1
|
Sajek MP, Bilodeau DY, Beer MA, Horton E, Miyamoto Y, Velle KB, Eckmann L, Fritz-Laylin L, Rissland OS, Mukherjee N. Evolutionary dynamics of polyadenylation signals and their recognition strategies in protists. Genome Res 2024; 34:1570-1581. [PMID: 39327029 PMCID: PMC11529991 DOI: 10.1101/gr.279526.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 09/11/2024] [Indexed: 09/28/2024]
Abstract
The poly(A) signal, together with auxiliary elements, directs cleavage of a pre-mRNA and thus determines the 3' end of the mature transcript. In many species, including humans, the poly(A) signal is an AAUAAA hexamer, but we recently found that the deeply branching eukaryote Giardia lamblia uses a distinct hexamer (AGURAA) and lacks any known auxiliary elements. Our discovery prompted us to explore the evolutionary dynamics of poly(A) signals and auxiliary elements in the eukaryotic kingdom. We use direct RNA sequencing to determine poly(A) signals for four protists within the Metamonada clade (which also contains G. lamblia) and two outgroup protists. These experiments reveal that the AAUAAA hexamer serves as the poly(A) signal in at least four different eukaryotic clades, indicating that it is likely the ancestral signal, whereas the unusual Giardia version is derived. We find that the use and relative strengths of auxiliary elements are also plastic; in fact, within Metamonada, species like G. lamblia make use of a previously unrecognized auxiliary element where nucleotides flanking the poly(A) signal itself specify genuine cleavage sites. Thus, despite the fundamental nature of pre-mRNA cleavage for the expression of all protein-coding genes, the motifs controlling this process are dynamic on evolutionary timescales, providing motivation for future biochemical and structural studies as well as new therapeutic angles to target eukaryotic pathogens.
Collapse
Affiliation(s)
- Marcin P Sajek
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
- RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
- Institute of Human Genetics, Polish Academy of Sciences, 60-479 Poznan, Poland
| | - Danielle Y Bilodeau
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
- RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Michael A Beer
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Emma Horton
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
- RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Yukiko Miyamoto
- Department of Medicine, University of California San Diego, La Jolla, California 92093, USA
| | - Katrina B Velle
- Department of Biology, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | - Lars Eckmann
- Department of Medicine, University of California San Diego, La Jolla, California 92093, USA
| | - Lillian Fritz-Laylin
- Department of Biology, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | - Olivia S Rissland
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado 80045, USA;
- RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Neelanjan Mukherjee
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado 80045, USA;
- RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| |
Collapse
|
2
|
Grzechnik P, Mischo HE. Fateful Decisions of Where to Cut the Line: Pathology Associated with Aberrant 3' End Processing and Transcription Termination. J Mol Biol 2024:168802. [PMID: 39321865 DOI: 10.1016/j.jmb.2024.168802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/17/2024] [Accepted: 09/19/2024] [Indexed: 09/27/2024]
Abstract
Aberrant gene expression lies at the heart of many pathologies. This review will point out how 3' end processing, the final mRNA-maturation step in the transcription cycle, is surprisingly prone to regulated as well as stochastic variations with a wide range of consequences. Whereas smaller variations contribute to the plasticity of gene expression, larger alternations to 3' end processing and coupled transcription termination can lead to pathological consequences. These can be caused by the local mutation of one gene or affect larger numbers of genes systematically, if aspects of the mechanisms of 3' end processing and transcription termination are altered.
Collapse
Affiliation(s)
- Pawel Grzechnik
- Division of Molecular and Cellular Function, School of Biological Sciences, University of Manchester, United Kingdom
| | - Hannah E Mischo
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, United Kingdom.
| |
Collapse
|
3
|
Gorjifard S, Jores T, Tonnies J, Mueth NA, Bubb K, Wrightsman T, Buckler ES, Fields S, Cuperus JT, Queitsch C. Arabidopsis and maize terminator strength is determined by GC content, polyadenylation motifs and cleavage probability. Nat Commun 2024; 15:5868. [PMID: 38997252 PMCID: PMC11245536 DOI: 10.1038/s41467-024-50174-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 07/03/2024] [Indexed: 07/14/2024] Open
Abstract
The 3' end of a gene, often called a terminator, modulates mRNA stability, localization, translation, and polyadenylation. Here, we adapted Plant STARR-seq, a massively parallel reporter assay, to measure the activity of over 50,000 terminators from the plants Arabidopsis thaliana and Zea mays. We characterize thousands of plant terminators, including many that outperform bacterial terminators commonly used in plants. Terminator activity is species-specific, differing in tobacco leaf and maize protoplast assays. While recapitulating known biology, our results reveal the relative contributions of polyadenylation motifs to terminator strength. We built a computational model to predict terminator strength and used it to conduct in silico evolution that generated optimized synthetic terminators. Additionally, we discover alternative polyadenylation sites across tens of thousands of terminators; however, the strongest terminators tend to have a dominant cleavage site. Our results establish features of plant terminator function and identify strong naturally occurring and synthetic terminators.
Collapse
Affiliation(s)
- Sayeh Gorjifard
- Department of Genome Sciences, University of Washington, Seattle, WA, 98195, USA
| | - Tobias Jores
- Department of Genome Sciences, University of Washington, Seattle, WA, 98195, USA
| | - Jackson Tonnies
- Department of Genome Sciences, University of Washington, Seattle, WA, 98195, USA
- Graduate Program in Biology, University of Washington, Seattle, WA, 98195, USA
| | - Nicholas A Mueth
- Department of Genome Sciences, University of Washington, Seattle, WA, 98195, USA
| | - Kerry Bubb
- Department of Genome Sciences, University of Washington, Seattle, WA, 98195, USA
| | - Travis Wrightsman
- Section of Plant Breeding and Genetics, Cornell University, Ithaca, NY, 14853, USA
| | - Edward S Buckler
- Section of Plant Breeding and Genetics, Cornell University, Ithaca, NY, 14853, USA
- Agricultural Research Service, United States Department of Agriculture, Ithaca, NY, 14853, USA
- Institute for Genomic Diversity, Cornell University, Ithaca, NY, 14853, USA
| | - Stanley Fields
- Department of Genome Sciences, University of Washington, Seattle, WA, 98195, USA
- Department of Medicine, University of Washington, Seattle, WA, 98195, USA
| | - Josh T Cuperus
- Department of Genome Sciences, University of Washington, Seattle, WA, 98195, USA
| | - Christine Queitsch
- Department of Genome Sciences, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
4
|
Ni Z, Ahmed N, Nabeel-Shah S, Guo X, Pu S, Song J, Marcon E, Burke G, Tong AH, Chan K, Ha KH, Blencowe B, Moffat J, Greenblatt J. Identifying human pre-mRNA cleavage and polyadenylation factors by genome-wide CRISPR screens using a dual fluorescence readthrough reporter. Nucleic Acids Res 2024; 52:4483-4501. [PMID: 38587191 PMCID: PMC11077057 DOI: 10.1093/nar/gkae240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 01/29/2024] [Accepted: 04/02/2024] [Indexed: 04/09/2024] Open
Abstract
Messenger RNA precursors (pre-mRNA) generally undergo 3' end processing by cleavage and polyadenylation (CPA), which is specified by a polyadenylation site (PAS) and adjacent RNA sequences and regulated by a large variety of core and auxiliary CPA factors. To date, most of the human CPA factors have been discovered through biochemical and proteomic studies. However, genetic identification of the human CPA factors has been hampered by the lack of a reliable genome-wide screening method. We describe here a dual fluorescence readthrough reporter system with a PAS inserted between two fluorescent reporters. This system enables measurement of the efficiency of 3' end processing in living cells. Using this system in combination with a human genome-wide CRISPR/Cas9 library, we conducted a screen for CPA factors. The screens identified most components of the known core CPA complexes and other known CPA factors. The screens also identified CCNK/CDK12 as a potential core CPA factor, and RPRD1B as a CPA factor that binds RNA and regulates the release of RNA polymerase II at the 3' ends of genes. Thus, this dual fluorescence reporter coupled with CRISPR/Cas9 screens reliably identifies bona fide CPA factors and provides a platform for investigating the requirements for CPA in various contexts.
