1
|
Chen L, Tu L, Yang G, Banfield DK. Remodeling-defective GPI-anchored proteins on the plasma membrane activate the spindle assembly checkpoint. Cell Rep 2021; 37:110120. [PMID: 34965437 DOI: 10.1016/j.celrep.2021.110120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 10/18/2021] [Accepted: 11/19/2021] [Indexed: 01/15/2023] Open
Abstract
Newly synthesized glycosylphosphatidylinositol-anchored proteins (GPI-APs) undergo extensive remodeling prior to transport to the plasma membrane. GPI-AP remodeling events serve as quality assurance signatures, and complete remodeling of the anchor functions as a transport warrant. Using a genetic approach in yeast cells, we establish that one remodeling event, the removal of ethanolamine-phosphate from mannose 2 via Ted1p (yPGAP5), is essential for cell viability in the absence of the Golgi-localized putative phosphodiesterase Dcr2p. While GPI-APs in which mannose 2 has not been remodeled in dcr2 ted1-deficient cells can still be delivered to the plasma membrane, their presence elicits a unique stress response. Stress is sensed by Mid2p, a constituent of the cell wall integrity pathway, whereupon signal promulgation culminates in activation of the spindle assembly checkpoint. Our results are consistent with a model in which cellular stress response and chromosome segregation checkpoint pathways are functionally interconnected.
Collapse
Affiliation(s)
- Li Chen
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, SAR of China
| | - Linna Tu
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, SAR of China
| | - Gege Yang
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, SAR of China
| | - David K Banfield
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, SAR of China.
| |
Collapse
|
2
|
Ghanegolmohammadi F, Yoshida M, Ohnuki S, Sukegawa Y, Okada H, Obara K, Kihara A, Suzuki K, Kojima T, Yachie N, Hirata D, Ohya Y. Systematic analysis of Ca 2+ homeostasis in Saccharomyces cerevisiae based on chemical-genetic interaction profiles. Mol Biol Cell 2017; 28:3415-3427. [PMID: 28566553 PMCID: PMC5687040 DOI: 10.1091/mbc.e17-04-0216] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 05/23/2017] [Accepted: 05/24/2017] [Indexed: 12/20/2022] Open
Abstract
We investigated the global landscape of Ca2+ homeostasis in budding yeast based on high-dimensional chemical-genetic interaction profiles. The morphological responses of 62 Ca2+-sensitive (cls) mutants were quantitatively analyzed with the image processing program CalMorph after exposure to a high concentration of Ca2+ After a generalized linear model was applied, an analysis of covariance model was used to detect significant Ca2+-cls interactions. We found that high-dimensional, morphological Ca2+-cls interactions were mixed with positive (86%) and negative (14%) chemical-genetic interactions, whereas one-dimensional fitness Ca2+-cls interactions were all negative in principle. Clustering analysis with the interaction profiles revealed nine distinct gene groups, six of which were functionally associated. In addition, characterization of Ca2+-cls interactions revealed that morphology-based negative interactions are unique signatures of sensitized cellular processes and pathways. Principal component analysis was used to discriminate between suppression and enhancement of the Ca2+-sensitive phenotypes triggered by inactivation of calcineurin, a Ca2+-dependent phosphatase. Finally, similarity of the interaction profiles was used to reveal a connected network among the Ca2+ homeostasis units acting in different cellular compartments. Our analyses of high-dimensional chemical-genetic interaction profiles provide novel insights into the intracellular network of yeast Ca2+ homeostasis.
Collapse
Affiliation(s)
| | - Mitsunori Yoshida
- Department of Integrated Biosciences, University of Tokyo, Kashiwa 277-8562, Japan
| | - Shinsuke Ohnuki
- Department of Integrated Biosciences, University of Tokyo, Kashiwa 277-8562, Japan
| | - Yuko Sukegawa
- Department of Integrated Biosciences, University of Tokyo, Kashiwa 277-8562, Japan
- AIST-UTokyo Advanced Operand-Measurement Technology Open Innovation Laboratory, Kashiwa 277-0882, Japan
| | - Hiroki Okada
- Department of Integrated Biosciences, University of Tokyo, Kashiwa 277-8562, Japan
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6058
| | - Keisuke Obara
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Akio Kihara
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Kuninori Suzuki
- Department of Integrated Biosciences, University of Tokyo, Kashiwa 277-8562, Japan
- Bioimaging Center, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa 277-8562, Japan
| | - Tetsuya Kojima
- Department of Integrated Biosciences, University of Tokyo, Kashiwa 277-8562, Japan
| | - Nozomu Yachie
- Synthetic Biology Division, Research Center for Advanced Science and Technology, University of Tokyo, Tokyo 153-8904, Japan
- PRESTO, Japan Science and Technology Agency, Tokyo 102-0076, Japan
| | - Dai Hirata
- Research and Development Department, Asahi Sake Brewing Co., Nagaoka 949-5494, Japan
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima 739-8530, Japan
| | - Yoshikazu Ohya
- Department of Integrated Biosciences, University of Tokyo, Kashiwa 277-8562, Japan
| |
Collapse
|
3
|
Miyakawa T, Mizunuma M. Physiological Roles of Calcineurin inSaccharomyces cerevisiaewith Special Emphasis on Its Roles in G2/M Cell-Cycle Regulation. Biosci Biotechnol Biochem 2014; 71:633-45. [PMID: 17341827 DOI: 10.1271/bbb.60495] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Calcineurin, a highly conserved Ca(2+)/CaM-dependent protein phosphatase, plays key regulatory roles in diverse biological processes from yeast to humans. Genetic and molecular analyses of the yeast model system have proved successful in dissecting complex regulatory pathways mediated by calcineurin. Saccharomyces cerevisiae calcineurin is not essential for growth under laboratory conditions, but becomes essential for survival under certain stress conditions, and is required for stress-induced expression of the genes for ion transporters and cell-wall synthesis. Yeast calcineurin, in collaboration with a Mpk1 MAP kinase cascade, is also important in G(2) cell-cycle regulation due to its action in a checkpoint-like mechanism. Genetic and molecular analysis of the Ca(2+)-dependent cell-cycle regulation has revealed an elaborate mechanism for the calcineurin-dependent regulation of the G(2)/M transition, in which calcineurin multilaterally activates Swe1, a negative regulator of the Cdc28/Clb complex, at the transcriptional, posttranslational, and degradation levels.
Collapse
Affiliation(s)
- Tokichi Miyakawa
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima, Japan.
| | | |
Collapse
|
4
|
Rossio V, Kazatskaya A, Hirabayashi M, Yoshida S. Comparative genetic analysis of PP2A-Cdc55 regulators in budding yeast. Cell Cycle 2014; 13:2073-83. [PMID: 24800822 DOI: 10.4161/cc.29064] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Cdc55, a regulatory B subunit of the protein phosphatase 2A (PP2A) complex, plays various functions during mitosis. Sequestration of Cdc55 from the nucleus by Zds1 and Zds2 is important for robust activation of mitotic Cdk1 and mitotic progression in budding yeast. However, Zds1-family proteins are found only in fungi but not in higher eukaryotes. In animal cells, highly conserved ENSA/ARPP-19 family proteins bind and inhibit PP2A-B55 activity for mitotic entry. In this study, we compared the relative contribution of Zds1/Zds2 and ENSA-family proteins Igo1/Igo2 on Cdc55 functions in budding yeast mitosis. We confirmed that Igo1/Igo2 can inhibit Cdc55 in early mitosis, but their contribution to Cdc55 regulation is relatively minor compared with the role of Zds1/Zds2. In contrast to Zds1, which primarily localized to the sites of cell polarity and in the cytoplasm, Igo1 is localized in the nucleus, suggesting that Igo1/Igo2 inhibit Cdc55 in a manner distinct from Zds1/Zds2. Our analysis confirmed an evolutionarily conserved function of ENSA-family proteins in inhibiting PP2A-Cdc55, and we propose that Zds1-dependent sequestration of PP2A-Cdc55 from the nucleus is uniquely evolved to facilitate closed mitosis in fungal species.
Collapse
Affiliation(s)
- Valentina Rossio
- Department of Biology and Rosenstiel Basic Biomedical Sciences Research Center; Brandeis University; Waltham, MA USA
| | - Anna Kazatskaya
- Department of Biology and Rosenstiel Basic Biomedical Sciences Research Center; Brandeis University; Waltham, MA USA
| | - Mayo Hirabayashi
- Department of Biology and Rosenstiel Basic Biomedical Sciences Research Center; Brandeis University; Waltham, MA USA
| | - Satoshi Yoshida
- Department of Biology and Rosenstiel Basic Biomedical Sciences Research Center; Brandeis University; Waltham, MA USA
| |
Collapse
|
5
|
Matthews LM, Evans JP. α-endosulfine (ENSA) regulates exit from prophase I arrest in mouse oocytes. Cell Cycle 2014; 13:1639-49. [PMID: 24675883 DOI: 10.4161/cc.28606] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Mammalian oocytes in ovarian follicles are arrested in meiosis at prophase I. This arrest is maintained until ovulation, upon which the oocyte exits from this arrest, progresses through meiosis I and to metaphase of meiosis II. The progression from prophase I to metaphase II, known as meiotic maturation, is mediated by signals that coordinate these transitions in the life of the oocyte. ENSA (α-endosulfine) and ARPP19 (cAMP-regulated phosphoprotein-19) have emerged as regulators of M-phase, with function in inhibition of protein phosphatase 2A (PP2A) activity. Inhibition of PP2A maintains the phosphorylated state of CDK1 substrates, thus allowing progression into and/or maintenance of an M-phase state. We show here ENSA in mouse oocytes plays a key role in the progression from prophase I arrest into M-phase of meiosis I. The majority of ENSA-deficient oocytes fail to exit from prophase I arrest. This function of ENSA in oocytes is dependent on PP2A, and specifically on the regulatory subunit PPP2R2D (also known as B55δ). Treatment of ENSA-deficient oocytes with Okadaic acid to inhibit PP2A rescues the defect in meiotic progression, with Okadaic acid-treated, ENSA-deficient oocytes being able to exit from prophase I arrest. Similarly, oocytes deficient in both ENSA and PPP2R2D are able to exit from prophase I arrest to an extent similar to wild-type oocytes. These data are evidence of a role for ENSA in regulating meiotic maturation in mammalian oocytes, and also have potential relevance to human oocyte biology, as mouse and human have genes encoding both Arpp19 and Ensa.
