1
|
Wong GP, Hartmann S, Simmons DG, Ellis S, Nonn O, Cannon P, Nguyen TV, Nguyen A, Bartho LA, Tong S, Hannan NJ, Kaitu'u-Lino TJ. Trophoblast Side-Population Markers are Dysregulated in Preeclampsia and Fetal Growth Restriction. Stem Cell Rev Rep 2024; 20:1954-1970. [PMID: 39028417 PMCID: PMC11445292 DOI: 10.1007/s12015-024-10764-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2024] [Indexed: 07/20/2024]
Abstract
Dysregulated progenitor cell populations may contribute to poor placental development and placental insufficiency pathogenesis. Side-population cells possess progenitor properties. Recent human trophoblast side-population isolation identified enrichment of 8 specific genes (CXCL8, ELL2, GATA6, HK2, HLA-DPB1, INTS6, SERPINE3 and UPP1) (Gamage et al. 2020, Stem Cell Rev Rep). We characterised these trophoblast side-population markers in human placenta and in placental insufficiency disorders: preeclampsia and fetal growth restriction (FGR). Trophoblast side-population markers localised to mononuclear trophoblasts lining the placental villous basement membrane in preterm control, preeclamptic and FGR placental sections (n = 3, panel of 3 markers/serial section). Analysis of single-cell transcriptomics of an organoid human trophoblast stem cell (hTSC) to extravillous trophoblast (EVT) differentiation model (Shannon et al. 2022, Development) identified that all side-population genes were enriched in mononuclear trophoblast and trophoblasts committed to differentiation under hTSC culture conditions. In vitro validation via 96 h time course hTSC differentiation to EVTs or syncytiotrophoblasts (n = 5) demonstrated ELL2 and HK2 increased with differentiation (p < 0.0024, p < 0.0039 respectively). CXCL8 and HLA-DPB1 were downregulated (p < 0.030, p < 0.011 respectively). GATA6 and INTS6 increased with EVT differentiation only, and UPP1 reduced with syncytialisation. SERPINE3 was undetectable. Trophoblast side-population marker mRNA was measured in human placentas (< 34-weeks' gestation; n = 78 preeclampsia, n = 30 FGR, and n = 18 gestation-matched controls). ELL2, HK2 and CXCL8 were elevated in preeclamptic (p = 0.0006, p < 0.0001, p = 0.0335 respectively) and FGR placentas (p = 0.0065, p < 0.0001, p = 0.0001 respectively) versus controls. Placental GATA6 was reduced in pregnancies with preeclampsia and FGR (p = 0.0014, p = 0.0146 respectively). Placental INTS6 was reduced with FGR only (p < 0.0001). This study identified the localisation of a unique trophoblast subset enriched for side-population markers. Aberrant expression of some side-population markers may indicate disruptions to unique trophoblast subtypes in placental insufficiency.
Collapse
Affiliation(s)
- Georgia P Wong
- The Department of Obstetrics, Gynaecology and Newborn Health, Mercy Hospital for Women, University of Melbourne, 163 Studley Road, Heidelberg, Victoria, 3084, Australia.
- Mercy Perinatal, Mercy Hospital for Women, Heidelberg, Victoria, Australia.
| | - Sunhild Hartmann
- The Department of Obstetrics, Gynaecology and Newborn Health, Mercy Hospital for Women, University of Melbourne, 163 Studley Road, Heidelberg, Victoria, 3084, Australia
- Mercy Perinatal, Mercy Hospital for Women, Heidelberg, Victoria, Australia
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität, Berlin, Germany
- Experimental and Clinical Research Center, a cooperation between the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association and the Charité - Universitätsmedizin Berlin, Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- DZHK (German Center for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - David G Simmons
- School of Biomedical Sciences, University of Queensland, Brisbane, Australia
| | - Sarah Ellis
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, 3084, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Olivia Nonn
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität, Berlin, Germany
- Experimental and Clinical Research Center, a cooperation between the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association and the Charité - Universitätsmedizin Berlin, Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- DZHK (German Center for Cardiovascular Research), partner site Berlin, Berlin, Germany
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Ping Cannon
- The Department of Obstetrics, Gynaecology and Newborn Health, Mercy Hospital for Women, University of Melbourne, 163 Studley Road, Heidelberg, Victoria, 3084, Australia
- Mercy Perinatal, Mercy Hospital for Women, Heidelberg, Victoria, Australia
| | - Tuong-Vi Nguyen
- The Department of Obstetrics, Gynaecology and Newborn Health, Mercy Hospital for Women, University of Melbourne, 163 Studley Road, Heidelberg, Victoria, 3084, Australia
- Mercy Perinatal, Mercy Hospital for Women, Heidelberg, Victoria, Australia
| | - Anna Nguyen
- The Department of Obstetrics, Gynaecology and Newborn Health, Mercy Hospital for Women, University of Melbourne, 163 Studley Road, Heidelberg, Victoria, 3084, Australia
- Mercy Perinatal, Mercy Hospital for Women, Heidelberg, Victoria, Australia
| | - Lucy A Bartho
- The Department of Obstetrics, Gynaecology and Newborn Health, Mercy Hospital for Women, University of Melbourne, 163 Studley Road, Heidelberg, Victoria, 3084, Australia
- Mercy Perinatal, Mercy Hospital for Women, Heidelberg, Victoria, Australia
| | - Stephen Tong
- The Department of Obstetrics, Gynaecology and Newborn Health, Mercy Hospital for Women, University of Melbourne, 163 Studley Road, Heidelberg, Victoria, 3084, Australia
- Mercy Perinatal, Mercy Hospital for Women, Heidelberg, Victoria, Australia
| | - Natalie J Hannan
- The Department of Obstetrics, Gynaecology and Newborn Health, Mercy Hospital for Women, University of Melbourne, 163 Studley Road, Heidelberg, Victoria, 3084, Australia
- Mercy Perinatal, Mercy Hospital for Women, Heidelberg, Victoria, Australia
| | - Tu'uhevaha J Kaitu'u-Lino
- The Department of Obstetrics, Gynaecology and Newborn Health, Mercy Hospital for Women, University of Melbourne, 163 Studley Road, Heidelberg, Victoria, 3084, Australia
- Mercy Perinatal, Mercy Hospital for Women, Heidelberg, Victoria, Australia
| |
Collapse
|
2
|
Takahashi S, Nakagawa K, Nagata W, Koizumi A, Ishizuka T. A preliminary therapeutic study of the effects of molecular hydrogen on intestinal dysbiosis and small intestinal injury in high-fat diet-loaded senescence-accelerated mice. Nutrition 2024; 122:112372. [PMID: 38428218 DOI: 10.1016/j.nut.2024.112372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 03/03/2024]
Abstract
OBJECTIVES Aging and excessive fat intake may additively induce dysbiosis of the gut microbiota and intestinal inflammatory damage. Here, we analyzed microbiota dysbiosis and intestinal injury in high-fat diet-loaded senescence-accelerated mice (SAMP8). Additionally, we examined whether treatment with molecular hydrogen could improve the intestinal environment. METHODS SAMP8 and SAMR1 (control) mice were first fed a normal diet (ND) or high-fat diet (HFD) for 10 wk (n = 10 each group). Subsequently, HFD was supplemented with a placebo jelly or hydrogen-rich jelly (HRJ) for 4 wk. After treatment, isolated small intestinal tissues were used for hematoxylin and eosin staining, immunofluorescence staining, and thiobarbituric acid reactive substances (TBARS) assay. Furthermore, we analyzed alterations in the microbiota composition in cecal feces using 16S rRNA gene analysis for microbiota profiling. Statistical analyses were performed using unpaired Student's t tests or one-way analysis of variance and Tukey's post hoc test for multiple comparisons. RESULT HFD feeding reduced the expression of caudal-related homeobox transcription factor 2 (CDX2) and 5-bromo-2'-deoxyuridine (BrdU) and enhanced malondialdehyde (MDA) levels in the small intestine of SAMP8. HRJ treatment improved the reduction in CDX2 and BrdU and enhanced MDA levels. We performed a sequence analysis of the gut microbiota at the genus level and identified 283 different bacterial genera from the 30 samples analyzed in the study. Among them, Parvibacter positively correlated with both HFD intake and aging, whereas 10 bacteria, including Anaerofustis, Anaerosporobacter, Butyricicoccus, and Ruminococcus were negatively correlated with both HFD and aging. HRJ treatment increased Lactinobactor and decreased Akkermansia, Gracilibacter, and Marvinbryantia abundance. CONCLUSION Our findings suggest that treatment with molecular hydrogen may affect microbiota profiling and suppress intestinal injury in HFD-loaded SAMP8.
Collapse
Affiliation(s)
- Sayaka Takahashi
- Department of Pharmacology of National Defense Medical College, Saitama, Japan.
| | - Keiichi Nakagawa
- Department of Pharmacology of National Defense Medical College, Saitama, Japan
| | - Wataru Nagata
- Department of Pharmacology of National Defense Medical College, Saitama, Japan
| | - Akiho Koizumi
- Department of Pharmacology of National Defense Medical College, Saitama, Japan
| | - Toshiaki Ishizuka
- Department of Pharmacology of National Defense Medical College, Saitama, Japan
| |
Collapse
|
3
|
Travaglino A, Arciuolo D, Santoro A, Fulgione C, Piermattei A, Martinelli M, Onori ME, Minucci A, Raffone A, Inzani F, Zannoni GF. Ovarian endometrioid carcinoma with a sex cord-like pattern: a morphological, immunohistochemical, and molecular analysis. Virchows Arch 2024:10.1007/s00428-024-03743-6. [PMID: 38418687 DOI: 10.1007/s00428-024-03743-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 01/03/2024] [Accepted: 01/15/2024] [Indexed: 03/02/2024]
Abstract
Sex cord-like endometrioid carcinoma (SCLEC) is an uncommon entity which may constitute a diagnostic challenge. This study aimed to perform a clinicopathological, immunohistochemical, and molecular reappraisal of ovarian SCLEC. Consecutive ovarian SCLECs cases from a single institution were reviewed during a 13-year period. Twenty-three immunohistochemical markers were tested; 10 genes were analyzed by next-generation sequencing. Nine cases of ovarian SCLEC were identified. Mean patient age was 65.7 years; three cases showed extraovarian extension. Architectural pattern included sertoliform (n = 2), granulosa-like (n = 2), and mixed granulosa-like/sertoliform (n = 5). Eosinophilic changes accompanied by increased nuclear atypia were observed in four tumors. Endometrioid features (glands, squamous/morular differentiation) were observed in six cases. Most tumors were positive for cytokeratin-7 (8/9), EMA (9/9), estrogen and progesterone receptor (9/9), CD10 (7/9, including a luminal pattern reminiscent of mesonephric neoplasms), nuclear β-catenin (8/9), and CDX2 (8/9). A minority of cases showed block-type p16 pattern (2/9), PAX8-positivity (3/9), and non-diffuse positivity for WT1 (1/9), inhibin (1/9), chromogranin (1/9), and synaptophysin (2/9). All cases were negative for GATA3, TTF1, calretinin, and SF1. Ki67 range was 15-90%. Six cases showed CTNNB1 exon 3 mutation. Eight cases were of "no specific molecular profile" (NSMP) and one was p53-abnormal. In conclusion, SCLECs frequently exhibit a mixed sertoliform/granulosa-like architecture and express epithelial markers, hormone receptors, nuclear β-catenin, and CDX2, with luminal CD10 positivity and CTNNB1 mutations. PAX8 expression is often lost, while other mesonephric, sex cord, and neuroendocrine markers are negative.
Collapse
Affiliation(s)
- Antonio Travaglino
- Pathology Unit, Department of Woman and Child's Health and Public Health Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Pathology Unit, Department of Medicine and Technological Innovation, University of Insubria, Varese, Italy
| | - Damiano Arciuolo
- Pathology Unit, Department of Woman and Child's Health and Public Health Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Pathology Institute, Catholic University of Sacred Heart, Rome, Italy
| | - Angela Santoro
- Pathology Unit, Department of Woman and Child's Health and Public Health Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Pathology Institute, Catholic University of Sacred Heart, Rome, Italy
| | - Caterina Fulgione
- Gynecology and Obstetrics Unit, Department of Neurociences, Reproductive Sciences and Dentistry, Federico II University of Naples, Naples, Italy
| | - Alessia Piermattei
- Pathology Unit, Department of Woman and Child's Health and Public Health Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Manuela Martinelli
- Pathology Unit, Department of Woman and Child's Health and Public Health Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Maria Elisabetta Onori
- Departmental Unit of Molecular and Genomic Diagnostics, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Angelo Minucci
- Departmental Unit of Molecular and Genomic Diagnostics, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Antonio Raffone
- Division of Gynecology and Human Reproduction Physiopathology, Department of Medical and Surgical Sciences (DIMEC), IRCCS Azienda Ospedaliero-Univeristaria Di Bologna, S. Orsola Hospital, University of Bologna, Bologna, Italy
| | - Frediano Inzani
- Anatomic Pathology Unit, Department of Molecular Medicine, University of Pavia and Fondazione IRCCS San Matteo Hospital, Pavia, Italy
| | - Gian Franco Zannoni
- Pathology Unit, Department of Woman and Child's Health and Public Health Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy.
- Pathology Institute, Catholic University of Sacred Heart, Rome, Italy.
| |
Collapse
|
4
|
Sugano K, Moss SF, Kuipers EJ. Gastric Intestinal Metaplasia: Real Culprit or Innocent Bystander as a Precancerous Condition for Gastric Cancer? Gastroenterology 2023; 165:1352-1366.e1. [PMID: 37652306 DOI: 10.1053/j.gastro.2023.08.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 08/16/2023] [Accepted: 08/22/2023] [Indexed: 09/02/2023]
Abstract
Gastric intestinal metaplasia (GIM), which denotes conversion of gastric mucosa into an intestinal phenotype, can occur in all regions of the stomach, including cardiac, fundic, and pyloric mucosa. Since the earliest description of GIM, its association with gastric cancer of the differentiated (intestinal) type has been a well-recognized concern. Many epidemiologic studies have confirmed GIM to be significantly associated with subsequent gastric cancer development. Helicobacter pylori, the principal etiologic factor for gastric cancer, plays the most important role in predisposing to GIM. Although the role of GIM in the stepwise progression model of gastric carcinogenesis (the so-called "Correa cascade") has come into question recently, we review the scientific evidence that strongly supports this long-standing model and propose a new progression model that builds on the Correa cascade. Eradication of H pylori is the most important method for preventing gastric cancer globally, but the effect of eradication on established GIM, is limited, if any. Endoscopic surveillance for GIM may, therefore, be necessary, especially when there is extensive corpus GIM. Recent advances in image-enhanced endoscopy with integrated artificial intelligence have facilitated the identification of GIM and neoplastic lesions, which will impact preventive strategies in the near future.
Collapse
Affiliation(s)
| | - Steven F Moss
- Alpert Medical School of Brown University, Providence, Rhode Island
| | - Ernst J Kuipers
- Erasmus Medical Center, Rotterdam and Minister, Ministry of Health, Welfare, and Sport, Hague, The Netherlands
| |
Collapse
|
5
|
Wang SR, Mallard CG, Cairns CA, Chung HK, Yoo D, Jaladanki SK, Xiao L, Wang JY. Stabilization of Cx43 mRNA via RNA-binding protein HuR regulated by polyamines enhances intestinal epithelial barrier function. Am J Physiol Gastrointest Liver Physiol 2023; 325:G518-G527. [PMID: 37788332 PMCID: PMC10894663 DOI: 10.1152/ajpgi.00143.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/22/2023] [Accepted: 09/29/2023] [Indexed: 10/05/2023]
Abstract
Gut barrier dysfunction occurs commonly in patients with critical disorders, leading to the translocation of luminal toxic substances and bacteria to the bloodstream. Connexin 43 (Cx43) acts as a gap junction protein and is crucial for intercellular communication and the diffusion of nutrients. The levels of cellular Cx43 are tightly regulated by multiple factors, including polyamines, but the exact mechanism underlying the control of Cx43 expression remains largely unknown. The RNA-binding protein HuR regulates the stability and translation of target mRNAs and is involved in many aspects of intestinal epithelial pathobiology. Here we show that HuR directly bound to Cx43 mRNA via its 3'-untranslated region in intestinal epithelial cells (IECs) and this interaction enhanced Cx43 expression by stabilizing Cx43 mRNA. Depletion of cellular polyamines inhibited the [HuR/Cx43 mRNA] complex and decreased the level of Cx43 protein by destabilizing its mRNA, but these changes were prevented by ectopic overexpression of HuR. Polyamine depletion caused intestinal epithelial barrier dysfunction, which was reversed by ectopic Cx43 overexpression. Moreover, overexpression of checkpoint kinase 2 in polyamine-deficient cells increased the [HuR/Cx43 mRNA] complex, elevated Cx43 levels, and promoted barrier function. These findings indicate that Cx43 mRNA is a novel target of HuR in IECs and that polyamines regulate Cx43 mRNA stability via HuR, thus playing a critical role in the maintenance of intestinal epithelial barrier function.NEW & NOTEWORTHY The current study shows that polyamines stabilize the Cx43 mRNA via HuR, thus enhancing the function of the Cx43-mediated gap junction. These findings suggest that induced Cx43 by HuR plays a critical role in the process by which polyamines regulate intestinal epithelial barrier.