Collapse
Affiliation(s)
- Zuyao Ni
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada
| | - Nujhat Ahmed
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5A 1A8, Canada
| | - Syed Nabeel-Shah
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5A 1A8, Canada
| | - Xinghua Guo
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada
| | - Shuye Pu
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada
| | - Jingwen Song
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada
| | - Edyta Marcon
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada
| | - Giovanni L Burke
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5A 1A8, Canada
| | - Amy Hin Yan Tong
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5A 1A8, Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON Canada
| | - Katherine Chan
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5A 1A8, Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON Canada
| | - Kevin C H Ha
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5A 1A8, Canada
| | - Benjamin J Blencowe
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5A 1A8, Canada
| | - Jason Moffat
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5A 1A8, Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON Canada
- Institute for Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON Canada
| | - Jack F Greenblatt
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5A 1A8, Canada
| |
Collapse
|
5
|
Gorjifard S, Jores T, Tonnies J, Mueth NA, Bubb K, Wrightsman T, Buckler ES, Fields S, Cuperus JT, Queitsch C. Arabidopsis and Maize Terminator Strength is Determined by GC Content, Polyadenylation Motifs and Cleavage Probability. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.16.545379. [PMID: 37398426 PMCID: PMC10312805 DOI: 10.1101/2023.06.16.545379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
The 3' end of a gene, often called a terminator, modulates mRNA stability, localization, translation, and polyadenylation. Here, we adapted Plant STARR-seq, a massively parallel reporter assay, to measure the activity of over 50,000 terminators from the plants Arabidopsis thaliana and Zea mays. We characterize thousands of plant terminators, including many that outperform bacterial terminators commonly used in plants. Terminator activity is species-specific, differing in tobacco leaf and maize protoplast assays. While recapitulating known biology, our results reveal the relative contributions of polyadenylation motifs to terminator strength. We built a computational model to predict terminator strength and used it to conduct in silico evolution that generated optimized synthetic terminators. Additionally, we discover alternative polyadenylation sites across tens of thousands of terminators; however, the strongest terminators tend to have a dominant cleavage site. Our results establish features of plant terminator function and identify strong naturally occurring and synthetic terminators.
Collapse
Affiliation(s)
- Sayeh Gorjifard
- Department of Genome Sciences, University of Washington, Seattle, WA 98195
| | - Tobias Jores
- Department of Genome Sciences, University of Washington, Seattle, WA 98195
| | - Jackson Tonnies
- Department of Genome Sciences, University of Washington, Seattle, WA 98195
- Graduate Program in Biology, University of Washington, Seattle, WA 98195
| | - Nicholas A Mueth
- Department of Genome Sciences, University of Washington, Seattle, WA 98195
| | - Kerry Bubb
- Department of Genome Sciences, University of Washington, Seattle, WA 98195
| | - Travis Wrightsman
- Section of Plant Breeding and Genetics, Cornell University, Ithaca, NY 14853
| | - Edward S Buckler
- Section of Plant Breeding and Genetics, Cornell University, Ithaca, NY 14853
- Agricultural Research Service, United States Department of Agriculture, Ithaca, NY 14853
- Institute for Genomic Diversity, Cornell University, Ithaca, NY 14853
| | - Stanley Fields
- Department of Genome Sciences, University of Washington, Seattle, WA 98195
- Department of Medicine, University of Washington, Seattle, WA 98195
| | - Josh T Cuperus
- Department of Genome Sciences, University of Washington, Seattle, WA 98195
| | - Christine Queitsch
- Department of Genome Sciences, University of Washington, Seattle, WA 98195
| |
Collapse
|
6
|
Li J, Querl L, Coban I, Salinas G, Krebber H. Surveillance of 3' mRNA cleavage during transcription termination requires CF IB/Hrp1. Nucleic Acids Res 2023; 51:8758-8773. [PMID: 37351636 PMCID: PMC10484732 DOI: 10.1093/nar/gkad530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 05/31/2023] [Accepted: 06/07/2023] [Indexed: 06/24/2023] Open
Abstract
CF IB/Hrp1 is part of the cleavage and polyadenylation factor (CPF) and cleavage factor (CF) complex (CPF-CF), which is responsible for 3' cleavage and maturation of pre-mRNAs. Although Hrp1 supports this process, its presence is not essential for the cleavage event. Here, we show that the main function of Hrp1 in the CPF-CF complex is the nuclear mRNA quality control of proper 3' cleavage. As such, Hrp1 acts as a nuclear mRNA retention factor that hinders transcripts from leaving the nucleus until processing is completed. Only after proper 3' cleavage, which is sensed through contacting Rna14, Hrp1 recruits the export receptor Mex67, allowing nuclear export. Consequently, its absence results in the leakage of elongated mRNAs into the cytoplasm. If cleavage is defective, the presence of Hrp1 on the mRNA retains these elongated transcripts until they are eliminated by the nuclear exosome. Together, we identify Hrp1 as the key quality control factor for 3' cleavage.
Collapse
Affiliation(s)
- Jing Li
- Abteilung für Molekulare Genetik, Institut für Mikrobiologie und Genetik, Göttinger Zentrum für Molekulare Biowissenschaften (GZMB), Georg-August Universität Göttingen, D-37075 Göttingen, Germany
| | - Luisa Querl
- Abteilung für Molekulare Genetik, Institut für Mikrobiologie und Genetik, Göttinger Zentrum für Molekulare Biowissenschaften (GZMB), Georg-August Universität Göttingen, D-37075 Göttingen, Germany
| | - Ivo Coban
- Abteilung für Molekulare Genetik, Institut für Mikrobiologie und Genetik, Göttinger Zentrum für Molekulare Biowissenschaften (GZMB), Georg-August Universität Göttingen, D-37075 Göttingen, Germany
| | - Gabriela Salinas
- NGS-Serviceeinrichtung für Integrative Genomik (NIG), Institut für Humangenetik, Universitätsmedizin Göttingen, D-37075 Göttingen, Germany
| | - Heike Krebber
- Abteilung für Molekulare Genetik, Institut für Mikrobiologie und Genetik, Göttinger Zentrum für Molekulare Biowissenschaften (GZMB), Georg-August Universität Göttingen, D-37075 Göttingen, Germany
| |
Collapse
|
7
|
Swale C, Hakimi MA. 3'-end mRNA processing within apicomplexan parasites, a patchwork of classic, and unexpected players. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1783. [PMID: 36994829 DOI: 10.1002/wrna.1783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 01/17/2023] [Accepted: 01/25/2023] [Indexed: 03/31/2023]
Abstract
The 3'-end processing of mRNA is a co-transcriptional process that leads to the formation of a poly-adenosine tail on the mRNA and directly controls termination of the RNA polymerase II juggernaut. This process involves a megadalton complex composed of cleavage and polyadenylation specificity factors (CPSFs) that are able to recognize cis-sequence elements on nascent mRNA to then carry out cleavage and polyadenylation reactions. Recent structural and biochemical studies have defined the roles played by different subunits of the complex and provided a comprehensive mechanistic understanding of this machinery in yeast or metazoans. More recently, the discovery of small molecule inhibitors of CPSF function in Apicomplexa has stimulated interest in studying the specificities of this ancient eukaryotic machinery in these organisms. Although its function is conserved in Apicomplexa, the CPSF complex integrates a novel reader of the N6-methyladenosine (m6A). This feature, inherited from the plant kingdom, bridges m6A metabolism directly to 3'-end processing and by extension, to transcription termination. In this review, we will examine convergence and divergence of CPSF within the apicomplexan parasites and explore the potential of small molecule inhibition of this machinery within these organisms. This article is categorized under: RNA Processing > 3' End Processing RNA Processing > RNA Editing and Modification.
Collapse
Affiliation(s)
- Christopher Swale
- Team Host-Pathogen Interactions and Immunity to Infection, Institute for Advanced Biosciences, INSERM U1209, CNRS UMR5309, Grenoble Alpes University, Grenoble, France
| | - Mohamed-Ali Hakimi
- Team Host-Pathogen Interactions and Immunity to Infection, Institute for Advanced Biosciences, INSERM U1209, CNRS UMR5309, Grenoble Alpes University, Grenoble, France
| |
Collapse
|
8
|
Huang Y, Ji H, Dong J, Wang X, He Z, Cheng Z, Zhu Q. CPSF3 Promotes Pre-mRNA Splicing and Prevents CircRNA Cyclization in Hepatocellular Carcinoma. Cancers (Basel) 2023; 15:4057. [PMID: 37627085 PMCID: PMC10452738 DOI: 10.3390/cancers15164057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/03/2023] [Accepted: 08/06/2023] [Indexed: 08/27/2023] Open
Abstract
CircRNAs are crucial in tumorigenesis and metastasis, and are comprehensively downregulated in hepatocellular carcinoma (HCC). Previous studies demonstrated that the back-splicing of circRNAs was closely related to 3'-end splicing. As a core executor of 3'-end cleavage, we hypothesized that CPSF3 modulated circRNA circularization. Clinical data were analyzed to establish the prognostic correlations. Cytological experiments were performed to determine the role of CPSF3 in HCC. A fluorescent reporter was employed to explore the back-splicing mechanism. The circRNAs regulated by CPSF3 were screened by RNA-seq and validated by PCR, and changes in downstream pathways were explored by molecular experiments. Finally, the safety and efficacy of the CPSF3 inhibitor JTE-607 were verified both in vitro and in vivo. The results showed that CPSF3 was highly expressed in HCC cells, promoting their proliferation and migration, and that a high CPSF3 level was predictive of a poor prognosis. A mechanistic study revealed that CPSF3 enhanced RNA cleavage, thereby reducing circRNAs, and increasing linear mRNAs. Furthermore, inhibition of CPSF3 by JET-607 suppressed the proliferation of HCC cells. Our findings indicate that the increase of CPSF3 in HCC promotes the shift of pre-mRNA from circRNA to linear mRNA, leading to uncontrolled cell proliferation. JTE-607 exerted a therapeutic effect on HCC by blocking CPSF3.