Collapse
Affiliation(s)
- Lauren M Matthews
- Department of Biochemistry and Molecular Biology; Bloomberg School of Public Health; Johns Hopkins University; Baltimore, MD USA
| | - Janice P Evans
- Department of Biochemistry and Molecular Biology; Bloomberg School of Public Health; Johns Hopkins University; Baltimore, MD USA
| |
Collapse
|
6
|
Yasutis KM, Kozminski KG. Cell cycle checkpoint regulators reach a zillion. Cell Cycle 2013; 12:1501-9. [PMID: 23598718 DOI: 10.4161/cc.24637] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Entry into mitosis is regulated by a checkpoint at the boundary between the G2 and M phases of the cell cycle (G2/M). In many organisms, this checkpoint surveys DNA damage and cell size and is controlled by both the activation of mitotic cyclin-dependent kinases (Cdks) and the inhibition of an opposing phosphatase, protein phosphatase 2A (PP2A). Misregulation of mitotic entry can often lead to oncogenesis or cell death. Recent research has focused on discovering the signaling pathways that feed into the core checkpoint control mechanisms dependent on Cdk and PP2A. Herein, we review the conserved mechanisms of the G2/M transition, including recently discovered upstream signaling pathways that link cell growth and DNA replication to cell cycle progression. Critical consideration of the human, frog and yeast models of mitotic entry frame unresolved and emerging questions in this field, providing a prediction of signaling molecules and pathways yet to be discovered.
Collapse
|
7
|
Doherty KM, Pride LD, Lukose J, Snydsman BE, Charles R, Pramanik A, Muller EG, Botstein D, Moore CW. Loss of a 20S proteasome activator in Saccharomyces cerevisiae downregulates genes important for genomic integrity, increases DNA damage, and selectively sensitizes cells to agents with diverse mechanisms of action. G3 (BETHESDA, MD.) 2012; 2:943-59. [PMID: 22908043 PMCID: PMC3411250 DOI: 10.1534/g3.112.003376] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Accepted: 06/18/2012] [Indexed: 01/23/2023]
Abstract
Cytoprotective functions of a 20S proteasome activator were investigated. Saccharomyces cerevisiae Blm10 and human 20S proteasome activator 200 (PA200) are homologs. Comparative genome-wide analyses of untreated diploid cells lacking Blm10 and growing at steady state at defined growth rates revealed downregulation of numerous genes required for accurate chromosome structure, assembly and repair, and upregulation of a specific subset of genes encoding protein-folding chaperones. Blm10 loss or truncation of the Ubp3/Blm3 deubiquitinating enzyme caused massive chromosomal damage and cell death in homozygous diploids after phleomycin treatments, indicating that Blm10 and Ubp3/Blm3 function to stabilize the genome and protect against cell death. Diploids lacking Blm10 also were sensitized to doxorubicin, hydroxyurea, 5-fluorouracil, rapamycin, hydrogen peroxide, methyl methanesulfonate, and calcofluor. Fluorescently tagged Blm10 localized in nuclei, with enhanced fluorescence after DNA replication. After DNA damage that caused a classic G2/M arrest, fluorescence remained diffuse, with evidence of nuclear fragmentation in some cells. Protective functions of Blm10 did not require the carboxyl-terminal region that makes close contact with 20S proteasomes, indicating that protection does not require this contact or the truncated Blm10 can interact with the proteasome apart from this region. Without its carboxyl-terminus, Blm10((-339aa)) localized to nuclei in untreated, nonproliferating (G(0)) cells, but not during G(1) S, G(2), and M. The results indicate Blm10 functions in protective mechanisms that include the machinery that assures proper assembly of chromosomes. These essential guardian functions have implications for ubiquitin-independent targeting in anticancer therapy. Targeting Blm10/PA200 together with one or more of the upregulated chaperones or a conventional treatment could be efficacious.
Collapse
Affiliation(s)
- Kevin M. Doherty
- Department of Microbiology and Immunology, City University of New York Sophie Davis School of Biomedical Education, City College, New York, New York 10031-9101
- The Graduate Center Program in Biochemistry, City University of New York, New York, New York 10016-4309
| | - Leah D. Pride
- Department of Microbiology and Immunology, City University of New York Sophie Davis School of Biomedical Education, City College, New York, New York 10031-9101
- Department of Biochemistry, City College, City University of New York, New York, New York 10031-9101
| | - James Lukose
- Department of Microbiology and Immunology, City University of New York Sophie Davis School of Biomedical Education, City College, New York, New York 10031-9101
| | - Brian E. Snydsman
- Department of Biochemistry, University of Washington, Seattle, Washington 98195-7350
| | - Ronald Charles
- Department of Microbiology and Immunology, City University of New York Sophie Davis School of Biomedical Education, City College, New York, New York 10031-9101
| | - Ajay Pramanik
- Department of Microbiology and Immunology, City University of New York Sophie Davis School of Biomedical Education, City College, New York, New York 10031-9101
| | - Eric G. Muller
- Department of Biochemistry, University of Washington, Seattle, Washington 98195-7350
| | - David Botstein
- Lewis-Sigler Institute for Integrative Genomics and Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544-1004, and
| | - Carol Wood Moore
- Department of Microbiology and Immunology, City University of New York Sophie Davis School of Biomedical Education, City College, New York, New York 10031-9101
- Graduate Center Programs in Biochemistry and Biology, City University of New York, New York, New York 10016-4309
| |
Collapse
|
8
|
Li Z, Sun Z, Li D, Pan J, Zhu X. Identification of a Zds-like gene ZDS3 as a new mediator of stress resistance, capsule formation and virulence of the human pathogenic yeast Cryptococcus neoformans. FEMS Yeast Res 2011; 11:529-39. [PMID: 21726407 DOI: 10.1111/j.1567-1364.2011.00744.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The fungal Zds proteins are regulators of the serine/threonine phosphatase 2A (PP2A) and the protein kinase A. Here, we characterize a Zds-like gene ZDS3 that plays a broad range of roles in the basidiomycetous pathogenic yeast Cryptococcus neoformans. ZDS3 harbors the conserved activation domain ZDS_C of Zds proteins. By gene disruption, ZDS3 is shown to play roles in capsule production, cell wall integrity, growth at a high temperature, resistance to H(2)O(2) stress, osmotic pressures and glucose-dependent invasive growth on the agar. As a consequence, the disruption of ZDS3 resulted in complete loss of virulence in a mouse cryptococcosis model. The data suggest that ZDS3 is a novel mediator of the virulence of C. neoformans. Zds3 may serve as an antifungal drug target as no homologs are found in mammals.
Collapse
Affiliation(s)
- Zhongming Li
- State Key Program of Microbiology and Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | | | | | | | | |
Collapse
|
9
|
Rossio V, Yoshida S. Spatial regulation of Cdc55-PP2A by Zds1/Zds2 controls mitotic entry and mitotic exit in budding yeast. ACTA ACUST UNITED AC 2011; 193:445-54. [PMID: 21536748 PMCID: PMC3087000 DOI: 10.1083/jcb.201101134] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Zds1/2 regulate mitotic progression by directing the nucleocytoplasmic distribution of Cdc55–PP2A. Budding yeast CDC55 encodes a regulatory B subunit of the PP2A (protein phosphatase 2A), which plays important roles in mitotic entry and mitotic exit. The spatial and temporal regulation of PP2A is poorly understood, although recent studies demonstrated that the conserved proteins Zds1 and Zds2 stoichiometrically bind to Cdc55–PP2A and regulate it in a complex manner. Zds1/Zds2 promote Cdc55–PP2A function for mitotic entry, whereas Zds1/Zds2 inhibit Cdc55–PP2A function during mitotic exit. In this paper, we propose that Zds1/Zds2 primarily control Cdc55 localization. Cortical and cytoplasmic localization of Cdc55 requires Zds1/Zds2, and Cdc55 accumulates in the nucleus in the absence of Zds1/Zds2. By genetically manipulating the nucleocytoplasmic distribution of Cdc55, we showed that Cdc55 promotes mitotic entry when in the cytoplasm. On the other hand, nuclear Cdc55 prevents mitotic exit. Our analysis defines the long-sought molecular function for the zillion different screens family proteins and reveals the importance of the regulation of PP2A localization for proper mitotic progression.
Collapse
Affiliation(s)
- Valentina Rossio
- Department of Biology, Brandeis University, Waltham, MA 02454, USA
| | | |
Collapse
|
10
|
Tsubakiyama R, Mizunuma M, Gengyo A, Yamamoto J, Kume K, Miyakawa T, Hirata D. Implication of Ca2+ in the regulation of replicative life span of budding yeast. J Biol Chem 2011; 286:28681-28687. [PMID: 21712379 DOI: 10.1074/jbc.m111.231415] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In eukaryotic cells, Ca(2+)-triggered signaling pathways are used to regulate a wide variety of cellular processes. Calcineurin, a highly conserved Ca(2+)/calmodulin-dependent protein phosphatase, plays key roles in the regulation of diverse biological processes in organisms ranging from yeast to humans. We isolated a mutant of the SIR3 gene, implicated in the regulation of life span, as a suppressor of the Ca(2+) sensitivity of zds1Δ cells in the budding yeast Saccharomyces cerevisiae. Therefore, we investigated a relationship between Ca(2+) signaling and life span in yeast. Here we show that Ca(2+) affected the replicative life span (RLS) of yeast. Increased external and intracellular Ca(2+) levels caused a reduction in their RLS. Consistently, the increase in calcineurin activity by either the zds1 deletion or the constitutively activated calcineurin reduced RLS. Indeed, the shortened RLS of zds1Δ cells was suppressed by the calcineurin deletion. Further, the calcineurin deletion per se promoted aging without impairing the gene silencing typically observed in short-lived sir mutants, indicating that calcineurin plays an important role in a regulation of RLS even under normal growth condition. Thus, our results indicate that Ca(2+) homeostasis/Ca(2+) signaling are required to regulate longevity in budding yeast.
Collapse
Affiliation(s)
- Ryohei Tsubakiyama
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima 739-8530, Japan
| | - Masaki Mizunuma
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima 739-8530, Japan.
| | - Anri Gengyo
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima 739-8530, Japan
| | - Josuke Yamamoto
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima 739-8530, Japan
| | - Kazunori Kume
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima 739-8530, Japan
| | - Tokichi Miyakawa
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima 739-8530, Japan
| | - Dai Hirata
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima 739-8530, Japan
| |
Collapse
|
11
|
Yasutis K, Vignali M, Ryder M, Tameire F, Dighe SA, Fields S, Kozminski KG. Zds2p regulates Swe1p-dependent polarized cell growth in Saccharomyces cerevisiae via a novel Cdc55p interaction domain. Mol Biol Cell 2010; 21:4373-86. [PMID: 20980617 PMCID: PMC3002390 DOI: 10.1091/mbc.e10-04-0326] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Revised: 08/20/2010] [Accepted: 10/19/2010] [Indexed: 11/18/2022] Open
Abstract
Deletion of the paralogs ZDS1 and ZDS2 in the budding yeast Saccharomyces cerevisiae causes a mis-regulation of polarized cell growth. Here we show a function for these genes as regulators of the Swe1p (Wee1p) kinase-dependent G2/M checkpoint. We identified a conserved domain in the C-terminus of Zds2p consisting of amino acids 813-912 (hereafter referred to as ZH4 for Zds homology 4) that is required for regulation of Swe1p-dependent polarized bud growth. ZH4 is shown by protein affinity assays to be necessary and sufficient for interaction with Cdc55p, a regulatory subunit of protein phosphatase 2A (PP2A). We hypothesized that the Zds proteins are in a pathway that negatively regulates the Swe1p-dependent G2/M checkpoint via Cdc55p. Supporting this model, deletion of CDC55 rescues the aberrant bud morphology of a zds1Δzds2Δ strain. We also show that expression of ZDS1 or ZDS2 from a strong galactose-inducible promoter can induce mitosis even when the Swe1p-dependent G2/M checkpoint is activated by mis-organization of the actin cytoskeleton. This negative regulation requires the CDC55 gene. Together these data indicate that the Cdc55p/Zds2p module has a function in the regulation of the Swe1p-dependent G2/M checkpoint.