Collapse
Affiliation(s)
- Shelley R Wang
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, United States
| | - Caroline G Mallard
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, United States
| | - Cassandra A Cairns
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, United States
| | - Hee Kyoung Chung
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, United States
| | - Dongyoon Yoo
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, United States
| | - Suraj K Jaladanki
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, United States
| | - Lan Xiao
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, United States
| | - Jian-Ying Wang
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, United States
- Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland, United States
- Baltimore Veterans Affairs Medical Center, Baltimore, Maryland, United States
| |
Collapse
|
6
|
Badia-Ramentol J, Gimeno-Valiente F, Duréndez E, Martínez-Ciarpaglini C, Linares J, Iglesias M, Cervantes A, Calon A, Tarazona N. The prognostic potential of CDX2 in colorectal cancer: Harmonizing biology and clinical practice. Cancer Treat Rev 2023; 121:102643. [PMID: 37871463 DOI: 10.1016/j.ctrv.2023.102643] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 10/25/2023]
Abstract
Adjuvant chemotherapy following surgical intervention remains the primary treatment option for patients with localized colorectal cancer (CRC). However, a significant proportion of patients will have an unfavorable outcome after current forms of chemotherapy. While reflecting the increasing complexity of CRC, the clinical application of molecular biomarkers provides information that can be utilized to guide therapeutic strategies. Among these, caudal-related homeobox transcription factor 2 (CDX2) emerges as a biomarker of both prognosis and relapse after therapy. CDX2 is a key transcription factor that controls intestinal fate. Although rarely mutated in CRC, loss of CDX2 expression has been reported mostly in right-sided, microsatellite-unstable tumors and is associated with aggressive carcinomas. The pathological assessment of CDX2 by immunohistochemistry can thus identify patients with high-risk CRC, but the evaluation of CDX2 expression remains challenging in a substantial proportion of patients. In this review, we discuss the roles of CDX2 in homeostasis and CRC and the alterations that lead to protein expression loss. Furthermore, we review the clinical significance of CDX2 assessment, with a particular focus on its current use as a biomarker for pathological evaluation and clinical decision-making. Finally, we attempt to clarify the molecular implications of CDX2 deficiency, ultimately providing insights for a more precise evaluation of CDX2 protein expression.
Collapse
Affiliation(s)
- Jordi Badia-Ramentol
- Cancer Research Program, Hospital del Mar Research Institute (IMIM), Barcelona, Spain
| | - Francisco Gimeno-Valiente
- Cancer Evolution and Genome Instability Laboratory, University College London Cancer Institute, London, UK
| | - Elena Duréndez
- Department of Medical Oncology, INCLIVA Biomedical Research Institute, University of Valencia, CIBERONC, Spain
| | | | - Jenniffer Linares
- Cancer Research Program, Hospital del Mar Research Institute (IMIM), Barcelona, Spain
| | - Mar Iglesias
- Cancer Research Program, Hospital del Mar Research Institute (IMIM), Barcelona, Spain; Department of Pathology, Hospital del Mar, Barcelona, CIBERONC, Spain
| | - Andrés Cervantes
- Department of Medical Oncology, INCLIVA Biomedical Research Institute, University of Valencia, CIBERONC, Spain
| | - Alexandre Calon
- Cancer Research Program, Hospital del Mar Research Institute (IMIM), Barcelona, Spain.
| | - Noelia Tarazona
- Department of Medical Oncology, INCLIVA Biomedical Research Institute, University of Valencia, CIBERONC, Spain.
| |
Collapse
|
7
|
Macedo MH, Torras N, García-Díaz M, Barrias C, Sarmento B, Martínez E. The shape of our gut: Dissecting its impact on drug absorption in a 3D bioprinted intestinal model. BIOMATERIALS ADVANCES 2023; 153:213564. [PMID: 37482042 DOI: 10.1016/j.bioadv.2023.213564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 06/13/2023] [Accepted: 07/18/2023] [Indexed: 07/25/2023]
Abstract
The small intestine is a complex organ with a characteristic architecture and a major site for drug and nutrient absorption. The three-dimensional (3D) topography organized in finger-like protrusions called villi increases surface area remarkably, granting a more efficient absorption process. The intestinal mucosa, where this process occurs, is a multilayered and multicell-type tissue barrier. In vitro intestinal models are routinely used to study different physiological and pathological processes in the gut, including compound absorption. Still, standard models are typically two-dimensional (2D) and represent only the epithelial barrier, lacking the cues offered by the 3D architecture and the stromal components present in vivo, often leading to inaccurate results. In this work, we studied the impact of the 3D architecture of the gut on drug transport using a bioprinted 3D model of the intestinal mucosa containing both the epithelial and the stromal compartments. Human intestinal fibroblasts were embedded in a previously optimized hydrogel bioink, and enterocytes and goblet cells were seeded on top to mimic the intestinal mucosa. The embedded fibroblasts thrived inside the hydrogel, remodeling the surrounding extracellular matrix. The epithelial cells fully covered the hydrogel scaffolds and formed a uniform cell layer with barrier properties close to in vivo. In particular, the villus-like model revealed overall increased permeability compared to a flat counterpart composed by the same hydrogel and cells. In addition, the efflux activity of the P-glycoprotein (P-gp) transporter was significantly reduced in the villus-like scaffold compared to a flat model, and the genetic expression of other drugs transporters was, in general, more relevant in the villus-like model. Globally, this study corroborates that the presence of the 3D architecture promotes a more physiological differentiation of the epithelial barrier, providing more accurate data on drug absorbance measurements.
Collapse
Affiliation(s)
- Maria Helena Macedo
- i3S - Instituto de Investigação e Inovação em Saúde, Rua Alfredo, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Núria Torras
- IBEC - Institute for Bioengineering of Catalonia, BIST - The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028 Barcelona, Spain
| | - María García-Díaz
- IBEC - Institute for Bioengineering of Catalonia, BIST - The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028 Barcelona, Spain
| | - Cristina Barrias
- i3S - Instituto de Investigação e Inovação em Saúde, Rua Alfredo, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Bruno Sarmento
- i3S - Instituto de Investigação e Inovação em Saúde, Rua Alfredo, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; CESPU - Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Rua Central de Gandra 1317, 4585-116 Gandra, Portugal
| | - Elena Martínez
- IBEC - Institute for Bioengineering of Catalonia, BIST - The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028 Barcelona, Spain; CIBER-BBN - Consorcio Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Avenida Monforte de Lemos 3-5, 28029 Madrid, Spain; Electronics and Biomedical Engineering Department, Universitat de Barcelona, Martí I Franquès 1, 08028 Barcelona, Spain.
| |
Collapse
|
8
|
Vemuri K, Radi SH, Sladek FM, Verzi MP. Multiple roles and regulatory mechanisms of the transcription factor HNF4 in the intestine. Front Endocrinol (Lausanne) 2023; 14:1232569. [PMID: 37635981 PMCID: PMC10450339 DOI: 10.3389/fendo.2023.1232569] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/24/2023] [Indexed: 08/29/2023] Open
Abstract
Hepatocyte nuclear factor 4-alpha (HNF4α) drives a complex array of transcriptional programs across multiple organs. Beyond its previously documented function in the liver, HNF4α has crucial roles in the kidney, intestine, and pancreas. In the intestine, a multitude of functions have been attributed to HNF4 and its accessory transcription factors, including but not limited to, intestinal maturation, differentiation, regeneration, and stem cell renewal. Functional redundancy between HNF4α and its intestine-restricted paralog HNF4γ, and co-regulation with other transcription factors drive these functions. Dysregulated expression of HNF4 results in a wide range of disease manifestations, including the development of a chronic inflammatory state in the intestine. In this review, we focus on the multiple molecular mechanisms of HNF4 in the intestine and explore translational opportunities. We aim to introduce new perspectives in understanding intestinal genetics and the complexity of gastrointestinal disorders through the lens of HNF4 transcription factors.
Collapse
Affiliation(s)
- Kiranmayi Vemuri
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, NJ, United States
- Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
| | - Sarah H. Radi
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, Riverside, CA, United States
- Department of Biochemistry, University of California, Riverside, Riverside, CA, United States
| | - Frances M. Sladek
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, Riverside, CA, United States
| | - Michael P. Verzi
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, NJ, United States
- Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
| |
Collapse
|
9
|
Sinnett-Smith J, Torres-Marquez ME, Chang JK, Shimizu Y, Hao F, Martin MG, Rozengurt E. Statins inhibit protein kinase D (PKD) activation in intestinal cells and prevent PKD1-induced growth of murine enteroids. Am J Physiol Cell Physiol 2023; 324:C807-C820. [PMID: 36779664 PMCID: PMC10042602 DOI: 10.1152/ajpcell.00286.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 01/10/2023] [Accepted: 01/10/2023] [Indexed: 02/14/2023]
Abstract
We examined the impact of statins on protein kinase D (PKD) activation by G protein-coupled receptor (GPCR) agonists. Treatment of intestinal IEC-18 cells with cerivastatin inhibited PKD autophosphorylation at Ser916 induced by angiotensin II (ANG II) or vasopressin in a dose-dependent manner with half-maximal inhibition at 0.2 µM. Cerivastatin treatment inhibited PKD activation stimulated by these agonists for different times (5-60 min) and blunted HDAC5 phosphorylation, a substrate of PKD. Other lipophilic statins, including simvastatin, atorvastatin, and fluvastatin also prevented PKD activation in a dose-dependent manner. Using IEC-18 cell lines expressing PKD1 tagged with EGFP (enhanced green fluorescent protein), cerivastatin or simvastatin blocked GPCR-mediated PKD1-EGFP translocation to the plasma membrane and its subsequent nuclear accumulation. Similar results were obtained in IEC-18 cells expressing PKD3-EGFP. Mechanistically, statins inhibited agonist-dependent PKD activation rather than acting directly on PKD catalytic activity since exposure to cerivastatin or simvastatin did not impair PKD autophosphorylation or PKD1-EGFP membrane translocation in response to phorbol dibutyrate, which bypasses GPCRs and directly stimulates PKC and PKD. Furthermore, cerivastatin did not inhibit recombinant PKD activity determined via an in vitro kinase assay. Using enteroids generated from intestinal crypt-derived epithelial cells from PKD1 transgenic mice as a model of intestinal regeneration, we show that statins oppose PKD1-mediated increase in enteroid area, complexity (number of crypt-like buds), and DNA synthesis. Our results revealed a previously unappreciated inhibitory effect of statins on receptor-mediated PKD activation and in opposing the growth-promoting effects of PKD1 on intestinal epithelial cells.
Collapse
Affiliation(s)
- James Sinnett-Smith
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, United States
- VA Greater Los Angeles Health Care System, Los Angeles, California, United States
| | - M Eugenia Torres-Marquez
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, United States
| | - Jen-Kuan Chang
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, United States
| | - Yuki Shimizu
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, United States
| | - Fang Hao
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, United States
| | - Martin G Martin
- Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, California, United States
| | - Enrique Rozengurt
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, United States
- VA Greater Los Angeles Health Care System, Los Angeles, California, United States
| |
Collapse
|
10
|
Singh J, Rajesh NG, Dubashi B, Maroju NK, Ganesan P, Matta KK, Charles I, Kayal S. Pattern of Expression of CDX2 in Colorectal Cancer and its Role in Prognosis: An Ambispective Observational Study. Indian J Med Paediatr Oncol 2022. [DOI: 10.1055/s-0042-1750207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Abstract
Introduction Caudal-type homeobox 2 (CDX2), a nuclear protein, is essential for the proliferation and development of intestinal epithelial cells and is frequently downregulated during tumorigenesis. CDX2 inhibits cell growth as well as stimulates differentiation by activating intestinal specific genes, thus lack of CDX2 favors tumor growth and aggressiveness.
Objectives We aimed to evaluate the pattern of CDX2 expression in all stages of colorectal cancer (CRC) and study its association with baseline characteristics and prognosis.
Materials and Methods Study was conducted as an ambispective observational study, enrolling cases of CRC retrospectively from January 2014 to July 2016 (30 months), and prospectively during next 18-month period till January 2018. We performed CDX2 staining by immunohistochemistry on the available biopsy blocks of CRC patients during the study period. Total 286 patients were registered during the study period, of which only 110 biopsy blocks were available for staining. CDX2 scoring was done by a semiquantitative method on whole tissue section for the intensity and percentage of the cells showing positivity. Correlation of CDX2 expression was done with baseline clinical and histopathologic characteristics, and survival.
Results Of 110 patients, 77 (70%) constituted colon cancer and 33 (30%) were rectal cancer. The median age was 54.2 years, 62 (56.4%) being male and 48 (43.6%) female with male-to-female ratio 1.3:1. In the study cohort, 33 (30%) patients had stage II disease, 30 (27.3%) stage III, and 47 (42.7%) were stage IV. Seventy-three (66.4%) were positive for CDX2 and 37 (33.4%) were negative. Loss of CDX2 expression was significantly associated with advanced stage, rectal site, poor grade of differentiation, and presence of lymphovascular invasion (LVSI). With median follow-up of 16 months, progression-free survival (PFS) at 2 years was 30% for CDX2 negative patients compared with 67% for CDX2 positive (p = 0.009), while overall survival (OS) at 2 years was 46% for CDX2 negative versus 77% for positive patients (p = 0.01).
Conclusion Loss of CDX2 expression is associated with advanced stage, higher tumor grade, presence of LVSI, and worse PFS and OS and thereby functions as a poor prognostic factor in CRC.
Collapse
Affiliation(s)
- Jagdeep Singh
- Department of Medical Oncology, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, India
- Department of Medical Oncology, Dayanand Medical College, Ludhiana, Punjab, India
| | - N G. Rajesh
- Department of Pathology, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, India
| | - Biswajit Dubashi
- Department of Medical Oncology, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, India
| | - Nanda K. Maroju
- Department of General Surgery, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, India
| | - Prasanth Ganesan
- Department of Medical Oncology, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, India
| | - Kiran K. Matta
- Department of Medical Oncology, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, India
| | - I Charles
- Department of Medical Oncology, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, India
| | - Smita Kayal
- Department of Medical Oncology, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, India
| |
Collapse
|
11
|
CDX2 expression in primary skin tumors-case series and review of the literature. Hum Pathol 2022; 129:1-10. [PMID: 35926811 DOI: 10.1016/j.humpath.2022.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/10/2022] [Accepted: 07/12/2022] [Indexed: 12/14/2022]
Abstract
CDX2 expression characterizes tumors of gastrointestinal origin, including those of intestinal-type differentiation. In dermatopathology, CDX2 expression is reported in 4 settings: cutaneous metastases from carcinomas of intestinal origin or differentiation, extramammary Paget's disease associated with an underlying colorectal or urothelial tumor, pilomatricomas and pilomatrical carcinomas, and rare primary cutaneous (adeno)squamous carcinomas with intestinal immunophenotype. Over 4 years (10/2017-10/2021), 252 dermatopathology cases with CDX2 immunostain were reviewed, revealing 46 cases with confirmed positive staining. Among them, 11 cases confirmed as primary nonintestinal type cutaneous carcinoma with definitively positive CDX2 nuclear staining were further studied. All cases demonstrated basaloid morphology with atypia, variable necrosis, and brisk mitotic activity. Cases 1-5 had heterogeneous features that cannot be further classified, including 2 cases with neuroendocrine or pseudoglandular/pseudopapillary features, and 1 case with human papillomavirus high-risk E6/E7 ISH positivity. In cases 6 through 11, the diagnosis of pilomatrical carcinoma was supported morphologically. This study substantiates the association of CDX2 with pilomatrical carcinoma. In addition, CDX2 positivity was observed in a subset of basaloid cutaneous carcinomas of ambiguous classification. However, this finding also raises a diagnostic pitfall in clinical diagnostic specificity of the CDX2 immunostain in skin cancers, which can be observed in rare while heterogeneous subsets of primary cutaneous carcinomas with primitive cytomorphology.
