Platform. J Mol Biol 2017; 429:2178-2191. [PMID: 28576472 DOI: 10.1016/j.jmb.2017.05.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 05/22/2017] [Accepted: 05/25/2017] [Indexed: 12/20/2022]
Abstract
Although phosphorylation directs serine-arginine (SR) proteins from nuclear storage speckles to the nucleoplasm for splicing function, dephosphorylation paradoxically induces similar movement, raising the question of how such chemical modifications are balanced in these essential splicing factors. In this new study, we investigated the interaction of protein phosphatase 1 (PP1) with the SR protein splicing factor (SRSF1) to understand the foundation of these opposing effects in the nucleus. We found that RNA recognition motif 1 (RRM1) in SRSF1 binds PP1 and represses its catalytic function through an allosteric mechanism. Disruption of RRM1-PP1 interactions reduces the phosphorylation status of the RS domain in vitro and in cells, redirecting SRSF1 in the nucleus. The data imply that an allosteric SR protein-phosphatase platform balances phosphorylation levels in a "goldilocks" region for the proper subnuclear storage of an SR protein splicing factor.
Collapse
Affiliation(s)
- Brandon E Aubol
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093-0636, USA
| | - Kendra L Hailey
- Department of Chemistry & Biochemistry, University of California, San Diego, La Jolla, CA 92093-0636, USA
| | - Laurent Fattet
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093-0636, USA
| | - Patricia A Jennings
- Department of Chemistry & Biochemistry, University of California, San Diego, La Jolla, CA 92093-0636, USA
| | - Joseph A Adams
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093-0636, USA.
| |
Collapse
|
8
|
Wongpalee SP, Vashisht A, Sharma S, Chui D, Wohlschlegel JA, Black DL. Large-scale remodeling of a repressed exon ribonucleoprotein to an exon definition complex active for splicing. eLife 2016; 5. [PMID: 27882870 PMCID: PMC5122456 DOI: 10.7554/elife.19743] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Accepted: 11/02/2016] [Indexed: 12/31/2022] Open
Abstract
Polypyrimidine-tract binding protein PTBP1 can repress splicing during the exon definition phase of spliceosome assembly, but the assembly steps leading to an exon definition complex (EDC) and how PTBP1 might modulate them are not clear. We found that PTBP1 binding in the flanking introns allowed normal U2AF and U1 snRNP binding to the target exon splice sites but blocked U2 snRNP assembly in HeLa nuclear extract. Characterizing a purified PTBP1-repressed complex, as well as an active early complex and the final EDC by SILAC-MS, we identified extensive PTBP1-modulated changes in exon RNP composition. The active early complex formed in the absence of PTBP1 proceeded to assemble an EDC with the eviction of hnRNP proteins, the late recruitment of SR proteins, and binding of the U2 snRNP. These results demonstrate that during early stages of splicing, exon RNP complexes are highly dynamic with many proteins failing to bind during PTBP1 arrest. DOI:http://dx.doi.org/10.7554/eLife.19743.001
Collapse
Affiliation(s)
- Somsakul Pop Wongpalee
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, United States
| | - Ajay Vashisht
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, United States
| | - Shalini Sharma
- Department of Basic Medical Sciences, University of Arizona, Phoenix, United States
| | - Darryl Chui
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, United States
| | - James A Wohlschlegel
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, United States
| | - Douglas L Black
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, United States
| |
Collapse
|
9
|
Hudson SW, McNally LM, McNally MT. Evidence that a threshold of serine/arginine-rich (SR) proteins recruits CFIm to promote rous sarcoma virus mRNA 3' end formation. Virology 2016; 498:181-191. [PMID: 27596537 DOI: 10.1016/j.virol.2016.08.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 08/17/2016] [Accepted: 08/23/2016] [Indexed: 11/24/2022]
Abstract
The weak polyadenylation site (PAS) of Rous sarcoma virus (RSV) is activated by the juxtaposition of SR protein binding sites within the spatially separate negative regulator of splicing (NRS) element and the env RNA splicing enhancer (Env enhancer), which are far upstream of the PAS. Juxtaposition occurs by formation of the NRS - 3' ss splicing regulatory complex and is thought to provide a threshold of SR proteins that facilitate long-range stimulation of the PAS. We provide evidence for the threshold model by showing that greater than three synthetic SR protein binding sites are needed to substitute for the Env enhancer, that either the NRS or Env enhancer alone promotes polyadenylation when the distance to the PAS is decreased, and that SR protein binding sites promote binding of the polyadenylation factor cleavage factor I (CFIm) to the weak PAS. These observations may be relevant for cellular PASs.
Collapse
Affiliation(s)
- Stephen W Hudson
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Lisa M McNally
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Mark T McNally
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA.
| |
Collapse
|
10
|
A targeted oligonucleotide enhancer of SMN2 exon 7 splicing forms competing quadruplex and protein complexes in functional conditions. Cell Rep 2014; 9:193-205. [PMID: 25263560 PMCID: PMC4536295 DOI: 10.1016/j.celrep.2014.08.051] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 07/17/2014] [Accepted: 08/21/2014] [Indexed: 01/20/2023] Open
Abstract
The use of oligonucleotides to activate the splicing of selected exons is limited by a poor understanding of the mechanisms affected. A targeted bifunctional oligonucleotide enhancer of splicing (TOES) anneals to SMN2 exon 7 and carries an exonic splicing enhancer (ESE) sequence. We show that it stimulates splicing specifically of intron 6 in the presence of repressing sequences in intron 7. Complementarity to the 5' end of exon 7 increases U2AF65 binding, but the ESE sequence is required for efficient recruitment of U2 snRNP. The ESE forms at least three coexisting discrete states: a quadruplex, a complex containing only hnRNP F/H, and a complex enriched in the activator SRSF1. Neither hnRNP H nor quadruplex formation contributes to ESE activity. The results suggest that splicing limited by weak signals can be rescued by rapid exchange of TOES oligonucleotides in various complexes and raise the possibility that SR proteins associate transiently with ESEs.
Collapse
|
11
|
Howard JM, Sanford JR. The RNAissance family: SR proteins as multifaceted regulators of gene expression. WILEY INTERDISCIPLINARY REVIEWS-RNA 2014; 6:93-110. [PMID: 25155147 DOI: 10.1002/wrna.1260] [Citation(s) in RCA: 158] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 07/09/2014] [Accepted: 07/14/2014] [Indexed: 12/29/2022]
Abstract
Serine and arginine-rich (SR) proteins play multiple roles in the eukaryotic gene expression pathway. Initially described as constitutive and alternative splicing factors, now it is clear that SR proteins are key determinants of exon identity and function as molecular adaptors, linking the pre-messenger RNA (pre-mRNA) to the splicing machinery. In addition, now SR proteins are implicated in many aspects of mRNA and noncoding RNA (ncRNA) processing well beyond splicing. These unexpected roles, including RNA transcription, export, translation, and decay, may prove to be the rule rather than the exception. To simply define, this family of RNA-binding proteins as splicing factors belies the broader roles of SR proteins in post-transcriptional gene expression.
Collapse
Affiliation(s)
- Jonathan M Howard
- Department of Molecular, Cellular and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA, USA
| | | |
Collapse
|
12
|
Abstract
One of the most amazing findings in molecular biology was the discovery that eukaryotic genes are discontinuous, with coding DNA being interrupted by stretches of non-coding sequence. The subsequent realization that the intervening regions are removed from pre-mRNA transcripts via the activity of a common set of small nuclear RNAs (snRNAs), which assemble together with associated proteins into a complex known as the spliceosome, was equally surprising. How do cells coordinate the assembly of this molecular machine? And how does the spliceosome accurately recognize exons and introns to carry out the splicing reaction? Insights into these questions have been gained by studying the life cycle of spliceosomal snRNAs from their transcription, nuclear export and re-import to their dynamic assembly into the spliceosome. This assembly process can also affect the regulation of alternative splicing and has implications for human disease.
Collapse
Affiliation(s)
- A Gregory Matera
- Department of Biology, Department of Genetics and Integrative Program for Biological and Genome Sciences, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Zefeng Wang
- Department of Pharmacology, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|
13
|
Roberts JM, Ennajdaoui H, Edmondson C, Wirth B, Sanford J, Chen B. Splicing factor TRA2B is required for neural progenitor survival. J Comp Neurol 2014; 522:372-92. [PMID: 23818142 PMCID: PMC3855887 DOI: 10.1002/cne.23405] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 06/20/2013] [Accepted: 06/21/2013] [Indexed: 01/08/2023]
Abstract
Alternative splicing of pre-mRNAs can rapidly regulate the expression of large groups of proteins. The RNA binding protein TRA2B (SFRS10) plays well-established roles in developmentally regulated alternative splicing during Drosophila sexual differentiation. TRA2B is also essential for mammalian embryogenesis and is implicated in numerous human diseases. Precise regulation of alternative splicing is critical to the development and function of the central nervous system; however, the requirements for specific splicing factors in neurogenesis are poorly understood. This study focuses on the role of TRA2B in mammalian brain development. We show that, during murine cortical neurogenesis, TRA2B is expressed in both neural progenitors and cortical projection neurons. Using cortex-specific Tra2b mutant mice, we show that TRA2B depletion results in apoptosis of the neural progenitor cells as well as disorganization of the cortical plate. Thus, TRA2B is essential for proper development of the cerebral cortex.