Collapse
Affiliation(s)
- Kimberly Yasutis
- *Departments of Biology and
- Cell and Developmental Biology Program, University of Virginia, Charlottesville, VA 22904; and
| | | | | | | | | | - Stanley Fields
- Departments of Genome Sciences and Medicine and
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195
| | - Keith G. Kozminski
- *Departments of Biology and
- Cell Biology and
- Cell and Developmental Biology Program, University of Virginia, Charlottesville, VA 22904; and
| |
Collapse
|
12
|
Wicky S, Tjandra H, Schieltz D, Yates J, Kellogg DR. The Zds proteins control entry into mitosis and target protein phosphatase 2A to the Cdc25 phosphatase. Mol Biol Cell 2010; 22:20-32. [PMID: 21119008 PMCID: PMC3016974 DOI: 10.1091/mbc.e10-06-0487] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The Wee1 kinase restrains entry into mitosis by phosphorylating and inhibiting cyclin-dependent kinase 1 (Cdk1). The Cdc25 phosphatase promotes entry into mitosis by removing Cdk1 inhibitory phosphorylation. Experiments in diverse systems have established that Wee1 and Cdc25 are regulated by protein phosphatase 2A (PP2A), but a full understanding of the function and regulation of PP2A in entry into mitosis has remained elusive. In budding yeast, entry into mitosis is controlled by a specific form of PP2A that is associated with the Cdc55 regulatory subunit (PP2A(Cdc55)). We show here that related proteins called Zds1 and Zds2 form a tight stoichiometric complex with PP2A(Cdc55) and target its activity to Cdc25 but not to Wee1. Conditional inactivation of the Zds proteins revealed that their function is required primarily at entry into mitosis. In addition, Zds1 undergoes cell cycle-dependent changes in phosphorylation. Together, these observations define a role for the Zds proteins in controlling specific functions of PP2A(Cdc55) and suggest that upstream signals that regulate PP2A(Cdc55) may play an important role in controlling entry into mitosis.
Collapse
Affiliation(s)
- Sidonie Wicky
- Department of Molecular, Cell, and Developmental Biology, Univ. of California, Santa Cruz, CA 95064, USA
| | | | | | | | | |
Collapse
|
13
|
Queralt E, Uhlmann F. Separase cooperates with Zds1 and Zds2 to activate Cdc14 phosphatase in early anaphase. ACTA ACUST UNITED AC 2008; 182:873-83. [PMID: 18762578 PMCID: PMC2528575 DOI: 10.1083/jcb.200801054] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Completion of mitotic exit and cytokinesis requires the inactivation of mitotic cyclin-dependent kinase (Cdk) activity. A key enzyme that counteracts Cdk during budding yeast mitotic exit is the Cdc14 phosphatase. Cdc14 is inactive for much of the cell cycle, sequestered by its inhibitor Net1 in the nucleolus. At anaphase onset, separase-dependent down-regulation of PP2A(Cdc55) allows phosphorylation of Net1 and consequent Cdc14 release. How separase causes PP2A(Cdc55) down-regulation is not known. Here, we show that two Cdc55-interacting proteins, Zds1 and Zds2, contribute to timely Cdc14 activation during mitotic exit. Zds1 and Zds2 are required downstream of separase to facilitate nucleolar Cdc14 release. Ectopic Zds1 expression in turn is sufficient to down-regulate PP2A(Cdc55) and promote Net1 phosphorylation. These findings identify Zds1 and Zds2 as new components of the mitotic exit machinery, involved in activation of the Cdc14 phosphatase at anaphase onset. Our results suggest that these proteins may act as separase-regulated PP2A(Cdc55) inhibitors.
Collapse
Affiliation(s)
- Ethel Queralt
- Chromosome Segregation Laboratory, Cancer Research UK London Research Institute, London, England, UK.
| | | |
Collapse
|
14
|
Ohnuki S, Nogami S, Kanai H, Hirata D, Nakatani Y, Morishita S, Ohya Y. Diversity of Ca2+-induced morphology revealed by morphological phenotyping of Ca2+-sensitive mutants of Saccharomyces cerevisiae. EUKARYOTIC CELL 2007; 6:817-30. [PMID: 17351076 PMCID: PMC1899241 DOI: 10.1128/ec.00012-07] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Yeast cell morphology can be treated as a quantitative trait using the image processing software CalMorph. In the present study, we investigated Ca(2+)-induced morphological changes in Ca(2+)-sensitive (cls) mutants of Saccharomyces cerevisiae, based on the discovery that the characteristic Ca(2+)-induced morphological changes in the Ca(2+)-sensitive mutant zds1 reflect changes in the Ca(2+) signaling-mediated cell cycle control pathway. By applying hierarchical cluster analysis to the quantitative morphological data of 58 cls mutants, 31 of these mutants were classified into seven classes based on morphological similarities. The patterns of morphological change induced by Ca(2+) in one class differed from those of another class. Based on the results obtained using versatile methods for phenotypic analysis, we conclude that a high concentration of Ca(2+) exerts a wide variety of effects on yeast and that there are multiple Ca(2+)-regulatory pathways that are distinct from the Zds1p-related pathway.
Collapse
Affiliation(s)
- Shinsuke Ohnuki
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Bldg. FSB-101, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
| | | | | | | | | | | | | |
Collapse
|
15
|
Pratt ZL, Drehman BJ, Miller ME, Johnston SD. Mutual interdependence of MSI1 (CAC3) and YAK1 in Saccharomyces cerevisiae. J Mol Biol 2007; 368:30-43. [PMID: 17321547 PMCID: PMC1861849 DOI: 10.1016/j.jmb.2007.01.046] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2006] [Revised: 01/16/2007] [Accepted: 01/17/2007] [Indexed: 10/23/2022]
Abstract
The MSI1 (CAC3) gene of Saccharomyces cerevisiae has been implicated in diverse cellular functions, including suppression of the RAS/cAMP/protein kinase A signaling pathway, chromatin assembly and transcriptional co-repression. Seeking to identify the molecular mechanisms by which Msi1p carries out these distinct activities, a novel genetic interaction was uncovered with YAK1, which encodes a kinase that antagonizes the RAS/cAMP pathway. MSI1 was capable of efficiently suppressing the heat shock sensitivity caused by deletion of yak1. Surprisingly, the YAK1 gene is required for Msi1p to associate with Cac1p in the yeast two-hybrid system. A new activity of Msi1p was identified: the ability to activate transcription of a reporter gene when tethered near the promoter, but only in the absence of fermentable carbon sources. This transcriptional activation function was diminished substantially by the loss of YAK1. Furthermore, MSI1 influences YAK1 function; over-expression of YAK1 decreased the growth rate, but only in the presence of a functional MSI1 gene. Finally, it is shown that YAK1 antagonizes nuclear accumulation of Msi1p in non-fermenting cells. Taken together, these data demonstrate a novel interaction between Msi1p and Yak1p in which each protein influences the activity of the other.
Collapse
Affiliation(s)
- Zachary L. Pratt
- Department of Biology, North Central College, 30 N. Brainard St., Naperville, IL 60540, USA Phone: 630-637-5188. Fax: 630-637-5180.
| | - Bethany J. Drehman
- Department of Biology, Rhodes College, 2000 North Parkway, Memphis, TN 38112, USA
| | - Mary E. Miller
- Department of Biology, Rhodes College, 2000 North Parkway, Memphis, TN 38112, USA
| | - Stephen D. Johnston
- Department of Biology, North Central College, 30 N. Brainard St., Naperville, IL 60540, USA Phone: 630-637-5188. Fax: 630-637-5180.
| |
Collapse
|
16
|
Yokoyama H, Mizunuma M, Okamoto M, Yamamoto J, Hirata D, Miyakawa T. Involvement of calcineurin-dependent degradation of Yap1p in Ca2+-induced G2 cell-cycle regulation in Saccharomyces cerevisiae. EMBO Rep 2006; 7:519-24. [PMID: 16485023 PMCID: PMC1479561 DOI: 10.1038/sj.embor.7400647] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2005] [Revised: 11/11/2005] [Accepted: 01/23/2006] [Indexed: 11/08/2022] Open
Abstract
The Ca2+-activated pathways in Saccharomyces cerevisiae induce a delay in the onset of mitosis through the activation of Swe1p, a negative regulatory kinase that inhibits the Cdc28p/Clb complex. We isolated the YAP1 gene as a multicopy suppressor of calcium sensitivity owing to the loss of ZDS1, a negative regulator of SWE1 and CLN2 gene expression. YAP1 deletion on a zds1delta background exacerbated the Ca2+-related phenotype. Yap1p was degraded in a calcineurin-dependent manner when cells were exposed to calcium. In yap1delta cells, the expression level of the RPN4 gene encoding a transcription factor for the subunits of the ubiquitin-proteasome system was diminished. The deletion of YAP1 gene or RPN4 gene led to the accumulation of Swe1p and Cln2p. Yap1p was a substrate of calcineurin in vivo and in vitro. The calcineurin-mediated Yap1p degradation seems to be a long adaptive response that assures a G2 delay in response to a stress that causes the activation of the calcium signalling pathways.