Collapse
|
12
|
Ramavath HN, Chandra Mashurabad P, Yaduvanshi PS, Veleri S, Sharp PA, Pullakhandam R. Zinc induces hephaestin expression via a PI3K-CDX2 dependent mechanism to regulate iron transport in intestinal Caco-2 cells. Biochem Biophys Res Commun 2022; 626:1-7. [DOI: 10.1016/j.bbrc.2022.07.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/11/2022] [Accepted: 07/14/2022] [Indexed: 11/16/2022]
|
13
|
Guo Y, Xu C, Gong R, Hu T, Zhang X, Xie X, Chi J, Li H, Xia X, Liu X. Exosomal CagA from Helicobacter pylori aggravates intestinal epithelium barrier dysfunction in chronic colitis by facilitating Claudin-2 expression. Gut Pathog 2022; 14:13. [PMID: 35331316 PMCID: PMC8944046 DOI: 10.1186/s13099-022-00486-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 03/10/2022] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The chronic infection with Helicobacter pylori (H. pylori), especially cytotoxin-associated gene A-positive (CagA+) strains, has been associated with various extragastric disorders. Evaluating the potential impacts of virulence factor CagA on intestine may provide a better understanding of H. pylori pathogenesis such as colitis. The intestinal mucosal barrier is essential for maintaining its integrity and functions. However, how persistent CagA+ H. pylori colonization influences barrier disruption and thereby affects chronic colitis is not fully understood. RESULTS Chronic colitis models of CagA+ H. pylori-colonized mice treated with 2% Dextran sulphate sodium (DSS) were established to assess the disease activity and pertinent expression of tight junction proteins closely related to mucosal integrity. The aggravating effect of CagA+ H. pylori infection on DSS-induced chronic colitis was confirmed in mouse models. In addition, augmented Claudin-2 expression was detected in CagA+ H. pylori infection conditions and selected for mechanistic analysis. Next, GES-1 human gastric epithelial cells were cultured with CagA+ H. pylori or a recombinant CagA protein, and exosomes isolated from conditioned media were then identified. We assessed the Claudin-2 levels after exposure to CagA+ exosomes, CagA- exosomes, and IFN-γ incubation, revealing that CagA+ H. pylori compromised the colonic mucosal barrier and facilitated IFN-γ-induced intestinal epithelial destruction through CagA-containing exosome-mediated mechanisms. Specifically, CagA upregulated Claudin-2 expression at the transcriptional level via a CDX2-dependent mechanism to slow the restoration of wounded mucosa in colitis in vitro. CONCLUSIONS These data suggest that exosomes containing CagA facilitate CDX2-dependent Claudin-2 maintenance. The exosome-dependent mechanisms of CagA+ H. pylori infection are indispensable for damaging the mucosal barrier integrity in chronic colitis, which may provide a new idea for inflammatory bowel disease (IBD) treatment.
Collapse
Affiliation(s)
- Yinjie Guo
- Department of Gastroenterology, Third Xiangya Hospital of Central South University, 138 Tongzipo Road, Changsha, 410013, China.,Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Canxia Xu
- Department of Gastroenterology, Third Xiangya Hospital of Central South University, 138 Tongzipo Road, Changsha, 410013, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, 410013, China
| | - Renjie Gong
- Department of Gastroenterology, Third Xiangya Hospital of Central South University, 138 Tongzipo Road, Changsha, 410013, China
| | - Tingzi Hu
- Department of Gastroenterology, Third Xiangya Hospital of Central South University, 138 Tongzipo Road, Changsha, 410013, China
| | - Xue Zhang
- Department of Gastroenterology, Third Xiangya Hospital of Central South University, 138 Tongzipo Road, Changsha, 410013, China
| | - Xiaoran Xie
- Department of Gastroenterology, Third Xiangya Hospital of Central South University, 138 Tongzipo Road, Changsha, 410013, China
| | - Jingshu Chi
- Department of Gastroenterology, Third Xiangya Hospital of Central South University, 138 Tongzipo Road, Changsha, 410013, China
| | - Huan Li
- Department of Gastroenterology, Third Xiangya Hospital of Central South University, 138 Tongzipo Road, Changsha, 410013, China
| | - Xiujuan Xia
- Department of Gastroenterology, Third Xiangya Hospital of Central South University, 138 Tongzipo Road, Changsha, 410013, China.
| | - Xiaoming Liu
- Department of Gastroenterology, Third Xiangya Hospital of Central South University, 138 Tongzipo Road, Changsha, 410013, China. .,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, 410013, China.
| |
Collapse
|
14
|
van de Wiel SM, Porteiro B, Belt SC, Vogels EW, Bolt I, Vermeulen JL, de Waart DR, Verheij J, Muncan V, Oude Elferink RP, van de Graaf SF. Differential and organ-specific functions of organic solute transporter alpha and beta in experimental cholestasis. JHEP Rep 2022; 4:100463. [PMID: 35462858 PMCID: PMC9019253 DOI: 10.1016/j.jhepr.2022.100463] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 02/07/2023] Open
Abstract
Background & Aims Organic solute transporter (OST) subunits OSTα and OSTβ facilitate bile acid efflux from the enterocyte into the portal circulation. Patients with deficiency of OSTα or OSTβ display considerable variation in the level of bile acid malabsorption, chronic diarrhea, and signs of cholestasis. Herein, we generated and characterized a mouse model of OSTβ deficiency. Methods Ostβ-/- mice were generated using CRISR/Cas9 and compared to wild-type and Ostα-/- mice. OSTβ was re-expressed in livers of Ostβ-/- mice using adeno-associated virus serotype 8 vectors. Cholestasis was induced in both models by bile duct ligation (BDL) or 3.5-diethoxycarbonyl-1.4-dihydrocollidine (DDC) feeding. Results Similar to Ostα-/- mice, Ostβ-/- mice exhibited elongated small intestines with blunted villi and increased crypt depth. Increased expression levels of ileal Fgf15, and decreased Asbt expression in Ostβ-/- mice indicate the accumulation of bile acids in the enterocyte. In contrast to Ostα-/- mice, induction of cholestasis in Ostβ-/- mice by BDL or DDC diet led to lower survival rates and severe body weight loss, but an improved liver phenotype. Restoration of hepatic Ostβ expression via adeno-associated virus-mediated overexpression did not rescue the phenotype of Ostβ-/- mice. Conclusions OSTβ is pivotal for bile acid transport in the ileum and its deficiency leads to an intestinal phenotype similar to Ostα-/- mice, but it exerts distinct effects on survival and the liver phenotype, independent of its expression in the liver. Our findings provide insights into the variable clinical presentation of patients with OSTα and OSTβ deficiencies. Lay summary Organic solute transporter (OST) subunits OSTα and OSTβ together facilitate the efflux of conjugated bile acids into the portal circulation. Ostα knockout mice have longer and thicker small intestines and are largely protected against experimental cholestatic liver injury. Herein, we generated and characterized Ostβ knockout mice for the first time. Ostα and Ostβ knockout mice shared a similar phenotype under normal conditions. However, in cholestasis, Ostβ knockout mice had a worsened overall phenotype which indicates a separate and specific role of OSTβ, possibly as an interacting partner of other intestinal proteins. This manuscript describes the first mouse model of OSTβ deficiency. Ostβ-/- mice are viable and fertile, but show increased length and weight of the small intestine, blunted villi and deeper crypts. Ostβ deficiency leads to an altered microbiome compared to both wild-type and Ostα-/- mice. Cholestasis led to lower survival and worse body weight loss, but an improved liver phenotype, in Ostβ-/- mice compared to Ostα-/- mice.
Collapse
Affiliation(s)
- Sandra M.W. van de Wiel
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, University of Amsterdam, the Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, the Netherlands
| | - Begoña Porteiro
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, University of Amsterdam, the Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, the Netherlands
- CIMUS, Universidade de Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain
| | - Saskia C. Belt
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, University of Amsterdam, the Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, the Netherlands
| | - Esther W.M. Vogels
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, University of Amsterdam, the Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, the Netherlands
| | - Isabelle Bolt
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, University of Amsterdam, the Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, the Netherlands
| | - Jacqueline L.M. Vermeulen
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, University of Amsterdam, the Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, the Netherlands
| | - D. Rudi de Waart
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, University of Amsterdam, the Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, the Netherlands
| | - Joanne Verheij
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, the Netherlands
- Department of Pathology, Amsterdam UMC, University of Amsterdam, the Netherlands
| | - Vanesa Muncan
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, University of Amsterdam, the Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, the Netherlands
- Department of Gastroenterology and Hepatology, Amsterdam UMC, University of Amsterdam, the Netherlands
| | - Ronald P.J. Oude Elferink
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, University of Amsterdam, the Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, the Netherlands
- Department of Gastroenterology and Hepatology, Amsterdam UMC, University of Amsterdam, the Netherlands
| | - Stan F.J. van de Graaf
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, University of Amsterdam, the Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, the Netherlands
- Department of Gastroenterology and Hepatology, Amsterdam UMC, University of Amsterdam, the Netherlands
- Corresponding author. Address: Meibergdreef 69-71, 1105 BK Amsterdam, the Netherlands; Tel.: 020-5668832, fax: 020-5669190
| |
Collapse
|
15
|
Inoue H, Matsushima J, Kobayashi S, Sairenchi T, Hirata H, Chida M, Ota S, Ban S, Matsumura Y. Expression of nSATB2 in Neuroendocrine Carcinomas of the Lung: Frequent Immunopositivity of Large Cell Neuroendocrine Carcinoma with a Diagnostic Pitfall. Int J Surg Pathol 2021; 30:151-159. [PMID: 34913369 DOI: 10.1177/10668969211065757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Small cell lung carcinoma (SCLC) and pulmonary large cell neuroendocrine carcinoma (LCNEC) are both classified as lung neuroendocrine carcinoma (NEC). It has recently been reported that the special AT-rich sequence-binding protein 2 (STAB2), known as a colorectal cancer marker, is also expressed in NECs occurring in various organs including the lung. However, few studies have examined any differences of SATB2 immunopositivity between SCLC and LCNEC. We investigated SATB2 expression in 45 SCLC and 14 LCNEC cases using immunohistochemistry as well as the expression of caudal-type homeobox 2 (CDX2) and keratin (KRT) 20. The LCNEC cases were more frequently positive for SATB2 (ten out of 14, 71%) than the SCLC ones (seventeen out of 45, 38%) with a statistically significance (P = 0.035). Furthermore, two LCNEC cases were positive for CDX2 while no positive findings were observed for any SCLC cases, the difference of which, however, was not statistically significant (P = 0.053). KRT20 was negative in all LCNEC and SCLC cases. These results require our attention when we use SATB2 and CDX2 as colorectal cancer markers because their expression in pulmonary NECs can lead to a misdiagnosis that the tumor is of metastatic colorectal adenocarcinoma, especially when the patient has a past history of colorectal cancer. Analyzing the relationship between the demographic/clinical variables and the SATB2 expression in the SCLC cases, just high Brinkman index (≥ 600) was significantly related to the positivity of SATB2 (P = 0.017), which is interesting considering the strong relationship between SCLC and smoking.
Collapse
Affiliation(s)
- Hiromichi Inoue
- 26263Dokkyo Medical University Saitama Medical Center, Koshigaya, Japan
| | - Jun Matsushima
- 26263Dokkyo Medical University Saitama Medical Center, Koshigaya, Japan
| | - Satoru Kobayashi
- 26263Dokkyo Medical University Saitama Medical Center, Koshigaya, Japan
| | | | - Hirokuni Hirata
- 26263Dokkyo Medical University Saitama Medical Center, Koshigaya, Japan
| | | | - Satoshi Ota
- 37009Teine Keijinkai Hospital, Sapporo, Japan
| | - Shinichi Ban
- 26263Dokkyo Medical University Saitama Medical Center, Koshigaya, Japan
| | - Yuji Matsumura
- 26263Dokkyo Medical University Saitama Medical Center, Koshigaya, Japan
| |
Collapse
|
16
|
All layers matter: Innovative three-dimensional epithelium-stroma-endothelium intestinal model for reliable permeability outcomes. J Control Release 2021; 341:414-430. [PMID: 34871636 DOI: 10.1016/j.jconrel.2021.11.048] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/19/2021] [Accepted: 11/30/2021] [Indexed: 12/15/2022]
Abstract
Drug development is an ever-growing field, increasingly requesting reliable in vitro tools to speed up early screening phases, reducing the need for animal experiments. In oral delivery, understanding the absorption pattern of a new drug in the small intestine is paramount. Classical two-dimensional (2D) in vitro models are generally too simplistic and do not accurately represent native tissues. The main goal of this work was to develop an advanced three-dimensional (3D) in vitro intestinal model to test absorption in a more reliable manner, by better mimicking the native environment. The 3D model is composed of a collagen-based stromal layer with embedded fibroblasts mimicking the intestinal lamina propria and providing support for the epithelium, composed of enterocytes and mucus-secreting cells. An endothelial layer, surrogating the absorptive capillary network, is also present. The cellular crosstalk between the different cells present in the model is unveiled, disclosing key players, namely those involved in the contraction of collagen by fibroblasts. The developed 3D model presents lower levels of P-glycoprotein (P-gp) and Multidrug Resistance Protein 2 (MRP2) efflux transporters, which are normally overexpressed in traditional Caco-2 models, and are paramount in the absorption of many compounds. This, allied with transepithelial electrical resistance (TEER) values closer to physiological ranges, leads to improved and more reliable permeability outcomes, which are observed when comparing our results with in vivo data.
Collapse
|
17
|
Fallah S, Beaulieu JF. Src family kinases inhibit differentiation of intestinal epithelial cells through the Hippo effector YAP1. Biol Open 2021; 10:272600. [PMID: 34693980 PMCID: PMC8609238 DOI: 10.1242/bio.058904] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 10/14/2021] [Indexed: 12/20/2022] Open
Abstract
Intestinal cell lineage differentiation is a tightly regulated mechanism that involves several intracellular signaling pathways affecting the expression of a variety of transcription factors, which ultimately regulate cell specific gene expression. Absorptive and goblet cells are the two main epithelial cell types of the intestine. Previous studies from our group using an shRNA knockdown approach have shown that YAP1, one of the main Hippo pathway effectors, inhibits the differentiation of these two cell types. In the present study, we show that YAP1 activity is regulated by Src family kinases (SFKs) in these cells. Inhibition of SFKs led to a sharp reduction in YAP1 expression at the protein level, an increase in CDX2 and the P1 forms of HNF4α and of absorptive and goblet cell differentiation specific markers. Interestingly, in Caco-2/15 cells which express both YAP1 and its paralog TAZ, TAZ was not reduced by the inhibition of SFKs and its specific knockdown rather impaired absorptive cell differentiation indicating that YAP1 and TAZ are not always interchangeable for regulating cell functions. This article has an associated First Person interview with the first author of the paper. Summary: Inhibition of Src family kinases leads to a sharp reduction in YAP1 expression and an increase in CDX2 and HNF4α, two regulators of intestinal cell differentiation, while its paralog TAZ appears not to be directly involved.
Collapse
Affiliation(s)
- Sepideh Fallah
- Laboratory of Intestinal Physiopathology, Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke and Centre de recherche du Centre hospitalier Universitaire de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Jean-François Beaulieu
- Laboratory of Intestinal Physiopathology, Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke and Centre de recherche du Centre hospitalier Universitaire de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| |
Collapse
|
18
|
Ribeirinho-Soares S, Pádua D, Amaral AL, Valentini E, Azevedo D, Marques C, Barros R, Macedo F, Mesquita P, Almeida R. Prognostic significance of MUC2, CDX2 and SOX2 in stage II colorectal cancer patients. BMC Cancer 2021; 21:359. [PMID: 33823840 PMCID: PMC8025574 DOI: 10.1186/s12885-021-08070-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 03/19/2021] [Indexed: 01/09/2023] Open
Abstract
Background Colorectal cancer (CRC) remains a serious health concern worldwide. Despite advances in diagnosis and treatment, about 15 to 30% of stage II CRC patients subjected to tumor resection with curative intent, develop disease relapse. Moreover, the therapeutic strategy adopted after surgery is not consensual for these patients. This supports the imperative need to find new prognostic and predictive biomarkers for stage II CRC. Methods For this purpose, we used a one-hospital series of 227 stage II CRC patient samples to assess the biomarker potential of the immunohistochemical expression of MUC2 mucin and CDX2 and SOX2 transcription factors. The Kaplan-Meier method was used to generate disease-free survival curves that were compared using the log-rank test, in order to determine prognosis of cases with different expression of these proteins, different mismatch repair (MMR) status and administration or not of adjuvant chemotherapy. Results In this stage II CRC series, none of the studied biomarkers showed prognostic value for patient outcome. However low expression of MUC2, in cases with high expression of CDX2, absence of SOX2 or MMR-proficiency, conferred a significantly worst prognosis. Moreover, cases with low expression of MUC2 showed a significantly clear benefit from treatment with adjuvant chemotherapy. Conclusion In conclusion, we observe that patients with stage II CRC with low expression of MUC2 in the tumor respond better when treated with adjuvant chemotherapy. This observation supports that MUC2 is involved in resistance to fluorouracil-based adjuvant chemotherapy and might be a promising future predictive biomarker in stage II CRC patients. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08070-6.
Collapse
Affiliation(s)
- Sara Ribeirinho-Soares
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.,IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
| | - Diana Pádua
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.,IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
| | - Ana Luísa Amaral
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.,IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
| | - Elvia Valentini
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.,IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
| | | | | | - Rita Barros
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.,IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal.,Faculty of Medicine, University of Porto, Porto, Portugal
| | - Filipa Macedo
- IPO-C - Instituto Português de Oncologia de Coimbra Francisco Gentil, E. P. E, Coimbra, Portugal
| | - Patrícia Mesquita
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.,IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
| | - Raquel Almeida
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal. .,IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal. .,Faculty of Medicine, University of Porto, Porto, Portugal. .,Biology Department, Faculty of Sciences of the University of Porto, Porto, Portugal.
| |
Collapse
|
19
|
Onozato D, Ogawa I, Kida Y, Mizuno S, Hashita T, Iwao T, Matsunaga T. Generation of Budding-Like Intestinal Organoids from Human Induced Pluripotent Stem Cells. J Pharm Sci 2021; 110:2637-2650. [PMID: 33794275 DOI: 10.1016/j.xphs.2021.03.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/17/2021] [Accepted: 03/17/2021] [Indexed: 12/12/2022]
Abstract
Human induced pluripotent stem (iPS) cell-derived intestinal organoids have low invasiveness; however, the current differentiation method does not reflect the crypt-villus-like structure due to structural immaturity. Here, we generated budding-like organoids that formed epithelial tissue-like structures and had the characteristics of the mature small intestine from human iPS cells. They showed a high expression of drug transporters and induced the expression of cytochrome P450 3A4 and P-glycoprotein. When treated with tumor necrosis factor-α and/or transforming growth factor-β, the budding-like organoids replicated the pathogenesis of mucosal damage or intestinal fibrosis. Upon dissociation and seeding on cell culture inserts, the organoids retained intestinal characteristics, forming polarized intestinal folds with approximately 400 Ω × cm2 transepithelial electrical resistance. This novel method has great potential for disease modeling and drug screening applications.