Collapse
Affiliation(s)
- Jacqueline M Roberts
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, CA 95064, USA
| | - Hanane Ennajdaoui
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, CA 95064, USA
| | - Carina Edmondson
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, CA 95064, USA
| | - Brunhilde Wirth
- Institute of Human Genetics, Institute for Genetics and Center for Molecular Medicine Cologne, University of Cologne, Cologne 50931, Germany
| | - Jeremy Sanford
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, CA 95064, USA
| | - Bin Chen
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, CA 95064, USA
| |
Collapse
|
14
|
Roca X, Krainer AR, Eperon IC. Pick one, but be quick: 5' splice sites and the problems of too many choices. Genes Dev 2013; 27:129-44. [PMID: 23348838 DOI: 10.1101/gad.209759.112] [Citation(s) in RCA: 163] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Splice site selection is fundamental to pre-mRNA splicing and the expansion of genomic coding potential. 5' Splice sites (5'ss) are the critical elements at the 5' end of introns and are extremely diverse, as thousands of different sequences act as bona fide 5'ss in the human transcriptome. Most 5'ss are recognized by base-pairing with the 5' end of the U1 small nuclear RNA (snRNA). Here we review the history of research on 5'ss selection, highlighting the difficulties of establishing how base-pairing strength determines splicing outcomes. We also discuss recent work demonstrating that U1 snRNA:5'ss helices can accommodate noncanonical registers such as bulged duplexes. In addition, we describe the mechanisms by which other snRNAs, regulatory proteins, splicing enhancers, and the relative positions of alternative 5'ss contribute to selection. Moreover, we discuss mechanisms by which the recognition of numerous candidate 5'ss might lead to selection of a single 5'ss and propose that protein complexes propagate along the exon, thereby changing its physical behavior so as to affect 5'ss selection.
Collapse
Affiliation(s)
- Xavier Roca
- School of Biological Sciences, Division of Molecular Genetics and Cell Biology, Nanyang Technological University, Singapore.
| | | | | |
Collapse
|
15
|
Hodson MJ, Hudson AJ, Cherny D, Eperon IC. The transition in spliceosome assembly from complex E to complex A purges surplus U1 snRNPs from alternative splice sites. Nucleic Acids Res 2012; 40:6850-62. [PMID: 22505580 PMCID: PMC3413131 DOI: 10.1093/nar/gks322] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Spliceosomes are assembled in stages. The first stage forms complex E, which is characterized by the presence of U1 snRNPs base-paired to the 5′ splice site, components recognizing the 3′ splice site and proteins thought to connect them. The splice sites are held in close proximity and the pre-mRNA is committed to splicing. Despite this, the sites for splicing appear not to be fixed until the next complex (A) forms. We have investigated the reasons why 5′ splice sites are not fixed in complex E, using single molecule methods to determine the stoichiometry of U1 snRNPs bound to pre-mRNA with one or two strong 5′ splice sites. In complex E most transcripts with two alternative 5′ splice sites were bound by two U1 snRNPs. However, the surplus U1 snRNPs were displaced during complex A formation in an ATP-dependent process requiring an intact 3′ splice site. This process leaves only one U1 snRNP per complex A, regardless of the number of potential sites. We propose a mechanism for selection of the 5′ splice site. Our results show that constitutive splicing components need not be present in a fixed stoichiometry in a splicing complex.
Collapse
Affiliation(s)
- Mark J Hodson
- Department of Biochemistry, University of Leicester, Leicester LE1 9HN, UK
| | | | | | | |
Collapse
|
16
|
Juxtaposition of two distant, serine-arginine-rich protein-binding elements is required for optimal polyadenylation in Rous sarcoma virus. J Virol 2011; 85:11351-60. [PMID: 21849435 DOI: 10.1128/jvi.00721-11] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Rous sarcoma virus (RSV) polyadenylation site (PAS) is very poorly used in vitro due to suboptimal upstream and downstream elements, and yet ∼85% of viral transcripts are polyadenylated in vivo. The mechanisms that orchestrate polyadenylation at the weak PAS are not completely understood. It was previously shown that serine-arginine (SR)-rich proteins stimulate RSV PAS use in vitro and in vivo. It has been proposed that viral RNA polyadenylation is stimulated through a nonproductive splice complex that forms between a pseudo 5' splice site (5'ss) within the negative regulator of splicing (NRS) and a downstream 3'ss, which repositions NRS-bound SR proteins closer to the viral PAS. This repositioning is thought to be important for long-distance poly(A) stimulation by the NRS. We report here that a 308-nucleotide deletion downstream of the env 3'ss decreased polyadenylation efficiency, suggesting the presence of an additional element required for optimal RSV polyadenylation. Mapping studies localized the poly(A) stimulating element to a region coincident with the Env splicing enhancer, which binds SR proteins, and inactivation of the enhancer and SR protein binding decreased polyadenylation efficiency. The positive effect of the Env enhancer on polyadenylation could be uncoupled from its role in splicing. As with the NRS, the Env enhancer also stimulated use of the viral PAS in vitro. These results suggest that a critical threshold of SR proteins, achieved by juxtaposition of SR protein binding sites within the NRS and Env enhancer, is required for long-range polyadenylation stimulation.
Collapse
|
17
|
Interaction between the RNA binding domains of Ser-Arg splicing factor 1 and U1-70K snRNP protein determines early spliceosome assembly. Proc Natl Acad Sci U S A 2011; 108:8233-8. [PMID: 21536904 DOI: 10.1073/pnas.1017700108] [Citation(s) in RCA: 157] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
It has been widely accepted that the early spliceosome assembly begins with U1 small nuclear ribonucleoprotein (U1 snRNP) binding to the 5' splice site (5'SS), which is assisted by the Ser/Arg (SR)-rich proteins in mammalian cells. In this process, the RS domain of SR proteins is thought to directly interact with the RS motif of U1-70K, which is subject to regulation by RS domain phosphorylation. Here we report that the early spliceosome assembly event is mediated by the RNA recognition domains (RRM) of serine/arginine-rich splicing factor 1 (SRSF1), which bridges the RRM of U1-70K to pre-mRNA by using the surface opposite to the RNA binding site. Specific mutation in the RRM of SRSF1 that disrupted the RRM-RRM interaction also inhibits the formation of spliceosomal E complex and splicing. We further demonstrate that the hypo-phosphorylated RS domain of SRSF1 interacts with its own RRM, thus competing with U1-70K binding, whereas the hyper-phosphorylated RS domain permits the formation of a ternary complex containing ESE, an SR protein, and U1 snRNP. Therefore, phosphorylation of the RS domain in SRSF1 appears to induce a key molecular switch from intra- to intermolecular interactions, suggesting a plausible mechanism for the documented requirement for the phosphorylation/dephosphorylation cycle during pre-mRNA splicing.
Collapse
|
18
|
Solis AS, Patton JG. Analysis of SRrp86-regulated alternative splicing: control of c-Jun and IκBβ activity. RNA Biol 2010; 7:486-94. [PMID: 20400856 DOI: 10.4161/rna.7.4.11567] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Previous work led to the hypothesis that SRrp86, a related member of the SR protein superfamily, can interact with and modulate the activity of other SR proteins. Here, we sought to test this hypothesis by examining the effect of changing SRrp86 concentrations on overall alternative splicing patterns. SpliceArrays were used to examine 9,854 splicing events in wild-type cells, cells overexpressing SRrp86, and cells treated with siRNAs to knockdown SRrp86. From among the 500 splicing events exhibiting altered splicing under these conditions, the splicing of c-Jun and IκBβ were validated as being regulated by SRrp86 resulting in altered regulation of their downstream targets. In both cases, functionally distinct isoforms were generated that demonstrate the role SRrp86 plays in controlling alternative splicing.
Collapse
Affiliation(s)
- Amanda S Solis
- Department of Biological Sciences, Vanderbilt University, Nashville, TN USA
| | | |
Collapse
|
19
|
Abstract
hnRNP A1 binds to RNA in a cooperative manner. Initial hnRNP A1 binding to an exonic splicing silencer at the 3' end of human immunodeficiency virus type 1 (HIV-1) tat exon 3, which is a high-affinity site, is followed by cooperative spreading in a 3'-to-5' direction. As hnRNP A1 propagates toward the 5' end of the exon, it antagonizes binding of a serine/arginine-rich (SR) protein to an exonic splicing enhancer, thereby inhibiting splicing at that exon's alternative 3' splice site. tat exon 3 and the preceding intron of HIV-1 pre-mRNA can fold into an elaborate RNA secondary structure in solution, which could potentially influence hnRNP A1 binding. We report here that hnRNP A1 binding and splicing repression can occur on an unstructured RNA. Moreover, hnRNP A1 can effectively unwind an RNA hairpin upon binding, displacing a bound protein. We further show that hnRNP A1 can also spread in a 5'-to-3' direction, although when initial binding takes place in the middle of an RNA, spreading preferentially proceeds in a 3'-to-5' direction. Finally, when two distant high-affinity sites are present on the same RNA, they facilitate cooperative spreading of hnRNP A1 between the two sites.
