1
|
Liu L, Li YN, Zhang A, Yin Y, Yue Z, Pei L, Xia CS, Wang D, Jia M, Wang H, Cao LL. Clinical potential of serum prostaglandin A2 as a novel diagnostic biomarker for hepatocellular cancer. Clin Chim Acta 2024; 561:119814. [PMID: 38879063 DOI: 10.1016/j.cca.2024.119814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/18/2024] [Accepted: 06/12/2024] [Indexed: 06/21/2024]
Abstract
BACKGROUND Hepatocellular cancer (HCC) is one of the most harmful tumors to human health. Currently, there is still a lack of highly sensitive and specific HCC biomarkers in clinical practice. In this study, we aimed to explore the diagnostic performance of prostaglandin A2 (PGA2) for the early detection of HCC. METHODS Untargeted metabolomic analyses on normal control (NC) and HCC participants in the discovery cohort were performed, and PGA2 was identified to be dysregulated in HCC. A liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for detecting serum PGA2 was established and applied to validate the dysregulation of PGA2 in another independent validation cohort. Receiver operating characteristic (ROC), decision curve analysis (DCA) and some other statistical analyses were performed to evaluate the diagnostic performance of PGA2 for HCC. RESULTS At first, PGA2 was found to be dysregulated in HCC in untargeted metabolomic analyses. Then a precise quantitative LC-MS/MS method for PGA2 has been established and has passed rigorous method validation. Targeted PGA2 analyses confirmed that serum PGA2 was decreased in HCC compared to normal-risk NC and high-risk cirrhosis group. Subsequently, PGA2 was identified as a novel biomarker for the diagnosis of HCC, with an area under the ROC curve (AUC) of 0.911 for differentiating HCC from the combined NC + cirrhosis groups. In addition, PGA2 exhibited high performance for differentiating small-size (AUC = 0.924), early-stage (AUC = 0.917) and AFP (-) HCC (AUC = 0.909) from the control groups. The combination of PGA2 and AFP might be useful in the surveillance of risk population for HCC and early diagnosis of HCC. CONCLUSION This study establishes that PGA2 might be a novel diagnostic biomarker for HCC.
Collapse
Affiliation(s)
- Li Liu
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing 100044, China; Department of Clinical Laboratory, Beihua University Affiliated Hospital, Jilin 132011, China
| | - Yi-Ning Li
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing 100044, China
| | - Aimin Zhang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing 100044, China
| | - Yue Yin
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing 100044, China
| | - Zhihong Yue
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing 100044, China
| | - Lin Pei
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing 100044, China
| | - Chang-Sheng Xia
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing 100044, China
| | - Dong Wang
- SCIEX Analytical Instrument Trading Co., Shanghai 200335, China
| | - Mei Jia
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing 100044, China
| | - Hui Wang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing 100044, China
| | - Lin-Lin Cao
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing 100044, China.
| |
Collapse
|
2
|
Menon N, Leong DT. Cytotoxic Effects of Phosphonate-Functionalized Mesoporous Silica Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2016; 8:2416-2422. [PMID: 26741564 DOI: 10.1021/acsami.5b11741] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
In this work, we synthesized pristine mesoporous silica nanoparticles (MSN) and functionalized these with phosphonate groups (MSN-Phos). We report, for the first time, cell death in MCF-7 cells (human breast adenocarcinoma cell line) when exposed to the empty MSN and MSN-Phos nanoparticles. In comparison, the same nanoparticles were found to elicit few deleterious effects on normal human foreskin fibroblast cells (BJ cells). MCF-7 cells were found to exhibit a concentration-dependent uptake, whereas no detectable nanoparticle uptake was observed in the BJ cells, irrespective of treatment dosage. A disruption of the cell cycle in the MCF-7 cells was determined to be the cause of cell death from the nanoparticle exposure, thereby suggesting the role of nondrug loaded MSN and MSN-Phos as effective anticancer drugs.
Collapse
Affiliation(s)
- Nandita Menon
- Department of Chemical and Biomolecular Engineering, National University of Singapore , 4 Engineering Drive 4, Singapore 117585, Singapore
| | - David T Leong
- Department of Chemical and Biomolecular Engineering, National University of Singapore , 4 Engineering Drive 4, Singapore 117585, Singapore
| |
Collapse
|
3
|
Tai J, Rao Y, Fang J, Huang Z, Yu Z, Chen X, Zhou W, Xiao X, Long T, Han Y, Liu Q, Li A, Ni X. Lentivirus‑delivered nemo‑like kinase small interfering RNA inhibits laryngeal cancer cell proliferation in vitro. Mol Med Rep 2015; 12:5619-24. [PMID: 26252054 PMCID: PMC4581764 DOI: 10.3892/mmr.2015.4189] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 12/03/2014] [Indexed: 11/06/2022] Open
Abstract
Laryngeal squamous cell carcinoma is the most common form of head and neck squamous cell carcinoma. Multiple approaches have been applied to treat this type of cancer; however, no significant improvement in survival rate has been achieved. In the present study, the role of nemo‑like kinase (NLK) in human laryngeal carcinoma Hep‑2 cells was investigated. NLK has been identified as an important regulator of cell growth, patterning and cell death in a variety of organisms. Lentivirus‑mediated‑shRNA was employed to silence endogenous NLK expression. Downregulation of the expression of NLK following lentivirus infection was confirmed using reverse transcription quantitative polymerase chain reaction and western blot analysis. The effects of NLK downregulation on Hep‑2 cell proliferation and cell cycle progression were analyzed using an MTT assay and flow cytometry, respectively. Downregulation of NLK also inhibited tumorigenesis and regulated the expression of cell cycle protein expression levels. Therefore, it was hypothesized that NLK is necessary for cell survival and tumorigenesis in laryngeal cancer cells. Furthermore, the absence of NLK may lead to cancer cell death. Collectively, the results of the present study demonstrated that the lentivirus‑mediated targeted disruption of NLK may be a promising therapeutic method for the treatment of laryngeal cancer.
Collapse
Affiliation(s)
- Jun Tai
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Beijing 100045, P.R. China
| | - Yuansheng Rao
- Department of Otolaryngology Head and Neck Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, P.R. China
| | - Jugao Fang
- Key Laboratory of Otolaryngology‑Head and Neck Surgery, Ministry of Education, Beijing Tongren Hospital, Capital Medical University, Beijing 100005, P.R. China
| | - Zhigang Huang
- Key Laboratory of Otolaryngology‑Head and Neck Surgery, Ministry of Education, Beijing Tongren Hospital, Capital Medical University, Beijing 100005, P.R. China
| | - Zhenkun Yu
- Key Laboratory of Otolaryngology‑Head and Neck Surgery, Ministry of Education, Beijing Tongren Hospital, Capital Medical University, Beijing 100005, P.R. China
| | - Xiaohong Chen
- Key Laboratory of Otolaryngology‑Head and Neck Surgery, Ministry of Education, Beijing Tongren Hospital, Capital Medical University, Beijing 100005, P.R. China
| | - Weiguo Zhou
- Key Laboratory of Otolaryngology‑Head and Neck Surgery, Ministry of Education, Beijing Tongren Hospital, Capital Medical University, Beijing 100005, P.R. China
| | - Xiao Xiao
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Beijing 100045, P.R. China
| | - Ting Long
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Beijing 100045, P.R. China
| | - Yang Han
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Beijing 100045, P.R. China
| | - Qiaoyin Liu
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Beijing 100045, P.R. China
| | - Aidong Li
- Department of Center Laboratory, Cancer Institute and Hospital, Chinese Academy of Medical Sciences, Beijing 100021, P.R. China
| | - Xin Ni
- Department of Otolaryngology Head and Neck Surgery, Beijing Children's Hospital, Capital Medical University, Beijing 100045, P.R. China
| |
Collapse
|
4
|
N-Polybenzylated alicyclic 1,2-diamines: cytotoxicity and G1 phase arrest in cancer cell line. Mol Divers 2014; 18:879-86. [PMID: 24973276 DOI: 10.1007/s11030-014-9519-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 04/07/2014] [Indexed: 10/25/2022]
Abstract
Cytotoxicity in the μM range was observed in cancer cell lines treated with N,N,N',N'-tetrabenzyl-4,5-diamino-2-cyclopentenone. Cell cycle analysis on HeLa cells showed a clear G1 phase arrest. A preliminary SAR on structural analogs was performed in order to identify the pharmacophores.
Collapse
|
5
|
Ishikawa T, Kuo MT, Furuta K, Suzuki M. A new aspect on glutathione-associated biological function of MRP/GS-X pump and its gene expression. Cytotechnology 2012; 27:81-93. [PMID: 19002785 DOI: 10.1023/a:1008036015156] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The biological function as well as gene expression of the MRP/GS-X pump is closely linked with cellular GSH metabolism. This article describes two important aspects, i.e., 1) a role of the MRP/GS-X pump in the modulation of cell cycle arrest induced by anticancer prostaglandins; 2) coordinated up-regulation of gamma-glutamylcysteine synthetase gamma-GCS) and MRP1 genes. The A and J series of prostaglandins (PGs) accumulate in the nuclei to suppress the proliferation of cancer cells. Delta(7)-Prostaglandin A(1) (Delta(7)-PGA(1)) methyl ester, a synthetic anticancer PG, increased the mRNA level of the cyclin-dependent kinase inhibitor p21(Sdi1/CIP1/WAF1) in human leukemia HL-60 cells. The induction of p21(Sdi1/CIP1/WAF1) was associated with the accumulation of hypophosphorylated retinoblastoma protein (pRB) and the suppression of c-myc gene expression. Unlike HL-60 cells, cisplatin-resistant HL-60/R-CP cells were insensitive to Delta(7)-PGA(1) methyl ester. While c-myc expression was transiently suppressed, neither G1 arrest nor hypophosphorylation of pRB was observed with the anticancer PG. Plasma membrane vesicles from HL-60/R-CP cells showed an enhanced level of GS-X pump activity toward the glutathione S-conjugate of Delta(7)-PGA(1) methyl ester. GIF-0019, a potent inhibitor of the GS-X pump, dose-dependently enhanced the cellular sensitivity of HL-60/R-CP cells to Delta(7)-PGA(1) methyl ester, resulting in G1 arrest. The GS-X pump is suggested to play a pivotal role in modulating the biological action of the anticancer PG. The expression of MRP1 and gamma-GCS genes can be coordinately up-regulated by cisplatin, 1-[5-(4-amino-2-methyl)pyrimidyl]methyl-3-(2-chloroethyl)-3-nitrosourea (ACNU), and heavy metals in human cancer cells. For the up-regulation of these genes, both transcriptional and posttranscriptional regulations are considered to be involved.