Collapse
Affiliation(s)
- Ying Huang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China; (Y.H.); (H.J.); (J.D.); (Z.H.); (Z.C.)
| | - Haofei Ji
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China; (Y.H.); (H.J.); (J.D.); (Z.H.); (Z.C.)
| | - Jiani Dong
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China; (Y.H.); (H.J.); (J.D.); (Z.H.); (Z.C.)
| | - Xueying Wang
- China National Intellectual Property Administration, Beijing 100088, China;
| | - Zhilin He
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China; (Y.H.); (H.J.); (J.D.); (Z.H.); (Z.C.)
| | - Zeneng Cheng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China; (Y.H.); (H.J.); (J.D.); (Z.H.); (Z.C.)
| | - Qubo Zhu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China; (Y.H.); (H.J.); (J.D.); (Z.H.); (Z.C.)
| |
Collapse
|
9
|
Rodríguez‐Molina JB, Turtola M. Birth of a poly(A) tail: mechanisms and control of mRNA polyadenylation. FEBS Open Bio 2023; 13:1140-1153. [PMID: 36416579 PMCID: PMC10315857 DOI: 10.1002/2211-5463.13528] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/17/2022] [Accepted: 11/22/2022] [Indexed: 11/24/2022] Open
Abstract
During their synthesis in the cell nucleus, most eukaryotic mRNAs undergo a two-step 3'-end processing reaction in which the pre-mRNA is cleaved and released from the transcribing RNA polymerase II and a polyadenosine (poly(A)) tail is added to the newly formed 3'-end. These biochemical reactions might appear simple at first sight (endonucleolytic RNA cleavage and synthesis of a homopolymeric tail), but their catalysis requires a multi-faceted enzymatic machinery, the cleavage and polyadenylation complex (CPAC), which is composed of more than 20 individual protein subunits. The activity of CPAC is further orchestrated by Poly(A) Binding Proteins (PABPs), which decorate the poly(A) tail during its synthesis and guide the mRNA through subsequent gene expression steps. Here, we review the structure, molecular mechanism, and regulation of eukaryotic mRNA 3'-end processing machineries with a focus on the polyadenylation step. We concentrate on the CPAC and PABPs from mammals and the budding yeast, Saccharomyces cerevisiae, because these systems are the best-characterized at present. Comparison of their functions provides valuable insights into the principles of mRNA 3'-end processing.
Collapse
Affiliation(s)
| | - Matti Turtola
- Department of Life TechnologiesUniversity of TurkuFinland
| |
Collapse
|
10
|
Ray D, Laverty KU, Jolma A, Nie K, Samson R, Pour SE, Tam CL, von Krosigk N, Nabeel-Shah S, Albu M, Zheng H, Perron G, Lee H, Najafabadi H, Blencowe B, Greenblatt J, Morris Q, Hughes TR. RNA-binding proteins that lack canonical RNA-binding domains are rarely sequence-specific. Sci Rep 2023; 13:5238. [PMID: 37002329 PMCID: PMC10066285 DOI: 10.1038/s41598-023-32245-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 03/23/2023] [Indexed: 04/03/2023] Open
Abstract
Thousands of RNA-binding proteins (RBPs) crosslink to cellular mRNA. Among these are numerous unconventional RBPs (ucRBPs)-proteins that associate with RNA but lack known RNA-binding domains (RBDs). The vast majority of ucRBPs have uncharacterized RNA-binding specificities. We analyzed 492 human ucRBPs for intrinsic RNA-binding in vitro and identified 23 that bind specific RNA sequences. Most (17/23), including 8 ribosomal proteins, were previously associated with RNA-related function. We identified the RBDs responsible for sequence-specific RNA-binding for several of these 23 ucRBPs and surveyed whether corresponding domains from homologous proteins also display RNA sequence specificity. CCHC-zf domains from seven human proteins recognized specific RNA motifs, indicating that this is a major class of RBD. For Nudix, HABP4, TPR, RanBP2-zf, and L7Ae domains, however, only isolated members or closely related homologs yielded motifs, consistent with RNA-binding as a derived function. The lack of sequence specificity for most ucRBPs is striking, and we suggest that many may function analogously to chromatin factors, which often crosslink efficiently to cellular DNA, presumably via indirect recruitment. Finally, we show that ucRBPs tend to be highly abundant proteins and suggest their identification in RNA interactome capture studies could also result from weak nonspecific interactions with RNA.
Collapse
Affiliation(s)
- Debashish Ray
- Donnelly Centre, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Kaitlin U Laverty
- Donnelly Centre, University of Toronto, Toronto, ON, M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Arttu Jolma
- Donnelly Centre, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Kate Nie
- Donnelly Centre, University of Toronto, Toronto, ON, M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Reuben Samson
- Donnelly Centre, University of Toronto, Toronto, ON, M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Sara E Pour
- Donnelly Centre, University of Toronto, Toronto, ON, M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Cyrus L Tam
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Tri-Institutional Training Program in Computational Biology and Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Niklas von Krosigk
- Donnelly Centre, University of Toronto, Toronto, ON, M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Syed Nabeel-Shah
- Donnelly Centre, University of Toronto, Toronto, ON, M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Mihai Albu
- Donnelly Centre, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Hong Zheng
- Donnelly Centre, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Gabrielle Perron
- Department of Human Genetics, McGill University, Montréal, QC, H3A 0C7, Canada
- McGill Genome Centre, Montréal, QC, H3A 0G1, Canada
| | - Hyunmin Lee
- Donnelly Centre, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Hamed Najafabadi
- Department of Human Genetics, McGill University, Montréal, QC, H3A 0C7, Canada
- McGill Genome Centre, Montréal, QC, H3A 0G1, Canada
| | - Benjamin Blencowe
- Donnelly Centre, University of Toronto, Toronto, ON, M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Jack Greenblatt
- Donnelly Centre, University of Toronto, Toronto, ON, M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Quaid Morris
- Donnelly Centre, University of Toronto, Toronto, ON, M5S 3E1, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada.
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Tri-Institutional Training Program in Computational Biology and Medicine, Weill Cornell Medicine, New York, NY, USA.
| | - Timothy R Hughes
- Donnelly Centre, University of Toronto, Toronto, ON, M5S 3E1, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
11
|
Muckenfuss LM, Migenda Herranz AC, Boneberg FM, Clerici M, Jinek M. Fip1 is a multivalent interaction scaffold for processing factors in human mRNA 3' end biogenesis. eLife 2022; 11:80332. [PMID: 36073787 PMCID: PMC9512404 DOI: 10.7554/elife.80332] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 09/07/2022] [Indexed: 11/25/2022] Open
Abstract
3′ end formation of most eukaryotic mRNAs is dependent on the assembly of a ~1.5 MDa multiprotein complex, that catalyzes the coupled reaction of pre-mRNA cleavage and polyadenylation. In mammals, the cleavage and polyadenylation specificity factor (CPSF) constitutes the core of the 3′ end processing machinery onto which the remaining factors, including cleavage stimulation factor (CstF) and poly(A) polymerase (PAP), assemble. These interactions are mediated by Fip1, a CPSF subunit characterized by high degree of intrinsic disorder. Here, we report two crystal structures revealing the interactions of human Fip1 (hFip1) with CPSF30 and CstF77. We demonstrate that CPSF contains two copies of hFip1, each binding to the zinc finger (ZF) domains 4 and 5 of CPSF30. Using polyadenylation assays we show that the two hFip1 copies are functionally redundant in recruiting one copy of PAP, thereby increasing the processivity of RNA polyadenylation. We further show that the interaction between hFip1 and CstF77 is mediated via a short motif in the N-terminal ‘acidic’ region of hFip1. In turn, CstF77 competitively inhibits CPSF-dependent PAP recruitment and 3′ polyadenylation. Taken together, these results provide a structural basis for the multivalent scaffolding and regulatory functions of hFip1 in 3′ end processing.
Collapse
Affiliation(s)
| | | | | | - Marcello Clerici
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Martin Jinek
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| |
Collapse
|
12
|
Bilodeau DY, Sheridan RM, Balan B, Jex AR, Rissland OS. Precise gene models using long-read sequencing reveal a unique poly(A) signal in Giardia lamblia. RNA (NEW YORK, N.Y.) 2022; 28:668-682. [PMID: 35110372 PMCID: PMC9014877 DOI: 10.1261/rna.078793.121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
During pre-mRNA processing, the poly(A) signal is recognized by a protein complex that ensures precise cleavage and polyadenylation of the nascent transcript. The location of this cleavage event establishes the length and sequence of the 3' UTR of an mRNA, thus determining much of its post-transcriptional fate. Using long-read sequencing, we characterize the polyadenylation signal and related sequences surrounding Giardia lamblia cleavage sites for over 2600 genes. We find that G. lamblia uses an AGURAA poly(A) signal, which differs from the mammalian AAUAAA. We also describe how G. lamblia lacks common auxiliary elements found in other eukaryotes, along with the proteins that recognize them. Further, we identify 133 genes with evidence of alternative polyadenylation. These results suggest that despite pared-down cleavage and polyadenylation machinery, 3' end formation still appears to be an important regulatory step for gene expression in G. lamblia.
