1
|
Ji X, Chen L, Yang G, Tang C, Zhou W, Liu T, Lu X. Mutagenesis and fluorescence-activated cell sorting of oleaginous Saccharomyces cerevisiae and the multi-omics analysis of its high lipid accumulation mechanisms. BIORESOURCE TECHNOLOGY 2024; 406:131062. [PMID: 38964514 DOI: 10.1016/j.biortech.2024.131062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/14/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024]
Abstract
Acquiring lipid-producing strains of Saccharomyces cerevisiae is necessary for producing high-value palmitoleic acid. This study sought to generate oleaginous S. cerevisiae mutants through a combination of zeocin mutagenesis and fluorescence-activated cell sorting, and then to identify key mutations responsible for enhanced lipid accumulation by multi-omics sequencing. Following three consecutive rounds of mutagenesis and sorting, a mutant, MU310, with the lipid content of 44%, was successfully obtained. Transcriptome and targeted metabolome analyses revealed that a coordinated response involving fatty acid precursor biosynthesis, nitrogen metabolism, pentose phosphate pathway, ethanol conversion, amino acid metabolism and fatty acid β-oxidation was crucial for promoting lipid accumulation. The carbon fluxes of acetyl-CoA and NADPH in lipid biosynthesis were boosted in these pathways. Certain transcriptional regulators may also play significant roles in modulating lipid biosynthesis. Results of this study provide high-quality resource for palmitoleic acid production and deepen the understanding of lipid synthesis in yeast.
Collapse
Affiliation(s)
- Xiaotong Ji
- Key Laboratory of Biofuels, Key Laboratory of Shandong Energy Biological Genetic Resources, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Songling Rd 189, Qingdao 266101, China; Shandong Energy Institute, Songling Rd 189, Qingdao 266101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lin Chen
- Key Laboratory of Biofuels, Key Laboratory of Shandong Energy Biological Genetic Resources, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Songling Rd 189, Qingdao 266101, China; Shandong Energy Institute, Songling Rd 189, Qingdao 266101, China
| | - Guanpin Yang
- College of Marine Life Sciences, Ocean University of China, Songling Rd 238, Qingdao 266100, China
| | - Chunlei Tang
- Key Laboratory of Biofuels, Key Laboratory of Shandong Energy Biological Genetic Resources, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Songling Rd 189, Qingdao 266101, China; Shandong Energy Institute, Songling Rd 189, Qingdao 266101, China
| | - Wenjun Zhou
- Key Laboratory of Biofuels, Key Laboratory of Shandong Energy Biological Genetic Resources, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Songling Rd 189, Qingdao 266101, China; Shandong Energy Institute, Songling Rd 189, Qingdao 266101, China.
| | - Tianzhong Liu
- Key Laboratory of Biofuels, Key Laboratory of Shandong Energy Biological Genetic Resources, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Songling Rd 189, Qingdao 266101, China; Shandong Energy Institute, Songling Rd 189, Qingdao 266101, China.
| | - Xuefeng Lu
- Key Laboratory of Biofuels, Key Laboratory of Shandong Energy Biological Genetic Resources, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Songling Rd 189, Qingdao 266101, China; Shandong Energy Institute, Songling Rd 189, Qingdao 266101, China
| |
Collapse
|
2
|
Wang Y, Qin P, Zhao C, Li Y, Li S, Fan F, Li D, Huang H, Duan H, Yang X, Du W, Li Y. Evaluating anti-viral effect of Ivermectin on porcine epidemic diarrhea virus and analyzing the related genes and signaling pathway by RNA-seq in vitro. Virology 2023; 587:109877. [PMID: 37688922 DOI: 10.1016/j.virol.2023.109877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/28/2023] [Accepted: 08/31/2023] [Indexed: 09/11/2023]
Abstract
Porcine epidemic diarrhea virus (PEDV) has catastrophic impacts on the global pig industry. However, there remains no effective drugs for PEDV infection. Ivermectin is an FDA-approved anthelmintic drug used to treat worm infections. In this study, we reported the broad-spectrum antiviral activity of Ivermectin in vitro. Ivermectin can inhibit PEDV infections of different genotypes. Avermectin derivatives can also inhibit PEDV infections. A time of addition assay showed that Ivermectin exhibited potent anti-PEDV activity when added simultaneously with or post virus infection. Furthermore, Ivermectin significantly inhibited the late stage of viral infection by affecting viral release. RNA sequencing indicates Ivermectin induces cell cycle arrest, which may be related to its ability to inhibit viral release. Interestingly, when combined with Niclosamide, Ivermectin demonstrated an enhanced anti-PEDV effect. These findings highlight Ivermectin as a novel antiviral agent with potential for the development of drugs against PEDV infection.
Collapse
Affiliation(s)
- Yue Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China.
| | - Panpan Qin
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China.
| | - Chenxu Zhao
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China.
| | - Yaqin Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China.
| | - Shuai Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China.
| | - Fangfang Fan
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China.
| | - Dongliang Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Henan Agricultural University, Zhengzhou, 450046, China.
| | - Huimin Huang
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, 6 Long-zi-hu Street, Zhengzhou, 450046, China.
| | - Hong Duan
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Henan Agricultural University, Zhengzhou, 450046, China.
| | - Xia Yang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Henan Agricultural University, Zhengzhou, 450046, China.
| | - Wenjuan Du
- Faculty of Veterinary Medicine, Utrecht University, Utrecht, 3584, CL, the Netherlands.
| | - Yongtao Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Henan Agricultural University, Zhengzhou, 450046, China; Faculty of Veterinary Medicine, Utrecht University, Utrecht, 3584, CL, the Netherlands.
| |
Collapse
|
3
|
Korpys-Woźniak P, Celińska E. Molecular background of HAC1-driven improvement in the secretion of recombinant protein in Yarrowia lipolytica based on comparative transcriptomics. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2023; 38:e00801. [PMID: 37234569 PMCID: PMC10206436 DOI: 10.1016/j.btre.2023.e00801] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 05/07/2023] [Indexed: 05/28/2023]
Abstract
While the unfolded protein response (UPR) and its major regulator - transcription factor Hac1 are well-conserved across Eukarya, species-specific variations are repeatedly reported. Here we investigated molecular mechanisms by which co-over-expression of HAC1 improves secretion of a recombinant protein (r-Prot) in Yarrowia lipolytica, using comparative transcriptomics. Co-over-expression of HAC1 caused an >2-fold increase in secreted r-Prot, but its intracellular levels were decreased. The unconventional splicing rate of the HAC1 mRNA was counted through transcript sequencing. Multiple biological processes were affected in the HAC1-and-r-Prot co-over-expressing strain, including ribosome biogenesis, nuclear and mitochondrial events, cell cycle arrest, attenuation of gene expression by RNA polymerase III and II, as well as modulation of proteolysis and RNA metabolism; but whether the HAC1 co-over-expression/induction was the actual causative agent for these changes, was not always clear. We settled that the expression of the "conventional" HAC1 targets (KAR2 and PDI1) is not affected by its over-expression.
Collapse
|
4
|
Minden S, Aniolek M, Noorman H, Takors R. Performing in spite of starvation: How Saccharomyces cerevisiae maintains robust growth when facing famine zones in industrial bioreactors. Microb Biotechnol 2022; 16:148-168. [PMID: 36479922 PMCID: PMC9803336 DOI: 10.1111/1751-7915.14188] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/08/2022] [Accepted: 11/13/2022] [Indexed: 12/13/2022] Open
Abstract
In fed-batch operated industrial bioreactors, glucose-limited feeding is commonly applied for optimal control of cell growth and product formation. Still, microbial cells such as yeasts and bacteria are frequently exposed to glucose starvation conditions in poorly mixed zones or far away from the feedstock inlet point. Despite its commonness, studies mimicking related stimuli are still underrepresented in scale-up/scale-down considerations. This may surprise as the transition from glucose limitation to starvation has the potential to provoke regulatory responses with negative consequences for production performance. In order to shed more light, we performed gene-expression analysis of Saccharomyces cerevisiae grown in intermittently fed chemostat cultures to study the effect of limitation-starvation transitions. The resulting glucose concentration gradient was representative for the commercial scale and compelled cells to tolerate about 76 s with sub-optimal substrate supply. Special attention was paid to the adaptation status of the population by discriminating between first time and repeated entry into the starvation regime. Unprepared cells reacted with a transiently reduced growth rate governed by the general stress response. Yeasts adapted to the dynamic environment by increasing internal growth capacities at the cost of rising maintenance demands by 2.7%. Evidence was found that multiple protein kinase A (PKA) and Snf1-mediated regulatory circuits were initiated and ramped down still keeping the cells in an adapted trade-off between growth optimization and down-regulation of stress response. From this finding, primary engineering guidelines are deduced to optimize both the production host's genetic background and the design of scale-down experiments.
Collapse
Affiliation(s)
- Steven Minden
- Institute of Biochemical EngineeringUniversity of StuttgartStuttgartGermany
| | - Maria Aniolek
- Institute of Biochemical EngineeringUniversity of StuttgartStuttgartGermany
| | - Henk Noorman
- Royal DSMDelftThe Netherlands,Department of BiotechnologyDelft University of TechnologyDelftThe Netherlands
| | - Ralf Takors
- Institute of Biochemical EngineeringUniversity of StuttgartStuttgartGermany
| |
Collapse
|
5
|
Abstract
Most cells live in environments that are permissive for proliferation only a small fraction of the time. Entering quiescence enables cells to survive long periods of nondivision and reenter the cell cycle when signaled to do so. Here, we describe what is known about the molecular basis for quiescence in Saccharomyces cerevisiae, with emphasis on the progress made in the last decade. Quiescence is triggered by depletion of an essential nutrient. It begins well before nutrient exhaustion, and there is extensive crosstalk between signaling pathways to ensure that all proliferation-specific activities are stopped when any one essential nutrient is limiting. Every aspect of gene expression is modified to redirect and conserve resources. Chromatin structure and composition change on a global scale, from histone modifications to three-dimensional chromatin structure. Thousands of proteins and RNAs aggregate, forming unique structures with unique fates, and the cytoplasm transitions to a glass-like state.
Collapse
Affiliation(s)
- Linda L Breeden
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA; ,
| | - Toshio Tsukiyama
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA; ,
| |
Collapse
|
6
|
Wu Y, Devotta A, José-Edwards DS, Kugler JE, Negrón-Piñeiro LJ, Braslavskaya K, Addy J, Saint-Jeannet JP, Di Gregorio A. Xbp1 and Brachyury establish an evolutionarily conserved subcircuit of the notochord gene regulatory network. eLife 2022; 11:e73992. [PMID: 35049502 PMCID: PMC8803312 DOI: 10.7554/elife.73992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 01/19/2022] [Indexed: 11/13/2022] Open
Abstract
Gene regulatory networks coordinate the formation of organs and structures that compose the evolving body plans of different organisms. We are using a simple chordate model, the Ciona embryo, to investigate the essential gene regulatory network that orchestrates morphogenesis of the notochord, a structure necessary for the proper development of all chordate embryos. Although numerous transcription factors expressed in the notochord have been identified in different chordates, several of them remain to be positioned within a regulatory framework. Here, we focus on Xbp1, a transcription factor expressed during notochord formation in Ciona and other chordates. Through the identification of Xbp1-downstream notochord genes in Ciona, we found evidence of the early co-option of genes involved in the unfolded protein response to the notochord developmental program. We report the regulatory interplay between Xbp1 and Brachyury, and by extending these results to Xenopus, we show that Brachyury and Xbp1 form a cross-regulatory subcircuit of the notochord gene regulatory network that has been consolidated during chordate evolution.