Collapse
|
6
|
Díez-Dacal B, Pérez-Sala D. A-class prostaglandins: Early findings and new perspectives for overcoming tumor chemoresistance. Cancer Lett 2012; 320:150-7. [DOI: 10.1016/j.canlet.2012.03.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Revised: 02/29/2012] [Accepted: 03/01/2012] [Indexed: 01/20/2023]
|
7
|
Malonia SK, Sinha S, Lakshminarasimhan P, Singh K, Jalota-Badhwar A, Rampalli S, Kaul-Ghanekar R, Chattopadhyay S. Gene regulation by SMAR1: Role in cellular homeostasis and cancer. Biochim Biophys Acta Rev Cancer 2010; 1815:1-12. [PMID: 20709157 DOI: 10.1016/j.bbcan.2010.08.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2010] [Revised: 08/04/2010] [Accepted: 08/06/2010] [Indexed: 12/22/2022]
Abstract
Changes in the composition of nuclear matrix associated proteins contribute to alterations in nuclear structure, one of the major phenotypes of malignant cancer cells. The malignancy-induced changes in this structure lead to alterations in chromatin folding, the fidelity of genome replication and gene expression programs. The nuclear matrix forms a scaffold upon which the chromatin is organized into periodic loop domains called matrix attachment regions (MAR) by binding to various MAR binding proteins (MARBPs). Aberrant expression of MARBPs modulates the chromatin organization and disrupt transcriptional network that leads to oncogenesis. Dysregulation of nuclear matrix associated MARBPs has been reported in different types of cancers. Some of these proteins have tumor specific expression and are therefore considered as promising diagnostic or prognostic markers in few cancers. SMAR1 (scaffold/matrix attachment region binding protein 1), is one such nuclear matrix associated protein whose expression is drastically reduced in higher grades of breast cancer. SMAR1 gene is located on human chromosome 16q24.3 locus, the loss of heterozygosity (LOH) of which has been reported in several types of cancers. This review elaborates on the multiple roles of nuclear matrix associated protein SMAR1 in regulating various cellular target genes involved in cell growth, apoptosis and tumorigenesis.
Collapse
|
8
|
Lavigne C, Guignée DA, Thierry AR. A rapid microwell fluorescence immunoassay for cellular protein detection. Biol Proced Online 2008; 10:83-9. [PMID: 19461956 PMCID: PMC2683549 DOI: 10.1251/bpo146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2008] [Revised: 03/20/2008] [Accepted: 05/26/2008] [Indexed: 12/01/2022] Open
Abstract
In this paper, we describe a simple, rapid, specific, sensitive, and reliable method, the FICP method (Fluorescence Immunoassay for Cellular Protein detection) which is readily applicable to the detection of proteins directly on cells cultured in 96-well plates. In order to illustrate this method, we report on the detection of two different proteins, the cell cycle proteins cyclin D1 and p21CIP1/WAF1, in untreated and 2-cyclopenten-1-one treated breast cancer cells. When the FICP method was compared with Western blot procedure, FICP was found to be superior for many characteristics. By using this method, we were able to quantify biological effects of a specific compound on protein levels in non-lysed cells and perform statistical analysis. Therefore, we believe this screening assay could be very useful for detecting poorly expressed proteins and for drug development.
Collapse
Affiliation(s)
- Carole Lavigne
- Beausejour Medical Research Institute, Moncton, New Brunswick, Canada.
| | | | | |
Collapse
|
9
|
Conti M. A perspective on rational drug design with cyclopentenone: targeting the proteome with the cyclopentenone chemical moiety. Expert Opin Drug Discov 2007; 2:1153-9. [DOI: 10.1517/17460441.2.9.1153] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
10
|
Pavithra L, Rampalli S, Sinha S, Sreenath K, Pestell RG, Chattopadhyay S. Stabilization of SMAR1 mRNA by PGA2 involves a stem loop structure in the 5' UTR. Nucleic Acids Res 2007; 35:6004-16. [PMID: 17726044 PMCID: PMC2094063 DOI: 10.1093/nar/gkm649] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2007] [Revised: 08/03/2007] [Accepted: 08/03/2007] [Indexed: 02/06/2023] Open
Abstract
Prostaglandins are anticancer agents known to inhibit tumor cell proliferation both in vitro and in vivo by affecting the mRNA stability. Here we report that a MAR-binding protein SMAR1 is a target of Prostaglandin A2 (PGA2) induced growth arrest. We identify a regulatory mechanism leading to stabilization of SMAR1 transcript. Our results show that a minor stem and loop structure present in the 5' UTR of SMAR1 (1-UTR) is critical for nucleoprotein complex formation that leads to SMAR1 stabilization in response to PGA2. This results in an increased SMAR1 transcript and altered protein levels, that in turn causes downregulation of Cyclin D1 gene, essential for G1/S phase transition. We also provide evidence for the presence of a variant 5' UTR SMAR1 (17-UTR) in breast cancer-derived cell lines. This form lacks the minor stem and loop structure required for mRNA stabilization in response to PGA2. As a consequence of this, there is a low level of endogenous tumor suppressor protein SMAR1 in breast cancer-derived cell lines. Our studies provide a mechanistic insight into the regulation of tumor suppressor protein SMAR1 by a cancer therapeutic PGA2, that leads to repression of Cyclin D1 gene.
Collapse
Affiliation(s)
- Lakshminarasimhan Pavithra
- National Centre for Cell Science, Ganeshkhind, Pune 411007, Maharashtra, India and Department of Cancer Biology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, USA
| | - Shravanti Rampalli
- National Centre for Cell Science, Ganeshkhind, Pune 411007, Maharashtra, India and Department of Cancer Biology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, USA
| | - Surajit Sinha
- National Centre for Cell Science, Ganeshkhind, Pune 411007, Maharashtra, India and Department of Cancer Biology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, USA
| | - Kadreppa Sreenath
- National Centre for Cell Science, Ganeshkhind, Pune 411007, Maharashtra, India and Department of Cancer Biology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, USA
| | - Richard G. Pestell
- National Centre for Cell Science, Ganeshkhind, Pune 411007, Maharashtra, India and Department of Cancer Biology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, USA
| | - Samit Chattopadhyay
- National Centre for Cell Science, Ganeshkhind, Pune 411007, Maharashtra, India and Department of Cancer Biology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, USA
| |
Collapse
|
11
|
Sun YW, Herzog CR, Krzeminski J, Amin S, Perdew G, El-Bayoumy K. Effects of the environmental mammary carcinogen 6-nitrochrysene on p53 and p21(Cip1) protein expression and cell cycle regulation in MCF-7 and MCF-10A cells. Chem Biol Interact 2007; 170:31-9. [PMID: 17678638 PMCID: PMC2682711 DOI: 10.1016/j.cbi.2007.06.039] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2007] [Revised: 06/21/2007] [Accepted: 06/22/2007] [Indexed: 02/02/2023]
Abstract
The environmental pollutant 6-nitrochrysene (6-NC) is a potent mammary carcinogen in rats; it is more potent than numerous classical mammary carcinogens such as benzo[a]pyrene (BaP). The mechanisms that account for the remarkable carcinogenicity of 6-NC remain elusive. Similar to BaP, 6-NC is also known to induce DNA damage in rodents and in human breast tissues. As an initial investigation, we reasoned that DNA damage induced by 6-NC may alter the expression of p53 protein in a manner that differs from other DNA damaging carcinogens (e.g. BaP). Using human breast adenocarcinoma MCF-7 cells and immortalized human mammary epithelial MCF-10A cells, we determined the effects of 6-NC on the expression of p53 protein and its direct downstream target cyclin-dependent kinase inhibitor p21(Cip1) as well as on the cell cycle progression. Western blot analysis demonstrated that treatments of MCF-7 and MCF-10A cells with 6-NC for 12, 24 or 48h did not increase the level of total p53 protein; however, an increase of p21(Cip1) protein and a commitment increase of G(1) phase were observed in MCF-10A cells but not in MCF-7 cells. Further studies using 1,2-dihydroxy-1,2-dihydro-6-hydroxylaminochrysene (1,2-DHD-6-NHOH-C), the putative ultimate genotoxic metabolite of 6-NC, was conducted and showed a significant induction of p53 (p<0.05) in MCF-7 cells; however, this effect was not evident in MCF-10A cells, indicating the varied DNA damage responses between the two cell lines. By contrast to numerous DNA damaging agents such as BaP which is known to stimulate p53 expression, the lack of p53 response by 6-NC imply the lack of protective functions mediated by p53 (e.g. DNA repair machinery) after exposure to 6-NC and this may, in part, account for its remarkable carcinogenicity in the mammary tissue.
Collapse
Affiliation(s)
- Yuan-Wan Sun
- Department of Biochemistry and Molecular Biology, College of Medicine, Pennsylvania State University, Hershey, PA 17033
| | - Christopher R. Herzog
- Department of Pharmacology, College of Medicine, Pennsylvania State University, University Park 16802
| | - Jacek Krzeminski
- Department of Pharmacology, College of Medicine, Pennsylvania State University, University Park 16802
| | - Shantu Amin
- Department of Pharmacology, College of Medicine, Pennsylvania State University, University Park 16802
| | - Gary Perdew
- Department of Veterinary and Biomedical Science, Pennsylvania State University, University Park 16802
| | - Karam El-Bayoumy
- Department of Biochemistry and Molecular Biology, College of Medicine, Pennsylvania State University, Hershey, PA 17033
- Corresponding author: Department of Biochemistry and Molecular Biology, College of Medicine, Penn State University, Hershey, PA 17033. Tel: 717-531-1005; Fax: 717-531-0002;
| |
Collapse
|
12
|
Abstract
The conjugate cyclopent-en-one chemical group is a special moiety for anticancer drugs. Studies on cyclopentenone prostaglandins, clavulones and other compounds have revealed its mechanism of action and a wide spectrum of intracellular targets, ranging from nuclear factors to mitochondria. The introduction of the cyclopentenone moiety into molecules, such as jasmonates and chalcones, has been shown to boost their anticancer potential. In this work, reviewing pertinent up-to-date literature, we have pointed out potentially effective cyclopentenone-bearing compounds for anticancer clinical research and inspiring relationships for future drug design. In particular, it appears that the addition of cyclopentenone groups to target-orienting molecules, in order to inactivate specific proteins in cells, could be a helpful general strategy for the development of novel therapeutic molecules.
Collapse
Affiliation(s)
- Matteo Conti
- Laboratory of Clinical Pharmacology and Toxicology, IRST-IOR Oncology Research Institute, S. Maria delle Croci Hospital, Ravenna, Italy.
| |
Collapse
|
13
|
Abstract
This review considers modern concepts on the structural-functional properties and antiproliferative, antitumor, and antiviral effects of cyclopentenone prostaglandins A and mechanisms underlying their actions. Possible directions of pharmacological application of these compounds and their analogs are discussed.
Collapse
|
14
|
Paez PM, Garcia CI, Soto EF, Pasquini JM. Apotransferrin decreases the response of oligodendrocyte progenitors to PDGF and inhibits the progression of the cell cycle. Neurochem Int 2006; 49:359-71. [PMID: 16621163 DOI: 10.1016/j.neuint.2006.02.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2005] [Revised: 02/13/2006] [Accepted: 02/20/2006] [Indexed: 10/24/2022]
Abstract
In the CNS, transferrin (Tf) is expressed by the oligodendroglial cells (OLGcs) and is essential for their development. We have previously shown that apotransferrin (aTf) accelerates maturation of OLGcs in vivo as well as in vitro. The mechanisms involved in this action appear to be complex and have not been completely elucidated. The aim of this study was to investigate if Tf participates in the regulation of the cell cycle of oligodendroglial progenitor cells (OPcs). Primary cultures of OPcs were treated with aTf and/or with different combinations of mitogenic factors. Cell cycle progression was studied by BrdU incorporation, flow cytometry and by the expression of cell cycle regulatory proteins. Apotransferrin decreased the number of BrdU+ cells, increasing the cell cycle time and decreasing the number of cells in S phase. The cell cycle inhibitors p27kip1, p21cip1 and p53 were increased, and in agreement with these results, the activity of the complexes involved in G1-S progression (cyclin D/CDK4, cyclin E/CDK2), was dramatically decreased. Apotransferrin also inhibited the mitogenic effects of PDGF and PDGF/IGF on OPcs, but did not affect their proliferation rate in the presence of bFGF, bFGF/PDGF or bFGF/IGF. Our results indicate that inhibition of the progression of the cell cycle of OPcs by aTf, even in the presence of PDGF, leads to an early beginning of the differentiation program, evaluated by different maturation markers (O4, GC and MBP) and by morphological criteria. The modulation by aTf of the response of OPcs to PDGF supports the idea that this glycoprotein might act as a key regulator of the OLGc lineage progression.