Collapse
Affiliation(s)
- Hiroshi Yokoyama
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima 739-8530, Japan
| | - Masaki Mizunuma
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima 739-8530, Japan
| | - Michiyo Okamoto
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima 739-8530, Japan
| | - Josuke Yamamoto
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima 739-8530, Japan
| | - Dai Hirata
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima 739-8530, Japan
| | - Tokichi Miyakawa
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima 739-8530, Japan
- Tel: +81 82 424 7763; Fax: +81 82 424 7763; E-mail:
| |
Collapse
|
17
|
Zanelli CF, Valentini SR. Pkc1 acts through Zds1 and Gic1 to suppress growth and cell polarity defects of a yeast eIF5A mutant. Genetics 2005; 171:1571-81. [PMID: 16157662 PMCID: PMC1456085 DOI: 10.1534/genetics.105.048082] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2005] [Accepted: 08/30/2005] [Indexed: 11/18/2022] Open
Abstract
eIF5A is a highly conserved putative eukaryotic translation initiation factor that has been implicated in translation initiation, nucleocytoplasmic transport, mRNA decay, and cell proliferation, but with no precise function assigned so far. We have previously shown that high-copy PKC1 suppresses the phenotype of tif51A-1, a temperature-sensitive mutant of eIF5A in S. cerevisiae. Here, in an attempt to further understand how Pkc1 functionally interacts with eIF-5A, it was determined that PKC1 suppression of tif51A-1 is independent of the cell integrity MAP kinase cascade. Furthermore, two new suppressor genes, ZDS1 and GIC1, were identified. We demonstrated that ZDS1 and ZDS2 are necessary for PKC1, but not for GIC1 suppression. Moreover, high-copy GIC1 also suppresses the growth defect of a PKC1 mutant (stt1), suggesting the existence of a Pkc1-Zds1-Gic1 pathway. Consistent with the function of Gic1 in actin organization, the tif51A-1 strain shows an actin polarity defect that is partially recovered by overexpression of Pkc1 and Zds1 as well as Gic1. Additionally, PCL1 and BNI1, important regulators of yeast cell polarity, also suppress tif51A-1 temperature sensitivity. Taken together, these data strongly support the correlated involvement of Pkc1 and eIF5A in establishing actin polarity, which is essential for bud formation and G1/S transition in S. cerevisiae.
Collapse
Affiliation(s)
- Cleslei F Zanelli
- Department of Biological Sciences, School of Pharmaceutical Sciences, São Paulo State University, UNESP, Rodovia Araraquara-Jaú, Km. 01, Araraquara, São Paulo 14801-902, Brazil
| | | |
Collapse
|
18
|
Yakura M, Ozoe F, Ishida H, Nakagawa T, Tanaka K, Matsuda H, Kawamukai M. zds1, a novel gene encoding an ortholog of Zds1 and Zds2, controls sexual differentiation, cell wall integrity and cell morphology in fission yeast. Genetics 2005; 172:811-25. [PMID: 16322512 PMCID: PMC1456246 DOI: 10.1534/genetics.105.050906] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
While screening for genes that reverse the sporulation-deficient phenotype of the ras1delta diploid Schizosaccharomyces pombe strain, we identified zds1. This gene shares sequence homology with the ZDS1 and ZDS2 genes from Saccharomyces cerevisiae, which appear to be involved in multiple cellular events. Expression of Zds1 in ras1delta diploid cells elevated their sporulation rate from 0.3 to 11.2%. Expression of the Zds1 C-terminal region increased the sporulation rate further (to 21.9%) while introduction of the Zds1 N-terminal region had no effect. zds1 expression did not induce sporulation in strains with mutations in genes participating in the downstream MAP kinase cascade. The zds1-disrupted strain is sensitive to CaCl2, and this effect is suppressed by the C-terminal region of Zds1. The growth of the zds1delta strain is markedly inhibited by cold temperatures, while its viability decreased in the stationary phase. Moreover, the zds1delta strain is round in shape and very sensitive to zymolyase, and its cell wall becomes thicker than that of wild type. Thus, zds1 must be required to maintain cell wall integrity. The Zds1-GFP fusion protein localized to the cytosol, the septum, and the cell cortex. Its localization in the septum was dependent on its C-terminal region. Overexpression of the C-terminal region of Zds1 induced multi-septa and abnormal zygotes. We propose that the C-terminal region is the functional domain of Zds1 while the N-terminal region is a negative regulatory region. Thus, Zds1 is involved in multiple cellular events in fission yeast, including sexual differentiation, Ca2+ tolerance, cell wall integrity, viability in the stationary phase, and cell morphology.
Collapse
Affiliation(s)
- Miyo Yakura
- Department of Life Science and Biotechnology, Shimane University, Matsue 690-8504, Japan
| | | | | | | | | | | | | |
Collapse
|
19
|
Imazu H, Sakurai H. Saccharomyces cerevisiae heat shock transcription factor regulates cell wall remodeling in response to heat shock. EUKARYOTIC CELL 2005; 4:1050-6. [PMID: 15947197 PMCID: PMC1151985 DOI: 10.1128/ec.4.6.1050-1056.2005] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The heat shock transcription factor Hsf1 of the yeast Saccharomyces cerevisiae regulates expression of genes encoding heat shock proteins and a variety of other proteins as well. To better understand the cellular roles of Hsf1, we screened multicopy suppressor genes of a temperature-sensitive hsf1 mutation. The RIM15 gene, encoding a protein kinase that is negatively regulated by the cyclic AMP-dependent protein kinase, was identified as a suppressor, but Rim15-regulated stress-responsive transcription factors, such as Msn2, Msn4, and Gis1, were unable to rescue the temperature-sensitive growth phenotype of the hsf1 mutant. Another class of suppressors encoded cell wall stress sensors, Wsc1, Wsc2, and Mid2, and the GDP/GTP exchange factor Rom2 that interacts with these cell wall sensors. Activation of a protein kinase, Pkc1, which is induced by these cell wall sensor proteins upon heat shock, but not activation of the Pkc1-regulated mitogen-activated protein kinase cascade, was necessary for the hsf1 suppression. Like Wsc-Pkc1 pathway mutants, hsf1 cells exhibited an osmotic remedial cell lysis phenotype at elevated temperatures. Several of the other suppressors were found to encode proteins functioning in cell wall organization. These results suggest that Hsf1 in concert with Pkc1 regulates cell wall remodeling in response to heat shock.
Collapse
Affiliation(s)
- Hiromi Imazu
- School of Health Sciences, Faculty of Medicine, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa, Ishikawa 920-0942, Japan
| | | |
Collapse
|
20
|
Mizunuma M, Hirata D, Miyakawa T. Implication of Pkc1p protein kinase C in sustaining Cln2p level and polarized bud growth in response to calcium signaling in Saccharomyces cerevisiae. J Cell Sci 2005; 118:4219-29. [PMID: 16141237 DOI: 10.1242/jcs.02535] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Protein kinase C, a highly conserved signaling molecule among eukaryotes, has been implicated in the regulation of cellular processes such as cell proliferation and polarized growth. In Saccharomyces cerevisiae, the unique protein kinase C Pkc1p is thought to have multiple functions, including the activation of the Mpk1p (Slt2p) MAP kinase pathway, which is essential for cell wall construction and bud emergence. However, little is known about the other functions of Pkc1p. In the course of screening for the mutants that suppress the Ca2+-sensitivity phenotype of the Ca2+-sensitive strain zdsDelta, we isolated a novel mutant allele (scz6/pkc1-834) of PKC1. Unlike the previously characterized PKC1 allele stt1-1, heat-shock-induced Mpk1p activation and cell-wall integrity were not impaired in the pkc1-834 mutant. By contrast, the mutant was defective in the maintenance of Ca2+-induced F-actin polarization in a manner independent of Mpk1p activation. This phenotype was caused by a decreased expression level of the G1 cyclin Cln2p. The Rho1 small G protein molecular switch was suggested to be involved in the novel Pkc1p function. The Pkc1p novel function was required for posttranscriptional upregulation of Cln2p and appeared to be important for the coordinated regulation of polar bud growth and the cell cycle.
Collapse
Affiliation(s)
- Masaki Mizunuma
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8530, Japan
| | | | | |
Collapse
|
21
|
Canton DA, Litchfield DW. The shape of things to come: an emerging role for protein kinase CK2 in the regulation of cell morphology and the cytoskeleton. Cell Signal 2005; 18:267-75. [PMID: 16126370 DOI: 10.1016/j.cellsig.2005.07.008] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2005] [Revised: 07/04/2005] [Accepted: 07/18/2005] [Indexed: 01/24/2023]
Abstract
Protein kinase CK2 is a highly conserved, pleiotropic, protein serine/threonine kinase that is essential for life in eukaryotes. CK2 has been implicated in diverse cellular processes such as cell cycle regulation, circadian rhythms, apoptosis, transformation and tumorigenesis. In addition, there is increasing evidence that CK2 is involved in the maintenance of cell morphology and cell polarity, and in the regulation of the actin and tubulin cytoskeletons. Accordingly, this review will highlight published evidence in experimental models ranging from yeast to mammals documenting the emerging roles of protein kinase CK2 in the regulation of cell polarity, cell morphology and the cytoskeleton.
Collapse
Affiliation(s)
- David A Canton
- Regulatory Biology and Functional Genomics Group, Siebens-Drake Medical Research Institute, Department of Biochemistry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada N6A 5C1
| | | |
Collapse
|
22
|
Care A, Vousden KA, Binley KM, Radcliffe P, Trevethick J, Mannazzu I, Sudbery PE. A synthetic lethal screen identifies a role for the cortical actin patch/endocytosis complex in the response to nutrient deprivation in Saccharomyces cerevisiae. Genetics 2004; 166:707-19. [PMID: 15020461 PMCID: PMC1470737 DOI: 10.1534/genetics.166.2.707] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Saccharomyces cerevisiae whi2Delta cells are unable to halt cell division in response to nutrient limitation and are sensitive to a wide variety of stresses. A synthetic lethal screen resulted in the isolation of siw mutants that had a phenotype similar to that of whi2Delta. Among these were mutations affecting SIW14, FEN2, SLT2, and THR4. Fluid-phase endocytosis is severely reduced or abolished in whi2Delta, siw14Delta, fen2Delta, and thr4Delta mutants. Furthermore, whi2Delta and siw14Delta mutants produce large actin clumps in stationary phase similar to those seen in prk1Delta ark1Delta mutants defective in protein kinases that regulate the actin cytoskeleton. Overexpression of SIW14 in a prk1Delta strain resulted in a loss of cortical actin patches and cables and was lethal. Overexpression of SIW14 also rescued the caffeine sensitivity of the slt2 mutant isolated in the screen, but this was not due to alteration of the phosphorylation state of Slt2. These observations suggest that endocytosis and the organization of the actin cytoskeleton are required for the proper response to nutrient limitation. This hypothesis is supported by the observation that rvs161Delta, sla1Delta, sla2Delta, vrp1Delta, ypt51Delta, ypt52Delta, and end3Delta mutations, which disrupt the organization of the actin cytoskeleton and/or reduce endocytosis, have a phenotype similar to that of whi2Delta mutants.