Collapse
|
20
|
Abstract
Upon integration into the host chromosome, retroviral gene expression requires transcription by the host RNA polymerase II, and viral messages are subject RNA processing events including 5'-end capping, pre-mRNA splicing, and polyadenylation. At a minimum, RNA splicing is required to generate the env mRNA, but viral replication requires substantial amounts of unspliced RNA to serve as mRNA and for incorporation into progeny virions as genomic RNA. Therefore, splicing has to be controlled to preserve the large unspliced RNA pool. Considering the current view that splicing and polyadenylation are coupled, the question arises as to how genome-length viral RNA is efficiently polyadenylated in the absence of splicing. Polyadenylation of many retroviral mRNAs is inefficient; in avian retroviruses, approximately 15 percent of viral transcripts extend into and are polyadenylated at downstream host genes, which often has profound biological consequences. Retroviruses have served as important models to study RNA processing and this review summarizes a body of work using avian retroviruses that has led to the discovery of novel RNA splicing and polyadenylation control mechanisms.
Collapse
Affiliation(s)
- Mark T McNally
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA.
| |
Collapse
|
21
|
Shaw SD, Chakrabarti S, Ghosh G, Krainer AR. Deletion of the N-terminus of SF2/ASF permits RS-domain-independent pre-mRNA splicing. PLoS One 2007; 2:e854. [PMID: 17786225 PMCID: PMC1952110 DOI: 10.1371/journal.pone.0000854] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2007] [Accepted: 08/13/2007] [Indexed: 01/01/2023] Open
Abstract
Serine/arginine-rich (SR) proteins are essential splicing factors with one or two RNA-recognition motifs (RRMs) and a C-terminal arginine- and serine-rich (RS) domain. SR proteins bind to exonic splicing enhancers via their RRM(s), and from this position are thought to promote splicing by antagonizing splicing silencers, recruiting other components of the splicing machinery through RS-RS domain interactions, and/or promoting RNA base-pairing through their RS domains. An RS domain tethered at an exonic splicing enhancer can function as a splicing activator, and RS domains play prominent roles in current models of SR protein functions. However, we previously reported that the RS domain of the SR protein SF2/ASF is dispensable for in vitro splicing of some pre-mRNAs. We have now extended these findings via the identification of a short inhibitory domain at the SF2/ASF N-terminus; deletion of this segment permits splicing in the absence of this SR protein's RS domain of an IgM pre-mRNA substrate previously classified as RS-domain-dependent. Deletion of the N-terminal inhibitory domain increases the splicing activity of SF2/ASF lacking its RS domain, and enhances its ability to bind pre-mRNA. Splicing of the IgM pre-mRNA in S100 complementation with SF2/ASF lacking its RS domain still requires an exonic splicing enhancer, suggesting that an SR protein RS domain is not always required for ESE-dependent splicing activation. Our data provide additional evidence that the SF2/ASF RS domain is not strictly required for constitutive splicing in vitro, contrary to prevailing models for how the domains of SR proteins function to promote splicing.
Collapse
Affiliation(s)
- Stephanie D. Shaw
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
- Molecular and Cellular Biology Program, State University of New York at Stony Brook, Stony Brook, New York, United States of America
| | - Sutapa Chakrabarti
- Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla, California, United States of America
| | - Gourisankar Ghosh
- Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla, California, United States of America
| | - Adrian R. Krainer
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
22
|
Xu DQ, Mattox W. Identification of a splicing enhancer in MLH1 using COMPARE, a new assay for determination of relative RNA splicing efficiencies. Hum Mol Genet 2005; 15:329-36. [PMID: 16357104 PMCID: PMC1400605 DOI: 10.1093/hmg/ddi450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Exonic splicing enhancers (ESEs) are sequences that facilitate recognition of splice sites and prevent exon-skipping. Because ESEs are often embedded within protein-coding sequences, alterations in them can also often be interpreted as nonsense, missense or silent mutations. To correctly interpret exonic mutations and their roles in diseases, it is important to develop strategies that identify ESE mutations. Potential ESEs can be found computationally in many exons but it has proven difficult to predict whether a given mutation will have effects on splicing based on sequence alone. Here, we describe a flexible in vitro method that can be used to functionally compare the effects of multiple sequence variants on ESE activity in a single in vitro splicing reaction. We have applied this method in parallel with conventional splicing assays to test for a splicing enhancer in exon 17 of the human MLH1 gene. Point mutations associated with hereditary non-polyposis colorectal cancer (HNPCC) have previously been found to correlate with exon-skipping in both lymphocytes and tumors from patients. We show that sequences from this exon can replace an ESE from the mouse IgM gene to support RNA splicing in HeLa nuclear extracts. ESE activity was reduced by HNPCC point mutations in codon 659, indicating that their primary effect is on splicing. Surprisingly, the strongest enhancer function mapped to a different region of the exon upstream of this codon. Together, our results indicate that HNPCC point mutations in codon 659 affect an auxillary element that augments the enhancer function to ensure exon inclusion.
Collapse
Affiliation(s)
| | - William Mattox
- *Corresponding Author 1515 Holcombe Blvd, Unit 1006, Houston, TX 77030, Phone: (713) 834-6329, Fax: (713) 834-6339,
| |
Collapse
|
23
|
Cazalla D, Newton K, Cáceres JF. A novel SR-related protein is required for the second step of Pre-mRNA splicing. Mol Cell Biol 2005; 25:2969-80. [PMID: 15798186 PMCID: PMC1069619 DOI: 10.1128/mcb.25.8.2969-2980.2005] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The SR family proteins and SR-related polypeptides are important regulators of pre-mRNA splicing. A novel SR-related protein of an apparent molecular mass of 53 kDa was isolated in a gene trap screen that identifies proteins which localize to the nuclear speckles. This novel protein possesses an arginine- and serine-rich domain and was termed SRrp53 (for SR-related protein of 53 kDa). In support for a role of this novel RS-containing protein in pre-mRNA splicing, we identified the mouse ortholog of the Saccharomyces cerevisiae U1 snRNP-specific protein Luc7p and the U2AF65-related factor HCC1 as interacting proteins. In addition, SRrp53 is able to interact with some members of the SR family of proteins and with U2AF35 in a yeast two-hybrid system and in cell extracts. We show that in HeLa nuclear extracts immunodepleted of SRrp53, the second step of pre-mRNA splicing is blocked, and recombinant SRrp53 is able to restore splicing activity. SRrp53 also regulates alternative splicing in a concentration-dependent manner. Taken together, these results suggest that SRrp53 is a novel SR-related protein that has a role both in constitutive and in alternative splicing.
Collapse
Affiliation(s)
- Demian Cazalla
- MRC Human Genetics Unit, Western General Hospital, Crewe Rd., Edinburgh EH4 2XU, Scotland, United Kingdom
| | | | | |
Collapse
|
24
|
Kent OA, Ritchie DB, Macmillan AM. Characterization of a U2AF-independent commitment complex (E') in the mammalian spliceosome assembly pathway. Mol Cell Biol 2005; 25:233-40. [PMID: 15601845 PMCID: PMC538778 DOI: 10.1128/mcb.25.1.233-240.2005] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Early recognition of pre-mRNA during spliceosome assembly in mammals proceeds through the association of U1 small nuclear ribonucleoprotein particle (snRNP) with the 5' splice site as well as the interactions of the branch binding protein SF1 with the branch region and the U2 snRNP auxiliary factor U2AF with the polypyrimidine tract and 3' splice site. These factors, along with members of the SR protein family, direct the ATP-independent formation of the early (E) complex that commits the pre-mRNA to splicing. We report here the observation in U2AF-depleted HeLa nuclear extract of a distinct, ATP-independent complex designated E' which can be chased into E complex and itself commits a pre-mRNA to the splicing pathway. The E' complex is characterized by a U1 snRNA-5' splice site base pairing, which follows the actual commitment step, an interaction of SF1 with the branch region, and a close association of the 5' splice site with the branch region. These results demonstrate that both commitment to splicing and the early proximity of conserved sequences within pre-mRNA substrates can occur in a minimal complex lacking U2AF, which may function as a precursor to E complex in spliceosome assembly.