Collapse
Affiliation(s)
- P M Paez
- Instituto de Química y Fisicoquímica Biológica (IQUIFIB), UBA-CONICET, and Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junin 956, Buenos Aires C1113AAD, Argentina
| | | | | | | |
Collapse
|
15
|
Hyun JW, Yoon SH, Yu Y, Han CS, Park JS, Kim HS, Lee SJ, Lee YS, You HJ, Chung MH. Oh8dG induces G1 arrest in a human acute leukemia cell line by upregulating P21 and blocking the RAS to ERK signaling pathway. Int J Cancer 2006; 118:302-9. [PMID: 16052517 DOI: 10.1002/ijc.21329] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We reported previously that KG-1, a human acute leukemia cell line, has mutational loss of 8-oxoguanine (8-hydroxyguanine; oh8Gua) glycosylase 1 (OGG1) activity and undergoes apoptotic death after treatment with 7,8-dihydro-8-oxo-2'-deoxyguanosine (8-oxodeoxyguanosine, 8-hydroxydeoxyguanosine; oh8dG). In our present study, we further characterized the effects of oh8dG in KG-1 cells and found that, in addition to apoptosis, oh8dG induced the arrest of KG-1 at the G1 phase. Simultaneously, oh8dG-treated KG-1 showed an increase in the oh8Gua content of DNA, upregulation of p21 (an inhibitor of cdk), and Ras inactivation. Moreover, the upregulation of p21 was followed by the inactivations of cdk4 and cdk2, the hypophosphorylation of Rb, and a marked decline in the expression of c-myc (a gene regulated by E2F that is a transcription factor whose activity is suppressed when it is bound to hypophosphorylated Rb). Ras inactivation was also followed by the inactivation of ERK kinase (MEK) and the inactivation of AP-1, a downstream target of the Ras signaling pathway. The specific MEK inhibitors, PD98059 and U0126, also induced G1 arrest. These findings suggest that p21 upregulation and Ras inactivation contribute to G1 arrest. An increase of oh8Gua content in DNA does not seem to be a principal contributor to G1 arrest, however, because the kinetics of increases of oh8Gua content in DNA and of G1 cell number did not coincide. We report that oh8dG induces the arrest of KG-1 growth at the G1 phase mainly by upregulating p21 and inactivating Ras.
Collapse
Affiliation(s)
- Jin Won Hyun
- Department of Biochemistry, College of Medicine and Applied Radiological Science Research Institute, Cheju National University, Jeju, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Tagliati F, Bottoni A, Bosetti A, Zatelli MC, degli Uberti EC. Utilization of luminescent technology to develop a kinase assay: Cdk4 as a model system. J Pharm Biomed Anal 2006; 39:811-4. [PMID: 15955655 DOI: 10.1016/j.jpba.2005.05.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2005] [Revised: 05/03/2005] [Accepted: 05/04/2005] [Indexed: 11/27/2022]
Abstract
Protocols to assess kinase activity generally include radioactive methods, fluorescent polarization technology and the use of specific antibodies. Here, a simple, effective, non radioactive method to measure kinase activity of immunoprecipitated proteins is described. Cdk4, a cell cycle dependent enzyme, was immunoprecipitated from whole cell extracts and used in kinase reactions. This system has been developed taking advantage of the kinase-Glo reagent (Promega), based on ATP depletion technology, but with a wider range of applications. The original aim of the commercial kit is the evaluation of kinase activity of highly purified enzymes, while this system enabled the evaluation of native kinases, retrieved by immunoprecipitation. This method was highly homogeneous and did not require any kind of separation or purification as well. Moreover, it was suitable for basic research and may be useful for low-medium throughput pharmaceutical screening of chemical libraries.
Collapse
Affiliation(s)
- Federico Tagliati
- Section of Endocrinology, Department of Biomedical Sciences and Advanced Therapies, University of Ferrara, Via Savonarola 9, 44100 Ferrara, Italy
| | | | | | | | | |
Collapse
|
17
|
Kagaya S, Ohkura N, Tsukada T, Miyagawa M, Sugita Y, Tsujimoto G, Matsumoto K, Saito H, Hashida R. Prostaglandin A2 acts as a transactivator for NOR1 (NR4A3) within the nuclear receptor superfamily. Biol Pharm Bull 2005; 28:1603-7. [PMID: 16141523 DOI: 10.1248/bpb.28.1603] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Within the nuclear receptor superfamily, Nur77, Nurr1, and NOR1 constitute the nuclear receptor subfamily 4 group A. Modulation of NOR1 function would be therapeutic potential for diseases related to dysfunction of NOR1, including extraskeletal myxoid chondrosarcoma and autoimmune diseases. By screening arachidonate metabolites for their capacity of transcriptional activation, we have identified prostaglandin (PG) A2 as a transactivator for NOR1. PGA2 acted as a potent activator of NOR1-dependent transcription through the GAL4-based reporter system. The putative ligand-binding domain (LBD) of the receptor directly bound PGA2, and LBD-deleted receptor showed little transcriptional activation by PGA2. Primary cultured spleen cells derived from transgenic mice overexpressing NOR1, showed higher sensitivity to PGA2 compared to those from wild-type mice. These observations suggest that PGA2 can serve as a transactivator of NOR1, and thus suggest a possibility of pharmacological modulation of the NOR1 pathways by PGA2-related compounds.
Collapse
|
18
|
Huang YC, Guh JH, Shen YC, Teng CM. Investigation of anticancer mechanism of clavulone II, a coral cyclopentenone prostaglandin analog, in human acute promyelocytic leukemia. J Biomed Sci 2005; 12:335-45. [PMID: 15920677 DOI: 10.1007/s11373-005-3009-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2004] [Accepted: 02/05/2005] [Indexed: 10/25/2022] Open
Abstract
The marine prostanoid clavulones were shown to exert cytotoxicity against several cancer cells. In the present study, we illustrate the pathways utilized by clavulone II to trigger apoptotic signaling in human acute promyelocytic leukemia HL-60 cells. Exposure of cells to clavulone II resulted in early induction of phosphatidylserine externalization, mitochondrial dysfunction, and alteration of the cell cycle. Down-regulated expression of cyclin D1 explained the effect of clavulone II on G1 phase arrest of the cell cycle. Clavulone II induced the disruption of mitochondrial membrane potential and activation of caspase-8, -9 and -3 in a time- and concentration-dependent manner. Furthermore, the effect of 3 microM clavulone II was accompanied by the up-regulation of Bax, down-regulation of Mcl-1, and cleavage of Bid. Taken together, it is suggested that low concentrations of clavulone II induce the antiproliferative effect through the down-regulation of cyclin D1 expression and G1 arrest of the cell cycle, while that of high concentration induce the apoptotic cell death via the modulation of members of caspases and Bcl-2 family proteins in HL-60 cells.
Collapse
Affiliation(s)
- Yu-Chun Huang
- Pharmacological Institute, College of Medicine, National Taiwan University, Taipei, Taiwan
| | | | | | | |
Collapse
|
19
|
Yang X, Wang W, Fan J, Lal A, Yang D, Cheng H, Gorospe M. Prostaglandin A2-mediated stabilization of p21 mRNA through an ERK-dependent pathway requiring the RNA-binding protein HuR. J Biol Chem 2004; 279:49298-306. [PMID: 15371446 DOI: 10.1074/jbc.m407535200] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Treatment with the stress agent prostaglandin A2 (PGA2) induces expression of the cyclin-dependent kinase inhibitor p21. Here, we present evidence that p21 expression increases through PGA2-triggered stabilization of the p21 mRNA and further show that these events require the mitogen-activated protein (MAP) kinase ERK. Binding experiments using either endogenous p21 mRNA or in vitro-labeled p21 transcripts revealed a specific PGA2-dependent association of the p21 mRNA with the RNA-binding protein HuR. Interestingly, although inhibition of the ERK pathway did not prevent the PGA2-triggered increase in cytoplasmic HuR, it did impair the formation of endogenous and in vitro [HuR-p21 mRNA] complexes and further prevented the PGA2-mediated stabilization of the p21 mRNA, suggesting that ERK-mediated events were required for binding HuR to the p21 mRNA and preventing its decay. RNA interference-based knockdown of HuR abundance further served to demonstrate the contribution of HuR-mediated p21 mRNA stabilization toward enhancing p21 expression after PGA2 treatment. Collectively, our results indicate that PGA2 stabilizes the p21 mRNA through an ERK-independent increase in cytoplasmic HuR levels and an ERK-dependent association of HuR with the p21 mRNA.
Collapse
Affiliation(s)
- Xiaoling Yang
- Laboratory of Cellular and Molecular Biology, NIA, National Institutes of Health, Baltimore, MD 21224, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Seminario MC, Precht P, Wersto RP, Gorospe M, Wange RL. PTEN expression in PTEN-null leukaemic T cell lines leads to reduced proliferation via slowed cell cycle progression. Oncogene 2003; 22:8195-204. [PMID: 14603260 DOI: 10.1038/sj.onc.1206872] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The balance of activities between the proto-oncogene phosphoinositide 3-kinase (PI3K) and the tumour suppressor gene PTEN has been shown to affect cellular growth and proliferation, as well as tumorigenesis. Previously, PTEN expression in the PTEN-null Jurkat T cell leukaemia line was shown to cause reduced proliferation without cell cycle arrest. Here, we further these investigations by determining the basis for this phenomenon. By BrdU pulse-chase and cell cycle arrest and release assays, we find that PTEN expression reduced proliferation by slowing progression through all phases of the cell cycle. This was associated with reduced levels of cyclins A, B1 and B2, cdk4, and cdc25A and increased p27KIP1 expression. Apoptosis played no role in the antiproliferative effect of PTEN, since only marginal increases in the rate of apoptosis were detected upon PTEN expression, and inhibitors of effector caspases did not restore proliferative capacity. Active Akt blocked the antiproliferative effects of PTEN, indicating that PTEN mediates its effects through conventional PI3K-linked signalling pathways. Similar results were obtained from a different PTEN-null leukaemia T cell line, CEM. Together, these results show that PTEN expression in leukaemic T cells leads to reduced proliferation via an apoptosis-independent mechanism involving slower passage through the cell cycle.