Collapse
Affiliation(s)
- Daichi Onozato
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
| | - Isamu Ogawa
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
| | - Yuriko Kida
- Educational Research Center for Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
| | - Shota Mizuno
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
| | - Tadahiro Hashita
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan; Educational Research Center for Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
| | - Takahiro Iwao
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan; Educational Research Center for Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan.
| | - Tamihide Matsunaga
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan; Educational Research Center for Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
| |
Collapse
|
20
|
Sarvestani SK, Signs S, Hu B, Yeu Y, Feng H, Ni Y, Hill DR, Fisher RC, Ferrandon S, DeHaan RK, Stiene J, Cruise M, Hwang TH, Shen X, Spence JR, Huang EH. Induced organoids derived from patients with ulcerative colitis recapitulate colitic reactivity. Nat Commun 2021; 12:262. [PMID: 33431859 PMCID: PMC7801686 DOI: 10.1038/s41467-020-20351-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 11/30/2020] [Indexed: 02/08/2023] Open
Abstract
The pathogenesis of ulcerative colitis (UC), a major type of inflammatory bowel disease, remains unknown. No model exists that adequately recapitulates the complexity of clinical UC. Here, we take advantage of induced pluripotent stem cells (iPSCs) to develop an induced human UC-derived organoid (iHUCO) model and compared it with the induced human normal organoid model (iHNO). Notably, iHUCOs recapitulated histological and functional features of primary colitic tissues, including the absence of acidic mucus secretion and aberrant adherens junctions in the epithelial barrier both in vitro and in vivo. We demonstrate that the CXCL8/CXCR1 axis was overexpressed in iHUCO but not in iHNO. As proof-of-principle, we show that inhibition of CXCL8 receptor by the small-molecule non-competitive inhibitor repertaxin attenuated the progression of UC phenotypes in vitro and in vivo. This patient-derived organoid model, containing both epithelial and stromal compartments, will generate new insights into the underlying pathogenesis of UC while offering opportunities to tailor interventions to the individual patient.
Collapse
Affiliation(s)
- Samaneh K Sarvestani
- Department of Cancer Biology, Cleveland Clinic Lerner Research Institute, Cleveland, OH, 44195, USA
| | - Steven Signs
- Department of Cancer Biology, Cleveland Clinic Lerner Research Institute, Cleveland, OH, 44195, USA
| | - Bo Hu
- Department of Quantitative Health Sciences, Cleveland Clinic Lerner Research Institute, Cleveland, OH, 44195, USA
| | - Yunku Yeu
- Department of Quantitative Health Sciences, Cleveland Clinic Lerner Research Institute, Cleveland, OH, 44195, USA
| | - Hao Feng
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Ying Ni
- Department of Quantitative Health Sciences, Cleveland Clinic Lerner Research Institute, Cleveland, OH, 44195, USA
| | - David R Hill
- Department of Internal Medicine, Gastroenterology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Robert C Fisher
- Department of Cancer Biology, Cleveland Clinic Lerner Research Institute, Cleveland, OH, 44195, USA
| | - Sylvain Ferrandon
- Department of Cancer Biology, Cleveland Clinic Lerner Research Institute, Cleveland, OH, 44195, USA
| | - Reece K DeHaan
- Department of Colorectal Surgery, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Jennifer Stiene
- Department of Cancer Biology, Cleveland Clinic Lerner Research Institute, Cleveland, OH, 44195, USA
| | - Michael Cruise
- Department of Pathology, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Tae Hyun Hwang
- Department of Quantitative Health Sciences, Cleveland Clinic Lerner Research Institute, Cleveland, OH, 44195, USA
| | - Xiling Shen
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Jason R Spence
- Department of Internal Medicine, Gastroenterology, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Emina H Huang
- Department of Cancer Biology, Cleveland Clinic Lerner Research Institute, Cleveland, OH, 44195, USA.
- Department of Colorectal Surgery, Cleveland Clinic, Cleveland, OH, 44195, USA.
| |
Collapse
|
21
|
Mismatch repair phenotype determines the implications of tumor grade and CDX2 expression in stage II-III colon cancer. Mod Pathol 2021; 34:161-170. [PMID: 32737450 DOI: 10.1038/s41379-020-0634-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 07/14/2020] [Accepted: 07/14/2020] [Indexed: 12/28/2022]
Abstract
Mismatch repair (MMR) deficiency is an indicator of good prognosis in localized colon cancer but also associated with lack of expression of caudal-type homeobox transcription factor 2 (CDX2) and high tumor grade; markers that in isolation indicate a poor prognosis. Our study aims to identify clinically relevant prognostic subgroups by combining information about tumor grade, MMR phenotype, and CDX2 expression. Immunohistochemistry for MMR proteins and CDX2 was performed in 544 patients with colon cancer stage II-III, including a cohort from a randomized trial. In patients with proficient MMR (pMMR) and CDX2 negativity, hazard ratio (HR) for cancer death was 2.93 (95% CI 1.23-6.99, p = 0.015). Cancer-specific survival for pMMR/CDX2-negative cases was 35.8 months (95% CI 23.4-48.3) versus 52.1-53.5 months (95% CI 45.6-58.6, p = 0.001) for the remaining cases (CDX2-positive tumors or deficient MMR (dMMR)/CDX2-negative tumors). In our randomized cohort, high tumor grade was predictive of response to adjuvant fluorouracil-levamisole in pMMR patients, with a significant interaction between tumor grade and treatment (p = 0.036). For pMMR patients, high tumor grade was a significant marker of poor prognosis in the surgery-only group (HR 4.60 (95% CI 1.68-12.61), p = 0.003) but not in the group receiving chemotherapy (HR 0.66 (95% CI 0.15-3.00), p = 0.587). To conclude, patients with pMMR and CDX2 negativity have a very poor prognosis. Patients with pMMR and high-graded tumors have a poor prognosis but respond well to adjuvant chemotherapy. CDX2 expression and tumor grade did not impact prognosis in patients with dMMR.
Collapse
|
22
|
Preksha G, Yesheswini R, Srikanth CV. Cell culture techniques in gastrointestinal research: Methods, possibilities and challenges. INDIAN J PATHOL MICR 2021; 64:S52-S57. [PMID: 34135138 DOI: 10.4103/ijpm.ijpm_933_20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Cell culture is one of the most valuable tools which is being applied in both fundamental and applied gastrointestinal research. The cells are isolated from their natural location (in vivo) and further propagated in vitro or artificial environment and studied. Over the years, several methods have been devised to isolate animal cells derived from the gut and culture them in vitro to study the functions and biology in the context of complex gastrointestinal diseases. This mini-review briefly describes the types and methods of cell culture covering the simplest monoculture models to more recent 3D organoid models, highlighting its importance in personalized precession medicine and other aspects of translational research. It also throws light upon the major challenges and outlines the future directions for using cell culture as a model system.
Collapse
Affiliation(s)
- Gaur Preksha
- Regional Centre for Biotechnology, 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad, Haryana, India
| | - Rajendran Yesheswini
- Regional Centre for Biotechnology, 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad, Haryana, India
| | - Chittur V Srikanth
- Regional Centre for Biotechnology, 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad, Haryana, India
| |
Collapse
|
23
|
De La Cena KOC, Ho RXY, Amraei R, Woolf N, Tashjian JY, Zhao Q, Richards S, Walker J, Huang J, Chitalia VC, Rahimi N. Transmembrane and Immunoglobulin Domain Containing 1, a Putative Tumor Suppressor, Induces G2/M Cell Cycle Checkpoint Arrest in Colon Cancer Cells. THE AMERICAN JOURNAL OF PATHOLOGY 2021; 191:157-167. [PMID: 33129760 PMCID: PMC7788663 DOI: 10.1016/j.ajpath.2020.09.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 09/07/2020] [Accepted: 09/23/2020] [Indexed: 10/23/2022]
Abstract
Colorectal cancer (CRC) is a leading nonfamilial cause of cancer mortality among men and women. Although various genetic and epigenetic mechanisms have been identified, the full molecular mechanisms deriving CRC tumorigenesis are not fully understood. This study demonstrates that cell adhesion molecule transmembrane and immunoglobulin domain containing 1 (TMIGD1) are highly expressed in mouse and human normal intestinal epithelial cells. TMIGD1 knockout mice were developed, and the loss of TMIGD1 in mice was shown to result in the development of adenomas in small intestine and colon. In addition, the loss of TMIGD1 significantly impaired intestinal epithelium brush border membrane, junctional polarity, and maturation. Mechanistically, TMIGD1 inhibits tumor cell proliferation and cell migration, arrests cell cycle at the G2/M phase, and induces expression of p21CIP1 (cyclin-dependent kinase inhibitor 1), and p27KIP1 (cyclin-dependent kinase inhibitor 1B) expression, key cell cycle inhibitor proteins involved in the regulation of the cell cycle. Moreover, TMIGD1 is shown to be progressively down-regulated in sporadic human CRC, and its downregulation correlates with poor overall survival. The findings herein identify TMIGD1 as a novel tumor suppressor gene and provide new insights into the pathogenesis of colorectal cancer and a novel potential therapeutic target.
Collapse
Affiliation(s)
- Kyle O C De La Cena
- Department of Pathology, School of Medicine, Boston University Medical Campus, Boston, Massachusetts
| | - Rachel X-Y Ho
- Department of Pathology, School of Medicine, Boston University Medical Campus, Boston, Massachusetts
| | - Razie Amraei
- Department of Pathology, School of Medicine, Boston University Medical Campus, Boston, Massachusetts
| | - Nick Woolf
- Department of Pathology, School of Medicine, Boston University Medical Campus, Boston, Massachusetts
| | - Joseph Y Tashjian
- Department of Pathology, School of Medicine, Boston University Medical Campus, Boston, Massachusetts
| | - Qing Zhao
- Department of Pathology, School of Medicine, Boston University Medical Campus, Boston, Massachusetts
| | - Sean Richards
- Renal Section, Department of Medicine, Boston Medical Center, Boston, Massachusetts
| | - Josh Walker
- Renal Section, Department of Medicine, Boston Medical Center, Boston, Massachusetts
| | - Juanni Huang
- Department of Pathology, School of Medicine, Boston University Medical Campus, Boston, Massachusetts
| | - Vipul C Chitalia
- Renal Section, Department of Medicine, Boston Medical Center, Boston, Massachusetts; Boston Veterans Affairs Healthcare System, Boston, Massachusetts
| | - Nader Rahimi
- Department of Pathology, School of Medicine, Boston University Medical Campus, Boston, Massachusetts.
| |
Collapse
|
24
|
Pisano A, Griñan-Lison C, Farace C, Fiorito G, Fenu G, Jiménez G, Scognamillo F, Peña-Martin J, Naccarati A, Pröll J, Atzmüller S, Pardini B, Attene F, Ibba G, Solinas MG, Bernhard D, Marchal JA, Madeddu R. The Inhibitory Role of miR-486-5p on CSC Phenotype Has Diagnostic and Prognostic Potential in Colorectal Cancer. Cancers (Basel) 2020; 12:cancers12113432. [PMID: 33227890 PMCID: PMC7699298 DOI: 10.3390/cancers12113432] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is the third most frequent cancer worldwide and the second cause of cancer deaths. Increasing evidences supports the idea that the poor prognosis of patients is related to the presence of cancer stem cells (CSCs), a cell population able to drive cancer recurrence and metastasis. The deregulation of microRNAs (miRNAs) plays a role in the formation of CSC. We investigated the role of hsa-miR-486-5p (miR-486-5p) in CRC, CSCs, and metastasis, in order to reach a better understanding of the biomolecular and epigenetic mechanisms mir-486-5p-related. The expression of miR-486-5p was investigated in three different matrices from CRC patients and controls and in CSCs obtained from the CRC cell lines HCT-116, HT-29, and T-84. In the human study, miR-486-5p was up-regulated in serum and stool of CRC patients in comparison with healthy controls but down-regulated in tumor tissue when compared with normal mucosa. miR-486-5p was also down-regulated in the sera of metastatic patients. In vitro, miR-486-5p was down-regulated in CSC models and it induced an inhibitory effect on stem factors and oncogenes in the main pathways of CSCs. Our results provide a step forward in understanding the role of mir-486-5p in CRC and CSC, and suggest that further studies are needed to investigate its diagnostic and prognostic power, possibly in combination with other biomarkers.
Collapse
Affiliation(s)
- Andrea Pisano
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (A.P.); (C.F.); (G.F.); (G.F.); (G.I.); (M.G.S.)
- National Institute of Biostructures and Biosystems, 00136 Rome, Italy
- Centre for Biomedical Research (CIBM), Biopathology and Regenerative Medicine Institute (IBIMER), University of Granada, 18100 Granada, Spain; (C.G.-L.); (G.J.); (J.P.-M.)
| | - Carmen Griñan-Lison
- Centre for Biomedical Research (CIBM), Biopathology and Regenerative Medicine Institute (IBIMER), University of Granada, 18100 Granada, Spain; (C.G.-L.); (G.J.); (J.P.-M.)
- Instituto de Investigación Biosanitaria Ibs.GRANADA, Organization University Hospitals of Granada, 18100 Granada, Spain
- Excellence Research Unit Modeling Nature (MNat), University of Granada, 18016 Granada, Spain
| | - Cristiano Farace
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (A.P.); (C.F.); (G.F.); (G.F.); (G.I.); (M.G.S.)
- National Institute of Biostructures and Biosystems, 00136 Rome, Italy
| | - Giovanni Fiorito
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (A.P.); (C.F.); (G.F.); (G.F.); (G.I.); (M.G.S.)
- MRC Centre for Environment and Health, Imperial College London, Norfolk Place, London W2 1PG, UK
| | - Grazia Fenu
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (A.P.); (C.F.); (G.F.); (G.F.); (G.I.); (M.G.S.)
| | - Gema Jiménez
- Centre for Biomedical Research (CIBM), Biopathology and Regenerative Medicine Institute (IBIMER), University of Granada, 18100 Granada, Spain; (C.G.-L.); (G.J.); (J.P.-M.)
- Instituto de Investigación Biosanitaria Ibs.GRANADA, Organization University Hospitals of Granada, 18100 Granada, Spain
- Excellence Research Unit Modeling Nature (MNat), University of Granada, 18016 Granada, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, 18016 Granada, Spain
| | - Fabrizio Scognamillo
- O.U. of Surgery I (Surgical Pathology), A.O.U. Sassari, 07100 Sassari, Italy; (F.S.); (F.A.)
| | - Jesùs Peña-Martin
- Centre for Biomedical Research (CIBM), Biopathology and Regenerative Medicine Institute (IBIMER), University of Granada, 18100 Granada, Spain; (C.G.-L.); (G.J.); (J.P.-M.)
- Instituto de Investigación Biosanitaria Ibs.GRANADA, Organization University Hospitals of Granada, 18100 Granada, Spain
- Excellence Research Unit Modeling Nature (MNat), University of Granada, 18016 Granada, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, 18016 Granada, Spain
| | - Alessio Naccarati
- Molecular Epidemiology and Exposome Research Unit, Italian Institute for Genomic Medicine (IIGM), c/o IRCCS Candiolo, Candiolo, 10060 Torino, Italy; (A.N.); (B.P.)
- Molecular Epidemiology and Exposome Research Unit Candiolo Cancer Institute, FPO-IRCCS, Candiolo, 10060 Torino, Italy
| | - Johannes Pröll
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria;
- Center for Medical Research, Johannes Kepler University, 4040 Linz, Austria;
- Red Cross Blood Transfusion Service, 4020 Linz, Austria
| | - Sabine Atzmüller
- Center for Medical Research, Johannes Kepler University, 4040 Linz, Austria;
| | - Barbara Pardini
- Molecular Epidemiology and Exposome Research Unit, Italian Institute for Genomic Medicine (IIGM), c/o IRCCS Candiolo, Candiolo, 10060 Torino, Italy; (A.N.); (B.P.)