Collapse
Affiliation(s)
- Oliver A Kent
- 4-39 Medical Sciences Building, Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | | | | |
Collapse
|
25
|
Millhouse S, Manley JL. The C-terminal domain of RNA polymerase II functions as a phosphorylation-dependent splicing activator in a heterologous protein. Mol Cell Biol 2005; 25:533-44. [PMID: 15632056 PMCID: PMC543425 DOI: 10.1128/mcb.25.2.533-544.2005] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2004] [Accepted: 10/18/2004] [Indexed: 11/20/2022] Open
Abstract
RNA polymerase II, and specifically the C-terminal domain (CTD) of its largest subunit, has been demonstrated to play important roles in capping, splicing, and 3' processing of mRNA precursors. But how the CTD functions in these reactions, especially splicing, is not well understood. To address some of the basic questions concerning CTD function in splicing, we constructed and purified two fusion proteins, a protein in which the CTD is positioned at the C terminus of the splicing factor ASF/SF2 (ASF-CTD) and an RS domain deletion mutant protein (ASFDeltaRS-CTD). Significantly, compared to ASF/SF2, ASF-CTD increased the reaction rate during the early stages of splicing, detected as a 20- to 60-min decrease in splicing lag time depending on the pre-mRNA substrate. The increased splicing rate correlated with enhanced production of prespliceosomal complex A and the early spliceosomal complex B but, interestingly, not the very early ATP-independent complex E. Additional assays indicate that the RS domain and CTD perform distinct functions, as exemplified by our identification of an activity that cooperates only with the CTD. Dephosphorylated ASFDeltaRS-CTD and a glutathione S-transferase-CTD fusion protein were both inactive, suggesting that an RNA-targeting domain and CTD phosphorylation were necessary. Our results provide new insights into the mechanism by which the CTD functions in splicing.
Collapse
Affiliation(s)
- Scott Millhouse
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | | |
Collapse
|
26
|
Bennett EM, Lever AML, Allen JF. Human immunodeficiency virus type 2 Gag interacts specifically with PRP4, a serine-threonine kinase, and inhibits phosphorylation of splicing factor SF2. J Virol 2004; 78:11303-12. [PMID: 15452250 PMCID: PMC521795 DOI: 10.1128/jvi.78.20.11303-11312.2004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2004] [Accepted: 06/10/2004] [Indexed: 11/20/2022] Open
Abstract
Using a yeast two-hybrid screen of a T-cell cDNA library to identify cellular proteins that bind to the human immunodeficiency virus type 2 (HIV-2) Gag polyprotein, we identified PRP4, a serine-threonine protein kinase. Specific interaction of PRP4 and HIV-2 Gag was confirmed in in vitro and in vivo assays. The interacting region of HIV-2 Gag is located in the conserved matrix and capsid domains, while both the RS (arginine-serine-rich) domain and the KS (kinase) domain of PRP4 are able to bind to HIV-2 Gag. PRP4 is not incorporated into virus particles. HIV-2 Gag is able to inhibit PRP4-mediated phosphorylation of the splicing factor SF2. This is also observed with Gag from simian immunodeficiency virus, a closely related virus, but not with Gag from human T-cell lymphotropic virus type 1. Our results provide evidence for a novel interaction between Gag and a cellular protein kinase involved in the control of constitutive splicing in two closely related retroviruses. We hypothesize that as Gag accumulates in the cell, down regulation of splicing occurs through reduced phosphorylation of SF2. At late stages of infection, this interaction may replace the function of the early viral regulatory protein Rev.
Collapse
Affiliation(s)
- Erin M Bennett
- Department of Medicine, Level 5, Addenbrooke's Hospital, Hills Road, Cambridge CB2 2QQ, United Kingdom
| | | | | |
Collapse
|
27
|
Webster NJG, Evans LG, Caples M, Erker L, Chew SL. Assembly of splicing complexes on exon 11 of the human insulin receptor gene does not correlate with splicing efficiency in-vitro. BMC Mol Biol 2004; 5:7. [PMID: 15233842 PMCID: PMC481066 DOI: 10.1186/1471-2199-5-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2004] [Accepted: 07/02/2004] [Indexed: 11/17/2022] Open
Abstract
Background Incorporation of exon 11 of the insulin receptor gene is both developmentally and hormonally-regulated. Previously, we have shown the presence of enhancer and silencer elements that modulate the incorporation of the small 36-nucleotide exon. In this study, we investigated the role of inherent splice site strength in the alternative splicing decision and whether recognition of the splice sites is the major determinant of exon incorporation. Results We found that mutation of the flanking sub-optimal splice sites to consensus sequences caused the exon to be constitutively spliced in-vivo. These findings are consistent with the exon-definition model for splicing. In-vitro splicing of RNA templates containing exon 11 and portions of the upstream intron recapitulated the regulation seen in-vivo. Unexpectedly, we found that the splice sites are occupied and spliceosomal complex A was assembled on all templates in-vitro irrespective of splicing efficiency. Conclusion These findings demonstrate that the exon-definition model explains alternative splicing of exon 11 in the IR gene in-vivo but not in-vitro. The in-vitro results suggest that the regulation occurs at a later step in spliceosome assembly on this exon.
Collapse
Affiliation(s)
- Nicholas JG Webster
- Medical Research Service, VASDHS, 3350 La Jolla Village Drive, San Diego, CA 92161, USA
- UCSD Cancer Center, Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Lui-Guojing Evans
- Medical Research Service, VASDHS, 3350 La Jolla Village Drive, San Diego, CA 92161, USA
- Cognitive Sciences Graduate Program, UCSD, 9500 Gilman Drive, La Jolla CA 92093, USA
| | - Matt Caples
- Medical Research Service, VASDHS, 3350 La Jolla Village Drive, San Diego, CA 92161, USA
- School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Laura Erker
- Medical Research Service, VASDHS, 3350 La Jolla Village Drive, San Diego, CA 92161, USA
- Biomedical Sciences Graduate Program, UCSD, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Shern L Chew
- Department of Endocrinology, St. Bartholomew's Hospital, University of London, London EC1A 7BE, UK
| |
Collapse
|
28
|
Zavolan M, Kondo S, Schonbach C, Adachi J, Hume DA, Hayashizaki Y, Gaasterland T. Impact of alternative initiation, splicing, and termination on the diversity of the mRNA transcripts encoded by the mouse transcriptome. Genome Res 2003; 13:1290-300. [PMID: 12819126 PMCID: PMC403716 DOI: 10.1101/gr.1017303] [Citation(s) in RCA: 149] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2002] [Accepted: 02/25/2003] [Indexed: 11/25/2022]
Abstract
We analyzed the FANTOM2 clone set of 60,770 RIKEN full-length mouse cDNA sequences and 44,122 public mRNA sequences. We developed a new computational procedure to identify and classify the forms of splice variation evident in this data set and organized the results into a publicly accessible database that can be used for future expression array construction, structural genomics, and analyses of the mechanism and regulation of alternative splicing. Statistical analysis shows that at least 41% and possibly as much as 60% of multiexon genes in mouse have multiple splice forms. Of the transcription units with multiple splice forms, 49% contain transcripts in which the apparent use of an alternative transcription start (stop) is accompanied by alternative splicing of the initial (terminal) exon. This implies that alternative transcription may frequently induce alternative splicing. The fact that 73% of all exons with splice variation fall within the annotated coding region indicates that most splice variation is likely to affect the protein form. Finally, we compared the set of constitutive (present in all transcripts) exons with the set of cryptic (present only in some transcripts) exons and found statistically significant differences in their length distributions, the nucleotide distributions around their splice junctions, and the frequencies of occurrence of several short sequence motifs.
Collapse
Affiliation(s)
- Mihaela Zavolan
- Laboratory of Computational Genomics, The Rockefeller University, New York, New York 10021-6399, USA.
| | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
The trans-splicing reaction involves the association of 5' and 3' splice sites contained on separate transcripts. The mechanism by which these splice sites are juxtaposed during trans-spliceosome assembly and the role of SR proteins at each stage in this process have not been determined. Utilizing a system that allows for the separation of the RNA binding and RS domains of SR proteins, we have found that SR proteins are required for at least two stages of the trans-splicing reaction. They are important both prior to and subsequent to the addition of U2 snRNP to the 3' acceptor. In addition, we have demonstrated a role for RS domain phosphorylation in both of these activities. Dephosphorylation of the RS domain led to a block in U2 snRNP binding to the substrate. In a separate experiment, RS domain phosphorylation was also determined to be necessary for trans splicing to proceed on a substrate that had U2 snRNP already bound. This newly identified role for phosphorylated SR proteins post-U2-snRNP addition coincides with the recruitment of the 5' splice site contained on the SL RNP, suggesting a role for SR proteins in splice site communication in trans splicing.