Collapse
Affiliation(s)
- Maria-Cristina Seminario
- Laboratory of Cellular and Molecular Biology, National Institute on Aging, IRP/NIH/DHHS, Baltimore, MD 21224, USA
| | | | | | | | | |
Collapse
|
21
|
Galbán S, Martindale JL, Mazan-Mamczarz K, López de Silanes I, Fan J, Wang W, Decker J, Gorospe M. Influence of the RNA-binding protein HuR in pVHL-regulated p53 expression in renal carcinoma cells. Mol Cell Biol 2003; 23:7083-95. [PMID: 14517280 PMCID: PMC230328 DOI: 10.1128/mcb.23.20.7083-7095.2003] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
A recent analysis of gene expression in renal cell carcinoma cells led to the identification of mRNAs whose translation was dependent on the presence of the von Hippel-Lindau (VHL) tumor suppressor gene product, pVHL. Here, we investigate the finding that pVHL-expressing RCC cells (VHL(+)) exhibited elevated levels of polysome-associated p53 mRNA and increased p53 protein levels compared with VHL-defective (VHL(-)) cells. Our findings indicate that p53 translation is specifically heightened in VHL(+) cells, given that (i) p53 mRNA abundance in VHL(+) and VHL(-) cells was comparable, (ii) p53 degradation did not significantly influence p53 expression, and (iii) p53 synthesis was markedly induced in VHL(+) cells. Electrophoretic mobility shift and immunoprecipitation assays to detect endogenous and radiolabeled p53 transcripts revealed that the RNA-binding protein HuR, previously shown to regulate mRNA turnover and translation, was capable of binding to the 3' untranslated region of the p53 mRNA in a VHL-dependent fashion. Interestingly, while whole-cell levels of HuR in VHL(+) and VHL(-) cells were comparable, HuR was markedly more abundant in the cytoplasmic and polysome-associated fractions of VHL(+) cells. In keeping with earlier reports, the elevated cytoplasmic HuR in VHL(+) cells was likely due to the reduced AMP-activated kinase activity in these cells. Demonstration that HuR indeed contributed to the increased expression of p53 in VHL(+) cells was obtained through use of RNA interference, which effectively reduced HuR expression and in turn caused marked decreases in p53 translation and p53 abundance. Taken together, our findings support a role for pVHL in elevating p53 expression, implicate HuR in enhancing VHL-mediated p53 translation, and suggest that VHL-mediated p53 upregulation may contribute to pVHL's tumor suppressive functions in renal cell carcinoma.
Collapse
MESH Headings
- 3' Untranslated Regions
- Actins/metabolism
- Adenylate Kinase/metabolism
- Antigens, Surface
- Base Sequence
- Blotting, Northern
- Blotting, Western
- Carcinoma, Renal Cell/metabolism
- Cell Line, Tumor
- Cytoplasm/metabolism
- DNA, Complementary/metabolism
- ELAV Proteins
- ELAV-Like Protein 1
- Gene Expression Regulation, Neoplastic
- Humans
- Kidney Neoplasms/metabolism
- Microscopy, Fluorescence
- Molecular Sequence Data
- Oligonucleotide Array Sequence Analysis
- Plasmids/metabolism
- Polyribosomes/metabolism
- Precipitin Tests
- Protein Binding
- Protein Biosynthesis
- RNA/metabolism
- RNA Interference
- RNA, Messenger/metabolism
- RNA, Small Interfering/metabolism
- RNA-Binding Proteins/metabolism
- RNA-Binding Proteins/physiology
- Reverse Transcriptase Polymerase Chain Reaction
- Time Factors
- Transfection
- Tumor Suppressor Protein p53/metabolism
- Tumor Suppressor Proteins/metabolism
- Ubiquitin-Protein Ligases/metabolism
- Up-Regulation
- Von Hippel-Lindau Tumor Suppressor Protein
Collapse
Affiliation(s)
- Stefanie Galbán
- Laboratory of Cellular and Molecular Biology, National Institute on Aging-Intramural Research Program, National Institutes of Health, Baltimore, Maryland 21224, USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Xu X, Lyle S, Liu Y, Solky B, Cotsarelis G. Differential expression of cyclin D1 in the human hair follicle. THE AMERICAN JOURNAL OF PATHOLOGY 2003; 163:969-78. [PMID: 12937137 PMCID: PMC1868252 DOI: 10.1016/s0002-9440(10)63456-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The proliferation of keratinocytes in the hair follicle varies from slowly cycling, intermittently proliferating stem cells in the bulge to rapidly proliferating, transient cells in the bulb. To better understand the biological differences between these two compartments, we sought to identify differentially expressed genes using cDNA macroarray analysis. Cyclin D1 was one of 13 genes increased in the bulge compared to the bulb, and its differential expression was corroborated by quantitative real-time polymerase chain reaction (PCR) on the original samples. Using immunohistochemical staining, laser-capture microdissection (LCM) and quantitative real-time PCR, we localized cyclin D1 to the suprabasal cells of the telogen bulge and anagen outer root sheath (ORS). Surprisingly, cyclin D1, D2, and D3 were not detectable by immunohistochemistry in the rapidly proliferating hair-producing cells of the anagen bulb (matrix cells), while these cells were strongly positive for Ki-67 and retinoblastoma protein. In contrast, pilomatricoma, a tumor thought to be derived from matrix cells, was positive for cyclin D1, D2, and D3. Our results suggest that cyclin D1 may mediate the proliferation of stem cells in the bulge to more differentiated transient amplifying cells in the suprabasal ORS. In contrast, non-cyclin D1-proteins appear to control cell division of the highly proliferative bulb matrix cells. This non-cyclin D1-mediated proliferation may provide a protective mechanism against tumorigenesis, which is overridden in pilomatricomas. Our data also demonstrate that the combination of DNA macroarray, LCM and quantitative real-time PCR is a powerful approach for the study of gene expression in defined cell populations with limited starting material.
Collapse
Affiliation(s)
- Xiaowei Xu
- Department of Pathology, Hospital of University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|
23
|
Wang W, Yang X, López de Silanes I, Carling D, Gorospe M. Increased AMP:ATP ratio and AMP-activated protein kinase activity during cellular senescence linked to reduced HuR function. J Biol Chem 2003; 278:27016-23. [PMID: 12730239 DOI: 10.1074/jbc.m300318200] [Citation(s) in RCA: 198] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cytoplasmic export of the RNA-binding protein HuR, a process that critically regulates its function, was recently shown to be inhibited by the AMP-activated protein kinase (AMPK). In the present investigation, treatment of human fibroblasts with AMPK activators such as 5-amino-imidazole-4-carboxamide riboside, antimycin A, and sodium azide inhibited cell growth and lowered the expression of proliferative genes. As anticipated, AMPK activation also decreased both the cytoplasmic HuR levels and the association of HuR with target radiolabeled transcripts encoding such proliferative genes. HuR function was previously shown to be implicated in the maintenance of a "young cell" phenotype in models of replicative cellular senescence. We therefore postulated that AMPK activation in human fibroblasts might contribute to the implementation of the senescence phenotype through mechanisms that included a reduction in HuR cytoplasmic presence. Indeed, AMP:ATP ratios were 2-3-fold higher in senescent fibroblasts compared with young fibroblasts. Accordingly, in vitro senescence was accompanied by a marked elevation in AMPK activity. Evidence that increased AMPK activity directly contributed to the implementation of the senescent phenotype was obtained through two experimental approaches. First, use of AMPK activators triggered senescence characteristics in fibroblasts, such as the acquisition of senescence-associated beta-galactosidase (beta-gal) activity and increased p16INK4a expression. Second, infection of cells with an adenoviral vector that expresses active AMPK increased senescence-associated beta-gal activity, whereas infection with an adenovirus that expresses dominant-negative AMPK decreased senescence-associated beta-gal activity. Together, our results indicate that AMPK activation can cause premature fibroblast senescence through mechanisms that likely involve reduced HuR function.
Collapse
Affiliation(s)
- Wengong Wang
- Laboratory of Cellular and Molecular Biology, NIA Intramural Research Program, National Institutes of Health, Baltimore, Maryland 21224, USA
| | | | | | | | | |
Collapse
|
24
|
Abstract
We have used lactacystin, a specific inhibitor of the 26S proteasome, in oligodendroglial cell (OLGc) primary cultures to explore the possible participation of the proteasome-ubiquitin-dependent pathway in the decision of the OLGcs to arrest their proliferation and start differentiation. Addition of lactacystin at various concentrations to cultures containing a majority of OLGc was found to produce their withdrawal from the cell cycle and to induce their biochemical and morphological differentiation, with the appearance of extensive myelin-like sheets. The three classic proteolytic activities of the proteasome were significantly decreased in the lactacystin-treated cultures, and the immunocytochemical analysis showed an increase in the number of O4-, O1-, myelin basic protein-, and myelin proteolipid protein-positive cells and a decrease in A2B5-reacting cells. Quantitative immunochemical evaluation of the expression of certain proteins controlling the cell cycle showed an increase in p27kip1-, cyclin D-, and cdk4-positive cells, with a decrease in cyclin E- and cdk2-positive cells. In the lactacystin-treated OLGcs, there was a dose-dependent decrease in the number of cells incorporating bromodeoxyuridine and in the activity of the complexes cyclin D-cdk4 and cyclin E-cdk2. Furthermore, increased levels of expression of several STAT factors were found, suggesting that proteasome inhibition in OLGcs could stabilize signals of survival and differentiation that might be processed through the JAK/STAT signaling cascade.
Collapse
|
25
|
Pasquini LA, Paez PM, Moreno MANB, Pasquini JM, Soto EF. Inhibition of the proteasome by lactacystin enhances oligodendroglial cell differentiation. J Neurosci 2003; 23:4635-44. [PMID: 12805303 PMCID: PMC6740787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
We have used lactacystin, a specific inhibitor of the 26S proteasome, in oligodendroglial cell (OLGc) primary cultures to explore the possible participation of the proteasome-ubiquitin-dependent pathway in the decision of the OLGcs to arrest their proliferation and start differentiation. Addition of lactacystin at various concentrations to cultures containing a majority of OLGc was found to produce their withdrawal from the cell cycle and to induce their biochemical and morphological differentiation, with the appearance of extensive myelin-like sheets. The three classic proteolytic activities of the proteasome were significantly decreased in the lactacystin-treated cultures, and the immunocytochemical analysis showed an increase in the number of O4-, O1-, myelin basic protein-, and myelin proteolipid protein-positive cells and a decrease in A2B5-reacting cells. Quantitative immunochemical evaluation of the expression of certain proteins controlling the cell cycle showed an increase in p27kip1-, cyclin D-, and cdk4-positive cells, with a decrease in cyclin E- and cdk2-positive cells. In the lactacystin-treated OLGcs, there was a dose-dependent decrease in the number of cells incorporating bromodeoxyuridine and in the activity of the complexes cyclin D-cdk4 and cyclin E-cdk2. Furthermore, increased levels of expression of several STAT factors were found, suggesting that proteasome inhibition in OLGcs could stabilize signals of survival and differentiation that might be processed through the JAK/STAT signaling cascade.