- Molecular Epidemiology and Exposome Research Unit Candiolo Cancer Institute, FPO-IRCCS, Candiolo, 10060 Torino, Italy
| | - Federico Attene
- O.U. of Surgery I (Surgical Pathology), A.O.U. Sassari, 07100 Sassari, Italy; (F.S.); (F.A.)
| | - Gabriele Ibba
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (A.P.); (C.F.); (G.F.); (G.F.); (G.I.); (M.G.S.)
| | - Maria Giuliana Solinas
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (A.P.); (C.F.); (G.F.); (G.F.); (G.I.); (M.G.S.)
| | - David Bernhard
- Division of Pathophysiology, Institute of Physiology and Pathophysiology, Medical Faculty, Johannes Kepler University, 4040 Linz, Austria;
| | - Juan Antonio Marchal
- Centre for Biomedical Research (CIBM), Biopathology and Regenerative Medicine Institute (IBIMER), University of Granada, 18100 Granada, Spain; (C.G.-L.); (G.J.); (J.P.-M.)
- Instituto de Investigación Biosanitaria Ibs.GRANADA, Organization University Hospitals of Granada, 18100 Granada, Spain
- Excellence Research Unit Modeling Nature (MNat), University of Granada, 18016 Granada, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, 18016 Granada, Spain
- Correspondence: (J.A.M.); (R.M.); Tel.: +34-958249321 (J.A.M.); +39-079228569 (R.M.)
| | - Roberto Madeddu
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (A.P.); (C.F.); (G.F.); (G.F.); (G.I.); (M.G.S.)
- National Institute of Biostructures and Biosystems, 00136 Rome, Italy
- Correspondence: (J.A.M.); (R.M.); Tel.: +34-958249321 (J.A.M.); +39-079228569 (R.M.)
| |
Collapse
|
25
|
McCarty MF, Lerner A. Perspective: Prospects for Nutraceutical Support of Intestinal Barrier Function. Adv Nutr 2020; 12:316-324. [PMID: 33126251 PMCID: PMC8243597 DOI: 10.1093/advances/nmaa139] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/28/2020] [Accepted: 09/24/2020] [Indexed: 12/12/2022] Open
Abstract
Impairment of intestinal barrier function is linked to certain pathologies and to aging, and can be a cause of bacterial infections, systemic and hepatic inflammation, food allergies, and autoimmune disorders. The formation and maintenance of intestinal tight junctions is supported by glucagon-like peptide-2 (GLP-2), which via insulin-like growth factor I activity boosts phosphoinositide 3-kinase/Akt/mammalian target of rapamycin complex 1 (PI3K/Akt/mTORC1) signaling in enterocytes. 5'-AMP-activated protein kinase (AMPK) activity as well as estrogen receptor-β (ERβ) activity are also protective in this regard. Conversely, activation of mitogen-activated protein kinases (MAPKs) and cellular Src (c-Src) under inflammatory conditions can induce dissociation of tight junctions. Hence, nutraceuticals that promote GLP-2 secretion from L cells-effective pre/probiotics, glycine, and glutamine-as well as diets rich in soluble fiber or resistant starch, can support intestinal barrier function. AMPK activators-notably berberine and the butyric acid produced by health-promoting microflora-are also beneficial in this regard, as are soy isoflavones, which function as selective agonists for ERβ. The adverse impact of MAPK and c-Src overactivation on the intestinal barrier can be combatted with various antioxidant measures, including phycocyanobilin, phase 2-inducer nutraceuticals, and N-acetylcysteine. These considerations suggest that rationally designed functional foods or complex supplementation programs could have clinical potential for supporting and restoring healthful intestinal barrier function.
Collapse
|
26
|
Fallah S, Beaulieu JF. The Hippo Pathway Effector YAP1 Regulates Intestinal Epithelial Cell Differentiation. Cells 2020; 9:cells9081895. [PMID: 32823612 PMCID: PMC7463744 DOI: 10.3390/cells9081895] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 07/31/2020] [Accepted: 08/11/2020] [Indexed: 12/15/2022] Open
Abstract
The human intestine is covered by epithelium, which is continuously replaced by new cells provided by stem cells located at the bottom of the glands. The maintenance of intestinal stem cells is supported by a niche which is composed of several signaling proteins including the Hippo pathway effectors YAP1/TAZ. The role of YAP1/TAZ in cell proliferation and regeneration is well documented but their involvement on the differentiation of intestinal epithelial cells is unclear. In the present study, the role of YAP1/TAZ on the differentiation of intestinal epithelial cells was investigated using the HT29 cell line, the only multipotent intestinal cell line available, with a combination of knockdown approaches. The expression of intestinal differentiation cell markers was tested by qPCR, Western blot, indirect immunofluorescence and electron microscopy analyses. The results show that TAZ is not expressed while the abolition of YAP1 expression led to a sharp increase in goblet and absorptive cell differentiation and reduction of some stem cell markers. Further studies using double knockdown experiments revealed that most of these effects resulting from YAP1 abolition are mediated by CDX2, a key intestinal cell transcription factor. In conclusion, our results indicate that YAP1/TAZ negatively regulate the differentiation of intestinal epithelial cells through the inhibition of CDX2 expression.
Collapse
Affiliation(s)
- Sepideh Fallah
- Laboratory of Intestinal Physiopathology, Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada;
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Jean-François Beaulieu
- Laboratory of Intestinal Physiopathology, Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada;
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
- Correspondence:
| |
Collapse
|
27
|
Dae Hong K, Lee D, Lee Y, Lee SI, Moon HY. Reduced CDX2 Expression Predicts Poor Overall Survival in Patients with Colorectal Cancer. Am Surg 2020. [DOI: 10.1177/000313481307900422] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The homeodomain transcription factor CDX2 directs development and maintenance of normal intestinal epithelium. However, the role of CDX2 in colorectal carcinogenesis is poorly understood. Hence, we investigated the CDX2 expression in patients with colorectal cancer and its relationship to tumor cell proliferation and differentiation and evaluated the role of this molecule as a biologic marker for the prediction of poor patient survival. We retrospectively reviewed 207 patients with colorectal cancer, with an available paraffin block, who underwent surgical resection between January 2002 and December 2004 at Korea University Guro Hospital. CDX2 expression was compared between tumor tissue and the adjacent normal mucosa using immunohistochemistry and Western blot analysis. Immunohistochemical staining for CDX2, Ki-67, and CK20 was performed in each tumor tissue. Immunohistochemistry revealed that CDX2 protein is overexpressed by colorectal cancer compared with adjacent normal mucosa (P < 0.001). In the Western blot analysis, tumor tissue showed a trend toward overexpression of CDX2 protein compared with normal mucosa (P = 0.09). CDX2 expression showed a significant direct correlation with the expression of Ki-67 and CK20 in tumor tissue (P = 0.028 and P = 0.042, respectively). Survival analysis showed that reduced CDX2 expression was statistically and significantly related to poor overall survival. Reduced CDX2 expression is associated with poor overall survival in patients with colorectal cancer and may be clinically useful as a marker for poor prognosis.
Collapse
Affiliation(s)
- Kwang Dae Hong
- From the Departments of Surgery, Korea University College of Medicine, Seoul, Republic of Korea; and the
| | - Dooseok Lee
- Departments of Pathology, Korea University College of Medicine, Seoul, Republic of Korea; and the
| | - Youngseok Lee
- Department of Surgery, Daehang Hospital, Seoul, Republic of Korea
| | - Sun Il Lee
- From the Departments of Surgery, Korea University College of Medicine, Seoul, Republic of Korea; and the
| | - Hong Young Moon
- From the Departments of Surgery, Korea University College of Medicine, Seoul, Republic of Korea; and the
| |
Collapse
|
28
|
Transcription factor Oct1 protects against hematopoietic stress and promotes acute myeloid leukemia. Exp Hematol 2019; 76:38-48.e2. [PMID: 31295506 PMCID: PMC7670548 DOI: 10.1016/j.exphem.2019.07.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 06/18/2019] [Accepted: 07/03/2019] [Indexed: 01/01/2023]
Abstract
A better understanding of the development and progression of acute myelogenous leukemia (AML) is necessary to improve patient outcome. Here we define roles for the transcription factor Oct1/Pou2f1 in AML and normal hematopoiesis. Inappropriate reactivation of the CDX2 gene is widely observed in leukemia patients and in leukemia mouse models. We show that Oct1 associates with the CDX2 promoter in both normal and AML primary patient samples, but recruits the histone demethylase Jmjd1a/Kdm3a to remove the repressive H3K9me2 mark only in malignant specimens. The CpG DNA immediately adjacent to the Oct1 binding site within the CDX2 promoter exhibits variable DNA methylation in healthy control blood and bone marrow samples, but complete demethylation in AML samples. In MLL-AF9-driven mouse models, partial loss of Oct1 protects from myeloid leukemia. Complete Oct1 loss completely suppresses leukemia but results in lethality from bone marrow failure. Loss of Oct1 in normal hematopoietic transplants results in superficially normal long-term reconstitution; however, animals become acutely sensitive to 5-fluorouracil, indicating that Oct1 is dispensable for normal hematopoiesis but protects blood progenitor cells against external chemotoxic stress. These findings elucidate a novel and important role for Oct1 in AML.
Collapse
|
29
|
Larsen S, Davidsen J, Dahlgaard K, Pedersen OB, Troelsen JT. HNF4α and CDX2 Regulate Intestinal YAP1 Promoter Activity. Int J Mol Sci 2019; 20:ijms20122981. [PMID: 31216773 PMCID: PMC6627140 DOI: 10.3390/ijms20122981] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/10/2019] [Accepted: 06/16/2019] [Indexed: 01/06/2023] Open
Abstract
The Hippo pathway is important for tissue homeostasis, regulation of organ size and growth in most tissues. The co-transcription factor yes-associated protein 1 (YAP1) serves as a main downstream effector of the Hippo pathway and its dysregulation increases cancer development and blocks colonic tissue repair. Nevertheless, little is known about the transcriptional regulation of YAP1 in intestinal cells. The aim of this study to identify gene control regions in the YAP1 gene and transcription factors important for intestinal expression. Bioinformatic analysis of caudal type homeobox 2 (CDX2) and hepatocyte nuclear factor 4 alpha (HNF4α) chromatin immunoprecipitated DNA from differentiated Caco-2 cells revealed potential intragenic enhancers in the YAP1 gene. Transfection of luciferase-expressing YAP1 promoter-reporter constructs containing the potential enhancer regions validated one potent enhancer of the YAP1 promoter activity in Caco-2 and T84 cells. Two potential CDX2 and one HNF4α binding sites were identified in the enhancer by in silico transcription factor binding site analysis and protein-DNA binding was confirmed in vitro using electrophoretic mobility shift assay. It was found by chromatin immunoprecipitation experiments that CDX2 and HNF4α bind to the YAP1 enhancer in Caco-2 cells. These results reveal a previously unknown enhancer of the YAP1 promoter activity in the YAP1 gene, with importance for high expression levels in intestinal epithelial cells. Additionally, CDX2 and HNF4α binding are important for the YAP1 enhancer activity in intestinal epithelial cells.
Collapse
Affiliation(s)
- Sylvester Larsen
- Department of Science and Environment, Roskilde University, Universitetsvej 1, 4000 Roskilde, Denmark.
- Department of Clinical Immunology, Næstved Hospital, Ringstedgade 77B, 4700 Næstved, Denmark.
| | - Johanne Davidsen
- Department of Science and Environment, Roskilde University, Universitetsvej 1, 4000 Roskilde, Denmark.
- Department of Surgery, Center for Surgical Science, Enhanced Perioperative Oncology (EPEONC) Consortium, Zealand University Hospital, Lykkebækvej 1, 4600 Køge, Denmark.
| | - Katja Dahlgaard
- Department of Science and Environment, Roskilde University, Universitetsvej 1, 4000 Roskilde, Denmark.
| | - Ole B Pedersen
- Department of Clinical Immunology, Næstved Hospital, Ringstedgade 77B, 4700 Næstved, Denmark.
| | - Jesper T Troelsen
- Department of Science and Environment, Roskilde University, Universitetsvej 1, 4000 Roskilde, Denmark.
| |
Collapse
|
30
|
Tong K, Pellón-Cárdenas O, Sirihorachai VR, Warder BN, Kothari OA, Perekatt AO, Fokas EE, Fullem RL, Zhou A, Thackray JK, Tran H, Zhang L, Xing J, Verzi MP. Degree of Tissue Differentiation Dictates Susceptibility to BRAF-Driven Colorectal Cancer. Cell Rep 2019; 21:3833-3845. [PMID: 29281831 DOI: 10.1016/j.celrep.2017.11.104] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 11/09/2017] [Accepted: 11/29/2017] [Indexed: 02/07/2023] Open
Abstract
Oncogenic mutations in BRAF are believed to initiate serrated colorectal cancers; however, the mechanisms of BRAF-driven colon cancer are unclear. We find that oncogenic BRAF paradoxically suppresses stem cell renewal and instead promotes differentiation. Correspondingly, tumor formation is inefficient in BRAF-driven mouse models of colon cancer. By reducing levels of differentiation via genetic manipulation of either of two distinct differentiation-promoting factors (Smad4 or Cdx2), stem cell activity is restored in BRAFV600E intestines, and the oncogenic capacity of BRAFV600E is amplified. In human patients, we observe that reduced levels of differentiation in normal tissue is associated with increased susceptibility to serrated colon tumors. Together, these findings help resolve the conditions necessary for BRAF-driven colon cancer initiation. Additionally, our results predict that genetic and/or environmental factors that reduce tissue differentiation will increase susceptibility to serrated colon cancer. These findings offer an opportunity to identify susceptible individuals by assessing their tissue-differentiation status.
Collapse
Affiliation(s)
- Kevin Tong
- Department of Genetics, Rutgers University, Human Genetics Institute of New Jersey (HGINJ), 145 Bevier Road, Piscataway Township, NJ 08854, USA; Rutgers Cancer Institute of New Jersey (CINJ), 195 Little Albany Street, New Brunswick, NJ 08903, USA
| | - Oscar Pellón-Cárdenas
- Department of Genetics, Rutgers University, Human Genetics Institute of New Jersey (HGINJ), 145 Bevier Road, Piscataway Township, NJ 08854, USA; Rutgers Cancer Institute of New Jersey (CINJ), 195 Little Albany Street, New Brunswick, NJ 08903, USA
| | - Veerin R Sirihorachai
- Department of Genetics, Rutgers University, Human Genetics Institute of New Jersey (HGINJ), 145 Bevier Road, Piscataway Township, NJ 08854, USA
| | - Bailey N Warder
- Department of Genetics, Rutgers University, Human Genetics Institute of New Jersey (HGINJ), 145 Bevier Road, Piscataway Township, NJ 08854, USA
| | - Om A Kothari
- Department of Genetics, Rutgers University, Human Genetics Institute of New Jersey (HGINJ), 145 Bevier Road, Piscataway Township, NJ 08854, USA
| | - Ansu O Perekatt
- Department of Genetics, Rutgers University, Human Genetics Institute of New Jersey (HGINJ), 145 Bevier Road, Piscataway Township, NJ 08854, USA; Rutgers Cancer Institute of New Jersey (CINJ), 195 Little Albany Street, New Brunswick, NJ 08903, USA
| | - Emily E Fokas
- Department of Genetics, Rutgers University, Human Genetics Institute of New Jersey (HGINJ), 145 Bevier Road, Piscataway Township, NJ 08854, USA
| | - Robert L Fullem
- Department of Genetics, Rutgers University, Human Genetics Institute of New Jersey (HGINJ), 145 Bevier Road, Piscataway Township, NJ 08854, USA
| | - Anbo Zhou
- Department of Genetics, Rutgers University, Human Genetics Institute of New Jersey (HGINJ), 145 Bevier Road, Piscataway Township, NJ 08854, USA
| | - Joshua K Thackray
- Department of Genetics, Rutgers University, Human Genetics Institute of New Jersey (HGINJ), 145 Bevier Road, Piscataway Township, NJ 08854, USA
| | - Hiep Tran
- Waksman Institute, Rutgers University, Piscataway, NJ 08854, USA
| | - Lanjing Zhang
- Rutgers Cancer Institute of New Jersey (CINJ), 195 Little Albany Street, New Brunswick, NJ 08903, USA; Department of Pathology, University Medical Center of Princeton, Plainsboro, NJ 08536, USA
| | - Jinchuan Xing
- Department of Genetics, Rutgers University, Human Genetics Institute of New Jersey (HGINJ), 145 Bevier Road, Piscataway Township, NJ 08854, USA
| | - Michael P Verzi
- Department of Genetics, Rutgers University, Human Genetics Institute of New Jersey (HGINJ), 145 Bevier Road, Piscataway Township, NJ 08854, USA; Rutgers Cancer Institute of New Jersey (CINJ), 195 Little Albany Street, New Brunswick, NJ 08903, USA.
| |
Collapse
|
31
|
Kabeya T, Qiu S, Hibino M, Nagasaki M, Kodama N, Iwao T, Matsunaga T. Cyclic AMP Signaling Promotes the Differentiation of Human Induced Pluripotent Stem Cells into Intestinal Epithelial Cells. Drug Metab Dispos 2018; 46:1411-1419. [PMID: 30068521 DOI: 10.1124/dmd.118.082123] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Accepted: 07/25/2018] [Indexed: 12/14/2022] Open
Abstract
To develop a novel in vitro system for predicting intestinal drug absorption using human induced pluripotent stem (iPS) cell-derived intestinal epithelial cells, the cells need to have sufficient drug-metabolizing enzyme and drug transporter activities. We found that cyclic adenosine monophosphate (cAMP) signaling plays an important role in the differentiation of human iPS cells into intestinal epithelial cells. In this study, we aimed to demonstrate the effects of signaling activation in the intestinal differentiation of human iPS cells and the pharmacokinetic characteristics of human iPS cell-derived intestinal epithelial cells. Human iPS cells were differentiated into intestinal stem cells using activin A and fibroblast growth factor 2. Subsequently, the intestinal stem cells were maturated into intestinal epithelial cells by treatment with 8-bromo-cyclic adenosine monophosphate (8-Br-cAMP) and 3-isobutyl-1-methylxanthine (IBMX), which activate cAMP signaling. The expression levels of intestinal markers and pharmacokinetics-related genes in the differentiated cells were markedly increased by using 8-Br-cAMP and IBMX. In the cells differentiated with the compound we observed cytochrome P450 (CYP) 3A4 inducibility via pregnane X receptor and vitamin D receptor. The metabolic activities of CYP2C9, CYP2C19, CYP2D6, CYP3A4/5, and UDP-glucuronosyltransferase, which are expressed in the human small intestine, were also markedly increased. Furthermore, uptake of glycylsarcosine via peptide transporter 1 was markedly increased. The cells differentiated with the compounds also had drug transporter activities via organic anion transporters and P-glycoprotein. This study is the first to report that the activation of cAMP signaling promotes differentiation of human iPS cell-derived intestinal epithelial cells.