Collapse
Affiliation(s)
- Yushi Wu
- Department of Molecular Pathobiology, New York University College of DentistryNew YorkUnited States
| | - Arun Devotta
- Department of Molecular Pathobiology, New York University College of DentistryNew YorkUnited States
| | - Diana S José-Edwards
- Department of Molecular Pathobiology, New York University College of DentistryNew YorkUnited States
| | - Jamie E Kugler
- Department of Molecular Pathobiology, New York University College of DentistryNew YorkUnited States
| | - Lenny J Negrón-Piñeiro
- Department of Molecular Pathobiology, New York University College of DentistryNew YorkUnited States
| | - Karina Braslavskaya
- Department of Molecular Pathobiology, New York University College of DentistryNew YorkUnited States
| | - Jermyn Addy
- Department of Molecular Pathobiology, New York University College of DentistryNew YorkUnited States
| | | | - Anna Di Gregorio
- Department of Molecular Pathobiology, New York University College of DentistryNew YorkUnited States
| |
Collapse
|
7
|
Argüello-Miranda O, Marchand AJ, Kennedy T, Russo MAX, Noh J. Cell cycle-independent integration of stress signals by Xbp1 promotes Non-G1/G0 quiescence entry. J Cell Biol 2022; 221:212720. [PMID: 34694336 PMCID: PMC8548912 DOI: 10.1083/jcb.202103171] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 08/27/2021] [Accepted: 10/05/2021] [Indexed: 12/15/2022] Open
Abstract
Cellular quiescence is a nonproliferative state required for cell survival under stress and during development. In most quiescent cells, proliferation is stopped in a reversible state of low Cdk1 kinase activity; in many organisms, however, quiescent states with high-Cdk1 activity can also be established through still uncharacterized stress or developmental mechanisms. Here, we used a microfluidics approach coupled to phenotypic classification by machine learning to identify stress pathways associated with starvation-triggered high-Cdk1 quiescent states in Saccharomyces cerevisiae. We found that low- and high-Cdk1 quiescent states shared a core of stress-associated processes, such as autophagy, protein aggregation, and mitochondrial up-regulation, but differed in the nuclear accumulation of the stress transcription factors Xbp1, Gln3, and Sfp1. The decision between low- or high-Cdk1 quiescence was controlled by cell cycle-independent accumulation of Xbp1, which acted as a time-delayed integrator of the duration of stress stimuli. Our results show how cell cycle-independent stress-activated factors promote cellular quiescence outside G1/G0.
Collapse
Affiliation(s)
- Orlando Argüello-Miranda
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX.,Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX
| | - Ashley J Marchand
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Taylor Kennedy
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX.,School of Natural Sciences and Mathematics, University of Texas at Dallas, Richardson, TX
| | - Marielle A X Russo
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Jungsik Noh
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX
| |
Collapse
|
8
|
Wang T, Zhou J, Zhang X, Wu Y, Jin K, Wang Y, Xu R, Yang G, Li W, Jiao L. X-box Binding Protein 1: An Adaptor in the Pathogenesis of Atherosclerosis. Aging Dis 2022; 14:350-369. [PMID: 37008067 PMCID: PMC10017146 DOI: 10.14336/ad.2022.0824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 08/24/2022] [Indexed: 11/18/2022] Open
Abstract
Atherosclerosis (AS), the formation of fibrofatty lesions in the vessel wall, is the primary cause of heart disease and stroke and is closely associated with aging. Disrupted metabolic homeostasis is a primary feature of AS and leads to endoplasmic reticulum (ER) stress, which is an abnormal accumulation of unfolded proteins. By orchestrating signaling cascades of the unfolded protein response (UPR), ER stress functions as a double-edged sword in AS, where adaptive UPR triggers synthetic metabolic processes to restore homeostasis, whereas the maladaptive response programs the cell to the apoptotic pathway. However, little is known regarding their precise coordination. Herein, an advanced understanding of the role of UPR in the pathological process of AS is reviewed. In particular, we focused on a critical mediator of the UPR, X-box binding protein 1 (XBP1), and its important role in balancing adaptive and maladaptive responses. The XBP1 mRNA is processed from the unspliced isoform (XBP1u) to the spliced isoform of XBP1 (XBP1s). Compared with XBP1u, XBP1s predominantly functions downstream of inositol-requiring enzyme-1α (IRE1α) and transcript genes involved in protein quality control, inflammation, lipid metabolism, carbohydrate metabolism, and calcification, which are critical for the pathogenesis of AS. Thus, the IRE1α/XBP1 axis is a promising pharmaceutical candidate against AS.
Collapse
Affiliation(s)
- Tao Wang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China.
- China International Neuroscience Institute (China-INI), Beijing, China.
| | - Jia Zhou
- Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.
| | - Xiao Zhang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China.
- China International Neuroscience Institute (China-INI), Beijing, China.
| | - Yujie Wu
- Laboratory of Computational Biology and Machine Intelligence, National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China.
| | - Kehan Jin
- Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.
| | - Yilin Wang
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China.
| | - Ran Xu
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China.
- China International Neuroscience Institute (China-INI), Beijing, China.
| | - Ge Yang
- Laboratory of Computational Biology and Machine Intelligence, National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China.
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China.
- Correspondence should be addressed to: Dr. Ge Yang, Chinese Academy of Sciences, Beijing, China. , Dr. Wenjing Li, Chinese Academy of Sciences, Beijing, China. ; Dr. Liqun Jiao, Xuanwu Hospital, Capital Medical University, Beijing, China. .
| | - Wenjing Li
- Laboratory of Computational Biology and Machine Intelligence, National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China.
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China.
- Correspondence should be addressed to: Dr. Ge Yang, Chinese Academy of Sciences, Beijing, China. , Dr. Wenjing Li, Chinese Academy of Sciences, Beijing, China. ; Dr. Liqun Jiao, Xuanwu Hospital, Capital Medical University, Beijing, China. .
| | - Liqun Jiao
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China.
- China International Neuroscience Institute (China-INI), Beijing, China.
- Department of Interventional Radiology, Xuanwu Hospital, Capital Medical University, Beijing, China.
- Correspondence should be addressed to: Dr. Ge Yang, Chinese Academy of Sciences, Beijing, China. , Dr. Wenjing Li, Chinese Academy of Sciences, Beijing, China. ; Dr. Liqun Jiao, Xuanwu Hospital, Capital Medical University, Beijing, China. .
| |
Collapse
|
9
|
Zhang S, Zhu P, Cao B, Ma S, Li R, Wang X, Zhao A. An APSES Transcription Factor Xbp1 Is Required for Sclerotial Development, Appressoria Formation, and Pathogenicity in Ciboria shiraiana. Front Microbiol 2021; 12:739686. [PMID: 34646256 PMCID: PMC8503677 DOI: 10.3389/fmicb.2021.739686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 08/26/2021] [Indexed: 11/26/2022] Open
Abstract
Sclerotinia diseases are important plant fungal diseases that, causes huge economic worldwide losses every year. Ciboria shiraiana is the main pathogen that results in mulberry sclerotia diseases. Sclerotia and appressoria play important roles in long-term pathogen survival and in host infection during life and disease cycles. However, the molecular mechanisms of sclerotial development and appressoria formation in C. shiraiana have not been well studied. Here, an Asm1p, Phd1p, Sok2p, Efg1p and StuAp (APSES)-type transcription factor in C. shiraiana, CsXbp1, involved in sclerotial development and appressoria formation was functionally characterized. Bioinformatics analyses showed that CsXbp1 contained an APSES-type DNA binding domain. The expression levels of CsXbp1 were higher in sclerotia and during later stages of infection. Compared with wild-type strains, hyphal growth was slower, the number and weight of sclerotia were reduced significantly, and appressoria formation was obviously delayed in CsXbp1 RNA interference (RNAi) strains. Moreover, the CsXbp1 RNAi strains showed weakened pathogenicity owing to compound appressoria defects. Tobacco rattle virus-mediated host-induced gene silencing enabled Nicotiana benthamiana to increase its resistance to C. shiraiana by reducing the CsXbp1 transcripts level. Thus, CsXbp1 plays vital roles in sclerotial formation, appressoria formation, and pathogenicity in C. shiraiana. This study provides new insights into the infection mechanisms of C. shiraiana and plant resistance breeding.
Collapse
Affiliation(s)
- Shuai Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Panpan Zhu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China.,Key Laboratory of Biorheological Science and Technology, Ministry of Education, Chongqing University, Chongqing, China
| | - Boning Cao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China.,College of Life Sciences, Xinyang Normal University, Xinyang, China
| | - Shuyu Ma
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Ruolan Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Xie Wang
- Institute of Agricultural Resources and Environment, Sichuan Academy of Agricultural Sciences, Sichuan, China
| | - Aichun Zhao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| |
Collapse
|
10
|
Miles S, Bradley GT, Breeden LL. The budding yeast transition to quiescence. Yeast 2021; 38:30-38. [PMID: 33350501 DOI: 10.1002/yea.3546] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 12/18/2020] [Indexed: 11/06/2022] Open
Abstract
A subset of Saccharomyces cerevisiae cells in a stationary phase culture achieve a unique quiescent state characterized by increased cell density, stress tolerance, and longevity. Trehalose accumulation is necessary but not sufficient for conferring this state, and it is not recapitulated by abrupt starvation. The fraction of cells that achieve this state varies widely in haploids and diploids and can approach 100%, indicating that both mother and daughter cells can enter quiescence. The transition begins when about half the glucose has been taken up from the medium. The high affinity glucose transporters are turned on, glycogen storage begins, the Rim15 kinase enters the nucleus and the accumulation of cells in G1 is initiated. After the diauxic shift (DS), when glucose is exhausted from the medium, growth promoting genes are repressed by the recruitment of the histone deacetylase Rpd3 by quiescence-specific repressors. The final division that takes place post-DS is highly asymmetrical and G1 arrest is complete after 48 h. The timing of these events can vary considerably, but they are tightly correlated with total biomass of the culture, suggesting that the transition to quiescence is tightly linked to changes in external glucose levels. After 7 days in culture, there are massive morphological changes at the protein and organelle level. There are global changes in histone modification. An extensive array of condensin-dependent, long-range chromatin interactions lead to genome-wide chromatin compaction that is conserved in yeast and human cells. These interactions are required for the global transcriptional repression that occurs in quiescent yeast.
Collapse
Affiliation(s)
- Shawna Miles
- Fred Hutchinson Cancer Research Center, Basic Science Division, Seattle, Washington, USA
| | | | - Linda L Breeden
- Fred Hutchinson Cancer Research Center, Basic Science Division, Seattle, Washington, USA
| |
Collapse
|
11
|
Tang H, Wu Y, Deng J, Chen N, Zheng Z, Wei Y, Luo X, Keasling JD. Promoter Architecture and Promoter Engineering in Saccharomyces cerevisiae. Metabolites 2020; 10:metabo10080320. [PMID: 32781665 PMCID: PMC7466126 DOI: 10.3390/metabo10080320] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/30/2020] [Accepted: 08/04/2020] [Indexed: 12/23/2022] Open
Abstract
Promoters play an essential role in the regulation of gene expression for fine-tuning genetic circuits and metabolic pathways in Saccharomyces cerevisiae (S. cerevisiae). However, native promoters in S. cerevisiae have several limitations which hinder their applications in metabolic engineering. These limitations include an inadequate number of well-characterized promoters, poor dynamic range, and insufficient orthogonality to endogenous regulations. Therefore, it is necessary to perform promoter engineering to create synthetic promoters with better properties. Here, we review recent advances related to promoter architecture, promoter engineering and synthetic promoter applications in S. cerevisiae. We also provide a perspective of future directions in this field with an emphasis on the recent advances of machine learning based promoter designs.
Collapse
Affiliation(s)
- Hongting Tang
- Center for Synthetic Biochemistry, Shenzhen Institutes for Advanced Technologies, Chinese Academy of Sciences, Shenzhen 518055, China; (H.T.); (Y.W.); (J.D.); (N.C.); (Z.Z.)
| | - Yanling Wu
- Center for Synthetic Biochemistry, Shenzhen Institutes for Advanced Technologies, Chinese Academy of Sciences, Shenzhen 518055, China; (H.T.); (Y.W.); (J.D.); (N.C.); (Z.Z.)
| | - Jiliang Deng
- Center for Synthetic Biochemistry, Shenzhen Institutes for Advanced Technologies, Chinese Academy of Sciences, Shenzhen 518055, China; (H.T.); (Y.W.); (J.D.); (N.C.); (Z.Z.)
| | - Nanzhu Chen
- Center for Synthetic Biochemistry, Shenzhen Institutes for Advanced Technologies, Chinese Academy of Sciences, Shenzhen 518055, China; (H.T.); (Y.W.); (J.D.); (N.C.); (Z.Z.)
| | - Zhaohui Zheng
- Center for Synthetic Biochemistry, Shenzhen Institutes for Advanced Technologies, Chinese Academy of Sciences, Shenzhen 518055, China; (H.T.); (Y.W.); (J.D.); (N.C.); (Z.Z.)
| | - Yongjun Wei
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China;
| | - Xiaozhou Luo
- Center for Synthetic Biochemistry, Shenzhen Institutes for Advanced Technologies, Chinese Academy of Sciences, Shenzhen 518055, China; (H.T.); (Y.W.); (J.D.); (N.C.); (Z.Z.)
- Correspondence: (X.L.); (J.D.K.)
| | - Jay D. Keasling
- Center for Synthetic Biochemistry, Shenzhen Institutes for Advanced Technologies, Chinese Academy of Sciences, Shenzhen 518055, China; (H.T.); (Y.W.); (J.D.); (N.C.); (Z.Z.)