Collapse
Affiliation(s)
- Suzanne Furuyama
- Center for RNA Molecular Biology, Case Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | | |
Collapse
|
30
|
Cooke C, Alwine JC. Characterization of specific protein-RNA complexes associated with the coupling of polyadenylation and last-intron removal. Mol Cell Biol 2002; 22:4579-86. [PMID: 12052867 PMCID: PMC133901 DOI: 10.1128/mcb.22.13.4579-4586.2002] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Polyadenylation and splicing are highly coordinated on substrate RNAs capable of coupled polyadenylation and splicing. Individual elements of both splicing and polyadenylation signals are required for the in vitro coupling of the processing reactions. In order to understand more about the coupling mechanism, we examined specific protein-RNA complexes formed on RNA substrates, which undergo coupled splicing and polyadenylation. We hypothesized that formation of a coupling complex would be adversely affected by mutations of either splicing or polyadenylation elements known to be required for coupling. We defined three specific complexes (A(C)', A(C), and B(C)) that form rapidly on a coupled splicing and polyadenylation substrate, well before the appearance of spliced and/or polyadenylated products. The A(C)' complex is formed by 30 s after mixing, the A(C) complex is formed between 1 and 2 min after mixing, and the B(C) complex is formed by 2 to 3 min after mixing. A(C)' is a precursor of A(C), and the A(C)' and/or A(C) complex is a precursor of B(C). Of the three complexes, B(C) appears to be a true coupling complex in that its formation was consistently diminished by mutations or experimental conditions known to disrupt coupling. The characteristics of the A(C)' complex suggest that it is analogous to the spliceosomal A complex, which forms on splicing-only substrates. Formation of the A(C)' complex is dependent on the polypyrimidine tract. The transition from A(C)' to A(C) appears to require an intact 3'-splice site. Formation of the B(C) complex requires both splicing elements and the polyadenylation signal. A unique polyadenylation-specific complex formed rapidly on substrates containing only the polyadenylation signal. This complex, like the A(C)' complex, formed very transiently on the coupled splicing and polyadenylation substrate; we suggest that these two complexes coordinate, resulting in the B(C) complex. We also suggest a model in which the coupling mechanism may act as a dominant checkpoint in which aberrant definition of one exon overrides the normal processing at surrounding wild-type sites.
Collapse
Affiliation(s)
- Charles Cooke
- Department of Microbiology, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6142, USA
| | | |
Collapse
|
31
|
Simard MJ, Chabot B. SRp30c is a repressor of 3' splice site utilization. Mol Cell Biol 2002; 22:4001-10. [PMID: 12024014 PMCID: PMC133842 DOI: 10.1128/mcb.22.12.4001-4010.2002] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2002] [Revised: 02/21/2002] [Accepted: 03/11/2002] [Indexed: 01/04/2023] Open
Abstract
Several intron elements influence exon 7B skipping in the mammalian hnRNP A1 pre-mRNA. We have shown previously that the 38-nucleotide CE9 element located in the intron separating alternative exon 7B from exon 8 can repress the use of a downstream 3' splice site. The ability of CE9 to act on heterologous substrates, combined with the results of competition and gel shift assays, indicates that the activity of CE9 is mediated by a trans-acting factor. UV cross-linking analysis revealed the specific association of a 25-kDa nuclear protein with CE9. Using RNA affinity chromatography, we isolated a 25-kDa protein that binds to CE9 RNA. This protein corresponds to SRp30c. Consistent with a role for SRp30c in the activity of CE9, recombinant SRp30c interacts specifically with CE9 and can promote splicing repression in vitro in a CE9-dependent manner. The closest homologue of SRp30c, ASF/SF2, does not bind to CE9 and does not repress splicing even when the intronic SRp30c binding sites are replaced with high-affinity ASF/SF2 binding sites. Only the first 7 nucleotides of CE9 are sufficient for binding to SRp30c, and mutations that abolish binding also prevent repression. Our results indicate that SRp30c can function as a repressor of 3' splice site utilization and suggest that the SRp30c-CE9 interaction may contribute to the control of hnRNP A1 alternative splicing.
Collapse
Affiliation(s)
- Martin J Simard
- Département de Microbiologie et d'Infectiologie, Faculté de Médecine, Université de Sherbrooke, Sherbrooke, Québec, Canada J1H 5N4
| | | |
Collapse
|
32
|
Fogel BL, McNally LM, McNally MT. Efficient polyadenylation of Rous sarcoma virus RNA requires the negative regulator of splicing element. Nucleic Acids Res 2002; 30:810-7. [PMID: 11809895 PMCID: PMC100303 DOI: 10.1093/nar/30.3.810] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Rous sarcoma virus pre-mRNA contains an element known as the negative regulator of splicing (NRS) that acts to inhibit viral RNA splicing. The NRS binds serine/arginine-rich (SR) proteins, hnRNP H and the U1/U11 snRNPs, and appears to inhibit splicing by acting as a decoy 5' splice site. Deletions within the gag gene that encompass the NRS also lead to increased read-through past the viral polyadenylation site, suggesting a role for the NRS in promoting polyadenylation. Using NRS-specific deletions and mutations, we show here that a polyadenylation stimulatory activity maps directly to the NRS and is most likely dependent upon SR proteins and U1 and/or U11 snRNP. hnRNP H does not appear to mediate splicing control or stimulate RSV polyadenylation, since viral RNAs containing hnRNP H-specific mutations were spliced and polyadenylated normally. However, the ability of hnRNP H mutations to suppress the read-through caused by an SR protein mutation suggests the potential for hnRNP H to antagonize polyadenylation. Interestingly, disruption of splicing control closely correlated with increased read-through, indicating that a functional NRS is necessary for efficient RSV polyadenylation rather than binding of an individual factor. We propose a model in which the NRS serves to enhance polyadenylation of RSV unspliced RNA in a process analogous to the stimulation of cellular pre-mRNA polyadenylation by splicing complexes.
Collapse
Affiliation(s)
- Brent L Fogel
- Medical College of Wisconsin, Department of Microbiology and Molecular Genetics, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | | | | |
Collapse
|
33
|
Shepard J, Reick M, Olson S, Graveley BR. Characterization of U2AF(6), a splicing factor related to U2AF(35). Mol Cell Biol 2002; 22:221-30. [PMID: 11739736 PMCID: PMC134218 DOI: 10.1128/mcb.22.1.221-230.2002] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The essential splicing factor U2AF (U2 auxiliary factor) is a heterodimer composed of 65-kDa (U2AF(65)) and 35-kDa (U2AF(35)) subunits. U2AF(35) has multiple functions in pre-mRNA splicing. First, U2AF(35) has been shown to function by directly interacting with the AG at the 3' splice site. Second, U2AF(35) is thought to play a role in the recruitment of U2AF(65) by serine-arginine-rich (SR) proteins in enhancer-dependent splicing. It has been proposed that the physical interaction between the arginine-serine-rich (RS) domain of U2AF(35) and SR proteins is important for this activity. However, other data suggest that this may not be the case. Here, we report the identification of a mammalian gene that encodes a 26-kDa protein bearing strong sequence similarity to U2AF(35), designated U2AF(26). The N-terminal 187 amino acids of U2AF(35) and U2AF(26) are nearly identical. However, the C-terminal domain of U2AF(26) lacks many characteristics of the U2AF(35) RS domain and, therefore, might be incapable of interacting with SR proteins. We show that U2AF(26) can associate with U2AF(65) and can functionally substitute for U2AF(35) in both constitutive and enhancer-dependent splicing, demonstrating that the RS domain of the small U2AF subunit is not required for splicing enhancer function. Finally, we show that U2AF(26) functions by enhancing the binding of U2AF(65) to weak 3' splice sites. These studies identify U2AF(26) as a mammalian splicing factor and demonstrate that distinct U2AF complexes can participate in pre-mRNA splicing. Based on its sequence and functional similarity to U2AF(35), U2AF(26) may play a role in regulating alternative splicing.
Collapse
Affiliation(s)
- Jeremiah Shepard
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | | | | | | |
Collapse
|
34
|
Stickeler E, Fraser SD, Honig A, Chen AL, Berget SM, Cooper TA. The RNA binding protein YB-1 binds A/C-rich exon enhancers and stimulates splicing of the CD44 alternative exon v4. EMBO J 2001; 20:3821-30. [PMID: 11447123 PMCID: PMC125550 DOI: 10.1093/emboj/20.14.3821] [Citation(s) in RCA: 154] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Exon enhancers are accessory pre-mRNA splicing signals that stimulate exon splicing. One class of proteins, the serine-arginine-rich (SR) proteins, have been demonstrated to bind enhancers and activate splicing. Here we report that A/C-rich exon enhancers (ACE elements) are recognized by the human YB-1 protein, a non-SR protein. Sequence-specific binding of YB-1 was observed both to an ACE derived from an in vivo iterative selection protocol and to ACE elements in an alternative exon (v4) from the human CD44 gene. The ACE element that was the predominant YB-1 binding site in CD44 exon v4 was required for maximal in vivo splicing and in vitro spliceosome assembly. Expression of wild-type YB-1 increased inclusion of exon v4, whereas a truncated form of YB-1 did not. Stimulation of exon v4 inclusion by wild-type YB-1 required the ACE necessary for YB-1 binding in vitro, suggesting that YB-1 stimulated exon inclusion in vivo by binding to an exonic ACE element. These observations identify a protein in addition to SR proteins that participates in the recognition of exon enhancers.