Collapse
Affiliation(s)
- Tomoki Kabeya
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences (T.K., S.Q., N.K., T.I., T.M.) and Educational Research Center for Clinical Pharmacy, Faculty of Pharmaceutical Sciences (M.H., M.N., T.I., T.M.), Nagoya City University, Nagoya, Japan
| | - Shimeng Qiu
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences (T.K., S.Q., N.K., T.I., T.M.) and Educational Research Center for Clinical Pharmacy, Faculty of Pharmaceutical Sciences (M.H., M.N., T.I., T.M.), Nagoya City University, Nagoya, Japan
| | - Momona Hibino
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences (T.K., S.Q., N.K., T.I., T.M.) and Educational Research Center for Clinical Pharmacy, Faculty of Pharmaceutical Sciences (M.H., M.N., T.I., T.M.), Nagoya City University, Nagoya, Japan
| | - Mizuka Nagasaki
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences (T.K., S.Q., N.K., T.I., T.M.) and Educational Research Center for Clinical Pharmacy, Faculty of Pharmaceutical Sciences (M.H., M.N., T.I., T.M.), Nagoya City University, Nagoya, Japan
| | - Nao Kodama
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences (T.K., S.Q., N.K., T.I., T.M.) and Educational Research Center for Clinical Pharmacy, Faculty of Pharmaceutical Sciences (M.H., M.N., T.I., T.M.), Nagoya City University, Nagoya, Japan
| | - Takahiro Iwao
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences (T.K., S.Q., N.K., T.I., T.M.) and Educational Research Center for Clinical Pharmacy, Faculty of Pharmaceutical Sciences (M.H., M.N., T.I., T.M.), Nagoya City University, Nagoya, Japan
| | - Tamihide Matsunaga
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences (T.K., S.Q., N.K., T.I., T.M.) and Educational Research Center for Clinical Pharmacy, Faculty of Pharmaceutical Sciences (M.H., M.N., T.I., T.M.), Nagoya City University, Nagoya, Japan
| |
Collapse
|
32
|
Mubarokah N, Hulin JA, Mackenzie PI, McKinnon RA, Haines AZ, Hu DG, Meech R. Cooperative Regulation of Intestinal UDP-Glucuronosyltransferases 1A8, -1A9, and 1A10 by CDX2 and HNF4 α Is Mediated by a Novel Composite Regulatory Element. Mol Pharmacol 2018. [PMID: 29519853 DOI: 10.1124/mol.117.110619] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The gastrointestinal tract expresses several UDP-glucuronosyltransferases (UGTs) that act as a first line of defense against dietary toxins and contribute to the metabolism of orally administered drugs. The expression of UGT1A8, UGT1A9, and UGT1A10 in gastrointestinal tissues is known to be at least partly directed by the caudal homeodomain transcription factor, CDX2. We sought to further define the factors involved in regulation of the UGT1A8-1A10 genes and identified a novel composite element located within the proximal promoters of these three genes that binds to both CDX2 and the hepatocyte nuclear factor (HNF) 4α, and mediates synergistic activation by these factors. We also show that HNF4α and CDX2 are required for the expression of these UGT genes in colon cancer cell lines, and show robust correlation of UGT expression with CDX2 and HNF4α levels in normal human colon. Finally, we show that these factors are involved in the differential expression pattern of UGT1A8 and UGT1A10, which are intestinal specific, and that of UGT1A9, which is expressed in both intestine and liver. These studies lead to a model for the developmental patterning of UGT1A8, UGT1A9, and UGT1A10 in hepatic and/or extrahepatic tissues involving discrete regulatory modules that may function (independently and cooperatively) in a context-dependent manner.
Collapse
Affiliation(s)
- Nurul Mubarokah
- Discipline of Clinical Pharmacology (N.M., J.-A.H., P.I.M., R.A.M., A.Z.H., D.G.H., R.M.), and Flinders Centre for Innovation in Cancer (P.I.M., R.M., R.A.M., D.G.H.), College of Medicine and Public Health, Flinders University, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Julie-Ann Hulin
- Discipline of Clinical Pharmacology (N.M., J.-A.H., P.I.M., R.A.M., A.Z.H., D.G.H., R.M.), and Flinders Centre for Innovation in Cancer (P.I.M., R.M., R.A.M., D.G.H.), College of Medicine and Public Health, Flinders University, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Peter I Mackenzie
- Discipline of Clinical Pharmacology (N.M., J.-A.H., P.I.M., R.A.M., A.Z.H., D.G.H., R.M.), and Flinders Centre for Innovation in Cancer (P.I.M., R.M., R.A.M., D.G.H.), College of Medicine and Public Health, Flinders University, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Ross A McKinnon
- Discipline of Clinical Pharmacology (N.M., J.-A.H., P.I.M., R.A.M., A.Z.H., D.G.H., R.M.), and Flinders Centre for Innovation in Cancer (P.I.M., R.M., R.A.M., D.G.H.), College of Medicine and Public Health, Flinders University, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Alex Z Haines
- Discipline of Clinical Pharmacology (N.M., J.-A.H., P.I.M., R.A.M., A.Z.H., D.G.H., R.M.), and Flinders Centre for Innovation in Cancer (P.I.M., R.M., R.A.M., D.G.H.), College of Medicine and Public Health, Flinders University, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Dong Gui Hu
- Discipline of Clinical Pharmacology (N.M., J.-A.H., P.I.M., R.A.M., A.Z.H., D.G.H., R.M.), and Flinders Centre for Innovation in Cancer (P.I.M., R.M., R.A.M., D.G.H.), College of Medicine and Public Health, Flinders University, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Robyn Meech
- Discipline of Clinical Pharmacology (N.M., J.-A.H., P.I.M., R.A.M., A.Z.H., D.G.H., R.M.), and Flinders Centre for Innovation in Cancer (P.I.M., R.M., R.A.M., D.G.H.), College of Medicine and Public Health, Flinders University, Flinders Medical Centre, Bedford Park, South Australia, Australia
| |
Collapse
|
33
|
Senger S, Ingano L, Freire R, Anselmo A, Zhu W, Sadreyev R, Walker WA, Fasano A. Human Fetal-Derived Enterospheres Provide Insights on Intestinal Development and a Novel Model to Study Necrotizing Enterocolitis (NEC). Cell Mol Gastroenterol Hepatol 2018; 5:549-568. [PMID: 29930978 PMCID: PMC6009798 DOI: 10.1016/j.jcmgh.2018.01.014] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Accepted: 01/18/2018] [Indexed: 12/29/2022]
Abstract
BACKGROUND & AIMS Untreated necrotizing enterocolitis (NEC) can lead to massive inflammation resulting in intestinal necrosis with a high mortality rate in preterm infants. Limited access to human samples and relevant experimental models have hampered progress in NEC pathogenesis. Earlier evidence has suggested that bacterial colonization of an immature and developing intestine can lead to an abnormally high inflammatory response to bacterial bioproducts. The aim of our study was to use human fetal organoids to gain insights into NEC pathogenesis. METHODS RNA sequencing analysis was performed to compare patterns of gene expression in human fetal-derived enterospheres (FEnS) and adult-derived enterospheres (AEnS). Differentially expressed genes were analyzed using computational techniques for dimensional reduction, clustering, and gene set enrichment. Unsupervised cluster analysis, Gene Ontology, and gene pathway analysis were used to predict differences between gene expression of samples. Cell monolayers derived from FEnS and AEnS were evaluated for epithelium function and responsiveness to lipopolysaccharide and commensal bacteria. RESULTS Based on gene expression patterns, FEnS clustered according to their developmental age in 2 distinct groups: early and late FEnS, with the latter more closely resembling AEnS. Genes involved in maturation, gut barrier function, and innate immunity were responsible for these differences. FEnS-derived monolayers exposed to either lipopolysaccharide or commensal Escherichia coli showed that late FEnS activated gene expression of key inflammatory cytokines, whereas early FEnS monolayers did not, owing to decreased expression of nuclear factor-κB-associated machinery. CONCLUSIONS Our results provide insights into processes underlying human intestinal development and support the use of FEnS as a relevant human preclinical model for NEC. Accession number of repository for expression data: GSE101531.
Collapse
Key Words
- AD, adult duodenal
- AEnS, adult-derived enterospheres
- CLDN, claudin
- CXCL, chemokine (C-X-C motif) ligand
- DMEM, Dulbecco's modified Eagle medium
- EGF, epidermal growth factor
- Enteroids
- FDR, false discovery rate
- FEnS, fetal-derived enterospheres
- FITC, fluorescein isothiocyanate
- Fetal Organoids
- HIO, human intestinal organoid
- HS, Escherichia coli human commensal isolate
- IFN, interferon
- IL, interleukin
- LPS, lipopolysaccharide A
- MAMP, microbe-associated molecular pattern
- NEC, necrotizing enterocolitis
- NF-κB, nuclear factor-κB
- Necrotizing Enterocolitis
- PBS, phosphate-buffered saline
- PCR, polymerase chain reaction
- PGE2, prostaglandin E2
- RPKM, reads per kilobase of transcript per million
- RT-PCR, reverse-transcription polymerase chain reaction
- TEER, transepithelial electrical resistance
- TLR, Toll-like receptor
- TNF, tumor necrosis factor
- WAE, wound-associated epithelial cells
- ΔΔCT, relative threshold cycle
Collapse
Affiliation(s)
- Stefania Senger
- Department of Pediatrics, Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, Massachusetts,Harvard Medical School, Boston, Massachusetts
| | - Laura Ingano
- Department of Pediatrics, Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, Massachusetts
| | - Rachel Freire
- Department of Pediatrics, Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, Massachusetts
| | - Antony Anselmo
- Department of Molecular Biology, Cancer Center and Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Weishu Zhu
- Department of Pediatrics, Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, Massachusetts
| | - Ruslan Sadreyev
- Department of Molecular Biology, Cancer Center and Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - William Allan Walker
- Department of Pediatrics, Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, Massachusetts,Harvard Medical School, Boston, Massachusetts
| | - Alessio Fasano
- Department of Pediatrics, Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, Massachusetts,Harvard Medical School, Boston, Massachusetts,Correspondence Address correspondence to: Alessio Fasano, MD, Mucosal Immunology and Biology Research Center - MGHfC Harvard Medical School 114 16th Street (114-3501), Charlestown, Massachusetts 02129-4404. fax: (617) 724-1731.
| |
Collapse
|
34
|
Li XG, Xu GF, Zhai ZY, Gao CQ, Yan HC, Xi QY, Guan WT, Wang SB, Wang XQ. CDX2 increases SLC7A7 expression and proliferation of pig intestinal epithelial cells. Oncotarget 2017; 7:30597-609. [PMID: 27121315 PMCID: PMC5058704 DOI: 10.18632/oncotarget.8894] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 03/31/2016] [Indexed: 12/14/2022] Open
Abstract
Nutrient absorption mediated by nutrient transporters expressed in the intestinal epithelium supplies substrates to support intestinal processes, including epithelial cell proliferation. We evaluated the role of Caudal type homeobox 2 (CDX2), an intestine-specific transcription factor, in the proliferation of pig intestinal epithelial cells (IPEC-1) and searched for novel intestinal nutrient transporter genes activated by CDX2. Our cloned pig CDX2 cDNA contains a “homeobox” DNA binding motif, suggesting it is a transcriptional activator. CDX2 overexpression in IPEC-1 cells increased cell proliferation, the percentage of cells in S/G2 phase, and the abundance of transcripts of the cell cycle-related genes Cyclin A2; Cyclin B; Cyclin D2; proliferating cell nuclear antigen; and cell cycle cyclin-dependent kinases 1, 2 and 4, as well as the predicted CDX2 target genes SLC1A1, SLC5A1 and SLC7A7. In addition, luciferase reporter and chromatin immunoprecipitation assays revealed that CDX2 binds directly to the SLC7A7 promoter. This is the first report of CDX2 function in pig intestinal epithelial cells and identifies SLC7A7 as a novel CDX2 target gene. Our findings show that nutrient transporters are activated during CDX2-induced proliferation of normal intestinal epithelial cells.
Collapse
Affiliation(s)
- Xiang-Guang Li
- College of Animal Science, South China Agricultural University/National Engineering Research Center for Breeding Swine Industry, Guangzhou 510642, China
| | - Gao-Feng Xu
- College of Animal Science, South China Agricultural University/National Engineering Research Center for Breeding Swine Industry, Guangzhou 510642, China
| | - Zhen-Ya Zhai
- College of Animal Science, South China Agricultural University/National Engineering Research Center for Breeding Swine Industry, Guangzhou 510642, China
| | - Chun-Qi Gao
- College of Animal Science, South China Agricultural University/National Engineering Research Center for Breeding Swine Industry, Guangzhou 510642, China
| | - Hui-Chao Yan
- College of Animal Science, South China Agricultural University/National Engineering Research Center for Breeding Swine Industry, Guangzhou 510642, China
| | - Qian-Yun Xi
- College of Animal Science, South China Agricultural University/National Engineering Research Center for Breeding Swine Industry, Guangzhou 510642, China
| | - Wu-Tai Guan
- College of Animal Science, South China Agricultural University/National Engineering Research Center for Breeding Swine Industry, Guangzhou 510642, China
| | - Song-Bo Wang
- College of Animal Science, South China Agricultural University/National Engineering Research Center for Breeding Swine Industry, Guangzhou 510642, China
| | - Xiu-Qi Wang
- College of Animal Science, South China Agricultural University/National Engineering Research Center for Breeding Swine Industry, Guangzhou 510642, China
| |
Collapse
|
35
|
Jägle S, Busch H, Freihen V, Beyes S, Schrempp M, Boerries M, Hecht A. SNAIL1-mediated downregulation of FOXA proteins facilitates the inactivation of transcriptional enhancer elements at key epithelial genes in colorectal cancer cells. PLoS Genet 2017; 13:e1007109. [PMID: 29155818 PMCID: PMC5714381 DOI: 10.1371/journal.pgen.1007109] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 12/04/2017] [Accepted: 11/08/2017] [Indexed: 01/04/2023] Open
Abstract
Phenotypic conversion of tumor cells through epithelial-mesenchymal transition (EMT) requires massive gene expression changes. How these are brought about is not clear. Here we examined the impact of the EMT master regulator SNAIL1 on the FOXA family of transcription factors which are distinguished by their particular competence to induce chromatin reorganization for the activation of transcriptional enhancer elements. We show that the expression of SNAIL1 and FOXA genes is anticorrelated in transcriptomes of colorectal tumors and cell lines. In cellular EMT models, ectopically expressed Snail1 directly represses FOXA1 and triggers downregulation of all FOXA family members, suggesting that loss of FOXA expression promotes EMT. Indeed, cells with CRISPR/Cas9-induced FOXA-deficiency acquire mesenchymal characteristics. Furthermore, ChIP-seq data analysis of FOXA chromosomal distribution in relation to chromatin structural features which characterize distinct states of transcriptional activity, revealed preferential localization of FOXA factors to transcriptional enhancers at signature genes that distinguish epithelial from mesenchymal colon tumors. To validate the significance of this association, we investigated the impact of FOXA factors on structure and function of enhancers at the CDH1, CDX2 and EPHB3 genes. FOXA-deficiency and expression of dominant negative FOXA2 led to chromatin condensation at these enhancer elements. Site-directed mutagenesis of FOXA binding sites in reporter gene constructs and by genome-editing in situ impaired enhancer activity and completely abolished the active chromatin state of the EPHB3 enhancer. Conversely, expression of FOXA factors in cells with inactive CDX2 and EPHB3 enhancers led to chromatin opening and de novo deposition of the H3K4me1 and H3K27ac marks. These findings establish the pioneer function of FOXA factors at enhancer regions of epithelial genes and demonstrate their essential role in maintaining enhancer structure and function. Thus, by repressing FOXA family members, SNAIL1 targets transcription factors at strategically important positions in gene-regulatory hierarchies, which may facilitate transcriptional reprogramming during EMT. Cancer patient mortality is overwhelmingly due to distant organ metastases. Epithelial-mesenchymal transition is a process thought to facilitate local invasion and dissemination of cancer cells, thereby promoting metastasis. The conversion of epithelial cells into mesenchymal, fibroblast-like cells requires profound gene expression changes. A few transcription factors like SNAIL1 can initiate these changes, but are unlikely to be solely responsible for all of them. In our study we asked, whether destabilization of epithelial gene expression programs could involve FOXA transcription factors. FOXA factors represent a special subgroup of regulatory proteins, so-called pioneer factors, with unique roles in the activation of transcriptional enhancers which are key regulatory DNA elements that orchestrate spatio-temporal gene expression. In a model of colorectal cancer we found that SNAIL1 represses FOXA factors, and demonstrate that FOXA factors are associated with enhancer elements at epithelial signature genes. Indeed, FOXA factors are sufficient to initiate enhancer activation and necessary to maintain their activity. Our findings indicate that SNAIL1 induces pervasive repression of epithelial genes through a hierarchical scheme of alterations in transcription factor expression which may be applicable to other instances of cell fate changes and transcriptional reprogramming.