Collapse
Affiliation(s)
- Alison Care
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK
| | | | | | | | | | | | | |
Collapse
|
23
|
Care A, Vousden KA, Binley KM, Radcliffe P, Trevethick J, Mannazzu I, Sudbery PE. A Synthetic Lethal Screen Identifies a Role for the Cortical Actin Patch/Endocytosis Complex in the Response to Nutrient Deprivation in Saccharomyces cerevisiae. Genetics 2004. [DOI: 10.1093/genetics/166.2.707] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abstract
Saccharomyces cerevisiae whi2Δ cells are unable to halt cell division in response to nutrient limitation and are sensitive to a wide variety of stresses. A synthetic lethal screen resulted in the isolation of siw mutants that had a phenotype similar to that of whi2Δ. Among these were mutations affecting SIW14, FEN2, SLT2, and THR4. Fluid-phase endocytosis is severely reduced or abolished in whi2Δ, siw14Δ, fen2Δ, and thr4Δ mutants. Furthermore, whi2Δ and siw14Δ mutants produce large actin clumps in stationary phase similar to those seen in prk1Δ ark1Δ mutants defective in protein kinases that regulate the actin cytoskeleton. Overexpression of SIW14 in a prk1Δ strain resulted in a loss of cortical actin patches and cables and was lethal. Overexpression of SIW14 also rescued the caffeine sensitivity of the slt2 mutant isolated in the screen, but this was not due to alteration of the phosphorylation state of Slt2. These observations suggest that endocytosis and the organization of the actin cytoskeleton are required for the proper response to nutrient limitation. This hypothesis is supported by the observation that rvs161Δ, sla1Δ, sla2Δ, vrp1Δ, ypt51Δ, ypt52Δ, and end3Δ mutations, which disrupt the organization of the actin cytoskeleton and/or reduce endocytosis, have a phenotype similar to that of whi2Δ mutants.
Collapse
Affiliation(s)
| | | | | | | | - Janet Trevethick
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | | | - Peter E Sudbery
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, United Kingdom
| |
Collapse
|
24
|
Hsu CL, Chen YS, Tsai SY, Tu PJ, Wang MJ, Lin JJ. Interaction of Saccharomyces Cdc13p with Pol1p, Imp4p, Sir4p and Zds2p is involved in telomere replication, telomere maintenance and cell growth control. Nucleic Acids Res 2004; 32:511-21. [PMID: 14742666 PMCID: PMC373330 DOI: 10.1093/nar/gkh203] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Telomeres are the physical ends of eukaryotic chromosomes. They are important for maintaining the integrity of chromosomes and this function is mediated through a number of protein factors. In Saccharomyces cerevisiae, Cdc13p binds to telomeres and affects telomere maintenance, telomere position effects and cell cycle progression through G(2)/M phase. We identified four genes encoding Pol1p, Sir4p, Zds2p and Imp4p that interact with amino acids 1-252 of Cdc13p using a yeast two-hybrid screening system. Interactions of these four proteins with Cdc13p were through direct protein-protein interactions as judged by in vitro pull-down assays. Direct protein-protein interactions were also observed between Pol1p-Imp4p, Pol1p-Sir4p and Sir4p-Zds2p, whereas no interaction was detected between Imp4p-Sir4p and Zds2p-Imp4p, suggesting that protein interactions were specific in the complex. Pol1p was shown to interact with Cdc13p. Here we show that Zds2p and Imp4p also form a stable complex with Cdc13p in yeast cells, because Zds2p and Imp4p co-immunoprecipitate with Cdc13p, whereas Sir4p does not. The function of the N-terminal 1-252 region of Cdc13p was also analyzed. Expressing Cdc13(252-924)p, which lacks amino acids 1-252 of Cdc13p, causes defects in progressive cell growth and eventually arrested in the G(2)/M phase of the cell cycle. These growth defects were not caused by progressive shortening of telomeres because telomeres in these cells were long. Point mutants in the amino acids 1-252 region of Cdc13p that reduced the interaction between Cdc13p and its binding proteins resulted in varying level of defects in cell growth and telomeres. These results indicate that the interactions between Cdc13(1-252)p and its binding proteins are important for the function of Cdc13p in telomere regulation and cell growth. Together, our results provide evidence for the formation of a Cdc13p-mediated telosome complex through its N-terminal region that is involved in telomere maintenance, telomere length regulation and cell growth control.
Collapse
Affiliation(s)
- Chia-Ling Hsu
- Institute of Biopharmaceutical Science, National Yang-Ming University, Shih-Pai 112, Taipei, Taiwan, Republic of China
| | | | | | | | | | | |
Collapse
|
25
|
Bandhakavi S, McCann RO, Hanna DE, Glover CVC. Genetic interactions amongZDS1,2,CDC37, and protein kinase CK2 inSaccharomyces cerevisiae. FEBS Lett 2003; 554:295-300. [PMID: 14623082 DOI: 10.1016/s0014-5793(03)01165-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We report here the identification of the homologous gene pair ZDS1,2 as multicopy suppressors of a temperature-sensitive allele (cka2-13(ts)) of the CKA2 gene encoding the alpha' catalytic subunit of protein kinase CK2. Overexpression of ZDS1,2 suppressed the temperature sensitivity, geldanamycin (GA) sensitivity, slow growth, and flocculation of multiple cka2 alleles and enhanced CK2 activity in vivo toward a known physiological substrate, Fpr3. Consistent with the existence of a recently described positive feedback loop between CK2 and Cdc37, overexpression of ZDS1,2 also suppressed the temperature sensitivity, abnormal morphology, and GA sensitivity of a CK2 phosphorylation-deficient mutant of CDC37, cdc37-S14A, as well as the GA sensitivity of a cdc37-1 allele. A likely basis for all of these effects is our observation that ZDS1,2 overexpression enhances Cdc37 protein levels. Activation of the positive feedback loop between CK2 and Cdc37 likely contributes to the pleiotropic nature of ZDS1,2, as both CK2 and Cdc37 regulate diverse cellular functions.
Collapse
Affiliation(s)
- Sricharan Bandhakavi
- Department of Biochemistry and Molecular Biology, Life Sciences Building, The University of Georgia, Athens, GA 30602-7229, USA
| | | | | | | |
Collapse
|
26
|
Griffioen G, Swinnen S, Thevelein JM. Feedback inhibition on cell wall integrity signaling by Zds1 involves Gsk3 phosphorylation of a cAMP-dependent protein kinase regulatory subunit. J Biol Chem 2003; 278:23460-71. [PMID: 12704202 DOI: 10.1074/jbc.m210691200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We report here that budding yeast cAMP-dependent protein kinase (cAPK) is controlled by heat stress. A rise in temperature from 30 to 37 degrees C was found to result in both a higher expression and an increased cytoplasmic localization of its regulatory subunit Bcy1. Both of these effects required phosphorylation of serines located in its localization domain. Surprisingly, classic cAPK-controlled processes were found to be independent of Bcy1 phosphorylation, indicating that these modifications do not affect cAPK activity as such. Alternatively, phosphorylation may recruit cAPK to, and thereby control, a specific subset of (perhaps novel) cAPK targets that are presumably localized extranuclearly. Zds1 and Zds2 may play a role in this process, since these were found required to retain hyperphosphorylated Bcy1 in the cytoplasm at 37 degrees C. Mck1, a homologue of mammalian glycogen synthase kinase 3 and a downstream component of the heat-activated Pkc1-Slt2/Mpk1 cell wall integrity pathway, is partly responsible for hyperphosphorylations of Bcy1. Remarkably, Zds1 appears to act as a negative regulator of cell wall integrity signaling, and this activity is dependent in part on the phosphorylation status of Bcy1. Thus, Mck1 phosphorylation of Bcy1 and Zds1 may constitute an unprecedented negative feedback control on the cell wall integrity-signaling pathway.
Collapse
Affiliation(s)
- Gerard Griffioen
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, Katholieke Universiteit Leuven, Belgium
| | | | | |
Collapse
|
27
|
Balciunas D, Hallberg M, Björklund S, Ronne H. Functional interactions within yeast mediator and evidence of differential subunit modifications. J Biol Chem 2003; 278:3831-9. [PMID: 12468546 DOI: 10.1074/jbc.m206946200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
It is possible to recruit RNA polymerase II to a target promoter and, thus, activate transcription by fusing Mediator subunits to a DNA binding domain. To investigate functional interactions within Mediator, we have tested such fusions of the lexA DNA binding domain to Med1, Med2, Gal11, Srb7, and Srb10 in wild type, med1, med2, gal11, sin4, srb8, srb10, and srb11 strains. We found that lexA-Med2 and lexA-Gal11 are strong activators that are independent of all Mediator subunits tested. lexA-Srb10 is a weak activator that depends on Srb8 and Srb11. lexA-Med1 and lexA-Srb7 are both cryptic activators that become active in the absence of Srb8, Srb10, Srb11, or Sin4. An unexpected finding was that lexA-VP16 differs from Gal4-VP16 in that it is independent of the activator binding Mediator module. Both lexA-Med1 and lexA-Srb7 are stably associated with Med4 and Med8, which suggests that they are incorporated into Mediator. Med4 and Med8 exist in two mobility forms that differ in their association with lexA-Med1 and lexA-Srb7. Within purified Mediator, Med4 is present as a phosphorylated lower mobility form. Taken together, these results suggest that assembly of Mediator is a multistep process that involves conversion of both Med4 and Med8 to their low mobility forms.
Collapse
Affiliation(s)
- Darius Balciunas
- Department of Plant Biology, Swedish University of Agricultural Sciences, Uppsala Genetic Center, Box 7080, Sweden
| | | | | | | |
Collapse
|
28
|
Kitazono AA, Kron SJ. An essential function of yeast cyclin-dependent kinase Cdc28 maintains chromosome stability. J Biol Chem 2002; 277:48627-34. [PMID: 12359726 DOI: 10.1074/jbc.m207247200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Multiple surveillance pathways maintain genomic integrity in yeast during mitosis. Although the cyclin-dependent kinase Cdc28 is a well established regulator of mitotic progression, evidence for a direct role in mitotic surveillance has been lacking. We have now implicated a conserved sequence in the Cdc28 carboxyl terminus in maintaining chromosome stability through mitosis. Six temperature-sensitive mutants were isolated via random mutagenesis of 13 carboxyl-terminal residues. These mutants identify a Cdc28 domain necessary for proper mitotic arrest in the face of kinetochore defects or microtubule inhibitors. These chromosome stability-defective cdc28(CST) mutants inappropriately continue mitosis when the mitotic spindle is disrupted at 23 degrees C, display high rates of spontaneous chromosome loss at 30 degrees C, and suffer catastrophic aneuploidy at 35 degrees C. A dosage suppression screen identified Cak1, a kinase known to phosphorylate and activate Cdc28, as a specific high copy suppressor of cdc28(CST) temperature sensitivity and chromosome instability. Suppression is independent of the kinase activity of Cak1, suggesting that Cak1 may bind to the carboxyl terminus to serve a non-catalytic role in assembly and/or stabilization of active Cdc28 complexes. Significantly, these studies implicate Cdc28 and Cak1 in an essential surveillance function required to maintain genetic stability through mitosis.