- Joint BioEnergy Institute, Emeryville, CA 94608, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Chemical and Biomolecular Engineering & Department of Bioengineering, University of California, Berkeley, CA 94720, USA
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
- Correspondence: (X.L.); (J.D.K.)
| |
Collapse
|
12
|
Exploiting the Diversity of Saccharomycotina Yeasts To Engineer Biotin-Independent Growth of Saccharomyces cerevisiae. Appl Environ Microbiol 2020; 86:AEM.00270-20. [PMID: 32276977 PMCID: PMC7267198 DOI: 10.1128/aem.00270-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 03/18/2020] [Indexed: 12/22/2022] Open
Abstract
The reported metabolic engineering strategy to enable optimal growth in the absence of biotin is of direct relevance for large-scale industrial applications of S. cerevisiae. Important benefits of biotin prototrophy include cost reduction during the preparation of chemically defined industrial growth media as well as a lower susceptibility of biotin-prototrophic strains to contamination by auxotrophic microorganisms. The observed oxygen dependency of biotin synthesis by the engineered strains is relevant for further studies on the elucidation of fungal biotin biosynthesis pathways. Biotin, an important cofactor for carboxylases, is essential for all kingdoms of life. Since native biotin synthesis does not always suffice for fast growth and product formation, microbial cultivation in research and industry often requires supplementation of biotin. De novo biotin biosynthesis in yeasts is not fully understood, which hinders attempts to optimize the pathway in these industrially relevant microorganisms. Previous work based on laboratory evolution of Saccharomyces cerevisiae for biotin prototrophy identified Bio1, whose catalytic function remains unresolved, as a bottleneck in biotin synthesis. This study aimed at eliminating this bottleneck in the S. cerevisiae laboratory strain CEN.PK113-7D. A screening of 35 Saccharomycotina yeasts identified six species that grew fast without biotin supplementation. Overexpression of the S. cerevisiaeBIO1 (ScBIO1) ortholog isolated from one of these biotin prototrophs, Cyberlindnera fabianii, enabled fast growth of strain CEN.PK113-7D in biotin-free medium. Similar results were obtained by single overexpression of C. fabianii BIO1 (CfBIO1) in other laboratory and industrial S. cerevisiae strains. However, biotin prototrophy was restricted to aerobic conditions, probably reflecting the involvement of oxygen in the reaction catalyzed by the putative oxidoreductase CfBio1. In aerobic cultures on biotin-free medium, S. cerevisiae strains expressing CfBio1 showed a decreased susceptibility to contamination by biotin-auxotrophic S. cerevisiae. This study illustrates how the vast Saccharomycotina genomic resources may be used to improve physiological characteristics of industrially relevant S. cerevisiae. IMPORTANCE The reported metabolic engineering strategy to enable optimal growth in the absence of biotin is of direct relevance for large-scale industrial applications of S. cerevisiae. Important benefits of biotin prototrophy include cost reduction during the preparation of chemically defined industrial growth media as well as a lower susceptibility of biotin-prototrophic strains to contamination by auxotrophic microorganisms. The observed oxygen dependency of biotin synthesis by the engineered strains is relevant for further studies on the elucidation of fungal biotin biosynthesis pathways.
Collapse
|
13
|
Brimacombe CA, Sierocinski T, Dahabieh MS. A white-to-opaque-like phenotypic switch in the yeast Torulaspora microellipsoides. Commun Biol 2020; 3:86. [PMID: 32111968 PMCID: PMC7048803 DOI: 10.1038/s42003-020-0815-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 02/11/2020] [Indexed: 12/12/2022] Open
Abstract
Torulaspora microellipsoides is an under-characterized budding yeast of the Saccharomycetaceae family that is primarily associated with viticulture. Here we report for the first time to our knowledge that T. microellipsoides undergoes a low-frequency morphological switch from small budding haploid (white) yeast to larger, higher ploidy (opaque) yeast. Comparison of transcriptomes by mRNA-seq revealed 511 differentially regulated genes, with white cells having greater expression of genes involved in stress resistance and complex carbohydrate utilization, and opaque cells up-regulating genes involved in ribosome biogenesis. Growth assays showed that white cells are physiologically more resistant to stationary-phase conditions and oxidative stress, whereas opaque cells exhibited greater cold tolerance. We propose that phenotypic switching in T. microellipsoides is an ecological adaptation, as has been suggested for similar morphological switching in distantly related species like Candida albicans, and we propose that this switching is a more broadly utilized biological strategy among yeasts than previously thought.
Collapse
Affiliation(s)
- Cedric A Brimacombe
- Renaissance BioScience Corporation, 410-2389 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada.,Department of Microbiology and Immunology, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Thomas Sierocinski
- Renaissance BioScience Corporation, 410-2389 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Matthew S Dahabieh
- Renaissance BioScience Corporation, 410-2389 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada.
| |
Collapse
|
14
|
Medina EM, Walsh E, Buchler NE. Evolutionary innovation, fungal cell biology, and the lateral gene transfer of a viral KilA-N domain. Curr Opin Genet Dev 2019; 58-59:103-110. [PMID: 31600629 DOI: 10.1016/j.gde.2019.08.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/27/2019] [Accepted: 08/31/2019] [Indexed: 10/25/2022]
Abstract
Fungi are found in diverse ecological niches as primary decomposers, mutualists, or parasites of plants and animals. Although animals and fungi share a common ancestor, fungi dramatically diversified their life cycle, cell biology, and metabolism as they evolved and colonized new niches. This review focuses on a family of fungal transcription factors (Swi4/Mbp1, APSES, Xbp1, Bqt4) derived from the lateral gene transfer of a KilA-N domain commonly found in prokaryotic and eukaryotic DNA viruses. These virus-derived fungal regulators play central roles in cell cycle, morphogenesis, sexual differentiation, and quiescence. We consider the possible origins of KilA-N and how this viral DNA binding domain came to be intimately associated with fungal processes.
Collapse
Affiliation(s)
- Edgar M Medina
- University Program in Genetics and Genomics, Duke University, Durham, NC 27710, USA
| | - Evan Walsh
- Bioinformatics Program, North Carolina State University, Raleigh, NC 27607, USA
| | - Nicolas E Buchler
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC 27606, USA.
| |
Collapse
|
15
|
Gulli J, Cook E, Kroll E, Rosebrock A, Caudy A, Rosenzweig F. Diverse conditions support near-zero growth in yeast: Implications for the study of cell lifespan. MICROBIAL CELL 2019; 6:397-413. [PMID: 31528631 PMCID: PMC6717879 DOI: 10.15698/mic2019.09.690] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Baker's yeast has a finite lifespan and ages in two ways: a mother cell can only divide so many times (its replicative lifespan), and a non-dividing cell can only live so long (its chronological lifespan). Wild and laboratory yeast strains exhibit natural variation for each type of lifespan, and the genetic basis for this variation has been generalized to other eukaryotes, including metazoans. To date, yeast chronological lifespan has chiefly been studied in relation to the rate and mode of functional decline among non-dividing cells in nutrient-depleted batch culture. However, this culture method does not accurately capture two major classes of long-lived metazoan cells: cells that are terminally differentiated and metabolically active for periods that approximate animal lifespan (e.g. cardiac myocytes), and cells that are pluripotent and metabolically quiescent (e.g. stem cells). Here, we consider alternative ways of cultivating Saccharomyces cerevisiae so that these different metabolic states can be explored in non-dividing cells: (i) yeast cultured as giant colonies on semi-solid agar, (ii) yeast cultured in retentostats and provided sufficient nutrients to meet minimal energy requirements, and (iii) yeast encapsulated in a semisolid matrix and fed ad libitum in bioreactors. We review the physiology of yeast cultured under each of these conditions, and explore their potential to provide unique insights into determinants of chronological lifespan in the cells of higher eukaryotes.
Collapse
Affiliation(s)
- Jordan Gulli
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332
| | - Emily Cook
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332
| | - Eugene Kroll
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332
| | - Adam Rosebrock
- Donnelly Centre for Cellular and Biological Research and Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.,Present address: Stony Brook School of Medicine, Stony Brook University, Stony Brook, NY 11794
| | - Amy Caudy
- Donnelly Centre for Cellular and Biological Research and Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Frank Rosenzweig
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332
| |
Collapse
|
16
|
Kuang Z, Ji Z, Boeke JD, Ji H. Dynamic motif occupancy (DynaMO) analysis identifies transcription factors and their binding sites driving dynamic biological processes. Nucleic Acids Res 2019; 46:e2. [PMID: 29325176 PMCID: PMC5758894 DOI: 10.1093/nar/gkx905] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Accepted: 09/26/2017] [Indexed: 01/02/2023] Open
Abstract
Biological processes are usually associated with genome-wide remodeling of transcription driven by transcription factors (TFs). Identifying key TFs and their spatiotemporal binding patterns are indispensable to understanding how dynamic processes are programmed. However, most methods are designed to predict TF binding sites only. We present a computational method, dynamic motif occupancy analysis (DynaMO), to infer important TFs and their spatiotemporal binding activities in dynamic biological processes using chromatin profiling data from multiple biological conditions such as time-course histone modification ChIP-seq data. In the first step, DynaMO predicts TF binding sites with a random forests approach. Next and uniquely, DynaMO infers dynamic TF binding activities at predicted binding sites using their local chromatin profiles from multiple biological conditions. Another landmark of DynaMO is to identify key TFs in a dynamic process using a clustering and enrichment analysis of dynamic TF binding patterns. Application of DynaMO to the yeast ultradian cycle, mouse circadian clock and human neural differentiation exhibits its accuracy and versatility. We anticipate DynaMO will be generally useful for elucidating transcriptional programs in dynamic processes.
Collapse
Affiliation(s)
- Zheng Kuang
- Institute for Systems Genetics, NYU Langone Medical Center, New York City, NY 10016, USA.,Department of Biochemistry and Molecular Pharmacology, NYU Langone Medical Center, New York City, NY 10016, USA.,Department of Biostatistics, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Zhicheng Ji
- Department of Biostatistics, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Jef D Boeke
- Institute for Systems Genetics, NYU Langone Medical Center, New York City, NY 10016, USA.,Department of Biochemistry and Molecular Pharmacology, NYU Langone Medical Center, New York City, NY 10016, USA
| | - Hongkai Ji
- Department of Biostatistics, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA
| |
Collapse
|
17
|
Longo LVG, Ray SC, Puccia R, Rappleye CA. Characterization of the APSES-family transcriptional regulators of Histoplasma capsulatum. FEMS Yeast Res 2019; 18:5067870. [PMID: 30101348 DOI: 10.1093/femsyr/foy087] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 08/06/2018] [Indexed: 11/13/2022] Open
Abstract
The fungal APSES protein family of transcription factors is characterized by a conserved DNA-binding motif facilitating regulation of gene expression in fungal development and other biological processes. However, their functions in the thermally dimorphic fungal pathogen Histoplasma capsulatum are unexplored. Histoplasma capsulatum switches between avirulent hyphae in the environment and virulent yeasts in mammalian hosts. We identified five APSES domain-containing proteins in H. capsulatum homologous to Swi6, Mbp1, Stu1 and Xbp1 proteins and one protein found in related Ascomycetes (APSES-family protein 1; Afp1). Through transcriptional analyses and RNA interference-based functional tests we explored their roles in fungal biology and virulence. Mbp1 serves an essential role and Swi6 contributes to full yeast cell growth. Stu1 is primarily expressed in mycelia and is necessary for aerial hyphae development and conidiation. Xbp1 is the only factor enriched specifically in yeast cells. The APSES proteins do not regulate conversion of conidia into yeast and hyphal morphologies. The APSES-family transcription factors are not individually required for H. capsulatum infection of cultured macrophages or murine infection, nor do any contribute significantly to resistance to cellular stresses including cell wall perturbation, osmotic stress, oxidative stress or antifungal treatment. Further studies of the downstream genes regulated by the individual APSES factors will be helpful in revealing their functional roles in H. capsulatum biology.