Collapse
Affiliation(s)
- Laura A Pasquini
- Departamento de Química Biológica, Instituto de Química y Fisicoquímica Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires 1113, Argentina
| | | | | | | | | |
Collapse
|
26
|
Galbán S, Fan J, Martindale JL, Cheadle C, Hoffman B, Woods MP, Temeles G, Brieger J, Decker J, Gorospe M. von Hippel-Lindau protein-mediated repression of tumor necrosis factor alpha translation revealed through use of cDNA arrays. Mol Cell Biol 2003; 23:2316-28. [PMID: 12640117 PMCID: PMC150743 DOI: 10.1128/mcb.23.7.2316-2328.2003] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2002] [Revised: 12/10/2002] [Accepted: 01/10/2003] [Indexed: 11/20/2022] Open
Abstract
Based on evidence that the von Hippel-Lindau (VHL) tumor suppressor protein is associated with polysomes and interacts with translation regulatory factors, we set out to investigate the potential influence of pVHL on protein translation. To this end, renal cell carcinoma (RCC) cells that either lacked pVHL or expressed pVHL through stable transfection were used to prepare RNA from cytosolic (unbound) and polysome-bound fractions. Hybridization of cDNA arrays using RNA from each fraction revealed a subset of transcripts whose abundance in polysomes decreased when pVHL function was restored. The tumor necrosis factor alpha (TNF-alpha) mRNA was identified as one of the transcripts that preferentially associated with polysomes in pVHL-deficient cells. Additional evidence that the TNF-alpha mRNA was a target of translational repression by pVHL was obtained from reporter gene assays, which further revealed that pVHL's inhibitory influence on protein synthesis occurred through the TNF-alpha 3'-untranslated region. Our findings uncover a novel function for the pVHL tumor suppressor protein as regulator of protein translation.
Collapse
Affiliation(s)
- Stefanie Galbán
- Laboratory of Cellular and Molecular Biology, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland 21224, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Fujita M, Urano T, Horie K, Ikeda K, Tsukui T, Fukuoka H, Tsutsumi O, Ouchi Y, Inoue S. Estrogen activates cyclin-dependent kinases 4 and 6 through induction of cyclin D in rat primary osteoblasts. Biochem Biophys Res Commun 2002; 299:222-8. [PMID: 12437973 DOI: 10.1016/s0006-291x(02)02640-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Estrogen plays important roles in maintaining bone density and protecting against osteoporosis, but the underlying mechanisms of estrogen action via estrogen receptors (ERs) in bone remain to be clarified. In the present study, we isolated primary osteoblasts derived from transgenic rats harboring a dominant negative ER mutant, rat ERalpha (1-535) cDNA, and from their wild-type littermates. We observed that the rate of cell growth of osteoblasts from the transgenic rats was reduced compared to that of wild-type osteoblasts. Utilizing cDNA microarray analysis, we found that mRNA level of cyclin D2 was lower in the osteoblasts from the transgenic rats. D-type cyclins including cyclin D1, cyclin D2, and cyclin D3 are cell cycle regulators that promote progression through the early-to-mid G1 phase of the cell cycle. The protein levels of D-type cyclins including cyclin D2 and cyclin D3 but not cyclin D1 were elevated in wild-type osteoblasts with 17beta-estradiol treatment, resulting in the activation of cyclin-dependent kinases 4 and 6 (Cdk4/6) activities and the promotion of cell growth. Moreover, an anti-estrogen ICI 182,780 abolished the induction of the expression of D-type cyclins by 17beta-estradiol. Our findings indicate that estrogen and its receptors enhance Cdk4/6 activities through the induction of D-type cyclins, leading to the growth promotion of osteoblasts.
Collapse
Affiliation(s)
- Masayo Fujita
- Department of Geriatric Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, 113-8655, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Bacon CL, Gallagher HC, Haughey JC, Regan CM. Antiproliferative action of valproate is associated with aberrant expression and nuclear translocation of cyclin D3 during the C6 glioma G1 phase. J Neurochem 2002; 83:12-9. [PMID: 12358724 DOI: 10.1046/j.1471-4159.2002.01081.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cell cycle progression is tightly regulated by cyclins, cyclin-dependent kinases (cdks) and related inhibitory phophatases. Here, we employed mitotic selection to synchronize the C6 glioma cell cycle at the start of the G1 phase and mapped the temporal regulation of selected cyclins, cdks and inhibitory proteins throughout the 12 h of G1 by immunoblot analysis. The D-type cyclins, D3 and D1, were differentially expressed during the C6 glioma G1 phase. Cyclin D1 was up-regulated in the mid-G1 phase (4-6 h) while cyclin D3 expression emerged only in late G1 (9-12 h). The influence of the anticonvulsant agent valproic acid (VPA) on expression of cyclins and related proteins was determined, since its teratogenic potency has been linked to cell cycle arrest in the mid-G1 phase. Exposure of C6 glioma to VPA induced a marked up-regulation of cyclin D3 and decreased expression of the proliferating cell nuclear antigen. In synchronized cell populations, increased expression of cyclin D3 by VPA was detected in the mid-G1 phase (3-5 h). Immunocytochemical localization demonstrated rapid intracellular translocation of cyclin D3 to the nucleus following VPA exposure, suggesting that VPA-induced cell cycle arrest may be mediated by precocious activation of cyclin D3 in the G1 phase.
Collapse
Affiliation(s)
- Christopher L Bacon
- Department of Pharmacology, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | | | | | | |
Collapse
|
29
|
Kim HS, Rhim H, Jeong SW, Kim JW, Kim IK. Induction of apoptosis dependent on caspase activities and growth arrest in HL-60 cells by PGA2. Prostaglandins Other Lipid Mediat 2002; 70:169-83. [PMID: 12428687 DOI: 10.1016/s0090-6980(02)00064-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Prostaglandin (PG) A2 has been reported to inhibit the growth or induce apoptosis of various tumor cells. In the present study, PGA2 inhibited the growth of HL-60 cells and concomitantly-induced nuclear condensation and DNA fragmentation, characteristics of apoptosis. Down-regulation of c-myc mRNA, and activation of caspase-3 were observed in the PGA2 -treated cells. PGA2-induced DNA fragmentation was completely abolished in the presence of zVAD-Fmk or zDEVD-Fmk. But, relative cell survival was not improved up to that of untreated cells by pretreatment of caspase inhibitors, and c-myc down-regulation was not recovered by caspase inhibitors, either. Moreover, cytochrome c release and activation of caspase-9 was also observed in apoptotic cells and a specific inhibitor of caspase-9 (zLEHD-Fmk) prevented both DNA fragmentation and activation of caspase-3, but not relative cell survival, implying the upstream mitochondrial event of caspase-3 activation. In addition, antagonistic Fas antibody (ZB4) exerted no effect on the apoptosis. Taken together, these results suggest that PGA2 may induce the apoptosis as well as growth inhibition in HL-60 cells, and cytochrome c release and caspase activation seem to play a critical role in this apoptosis which might be independent or downstream of growth inhibition associated with c-myc down-regulation.
Collapse
Affiliation(s)
- Ho-Shik Kim
- Department of Biochemistry, College of Medicine, Catholic University of Korea, Seoul, South Korea
| | | | | | | | | |
Collapse
|
30
|
Abstract
Cyclopentenone prostaglandins (PGs), such as 15-deoxy-12,13-didehydro-14,15-didehydro-PGJ2 (15d-delta(12,14)-PDJ2), 12,13-didehydro-PGJ2 (delta12-PGJ2) and PGA2, are actively transported into cells and promote the expression of a variety of genes. The ultimate metabolite of PGD2, 15d-delta(12,14)-PGJ2, specifically binds to a nuclear receptor, the gamma isoform of the peroxisome proliferator-activated receptor, thereby promoting adipogenesis. Cyclopentenone PGs also induce the expression of various stress genes, such as heat shock proteins (HSPs), the immunoglobulin heavy chain binding protein (BiP) and protein disulfide isomerase by acting through heat shock element or unfolded protein response element. Overall, cyclopentenone PGs regulate cell growth, cell differentiation and stress responses by regulating various gene expression.
Collapse
Affiliation(s)
- Manabu Negishi
- Laboratory of Molecular Neurobiology, Graduate School of Biostudies, Kyoto University, Japan.
| | | |
Collapse
|
31
|
Prat MI, Adamo AM, González SA, Affranchino JL, Ikeda M, Matsubara E, Shoji M, Smith MA, Castaño EM, Morelli L. Presenilin 1 overexpressions in Chinese hamster ovary (CHO) cells decreases the phosphorylation of retinoblastoma protein: relevance for neurodegeneration. Neurosci Lett 2002; 326:9-12. [PMID: 12052526 DOI: 10.1016/s0304-3940(02)00298-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Mutations in the presenilin 1 (PS1) gene have been associated to familial Alzheimer disease although the exact pathogenic mechanism is unclear. We report that stable overexpression of wild type PS1 led to a decrease in cyclin-dependent kinase 4 (CDK 4) activity and retinoblastoma tumor suppressor protein (pRb) phosphorylation that correlated with decreased levels of beta-catenin and cyclin D1. PS1 mutant D385A also precipitated a similar effect suggesting that gamma-secretase cleavage is not essential for PS1-mediated CDK 4 inhibition. We postulate that PS1 overexpression may balance the hyperphosphorylation of pRb associated with death of post mitotic neurons after injury.
Collapse
Affiliation(s)
- María I Prat
- Instituto de Química y Fisicoquímica Biológicas (IQUIFIB) and Cátedra de Química Biológica Patológica, Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires-CONICET, Junin 956 (1113), Buenos Aires, Argentina
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Sayeed S, Cullen JP, Coppage M, Sitzmann JV, Redmond EM. Ethanol differentially modulates the expression and activity of cell cycle regulatory proteins in rat aortic smooth muscle cells. Eur J Pharmacol 2002; 445:163-70. [PMID: 12079680 DOI: 10.1016/s0014-2999(02)01761-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The aim of this study was to determine the effect of ethanol on cell cycle events during the G(1) and S phases in cultured vascular smooth muscle cells (VSMC). Flow cytometric analysis for the DNA content in rat aortic VSMC indicated that following ethanol treatment, the cell population in the G(0)/G(1) phase increased; 57.8+/-1.6% vs. 72.3+/-1.2%, concomitant with a decrease in cells in the S phase; 12.7+/-1.4% vs. 3.67+/-0.6%, for control vs. ethanol, respectively. Western blot analysis on VSMC lysates demonstrated that ethanol (10-160 mmol/l) dose-dependently inhibited serum-induced retinoblastoma (pRb) hyperphosphorylation. While having no effect on Cdk2 protein expression, ethanol dose-dependently decreased (IC(50) approximately 60 mmol/l) Cdk2 activity, assessed by histone H1 phosphorylation. Furthermore, ethanol induced the expression of the cyclin-dependent kinase (Cdk) inhibitor p21(waf1/cip1), and inhibited the induction of cyclin A. These data demonstrate that modulation of the expression and activity of key cell cycle regulatory molecules may be a mechanism by which ethanol inhibits VSMC proliferation. These actions of ethanol may be relevant to its cardiovascular protective effect in vivo.