Collapse
Affiliation(s)
- Ana A Kitazono
- Center for Molecular Oncology and Department of Molecular Genetics and Cell Biology, the University of Chicago, Illinois 60637, USA
| | | |
Collapse
|
29
|
Affiliation(s)
- Christoph Schüller
- Vienna Biocenter, Institute of Biochemistry and Molecular Cell Biology, University of Vienna, Ludwig Boltzmann-Forschungsstelle für Biochemie, Wien, Austria
| | | |
Collapse
|
30
|
Sekiya-Kawasaki M, Abe M, Saka A, Watanabe D, Kono K, Minemura-Asakawa M, Ishihara S, Watanabe T, Ohya Y. Dissection of upstream regulatory components of the Rho1p effector, 1,3-beta-glucan synthase, in Saccharomyces cerevisiae. Genetics 2002; 162:663-76. [PMID: 12399379 PMCID: PMC1462274 DOI: 10.1093/genetics/162.2.663] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In the budding yeast Saccharomyces cerevisiae, one of the main structural components of the cell wall is 1,3-beta-glucan produced by 1,3-beta-glucan synthase (GS). Yeast GS is composed of a putative catalytic subunit encoded by FKS1 and FKS2 and a regulatory subunit encoded by RHO1. A combination of amino acid alterations in the putative catalytic domain of Fks1p was found to result in a loss of the catalytic activity. To identify upstream regulators of 1,3-beta-glucan synthesis, we isolated multicopy suppressors of the GS mutation. We demonstrate that all of the multicopy suppressors obtained (WSC1, WSC3, MTL1, ROM2, LRE1, ZDS1, and MSB1) and the constitutively active RHO1 mutations tested restore 1,3-beta-glucan synthesis in the GS mutant. A deletion of either ROM2 or WSC1 leads to a significant defect of 1,3-beta-glucan synthesis. Analyses of the degree of Mpk1p phosphorylation revealed that among the multicopy suppressors, WSC1, ROM2, LRE1, MSB1, and MTL1 act positively on the Pkc1p-MAPK pathway, another signaling pathway regulated by Rho1p, while WSC3 and ZDS1 do not. We have also found that MID2 acts positively on Pkc1p without affecting 1,3-beta-glucan synthesis. These results suggest that distinct networks regulate the two effector proteins of Rho1p, Fks1p and Pkc1p.
Collapse
Affiliation(s)
- Mariko Sekiya-Kawasaki
- Department of Integrated Biosciences, Graduate School of Frontier Science, University of Tokyo, Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
In yeast, inactivation of certain TBP-associated factors (TAF(II)s) results in arrest at specific stages of the cell cycle. In some cases, cell cycle arrest is not observed because overlapping defects in other cellular processes precludes the manifestation of an arrest phenotype. In the latter situation, genetic analysis has the potential to reveal the involvement of TAF(II)s in cell cycle regulation. In this report, a temperature-sensitive mutant of TAF68/61 was used to screen for high-copy dosage suppressors of its growth defect. Ten genes were isolated: TAF suppressor genes, TSGs 1-10. Remarkably, most TSGs have either a genetic or a direct link to control of the G(2)/M transition. Moreover, eight of the 10 TSGs can suppress a CDC28 mutant specifically defective for mitosis (cdc28-1N) but not an allele defective for passage through start. The identification of these genes as suppressors of cdc28-1N has identified four unreported suppressors of this allele. Moreover, synthetic lethality is observed between taf68-9 and cdc28-1N. The isolation of multiple genes involved in the control of a specific phase of the cell cycle argue that the arrest phenotypes of certain TAF(II) mutants reflect their role in specifically regulating cell cycle functions.
Collapse
Affiliation(s)
- J C Reese
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | | |
Collapse
|
32
|
Griffioen G, Branduardi P, Ballarini A, Anghileri P, Norbeck J, Baroni MD, Ruis H. Nucleocytoplasmic distribution of budding yeast protein kinase A regulatory subunit Bcy1 requires Zds1 and is regulated by Yak1-dependent phosphorylation of its targeting domain. Mol Cell Biol 2001; 21:511-23. [PMID: 11134339 PMCID: PMC86612 DOI: 10.1128/mcb.21.2.511-523.2001] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Saccharomyces cerevisiae the subcellular distribution of Bcy1 is carbon source dependent. In glucose-grown cells, Bcy1 is almost exclusively nuclear, while it appears more evenly distributed between nucleus and cytoplasm in carbon source-derepressed cells. Here we show that phosphorylation of its N-terminal domain directs Bcy1 to the cytoplasm. Biochemical fractionation revealed that the cytoplasmic fraction contains mostly phosphorylated Bcy1, whereas unmodified Bcy1 is predominantly present in the nuclear fraction. Site-directed mutagenesis of two clusters (I and II) of serines near the N terminus to alanine resulted in an enhanced nuclear accumulation of Bcy1 in ethanol-grown cells. In contrast, substitutions to Asp led to a dramatic increase of cytoplasmic localization in glucose-grown cells. Bcy1 modification was found to be dependent on Yak1 kinase and, consequently, in ethanol-grown yak1 cells the Bcy1 remained nuclear. A two-hybrid screen aimed to isolate genes encoding proteins that interact with the Bcy1 N-terminal domain identified Zds1. In ethanol-grown zds1 cells, cytoplasmic localization of Bcy1 was largely absent, while overexpression of ZDS1 led to increased cytoplasmic Bcy1 localization. Zds1 does not regulate Bcy1 modification since this was found to be unaffected in zds1 cells. However, in zds1 cells cluster II-mediated, but not cluster I-mediated, cytoplasmic localization of Bcy1 was found to be absent. Altogether, these results suggest that Zds1-mediated cytoplasmic localization of Bcy1 is regulated by carbon source-dependent phosphorylation of cluster II serines, while cluster I acts in a Zds1-independent manner.
Collapse
Affiliation(s)
- G Griffioen
- Vienna Biocenter, Institut für Biochemie und Molekulare Zellbiologie der Universität Wien and Ludwig Boltzmann-Forschungstelle für Biochemie, A-1030 Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
33
|
Jones AL, Quimby BB, Hood JK, Ferrigno P, Keshava PH, Silver PA, Corbett AH. SAC3 may link nuclear protein export to cell cycle progression. Proc Natl Acad Sci U S A 2000; 97:3224-9. [PMID: 10716708 PMCID: PMC16220 DOI: 10.1073/pnas.97.7.3224] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Selective movement of proteins between the nucleus and the cytoplasm is a regulatory mechanism exploited extensively by the eukaryotic cell. We have identified the evolutionarily conserved Sac3 protein, which was implicated previously in the regulation of mitosis [Bauer, A. & Kölling, R. (1996) J. Cell Sci. 109, 1575-1583] as a novel mediator of nuclear protein export. We show that Sac3p is localized to the nuclear pore, where it interacts with nucleoporins. Loss of SAC3 function results in a block in nuclear export of a nuclear export signal-containing reporter protein. Our results also demonstrate that SAC3 interacts genetically with the nuclear protein export factors Crm1p/Xpo1p and Yrb2p. Taken together, these data indicate a link between nuclear protein export and transition through the cell cycle.
Collapse
Affiliation(s)
- A L Jones
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
SAC3 may link nuclear protein export to cell cycle progression. Proc Natl Acad Sci U S A 2000; 97. [PMID: 10716708 PMCID: PMC16220 DOI: 10.1073/pnas.050432997] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Selective movement of proteins between the nucleus and the cytoplasm is a regulatory mechanism exploited extensively by the eukaryotic cell. We have identified the evolutionarily conserved Sac3 protein, which was implicated previously in the regulation of mitosis [Bauer, A. & Kölling, R. (1996) J. Cell Sci. 109, 1575-1583] as a novel mediator of nuclear protein export. We show that Sac3p is localized to the nuclear pore, where it interacts with nucleoporins. Loss of SAC3 function results in a block in nuclear export of a nuclear export signal-containing reporter protein. Our results also demonstrate that SAC3 interacts genetically with the nuclear protein export factors Crm1p/Xpo1p and Yrb2p. Taken together, these data indicate a link between nuclear protein export and transition through the cell cycle.
Collapse
|
35
|
Burger H, Capello A, Schenk PW, Stoter G, Brouwer J, Nooter K. A genome-wide screening in Saccharomyces cerevisiae for genes that confer resistance to the anticancer agent cisplatin. Biochem Biophys Res Commun 2000; 269:767-74. [PMID: 10720490 DOI: 10.1006/bbrc.2000.2361] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cisplatin is a potent DNA-damaging agent that has demonstrated anticancer activities against several tumors. However, manifestation of cellular resistance is a major obstacle in anticancer therapy that severely limits the curative potential of cisplatin. Therefore, understanding the molecular basis of cisplatin resistance could significantly improve the clinical efficacy of this anticancer agent. Here, we employed Saccharomyces cerevisiae as a model organism to study cisplatin resistance mechanisms and describe a one-step cisplatin selection to identify and characterize novel cisplatin resistance genes. Screening a multicopy yeast genomic library enabled us to isolate several yeast clones for which we could confirm that the cisplatin resistance phenotype was linked to the introduced fragment. In a first attempt, a number of open reading frames could be identified. Among these genes, PDE2 and ZDS2 were repeatedly identified as genes whose overexpression confers cellular resistance to cisplatin. PDE2, encoding cAMP-phosphodiesterase 2, is of particular interest because the overexpression of this yeast gene is known to induce cisplatin resistance in mammalian cells as well, providing proof of the principle of our experimental approach. In addition, the identification of PDE2 shows that our yeast screening system can directly be informative for drug resistance in mammalian cells.
Collapse
Affiliation(s)
- H Burger
- Experimental Chemotherapy, Josephine Nefkens Institute, Rotterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
36
|
Roy N, Runge KW. Two paralogs involved in transcriptional silencing that antagonistically control yeast life span. Curr Biol 2000; 10:111-4. [PMID: 10662670 DOI: 10.1016/s0960-9822(00)00298-0] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In the yeast Saccharomyces cerevisiae, one determinant of aging or life span is the accumulation of extrachromosomal copies of rDNA circles in old mother cells [1]. The production of rDNA circles depends upon intrachromosomal recombination within the rDNA tandem array, a process regulated by the protein Sir2 (Sir2p). Together with Sir1p, Sir3p, Sir4p and Orc1p, Sir2p is also involved in transcriptional silencing of genes at the silent mating-type cassettes, in the rDNA array, and at telomeres. Using a 'triple silencer' strain that can monitor an increase or decrease in gene expression at these three loci, we found that deletion of the ZDS1 gene caused an increase in silencing in the rDNA and at a silent mating-type cassette at the expense of telomere silencing. The zds1 deletion also resulted in an increase in life span and a decrease in Sir3p phosphorylation. In contrast, deletion of its paralog ZDS2 caused a decrease in rDNA silencing, a decrease in life span and an increase in Sir3p phosphorylation. As Zds2p, but not Zds1p, had strong two-hybrid interactions with Orc1p and the four Sir proteins, Zds1p might indirectly control Sir3p through a Sir3p kinase.