Collapse
Affiliation(s)
- Larissa V G Longo
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Botucatu, 862, São Paulo 04023062, Brazil
| | - Stephanie C Ray
- Department of Microbiology, Ohio State University, 484 W. 12th Avenue, 540 Biological Sciences Bldg., Columbus, OH 43210, USA
| | - Rosana Puccia
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Botucatu, 862, São Paulo 04023062, Brazil
| | - Chad A Rappleye
- Department of Microbiology, Ohio State University, 484 W. 12th Avenue, 540 Biological Sciences Bldg., Columbus, OH 43210, USA
| |
Collapse
|
18
|
Wang Y, Zhang Y, Yi P, Dong W, Nalin AP, Zhang J, Zhu Z, Chen L, Benson DM, Mundy-Bosse BL, Freud AG, Caligiuri MA, Yu J. The IL-15-AKT-XBP1s signaling pathway contributes to effector functions and survival in human NK cells. Nat Immunol 2019; 20:10-17. [PMID: 30538328 PMCID: PMC6293989 DOI: 10.1038/s41590-018-0265-1] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 10/18/2018] [Indexed: 01/21/2023]
Abstract
Interleukin 15 (IL-15) is one of the most important cytokines that regulate the biology of natural killer (NK) cells1. Here we identified a signaling pathway-involving the serine-threonine kinase AKT and the transcription factor XBP1s, which regulates unfolded protein response genes2,3-that was activated in response to IL-15 in human NK cells. IL-15 induced the phosphorylation of AKT, which led to the deubiquitination, increased stability and nuclear accumulation of XBP1s protein. XBP1s bound to and recruited the transcription factor T-BET to the gene encoding granzyme B, leading to increased transcription. XBP1s positively regulated the cytolytic activity of NK cells against leukemia cells and was also required for IL-15-mediated NK cell survival through an anti-apoptotic mechanism. Thus, the newly identified IL-15-AKT-XBP1s signaling pathway contributes to enhanced effector functions and survival of human NK cells.
Collapse
Affiliation(s)
- Yufeng Wang
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Yibo Zhang
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Ping Yi
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
- Third Affiliated Hospital, Third Military Medical University, Chongqing, China
| | - Wenjuan Dong
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA, USA
| | - Ansel P Nalin
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
- Medical Scientist Training Program, The Ohio State University, Columbus, OH, USA
| | - Jianying Zhang
- Division of Biostatistics, Department of Information Sciences, City of Hope National Medical Center, Duarte, CA, USA
| | - Zheng Zhu
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA, USA
| | - Lichao Chen
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Don M Benson
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Bethany L Mundy-Bosse
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Aharon G Freud
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
- Department of Pathology, The Ohio State University, Columbus, OH, USA
| | - Michael A Caligiuri
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA, USA
- Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Duarte, CA, USA
| | - Jianhua Yu
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA.
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA.
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA, USA.
- Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Duarte, CA, USA.
| |
Collapse
|
19
|
Pfanzagl V, Görner W, Radolf M, Parich A, Schuhmacher R, Strauss J, Reiter W, Schüller C. A constitutive active allele of the transcription factor Msn2 mimicking low PKA activity dictates metabolic remodeling in yeast. Mol Biol Cell 2018; 29:2848-2862. [PMID: 30256697 PMCID: PMC6249869 DOI: 10.1091/mbc.e18-06-0389] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
In yeast, protein kinase A (PKA) adjusts transcriptional profiles, metabolic rates, and cell growth in accord with carbon source availability. PKA affects gene expression mostly via the transcription factors Msn2 and Msn4, two key regulators of the environmental stress response. Here we analyze the role of the PKA-Msn2 signaling module using an Msn2 allele that harbors serine-to-alanine substitutions at six functionally important PKA motifs (Msn2A6) . Expression of Msn2A6 mimics low PKA activity, entails a transcription profile similar to that of respiring cells, and prevents formation of colonies on glucose-containing medium. Furthermore, Msn2A6 leads to high oxygen consumption and hence high respiratory activity. Substantially increased intracellular concentrations of several carbon metabolites, such as trehalose, point to a metabolic adjustment similar to diauxic shift. This partial metabolic switch is the likely cause for the slow-growth phenotype in the presence of glucose. Consistently, Msn2A6 expression does not interfere with growth on ethanol and tolerated is to a limited degree in deletion mutant strains with a gene expression signature corresponding to nonfermentative growth. We propose that the lethality observed in mutants with hampered PKA activity resides in metabolic reprogramming that is initiated by Msn2 hyperactivity.
Collapse
Affiliation(s)
- Vera Pfanzagl
- Department of Chemistry, University of Natural Resources and Life Sciences, Vienna (BOKU), 1190 Vienna, Austria
| | - Wolfram Görner
- Department for Biochemistry, Max. F. Perutz Laboratories, University of Vienna, 1030 Vienna, Austria
| | - Martin Radolf
- Management Scientific Service/EHS, Research Institute of Molecular Pathology (IMP), 1030 Vienna, Austria
| | - Alexandra Parich
- Department of Agrobiotechnology (IFA-Tulln), Center for Analytical Chemistry, University of Natural Resources and Life Sciences, 3430 Tulln, Austria
| | - Rainer Schuhmacher
- Department of Agrobiotechnology (IFA-Tulln), Center for Analytical Chemistry, University of Natural Resources and Life Sciences, 3430 Tulln, Austria
| | - Joseph Strauss
- Department of Chemistry, University of Natural Resources and Life Sciences, Vienna (BOKU), 1190 Vienna, Austria
| | - Wolfgang Reiter
- Department for Biochemistry, Max. F. Perutz Laboratories, University of Vienna, 1030 Vienna, Austria
| | - Christoph Schüller
- Department of Applied Genetics and Cell Biology (DAGZ), University of Natural Resources and Life Sciences, 3430 Tulln, Austria
| |
Collapse
|
20
|
Leonov A, Feldman R, Piano A, Arlia-Ciommo A, Lutchman V, Ahmadi M, Elsaser S, Fakim H, Heshmati-Moghaddam M, Hussain A, Orfali S, Rajen H, Roofigari-Esfahani N, Rosanelli L, Titorenko VI. Caloric restriction extends yeast chronological lifespan via a mechanism linking cellular aging to cell cycle regulation, maintenance of a quiescent state, entry into a non-quiescent state and survival in the non-quiescent state. Oncotarget 2017; 8:69328-69350. [PMID: 29050207 PMCID: PMC5642482 DOI: 10.18632/oncotarget.20614] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 08/14/2017] [Indexed: 12/22/2022] Open
Abstract
A yeast culture grown in a nutrient-rich medium initially containing 2% glucose is not limited in calorie supply. When yeast cells cultured in this medium consume glucose, they undergo cell cycle arrest at a checkpoint in late G1 and differentiate into quiescent and non-quiescent cell populations. Studies of such differentiation have provided insights into mechanisms of yeast chronological aging under conditions of excessive calorie intake. Caloric restriction is an aging-delaying dietary intervention. Here, we assessed how caloric restriction influences the differentiation of chronologically aging yeast cultures into quiescent and non-quiescent cells, and how it affects their properties. We found that caloric restriction extends yeast chronological lifespan via a mechanism linking cellular aging to cell cycle regulation, maintenance of quiescence, entry into a non-quiescent state and survival in this state. Our findings suggest that caloric restriction delays yeast chronological aging by causing specific changes in the following: 1) a checkpoint in G1 for cell cycle arrest and entry into a quiescent state; 2) a growth phase in which high-density quiescent cells are committed to become low-density quiescent cells; 3) the differentiation of low-density quiescent cells into low-density non-quiescent cells; and 4) the conversion of high-density quiescent cells into high-density non-quiescent cells.
Collapse
Affiliation(s)
- Anna Leonov
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | - Rachel Feldman
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | - Amanda Piano
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | | | - Vicky Lutchman
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | - Masoumeh Ahmadi
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | - Sarah Elsaser
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | - Hana Fakim
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | | | - Asimah Hussain
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | - Sandra Orfali
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | | | | | - Leana Rosanelli
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | | |
Collapse
|
21
|
Miles S, Breeden L. A common strategy for initiating the transition from proliferation to quiescence. Curr Genet 2016; 63:179-186. [PMID: 27544284 DOI: 10.1007/s00294-016-0640-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 08/04/2016] [Accepted: 08/06/2016] [Indexed: 10/21/2022]
Abstract
Development, tissue renewal and long term survival of multi-cellular organisms is dependent upon the persistence of stem cells that are quiescent, but retain the capacity to re-enter the cell cycle to self-renew, or to produce progeny that can differentiate and re-populate the tissue. Deregulated release of these cells from the quiescent state, or preventing them from entering quiescence, results in uncontrolled proliferation and cancer. Conversely, loss of quiescent cells, or their failure to re-enter cell division, disrupts organ development and prevents tissue regeneration and repair. Understanding the quiescent state and how cells control the transitions in and out of this state is of fundamental importance. Investigations into the mechanics of G1 arrest during the transition to quiescence continue to identify striking parallels between the strategies used by yeast and mammals to regulate this transition. When cells commit to a stable but reversible arrest, the G1/S genes responsible for promoting S phase must be inhibited. This process, from yeast to humans, involves the formation of quiescence-specific complexes on their promoters. In higher cells, these so-called DREAM complexes of E2F4/DP/RBL/MuvB recruit the highly conserved histone deacetylase HDAC1, which leads to local histone deacetylation and repression of S phase-promoting transcripts. Quiescent yeast cells also show pervasive histone deacetylation by the HDAC1 counterpart Rpd3. In addition, these cells contain quiescence-specific regulators of G1/S genes: Msa1 and Msa2, which can be considered components of the yeast equivalent of the DREAM complex. Despite a lack of physical similarities, the goals and the strategies used to achieve a reversible transition to quiescence are highly conserved. This motivates a detailed study of this process in the simple model organism: budding yeast.
Collapse
Affiliation(s)
- Shawna Miles
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA, 98109, USA
| | - Linda Breeden
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA, 98109, USA.
| |
Collapse
|
22
|
Kisly I, Gulay SP, Mäeorg U, Dinman JD, Remme J, Tamm T. The Functional Role of eL19 and eB12 Intersubunit Bridge in the Eukaryotic Ribosome. J Mol Biol 2016; 428:2203-16. [PMID: 27038511 DOI: 10.1016/j.jmb.2016.03.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 03/18/2016] [Accepted: 03/22/2016] [Indexed: 12/12/2022]
Abstract
During translation, the two eukaryotic ribosomal subunits remain associated through 17 intersubunit bridges, five of which are eukaryote specific. These are mainly localized to the peripheral regions and are believed to stabilize the structure of the ribosome. The functional importance of these bridges remains largely unknown. Here, the essentiality of the eukaryote-specific bridge eB12 has been investigated. The main component of this bridge is ribosomal protein eL19 that is composed of an N-terminal globular domain, a middle region, and a long C-terminal α-helix. The analysis of deletion mutants demonstrated that the globular domain and middle region of eL19 are essential for cell viability, most likely functioning in ribosome assembly. The eB12 bridge, formed by contacts between the C-terminal α-helix of eL19 and 18S rRNA in concert with additional stabilizing interactions involving either eS7 or uS17, is dispensable for viability. Nevertheless, eL19 mutants impaired in eB12 bridge formation displayed slow growth phenotypes, altered sensitivity/resistance to translational inhibitors, and enhanced hyperosmotic stress tolerance. Biochemical analyses determined that the eB12 bridge contributes to the stability of ribosome subunit interactions in vitro. 60S subunits containing eL19 variants defective in eB12 bridge formation failed to form 80S ribosomes regardless of Mg(2+) concentration. The reassociation of 40S and mutant 60S subunits was markedly improved in the presence of deacetylated tRNA, emphasizing the importance of tRNAs during the subunit association. We propose that the eB12 bridge plays an important role in subunit joining and in optimizing ribosome functionality.
Collapse
Affiliation(s)
- Ivan Kisly
- Institute of Molecular and Cell Biology, University of Tartu, Tartu 51010, Estonia
| | - Suna P Gulay
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, United States
| | - Uno Mäeorg
- Institute of Chemistry, University of Tartu, Tartu 50411, Estonia
| | - Jonathan D Dinman
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, United States
| | - Jaanus Remme
- Institute of Molecular and Cell Biology, University of Tartu, Tartu 51010, Estonia.
| | - Tiina Tamm
- Institute of Molecular and Cell Biology, University of Tartu, Tartu 51010, Estonia.
| |
Collapse
|
23
|
Comprehensive Analysis of the SUL1 Promoter of Saccharomyces cerevisiae. Genetics 2016; 203:191-202. [PMID: 26936925 DOI: 10.1534/genetics.116.188037] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 02/21/2016] [Indexed: 11/18/2022] Open
Abstract
In the yeast Saccharomyces cerevisiae, beneficial mutations selected during sulfate-limited growth are typically amplifications of the SUL1 gene, which encodes the high-affinity sulfate transporter, resulting in fitness increases of >35% . Cis-regulatory mutations have not been observed at this locus; however, it is not clear whether this absence is due to a low mutation rate such that these mutations do not arise, or they arise but have limited fitness effects relative to those of amplification. To address this question directly, we assayed the fitness effects of nearly all possible point mutations in a 493-base segment of the gene's promoter through mutagenesis and selection. While most mutations were either neutral or detrimental during sulfate-limited growth, eight mutations increased fitness >5% and as much as 9.4%. Combinations of these beneficial mutations increased fitness only up to 11%. Thus, in the case of SUL1, promoter mutations could not induce a fitness increase similar to that of gene amplification. Using these data, we identified functionally important regions of the SUL1 promoter and analyzed three sites that correspond to potential binding sites for the transcription factors Met32 and Cbf1 Mutations that create new Met32- or Cbf1-binding sites also increased fitness. Some mutations in the untranslated region of the SUL1 transcript decreased fitness, likely due to the formation of inhibitory upstream open reading frames. Our methodology-saturation mutagenesis, chemostat selection, and DNA sequencing to track variants-should be a broadly applicable approach.