Collapse
Affiliation(s)
- Danielle Y Bilodeau
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
- RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Ryan M Sheridan
- RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Balu Balan
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne, VIC 3052, Australia
| | - Aaron R Jex
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne, VIC 3052, Australia
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Olivia S Rissland
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
- RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| |
Collapse
|
13
|
Boreikaite V, Elliott TS, Chin JW, Passmore LA. RBBP6 activates the pre-mRNA 3' end processing machinery in humans. Genes Dev 2022; 36:210-224. [PMID: 35177536 PMCID: PMC8887125 DOI: 10.1101/gad.349223.121] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 02/01/2022] [Indexed: 11/25/2022]
Abstract
3' end processing of most human mRNAs is carried out by the cleavage and polyadenylation specificity factor (CPSF; CPF in yeast). Endonucleolytic cleavage of the nascent pre-mRNA defines the 3' end of the mature transcript, which is important for mRNA localization, translation, and stability. Cleavage must therefore be tightly regulated. Here, we reconstituted specific and efficient 3' endonuclease activity of human CPSF with purified proteins. This required the seven-subunit CPSF as well as three additional protein factors: cleavage stimulatory factor (CStF), cleavage factor IIm (CFIIm), and, importantly, the multidomain protein RBBP6. Unlike its yeast homolog Mpe1, which is a stable subunit of CPF, RBBP6 does not copurify with CPSF and is recruited in an RNA-dependent manner. Sequence and mutational analyses suggest that RBBP6 interacts with the WDR33 and CPSF73 subunits of CPSF. Thus, it is likely that the role of RBBP6 is conserved from yeast to humans. Overall, our data are consistent with CPSF endonuclease activation and site-specific pre-mRNA cleavage being highly controlled to maintain fidelity in mRNA processing.
Collapse
Affiliation(s)
- Vytaute Boreikaite
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Thomas S Elliott
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Jason W Chin
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Lori A Passmore
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| |
Collapse
|
14
|
Interpreting neural networks for biological sequences by learning stochastic masks. NAT MACH INTELL 2022; 4:41-54. [DOI: 10.1038/s42256-021-00428-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
15
|
Architectural and functional details of CF IA proteins involved in yeast 3'-end pre-mRNA processing and its significance for eukaryotes: A concise review. Int J Biol Macromol 2021; 193:387-400. [PMID: 34699898 DOI: 10.1016/j.ijbiomac.2021.10.129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/04/2021] [Accepted: 10/18/2021] [Indexed: 11/22/2022]
Abstract
In eukaryotes, maturation of pre-mRNA relies on its precise 3'-end processing. This processing involves co-transcriptional steps regulated by sequence elements and other proteins. Although, it holds tremendous importance, defect in the processing machinery will result in erroneous pre-mRNA maturation leading to defective translation. Remarkably, more than 20 proteins in humans and yeast share homology and execute this processing. The defects in this processing are associated with various diseases in humans. We shed light on the CF IA subunit of yeast Saccharomyces cerevisiae that contains four proteins (Pcf11, Clp1, Rna14 and Rna15) involved in this processing. Structural details of various domains of CF IA and their roles during 3'-end processing, like cleavage and polyadenylation at 3'-UTR of pre-mRNA and other cellular events are explained. Further, the chronological development and important discoveries associated with 3'-end processing are summarized. Moreover, the mammalian homologues of yeast CF IA proteins, along with their key roles are described. This knowledge would be helpful for better comprehension of the mechanism associated with this marvel; thus opening up vast avenues in this area.
Collapse
|
16
|
Mohanan NK, Shaji F, Koshre GR, Laishram RS. Alternative polyadenylation: An enigma of transcript length variation in health and disease. WILEY INTERDISCIPLINARY REVIEWS-RNA 2021; 13:e1692. [PMID: 34581021 DOI: 10.1002/wrna.1692] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/16/2021] [Accepted: 08/24/2021] [Indexed: 12/19/2022]
Abstract
Alternative polyadenylation (APA) is a molecular mechanism during a pre-mRNA processing that involves usage of more than one polyadenylation site (PA-site) generating transcripts of varying length from a single gene. The location of a PA-site affects transcript length and coding potential of an mRNA contributing to both mRNA and protein diversification. This variation in the transcript length affects mRNA stability and translation, mRNA subcellular and tissue localization, and protein function. APA is now considered as an important regulatory mechanism in the pathophysiology of human diseases. An important consequence of the changes in the length of 3'-untranslated region (UTR) from disease-induced APA is altered protein expression. Yet, the relationship between 3'-UTR length and protein expression remains a paradox in a majority of diseases. Here, we review occurrence of APA, mechanism of PA-site selection, and consequences of transcript length variation in different diseases. Emerging evidence reveals coordinated involvement of core RNA processing factors including poly(A) polymerases in the PA-site selection in diseases-associated APAs. Targeting such APA regulators will be therapeutically significant in combating drug resistance in cancer and other complex diseases. This article is categorized under: RNA Processing > 3' End Processing RNA in Disease and Development > RNA in Disease Translation > Regulation.
Collapse
Affiliation(s)
- Neeraja K Mohanan
- Cardiovascular and Diabetes Biology Group, Rajiv Gandhi Centre for Biotechnology, Trivandrum, India
- Manipal Academy of Higher Education, Manipal, India
| | - Feba Shaji
- Cardiovascular and Diabetes Biology Group, Rajiv Gandhi Centre for Biotechnology, Trivandrum, India
- Regional Centre for Biotechnology, Faridabad, India
| | - Ganesh R Koshre
- Cardiovascular and Diabetes Biology Group, Rajiv Gandhi Centre for Biotechnology, Trivandrum, India
- Manipal Academy of Higher Education, Manipal, India
| | - Rakesh S Laishram
- Cardiovascular and Diabetes Biology Group, Rajiv Gandhi Centre for Biotechnology, Trivandrum, India
| |
Collapse
|
17
|
Koshre GR, Shaji F, Mohanan NK, Mohan N, Ali J, Laishram RS. Star-PAP RNA Binding Landscape Reveals Novel Role of Star-PAP in mRNA Metabolism That Requires RBM10-RNA Association. Int J Mol Sci 2021; 22:9980. [PMID: 34576144 PMCID: PMC8469156 DOI: 10.3390/ijms22189980] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/08/2021] [Accepted: 08/19/2021] [Indexed: 11/17/2022] Open
Abstract
Star-PAP is a non-canonical poly(A) polymerase that selects mRNA targets for polyadenylation. Yet, genome-wide direct Star-PAP targets or the mechanism of specific mRNA recognition is still vague. Here, we employ HITS-CLIP to map the cellular Star-PAP binding landscape and the mechanism of global Star-PAP mRNA association. We show a transcriptome-wide association of Star-PAP that is diminished on Star-PAP depletion. Consistent with its role in the 3'-UTR processing, we observed a high association of Star-PAP at the 3'-UTR region. Strikingly, there is an enrichment of Star-PAP at the coding region exons (CDS) in 42% of target mRNAs. We demonstrate that Star-PAP binding de-stabilises these mRNAs indicating a new role of Star-PAP in mRNA metabolism. Comparison with earlier microarray data reveals that while UTR-associated transcripts are down-regulated, CDS-associated mRNAs are largely up-regulated on Star-PAP depletion. Strikingly, the knockdown of a Star-PAP coregulator RBM10 resulted in a global loss of Star-PAP association on target mRNAs. Consistently, RBM10 depletion compromises 3'-end processing of a set of Star-PAP target mRNAs, while regulating stability/turnover of a different set of mRNAs. Our results establish a global profile of Star-PAP mRNA association and a novel role of Star-PAP in the mRNA metabolism that requires RBM10-mRNA association in the cell.
Collapse
Affiliation(s)
- Ganesh R. Koshre
- Cardiovascular Diseases & Diabetes Biology, Rajiv Gandhi Centre for Biotechnology, Trivandrum 695014, India; (G.R.K.); (F.S.); (N.K.M.); (N.M.)
- Manipal Academy of Higher Education, Manipal 576104, India
| | - Feba Shaji
- Cardiovascular Diseases & Diabetes Biology, Rajiv Gandhi Centre for Biotechnology, Trivandrum 695014, India; (G.R.K.); (F.S.); (N.K.M.); (N.M.)
- Regional Centre for Biotechnology, Faridabad 121001, India
| | - Neeraja K. Mohanan
- Cardiovascular Diseases & Diabetes Biology, Rajiv Gandhi Centre for Biotechnology, Trivandrum 695014, India; (G.R.K.); (F.S.); (N.K.M.); (N.M.)