Collapse
Affiliation(s)
- Sabine Jägle
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Hauke Busch
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), Freiburg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Institute of Experimental Dermatology and Institute of Cardiogenetics, University of Lübeck, Lübeck, Germany
| | - Vivien Freihen
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Sven Beyes
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Monika Schrempp
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Melanie Boerries
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), Freiburg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Andreas Hecht
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
- * E-mail:
| |
Collapse
|
36
|
Sun X, Zhu MJ. AMP-activated protein kinase: a therapeutic target in intestinal diseases. Open Biol 2017; 7:170104. [PMID: 28835570 PMCID: PMC5577448 DOI: 10.1098/rsob.170104] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 07/25/2017] [Indexed: 02/07/2023] Open
Abstract
Adenosine monophosphate (AMP)-activated protein kinase (AMPK), a highly conserved energy sensor, has a crucial role in cardiovascular, neurodegenerative and inflammatory diseases, as well as in cancer and metabolic disorders. Accumulating studies have demonstrated that AMPK activation enhances paracellular junctions, nutrient transporters, autophagy and apoptosis, and suppresses inflammation and carcinogenesis in the intestine, indicating an essential role of AMPK in intestinal health. AMPK inactivation is an aetiological factor in intestinal dysfunctions. This review summarizes the favourable outcomes of AMPK activation on intestinal health, and discusses AMPK as a potential therapeutic target for intestinal diseases.
Collapse
Affiliation(s)
- Xiaofei Sun
- School of Food Science, Washington State University, Pullman, WA 99164, USA
- School of Food Science, University of Idaho, Moscow, ID 83844, USA
| | - Mei-Jun Zhu
- School of Food Science, Washington State University, Pullman, WA 99164, USA
- School of Food Science, University of Idaho, Moscow, ID 83844, USA
| |
Collapse
|
37
|
Antagonistic Interactions between Extracellular Signal-Regulated Kinase Mitogen-Activated Protein Kinase and Retinoic Acid Receptor Signaling in Colorectal Cancer Cells. Mol Cell Biol 2017; 37:MCB.00012-17. [PMID: 28483913 DOI: 10.1128/mcb.00012-17] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 05/02/2017] [Indexed: 01/08/2023] Open
Abstract
Deregulated activation of RAS/extracellular signal-regulated kinase (ERK) signaling and defects in retinoic acid receptor (RAR) signaling are both implicated in many types of cancers. However, interrelationships between these alterations in regulating cancer cell fates have not been fully elucidated. Here, we show that RAS/ERK and RAR signaling pathways antagonistically interact with each other to regulate colorectal cancer (CRC) cell fates. We show that RAR signaling activation promotes spontaneous differentiation of CRC cells, while ERK activation suppresses it. Our microarray analyses identify genes whose expression levels are upregulated by RAR signaling. Notably, one of these genes, MKP4, encoding a member of dual-specificity phosphatases for mitogen-activated protein (MAP) kinases, mediates ERK inactivation upon RAR activation, thereby promoting the differentiation of CRC cells. Moreover, our results also show that RA induction of RAR target genes is suppressed by the ERK pathway activation. This suppression results from the inhibition of RAR transcriptional activity, which is shown to be mediated through an RIP140/histone deacetylase (HDAC)-mediated mechanism. These results identify antagonistic interactions between RAS/ERK and RAR signaling in the cell fate decision of CRC cells and define their underlying molecular mechanisms.
Collapse
|
38
|
Shen Z, Kang J, Shakya A, Tabaka M, Jarboe EA, Regev A, Tantin D. Enforcement of developmental lineage specificity by transcription factor Oct1. eLife 2017; 6:20937. [PMID: 28537559 PMCID: PMC5466424 DOI: 10.7554/elife.20937] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 05/23/2017] [Indexed: 12/26/2022] Open
Abstract
Embryonic stem cells co-express Oct4 and Oct1, a related protein with similar DNA-binding specificity. To study the role of Oct1 in ESC pluripotency and transcriptional control, we constructed germline and inducible-conditional Oct1-deficient ESC lines. ESCs lacking Oct1 show normal appearance, self-renewal and growth but manifest defects upon differentiation. They fail to form beating cardiomyocytes, generate neurons poorly, form small, poorly differentiated teratomas, and cannot generate chimeric mice. Upon RA-mediated differentiation, Oct1-deficient cells induce lineage-appropriate developmentally poised genes poorly while lineage-inappropriate genes, including extra-embryonic genes, are aberrantly expressed. In ESCs, Oct1 co-occupies a specific set of targets with Oct4, but does not occupy differentially expressed developmental targets. Instead, Oct1 occupies these targets as cells differentiate and Oct4 declines. These results identify a dynamic interplay between Oct1 and Oct4, in particular during the critical window immediately after loss of pluripotency when cells make the earliest developmental fate decisions. DOI:http://dx.doi.org/10.7554/eLife.20937.001 Humans and most other animals are composed of hundreds of different types of cell, including nerve cells, muscle cells and blood cells. Despite performing many different roles, these cells all develop from a single fertilized egg, which divides to make a particular group of cells that when studied in the laboratory are called embryonic stem cells (or ESCs for short). The ability of a cell to become a different cell type is defined as “potency”. ESCs are unique because they can specialize into any type of cell present in the adult organism, and they are therefore called “pluripotent”. However, as the embryo develops, its ESCs gradually lose their potency, and become more and more specialized. The activity of a great number of genes must be regulated during the transition from pluripotent to specialized cells, and some of the mechanisms involved in this transition are still unclear. ESCs are known to need a gene-regulating protein called Oct4 to remain pluripotent and Shen, Kang, Shakya et al. now show that a similar protein named Oct1 is essential for their transition to becoming more specialized. When the gene for Oct1 was deleted from mouse ECSs, they behaved largely like “normal” ESCs, but could not properly mature into certain cell types such as heart and nerve cells. Molecular analyses revealed that Oct4 and Oct1 compete to regulate the activity of many common genes with opposing outcomes: Oct4 keeps ESCs pluripotent while Oct1 leads them to specialize. The Oct4 protein is abundant in ESCs and prevails over Oct1, but as the cells mature, the levels of Oct4 drop, and Oct1 takes over in the regulation of their common target genes. Going forward, a better understanding of how ESCs become specialized will help basic research in the laboratory and allow scientists to tackle new questions about how the human body develops and how our organs work. In the longer-term, these findings might also have applications in the field of regenerative medicine, which aims to repair or replace a person’s cells, tissues or organs to improve their health. DOI:http://dx.doi.org/10.7554/eLife.20937.002
Collapse
Affiliation(s)
- Zuolian Shen
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, United States
| | - Jinsuk Kang
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, United States
| | - Arvind Shakya
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, United States
| | - Marcin Tabaka
- The Broad Institute of MIT and Harvard, Cambridge, United States
| | - Elke A Jarboe
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, United States
| | - Aviv Regev
- The Broad Institute of MIT and Harvard, Cambridge, United States.,Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, United States
| | - Dean Tantin
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, United States
| |
Collapse
|
39
|
Bile Acid Administration Elicits an Intestinal Antimicrobial Program and Reduces the Bacterial Burden in Two Mouse Models of Enteric Infection. Infect Immun 2017; 85:IAI.00942-16. [PMID: 28348052 DOI: 10.1128/iai.00942-16] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 03/20/2017] [Indexed: 12/18/2022] Open
Abstract
In addition to their chemical antimicrobial nature, bile acids are thought to have other functions in the homeostatic control of gastrointestinal immunity. However, those functions have remained largely undefined. In this work, we used ileal explants and mouse models of bile acid administration to investigate the role of bile acids in the regulation of the intestinal antimicrobial response. Mice fed on a diet supplemented with 0.1% chenodeoxycholic acid (CDCA) showed an upregulated expression of Paneth cell α-defensins as well as an increased synthesis of the type-C lectins Reg3b and Reg3g by the ileal epithelium. CDCA acted on several epithelial cell types, by a mechanism independent from farnesoid X receptor (FXR) and not involving STAT3 or β-catenin activation. CDCA feeding did not change the relative abundance of major commensal bacterial groups of the ileum, as shown by 16S analyses. However, administration of CDCA increased the expression of ileal Muc2 and induced a change in the composition of the mucosal immune cell repertoire, decreasing the proportion of Ly6G+ and CD68+ cells, while increasing the relative amount of IgGκ+ B cells. Oral administration of CDCA to mice attenuated infections with the bile-resistant pathogens Salmonella enterica serovar Typhimurium and Citrobacter rodentium, promoting lower systemic colonization and faster bacteria clearance, respectively. Our results demonstrate that bile acid signaling in the ileum triggers an antimicrobial program that can be potentially used as a therapeutic option against intestinal bacterial infections.
Collapse
|
40
|
Acosta AM, Wiley EL. Primary Biliary Mixed Adenoneuroendocrine Carcinoma (MANEC): A Short Review. Arch Pathol Lab Med 2017; 140:1157-62. [PMID: 27684986 DOI: 10.5858/arpa.2015-0102-rs] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mixed adenoneuroendocrine carcinomas (MANECs) are composite neoplasms with areas of adenocarcinoma or squamous cell carcinoma intermingled with neuroendocrine carcinoma or neuroendocrine tumor, each composing at least 30% of the neoplasm. MANECs are very infrequent overall, and they are more commonly diagnosed in the appendix, colon, and stomach. Biliary MANECs are particularly rare, and their histogenesis is debated because neuroendocrine cells are seldom identified in the normal biliary tract. They can show one of the 3 different architectural patterns described in Lewin's original classification: collision tumors, combined lesions, or amphicrine neoplasms. The neuroendocrine component is usually of a high grade, with small or large cell cytomorphology, whereas the adenocarcinoma component is either an intestinal or biliary type. Clinical presentation is characterized by locally advanced disease at the time of initial diagnosis. Recent studies suggest that treatment should be guided by the most aggressive histologic component.
Collapse
Affiliation(s)
- Andres M Acosta
- From the Department of Pathology, University of Illinois at Chicago Hospital and Health Sciences System
| | | |
Collapse
|
41
|
Fattahi S, Pilehchian Langroudi M, Samadani AA, Nikbakhsh N, Asouri M, Akhavan-Niaki H. Application of unique sequence index (USI) barcode to gene expression profiling in gastric adenocarcinoma. J Cell Commun Signal 2017; 11:97-104. [PMID: 28120184 DOI: 10.1007/s12079-017-0376-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 01/10/2017] [Indexed: 01/15/2023] Open
Abstract
Accurate expression profiling is imperative for understanding the biological roles of mRNAs. Real-time PCR have been at the forefront of biological innovation in detection and monitoring of gene expression, however, fluorophore-labeled oligonucleotides and double-stranded DNA binding dyes, the two most frequently used dyes in RNA detection, are not very cost effective and have poor specificity, respectively. We have developed a cost effective and specific approach for mRNA expression profiling via added unique sequence index (USI) to cDNAs before amplification. USI is a barcode which enable the detection of each target RNA. Using this method, caudal type homeobox 1 (CDX1) and FAT atypical cadherin 4 (FAT4) expressions were investigated in tumoral and non-tumoral tissues of gastric cancer patients and compared with commercial ABI kit. Both methods indicated that FAT4 and CDX1 expression were significantly reduced in gastric cancer tissues compared with adjacent noncancerous tissues. Moreover, we have shown that this assay is highly sensitive, linear and reproducible. USI barcode not only provides a powerful tool for mRNA detection due to its sensitivity, specificity and cost-effectiveness, but also allows comfortable design for real-time qPCR assays within the least time and empowers the analysis of many transcripts of virtually any organism. Furthermore, USI barcode is highly affordable for large numbers of different samples or small sample sizes without microarray and expensive commercial platforms.
Collapse
Affiliation(s)
- Sadegh Fattahi
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.,North Research Center-Pasteur Institute of Iran, Amol, Iran
| | | | | | - Novin Nikbakhsh
- Department of Surgery, Rouhani hospital, Babol University of Medical Sciences, Babol, Iran
| | - Mohsen Asouri
- North Research Center-Pasteur Institute of Iran, Amol, Iran
| | - Haleh Akhavan-Niaki
- North Research Center-Pasteur Institute of Iran, Amol, Iran. .,Department of Genetics, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran.
| |
Collapse
|
42
|
Wang PY, Wang SR, Xiao L, Chen J, Wang JY, Rao JN. c-Jun enhances intestinal epithelial restitution after wounding by increasing phospholipase C-γ1 transcription. Am J Physiol Cell Physiol 2017; 312:C367-C375. [PMID: 28100486 DOI: 10.1152/ajpcell.00330.2016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 01/10/2017] [Accepted: 01/10/2017] [Indexed: 01/06/2023]
Abstract
c-Jun is an activating protein 1 (AP-1) transcription factor and implicated in many aspects of cellular functions, but its exact role in the regulation of early intestinal epithelial restitution after injury remains largely unknown. Phospholipase C-γ1 (PLCγ1) catalyzes hydrolysis of phosphatidylinositol 4,5 biphosphate into the second messenger diacylglycerol and inositol 1,4,5 triphosphate, coordinates Ca2+ store mobilization, and regulates cell migration and proliferation in response to stress. Here we reported that c-Jun upregulates PLCγ1 expression and enhances PLCγ1-induced Ca2+ signaling, thus promoting intestinal epithelial restitution after wounding. Ectopically expressed c-Jun increased PLCγ1 expression at the transcription level, and this stimulation is mediated by directly interacting with AP-1 and CCAAT-enhancer-binding protein (C/EBP) binding sites that are located at the proximal region of the rat PLCγ1 promoter. Increased levels of PLCγ1 by c-Jun elevated cytosolic free Ca2+ concentration and stimulated intestinal epithelial cell migration over the denuded area after wounding. The c-Jun-mediated PLCγ1/Ca2+ signal also plays an important role in polyamine-induced cell migration after wounding because increased c-Jun rescued Ca2+ influx and cell migration in polyamine-deficient cells. These findings indicate that c-Jun induces PLCγ1 expression transcriptionally and enhances rapid epithelial restitution after injury by activating Ca2+ signal.
Collapse
Affiliation(s)
- Peng-Yuan Wang
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland.,Baltimore Veterans Affairs Medical Center, Baltimore, Maryland
| | - Shelley R Wang
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland.,Baltimore Veterans Affairs Medical Center, Baltimore, Maryland
| | - Lan Xiao
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland.,Baltimore Veterans Affairs Medical Center, Baltimore, Maryland
| | - Jie Chen
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland.,Baltimore Veterans Affairs Medical Center, Baltimore, Maryland
| | - Jian-Ying Wang
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland.,Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland; and.,Baltimore Veterans Affairs Medical Center, Baltimore, Maryland
| | - Jaladanki N Rao
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland; .,Baltimore Veterans Affairs Medical Center, Baltimore, Maryland
| |
Collapse
|
43
|
Shah SS, Wu TT, Torbenson MS, Chandan VS. Aberrant CDX2 expression in hepatocellular carcinomas: an important diagnostic pitfall. Hum Pathol 2017; 64:13-18. [PMID: 28089540 DOI: 10.1016/j.humpath.2016.12.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 12/17/2016] [Accepted: 12/28/2016] [Indexed: 02/08/2023]
Abstract
CDX2 is a sensitive and specific marker of intestinal differentiation. It is routinely used in surgical pathology, as its expression within a tumor favors an origin within the gastrointestinal tract. We had anecdotally encountered occasional hepatocellular carcinomas (HCCs) that were CDX2 positive. CDX2 expression in HCC has not yet been reported, but it has also not been examined in detail. Therefore, we evaluated CDX2 expression in a large number of resected HCCs. Full tumor sections from 172 resected HCCs and 6 resected fibrolamellar carcinomas (FLCs) were stained for CDX2. Nine (5.2%) of 172 HCCs were positive for CDX2, whereas all 6 FLCs were negative. CDX2 expression in HCCs was more commonly seen in poorly differentiated tumors (5 of 16 cases, 31%) than well and moderately differentiated tumors (4 of 156 cases, 2.5%), P = .0004. No other statistically significant correlations were observed (P>.05). Results of our study show that a small subset (5%) of HCCs can be CDX2 positive. Awareness of this phenomenon is important because CDX2 expression in a liver tumor does not completely exclude a diagnosis of HCC.