Collapse
Affiliation(s)
- Elmar Stickeler
- Department of Obstetrics and Gynecology, University of Freiburg, Hugstetterstrasse 55, D-79106 Freiburg, Germany, Department of Biochemistry and Molecular Biology and Departments of Pathology and Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA Corresponding author e-mail:
| | - Sherri D. Fraser
- Department of Obstetrics and Gynecology, University of Freiburg, Hugstetterstrasse 55, D-79106 Freiburg, Germany, Department of Biochemistry and Molecular Biology and Departments of Pathology and Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA Corresponding author e-mail:
| | - Arnd Honig
- Department of Obstetrics and Gynecology, University of Freiburg, Hugstetterstrasse 55, D-79106 Freiburg, Germany, Department of Biochemistry and Molecular Biology and Departments of Pathology and Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA Corresponding author e-mail:
| | - Andy L. Chen
- Department of Obstetrics and Gynecology, University of Freiburg, Hugstetterstrasse 55, D-79106 Freiburg, Germany, Department of Biochemistry and Molecular Biology and Departments of Pathology and Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA Corresponding author e-mail:
| | - Susan M. Berget
- Department of Obstetrics and Gynecology, University of Freiburg, Hugstetterstrasse 55, D-79106 Freiburg, Germany, Department of Biochemistry and Molecular Biology and Departments of Pathology and Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA Corresponding author e-mail:
| | - Thomas A. Cooper
- Department of Obstetrics and Gynecology, University of Freiburg, Hugstetterstrasse 55, D-79106 Freiburg, Germany, Department of Biochemistry and Molecular Biology and Departments of Pathology and Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA Corresponding author e-mail:
| |
Collapse
|
35
|
Affiliation(s)
- E J Wagner
- Departments of Genetics, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | |
Collapse
|
36
|
Melcák I, Melcáková S, Kopský V, Vecerová J, Raska I. Prespliceosomal assembly on microinjected precursor mRNA takes place in nuclear speckles. Mol Biol Cell 2001; 12:393-406. [PMID: 11179423 PMCID: PMC30951 DOI: 10.1091/mbc.12.2.393] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2000] [Revised: 11/03/2000] [Accepted: 12/19/2000] [Indexed: 11/11/2022] Open
Abstract
Nuclear speckles (speckles) represent a distinct nuclear compartment within the interchromatin space and are enriched in splicing factors. They have been shown to serve neighboring active genes as a reservoir of these factors. In this study, we show that, in HeLa cells, the (pre)spliceosomal assembly on precursor mRNA (pre-mRNA) is associated with the speckles. For this purpose, we used microinjection of splicing competent and mutant adenovirus pre-mRNAs with differential splicing factor binding, which form different (pre)spliceosomal complexes and followed their sites of accumulation. Splicing competent pre-mRNAs are rapidly targeted into the speckles, but the targeting is temperature-dependent. The polypyrimidine tract sequence is required for targeting, but, in itself, is not sufficient. The downstream flanking sequences are particularly important for the targeting of the mutant pre-mRNAs into the speckles. In supportive experiments, the behavior of the speckles was followed after the microinjection of antisense deoxyoligoribonucleotides complementary to the specific domains of snRNAs. Under these latter conditions prespliceosomal complexes are formed on endogenous pre-mRNAs. We conclude that the (pre)spliceosomal complexes on microinjected pre-mRNA are formed inside the speckles. Their targeting into and accumulation in the speckles is a result of the cumulative loading of splicing factors to the pre-mRNA and the complexes formed give rise to the speckled pattern observed.
Collapse
Affiliation(s)
- I Melcák
- Department of Cell Biology, Institute of Experimental Medicine, Academy of Sciences of Czech Republic, Prague
| | | | | | | | | |
Collapse
|
37
|
van Der Houven Van Oordt W, Newton K, Screaton GR, Cáceres JF. Role of SR protein modular domains in alternative splicing specificity in vivo. Nucleic Acids Res 2000; 28:4822-31. [PMID: 11121472 PMCID: PMC115228 DOI: 10.1093/nar/28.24.4822] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The SR proteins constitute a family of nuclear phosphoproteins which are required for constitutive splicing and also influence alternative splicing regulation. They have a modular structure consisting of one or two RNA recognition motifs (RRMs) and a C-terminal domain, rich in arginine and serine residues. The functional role of the different domains of SR proteins in constitutive splicing activity has been extensively studied in vitro; however, their contribution to alternative splicing specificity in vivo has not been clearly established. We sought to address how the modular domains of SR proteins contribute to alternative splicing specificity. The activity of a series of chimeric proteins consisting of domain swaps between different SR proteins showed that splice site selection is determined by the nature of the RRMs and that RRM2 of SF2/ASF has a dominant role and can confer specificity to a heterologous protein. In contrast, the identity of the RS domain is not important, as the RS domains are functionally interchangeable. The contribution of the RRMs to alternative splicing specificity in vivo suggests that sequence-specific RNA binding by SR proteins is required for this activity.
Collapse
Affiliation(s)
- W van Der Houven Van Oordt
- MRC Human Genetics Unit, Western General Hospital, Edinburgh EH4 2XU, UK and Molecular Immunology Group, Institute of Molecular Medicine, John Radcliffe Hospital, Headington, Oxford OX3 9DU, UK
| | | | | | | |
Collapse
|
38
|
Abstract
SR proteins are essential pre-mRNA splicing factors that act at the earliest stages of splice-site recognition and spliceosome assembly, as well as later in the splicing pathway. SR proteins consist of one or two RNA-recognition motifs and a characteristic arginine/serine-rich C-terminal RS domain. The RS domain, which is extensively phosphorylated, mediates the subcellular localization of individual SR proteins and also functions as a splicing activation module, apparently by engaging in protein-protein interactions. The RS domain of SF2/ASF is dispensable for the concentration-dependent effects of this SR protein on alternative splice-site selection. However, this RS domain is highly conserved phylogenetically, and was shown to be required for constitutive splicing in vitro and for cell viability. Here, we demonstrate that the RS domain of SF2/ASF is, in fact, dispensable for splicing of several substrates, including constitutive and enhancer-dependent pre-mRNAs. The requirement for this RS domain is substrate specific, and correlates with the strength of the splicing signals. When the 3' splice site is weak, both the SF2/ASF RS domain and U2AF(35) are required for splicing. These results show the existence of an RS domain-independent function of SR proteins in constitutive and enhancer-dependent splicing, and suggest mechanisms for their role in enhancer function besides U2AF recruitment.
Collapse
Affiliation(s)
- J Zhu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | | |
Collapse
|
39
|
McCullough AJ, Berget SM. An intronic splicing enhancer binds U1 snRNPs to enhance splicing and select 5' splice sites. Mol Cell Biol 2000; 20:9225-35. [PMID: 11094074 PMCID: PMC102180 DOI: 10.1128/mcb.20.24.9225-9235.2000] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Intronic G triplets are frequently located adjacent to 5' splice sites in vertebrate pre-mRNAs and have been correlated with splicing efficiency and specificity via a mechanism that activates upstream 5' splice sites in exons containing duplicated sites (26). Using an intron dependent upon G triplets for maximal activity and 5' splice site specificity, we determined that these elements bind U1 snRNPs via base pairing with U1 RNA. This interaction is novel in that it uses nucleotides 8 to 10 of U1 RNA and is independent of nucleotides 1 to 7. In vivo functionality of base pairing was documented by restoring activity and specificity to mutated G triplets through compensating U1 RNA mutations. We suggest that the G-rich region near vertebrate 5' splice sites promotes accurate splice site recognition by recruiting the U1 snRNP.
Collapse
Affiliation(s)
- A J McCullough
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030, USA.
| | | |
Collapse
|
40
|
Tomonaga K, Kobayashi T, Lee BJ, Watanabe M, Kamitani W, Ikuta K. Identification of alternative splicing and negative splicing activity of a nonsegmented negative-strand RNA virus, Borna disease virus. Proc Natl Acad Sci U S A 2000; 97:12788-93. [PMID: 11070091 PMCID: PMC18842 DOI: 10.1073/pnas.97.23.12788] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Borna disease virus (BDV) is a nonsegmented negative-strand RNA virus that belongs to the Mononegavirales. Unlike other animal viruses of this order, BDV replicates and transcribes in the nucleus of infected cells. Previous studies have shown that BDV uses RNA splicing machinery for its mRNA expression. In the present study, we identified spliced RNAs that use an alternative 3' splice site, SA3, in BDV-infected cell lines as well as infected animal brain cells. Transient transfection analysis of cDNA clones of BDV RNA revealed that although SA3 is a favorable splice site in mammalian cells, utilization of SA3 is negatively regulated in infected cells. This negative splicing activity of the SA3 site is regulated by a putative cis-acting region, the exon splicing suppressor (ESS), within the polymerase exon of BDV. The BDV ESS contains similar motifs to other known ESSs present in viral and cellular genes. Furthermore, our results indicated that a functional polyadenylation signal just upstream of the BDV ESS is also involved in the regulation of alternative splicing of BDV. These observations represent the first documentation of complex RNA splicing in animal RNA viruses and also provide new insight into the mechanism of regulation of alternative splicing in animal viruses.