- Manipal Academy of Higher Education, Manipal 576104, India
| | - Nimmy Mohan
- Cardiovascular Diseases & Diabetes Biology, Rajiv Gandhi Centre for Biotechnology, Trivandrum 695014, India; (G.R.K.); (F.S.); (N.K.M.); (N.M.)
| | - Jamshaid Ali
- Bioinformatics Facility, Rajiv Gandhi Centre for Biotechnology, Trivandrum 695585, India;
| | - Rakesh S. Laishram
- Cardiovascular Diseases & Diabetes Biology, Rajiv Gandhi Centre for Biotechnology, Trivandrum 695014, India; (G.R.K.); (F.S.); (N.K.M.); (N.M.)
| |
Collapse
|
18
|
Shin J, Ding Q, Wang L, Cui Y, Baljinnyam E, Guvenek A, Tian B. CRISPRpas: programmable regulation of alternative polyadenylation by dCas9. Nucleic Acids Res 2021; 50:e25. [PMID: 34244761 PMCID: PMC8934653 DOI: 10.1093/nar/gkab519] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 06/01/2021] [Accepted: 06/04/2021] [Indexed: 11/14/2022] Open
Abstract
Most human protein-coding genes produce alternative polyadenylation (APA) isoforms that differ in 3' UTR size or, when coupled with splicing, have variable coding sequences. APA is an important layer of gene expression program critical for defining cell identity. Here, by using a catalytically dead Cas9 and coupling its target site with polyadenylation site (PAS), we develop a method, named CRISPRpas, to alter APA isoform abundance. CRISPRpas functions by enhancing proximal PAS usage, whose efficiency is influenced by several factors, including targeting strand of DNA, distance between PAS and target sequence and strength of the PAS. For intronic polyadenylation (IPA), splicing features, such as strengths of 5' splice site and 3' splice site, also affect CRISPRpas efficiency. We show modulation of APA of multiple endogenous genes, including IPA of PCF11, a master regulator of APA and gene expression. In sum, CRISPRpas offers a programmable tool for APA regulation that impacts gene expression.
Collapse
Affiliation(s)
- Jihae Shin
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Qingbao Ding
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ 07103, USA.,Program in Gene Expression and Regulation, the Wistar Institute, Philadelphia, PA 19104, USA
| | - Luyang Wang
- Program in Gene Expression and Regulation, the Wistar Institute, Philadelphia, PA 19104, USA
| | - Yange Cui
- Program in Gene Expression and Regulation, the Wistar Institute, Philadelphia, PA 19104, USA
| | - Erdene Baljinnyam
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Aysegul Guvenek
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ 07103, USA.,Rutgers School of Graduate Studies, Newark, NJ 07103, USA
| | - Bin Tian
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ 07103, USA.,Program in Gene Expression and Regulation, the Wistar Institute, Philadelphia, PA 19104, USA.,Center for Systems and Computational Biology, the Wistar Institute, Philadelphia, PA 19104, USA
| |
Collapse
|
19
|
CPSF4 regulates circRNA formation and microRNA mediated gene silencing in hepatocellular carcinoma. Oncogene 2021; 40:4338-4351. [PMID: 34103682 DOI: 10.1038/s41388-021-01867-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 05/13/2021] [Accepted: 05/25/2021] [Indexed: 11/08/2022]
Abstract
CircRNAs play essential roles in various physiological processes and involves in many diseases, in particular cancer. Global downregulation of circRNA expression has been observed in hepatocellular carcinoma (HCC) in many studies. Previous studies revealed that the pre-mRNA 3' end processing complex participates in circRNA cyclization and plays an important role in HCC tumorigenesis. Therefore, we explored the role of CPSF4, for 3' end formation and cleavage, in circRNA formation. Clinical research has shown that CPSF4 expression is upregulated in HCC and that high expression of CPSF4 is associated with poor prognosis in HCC patients. Mechanistic studies have demonstrated that CPSF4 reduces the levels of circRNAs, which possess a polyadenylation signal sequence and this decrease in circRNAs reduces the accumulation of miRNA and disrupts the miRNA-mediated gene silencing in HCC. Experiments in cell culture and xenograft mouse models showed that CPSF4 promotes the proliferation of HCC cells and enhances tumorigenicity. Moreover, CPSF4 antagonizes the tumor suppressor effect of its downstream circRNA in HCC. In summary, CPSF4 acts as an oncogene in HCC through circRNA inhibition and disruption of miRNA-mediated gene silencing.
Collapse
|
20
|
Li Y, Shen QS, Peng Q, Ding W, Zhang J, Zhong X, An NA, Ji M, Zhou WZ, Li CY. Polyadenylation-related isoform switching in human evolution revealed by full-length transcript structure. Brief Bioinform 2021; 22:6273384. [PMID: 33973996 PMCID: PMC8574621 DOI: 10.1093/bib/bbab157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/22/2021] [Accepted: 04/04/2021] [Indexed: 11/26/2022] Open
Abstract
Rhesus macaque is a unique nonhuman primate model for human evolutionary and translational study, but the error-prone gene models critically limit its applications. Here, we de novo defined full-length macaque gene models based on single molecule, long-read transcriptome sequencing in four macaque tissues (frontal cortex, cerebellum, heart and testis). Overall, 8 588 227 poly(A)-bearing complementary DNA reads with a mean length of 14 106 nt were generated to compile the backbone of macaque transcripts, with the fine-scale structures further refined by RNA sequencing and cap analysis gene expression sequencing data. In total, 51 605 macaque gene models were accurately defined, covering 89.7% of macaque or 75.7% of human orthologous genes. Based on the full-length gene models, we performed a human–macaque comparative analysis on polyadenylation (PA) regulation. Using macaque and mouse as outgroup species, we identified 79 distal PA events newly originated in humans and found that the strengthening of the distal PA sites, rather than the weakening of the proximal sites, predominantly contributes to the origination of these human-specific isoforms. Notably, these isoforms are selectively constrained in general and contribute to the temporospatially specific reduction of gene expression, through the tinkering of previously existed mechanisms of nuclear retention and microRNA (miRNA) regulation. Overall, the protocol and resource highlight the application of bioinformatics in integrating multilayer genomics data to provide an intact reference for model animal studies, and the isoform switching detected may constitute a hitherto underestimated regulatory layer in shaping the human-specific transcriptome and phenotypic changes.
Collapse
Affiliation(s)
- Yumei Li
- Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Qing Sunny Shen
- Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Qi Peng
- Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, Peking University, Beijing, China.,College of Future Technology, Peking University, Beijing, China
| | - Wanqiu Ding
- Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, Peking University, Beijing, China.,College of Future Technology, Peking University, Beijing, China
| | - Jie Zhang
- Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, Peking University, Beijing, China.,College of Future Technology, Peking University, Beijing, China
| | - Xiaoming Zhong
- Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Ni A An
- Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, Peking University, Beijing, China.,College of Future Technology, Peking University, Beijing, China
| | - Mingjun Ji
- Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, Peking University, Beijing, China.,College of Future Technology, Peking University, Beijing, China
| | - Wei-Zhen Zhou
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Beijing, China
| | - Chuan-Yun Li
- Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, Peking University, Beijing, China.,College of Future Technology, Peking University, Beijing, China
| |
Collapse
|
21
|
Sharma M, Wente SR. Nucleocytoplasmic shuttling of Gle1 impacts DDX1 at transcription termination sites. Mol Biol Cell 2020; 31:2398-2408. [PMID: 32755435 PMCID: PMC7851961 DOI: 10.1091/mbc.e20-03-0215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Gle1 is a nucleocytoplasmic shuttling protein with well-documented cytoplasmic roles as a modulator of ATP-dependent DEAD-box RNA helicases involved in messenger (m)RNA export, translation initiation and termination, and stress granule dynamics. Here, we identify a novel nuclear role for Gle1 during transcription termination. In HeLa cells treated with a peptide that disrupts Gle1 nucleocytoplasmic shuttling, we detected nuclear accumulation of specific mRNAs with elongated 3′-UTR (untranslated region). Enriched mRNAs were nascently transcribed and accumulated in the nucleus due to a change in transcription state and not due to altered nuclear export. Whereas Gle1 shuttling inhibition did not appear to perturb nuclear DDX19 functions, it did result in increased DDX1 nucleoplasmic localization and decreased DDX1 interactions with Gle1 and the pre-mRNA cleavage stimulation factor CstF-64. An increase in nuclear R-loop signal intensity was also observed with diminished Gle1 shuttling, as well as colocalization of Gle1 at R-loops. Taken together, these studies reveal a nuclear role for Gle1 in coordinating DDX1 function in transcription termination complexes.
Collapse
Affiliation(s)
- Manisha Sharma
- Department of Cell and Developmental Biology, School of Medicine, Vanderbilt University, Nashville, TN 37240
| | - Susan R Wente
- Department of Cell and Developmental Biology, School of Medicine, Vanderbilt University, Nashville, TN 37240
| |
Collapse
|
22
|
Nourse J, Spada S, Danckwardt S. Emerging Roles of RNA 3'-end Cleavage and Polyadenylation in Pathogenesis, Diagnosis and Therapy of Human Disorders. Biomolecules 2020; 10:biom10060915. [PMID: 32560344 PMCID: PMC7356254 DOI: 10.3390/biom10060915] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/10/2020] [Accepted: 06/13/2020] [Indexed: 12/11/2022] Open
Abstract
A crucial feature of gene expression involves RNA processing to produce 3′ ends through a process termed 3′ end cleavage and polyadenylation (CPA). This ensures the nascent RNA molecule can exit the nucleus and be translated to ultimately give rise to a protein which can execute a function. Further, alternative polyadenylation (APA) can produce distinct transcript isoforms, profoundly expanding the complexity of the transcriptome. CPA is carried out by multi-component protein complexes interacting with multiple RNA motifs and is tightly coupled to transcription, other steps of RNA processing, and even epigenetic modifications. CPA and APA contribute to the maintenance of a multitude of diverse physiological processes. It is therefore not surprising that disruptions of CPA and APA can lead to devastating disorders. Here, we review potential CPA and APA mechanisms involving both loss and gain of function that can have tremendous impacts on health and disease. Ultimately we highlight the emerging diagnostic and therapeutic potential CPA and APA offer.