Collapse
|
24
|
McKnight JN, Boerma JW, Breeden LL, Tsukiyama T. Global Promoter Targeting of a Conserved Lysine Deacetylase for Transcriptional Shutoff during Quiescence Entry. Mol Cell 2015; 59:732-43. [PMID: 26300265 DOI: 10.1016/j.molcel.2015.07.014] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 06/25/2015] [Accepted: 07/17/2015] [Indexed: 11/24/2022]
Abstract
Quiescence is a conserved cell-cycle state characterized by cell-cycle arrest, increased stress resistance, enhanced longevity, and decreased transcriptional, translational, and metabolic output. Although quiescence plays essential roles in cell survival and normal differentiation, the molecular mechanisms leading to this state are not well understood. Here, we determined changes in the transcriptome and chromatin structure of S. cerevisiae upon quiescence entry. Our analyses revealed transcriptional shutoff that is far more robust than previously believed and an unprecedented global chromatin transition, which are tightly correlated. These changes require Rpd3 lysine deacetylase targeting to at least half of gene promoters via quiescence-specific transcription factors including Xbp1 and Stb3. Deletion of RPD3 prevents cells from establishing transcriptional quiescence, leading to defects in quiescence entry and shortening of chronological lifespan. Our results define a molecular mechanism for global reprogramming of transcriptome and chromatin structure for quiescence driven by a highly conserved chromatin regulator.
Collapse
Affiliation(s)
- Jeffrey N McKnight
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Joseph W Boerma
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Linda L Breeden
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.
| | - Toshio Tsukiyama
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.
| |
Collapse
|
25
|
A Genetic Screen for Saccharomyces cerevisiae Mutants That Fail to Enter Quiescence. G3-GENES GENOMES GENETICS 2015; 5:1783-95. [PMID: 26068574 PMCID: PMC4528334 DOI: 10.1534/g3.115.019091] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Budding yeast begin the transition to quiescence by prolonging G1 and accumulating limited nutrients. They undergo asymmetric cell divisions, slow cellular expansion, acquire significant stress tolerance and construct elaborate cell walls. These morphologic changes give rise to quiescent (Q) cells, which can be distinguished from three other cell types in a stationary phase culture by flow cytometry. We have used flow cytometry to screen for genes that are required to obtain the quiescent cell fraction. We find that cell wall integrity is critical and these genes may help define quiescence-specific features of the cell wall. Genes required to evade the host innate immune response are common. These may be new targets for antifungal drugs. Acquired thermotolerance is also a common property, and we show that the stress-response transcription factors Msn2 and Msn4 promote quiescence. Many other pathways also contribute, including a subset of genes involved in autophagy, ubiquitin-mediated proteolysis, DNA replication, bud site selection, and cytokinesis.
Collapse
|
26
|
Characterization of a Thioredoxin-1 Gene from Taenia solium and Its Encoding Product. BIOMED RESEARCH INTERNATIONAL 2015; 2015:453469. [PMID: 26090410 PMCID: PMC4452251 DOI: 10.1155/2015/453469] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 10/14/2014] [Indexed: 01/26/2023]
Abstract
Taenia solium thioredoxin-1 gene (TsTrx-1) has a length of 771 bp with three exons and two introns. The core promoter gene presents two putative stress transcription factor binding sites, one putative TATA box, and a transcription start site (TSS). TsTrx-1 mRNA is expressed higher in larvae than in adult. This gene encodes a protein of 107 amino acids that presents the Trx active site (CGPC), the classical secondary structure of the thioredoxin fold, and the highest degree of identity with the Echinococcus granulosus Trx. A recombinant TsTrx-1 (rTsTrx-1) was produced in Escherichia coli with redox activity. Optimal activity for rTsTrx-1 was at pH 6.5 in the range of 15 to 25°C. The enzyme conserved activity for 3 h and lost it in 24 h at 37°C. rTsTrx-1 lost 50% activity after 1 h and lost activity completely in 24 h at temperatures higher than 55°C. Best storage temperature for rTsTrx-1 was at −70°C. It was inhibited by high concentrations of H2O2 and methylglyoxal (MG), but it was inhibited neither by NaCl nor by anti-rTsTrx-1 rabbit antibodies that strongly recognized a ~12 kDa band in extracts from several parasites. These TsTrx-1 properties open the opportunity to study its role in relationship T. solium-hosts.
Collapse
|
27
|
Transcriptional response of Saccharomyces cerevisiae to low temperature during wine fermentation. Antonie van Leeuwenhoek 2015; 107:1029-48. [DOI: 10.1007/s10482-015-0395-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 01/22/2015] [Indexed: 01/31/2023]
|
28
|
Zhao Y, Su H, Zhou J, Feng H, Zhang KQ, Yang J. The APSES family proteins in fungi: Characterizations, evolution and functions. Fungal Genet Biol 2014; 81:271-80. [PMID: 25534868 DOI: 10.1016/j.fgb.2014.12.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 12/08/2014] [Accepted: 12/12/2014] [Indexed: 10/24/2022]
Abstract
The APSES protein family belongs to transcriptional factors of the basic helix-loop-helix (bHLH) class, the originally described members (APSES: Asm1p, Phd1p, Sok2p, Efg1p and StuAp) are used to designate this group of proteins, and they have been identified as key regulators of fungal development and other biological processes. APSES proteins share a highly conserved DNA-binding domain (APSES domain) of about 100 amino acids, whose central domain is predicted to form a typical bHLH structure. Besides APSES domain, several APSES proteins also contain additional domains, such as KilA-N and ankyrin repeats. In recent years, an increasing number of APSES proteins have been identified from diverse fungi, and they involve in numerous biological processes, such as sporulation, cellular differentiation, mycelial growth, secondary metabolism and virulence. Most fungi, including Aspergillus fumigatus, Aspergillus nidulans, Candida albicans, Fusarium graminearum, and Neurospora crassa, contain five APSES proteins. However, Cryptococcus neoformans only contains two APSES proteins, and Saccharomyces cerevisiae contains six APSES proteins. The phylogenetic analysis showed the APSES domains from different fungi were grouped into four clades (A, B, C and D), which is consistent with the result of homologous alignment of APSES domains using DNAman. The roles of APSES proteins in clade C have been studied in detail, while little is known about the roles of other APSES proteins in clades A, B and D. In this review, the biochemical properties and functional domains of APSES proteins are predicted and compared, and the phylogenetic relationship among APSES proteins from various fungi are analyzed based on the APSES domains. Moreover, the functions of APSES proteins in different fungi are summarized and discussed.
Collapse
Affiliation(s)
- Yong Zhao
- Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory of Microbial Diversity in Southwest China, Ministry of Education, Yunnan University, Kunming 650091, PR China
| | - Hao Su
- Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory of Microbial Diversity in Southwest China, Ministry of Education, Yunnan University, Kunming 650091, PR China
| | - Jing Zhou
- Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory of Microbial Diversity in Southwest China, Ministry of Education, Yunnan University, Kunming 650091, PR China
| | - Huihua Feng
- Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory of Microbial Diversity in Southwest China, Ministry of Education, Yunnan University, Kunming 650091, PR China
| | - Ke-Qin Zhang
- Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory of Microbial Diversity in Southwest China, Ministry of Education, Yunnan University, Kunming 650091, PR China
| | - Jinkui Yang
- Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory of Microbial Diversity in Southwest China, Ministry of Education, Yunnan University, Kunming 650091, PR China.
| |
Collapse
|
29
|
Verchot J. The ER quality control and ER associated degradation machineries are vital for viral pathogenesis. FRONTIERS IN PLANT SCIENCE 2014; 5:66. [PMID: 24653727 DOI: 10.3389/fpls.2014.00066/abstract] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 02/07/2014] [Indexed: 05/24/2023]
Abstract
The endoplasmic reticulum (ER) is central to protein production and membrane lipid synthesis. The unfolded protein response (UPR) supports cellular metabolism by ensuring protein quality control in the ER. Most positive strand RNA viruses cause extensive remodeling of membranes and require active membrane synthesis to promote infection. How viruses interact with the cellular machinery controlling membrane metabolism is largely unknown. Furthermore, there is mounting data pointing to the importance of the UPR and ER associated degradation (ERAD) machineries in viral pathogenesis in eukaryotes emerging topic. For many viruses, the UPR is an early event that is essential for persistent infection and benefits virus replication. In addition, many viruses are reported to commandeer ER resident chaperones to contribute to virus replication and intercellular movement. In particular, calreticulin, the ubiquitin machinery, and the 26S proteasome are most commonly identified components of the UPR and ERAD machinery that also regulate virus infection. In addition, researchers have noted a link between UPR and autophagy. It is well accepted that positive strand RNA viruses use autophagic membranes as scaffolds to support replication and assembly. However this topic has yet to be explored using plant viruses. The goal of research on this topic is to uncover how viruses interact with this ER-related machinery and to use this information for designing novel strategies to boost immune responses to virus infection.
Collapse
Affiliation(s)
- Jeanmarie Verchot
- Department of Entomology and Plant Pathology, Oklahoma State University Stillwater, OK, USA
| |
Collapse
|
30
|
Lin Y, Chomvong K, Acosta-Sampson L, Estrela R, Galazka JM, Kim SR, Jin YS, Cate JHD. Leveraging transcription factors to speed cellobiose fermentation by Saccharomyces cerevisiae. BIOTECHNOLOGY FOR BIOFUELS 2014; 7:126. [PMID: 25435910 PMCID: PMC4243952 DOI: 10.1186/s13068-014-0126-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 08/06/2014] [Indexed: 05/02/2023]
Abstract
BACKGROUND Saccharomyces cerevisiae, a key organism used for the manufacture of renewable fuels and chemicals, has been engineered to utilize non-native sugars derived from plant cell walls, such as cellobiose and xylose. However, the rates and efficiencies of these non-native sugar fermentations pale in comparison with those of glucose. Systems biology methods, used to understand biological networks, hold promise for rational microbial strain development in metabolic engineering. Here, we present a systematic strategy for optimizing non-native sugar fermentation by recombinant S. cerevisiae, using cellobiose as a model. RESULTS Differences in gene expression between cellobiose and glucose metabolism revealed by RNA deep sequencing indicated that cellobiose metabolism induces mitochondrial activation and reduces amino acid biosynthesis under fermentation conditions. Furthermore, glucose-sensing and signaling pathways and their target genes, including the cAMP-dependent protein kinase A pathway controlling the majority of glucose-induced changes, the Snf3-Rgt2-Rgt1 pathway regulating hexose transport, and the Snf1-Mig1 glucose repression pathway, were at most only partially activated under cellobiose conditions. To separate correlations from causative effects, the expression levels of 19 transcription factors perturbed under cellobiose conditions were modulated, and the three strongest promoters under cellobiose conditions were applied to fine-tune expression of the heterologous cellobiose-utilizing pathway. Of the changes in these 19 transcription factors, only overexpression of SUT1 or deletion of HAP4 consistently improved cellobiose fermentation. SUT1 overexpression and HAP4 deletion were not synergistic, suggesting that SUT1 and HAP4 may regulate overlapping genes important for improved cellobiose fermentation. Transcription factor modulation coupled with rational tuning of the cellobiose consumption pathway significantly improved cellobiose fermentation. CONCLUSIONS We used systems-level input to reveal the regulatory mechanisms underlying suboptimal metabolism of the non-glucose sugar cellobiose. By identifying key transcription factors that cause suboptimal cellobiose fermentation in engineered S. cerevisiae, and by fine-tuning the expression of a heterologous cellobiose consumption pathway, we were able to greatly improve cellobiose fermentation by engineered S. cerevisiae. Our results demonstrate a powerful strategy for applying systems biology methods to rapidly identify metabolic engineering targets and overcome bottlenecks in performance of engineered strains.