Collapse
Affiliation(s)
- Shariq Sayeed
- Department of Surgery, University of Rochester Medical Center, Box SURG, 601 Elmwood Avenue, NY 14642-8410, USA
| | | | | | | | | |
Collapse
|
33
|
Fingrut O, Flescher E. Plant stress hormones suppress the proliferation and induce apoptosis in human cancer cells. Leukemia 2002; 16:608-16. [PMID: 11960340 DOI: 10.1038/sj.leu.2402419] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2001] [Accepted: 10/08/2001] [Indexed: 01/04/2023]
Abstract
Cellular stressors induce various outcomes including inhibition of cell proliferation and cell death. Sodium salicylate (SA), a plant stress hormone, can suppress the proliferation or cause apoptosis in certain mammalian cancer cells. Plant stress hormones are activators of cellular responses, including cell death, to diverse stress situations in plants. Thus, we hypothesized that plant stress hormones share the ability to adversely affect cancer cells. We found that the plant stress hormone SA suppressed proliferation of lymphoblastic leukemia, prostate, breast and melanoma human cancer cells. Jasmonic acid (JA), a plant stress hormone belonging to the Jasmonate family, induced death in lymphoblastic leukemia cells and caused suppression of cell proliferation in the other human cancer cells mentioned above. Another member of the Jasmonate family, methyl jasmonate (MJ), induced death in each of the cell lines. Plant stress hormones did not affect normal human lymphocytes, in contrast to their strong effect on lymphoblastic leukemia cells. JA and MJ caused apoptotic death, as determined by characteristic nuclear morphology, flow cytometric DNA profile and elevation of caspase-3 activity. Finally, mice bearing EL-4 lymphoma and treated with MJ, survived for significantly (P = 0.00953) longer periods of time than untreated mice. These findings suggest that plant stress hormones may potentially be a novel class of anti-cancer drugs.
Collapse
Affiliation(s)
- O Fingrut
- Department of Human Microbiology, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | | |
Collapse
|
34
|
Hsiang CH, Straus DS. Cyclopentenone causes cell cycle arrest and represses cyclin D1 promoter activity in MCF-7 breast cancer cells. Oncogene 2002; 21:2212-26. [PMID: 11948404 DOI: 10.1038/sj.onc.1205293] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2001] [Revised: 01/03/2002] [Accepted: 01/08/2002] [Indexed: 11/09/2022]
Abstract
Evidence indicates that overexpression of cyclin D1 is an important event in malignant transformation of breast cancer cells. Therefore, cyclin D1 is a potential target for mechanistically-based chemoprevention/treatment of breast cancer. Treatment of serum-stimulated quiescent MCF-7 breast cancer cells with cyclopentenone (2-cyclopenten-1-one) blocked progression through G1 and into S phase. Growth arrest of the cyclopentenone-treated cells in G1 was associated with changes in the levels of several proteins that control the cell cycle, including a dramatic decrease in cyclin D1 protein expression. Cyclopentenone also decreased the abundance of cyclin D1 mRNA and nuclear transcripts, indicating that it regulated cyclin D1 expression at the transcriptional level. Cyclopentenone selectively inhibited the activity of the cyclin D1 and cyclin A promoters but not the activity of several other control promoters. Deletion analysis indicated that the cyclopentenone response element was located in the cyclin D1 core promoter. Additional functional studies showed that a sequence within the core promoter (CycY, located downstream from the initiator element) played an important role in activation of the cyclin D1 promoter in MCF-7 cells. Electrophoretic mobility shift assays demonstrated specific binding of the transcription factor BTEB to the CycY site. The cyclopentenone response element did not correspond to the CycY site but rather mapped to the initiator element itself. The overall results suggest that cyclopentenone interferes with the transcription initiation complex that assembles over the cyclin D1 initiator element, leading to selective inhibition of cyclin D1 gene transcription.
Collapse
Affiliation(s)
- Chin-Hui Hsiang
- Biomedical Sciences Division and Biology Department, University of California, Riverside, California, CA 92521-0121, USA
| | | |
Collapse
|
35
|
You H, Zheng H, Murray SA, Yu Q, Uchida T, Fan D, Xiao ZXJ. IGF-1 induces Pin1 expression in promoting cell cycle S-phase entry. J Cell Biochem 2002; 84:211-6. [PMID: 11787050 DOI: 10.1002/jcb.10037] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Insulin-like growth factor I (IGF-1) is a well-established mitogen to many different cell types and is implicated in progression of a number of human cancers, notably breast cancer. The prolyl isomerase Pin1 plays an important role in cell cycle regulation through its specific interaction with proteins that are phosphorylated at Ser/Thr-Pro motifs. Pin1 knockout mice appear to have relatively normal development yet the Pin1(-/-)mouse embryo fibroblast (MEF) cells are defective in re-entering cell cycle in response to serum stimulation after G0 arrest. Here, we report that Pin1(-/-) MEF cells display a delayed cell cycle S-phase entry in response to IGF stimulation and that IGF-1 induces Pin1 protein expression which correlates with the induction of cyclin D1 and RB phosphorylation in human breast cancer cells. The induction of Pin1 by IGF-1 is mediated via the phosphatidylinositol 3-kinase as well as the MAP kinase pathways. Treatment of PI3K inhibitor LY294002 and the MAP kinase inhibitor PD098059, but not p38 inhibitor SB203580, effectively blocks IGF-1-induced upregulation of Pin1, cyclin D1 and RB phosphorylation. Furthermore, we found that Cyclin D1 expression and RB phosphorylation are dramatically decreased in Pin1(-/-) MEF cells. Reintroducing a recombinant adenovirus encoding Pin1 into Pin1(-/-) MEF cells restores the expression of cyclin D1 and RB phosphorylation. Thus, these data suggest that the mitogenic function of IGF-1 is at least partially linked to the induction of Pin1, which in turn stimulates cyclin D1 expression and RB phosphorylation, therefore contributing to G0/G1-S transition.
Collapse
Affiliation(s)
- Han You
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Clay CE, Atsumi GI, High KP, Chilton FH. Early de novo gene expression is required for 15-deoxy-Delta 12,14-prostaglandin J2-induced apoptosis in breast cancer cells. J Biol Chem 2001; 276:47131-5. [PMID: 11668172 DOI: 10.1074/jbc.c100339200] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Cyclopentenone prostaglandin derivatives of arachidonic acid are potent inducers of apoptosis in a variety of cancer cell types. Several investigators have shown that the terminal derivative of prostaglandin J(2) (PGJ(2)) metabolism, 15-deoxy-Delta(12,14)-PGJ(2) (15dPGJ(2)), induces apoptosis in breast cancer cells and is a potent activator of the nuclear hormone receptor peroxisome proliferator-activated receptor gamma (PPARgamma), but 15dPGJ(2) effects can be mediated by PPARgamma-dependent and PPARgamma-independent mechanisms. Here we report that 15dPGJ(2) regulates early gene expression critical to apoptosis. Specifically, 15dPGJ(2) induces potent and irreversible S phase arrest that is correlated with expression of genes critical to cell cycle arrest and apoptosis, including the cyclin-dependent kinase inhibitor p21(Waf1/Cip1) (p21). Inhibition of RNA or protein synthesis abrogates apoptosis induced by 15dPGJ(2) in breast cancer cells but potentiates apoptosis induced by tumor necrosis factor-alpha or CD95/Fas ligand. Additionally, 15dPGJ(2) induces caspase activation that is blocked by peptide caspase inhibitors. These data show that de novo gene transcription is necessary for 15dPGJ(2)-induced apoptosis in breast cancer cells. Critical candidate genes are likely to be revealed through analysis of differential cDNA array expression.
Collapse
Affiliation(s)
- C E Clay
- Department of Internal Medicine, Wake Forest University Baptist Medical Center, Winston Salem, NC 27157, USA
| | | | | | | |
Collapse
|
37
|
Göhring UJ, Bersch A, Becker M, Neuhaus W, Schöndorf T. p21(waf) correlates with DNA replication but not with prognosis in invasive breast cancer. J Clin Pathol 2001; 54:866-70. [PMID: 11684722 PMCID: PMC1731310 DOI: 10.1136/jcp.54.11.866] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND/AIMS p21(waf) plays a central role both in the regulation of the cell cycle and in DNA replication. Accordingly, p21(waf) is a putative tumour suppressor. The role of p21(waf) expression in breast cancer is still unclear, particularly with respect to the clinical situation. Therefore, this retrospective study was designed to investigate the value of immunohistochemically detected p21(waf) expression in invasive breast cancer. METHODS Cellular expression of p21(waf) was assessed in 307 breast cancer tissues by immunohistochemistry using the monoclonal antibody, clone 4D10. The data were correlated to established and functional factors of prognosis (age, menopausal status, tumour size, nodal status, tumour grade, receptor status, proliferating cell nuclear antigen (PCNA) expression, Her-2/neu expression, and p53 expression), and to clinical follow up (median observation time, 82 months). RESULTS Ninety nine of 307 (32.2%) tumour tissues were considered p21(waf) positive (nuclear staining). In the entire study group, p21(waf) expression correlated only with increased PCNA expression (chi(2) test: p = 0.029), and with none of the other investigated markers. In node negative patients (n = 134), p21(waf) expression correlated with increased tumour size and increased PCNA expression, whereas the node positive subgroup (n = 161) showed no correlation with these parameters (lymphonodectomy was done in 295 women). With respect to clinical outcome, p21(waf) expression showed a definite favourable trend in both subgroups (N0: p21(waf) negative, 23 of 87; p21(waf) positive, nine of 43. N+: p21(waf) negative, 63 of 107; p21(waf) positive, 23 of 52), but this observation was not significant (p > 0.05). Multivariate analysis for disease free survival as indicated by Cox regression analysis included all factors investigated. The most striking parameters were nodal status (relative risk (RR), 1.74; p = 0.00001), receptor status (RR, 0.59; p = 0.0085), tumour size (RR, 1.42; p = 0.02), and Her2/neu expression (RR, 1.56; p = 0.033). p21(waf) expression was not significant in the multivariate analysis (p > 0.05). CONCLUSIONS p21(waf) expression is an independent factor but fails to be of prognostic or predictive value in multivariate analysis. These data confirm the hypothesis of a p53 independent p21(waf) induction and suggest a functional role in the inhibition of PCNA mediated DNA replication.
Collapse
Affiliation(s)
- U J Göhring
- Department of Gynecology and Obstetrics, University of Cologne, 50924 Cologne, Germany
| | | | | | | | | |
Collapse
|
38
|
Clay CE, Namen AM, Atsumi G, Trimboli AJ, Fonteh AN, High KP, Chilton FH. Magnitude of peroxisome proliferator-activated receptor-gamma activation is associated with important and seemingly opposite biological responses in breast cancer cells. J Investig Med 2001; 49:413-20. [PMID: 11523697 DOI: 10.2310/6650.2001.33786] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
BACKGROUND The nuclear receptor peroxisome proliferator-activated receptor-gamma (PPARgamma) has become a potential target for the prevention and treatment of breast cancer. However, recent in vitro and in vivo studies have raised the question of whether activation of PPARgamma leads to the promotion or reduction of tumor formation. Studies using several cancer cell lines, animal models, and a variety of PPARgamma agonists have shown discordant results, including changes in cellular proliferation, differentiation, and apoptosis of cancer cells and tumors. METHODS We studied the effects of low-, moderate-, and high-dose treatment of the PPARgamma ligands 15-deoxy-delta1214 prostaglandin J2 (15dPGJ2) and troglitazone (TGZ) on parameters of cell growth, differentiation, and apoptosis in the epithelial breast cancer cell line MDA-MB-231. RESULTS The biologic effects of these compounds depend largely on ligand concentration and the degree of PPARgamma activation. For example, low concentrations of 15dPGJ2 (<2.5 microM) and TGZ (<5 microM) increased cellular proliferation, but concentrations of 15dPGJ2 > or = 10 microM and of TGZ at 100 microM blocked cell growth. TGZ (100 microM) slowed cell cycle progression, and 15dPGJ2 (10 microM) caused an S-phase arrest in the cell cycle and induced morphological characteristics consistent with apoptosis. Expression of CD36, a marker of differentiation in these cells, was induced by 2.5 microM 15dPGJ2 or 5 to 100 microM TGZ. However, higher concentrations of 15dPGJ2 did not alter CD36 expression. Transcriptional activation studies demonstrated that 15dPGJ2 is a more potent PPARgamma ligand than TGZ. Regardless of the ligand used, though, low transcriptional activation correlated with an increased cellular proliferation, whereas higher levels of activation correlated with cell cycle arrest and apoptosis. CONCLUSIONS PPARgamma activation induces several important and seemingly opposite changes in neoplastic cells, depending on the magnitude of PPARgamma activation. These data may explain, at least in part, some of the discordant results previously reported.