Collapse
Affiliation(s)
- Jamie Nourse
- Institute for Clinical Chemistry and Laboratory Medicine, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany; (J.N.); (S.S.)
- Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany
| | - Stefano Spada
- Institute for Clinical Chemistry and Laboratory Medicine, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany; (J.N.); (S.S.)
- Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany
| | - Sven Danckwardt
- Institute for Clinical Chemistry and Laboratory Medicine, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany; (J.N.); (S.S.)
- Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Rhine-Main, Germany
- Correspondence:
| |
Collapse
|
23
|
Yuan F, Hankey W, Wagner EJ, Li W, Wang Q. Alternative polyadenylation of mRNA and its role in cancer. Genes Dis 2019; 8:61-72. [PMID: 33569514 PMCID: PMC7859462 DOI: 10.1016/j.gendis.2019.10.011] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 10/18/2019] [Indexed: 12/31/2022] Open
Abstract
Alternative polyadenylation (APA) is a molecular process that generates diversity at the 3′ end of RNA polymerase II transcripts from over 60% of human genes. APA is derived from the existence of multiple polyadenylation signals (PAS) within the same transcript, and results in the differential inclusion of sequence information at the 3′ end. While APA can occur between two PASs allowing for generation of transcripts with distinct coding potential from a single gene, most APA occurs within the untranslated region (3′UTR) and changes the length and content of these non-coding sequences. APA within the 3′UTR can have tremendous impact on its regulatory potential of the mRNA through a variety of mechanisms, and indeed this layer of gene expression regulation has profound impact on processes vital to cell growth and development. Recent studies have particularly highlighted the importance of APA dysregulation in cancer onset and progression. Here, we review the current knowledge of APA and its impacts on mRNA stability, translation, localization and protein localization. We also discuss the implications of APA dysregulation in cancer research and therapy.
Collapse
Affiliation(s)
- Fuwen Yuan
- Department of Pathology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - William Hankey
- Department of Pathology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Eric J Wagner
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, Galveston, TX, 77555, USA
| | - Wei Li
- Department of Biological Chemistry, University of California, Irvine, CA, 92697, USA
| | - Qianben Wang
- Department of Pathology, Duke University School of Medicine, Durham, NC, 27710, USA.,Duke Cancer Institute Center for Prostate and Urologic Cancers, Duke University School of Medicine, Durham, NC, 27710, USA
| |
Collapse
|
24
|
Thore S, Fribourg S. Structural insights into the 3′-end mRNA maturation machinery: Snapshot on polyadenylation signal recognition. Biochimie 2019; 164:105-110. [DOI: 10.1016/j.biochi.2019.03.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 03/26/2019] [Indexed: 12/22/2022]
|
25
|
Yang W, Hsu PL, Yang F, Song JE, Varani G. Reconstitution of the CstF complex unveils a regulatory role for CstF-50 in recognition of 3'-end processing signals. Nucleic Acids Res 2019; 46:493-503. [PMID: 29186539 PMCID: PMC5778602 DOI: 10.1093/nar/gkx1177] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 11/13/2017] [Indexed: 01/18/2023] Open
Abstract
Cleavage stimulation factor (CstF) is a highly conserved protein complex composed of three subunits that recognizes G/U-rich sequences downstream of the polyadenylation signal of eukaryotic mRNAs. While CstF has been identified over 25 years ago, the architecture and contribution of each subunit to RNA recognition have not been fully understood. In this study, we provide a structural basis for the recruitment of CstF-50 to CstF via interaction with CstF-77 and establish that the hexameric assembly of CstF creates a high affinity platform to target various G/U-rich sequences. We further demonstrate that CstF-77 boosts the affinity of the CstF-64 RRM to the RNA targets and CstF-50 fine tunes the ability of the complex to recognize G/U sequences of certain lengths and content.
Collapse
Affiliation(s)
- Wen Yang
- Department of Chemistry, University of Washington, Seattle, WA 98195-1700, USA
| | - Peter L Hsu
- Department of Chemistry, University of Washington, Seattle, WA 98195-1700, USA
| | - Fan Yang
- Department of Chemistry, University of Washington, Seattle, WA 98195-1700, USA
| | - Jae-Eun Song
- Department of Chemistry, University of Washington, Seattle, WA 98195-1700, USA
| | - Gabriele Varani
- Department of Chemistry, University of Washington, Seattle, WA 98195-1700, USA
| |
Collapse
|
26
|
Hasan I, Gerdol M, Fujii Y, Ozeki Y. Functional Characterization of OXYL, A SghC1qDC LacNAc-specific Lectin from The Crinoid Feather Star Anneissia Japonica. Mar Drugs 2019; 17:md17020136. [PMID: 30823584 PMCID: PMC6409975 DOI: 10.3390/md17020136] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 02/14/2019] [Accepted: 02/18/2019] [Indexed: 02/08/2023] Open
Abstract
We identified a lectin (carbohydrate-binding protein) belonging to the complement 1q(C1q) family in the feather star Anneissia japonica (a crinoid pertaining to the phylum Echinodermata). The combination of Edman degradation and bioinformatics sequence analysis characterized the primary structure of this novel lectin, named OXYL, as a secreted 158 amino acid-long globular head (sgh)C1q domain containing (C1qDC) protein. Comparative genomics analyses revealed that OXYL pertains to a family of intronless genes found with several paralogous copies in different crinoid species. Immunohistochemistry assays identified the tissues surrounding coelomic cavities and the arms as the main sites of production of OXYL. Glycan array confirmed that this lectin could quantitatively bind to type-2 N-acetyllactosamine (LacNAc: Galβ1-4GlcNAc), but not to type-1 LacNAc (Galβ1-3GlcNAc). Although OXYL displayed agglutinating activity towards Pseudomonas aeruginosa, it had no effect on bacterial growth. On the other hand, it showed a significant anti-biofilm activity. We provide evidence that OXYL can adhere to the surface of human cancer cell lines BT-474, MCF-7, and T47D, with no cytotoxic effect. In BT-474 cells, OXYL led to a moderate activation of the p38 kinase in the MAPK signaling pathway, without affecting the activity of caspase-3. Bacterial agglutination, anti-biofilm activity, cell adhesion, and p38 activation were all suppressed by co-presence of LacNAc. This is the first report on a type-2 LacNAc-specific lectin characterized by a C1q structural fold.
Collapse
Affiliation(s)
- Imtiaj Hasan
- Graduate School of NanoBio Sciences, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027, Japan.
- Department of Biochemistry and Molecular Biology, Faculty of Science, University of Rajshahi, Rajshahi 6205, Bangladesh.
| | - Marco Gerdol
- Department of Life Sciences, University of Trieste, Via Licio Giorgieri 5, 34127 Trieste, Italy.
| | - Yuki Fujii
- Graduate School of Pharmaceutical Sciences, Nagasaki International University, 2825-7 Huis Ten Bosch, Sasebo, Nagasaki 859-3298, Japan.
| | - Yasuhiro Ozeki
- Graduate School of NanoBio Sciences, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027, Japan.
| |
Collapse
|
27
|
Grozdanov PN, Masoumzadeh E, Latham MP, MacDonald CC. The structural basis of CstF-77 modulation of cleavage and polyadenylation through stimulation of CstF-64 activity. Nucleic Acids Res 2018; 46:12022-12039. [PMID: 30257008 PMCID: PMC6294498 DOI: 10.1093/nar/gky862] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 08/31/2018] [Accepted: 09/12/2018] [Indexed: 01/14/2023] Open
Abstract
Cleavage and polyadenylation (C/P) of mRNA is an important cellular process that promotes increased diversity of mRNA isoforms and could change their stability in different cell types. The cleavage stimulation factor (CstF) complex, part of the C/P machinery, binds to U- and GU-rich sequences located downstream from the cleavage site through its RNA-binding subunit, CstF-64. Less is known about the function of the other two subunits of CstF, CstF-77 and CstF-50. Here, we show that the carboxy-terminus of CstF-77 plays a previously unrecognized role in enhancing C/P by altering how the RNA recognition motif (RRM) of CstF-64 binds RNA. In support of this finding, we also show that CstF-64 relies on CstF-77 to be transported to the nucleus; excess CstF-64 localizes to the cytoplasm, possibly via interaction with cytoplasmic RNAs. Reverse genetics and nuclear magnetic resonance studies of recombinant CstF-64 (RRM-Hinge) and CstF-77 (monkeytail-carboxy-terminal domain) indicate that the last 30 amino acids of CstF-77 increases the stability of the RRM, thus altering the affinity of the complex for RNA. These results provide new insights into the mechanism by which CstF regulates the location of the RNA cleavage site during C/P.