Collapse
Affiliation(s)
- Yuping Lin
- />Departments of Molecular and Cell Biology, University of California, Berkeley, CA 94720 USA
| | - Kulika Chomvong
- />Plant and Microbial Biology, University of California, Berkeley, CA 94720 USA
| | - Ligia Acosta-Sampson
- />Departments of Molecular and Cell Biology, University of California, Berkeley, CA 94720 USA
| | - Raíssa Estrela
- />Departments of Molecular and Cell Biology, University of California, Berkeley, CA 94720 USA
| | - Jonathan M Galazka
- />Departments of Molecular and Cell Biology, University of California, Berkeley, CA 94720 USA
| | - Soo Rin Kim
- />Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 USA
- />Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 USA
| | - Yong-Su Jin
- />Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 USA
- />Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 USA
| | - Jamie HD Cate
- />Departments of Molecular and Cell Biology, University of California, Berkeley, CA 94720 USA
- />Chemistry, University of California, Berkeley, CA 94720 USA
- />Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| |
Collapse
|
31
|
Verchot J. The ER quality control and ER associated degradation machineries are vital for viral pathogenesis. FRONTIERS IN PLANT SCIENCE 2014; 5:66. [PMID: 24653727 PMCID: PMC3949406 DOI: 10.3389/fpls.2014.00066] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 02/07/2014] [Indexed: 05/19/2023]
Abstract
The endoplasmic reticulum (ER) is central to protein production and membrane lipid synthesis. The unfolded protein response (UPR) supports cellular metabolism by ensuring protein quality control in the ER. Most positive strand RNA viruses cause extensive remodeling of membranes and require active membrane synthesis to promote infection. How viruses interact with the cellular machinery controlling membrane metabolism is largely unknown. Furthermore, there is mounting data pointing to the importance of the UPR and ER associated degradation (ERAD) machineries in viral pathogenesis in eukaryotes emerging topic. For many viruses, the UPR is an early event that is essential for persistent infection and benefits virus replication. In addition, many viruses are reported to commandeer ER resident chaperones to contribute to virus replication and intercellular movement. In particular, calreticulin, the ubiquitin machinery, and the 26S proteasome are most commonly identified components of the UPR and ERAD machinery that also regulate virus infection. In addition, researchers have noted a link between UPR and autophagy. It is well accepted that positive strand RNA viruses use autophagic membranes as scaffolds to support replication and assembly. However this topic has yet to be explored using plant viruses. The goal of research on this topic is to uncover how viruses interact with this ER-related machinery and to use this information for designing novel strategies to boost immune responses to virus infection.
Collapse
Affiliation(s)
- Jeanmarie Verchot
- *Correspondence: Jeanmarie Verchot, Department of Entomology and Plant Pathology, Oklahoma State University, 127 Noble Research Center, Stillwater, OK 74078, USA e-mail:
| |
Collapse
|
32
|
Miles S, Li L, Davison J, Breeden LL. Xbp1 directs global repression of budding yeast transcription during the transition to quiescence and is important for the longevity and reversibility of the quiescent state. PLoS Genet 2013; 9:e1003854. [PMID: 24204289 PMCID: PMC3814307 DOI: 10.1371/journal.pgen.1003854] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 08/19/2013] [Indexed: 01/03/2023] Open
Abstract
Pure populations of quiescent yeast can be obtained from stationary phase cultures that have ceased proliferation after exhausting glucose and other carbon sources from their environment. They are uniformly arrested in the G1 phase of the cell cycle, and display very high thermo-tolerance and longevity. We find that G1 arrest is initiated before all the glucose has been scavenged from the media. Maintaining G1 arrest requires transcriptional repression of the G1 cyclin, CLN3, by Xbp1. Xbp1 is induced as glucose is depleted and it is among the most abundant transcripts in quiescent cells. Xbp1 binds and represses CLN3 transcription and in the absence of Xbp1, or with extra copies of CLN3, cells undergo ectopic divisions and produce very small cells. The Rad53-mediated replication stress checkpoint reinforces the arrest and becomes essential when Cln3 is overproduced. The XBP1 transcript also undergoes metabolic oscillations under glucose limitation and we identified many additional transcripts that oscillate out of phase with XBP1 and have Xbp1 binding sites in their promoters. Further global analysis revealed that Xbp1 represses 15% of all yeast genes as they enter the quiescent state and over 500 of these transcripts contain Xbp1 binding sites in their promoters. Xbp1-repressed transcripts are highly enriched for genes involved in the regulation of cell growth, cell division and metabolism. Failure to repress some or all of these targets leads xbp1 cells to enter a permanent arrest or senescence with a shortened lifespan. Complex organisms depend on populations of non-dividing quiescent cells for their controlled growth, development and tissue renewal. These quiescent cells are maintained in a resting state, and divide only when stimulated to do so. Unscheduled exit or failure to enter this quiescent state results in uncontrolled proliferation and cancer. Yeast cells also enter a stable, protected and reversible quiescent state. As with higher cells, they exit the cell cycle from G1, reduce growth, conserve and recycle cellular contents. These similarities, and the fact that the mechanisms that start and stop the cell cycle are fundamentally conserved lead us to think that understanding how yeast enter, maintain and reverse quiescence could give important leads into the same processes in complex organisms. We show that yeast cells maintain G1 arrest by expressing a transcription factor that represses conserved activators (cyclins) and hundreds of other genes that are important for cell division and cell growth. Failure to repress some or all of these targets leads to extra cell divisions, prevents reversible arrest and shortens life span. Many Xbp1 targets are conserved cell cycle regulators and may also be actively repressed in the quiescent cells of more complex organisms.
Collapse
Affiliation(s)
- Shawna Miles
- Basic Science Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Lihong Li
- Basic Science Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Jerry Davison
- Computational Biology, Public Health Science Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Linda L. Breeden
- Basic Science Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
33
|
Swinnen E, Ghillebert R, Wilms T, Winderickx J. Molecular mechanisms linking the evolutionary conserved TORC1-Sch9 nutrient signalling branch to lifespan regulation in Saccharomyces cerevisiae. FEMS Yeast Res 2013; 14:17-32. [PMID: 24102693 DOI: 10.1111/1567-1364.12097] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 07/09/2013] [Accepted: 09/06/2013] [Indexed: 01/13/2023] Open
Abstract
The knowledge on the molecular aspects regulating ageing in eukaryotic organisms has benefitted greatly from studies using the budding yeast Saccharomyces cerevisiae. Indeed, many aspects involved in the control of lifespan appear to be well conserved among species. Of these, the lifespan-extending effects of calorie restriction (CR) and downregulation of nutrient signalling through the target of rapamycin (TOR) pathway are prime examples. Here, we present an overview on the molecular mechanisms by which these interventions mediate lifespan extension in yeast. Several models have been proposed in the literature, which should be seen as complementary, instead of contradictory. Results indicate that CR mediates a large amount of its effect by downregulating signalling through the TORC1-Sch9 branch. In addition, we note that Sch9 is more than solely a downstream effector of TORC1, and documented connections with sphingolipid metabolism may be particularly interesting for future research on ageing mechanisms. As Sch9 comprises the yeast orthologue of the mammalian PKB/Akt and S6K1 kinases, future studies in yeast may continue to serve as an attractive model to elucidate conserved mechanisms involved in ageing and age-related diseases in humans.
Collapse
|
34
|
Characterization of global gene expression during assurance of lifespan extension by caloric restriction in budding yeast. Exp Gerontol 2013; 48:1455-68. [PMID: 24126084 DOI: 10.1016/j.exger.2013.10.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 09/28/2013] [Accepted: 10/03/2013] [Indexed: 12/22/2022]
Abstract
Caloric restriction (CR) is the best-studied intervention known to delay aging and extend lifespan in evolutionarily distant organisms ranging from yeast to mammals in the laboratory. Although the effect of CR on lifespan extension has been investigated for nearly 80years, the molecular mechanisms of CR are still elusive. Consequently, it is important to understand the fundamental mechanisms of when and how lifespan is affected by CR. In this study, we first identified the time-windows during which CR assured cellular longevity by switching cells from culture media containing 2% or 0.5% glucose to water, which allows us to observe CR and non-calorically-restricted cells under the same conditions. We also constructed time-dependent gene expression profiles and selected 646 genes that showed significant changes and correlations with the lifespan-extending effect of CR. The positively correlated genes participated in transcriptional regulation, ribosomal RNA processing and nuclear genome stability, while the negatively correlated genes were involved in the regulation of several metabolic pathways, endoplasmic reticulum function, stress response and cell cycle progression. Furthermore, we discovered major upstream regulators of those significantly changed genes, including AZF1 (YOR113W), HSF1 (YGL073W) and XBP1 (YIL101C). Deletions of two genes, AZF1 and XBP1 (HSF1 is essential and was thus not tested), were confirmed to lessen the lifespan extension mediated by CR. The absence of these genes in the tor1Δ and ras2Δ backgrounds did show non-overlapping effects with regard to CLS, suggesting differences between the CR mechanism for Tor and Ras signaling.
Collapse
|
35
|
Comparative transcriptomics of infectious spores from the fungal pathogen Histoplasma capsulatum reveals a core set of transcripts that specify infectious and pathogenic states. EUKARYOTIC CELL 2013; 12:828-52. [PMID: 23563482 DOI: 10.1128/ec.00069-13] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Histoplasma capsulatum is a fungal pathogen that infects both healthy and immunocompromised hosts. In regions where it is endemic, H. capsulatum grows in the soil and causes respiratory and systemic disease when inhaled by humans. An interesting aspect of H. capsulatum biology is that it adopts specialized developmental programs in response to its environment. In the soil, it grows as filamentous chains of cells (mycelia) that produce asexual spores (conidia). When the soil is disrupted, conidia aerosolize and are inhaled by mammalian hosts. Inside a host, conidia germinate into yeast-form cells that colonize immune cells and cause disease. Despite the ability of conidia to initiate infection and disease, they have not been explored on a molecular level. We developed methods to purify H. capsulatum conidia, and we show here that these cells germinate into filaments at room temperature and into yeast-form cells at 37°C. Conidia internalized by macrophages germinate into the yeast form and proliferate within macrophages, ultimately lysing the host cells. Similarly, infection of mice with purified conidia is sufficient to establish infection and yield viable yeast-form cells in vivo. To characterize conidia on a molecular level, we performed whole-genome expression profiling of conidia, yeast, and mycelia from two highly divergent H. capsulatum strains. In parallel, we used homology and protein domain analysis to manually annotate the predicted genes of both strains. Analyses of the resultant data defined sets of transcripts that reflect the unique molecular states of H. capsulatum conidia, yeast, and mycelia.
Collapse
|
36
|
Thorburn RR, Gonzalez C, Brar GA, Christen S, Carlile TM, Ingolia NT, Sauer U, Weissman JS, Amon A. Aneuploid yeast strains exhibit defects in cell growth and passage through START. Mol Biol Cell 2013; 24:1274-89. [PMID: 23468524 PMCID: PMC3639041 DOI: 10.1091/mbc.e12-07-0520] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Aneuploidy causes cell proliferation defects in budding yeast, with many aneuploid strains exhibiting a G1 delay. This study shows that the G1 delay in aneuploid budding yeast is caused by a growth defect and delayed passage through START due to delayed G1 cyclin accumulation. Aneuploidy, a chromosome content that is not a multiple of the haploid karyotype, is associated with reduced fitness in all organisms analyzed to date. In budding yeast aneuploidy causes cell proliferation defects, with many different aneuploid strains exhibiting a delay in G1, a cell cycle stage governed by extracellular cues, growth rate, and cell cycle events. Here we characterize this G1 delay. We show that 10 of 14 aneuploid yeast strains exhibit a growth defect during G1. Furthermore, 10 of 14 aneuploid strains display a cell cycle entry delay that correlates with the size of the additional chromosome. This cell cycle entry delay is due to a delayed accumulation of G1 cyclins that can be suppressed by supplying cells with high levels of a G1 cyclin. Our results indicate that aneuploidy frequently interferes with the ability of cells to grow and, as with many other cellular stresses, entry into the cell cycle.
Collapse
Affiliation(s)
- Rebecca R Thorburn
- David H. Koch Institute for Integrative Cancer Research and Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Aun A, Tamm T, Sedman J. Dysfunctional mitochondria modulate cAMP-PKA signaling and filamentous and invasive growth of Saccharomyces cerevisiae. Genetics 2013; 193:467-81. [PMID: 23172851 PMCID: PMC3567737 DOI: 10.1534/genetics.112.147389] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 11/05/2012] [Indexed: 01/04/2023] Open
Abstract
Mitochondrial metabolism is targeted by conserved signaling pathways that mediate external information to the cell. However, less is known about whether mitochondrial dysfunction interferes with signaling and thereby modulates the cellular response to environmental changes. In this study, we analyzed defective filamentous and invasive growth of the yeast Saccharomyces cerevisiae strains that have a dysfunctional mitochondrial genome (rho mutants). We found that the morphogenetic defect of rho mutants was caused by specific downregulation of FLO11, the adhesin essential for invasive and filamentous growth, and did not result from general metabolic changes brought about by interorganellar retrograde signaling. Transcription of FLO11 is known to be regulated by several signaling pathways, including the filamentous-growth-specific MAPK and cAMP-activated protein kinase A (cAMP-PKA) pathways. Our analysis showed that the filamentous-growth-specific MAPK pathway retained functionality in respiratory-deficient yeast cells. In contrast, the cAMP-PKA pathway was downregulated, explaining also various phenotypic traits observed in rho mutants. Thus, our results indicate that dysfunctional mitochondria modulate the output of the conserved cAMP-PKA signaling pathway.