Collapse
Affiliation(s)
- C E Clay
- Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157-1042, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Wang W, Yang X, Cristofalo VJ, Holbrook NJ, Gorospe M. Loss of HuR is linked to reduced expression of proliferative genes during replicative senescence. Mol Cell Biol 2001; 21:5889-98. [PMID: 11486028 PMCID: PMC87308 DOI: 10.1128/mcb.21.17.5889-5898.2001] [Citation(s) in RCA: 146] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2001] [Accepted: 05/25/2001] [Indexed: 01/02/2023] Open
Abstract
Cellular aging is accompanied by alterations in gene expression patterns. Here, using two models of replicative senescence, we describe the influence of the RNA-binding protein HuR in regulating the expression of several genes whose expression decreases during senescence. We demonstrate that HuR levels, HuR binding to target mRNAs encoding proliferative genes, and the half-lives of such mRNAs are lower in senescent cells. Importantly, overexpression of HuR in senescent cells restored a "younger" phenotype, while a reduction in HuR expression accentuated the senescent phenotype. Our studies highlight a critical role for HuR during the process of replicative senescence.
Collapse
Affiliation(s)
- W Wang
- Laboratory of Cellular and Molecular Biology, National Institute on Aging-Intramural Research Program, National Institutes of Health, 5600 Nathan Shock Drive, Baltimore, MD 21224, USA
| | | | | | | | | |
Collapse
|
40
|
Straus DS, Glass CK. Cyclopentenone prostaglandins: new insights on biological activities and cellular targets. Med Res Rev 2001; 21:185-210. [PMID: 11301410 DOI: 10.1002/med.1006] [Citation(s) in RCA: 494] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The cyclopentenone prostaglandins PGA2, PGA1, and PGJ2 are formed by dehydration within the cyclopentane ring of PGE2, PGE1, and PGD2. PGJ2 is metabolized further to yield Delta(12)-PGJ(2) and 15-deoxy-Delta(12,14)-PGJ(2) (15d-PGJ(2)). Various compounds within the cyclopentenone prostaglandin family possess potent anti-inflammatory, anti-neoplastic, and anti-viral activity. Most actions of the cyclopentenone prostaglandins do not appear to be mediated by binding to G-protein coupled prostanoid receptors. Rather, the bioactivity of these compounds results from their interaction with other cellular target proteins. 15-deoxy-Delta(12,14)-PGJ(2) is a high affinity ligand for the nuclear receptor PPARgamma and modulates gene transcription by binding to this receptor. Other activities of the cyclopentenone prostaglandins are mediated by the reactive alpha,beta-unsaturated carbonyl group located in the cyclopentenone ring. The transcription factor NF-kappaB and its activating kinase are key targets for the anti-inflammatory activity of 15d-PGJ2, which inhibits NF-kappaB-mediated transcriptional activation by PPARgamma-dependent and independent molecular mechanisms. Other cyclopentenone prostaglandins, such as Delta(7)-PGA1 and Delta(12)-PGJ2, have strong anti-tumor activity. These compounds induce cell cycle arrest or apoptosis of tumor cells depending on the cell type and treatment conditions. We review here recent progress in understanding the mechanisms of action of the cyclopentenone prostaglandins and their possible use as therapeutic agents.
Collapse
Affiliation(s)
- D S Straus
- Biomedical Sciences Division and Biology Department, University of California, Riverside, CA 92521-0121, USA.
| | | |
Collapse
|
41
|
Fukushima S, Takeuchi Y, Kishimoto S, Yamashita S, Uetsuki K, Shirakawa S, Suzuki M, Furuta K, Noyori R, Sasaki H, Kikuchi Y, Kita T, Yamori T, Sawada J, Kojima M, Hazato A, Kurozumi S, Fukushima M. Antitumor activity, optimum administration method and pharmacokinetics of 13,14-dihydro-15-deoxy-deoxy-Delta7 -prostaglandin A1 methyl ester (TEI-9826) integrated in lipid microspheres (Lipo TEI-9826). Anticancer Drugs 2001; 12:221-34. [PMID: 11290870 DOI: 10.1097/00001813-200103000-00008] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
13,14-Dihydro-15-deoxy-Delta7-prostaglandin A1 methyl ester (TEI-9826), an antitumor prostaglandin analog, is a candidate for clinical trial. In the present study, we examined its biological stability in vitro, antitumor activity in vitro and in vivo, and pharmacokinetics. Although TEI-9826 was rapidly hydrolyzed to the carboxylic acid form (TOK-4528), TOK-4528 as well as Delta12-prostaglandin J2 (PGJ2) were found to be stable in rat, mouse and human serum in vitro. TEI-9826 exhibited nearly identical or greater potential antitumor activity compared to Delta12-PGJ2 and Delta7-PGA1 in vitro against Colon26 tumor cells. Further evaluation of TEI-9826 using the 38 human cancer cell lines panel and COMPARE analysis suggested that its mode of action is quite different from other anticancer agents that are currently used. TEI-9826 was integrated into lipid microspheres (Lipo TEI-9826) for dosing. Growth inhibition by Lipo TEI-9826 against Colon26 tumor inoculated s.c. in mice depended on administration route, i.e. at 80 mg/kg, no growth suppressive effect was observed for daily bolus i.v., but significant growth suppressive effect was observed for daily i.p., daily s.c. every other day s.c. and 4 times a day continuous (5 min) i.v. These tumor growth-suppressive effects were cytostatic and the tumor started to regrow at the end or a few days after the end of administration. The pharmacokinetic study suggested that maintaining the blood level of TEI-9826 and/or TOK-4528 was essential for their antitumor effects. These results show that continuous i.v. infusion might be the most suitable administration method of Lipo TEI-9826 for clinical trial.
Collapse
Affiliation(s)
- S Fukushima
- Department of Pharmaceutics, Faculty of Pharmaceutical Science and High Technology Research Center, Kobe Gakuin University, Nishiku, Kobe 651-2180, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
Two fundamental molecular pathways, the pRB and p53 pathways, regulate cell growth and cell death. The importance of these pathways in cellular growth control is underscored by the observation that members of these pathways are found mutated in all human cancers. These two pathways have typically been studied and described independently. However, as we discuss here, recent data have revealed an intimate molecular and genetic interaction between the p53 and pRB pathways.
Collapse
Affiliation(s)
- C L Stewart
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Ontario, Canada
| | | | | |
Collapse
|
43
|
Fukushima S, Kishimoto S, Takeuchi Y, Fukushima M. Preparation and evaluation of o/w type emulsions containing antitumor prostaglandin. Adv Drug Deliv Rev 2000; 45:65-75. [PMID: 11104898 DOI: 10.1016/s0169-409x(00)00101-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Antitumor prostaglandins(PGs) such as Delta12-PGJ2 and Delta7-PGA1 possess a cyclopentenone or cross-conjugated dienone structures. Antitumor PGs are actively incorporated through cell membrane and control gene expression. Very recent studies clarified that P53 independent expression of p21 and gadd 45, activation of PPARgamma are involved in antitumor mechanism of these PGs. At the low concentration, these PGs exhibit physiological or pathological activity such as osteoblast calcification, promotion of colon cancer cell proliferation. COMPARE PROGRAM using human 38 tumor cell lines suggested that antitumor mechanism of Delta7-PGA1 and 13, 14-dihydro-15-deoxy-Delta7-PGA1 methyl ester (TEI-9826) are quite different from other anticancer agents which are clinically used. Lipid microspheres and Lipiodol formulation were examined as dosage form of the PGs and lipid microspheres were selected for further study. At first lipid microspheres integrated TEI-9038 (Lipo TEI-9038) was chosen as a candidate for clinical trial. However Lipo TEI-9038 failed to exhibit substantial antitumor effect because of its enzymatic instability and toxicity in vivo. Lipo TEI-9826 was then selected as promising candidate for clinical trial because of its stability in serum. Lipo TEI-9826 exhibited marked antitumor effect in several animal models including CDDP resistant nude mice model. Pharmacokinetic and toxicological studies using rats suggested that continuous infusion is the most suitable administration method for Lipo TEI-9826. New type emulsifier, Controlled High Pressure Process Homogenizer (De-BEE 2000 and mini De-BEE) was developed during the preclinical studies on manufacturing process of Lipo TEI-9826. These results warrant the clinical trial for Lipo TEI-9826 in CDDP resistant cancer.
Collapse
Affiliation(s)
- S Fukushima
- Department of Pharmaceutics, Faculty of Pharmaceutical Science, Kobe Gakuin University, Nishiku, 651-2180, Kobe, Japan.
| | | | | | | |
Collapse
|
44
|
Turchi L, Loubat A, Rochet N, Rossi B, Ponzio G. Evidence for a direct correlation between c-Jun NH2 terminal kinase 1 activation, cyclin D2 expression, and G(1)/S phase transition in the murine hybridoma 7TD1 cells. Exp Cell Res 2000; 261:220-8. [PMID: 11082292 DOI: 10.1006/excr.2000.5060] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In this study we show that the addition of fresh culture medium to high-density growth-arrested 7TD1 cells induces a strong and transient stimulation of the c-Jun NH2 terminal kinase activity (Jun kinase/JNK), a marked increase in cyclin D2 expression, the phosphorylation of pRb, and the transition from G(1) to S phase. The stimulation of cyclin D2 expression and the induction of JNK activity appear to be the consequences of the alkalinization of the extracellular medium. Indeed both parameters (i) can be induced, regardless of cell dilution, by the addition of a weak base such as triethylamine, and (ii) are together inhibited by (N-ethyl-N-isopropyl)amiloride, a specific inhibitor of the Na(+)/H(+) exchanger. We provide a strong argument indicating the existence of a direct correlation between JNK1 activation and cyclin D2 stimulation. Indeed, we demonstrate that cyclin D2 expression is blocked by SB 202190, an agent known to inhibit both JNK and p38(MAPK), but not by SB 203580, a specific inhibitor of p38(MAPK). Furthermore, we also observed that DMSO and forskolin, two agents that inhibit the proliferation of 7TD1 cells, inhibit in parallel cyclin D2 and JNK1. Altogether our results suggest that (i) JNK1 participates in the signaling pathway which controls the expression of cyclin D2 and (ii) that the inhibition of JNK1 by DMSO and forskolin could explain, at least in part, the antiproliferative action of these drugs in 7TD1 cells.