Collapse
Affiliation(s)
- Petar N Grozdanov
- Department of Cell Biology & Biochemistry, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430-6540, USA
| | - Elahe Masoumzadeh
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061, USA
| | - Michael P Latham
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061, USA
| | - Clinton C MacDonald
- Department of Cell Biology & Biochemistry, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430-6540, USA
| |
Collapse
|
28
|
Schäfer P, Tüting C, Schönemann L, Kühn U, Treiber T, Treiber N, Ihling C, Graber A, Keller W, Meister G, Sinz A, Wahle E. Reconstitution of mammalian cleavage factor II involved in 3' processing of mRNA precursors. RNA (NEW YORK, N.Y.) 2018; 24:1721-1737. [PMID: 30139799 PMCID: PMC6239180 DOI: 10.1261/rna.068056.118] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 08/17/2018] [Indexed: 05/05/2023]
Abstract
Cleavage factor II (CF II) is a poorly characterized component of the multiprotein complex catalyzing 3' cleavage and polyadenylation of mammalian mRNA precursors. We have reconstituted CF II as a heterodimer of hPcf11 and hClp1. The heterodimer is active in partially reconstituted cleavage reactions, whereas hClp1 by itself is not. Pcf11 moderately stimulates the RNA 5' kinase activity of hClp1; the kinase activity is dispensable for RNA cleavage. CF II binds RNA with nanomolar affinity. Binding is mediated mostly by the two zinc fingers in the C-terminal region of hPcf11. RNA is bound without pronounced sequence-specificity, but extended G-rich sequences appear to be preferred. We discuss the possibility that CF II contributes to the recognition of cleavage/polyadenylation substrates through interaction with G-rich far-downstream sequence elements.
Collapse
Affiliation(s)
- Peter Schäfer
- Institute of Biochemistry and Biotechnology, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, 06099 Halle, Germany
| | - Christian Tüting
- Institute of Biochemistry and Biotechnology, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, 06099 Halle, Germany
| | - Lars Schönemann
- Institute of Biochemistry and Biotechnology, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, 06099 Halle, Germany
| | - Uwe Kühn
- Institute of Biochemistry and Biotechnology, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, 06099 Halle, Germany
| | - Thomas Treiber
- Biochemistry Center Regensburg, Laboratory for RNA Biology, University of Regensburg, 93053 Regensburg, Germany
| | - Nora Treiber
- Biochemistry Center Regensburg, Laboratory for RNA Biology, University of Regensburg, 93053 Regensburg, Germany
| | - Christian Ihling
- Institute of Pharmacy, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, 06099 Halle, Germany
| | - Anne Graber
- Institute of Biochemistry and Biotechnology, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, 06099 Halle, Germany
- Biozentrum, University of Basel, CH-4056 Basel, Switzerland
| | - Walter Keller
- Biozentrum, University of Basel, CH-4056 Basel, Switzerland
| | - Gunter Meister
- Biochemistry Center Regensburg, Laboratory for RNA Biology, University of Regensburg, 93053 Regensburg, Germany
| | - Andrea Sinz
- Institute of Pharmacy, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, 06099 Halle, Germany
| | - Elmar Wahle
- Institute of Biochemistry and Biotechnology, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, 06099 Halle, Germany
| |
Collapse
|
29
|
Chen X, Zhang JX, Luo JH, Wu S, Yuan GJ, Ma NF, Feng Y, Cai MY, Chen RX, Lu J, Jiang LJ, Chen JW, Jin XH, Liu HL, Chen W, Guan XY, Kang TB, Zhou FJ, Xie D. CSTF2-induced shortening of the RAC1 3'UTR promotes the pathogenesis of urothelial carcinoma of the bladder. Cancer Res 2018; 78:5848-5862. [PMID: 30143523 DOI: 10.1158/0008-5472.can-18-0822] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 07/06/2018] [Accepted: 08/15/2018] [Indexed: 11/16/2022]
Affiliation(s)
- Xin Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jia-Xing Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Oncology, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jun-Hang Luo
- Department of Urology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Song Wu
- The Affiliated Luohu Hospital of Shenzhen University, Shenzhen Luohu Hospital Group, Shenzhen, China
| | - Gang-Jun Yuan
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ning-Fang Ma
- Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China.
| | - Yong Feng
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Mu-Yan Cai
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ri-Xin Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jun Lu
- Department of Urology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Li-Juan Jiang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jie-Wei Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiao-Han Jin
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Hai-Liang Liu
- CapitalBio Genomics Co., Ltd, Dongguan, Guangdong, China
| | - Wei Chen
- Department of Urology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xin-Yuan Guan
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Tie-Bang Kang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Fang-Jian Zhou
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Dan Xie
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.
| |
Collapse
|
30
|
Targeting the Polyadenylation Signal of Pre-mRNA: A New Gene Silencing Approach for Facioscapulohumeral Dystrophy. Int J Mol Sci 2018; 19:ijms19051347. [PMID: 29751519 PMCID: PMC5983732 DOI: 10.3390/ijms19051347] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 04/27/2018] [Accepted: 04/30/2018] [Indexed: 02/07/2023] Open
Abstract
Facioscapulohumeral dystrophy (FSHD) is characterized by the contraction of the D4Z4 array located in the sub-telomeric region of the chromosome 4, leading to the aberrant expression of the DUX4 transcription factor and the mis-regulation of hundreds of genes. Several therapeutic strategies have been proposed among which the possibility to target the polyadenylation signal to silence the causative gene of the disease. Indeed, defects in mRNA polyadenylation leads to an alteration of the transcription termination, a disruption of mRNA transport from the nucleus to the cytoplasm decreasing the mRNA stability and translation efficiency. This review discusses the polyadenylation mechanisms, why alternative polyadenylation impacts gene expression, and how targeting polyadenylation signal may be a potential therapeutic approach for FSHD.
Collapse
|
31
|
Liu Y, Huang X, Timani KA, Broxmeyer HE, He JJ. Regulation of Constitutive Tip110 Expression in Human Cord Blood CD34 + Cells Through Selective Usage of the Proximal and Distal Polyadenylation Sites Within the 3'Untranslated Region. Stem Cells Dev 2018; 27:566-576. [PMID: 29583087 DOI: 10.1089/scd.2017.0197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Tip110 plays important roles for stem cell pluripotency and hematopoiesis. However, little is known about the regulatory mechanisms of Tip110 expression in this process. In this study, we first showed that constitutive Tip110 expression was cell proliferation and differentiation dependent and self-regulated in both human cord blood CD34+ cells. Using a series of molecular techniques, we found that ectopic Tip110 expression led to increased constitutive Tip110 expression through its 3'-untranslated region (3'UTR), specifically through preferential usage of proximal polyadenylation sites within its 3'UTR in cells, including human cord blood CD34+ cells, which indeed led to an increased number of CD34+ cells during differentiation of those cells. Lastly, we showed that Tip110 protein interacted with cleavage stimulation factor 64 (CstF64) protein and that more CstF64 was recruited to the promixal polyadenylation site than the distal polyadenylation site within its 3'UTR. These finding together demonstrates that constitutive Tip110 expression is regulated, at least in part, through its interaction with CstF64, recruitment of CstF64 to, and selective usage of those two polyadenylation sites within its 3'UTR.
Collapse
Affiliation(s)
- Ying Liu
- 1 Department of Cell Biology and Immunology, Graduate School of Biomedical Sciences, University of North Texas Health Science Center , Fort Worth, Texas
| | - Xinxin Huang
- 2 Department of Microbiology and Immunology, Indiana University , Indianapolis, Indiana
| | - Khalid A Timani
- 1 Department of Cell Biology and Immunology, Graduate School of Biomedical Sciences, University of North Texas Health Science Center , Fort Worth, Texas
| | - Hal E Broxmeyer
- 2 Department of Microbiology and Immunology, Indiana University , Indianapolis, Indiana
| | - Johnny J He
- 1 Department of Cell Biology and Immunology, Graduate School of Biomedical Sciences, University of North Texas Health Science Center , Fort Worth, Texas
| |
Collapse
|
32
|
Neve J, Patel R, Wang Z, Louey A, Furger AM. Cleavage and polyadenylation: Ending the message expands gene regulation. RNA Biol 2017; 14:865-890. [PMID: 28453393 PMCID: PMC5546720 DOI: 10.1080/15476286.2017.1306171] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 03/02/2017] [Accepted: 03/09/2017] [Indexed: 12/13/2022] Open
Abstract
Cleavage and polyadenylation (pA) is a fundamental step that is required for the maturation of primary protein encoding transcripts into functional mRNAs that can be exported from the nucleus and translated in the cytoplasm. 3'end processing is dependent on the assembly of a multiprotein processing complex on the pA signals that reside in the pre-mRNAs. Most eukaryotic genes have multiple pA signals, resulting in alternative cleavage and polyadenylation (APA), a widespread phenomenon that is important to establish cell state and cell type specific transcriptomes. Here, we review how pA sites are recognized and comprehensively summarize how APA is regulated and creates mRNA isoform profiles that are characteristic for cell types, tissues, cellular states and disease.
Collapse
Affiliation(s)
- Jonathan Neve
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Radhika Patel
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Zhiqiao Wang
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Alastair Louey
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | | |
Collapse
|
33
|
Koch H, Raabe M, Urlaub H, Bindereif A, Preußer C. The polyadenylation complex of Trypanosoma brucei: Characterization of the functional poly(A) polymerase. RNA Biol 2016; 13:221-31. [PMID: 26727667 DOI: 10.1080/15476286.2015.1130208] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
The generation of mature mRNA in the protozoan parasite Trypanosoma brucei requires coupled polyadenylation and trans splicing. In contrast to other eukaryotes, we still know very little on components, mechanisms, and dynamics of the 3' end-processing machinery in trypanosomes. To characterize the catalytic core of the polyadenylation complex in T. brucei, we first identified the poly(A) polymerase [Tb927.7.3780] as the major functional, nuclear-localized enzyme in trypanosomes. In contrast, another poly(A) polymerase, encoded by an intron-containing gene [Tb927.3.3160], localizes mainly in the cytoplasm and appears not to be functional in general 3' end processing of mRNAs. Based on tandem-affinity purification with tagged CPSF160 and mass spectrometry, we identified ten associated components of the trypanosome polyadenylation complex, including homologues to all four CPSF subunits, Fip1, CstF50/64, and Symplekin, as well as two hypothetical proteins. RNAi-mediated knockdown revealed that most of these factors are essential for growth and required for both in vivo polyadenylation and trans splicing, arguing for a general coupling of these two mRNA-processing reactions.