Collapse
Affiliation(s)
| | | | - Juhan Sedman
- Department of Biochemistry, Institute of Molecular and Cell Biology, University of Tartu, Tartu 51010, Estonia
| |
Collapse
|
38
|
Bravim F, Lippman SI, da Silva LF, Souza DT, Fernandes AAR, Masuda CA, Broach JR, Fernandes PMB. High hydrostatic pressure activates gene expression that leads to ethanol production enhancement in a Saccharomyces cerevisiae distillery strain. Appl Microbiol Biotechnol 2012; 97:2093-107. [PMID: 22915193 DOI: 10.1007/s00253-012-4356-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Revised: 08/06/2012] [Accepted: 08/08/2012] [Indexed: 11/26/2022]
Abstract
High hydrostatic pressure (HHP) is a stress that exerts broad effects on microorganisms with characteristics similar to those of common environmental stresses. In this study, we aimed to identify genetic mechanisms that can enhance alcoholic fermentation of wild Saccharomyces cerevisiae isolated from Brazilian spirit fermentation vats. Accordingly, we performed a time course microarray analysis on a S. cerevisiae strain submitted to mild sublethal pressure treatment of 50 MPa for 30 min at room temperature, followed by incubation for 5, 10 and 15 min without pressure treatment. The obtained transcriptional profiles demonstrate the importance of post-pressurisation period on the activation of several genes related to cell recovery and stress tolerance. Based on these results, we over-expressed genes strongly induced by HHP in the same wild yeast strain and identified genes, particularly SYM1, whose over-expression results in enhanced ethanol production and stress tolerance upon fermentation. The present study validates the use of HHP as a biotechnological tool for the fermentative industries.
Collapse
Affiliation(s)
- Fernanda Bravim
- Núcleo de Biotecnologia, Centro de Ciências da Saúde, Universidade Federal do Espírito Santo, Vitória, ES 29040-090, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
39
|
The Saccharomyces cerevisiae Nrd1-Nab3 transcription termination pathway acts in opposition to Ras signaling and mediates response to nutrient depletion. Mol Cell Biol 2012; 32:1762-75. [PMID: 22431520 DOI: 10.1128/mcb.00050-12] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Saccharomyces cerevisiae Nrd1-Nab3 pathway directs the termination and processing of short RNA polymerase II transcripts. Despite the potential for Nrd1-Nab3 to affect the transcription of both coding and noncoding RNAs, little is known about how the Nrd1-Nab3 pathway interacts with other pathways in the cell. Here we present the results of a high-throughput synthetic lethality screen for genes that interact with NRD1 and show roles for Nrd1 in the regulation of mitochondrial abundance and cell size. We also provide genetic evidence of interactions between the Nrd1-Nab3 and Ras/protein kinase A (PKA) pathways. Whereas the Ras pathway promotes the transcription of genes involved in growth and glycolysis, the Nrd1-Nab3 pathway appears to have a novel role in the rapid suppression of some genes when cells are shifted to poor growth conditions. We report the identification of new mRNA targets of the Nrd1-Nab3 pathway that are rapidly repressed in response to glucose depletion. Glucose depletion also leads to the dephosphorylation of Nrd1 and the formation of novel nuclear speckles that contain Nrd1 and Nab3. Taken together, these results indicate a role for Nrd1-Nab3 in regulating the cellular response to nutrient availability.
Collapse
|
40
|
Identification of the molecular mechanisms underlying the cytotoxic action of a potent platinum metallointercalator. J Chem Biol 2011; 5:51-61. [PMID: 23226166 DOI: 10.1007/s12154-011-0070-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Accepted: 11/22/2011] [Indexed: 10/15/2022] Open
Abstract
UNLABELLED Platinum-based DNA metallointercalators are structurally different from the covalent DNA binders such as cisplatin and its derivatives but have potent in vitro activity in cancer cell lines. However, limited understanding of their molecular mechanisms of cytotoxic action greatly hinders their further development as anticancer agents. In this study, a lead platinum-based metallointercalator, [(5,6-dimethyl-1,10-phenanthroline) (1S,2S-diaminocyclohexane)platinum(II)](2+) (56MESS) was found to be 163-fold more active than cisplatin in a cisplatin-resistant cancer cell line. By using transcriptomics in a eukaryotic model organism, yeast Saccharomyces cerevisiae, we identified 93 genes that changed their expressions significantly upon exposure of 56MESS in comparison to untreated controls (p ≤ 0.05). Bioinformatic analysis of these genes demonstrated that iron and copper metabolism, sulfur-containing amino acids and stress response were involved in the cytotoxicity of 56MESS. Follow-up experiments showed that the iron and copper concentrations were much lower in 56MESS-treated cells compared to controls as measured by inductively coupled plasma optical emission spectrometry. Deletion mutants of the key genes in the iron and copper metabolism pathway and glutathione synthesis were sensitive to 56MESS. Taken together, the study demonstrated that the cytotoxic action of 56MESS is mediated by its ability to disrupt iron and copper metabolism, suppress the biosynthesis of sulfur-containing amino acids and attenuate cellular defence capacity. As these mechanisms are in clear contrast to the DNA binding mechanism for cisplatin and its derivative, 56MESS may be able to overcome cisplatin-resistant cancers. These findings have provided basis to further develop the platinum-based metallointercalators as anticancer agents. ELECTRONIC SUPPLEMENTARY MATERIAL The online version of this article (doi:10.1007/s12154-011-0070-x) contains supplementary material, which is available to authorized users.
Collapse
|
41
|
Casado C, González A, Platara M, Ruiz A, Ariño J. The role of the protein kinase A pathway in the response to alkaline pH stress in yeast. Biochem J 2011; 438:523-33. [PMID: 21749328 PMCID: PMC3253439 DOI: 10.1042/bj20110607] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2010] [Revised: 07/11/2011] [Accepted: 07/13/2011] [Indexed: 11/17/2022]
Abstract
Exposure of Saccharomyces cerevisiae to alkaline pH provokes a stress condition that generates a compensatory reaction. In the present study we examined a possible role for the PKA (protein kinase A) pathway in this response. Phenotypic analysis revealed that mutations that activate the PKA pathway (ira1 ira2, bcy1) tend to cause sensitivity to alkaline pH, whereas its deactivation enhances tolerance to this stress. We observed that alkalinization causes a transient decrease in cAMP, the main regulator of the pathway. Alkaline pH causes rapid nuclear localization of the PKA-regulated Msn2 transcription factor which, together with Msn4, mediates a general stress response by binding with STRE (stress response element) sequences in many promoters. Consequently, a synthetic STRE-LacZ reporter shows a rapid induction in response to alkaline stress. A msn2 msn4 mutant is sensitive to alkaline pH, and transcriptomic analysis reveals that after 10 min of alkaline stress, the expression of many induced genes (47%) depends, at least in part, on the presence of Msn2 and Msn4. Taken together, these results demonstrate that inhibition of the PKA pathway by alkaline pH represents a substantial part of the adaptive response to this kind of stress and that this response involves Msn2/Msn4-mediated genome expression remodelling. However, the relevance of attenuation of PKA in high pH tolerance is probably not restricted to regulation of Msn2 function.
Collapse
Key Words
- alkaline stress
- gene expression
- msn2
- msn4
- protein kinase a (pka)
- saccharomyces cerevisiae
- transcription factor
- cdre, calcineurin-dependent response element
- cy3, indocarbocyanine
- cy5, indodicarbocyanine
- gap, gtpase activating proteins
- gef, guanine-nucleotide-exchange factor
- gfp, green fluorescent protein
- go, gene ontology
- pka, protein kinase a
- stre, stress response element
- tor, target of rapamycin
Collapse
Affiliation(s)
- Carlos Casado
- Institut de Biotecnologia i Biomedicina & Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Bellaterra 08193, Barcelona, Spain
| | - Asier González
- Institut de Biotecnologia i Biomedicina & Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Bellaterra 08193, Barcelona, Spain
| | - Maria Platara
- Institut de Biotecnologia i Biomedicina & Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Bellaterra 08193, Barcelona, Spain
| | - Amparo Ruiz
- Institut de Biotecnologia i Biomedicina & Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Bellaterra 08193, Barcelona, Spain
| | - Joaquín Ariño
- Institut de Biotecnologia i Biomedicina & Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Bellaterra 08193, Barcelona, Spain
| |
Collapse
|
42
|
Alberghina L, Mavelli G, Drovandi G, Palumbo P, Pessina S, Tripodi F, Coccetti P, Vanoni M. Cell growth and cell cycle in Saccharomyces cerevisiae: basic regulatory design and protein-protein interaction network. Biotechnol Adv 2011; 30:52-72. [PMID: 21821114 DOI: 10.1016/j.biotechadv.2011.07.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Revised: 06/23/2011] [Accepted: 07/06/2011] [Indexed: 10/18/2022]
Abstract
In this review we summarize the major connections between cell growth and cell cycle in the model eukaryote Saccharomyces cerevisiae. In S. cerevisiae regulation of cell cycle progression is achieved predominantly during a narrow interval in the late G1 phase known as START (Pringle and Hartwell, 1981). At START a yeast cell integrates environmental and internal signals (such as nutrient availability, presence of pheromone, attainment of a critical size, status of the metabolic machinery) and decides whether to enter a new cell cycle or to undertake an alternative developmental program. Several signaling pathways, that act to connect the nutritional status to cellular actions, are briefly outlined. A Growth & Cycle interaction network has been manually curated. More than one fifth of the edges within the Growth & Cycle network connect Growth and Cycle proteins, indicating a strong interconnection between the processes of cell growth and cell cycle. The backbone of the Growth & Cycle network is composed of middle-degree nodes suggesting that it shares some properties with HOT networks. The development of multi-scale modeling and simulation analysis will help to elucidate relevant central features of growth and cycle as well as to identify their system-level properties. Confident collaborative efforts involving different expertises will allow to construct consensus, integrated models effectively linking the processes of cell growth and cell cycle, ultimately contributing to shed more light also on diseases in which an altered proliferation ability is observed, such as cancer.
Collapse
Affiliation(s)
- Lilia Alberghina
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milano, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Hsieh MT, Chen RH. Cdc48 and cofactors Npl4-Ufd1 are important for G1 progression during heat stress by maintaining cell wall integrity in Saccharomyces cerevisiae. PLoS One 2011; 6:e18988. [PMID: 21526151 PMCID: PMC3079750 DOI: 10.1371/journal.pone.0018988] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Accepted: 03/25/2011] [Indexed: 11/30/2022] Open
Abstract
The ubiquitin-selective chaperone Cdc48, a member of the AAA (ATPase Associated with various cellular Activities) ATPase superfamily, is involved in many processes, including endoplasmic reticulum-associated degradation (ERAD), ubiquitin- and proteasome-mediated protein degradation, and mitosis. Although Cdc48 was originally isolated as a cell cycle mutant in the budding yeast Saccharomyces cerevisiae, its cell cycle functions have not been well appreciated. We found that temperature-sensitive cdc48-3 mutant is largely arrested at mitosis at 37°C, whereas the mutant is also delayed in G1 progression at 38.5°C. Reporter assays show that the promoter activity of G1 cyclin CLN1, but not CLN2, is reduced in cdc48-3 at 38.5°C. The cofactor npl4-1 and ufd1-2 mutants also exhibit G1 delay and reduced CLN1 promoter activity at 38.5°C, suggesting that Npl4-Ufd1 complex mediates the function of Cdc48 at G1. The G1 delay of cdc48-3 at 38.5°C is a consequence of cell wall defect that over-activates Mpk1, a MAPK family member important for cell wall integrity in response to stress conditions including heat shock. cdc48-3 is hypersensitive to cell wall perturbing agents and is synthetic-sick with mutations in the cell wall integrity signaling pathway. Our results suggest that the cell wall defect in cdc48-3 is exacerbated by heat shock, which sustains Mpk1 activity to block G1 progression. Thus, Cdc48-Npl4-Ufd1 is important for the maintenance of cell wall integrity in order for normal cell growth and division.