Collapse
Affiliation(s)
- L Turchi
- "Biologie et Physiopathologie de la peau" Faculté de Médecine, INSERM U385, France
| | | | | | | | | |
Collapse
|
45
|
Lin S, Wang W, Wilson GM, Yang X, Brewer G, Holbrook NJ, Gorospe M. Down-regulation of cyclin D1 expression by prostaglandin A(2) is mediated by enhanced cyclin D1 mRNA turnover. Mol Cell Biol 2000; 20:7903-13. [PMID: 11027261 PMCID: PMC86401 DOI: 10.1128/mcb.20.21.7903-7913.2000] [Citation(s) in RCA: 116] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Prostaglandin A(2) (PGA(2)), an experimental chemotherapeutic agent, causes growth arrest associated with decreased cyclin D1 expression in several cancer cell lines. Here, using human non-small-cell lung carcinoma H1299 cells, we investigated the mechanisms whereby PGA(2) down-regulates cyclin D1 expression. Transcription rates of the cyclin D1 gene, studied using a cyclin D1 promoter-luciferase construct and nuclear run-on assays, were not affected by PGA(2) treatment. Instead, the cyclin D1 mRNA was rendered unstable after exposure to PGA(2). Since the stability of labile mRNA is modulated through binding of proteins to specific mRNA sequences, we sought to identify protein(s) recognizing the cyclin D1 mRNA. In electrophoretic mobility-shift assays using radiolabeled RNA probes derived from different regions of cyclin D1 mRNA, we observed that (i) lysates prepared from PGA(2)-treated cells exhibited enhanced protein-cyclin D1 RNA complex formation; (ii) the kinetics of complex formation correlated closely with that of cyclin D1 mRNA loss; and (iii) binding occurred within a 390-base cyclin D1 3' untranslated region (UTR) (K12). This binding activity could be cross-linked, revealing proteins ranging from 30 to 47 kDa. The RNA-binding protein AUF1, previously associated with the degradation of target mRNAs, bound cyclin D1 mRNA, because anti-AUF1 antibodies were capable of supershifting or immunoprecipitating cyclin D1 mRNA-protein complexes. Finally, insertion of K12 in the 3'UTR of reporter genes markedly reduced the expression and half-life of the resulting chimeric mRNAs in transfected, PGA(2)-treated cells. Our data demonstrate that PGA(2) down-regulates cyclin D1 expression by decreasing cyclin D1 mRNA stability and implicates a 390-base element in the 3'UTR in this regulation.
Collapse
Affiliation(s)
- S Lin
- Laboratory of Biological Chemistry, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Satoh T, Furuta K, Tomokiyo K, Nakatsuka D, Tanikawa M, Nakanishi M, Miura M, Tanaka S, Koike T, Hatanaka H, Ikuta K, Suzuki M, Watanabe Y. Facilitatory roles of novel compounds designed from cyclopentenone prostaglandins on neurite outgrowth-promoting activities of nerve growth factor. J Neurochem 2000; 75:1092-102. [PMID: 10936191 DOI: 10.1046/j.1471-4159.2000.0751092.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cyclopentenone prostaglandins (PGs) are known to arrest the cell cycle at the G(1) phase in vitro and to suppress tumor growth in vivo. However, their effects on neurons are unclear. Here, we report that some cyclopentenone PGs function as neurite outgrowth-promoting factors. They promoted neurite outgrowth from PC12 cells and from dorsal root ganglion explants but only in the presence of nerve growth factor (NGF). We refer to these PGs as neurite outgrowth-promoting PGs (NEPPs). Through study of the structure-function relationship of NEPP1-10 and related compounds, we found that the cross-conjugated dienone moiety of NEPPs was essential for promoting neurite outgrowth, and NEPP10 was concluded to be the best candidate for drug development. We also investigated the intracellular mechanism of the promotion by NEPPs and obtained evidence that immunoglobulin heavy chain binding protein/glucose-regulated protein 78 (BiP/GRP78) plays a role in the promotion, based on the following observations: Antisense nucleotides for BiP/GRP78 gene blocked the promotion of neurite outgrowth; BiP/GRP78 protein level increased in response to NEPPs; and overexpression of BiP/GRP78 protein by adenoviral gene transfer promoted the neurite outgrowth by NGF.
Collapse
Affiliation(s)
- T Satoh
- Department of Neuroscience, Osaka Bioscience Institute, Osaka, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Renes J, de Vries EE, Hooiveld GJ, Krikken I, Jansen PL, Müller M. Multidrug resistance protein MRP1 protects against the toxicity of the major lipid peroxidation product 4-hydroxynonenal. Biochem J 2000; 350 Pt 2:555-61. [PMID: 10947971 PMCID: PMC1221284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
4-Hydroxynonenal (4HNE) is the most prevalent toxic lipid peroxidation product formed during oxidative stress. It exerts its cytotoxicity mainly by the modification of intracellular proteins. The detection of 4HNE-modified proteins in several degenerative disorders suggests a role for 4HNE in the onset of these diseases. Efficient protection mechanisms are required to prevent the intracellular accumulation of 4HNE. The toxicity of 4HNE was tested with the small cell lung cancer cell lines GLC(4) and the multidrug-resistance-protein (MRP1)-overexpressing counterpart GLC(4)/Adr. In the presence of the MRP1 inhibitor MK571 or the GSH-depleting agent buthionine sulphoximine, both cell lines became more sensitive and showed decreased survival. Transport experiments were performed with the (3)H-labelled glutathione S-conjugate of 4HNE ([(3)H]GS-4HNE) with membrane vesicles from GLC(4)-derived cell lines with different expression levels of MRP1. [(3)H]GS-4HNE was taken up in an ATP-dependent manner and the transport rate was dependent on the amount of MRP1. The MRP1 inhibitor MK571 decreased [(3)H]GS-4HNE uptake. MRP1-specific [(3)H]GS-4HNE transport was demonstrated with membrane vesicles from High Five insect cells overexpressing recombinant MRP1. Kinetic experiments showed an apparent K(m) of 1.6+/-0.21 microM (mean+/-S.D.) for MRP1-mediated [(3)H]GS-4HNE transport. In conclusion, MRP1 has a role in the protection against 4HNE toxicity and GS-4HNE is a novel MRP1 substrate. MRP1, together with GSH, is hypothesized to have a role in the defence against oxidative stress.
Collapse
Affiliation(s)
- J Renes
- Division of Gastroenterology and Hepatology, Groningen University Institute for Drug Exploration (GUIDE), University Hospital Groningen, NL-9700 RB Groningen, The Netherlands
| | | | | | | | | | | |
Collapse
|
48
|
Henriet P, Zhong ZD, Brooks PC, Weinberg KI, DeClerck YA. Contact with fibrillar collagen inhibits melanoma cell proliferation by up-regulating p27KIP1. Proc Natl Acad Sci U S A 2000; 97:10026-31. [PMID: 10944199 PMCID: PMC27660 DOI: 10.1073/pnas.170290997] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
It is known that the extracellular matrix regulates normal cell proliferation, and it is assumed that anchorage-independent malignant cells escape this regulatory function. Here we demonstrate that human M24met melanoma cells remain responsive to growth regulatory signals that result from contact with type I collagen and that the effect on proliferation depends on the physical structure of the collagen. On polymerized fibrillar collagen, M24met cells are growth arrested at the G(1)/S checkpoint and maintain high levels of p27(KIP1) mRNA and protein. In contrast, on nonfibrillar (denatured) collagen, the cells enter the cell cycle, and p27(KIP1) is down-regulated. These growth regulatory effects involve contact between type I collagen and the collagen-binding integrin alpha(2)beta(1), which appears restricted in the presence of fibrillar collagen. Thus melanoma cells remain sensitive to negative growth regulatory signals originating from fibrillar collagen, and the proteolytic degradation of fibrils is a mechanism allowing tumor cells to escape these restrictive signals.
Collapse
Affiliation(s)
- P Henriet
- Division of Hematology-Oncology, Department of Pediatrics, Childrens Hospital Los Angeles, California 90027, USA
| | | | | | | | | |
Collapse
|
49
|
Panigone S, Debernardi S, Taya Y, Fontanella E, Airoldi R, Delia D. pRb and Cdk regulation by N-(4-hydroxyphenyl)retinamide. Oncogene 2000; 19:4035-41. [PMID: 10962560 DOI: 10.1038/sj.onc.1203743] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The cancer chemopreventive synthetic retinoid N-(4-hydroxyphenyl)retinamide (HPR) can inhibit the growth and induce apoptosis of tumor cells. In this study we analysed the growth suppressive effect of HPR on human breast cancer cell lines in vitro and the role of the retinoblastoma protein (pRb) in this response. Treatment of MCF7, T47D and SKBR3 for 24 - 48 h with 3 microM HPR, a concentration attainable in vivo, resulted in growth inhibition and marked dephosphorylation of pRb involving Ser612, Thr821, Ser795 and Ser780, target residues for cyclin-dependent kinase 2 (Cdk2) the former two, and Cdk4 the latter two. Interestingly, this dephosphorylation of pRb occurred in S-G2-M phase cells, as revealed by experiments on cells fractionated by FACS according to the cell cycle phase, hence suggesting that the retinoid interferes with the regulation of pRb phosphorylation. The in vitro phosphorylation of a GST-pRb recombinant substrate by Cdk2 immunocomplexes from MCF7, T47D and SKBR3 was markedly suppressed after HPR treatment, whereas that by Cdk4 complexes was suppressed in T47D and SKBR3 but not in MCF7. The steady-state levels of Cdk2, Cdk4 and Cyclin A proteins were unaffected by HPR, while those of Cyclin D1 were significantly reduced in all three cell lines. Interestingly, Cyclin D1 downregulation by HPR correlated with transcriptional repression, but not with enhanced proteolysis of Cyclin D1 typically elicited by other retinoids. Collectively, our data suggest that the antiproliferative activity of HPR arises from its capacity to maintain pRb in a de-phosphorylated growth-suppressive status in S-G2/M, possibly through Cyclin D1 downregulation and inhibition of pRb-targeting Cdks. Oncogene (2000) 19, 4035 - 41.
Collapse
Affiliation(s)
- S Panigone
- Department of Experimental Oncology, Istituto Nazionale Tumori, Via G. Venezian 1, 20133 Milan, Italy
| | | | | | | | | | | |
Collapse
|
50
|
Moos PJ, Edes K, Fitzpatrick FA. Inactivation of wild-type p53 tumor suppressor by electrophilic prostaglandins. Proc Natl Acad Sci U S A 2000; 97:9215-20. [PMID: 10908664 PMCID: PMC16848 DOI: 10.1073/pnas.160241897] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The electrophilic eicosanoids prostaglandins A(1) or A(2) impaired p53-dependent transcription of endogenous genes and exogenous p53-luciferase reporter plasmids in RKO and HCT 116 colon cancer cells. Cellular accumulation of genetically wild-type, but transcriptionally silent p53 varied as a function of exposure time and concentration of prostaglandins A(1) and A(2). Prostaglandins A(1) and A(2) induced a conformational change in wild-type p53 that corresponded with its inactivation and its aberrant redistribution from the cytosol to the nucleus. Derangement of its transcriptional activity manifested as inhibition of p53-mediated apoptosis by etoposide, a representative antineoplastic agent. We conclude that electrophilic eicosanoids impair the role of wild-type p53 as a guardian of genomic integrity by a process distinct from somatic mutation or viral oncoprotein binding. This process may pertain to malignant and premalignant conditions, such as colon carcinoma and adenoma, which often harbor a genetically wild-type, but inactive form of p53 tumor suppressor.
Collapse
Affiliation(s)
- P J Moos
- Huntsman Cancer Institute, University of Utah, 2000 Circle of Hope, Salt Lake City, UT 84112-5550, USA
| | | | | |
Collapse
|