Collapse
Affiliation(s)
- K Tomonaga
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan.
| | | | | | | | | | | |
Collapse
|
41
|
Carstens RP, Wagner EJ, Garcia-Blanco MA. An intronic splicing silencer causes skipping of the IIIb exon of fibroblast growth factor receptor 2 through involvement of polypyrimidine tract binding protein. Mol Cell Biol 2000; 20:7388-400. [PMID: 10982855 PMCID: PMC86292 DOI: 10.1128/mcb.20.19.7388-7400.2000] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Alternative splicing of fibroblast growth factor receptor 2 (FGF-R2) transcripts involves the mutually exclusive usage of exons IIIb and IIIc to produce two different receptor isoforms. Appropriate splicing of exon IIIb in rat prostate cancer DT3 cells requires a previously described cis element (ISAR, for "intronic splicing activator and repressor") which represses the splicing of exon IIIc and activates the splicing of exon IIIb. This element is nonfunctional in rat prostate AT3 cells, which repress exon IIIb inclusion and splice to exon IIIc. We have now identified an intronic element upstream of exon IIIb that causes repression of exon IIIb splicing. Deletion of this element abrogates the requirement for ISAR in order for exon IIIb to be spliced in DT3 cells and causes inappropriate inclusion of exon IIIb in AT3 cells. This element consists of two intronic splicing silencer (ISS) sequences, ISS1 and ISS2. The ISS1 sequence is pyrimidine rich, and in vitro cross-linking studies demonstrate binding of polypyrimidine tract binding protein (PTB) to this element. Competition studies demonstrate that mutations within ISS1 that abolish PTB binding in vitro alleviate splicing repression in vivo. Cotransfection of a PTB-1 expression vector with a minigene containing exon IIIb and the intronic splicing silencer element demonstrate PTB-mediated repression of exon IIIb splicing. Furthermore, all described PTB isoforms were equally capable of mediating this effect. Our results support a model of splicing regulation in which exon IIIc splicing does not represent a default splicing pathway but rather one in which active repression of exon IIIb splicing occurs in both cells and in which DT3 cells are able to overcome this repression in order to splice exon IIIb.
Collapse
Affiliation(s)
- R P Carstens
- Department of Genetics, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | |
Collapse
|
42
|
Simard MJ, Chabot B. Control of hnRNP A1 alternative splicing: an intron element represses use of the common 3' splice site. Mol Cell Biol 2000; 20:7353-62. [PMID: 10982852 PMCID: PMC86289 DOI: 10.1128/mcb.20.19.7353-7362.2000] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Alternative splicing of exon 7B in the hnRNP A1 pre-mRNA produces mRNAs encoding two proteins: hnRNP A1 and the less abundant A1B. We have reported the identification of several intron elements that contribute to exon 7B skipping. In this study, we report the activity of a novel element, conserved element 9 (CE9), located in the intron downstream of exon 7B. We show that multiple copies of CE9 inhibit exon 7B-exon 8 splicing in vitro. When CE9 is inserted between two competing 3' splice sites, a single copy of CE9 decreases splicing to the distal 3' splice site. Our in vivo results also support the conclusion that CE9 is a splicing modulator. First, inserting multiple copies of CE9 into an A1 minigene compromises the production of fully spliced products. Second, one copy of CE9 stimulates the inclusion of a short internal exon in a derivative of the human beta-globin gene. In this case, in vitro splicing assays suggest that CE9 decreases splicing of intron 1, an event that improves splicing of intron 2 and decreases skipping of the short internal exon. The ability of CE9 to act on heterologous substrates, combined with the results of a competition assay, suggest that the activity of CE9 is mediated by a trans-acting factor. Our results indicate that CE9 represses the use of the common 3' splice site in the hnRNP A1 alternative splicing unit.
Collapse
Affiliation(s)
- M J Simard
- Département de Microbiologie et d'Infectiologie, Faculté de Médecine, Université de Sherbrooke, Sherbrooke, Québec, Canada J1H 5N4
| | | |
Collapse
|
43
|
Zheng ZM, Quintero J, Reid ES, Gocke C, Baker CC. Optimization of a weak 3' splice site counteracts the function of a bovine papillomavirus type 1 exonic splicing suppressor in vitro and in vivo. J Virol 2000; 74:5902-10. [PMID: 10846071 PMCID: PMC112086 DOI: 10.1128/jvi.74.13.5902-5910.2000] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Alternative splicing is a critical component of the early to late switch in papillomavirus gene expression. In bovine papillomavirus type 1 (BPV-1), a switch in 3' splice site utilization from an early 3' splice site at nucleotide (nt) 3225 to a late-specific 3' splice site at nt 3605 is essential for expression of the major capsid (L1) mRNA. Three viral splicing elements have recently been identified between the two alternative 3' splice sites and have been shown to play an important role in this regulation. A bipartite element lies approximately 30 nt downstream of the nt 3225 3' splice site and consists of an exonic splicing enhancer (ESE), SE1, followed immediately by a pyrimidine-rich exonic splicing suppressor (ESS). A second ESE (SE2) is located approximately 125 nt downstream of the ESS. We have previously demonstrated that the ESS inhibits use of the suboptimal nt 3225 3' splice site in vitro through binding of cellular splicing factors. However, these in vitro studies did not address the role of the ESS in the regulation of alternative splicing. In the present study, we have analyzed the role of the ESS in the alternative splicing of a BPV-1 late pre-mRNA in vivo. Mutation or deletion of just the ESS did not significantly change the normal splicing pattern where the nt 3225 3' splice site is already used predominantly. However, a pre-mRNA containing mutations in SE2 is spliced predominantly using the nt 3605 3' splice site. In this context, mutation of the ESS restored preferential use of the nt 3225 3' splice site, indicating that the ESS also functions as a splicing suppressor in vivo. Moreover, optimization of the suboptimal nt 3225 3' splice site counteracted the in vivo function of the ESS and led to preferential selection of the nt 3225 3' splice site even in pre-mRNAs with SE2 mutations. In vitro splicing assays also showed that the ESS is unable to suppress splicing of a pre-mRNA with an optimized nt 3225 3' splice site. These data confirm that the function of the ESS requires a suboptimal upstream 3' splice site. A surprising finding of our study is the observation that SE1 can stimulate both the first and the second steps of splicing.
Collapse
Affiliation(s)
- Z M Zheng
- Basic Research Laboratory, Division of Basic Sciences, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | |
Collapse
|
44
|
Barnard DC, Patton JG. Identification and characterization of a novel serine-arginine-rich splicing regulatory protein. Mol Cell Biol 2000; 20:3049-57. [PMID: 10757789 PMCID: PMC85584 DOI: 10.1128/mcb.20.9.3049-3057.2000] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
We have identified an 86-kDa protein containing a single amino-terminal RNA recognition motif and two carboxy-terminal domains rich in serine-arginine (SR) dipeptides. Despite structural similarity to members of the SR protein family, p86 is clearly unique. It is not found in standard SR protein preparations, does not precipitate in the presence of high magnesium concentrations, is not recognized by antibodies specific for SR proteins, and cannot complement splicing-defective S100 extracts. However, we have found that p86 can inhibit the ability of purified SR proteins to activate splicing in S100 extracts and can even inhibit the in vitro and in vivo activation of specific splice sites by a subset of SR proteins, including ASF/SF2, SC35, and SRp55. In contrast, p86 activates splicing in the presence of SRp20. Thus, it appears that pairwise combination of p86 with specific SR proteins leads to altered splicing efficiency and differential splice site selection. In all cases, such regulation requires the presence of the two RS domains and a unique intervening EK-rich region, which appear to mediate direct protein-protein contact between these family members. Full-length p86, but not a mutant lacking the RS-EK-RS domains, was found to preferentially interact with itself, SRp20, ASF/SF2, SRp55, and, to a slightly lesser extent, SC35. Because of the primary sequence and unique properties of p86, we have named this protein SRrp86 for SR-related protein of 86 kDa.