Collapse
Affiliation(s)
- Meng-Ti Hsieh
- Molecular Cell Biology, Taiwan International Graduate Program, Institute of Molecular Biology, Academia Sinica, and Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Rey-Huei Chen
- Molecular Cell Biology, Taiwan International Graduate Program, Institute of Molecular Biology, Academia Sinica, and Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
44
|
Xbp1-mediated histone H4 deacetylation contributes to DNA double-strand break repair in yeast. Cell Res 2011; 21:1619-33. [PMID: 21467995 DOI: 10.1038/cr.2011.58] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Xbp1 has been shown to regulate the cell cycle as a transcriptional repressor in budding yeast Saccharomyces cerevisiae. In this study, we demonstrated that Xbp1 regulates DNA double-strand break (DSB) repair in S. cerevisiae. Xbp1 physically and genetically interacts with the histone deacetylase Rpd3 complex. Chromatin immunoprecipitation revealed that Xbp1 is required for efficient deacetylation of histone H4 flanking DSBs by the Rpd3 complex. Deletion of XBP1 leads to the delayed deacetylation of histone H4, which is coupled with increased nucleosome displacement, increased DNA end resection and decreased non-homologous end-joining (NHEJ). In response to DNA damage, Xbp1 is upregulated in a Mec1-Rad9-Rad53 checkpoint pathway-dependent manner and undergoes dephosphorylation. Cdk1, a central regulator of S. cerevisiae cell cycle, is responsible for Xbp1 phosphorylation at residues Ser146, Ser271 and Ser551. Substitution of these serine residues with alanine not only increases the association of Xbp1 with the Rpd3 complex and its recruitment to a DSB, but also promotes DSB repair. Together, our findings reveal a role for Xbp1 in DSB repair via NHEJ through regulation of histone H4 acetylation and nucleosome displacement in a positive feedback manner.
Collapse
|
45
|
Dhar R, Sägesser R, Weikert C, Yuan J, Wagner A. Adaptation of Saccharomyces cerevisiae to saline stress through laboratory evolution. J Evol Biol 2011; 24:1135-53. [PMID: 21375649 DOI: 10.1111/j.1420-9101.2011.02249.x] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Most laboratory evolution studies that characterize evolutionary adaptation genomically focus on genetically simple traits that can be altered by one or few mutations. Such traits are important, but they are few compared with complex, polygenic traits influenced by many genes. We know much less about complex traits, and about the changes that occur in the genome and in gene expression during their evolutionary adaptation. Salt stress tolerance is such a trait. It is especially attractive for evolutionary studies, because the physiological response to salt stress is well-characterized on the molecular and transcriptome level. This provides a unique opportunity to compare evolutionary adaptation and physiological adaptation to salt stress. The yeast Saccharomyces cerevisiae is a good model system to study salt stress tolerance, because it contains several highly conserved pathways that mediate the salt stress response. We evolved three replicate lines of yeast under continuous salt (NaCl) stress for 300 generations. All three lines evolved faster growth rate in high salt conditions than their ancestor. In these lines, we studied gene expression changes through microarray analysis and genetic changes through next generation population sequencing. We found two principal kinds of gene expression changes, changes in basal expression (82 genes) and changes in regulation (62 genes). The genes that change their expression involve several well-known physiological stress-response genes, including CTT1, MSN4 and HLR1. Next generation sequencing revealed only one high-frequency single-nucleotide change, in the gene MOT2, that caused increased fitness when introduced into the ancestral strain. Analysis of DNA content per cell revealed ploidy increases in all the three lines. Our observations suggest that evolutionary adaptation of yeast to salt stress is associated with genome size increase and modest expression changes in several genes.
Collapse
Affiliation(s)
- R Dhar
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, Zurich, Switzerland
| | | | | | | | | |
Collapse
|
46
|
Rintala E, Jouhten P, Toivari M, Wiebe MG, Maaheimo H, Penttilä M, Ruohonen L. Transcriptional responses of Saccharomyces cerevisiae to shift from respiratory and respirofermentative to fully fermentative metabolism. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2011; 15:461-76. [PMID: 21348598 DOI: 10.1089/omi.2010.0082] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In industrial fermentations of Saccharomyces cerevisiae, transient changes in oxygen concentration commonly occur and it is important to understand the behavior of cells during these changes. Glucose-limited chemostat cultivations were used to study the time-dependent effect of sudden oxygen depletion on the transcriptome of S. cerevisiae cells initially in fully aerobic or oxygen-limited conditions. The overall responses to anaerobic conditions of cells initially in different conditions were very similar. Independent of initial culture conditions, transient downregulation of genes related to growth and cell proliferation, mitochondrial translation and protein import, and sulphate assimilation was seen. In addition, transient or permanent upregulation of genes related to protein degradation, and phosphate and amino acid uptake was observed in all cultures. However, only in the initially oxygen-limited cultures was a transient upregulation of genes related to fatty acid oxidation, peroxisomal biogenesis, oxidative phosphorylation, TCA cycle, response to oxidative stress, and pentose phosphate pathway observed. Furthermore, from the initially oxygen-limited conditions, a rapid response around the metabolites of upper glycolysis and the pentose phosphate pathway was seen, while from the initially fully aerobic conditions, a slower response around the pathways for utilization of respiratory carbon sources was observed.
Collapse
Affiliation(s)
- Eija Rintala
- VTT Technical Research Centre of Finland, Finland.
| | | | | | | | | | | | | |
Collapse
|
47
|
García-Rico RO, Martín JF, Fierro F. Heterotrimeric Gα protein Pga1 from Penicillium chrysogenum triggers germination in response to carbon sources and affects negatively resistance to different stress conditions. Fungal Genet Biol 2010; 48:641-9. [PMID: 21146624 DOI: 10.1016/j.fgb.2010.11.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2010] [Revised: 11/15/2010] [Accepted: 11/30/2010] [Indexed: 11/19/2022]
Abstract
Heterotrimeric Gα protein Pga1 of Penicillium chrysogenum controls vegetative growth, conidiation and secondary metabolite production. In this work we studied the role of Pga1 in spore germination and resistance to different stress conditions. Strains G203R-T (expressing the dominant inactivating pga1(G203R) allele) and Δpga1 (deleted pga1) showed a delayed and asynchronic germination pattern, and a decrease in the percentage of germination, which occurred in only 70-80% of the total conidia. In contrast, in strains expressing the dominant activating pga1(G42R) allele, germination occurred at earlier times and in 100% of conidia. In addition, strains with the pga1(G42R) allele were able to bypass the carbon source (glucose or sucrose) requirement for germination in about 64% of conidia. Thus Pga1 plays an important, but not essential, role in germination, mediating carbon source sensing. Regulation of germination by Pga1 is probably mediated by cAMP, as intracellular levels of this secondary messenger undergo a peak before the onset of germination only in strains with an active Pga1. Pga1 activity is also a determinant factor in the resistance to different stress conditions. Absence or inactivation of Pga1 allow growth on SDS-containing minimal medium, increase resistance of conidia to thermal and oxidative stress, and increase resistance of vegetative mycelium to thermal and osmotic stress. In contrast, constitutive activation of Pga1 causes a decrease in the resistance of conidia to thermal stress and of vegetative mycelium to thermal and osmotic stress. Together with our previously reported results, we show in this work that Pga1 plays a central role in the regulation of the whole growth-developmental program of this biotechnologically important fungus.
Collapse
Affiliation(s)
- Ramón Ovidio García-Rico
- Institute of Biotechnology of León (INBIOTEC), Parque Científico de León, Av. Real 1, 24006 León, Spain.
| | | | | |
Collapse
|
48
|
Wang J. The effect of prior assumptions over the weights in BayesPI with application to study protein-DNA interactions from ChIP-based high-throughput data. BMC Bioinformatics 2010; 11:412. [PMID: 20684785 PMCID: PMC2921412 DOI: 10.1186/1471-2105-11-412] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2009] [Accepted: 08/04/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND To further understand the implementation of hyperparameters re-estimation technique in Bayesian hierarchical model, we added two more prior assumptions over the weight in BayesPI, namely Laplace prior and Cauchy prior, by using the evidence approximation method. In addition, we divided hyperparameter (regularization constants alpha of the model) into multiple distinct classes based on either the structure of the neural networks or the property of the weights. RESULTS The newly implemented BayesPI was tested on both synthetic and real ChIP-based high-throughput datasets to identify the corresponding protein binding energy matrices. The results obtained were encouraging: 1) there was a minor effect on the quality of predictions when prior assumptions over the weights were altered (e.g. the prior probability distributions to the weights and the number of classes to the hyperparameters) in BayesPI; 2) however, there was a significant impact on the computational speed when tuning the weight prior in the model: for example, BayesPI with a Laplace weight prior achieved the best performance with regard to both the computational speed and the prediction accuracy. CONCLUSIONS From this study, we learned that it is absolutely necessary to try different prior assumptions over the weights in Bayesian hierarchical model to design an efficient learning algorithm, though the quality of the final results may not be associated with such changes. In future, the evidence approximation method can be an alternative to Monte Carlo methods for computational implementation of Bayesian hierarchical model.
Collapse
Affiliation(s)
- Junbai Wang
- Department of Pathology, The Norwegian Radium Hospital, Oslo University Hospital, Montebello 0310 Oslo, Norway.
| |
Collapse
|
49
|
Busti S, Coccetti P, Alberghina L, Vanoni M. Glucose signaling-mediated coordination of cell growth and cell cycle in Saccharomyces cerevisiae. SENSORS 2010; 10:6195-240. [PMID: 22219709 PMCID: PMC3247754 DOI: 10.3390/s100606195] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Revised: 05/26/2010] [Accepted: 05/27/2010] [Indexed: 01/05/2023]
Abstract
Besides being the favorite carbon and energy source for the budding yeast Sacchromyces cerevisiae, glucose can act as a signaling molecule to regulate multiple aspects of yeast physiology. Yeast cells have evolved several mechanisms for monitoring the level of glucose in their habitat and respond quickly to frequent changes in the sugar availability in the environment: the cAMP/PKA pathways (with its two branches comprising Ras and the Gpr1/Gpa2 module), the Rgt2/Snf3-Rgt1 pathway and the main repression pathway involving the kinase Snf1. The cAMP/PKA pathway plays the prominent role in responding to changes in glucose availability and initiating the signaling processes that promote cell growth and division. Snf1 (the yeast homologous to mammalian AMP-activated protein kinase) is primarily required for the adaptation of yeast cell to glucose limitation and for growth on alternative carbon source, but it is also involved in the cellular response to various environmental stresses. The Rgt2/Snf3-Rgt1 pathway regulates the expression of genes required for glucose uptake. Many interconnections exist between the diverse glucose sensing systems, which enables yeast cells to fine tune cell growth, cell cycle and their coordination in response to nutritional changes.
Collapse
Affiliation(s)
- Stefano Busti
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano Bicocca, Piazza della Scienza, 2-20126 Milano, Italy.
| | | | | | | |
Collapse
|
50
|
Becerra M, Lombardía LJ, González-Siso MI, Rodríguez-Belmonte E, Hauser NC, Cerdán ME. Genome-wide analysis of the yeast transcriptome upon heat and cold shock. Comp Funct Genomics 2010; 4:366-75. [PMID: 18629074 PMCID: PMC2447359 DOI: 10.1002/cfg.301] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2002] [Revised: 05/02/2003] [Accepted: 05/22/2003] [Indexed: 11/29/2022] Open
Abstract
DNA arrays were used to measure changes in transcript levels as yeast cells responded to temperature shocks. The number of genes upregulated by temperature shifts from
30 ℃ to 37℃ or 45℃ was correlated with the severity of the stress. Pre-adaptation
of cells, by growth at 37 ℃ previous to the 45℃ shift, caused a decrease in the
number of genes related to this response. Heat shock also caused downregulation of a
set of genes related to metabolism, cell growth and division, transcription, ribosomal
proteins, protein synthesis and destination. Probably all of these responses combine
to slow down cell growth and division during heat shock, thus saving energy for
cell rescue. The presence of putative binding sites for Xbp1p in the promoters of
these genes suggests a hypothetical role for this transcriptional repressor, although
other mechanisms may be considered. The response to cold shock (4℃) affected a
small number of genes, but the vast majority of those genes induced by exposure to
4 ℃ were also induced during heat shock; these genes share in their promoters cis-regulatory
elements previously related to other stress responses.
Collapse
Affiliation(s)
- M Becerra
- Dpto. Biología Celular y Molecular, Universidad de La Coruña, F. Ciencias, Campus de La Zapateira s/n, La Coruña 15075, Spain
| | | | | | | | | | | |
Collapse
|