Collapse
Affiliation(s)
- Sejal S Shah
- Division of Anatomic Pathology, Mayo Clinic, Rochester, MN 55905
| | - Tsung-Teh Wu
- Division of Anatomic Pathology, Mayo Clinic, Rochester, MN 55905
| | | | - Vishal S Chandan
- Division of Anatomic Pathology, Mayo Clinic, Rochester, MN 55905.
| |
Collapse
|
44
|
High resolution methylation analysis of the HoxA5 regulatory region in different somatic tissues of laboratory mouse during development. Gene Expr Patterns 2017; 23-24:59-69. [DOI: 10.1016/j.gep.2017.03.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 02/02/2017] [Accepted: 03/26/2017] [Indexed: 11/18/2022]
|
45
|
Okada H, Uchida Y, Matsuzaki N, Goto T, Nishimura S, Kurita A, Nishimura T, Yazumi S, Terajima H. A case of neuroendocrine carcinoma in the hepatic hilar lymph nodes concomitant with an adenocarcinoma of the gallbladder. World J Surg Oncol 2016; 14:284. [PMID: 27842605 PMCID: PMC5109806 DOI: 10.1186/s12957-016-1039-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 11/04/2016] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Neuroendocrine tumors (NETs) are rare especially in the gallbladder. They have not been elucidated in the pathogenesis, clinicopathological characteristics, and treatment options. CASE PRESENTATION We present a 76-year-old woman with a gallbladder tumor and hepatic hilar lymph node swelling. The lymph node biopsy demonstrated neuroendocrine carcinoma (NEC). We performed cholecystectomy, hepatic hilar lymphadenectomy, extrahepatic biliary duct resection, and hepaticojejunostomy prior to chemotherapy. Pathological examination revealed the gallbladder mass was an adenocarcinoma invading to the muscular layer without any NEC components, whereas the hepatic hilar lymph nodes were filled with high-grade NEC cells with negligible area of adenocarcinoma. The patient received general chemotherapy consisting of carboplatin and etoposide, but a recurrence in the para-aortic lymph nodes occurred 4 months after surgery. CONCLUSIONS We report a rare case of NEC of the hepatic hilar lymph nodes that were concomitant with an adenocarcinoma of the gallbladder. High-grade NEC generally has an aggressive behavior and an optimal treatment strategy should be chosen for each patient.
Collapse
Affiliation(s)
- Haruka Okada
- Department of Gastroenterological Surgery and Oncology, The Tazuke Kofukai Medical Research Institute, Kitano Hospital, 2-4-20 Ohgimachi, kita-ku, Osaka City, Osaka, 530-8480, Japan.,Present Address: Department of Surgery, National Hospital Organization Kyoto Medical Center, 1-1, Fukakusamukaihatacho, Fushimi-ku, Kyoto City, Kyoto, 612-8555, Japan
| | - Yoichiro Uchida
- Department of Gastroenterological Surgery and Oncology, The Tazuke Kofukai Medical Research Institute, Kitano Hospital, 2-4-20 Ohgimachi, kita-ku, Osaka City, Osaka, 530-8480, Japan.
| | - Naomi Matsuzaki
- Department of Pathology, The Tazuke Kofukai Medical Research Institute, Kitano Hospital, Osaka, Japan
| | - Toru Goto
- Department of Gastroenterological Surgery and Oncology, The Tazuke Kofukai Medical Research Institute, Kitano Hospital, 2-4-20 Ohgimachi, kita-ku, Osaka City, Osaka, 530-8480, Japan
| | - Satoshi Nishimura
- Department of Gastroenterology and Hepatology, The Tazuke Kofukai Medical Research Institute, Kitano Hospital, Osaka, Japan
| | - Akira Kurita
- Department of Gastroenterology and Hepatology, The Tazuke Kofukai Medical Research Institute, Kitano Hospital, Osaka, Japan
| | - Takafumi Nishimura
- Department of Medical Oncology, The Tazuke Kofukai Medical Research Institute, Kitano Hospital, Osaka, Japan
| | - Shujiro Yazumi
- Department of Gastroenterology and Hepatology, The Tazuke Kofukai Medical Research Institute, Kitano Hospital, Osaka, Japan
| | - Hiroaki Terajima
- Department of Gastroenterological Surgery and Oncology, The Tazuke Kofukai Medical Research Institute, Kitano Hospital, 2-4-20 Ohgimachi, kita-ku, Osaka City, Osaka, 530-8480, Japan
| |
Collapse
|
46
|
Gata4 is critical to maintain gut barrier function and mucosal integrity following epithelial injury. Sci Rep 2016; 6:36776. [PMID: 27827449 PMCID: PMC5101531 DOI: 10.1038/srep36776] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 10/20/2016] [Indexed: 12/24/2022] Open
Abstract
The intestinal epithelial barrier is critical to limit potential harmful consequences from exposure to deleterious luminal contents on the organism. Although this barrier is functionally important along the entire gut, specific regional regulatory mechanisms involved in the maintenance of this barrier are poorly defined. Herein, we identified Gata4 as a crucial regulator of barrier integrity in the mouse proximal intestinal epithelium. Conditional deletion of Gata4 in the intestine led to a drastic increase in claudin-2 expression that was associated with an important increase of gut barrier permeability without causing overt spontaneous inflammation. Administration of indomethacin, a non-steroidal anti-inflammatory drug (NSAID) that causes enteritis, led to rapid and restricted proximal small intestinal injuries in Gata4 mutant mice as opposed to control mice. Comparative analysis of gene transcript profiles from indomethacin-challenged control and Gata4 mutant mice identified defects in epithelial cell survival, inflammatory cell recruitment and tissue repair mechanisms. Altogether, these observations identify Gata4 as a novel crucial regulator of the intestinal epithelial barrier and as a critical epithelial transcription factor implicated in the maintenance of proximal intestinal mucosal integrity after injury.
Collapse
|
47
|
Hansraj NZ, Xiao L, Wu J, Chen G, Turner DJ, Wang JY, Rao JN. Posttranscriptional regulation of 14-3-3ζ by RNA-binding protein HuR modulating intestinal epithelial restitution after wounding. Physiol Rep 2016; 4:4/13/e12858. [PMID: 27401462 PMCID: PMC4945840 DOI: 10.14814/phy2.12858] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 06/18/2016] [Indexed: 12/14/2022] Open
Abstract
The 14‐3‐3ζ is a member of the family of 14‐3‐3 proteins and participates in many aspects of cellular processes, but its regulation and involvement in gut mucosal homeostasis remain unknown. Here, we report that 14‐3‐3ζ expression is tightly regulated at the posttranscription level by RNA‐binding protein HuR and plays an important role in early intestinal epithelial restitution after wounding. The 14‐3‐3ζ was highly expressed in the mucosa of gastrointestinal tract and in cultured intestinal epithelial cells (IECs). The 3′ untranslated region (UTR) of the 14‐3‐3ζ mRNA was bound to HuR, and this association enhanced 14‐3‐3ζ translation without effect on its mRNA content. Conditional target deletion of HuR in IECs decreased the level of 14‐3‐3ζ protein in the intestinal mucosa. Silencing 14‐3‐3ζ by transfection with specific siRNA targeting the 14‐3‐3ζ mRNA suppressed intestinal epithelial restitution as indicated by a decrease in IEC migration after wounding, whereas ectopic overexpression of the wild‐type 14‐3‐3ζ promoted cell migration. These results indicate that HuR induces 14‐3‐3ζ translation via interaction with its 3′ UTR and that 14‐3‐3ζ is necessary for stimulation of IEC migration after wounding.
Collapse
Affiliation(s)
- Natasha Z Hansraj
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Lan Xiao
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland Baltimore Veterans Affairs Medical Center, Baltimore, Maryland
| | - Jing Wu
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Gang Chen
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Douglas J Turner
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland Baltimore Veterans Affairs Medical Center, Baltimore, Maryland
| | - Jian-Ying Wang
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland Baltimore Veterans Affairs Medical Center, Baltimore, Maryland Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Jaladanki N Rao
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland Baltimore Veterans Affairs Medical Center, Baltimore, Maryland
| |
Collapse
|
48
|
Roy SAB, Allaire JM, Ouellet C, Maloum-Rami F, Pomerleau V, Lemieux É, Babeu JP, Rousseau J, Paquet M, Garde-Granger P, Boudreau F, Perreault N. Loss of mesenchymal bone morphogenetic protein signaling leads to development of reactive stroma and initiation of the gastric neoplastic cascade. Sci Rep 2016; 6:32759. [PMID: 27609464 PMCID: PMC5016723 DOI: 10.1038/srep32759] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 08/02/2016] [Indexed: 02/07/2023] Open
Abstract
Bmps are morphogens involved in various gastric cellular functions. Studies in genetically-modified mice have shown that Bmp disruption in gastric epithelial and stromal cell compartments leads to the development of tumorigenesis. Our studies have demonstrated that abrogation of gastric epithelial Bmp signaling alone was not sufficient to recapitulate the neoplastic features associated with total gastric loss of Bmp signaling. Thus, epithelial Bmp signaling does not appear to be a key player in gastric tumorigenesis initiation. These observations suggest a greater role for stromal Bmp signaling in gastric polyposis initiation. In order to identify the specific roles played by mesenchymal Bmp signaling in gastric homeostasis, we generated a mouse model with abrogation of Bmp signaling exclusively in the gastro-intestinal mesenchyme (Bmpr1aΔMES). We were able to expose an unsuspected role for Bmp loss of signaling in leading normal gastric mesenchyme to adapt into reactive mesenchyme. An increase in the population of activated-fibroblasts, suggesting mesenchymal transdifferentiation, was observed in mutant stomach. Bmpr1aΔMES stomachs exhibited spontaneous benign polyps with presence of both intestinal metaplasia and spasmolytic-polypeptide-expressing metaplasia as early as 90 days postnatal. These results support the novel concept that loss of mesenchymal Bmp signaling cascade acts as a trigger in gastric polyposis initiation.
Collapse
Affiliation(s)
- Sébastien A B Roy
- Département d'Anatomie et Biologie Cellulaire, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Joannie M Allaire
- Département d'Anatomie et Biologie Cellulaire, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Camille Ouellet
- Département d'Anatomie et Biologie Cellulaire, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Faiza Maloum-Rami
- Département d'Anatomie et Biologie Cellulaire, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Véronique Pomerleau
- Département d'Anatomie et Biologie Cellulaire, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Étienne Lemieux
- Département d'Anatomie et Biologie Cellulaire, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Jean-Philippe Babeu
- Département d'Anatomie et Biologie Cellulaire, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Jasmin Rousseau
- Département d'Anatomie et Biologie Cellulaire, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Marilène Paquet
- Département de pathologie et de microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, St-Hyacinthe, QC, Canada
| | - Perrine Garde-Granger
- Département de Pathologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - François Boudreau
- Département d'Anatomie et Biologie Cellulaire, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Nathalie Perreault
- Département d'Anatomie et Biologie Cellulaire, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
49
|
Lundberg IV, Edin S, Eklöf V, Öberg Å, Palmqvist R, Wikberg ML. SOX2 expression is associated with a cancer stem cell state and down-regulation of CDX2 in colorectal cancer. BMC Cancer 2016; 16:471. [PMID: 27411517 PMCID: PMC4944515 DOI: 10.1186/s12885-016-2509-5] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 06/16/2016] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND To improve current treatment strategies for patients with aggressive colorectal cancer (CRC), the molecular understanding of subgroups of CRC with poor prognosis is of vast importance. SOX2 positive tumors have been associated with a poor patient outcome, but the functional role of SOX2 in CRC patient prognosis is still unclear. METHODS An in vitro cell culture model expressing SOX2 was used to investigate the functional role of SOX2 in CRC. In vitro findings were verified using RNA from fresh frozen tumor tissue or immunohistochemistry on formalin fixed paraffin embedded (FFPE) tumor tissue from a cohort of 445 CRC patients. RESULTS Using our in vitro model, we found that SOX2 expressing cells displayed several characteristics of cancer stem cells; such as a decreased proliferative rate, a spheroid growth pattern, and increased expression of stem cell markers CD24 and CD44. Cells expressing SOX2 also showed down-regulated expression of the intestinal epithelial marker CDX2. We next evaluated CDX2 expression in our patient cohort. CDX2 down-regulation was more often found in right sided tumors of high grade and high stage. Furthermore, a decreased expression of CDX2 was closely linked to MSI, CIMP-high as well as BRAF mutated tumors. A decreased expression of CDX2 was also, in a stepwise manner, strongly correlated to a poor patient prognosis. When looking at SOX2 expression in relation to CDX2, we found that SOX2 expressing tumors more often displayed a down-regulated expression of CDX2. In addition, SOX2 expressing tumors with a down-regulated CDX2 expression had a worse patient prognosis compared to those with retained CDX2 expression. CONCLUSIONS Our results indicate that SOX2 expression induces a cellular stem cell state in human CRC with a decreased expression of CDX2. Furthermore, a down-regulated expression of CDX2 results in a poor patient prognosis in CRC and at least part of the prognostic importance of SOX2 is mediated through CDX2 down-regulation.
Collapse
Affiliation(s)
- Ida V Lundberg
- Department of Medical Biosciences, Pathology, Umeå University, Building 6M, SE-90185, Umeå, Sweden
| | - Sofia Edin
- Department of Medical Biosciences, Pathology, Umeå University, Building 6M, SE-90185, Umeå, Sweden.
| | - Vincy Eklöf
- Department of Medical Biosciences, Pathology, Umeå University, Building 6M, SE-90185, Umeå, Sweden
| | - Åke Öberg
- Department of Surgical and Perioperative Sciences, Surgery, Umeå University, Umeå, Sweden
| | - Richard Palmqvist
- Department of Medical Biosciences, Pathology, Umeå University, Building 6M, SE-90185, Umeå, Sweden
| | - Maria L Wikberg
- Department of Medical Biosciences, Pathology, Umeå University, Building 6M, SE-90185, Umeå, Sweden
| |
Collapse
|
50
|
Wang J, Sinnett-Smith J, Stevens JV, Young SH, Rozengurt E. Biphasic Regulation of Yes-associated Protein (YAP) Cellular Localization, Phosphorylation, and Activity by G Protein-coupled Receptor Agonists in Intestinal Epithelial Cells: A NOVEL ROLE FOR PROTEIN KINASE D (PKD). J Biol Chem 2016; 291:17988-8005. [PMID: 27369082 DOI: 10.1074/jbc.m115.711275] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Indexed: 12/14/2022] Open
Abstract
We examined the regulation of Yes-associated protein (YAP) localization, phosphorylation, and transcriptional activity in intestinal epithelial cells. Our results show that stimulation of intestinal epithelial IEC-18 cells with the G protein-coupled receptor (GPCR) agonist angiotensin II, a potent mitogen for these cells, induced rapid translocation of YAP from the nucleus to the cytoplasm (within 15 min) and a concomitant increase in YAP phosphorylation at Ser(127) and Ser(397) Angiotensin II elicited YAP phosphorylation and cytoplasmic accumulation in a dose-dependent manner (ED50 = 0.3 nm). Similar YAP responses were provoked by stimulation with vasopressin or serum. Treatment of the cells with the protein kinase D (PKD) family inhibitors CRT0066101 and kb NB 142-70 prevented the increase in YAP phosphorylation on Ser(127) and Ser(397) via Lats2, YAP cytoplasmic accumulation, and increase in the mRNA levels of YAP/TEAD-regulated genes (Ctgf and Areg). Furthermore, siRNA-mediated knockdown of PKD1, PKD2, and PKD3 markedly attenuated YAP nuclear-cytoplasmic shuttling, phosphorylation at Ser(127), and induction of Ctgf and Areg expression in response to GPCR activation. These results identify a novel role for the PKD family in the control of biphasic localization, phosphorylation, and transcriptional activity of YAP in intestinal epithelial cells. In turn, YAP and TAZ are necessary for the stimulation of the proliferative response of intestinal epithelial cells to GPCR agonists that act via PKD. The discovery of interaction between YAP and PKD pathways identifies a novel cross-talk in signal transduction and demonstrates, for the first time, that the PKDs feed into the YAP pathway.
Collapse
Affiliation(s)
- Jia Wang
- From the Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine
| | - James Sinnett-Smith
- From the Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, CURE: Digestive Diseases Research Center, and the Veterans Affairs Greater Los Angeles Health Care System, Los Angeles, California 90073
| | - Jan V Stevens
- From the Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine
| | - Steven H Young
- From the Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, the Veterans Affairs Greater Los Angeles Health Care System, Los Angeles, California 90073
| | - Enrique Rozengurt
- From the Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, CURE: Digestive Diseases Research Center, and the Veterans Affairs Greater Los Angeles Health Care System, Los Angeles, California 90073 Molecular Biology Institute, UCLA, Los Angeles, California 90095 and
| |
Collapse
|