Collapse
Affiliation(s)
- N Roy
- Department of Molecular Biology, The Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | | |
Collapse
|
37
|
Abstract
The faithful segregation of genetic information requires highly orchestrated changes of chromosome structure during the mitotic cell cycle. The linkage between duplicated sister DNAs is established during S phase and maintained throughout G2 phase (cohesion). In early mitosis, dramatic structural changes occur to produce metaphase chromosomes, each consisting of a pair of compacted sister chromatids (condensation). At anaphase onset, a signal is produced to disrupt the linkage between sister chromatids (separation), allowing them to be pulled apart to opposite poles of the cell. This review discusses our current understanding of the three stages of large-scale structural changes of chromosomes in eukaryotic cells. Recent genetic and biochemical studies have identified key components involved in these processes and started to uncover hitherto unexpected functional links between mitotic chromosome dynamics and other important chromosome functions.
Collapse
Affiliation(s)
- T Hirano
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA.
| |
Collapse
|
38
|
Walowsky C, Fitzhugh DJ, Castaño IB, Ju JY, Levin NA, Christman MF. The topoisomerase-related function gene TRF4 affects cellular sensitivity to the antitumor agent camptothecin. J Biol Chem 1999; 274:7302-8. [PMID: 10066793 DOI: 10.1074/jbc.274.11.7302] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Camptothecin is an antitumor agent that kills cells by converting DNA topoisomerase I into a DNA-damaging poison. Although camptothecin derivatives are now being used to treat tumors in a variety of clinical protocols, the cellular factors that influence sensitivity to the drug are only beginning to be understood. We report here that two genes required for sister chromatid cohesion, TRF4 and MCD1/SCC1, are also required to repair camptothecin-mediated damage to DNA. The hypersensitivity to camptothecin in the trf4 mutant does not result from elevated expression of DNA topoisomerase I. We show that Trf4 is a nuclear protein whose expression is cell cycle-regulated at a post-transcriptional level. Suppression of camptothecin hypersensitivity in the trf4 mutant by gene overexpression resulted in the isolation of three genes: another member of the TRF4 gene family, TRF5, and two genes that may influence higher order chromosome structure, ZDS1 and ZDS2. We have isolated and sequenced two human TRF4 family members, hTRF4-1 and hTRF4-2. The hTRF4-1 gene maps to chromosome 5p15, a region of frequent copy number alteration in several tumor types. The evolutionary conservation of TRF4 suggests that it may also influence mammalian cell sensitivity to camptothecin.
Collapse
Affiliation(s)
- C Walowsky
- Department of Microbiology, University of Virginia, Charlottesville, Virginia 22908, USA
| | | | | | | | | | | |
Collapse
|
39
|
Abstract
Cdc42p is an essential GTPase that belongs to the Rho/Rac subfamily of Ras-like GTPases. These proteins act as molecular switches by responding to exogenous and/or endogenous signals and relaying those signals to activate downstream components of a biological pathway. The 11 current members of the Cdc42p family display between 75 and 100% amino acid identity and are functional as well as structural homologs. Cdc42p transduces signals to the actin cytoskeleton to initiate and maintain polarized gorwth and to mitogen-activated protein morphogenesis. In the budding yeast Saccharomyces cerevisiae, Cdc42p plays an important role in multiple actin-dependent morphogenetic events such as bud emergence, mating-projection formation, and pseudohyphal growth. In mammalian cells, Cdc42p regulates a variety of actin-dependent events and induces the JNK/SAPK protein kinase cascade, which leads to the activation of transcription factors within the nucleus. Cdc42p mediates these processes through interactions with a myriad of downstream effectors, whose number and regulation we are just starting to understand. In addition, Cdc42p has been implicated in a number of human diseases through interactions with its regulators and downstream effectors. While much is known about Cdc42p structure and functional interactions, little is known about the mechanism(s) by which it transduces signals within the cell. Future research should focus on this question as well as on the detailed analysis of the interactions of Cdc42p with its regulators and downstream effectors.
Collapse
Affiliation(s)
- D I Johnson
- Department of Microbiology & Molecular Genetics and the Markey Center for Molecular Genetics, University of Vermont, Burlington, Vermont 05405,
| |
Collapse
|
40
|
Mendenhall MD, Hodge AE. Regulation of Cdc28 cyclin-dependent protein kinase activity during the cell cycle of the yeast Saccharomyces cerevisiae. Microbiol Mol Biol Rev 1998; 62:1191-243. [PMID: 9841670 PMCID: PMC98944 DOI: 10.1128/mmbr.62.4.1191-1243.1998] [Citation(s) in RCA: 300] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cyclin-dependent protein kinase (CDK) encoded by CDC28 is the master regulator of cell division in the budding yeast Saccharomyces cerevisiae. By mechanisms that, for the most part, remain to be delineated, Cdc28 activity controls the timing of mitotic commitment, bud initiation, DNA replication, spindle formation, and chromosome separation. Environmental stimuli and progress through the cell cycle are monitored through checkpoint mechanisms that influence Cdc28 activity at key cell cycle stages. A vast body of information concerning how Cdc28 activity is timed and coordinated with various mitotic events has accrued. This article reviews that literature. Following an introduction to the properties of CDKs common to many eukaryotic species, the key influences on Cdc28 activity-cyclin-CKI binding and phosphorylation-dephosphorylation events-are examined. The processes controlling the abundance and activity of key Cdc28 regulators, especially transcriptional and proteolytic mechanisms, are then discussed in detail. Finally, the mechanisms by which environmental stimuli influence Cdc28 activity are summarized.
Collapse
Affiliation(s)
- M D Mendenhall
- L. P. Markey Cancer Center, University of Kentucky, Lexington, Kentucky 40536-0096, USA.
| | | |
Collapse
|
41
|
Tjandra H, Compton J, Kellogg D. Control of mitotic events by the Cdc42 GTPase, the Clb2 cyclin and a member of the PAK kinase family. Curr Biol 1998; 8:991-1000. [PMID: 9740799 DOI: 10.1016/s0960-9822(07)00419-8] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
BACKGROUND Cyclins and cyclin-dependent kinases induce and coordinate the events of the cell cycle, although the mechanisms by which they do so remain largely unknown. In budding yeast, a pathway used by the Clb2 cyclin to control bud growth during mitosis provides a good model system in which to understand how cyclin-dependent kinases control cell-cycle events. In this pathway, Clb2 initiates a series of events that lead to the mitosis-specific activation of the Gin4 protein kinase. A protein called Nap1 is required in vivo for the activation of Gin4, and is able to bind to both Gin4 and Clb2. We have used a simple genetic screen to identify additional proteins that function in this pathway. RESULTS We have found that the Cdc42 GTPase and a member of the PAK kinase family called Cla4 both function in the pathway used by Clb2 to control bud growth during mitosis. Cdc42 and Cla4 interact genetically with Gin4 and Nap1, and both are required in vivo for the mitosis-specific activation of the Gin4 kinase. Furthermore, Cla4 undergoes a dramatic hyperphosphorylation in response to the combined activity of Nap1, the Clb2-Cdc28 kinase complex, and the GTP-bound form of Cdc42. Evidence is presented which suggests that the hyperphosphorylated form of Cla4 is responsible for relaying the signal to activate Gin4. CONCLUSIONS Previous studies have suggested that cyclin-dependent kinases control the cell cycle by directly phosphorylating proteins involved in specific events, such as nuclear lamins, microtubule-associated proteins and histones. In contrast, our results demonstrate that the Clb2-Cdc28 cyclin-dependent kinase complex controls specific cell-cycle events through a pathway that involves a GTPase and at least two different kinases. This suggests that cyclin-dependent kinases may control many cell-cycle events through GTPase-linked signaling pathways that resemble the intricate signaling pathways known to control many other cellular events.
Collapse
Affiliation(s)
- H Tjandra
- Sinsheimer Laboratories, Department of Biology, University of California, Santa Cruz 95064, USA
| | | | | |
Collapse
|
42
|
Ho CK, Schwer B, Shuman S. Genetic, physical, and functional interactions between the triphosphatase and guanylyltransferase components of the yeast mRNA capping apparatus. Mol Cell Biol 1998; 18:5189-98. [PMID: 9710603 PMCID: PMC109104 DOI: 10.1128/mcb.18.9.5189] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have characterized an essential Saccharomyces cerevisiae gene, CES5, that when present in high copy, suppresses the temperature-sensitive growth defect caused by the ceg1-25 mutation of the yeast mRNA guanylyltransferase (capping enzyme). CES5 is identical to CET1, which encodes the RNA triphosphatase component of the yeast capping apparatus. Purified recombinant Cet1 catalyzes hydrolysis of the gamma phosphate of triphosphate-terminated RNA at a rate of 1 s-1. Cet1 is a monomer in solution; it binds with recombinant Ceg1 in vitro to form a Cet1-Ceg1 heterodimer. The interaction of Cet1 with Ceg1 elicits >10-fold stimulation of the guanylyltransferase activity of Ceg1. This stimulation is the result of increased affinity for the GTP substrate. A truncated protein, Cet1(201-549), has RNA triphosphatase activity, heterodimerizes with and stimulates Ceg1 in vitro, and suffices when expressed in single copy for cell growth in vivo. The more extensively truncated derivative Cet1(246-549) also has RNA triphosphatase activity but fails to stimulate Ceg1 in vitro and is lethal when expressed in single copy in vivo. These data suggest that the Cet1-Ceg1 interaction is essential but do not resolve whether the triphosphatase activity is also necessary. The mammalian capping enzyme Mce1 (a bifunctional triphosphatase-guanylyltransferase) substitutes for Cet1 in vivo. A mutation of the triphosphatase active-site cysteine of Mce1 is lethal. Hence, an RNA triphosphatase activity is essential for eukaryotic cell growth. This work highlights the potential for regulating mRNA cap formation through protein-protein interactions.
Collapse
Affiliation(s)
- C K Ho
- Molecular Biology Program, Sloan-Kettering Institute, New York, New York 10021, USA
| | | | | |
Collapse
|
43
|
Tavormina PA, Burke DJ. Cell cycle arrest in cdc20 mutants of Saccharomyces cerevisiae is independent of Ndc10p and kinetochore function but requires a subset of spindle checkpoint genes. Genetics 1998; 148:1701-13. [PMID: 9560388 PMCID: PMC1460108 DOI: 10.1093/genetics/148.4.1701] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The spindle checkpoint ensures accurate chromosome segregation by inhibiting anaphase onset in response to altered microtubule function and impaired kinetochore function. In this study, we report that the ability of the anti-microtubule drug nocodazole to inhibit cell cycle progression in Saccharomyces cerevisiae depends on the function of the kinetochore protein encoded by NDC10. We examined the role of the spindle checkpoint in the arrest in cdc20 mutants that arrest prior to anaphase with an aberrant spindle. The arrest in cdc20 defective cells is dependent on the BUB2 checkpoint and independent of the BUB1, BUB3, and MAD spindle checkpoint genes. We show that the lesion recognized by Bub2p is not excess microtubules, and the cdc20 arrest is independent of kinetochore function. We show that Cdc20p is not required for cyclin proteolysis at two points in the cell cycle, suggesting that CDC20 is distinct from genes encoding integral proteins of the anaphase promoting complex.