Collapse
Affiliation(s)
- D C Barnard
- Department of Molecular Biology, Vanderbilt University, Nashville, Tennessee 37235, USA
| | | |
Collapse
|
45
|
Liu HX, Chew SL, Cartegni L, Zhang MQ, Krainer AR. Exonic splicing enhancer motif recognized by human SC35 under splicing conditions. Mol Cell Biol 2000; 20:1063-71. [PMID: 10629063 PMCID: PMC85223 DOI: 10.1128/mcb.20.3.1063-1071.2000] [Citation(s) in RCA: 175] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Exonic splicing enhancers (ESEs) are important cis elements required for exon inclusion. Using an in vitro functional selection and amplification procedure, we have identified a novel ESE motif recognized by the human SR protein SC35 under splicing conditions. The selected sequences are functional and specific: they promote splicing in nuclear extract or in S100 extract complemented by SC35 but not by SF2/ASF. They can also function in a different exonic context from the one used for the selection procedure. The selected sequences share one or two close matches to a short and highly degenerate octamer consensus, GRYYcSYR. A score matrix was generated from the selected sequences according to the nucleotide frequency at each position of their best match to the consensus motif. The SC35 score matrix, along with our previously reported SF2/ASF score matrix, was used to search the sequences of two well-characterized splicing substrates derived from the mouse immunoglobulin M (IgM) and human immunodeficiency virus tat genes. Multiple SC35 high-score motifs, but only two widely separated SF2/ASF motifs, were found in the IgM C4 exon, which can be spliced in S100 extract complemented by SC35. In contrast, multiple high-score motifs for both SF2/ASF and SC35 were found in a variant of the Tat T3 exon (lacking an SC35-specific silencer) whose splicing can be complemented by either SF2/ASF or SC35. The motif score matrix can help locate SC35-specific enhancers in natural exon sequences.
Collapse
Affiliation(s)
- H X Liu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724-2208, USA
| | | | | | | | | |
Collapse
|
46
|
Guth S, Martínez C, Gaur RK, Valcárcel J. Evidence for substrate-specific requirement of the splicing factor U2AF(35) and for its function after polypyrimidine tract recognition by U2AF(65). Mol Cell Biol 1999; 19:8263-71. [PMID: 10567551 PMCID: PMC84910 DOI: 10.1128/mcb.19.12.8263] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
U2 snRNP auxiliary factor (U2AF) promotes U2 snRNP binding to pre-mRNAs and consists of two subunits of 65 and 35 kDa, U2AF(65) and U2AF(35). U2AF(65) binds to the polypyrimidine (Py) tract upstream from the 3' splice site and plays a key role in assisting U2 snRNP recruitment. It has been proposed that U2AF(35) facilitates U2AF(65) binding through a network of protein-protein interactions with other splicing factors, but the requirement and function of U2AF(35) remain controversial. Here we show that recombinant U2AF(65) is sufficient to activate the splicing of two constitutively spliced pre-mRNAs in extracts that were chromatographically depleted of U2AF. In contrast, U2AF(65), U2AF(35), and the interaction between them are required for splicing of an immunoglobulin micro; pre-RNA containing an intron with a weak Py tract and a purine-rich exonic splicing enhancer. Remarkably, splicing activation by U2AF(35) occurs without changes in U2AF(65) cross-linking to the Py tract. These results reveal substrate-specific requirements for U2AF(35) and a novel function for this factor in pre-mRNA splicing.
Collapse
Affiliation(s)
- S Guth
- Gene Expression Programme, European Molecular Biology Laboratory, D-69117 Heidelberg, Germany
| | | | | | | |
Collapse
|
47
|
Bourgeois CF, Popielarz M, Hildwein G, Stevenin J. Identification of a bidirectional splicing enhancer: differential involvement of SR proteins in 5' or 3' splice site activation. Mol Cell Biol 1999; 19:7347-56. [PMID: 10523623 PMCID: PMC84728 DOI: 10.1128/mcb.19.11.7347] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The adenovirus E1A pre-mRNA undergoes alternative splicing whose modulation occurs during infection, through the use of three different 5' splice sites and of one major or one minor 3' splice site. Although this pre-mRNA has been extensively used as a model to compare the transactivation properties of SR proteins, no cis-acting element has been identified in the transcript sequence. Here we describe the identification and the characterization of a purine-rich splicing enhancer, located just upstream of the 12S 5' splice site, which is formed from two contiguous 9-nucleotide (nt) purine motifs (Pu1 and Pu2). We demonstrate that this sequence is a bidirectional splicing enhancer (BSE) in vivo and in vitro, because it activates both the downstream 12S 5' splice site through the Pu1 motif and the upstream 216-nt intervening sequence (IVS) 3' splice site through both motifs. UV cross-linking and immunoprecipitation experiments indicate that the BSE interacts with several SR proteins specifically, among them 9G8 and ASF/SF2, which bind preferentially to the Pu1 and Pu2 motifs, respectively. Interestingly, we show by in vitro complementation assays that SR proteins have distinct transactivatory properties. In particular, 9G8, but not ASF/SF2 or SC35, is able to strongly activate the recognition of the 12S 5' splice site in a BSE-dependent manner in wild-type E1A or in a heterologous context, whereas ASF/SF2 or SC35, but not 9G8, activates the upstream 216-nt IVS splicing. Thus, our results identify a novel exonic BSE and the SR proteins which are involved in its differential activity.
Collapse
Affiliation(s)
- C F Bourgeois
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, 67404 Illkirch C.U. de Strasbourg, France
| | | | | | | |
Collapse
|
48
|
Chew SL, Liu HX, Mayeda A, Krainer AR. Evidence for the function of an exonic splicing enhancer after the first catalytic step of pre-mRNA splicing. Proc Natl Acad Sci U S A 1999; 96:10655-60. [PMID: 10485881 PMCID: PMC17938 DOI: 10.1073/pnas.96.19.10655] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Exonic splicing enhancers (ESEs) activate pre-mRNA splicing by promoting the use of the flanking splice sites. They are recognized by members of the serine/arginine-rich (SR) family of proteins, such as splicing factor 2/alternative splicing factor (SF2/ASF), which recruit basal splicing factors to form the initial complexes during spliceosome assembly. The in vitro splicing kinetics of an ESE-dependent IgM pre-mRNA suggested that an SF2/ASF-specific ESE has additional functions later in the splicing reaction, after the completion of the first catalytic step. A bimolecular exon ligation assay, which physically uncouples the first and second catalytic steps of splicing in a trans-splicing reaction, was adapted to test the function of the ESE after the first step. A 3' exon containing the SF2/ASF-specific ESE underwent bimolecular exon ligation, whereas 3' exons without the ESE or with control sequences did not. The ESE-dependent trans-splicing reaction occurred after inactivation of U1 or U2 small nuclear ribonucleoprotein particles, compatible with a functional assay for events after the first step of splicing. The ESE-dependent step appears to take place before the ATP-independent part of the second catalytic step. Bimolecular exon ligation also occurred in an S100 cytosolic extract, requiring both the SF2/ASF-dependent ESE and complementation with SF2/ASF. These data suggest that some ESEs can act late in the splicing reaction, together with appropriate SR proteins, to enhance the second catalytic step of splicing.
Collapse
Affiliation(s)
- S L Chew
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | | | | | | |
Collapse
|
49
|
Wu Q, Krainer AR. AT-AC pre-mRNA splicing mechanisms and conservation of minor introns in voltage-gated ion channel genes. Mol Cell Biol 1999; 19:3225-36. [PMID: 10207048 PMCID: PMC84117 DOI: 10.1128/mcb.19.5.3225] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Affiliation(s)
- Q Wu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | | |
Collapse
|
50
|
Lopato S, Kalyna M, Dorner S, Kobayashi R, Krainer AR, Barta A. atSRp30, one of two SF2/ASF-like proteins from Arabidopsis thaliana, regulates splicing of specific plant genes. Genes Dev 1999; 13:987-1001. [PMID: 10215626 PMCID: PMC316644 DOI: 10.1101/gad.13.8.987] [Citation(s) in RCA: 133] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/1998] [Accepted: 02/18/1999] [Indexed: 11/24/2022]
Abstract
SR proteins are nuclear phosphoproteins with a characteristic Ser/Arg-rich domain and one or two RNA recognition motifs. They are highly conserved in animals and plants and play important roles in spliceosome assembly and alternative splicing regulation. We have now isolated and partially sequenced a plant protein, which crossreacts with antibodies to human SR proteins. The sequence of the corresponding cDNA and genomic clones from Arabidopsis revealed a protein, atSRp30, with strong similarity to the human SR protein SF2/ASF and to atSRp34/SR1, a previously identified SR protein, indicating that plants possess two SF2/ASF-like proteins. atSRp30 expresses alternatively spliced mRNA isoforms that are expressed differentially in various organs and during development. Overexpression of atSRp30 via a strong constitutive promoter resulted in changes in alternative splicing of several endogenous plant genes, including atSRp30 itself. Interestingly, atSRp30 overexpression resulted in a pronounced down-regulation of endogenous mRNA encoding full-length atSRp34/SR1 protein. Transgenic plants overexpressing atSRp30 showed morphological and developmental changes affecting mostly developmental phase transitions. atSRp30- and atSRp34/SR1-promoter-GUS constructs exhibited complementary expression patterns during early seedling development and root formation, with overlapping expression in floral tissues. The results of the structural and expression analyses of both genes suggest that atSRp34/SR1 acts as a general splicing factor, whereas atSRp30 functions as a specific splicing modulator.
Collapse
Affiliation(s)
- S Lopato
- Institut für Biochemie, Universität Wien, Vienna Biocenter, A-1030 Vienna, Austria
| | | | | | | | | | | |
Collapse
|