Collapse
Affiliation(s)
- P A Tavormina
- Department of Biology, University of Virginia, Charlottesville 22903, USA
| | | |
Collapse
|
44
|
Mizunuma M, Hirata D, Miyahara K, Tsuchiya E, Miyakawa T. Role of calcineurin and Mpk1 in regulating the onset of mitosis in budding yeast. Nature 1998; 392:303-6. [PMID: 9521328 DOI: 10.1038/32695] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Signalling via calcium is probably involved in regulating eukaryotic cell proliferation, but details of its mechanism of action are unknown. In Schizosaccharomyces pombe, the onset of mitosis is determined by activation of a complex of the p34cdc2 protein kinase and a cyclin protein that is specific to the G2 phase of the cell cycle. This activation requires dephosphorylation of p34cdc2. Weel, a tyrosine kinase that inhibits p34cdc2 by phosphorylating it, is needed to determine the length of G2 phase. Here we show that calcium-activated pathways in Saccharomyces cerevisiae control the onset of mitosis by regulating Swel, a Weel homologue. Zds1 (also known as Oss1 and Hst1) is important in repressing the transcription of SWE1 in G2 phase. In the presence of high calcium levels, cells lacking Zds1 are delayed in entering mitosis. Calcineurin and Mpk1 regulate Swel activation at the transcriptional and posttranslational levels, respectively, and both are required for the calcium-induced delay in G2 phase. These cellular pathways also induce a G2-phase delay in response to hypotonic shock.
Collapse
Affiliation(s)
- M Mizunuma
- Department of Molecular Biotechnology, Graduate School of Engineering, Hiroshima University, Higashi-Hiroshima, Japan
| | | | | | | | | |
Collapse
|
45
|
Schwer B, Linder P, Shuman S. Effects of deletion mutations in the yeast Ces1 protein on cell growth and morphology and on high copy suppression of mutations in mRNA capping enzyme and translation initiation factor 4A. Nucleic Acids Res 1998; 26:803-9. [PMID: 9443973 PMCID: PMC147332 DOI: 10.1093/nar/26.3.803] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The homologous Saccharomyces cerevisiae genes CES1 and CES4 act as high copy suppressors of temperature-sensitive mutations of Ceg1p, the yeast mRNA capping enzyme. Neither CES1 nor CES4 is essential for cell growth. We find that a double deletion mutant (Delta ces1 Delta ces4 ) grows at 25-37 degrees C, but not at 16 degrees C. Delta ces1 Delta ces4 cells display gross defects in cell shape and budding even at permissive temperatures. Functional analysis of CES1 deletion mutants defines a 145 amino acid C-terminal segment of the 915 amino acid Ces1 protein that is necessary and sufficient to complement the Delta ces1 Delta ces 4 cold-sensitive phenotype, to restore normal morphology and to suppress the temparature-sensitive mutant ceg1-25 . A 147 amino acid C-terminal segment of the 942 amino acid Ces4 protein is sufficient to carry out these same functions. Within this carboxyl domain Ces1p and Ces4p are 80% identical to one another. We report isolation of CES1 in a separate screen for high copy suppression of a temperature-sensitive mutation (A79V) of the yeast translation initiation factor Tif1p (eIF-4A). Deletion of the N-terminal 249 amino acids of Ces1p abolished tif1-A79V suppressor function. CES4 on a multicopy plasmid was unable to suppress tif1-A79V . We surmise that whereas the carboxyl domains of Ces1p and Ces4p are functionally redundant in controlling cell morphology and in suppressing ceg1-25 , full-length Ces1p and Ces4p evince distinct genetic interactions that are likely mediated by their N-terminal segments.
Collapse
Affiliation(s)
- B Schwer
- Department of Microbiology, Cornell University Medical College, New York, NY 10021, USA
| | | | | |
Collapse
|
46
|
De la Cruz J, Daugeron MC, Linder P. 16 “Smart” Genetic Screens. J Microbiol Methods 1998. [DOI: 10.1016/s0580-9517(08)70337-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
47
|
Cabib E, Drgonová J, Drgon T. Role of small G proteins in yeast cell polarization and wall biosynthesis. Annu Rev Biochem 1998; 67:307-33. [PMID: 9759491 PMCID: PMC4781572 DOI: 10.1146/annurev.biochem.67.1.307] [Citation(s) in RCA: 151] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In the vegetative (mitotic) cycle and during sexual conjugation, yeast cells display polarized growth, giving rise to a bud or to a mating projection, respectively. In both cases one can distinguish three steps in these processes: choice of a growth site, organization of the growth site, and actual growth and morphogenesis. In all three steps, small GTP-binding proteins (G proteins) and their regulators play essential signaling functions. For the choice of a bud site, Bud1, a small G protein, Bud2, a negative regulator of Bud1, and Bud5, an activator, are all required. If any of them is defective, the cell loses its ability to select a proper bud position and buds randomly. In the organization of the bud site or of the site in which a mating projection appears, Cdc42, its activator Cdc24, and its negative regulators play a fundamental role. In the absence of Cdc42 or Cdc24, the actin cytoskeleton does not become organized and budding does not take place. Finally, another small G protein, Rho1, is required for activity of beta (1-->3)glucan synthase, the enzyme that catalyzes the synthesis of the major structural component of the yeast cell wall. In all of the above processes, G proteins can work as molecular switches because of their ability to shift between an active GTP-bound state and an inactive GDP-bound state.
Collapse
Affiliation(s)
- E Cabib
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | |
Collapse
|
48
|
Wang Y, Burke DJ. Cdc55p, the B-type regulatory subunit of protein phosphatase 2A, has multiple functions in mitosis and is required for the kinetochore/spindle checkpoint in Saccharomyces cerevisiae. Mol Cell Biol 1997; 17:620-6. [PMID: 9001215 PMCID: PMC231787 DOI: 10.1128/mcb.17.2.620] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Saccharomyces cerevisiae, like most eucaryotic cells, can prevent the onset of anaphase until chromosomes are properly aligned on the mitotic spindle. We determined that Cdc55p (regulatory B subunit of protein phosphatase 2A [PP2A]) is required for the kinetochore/spindle checkpoint regulatory pathway in yeast. ctf13 cdc55 double mutants could not maintain a ctf13-induced mitotic delay, as determined by antitubulin staining and levels of histone H1 kinase activity. In addition, cdc55::LEU2 mutants and tpd3::LEU2 mutants (regulatory A subunit of PP2A) were nocodazole sensitive and exhibited the phenotypes of previously identified kinetochore/spindle checkpoint mutants. Inactivating CDC55 did not simply bypass the arrest that results from inhibiting ubiquitin-dependent proteolysis because cdc16-1 cdc55::LEU2 and cdc23-1 cdc55::LEU2 double mutants arrested normally at elevated temperatures. CDC55 is specific for the kinetochore/spindle checkpoint because cdc55 mutants showed normal sensitivity to gamma radiation and hydroxyurea. The conditional lethality and the abnormal cellular morphogenesis of cdc55::LEU2 were suppressed by cdc28F19, suggesting that the cdc55 phenotypes are dependent on the phosphorylation state of Cdc28p. In contrast, the nocodazole sensitivity of cdc55::LEU2 was not suppressed by cdc28F19. Therefore, the mitotic checkpoint activity of CDC55 (and TPD3) is independent of regulated phosphorylation of Cdc28p. Finally, cdc55::LEU2 suppresses the temperature sensitivity of cdc20-1, suggesting additional roles for CDC55 in mitosis.
Collapse
Affiliation(s)
- Y Wang
- Department of Biology, University of Virginia, Charlottesville 22903, USA
| | | |
Collapse
|
49
|
Sawin KE, Nurse P. Identification of fission yeast nuclear markers using random polypeptide fusions with green fluorescent protein. Proc Natl Acad Sci U S A 1996; 93:15146-51. [PMID: 8986778 PMCID: PMC26371 DOI: 10.1073/pnas.93.26.15146] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
We describe a method for identifying genes encoding proteins with stereospecific intracellular localizations in the fission yeast Schizosaccharomyces pombe. Yeast are transformed with a gene library in which S. pombe genomic sequences are fused to the gene encoding the Aequorea victoria green fluorescent protein (GFP), and intracellular localizations are subsequently identified by rapid fluorescence screening in vivo. In a model application of these methods to the fission yeast nucleus, we have identified several novel genes whose products are found in specific nuclear regions, including chromatin, the nucleolus, and the mitotic spindle, and sequence similarities between some of these genes and previously identified genes encoding nuclear proteins have validated the approach. These methods will be useful in identifying additional components of the S. pombe nucleus, and further extensions of this approach should also be applicable to a more comprehensive identification of the elements of intracellular architecture in fission yeast.
Collapse
Affiliation(s)
- K E Sawin
- Cell Cycle Laboratory, Imperial Cancer Research Fund, London, United Kingdom
| | | |
Collapse
|
50
|
Bi E, Pringle JR. ZDS1 and ZDS2, genes whose products may regulate Cdc42p in Saccharomyces cerevisiae. Mol Cell Biol 1996; 16:5264-75. [PMID: 8816439 PMCID: PMC231526 DOI: 10.1128/mcb.16.10.5264] [Citation(s) in RCA: 189] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
A genetic screen for GTPase-activating proteins (GAPs) or other negative regulators of the Rac/Rho family GTPase Cdc42p in Saccharomyces cerevisiae identified ZDS1, a gene encoding a protein of 915 amino acids. Sequence from the yeast genome project identified a homolog, ZDS2, whose predicted product of 942 amino acids is 38% identical in sequence to Zds1p. Zds1p and Zds2p have no detectable homology to known Rho-GAPs or to other known proteins. However, by several assays, it appears that overexpression of either Zds1p or Zds2p decreases the level of Cdc42p activity. Deletion analysis also suggests that Zds1p and Zds2p are at least partially overlapping in function. Deletion of ZDS2 produced no obvious phenotype, and deletion of ZDS1 produced no obvious phenotype other than a mild effect on cell shape. However, the zds1 zds2 double mutant grew slowly with an apparent mitotic delay and produced elongated cells and buds with other evidence of abnormal morphogenesis. A glutathione S-transferase-Zds1p fusion protein that fully complemented the double mutant localized to presumptive bud sites and the tips of small buds. The similarity of this localization to that of Cdc42p suggests that Zds1p may interact directly with Cdc42p. As ZDS1 and ZDS2 have recently been identified also by numerous other groups studying a wide range of biological phenomena, the roles of Cdc42p in intracellular signaling may be more diverse than has previously been appreciated.
Collapse
Affiliation(s)
- E Bi
- Department of Biology, University of North Carolina, Chapel Hill 27599, USA
| | | |
Collapse
|