Collapse
Affiliation(s)
- Henrik Koch
- a Institute of Biochemistry, Justus Liebig University of Giessen , D-35392 Giessen , Germany
| | - Monika Raabe
- b Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry , D-37077 Göttingen , Germany
| | - Henning Urlaub
- b Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry , D-37077 Göttingen , Germany.,c Bioanalytics Group, Institute for Clinical Chemistry, University Medical Center Göttingen , D-37075 Göttingen , Germany
| | - Albrecht Bindereif
- a Institute of Biochemistry, Justus Liebig University of Giessen , D-35392 Giessen , Germany
| | - Christian Preußer
- a Institute of Biochemistry, Justus Liebig University of Giessen , D-35392 Giessen , Germany
| |
Collapse
|
34
|
Abstract
Alternative polyadenylation (APA) is an RNA-processing mechanism that generates distinct 3' termini on mRNAs and other RNA polymerase II transcripts. It is widespread across all eukaryotic species and is recognized as a major mechanism of gene regulation. APA exhibits tissue specificity and is important for cell proliferation and differentiation. In this Review, we discuss the roles of APA in diverse cellular processes, including mRNA metabolism, protein diversification and protein localization, and more generally in gene regulation. We also discuss the molecular mechanisms underlying APA, such as variation in the concentration of core processing factors and RNA-binding proteins, as well as transcription-based regulation.
Collapse
|
35
|
Ni T, Majerciak V, Zheng ZM, Zhu J. PA-seq for Global Identification of RNA Polyadenylation Sites of Kaposi's Sarcoma-Associated Herpesvirus Transcripts. ACTA ACUST UNITED AC 2016; 41:14E.7.1-14E.7.18. [PMID: 27153384 DOI: 10.1002/cpmc.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is a human oncovirus linked to the development of several malignancies in immunocompromised patients. Like other herpesviruses, KSHV has a large DNA genome encoding more than 100 distinct gene products. Despite being transcribed and processed by cellular machinery, the structure and organization of KSHV genes in the virus genome differ from what is observed in cellular genes from the human genome. A typical feature of KSHV expression is the production of polycistronic transcripts initiated from different promoters but sharing the same polyadenylation site (pA site). This represents a challenge in determination of the 3' end of individual viral transcripts. Such information is critical for generation of a virus transcriptional map for genetic studies. Here we present PA-seq, a high-throughput method for genome-wide analysis of pA sites of KSHV transcripts in B lymphocytes with latent or lytic KSHV infection. Besides identification of all viral pA sites, PA-seq also provides quantitative information about the levels of viral transcripts associated with each pA site, making it possible to determine the relative expression levels of viral genes at various stages of infection. Due to the indiscriminate nature of PA-seq, the pA sites of host transcripts are also concurrently mapped in the testing samples. Therefore, this technology can simultaneously estimate the expression changes of host genes and RNA polyadenylation upon KSHV infection. © 2016 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Ting Ni
- Ministry of Education (MOE) Key Laboratory of Contemporary Anthropology and State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, People's Republic of China.,These authors should be considered co-first authors
| | - Vladimir Majerciak
- Tumor Virus RNA Biology Section, Gene Regulation and Chromosome Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland.,These authors should be considered co-first authors
| | - Zhi-Ming Zheng
- Tumor Virus RNA Biology Section, Gene Regulation and Chromosome Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland
| | - Jun Zhu
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland.,Corresponding author
| |
Collapse
|
36
|
Hwang HW, Park CY, Goodarzi H, Fak JJ, Mele A, Moore MJ, Saito Y, Darnell RB. PAPERCLIP Identifies MicroRNA Targets and a Role of CstF64/64tau in Promoting Non-canonical poly(A) Site Usage. Cell Rep 2016; 15:423-35. [PMID: 27050522 DOI: 10.1016/j.celrep.2016.03.023] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 01/11/2016] [Accepted: 03/04/2016] [Indexed: 12/13/2022] Open
Abstract
Accurate and precise annotation of 3' UTRs is critical for understanding how mRNAs are regulated by microRNAs (miRNAs) and RNA-binding proteins (RBPs). Here, we describe a method, poly(A) binding protein-mediated mRNA 3' end retrieval by crosslinking immunoprecipitation (PAPERCLIP), that shows high specificity for mRNA 3' ends and compares favorably with existing 3' end mapping methods. PAPERCLIP uncovers a previously unrecognized role of CstF64/64tau in promoting the usage of a selected group of non-canonical poly(A) sites, the majority of which contain a downstream GUKKU motif. Furthermore, in the mouse brain, PAPERCLIP discovers extended 3' UTR sequences harboring functional miRNA binding sites and reveals developmentally regulated APA shifts, including one in Atp2b2 that is evolutionarily conserved in humans and results in the gain of a functional binding site of miR-137. PAPERCLIP provides a powerful tool to decipher post-transcriptional regulation of mRNAs through APA in vivo.
Collapse
Affiliation(s)
- Hun-Way Hwang
- Laboratory of Molecular Neuro-Oncology and Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, New York 10065, USA.
| | - Christopher Y Park
- Laboratory of Molecular Neuro-Oncology and Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, New York 10065, USA; New York Genome Center, 101 Avenue of the Americas, New York, NY 10013, USA
| | - Hani Goodarzi
- Laboratory of Systems Cancer Biology, The Rockefeller University, 1230 York Avenue, New York, New York 10065, USA
| | - John J Fak
- Laboratory of Molecular Neuro-Oncology and Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, New York 10065, USA
| | - Aldo Mele
- Laboratory of Molecular Neuro-Oncology and Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, New York 10065, USA
| | - Michael J Moore
- Laboratory of Molecular Neuro-Oncology and Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, New York 10065, USA
| | - Yuhki Saito
- Laboratory of Molecular Neuro-Oncology and Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, New York 10065, USA
| | - Robert B Darnell
- Laboratory of Molecular Neuro-Oncology and Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, New York 10065, USA; New York Genome Center, 101 Avenue of the Americas, New York, NY 10013, USA.
| |
Collapse
|
37
|
AĞUŞ HH, ERSON BENSAN AE. Mechanisms of mRNA polyadenylation. Turk J Biol 2016. [DOI: 10.3906/biy-1505-94] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
38
|
Misra A, Green MR. From polyadenylation to splicing: Dual role for mRNA 3' end formation factors. RNA Biol 2015; 13:259-64. [PMID: 26891005 DOI: 10.1080/15476286.2015.1112490] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Recent genome-wide protein-RNA interaction studies have significantly reshaped our understanding of the role of mRNA 3' end formation factors in RNA biology. Originally thought to function solely in mediating cleavage and polyadenylation of mRNAs during their maturation, 3' end formation factors have now been shown to play a role in alternative splicing, even at internal introns--an unanticipated role for factors thought only to act at the 3' end of the mRNA. Here, we discuss the recent advances in our understanding of the role of 3' end formation factors in promoting global changes in alternative splicing at internal exon-intron junctions and how they act as cofactors for well known splicing regulators. Additionally, we review the mechanism by which these factors affect the recruitment of early intron recognition components to the 5' and 3' splice site. Our understanding of the roles of 3' end formation factors is still evolving, and the final picture might be more complex than originally envisioned.
Collapse
Affiliation(s)
- Ashish Misra
- a Howard Hughes Medical Institute and Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School , Worcester , MA USA
| | - Michael R Green
- a Howard Hughes Medical Institute and Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School , Worcester , MA USA
| |
Collapse
|
39
|
Kandala DT, Mohan N, A V, A P S, G R, Laishram RS. CstF-64 and 3'-UTR cis-element determine Star-PAP specificity for target mRNA selection by excluding PAPα. Nucleic Acids Res 2015; 44:811-23. [PMID: 26496945 PMCID: PMC4737136 DOI: 10.1093/nar/gkv1074] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 10/06/2015] [Indexed: 01/02/2023] Open
Abstract
Almost all eukaryotic mRNAs have a poly (A) tail at the 3′-end. Canonical PAPs (PAPα/γ) polyadenylate nuclear pre-mRNAs. The recent identification of the non-canonical Star-PAP revealed specificity of nuclear PAPs for pre-mRNAs, yet the mechanism how Star-PAP selects mRNA targets is still elusive. Moreover, how Star-PAP target mRNAs having canonical AAUAAA signal are not regulated by PAPα is unclear. We investigate specificity mechanisms of Star-PAP that selects pre-mRNA targets for polyadenylation. Star-PAP assembles distinct 3′-end processing complex and controls pre-mRNAs independent of PAPα. We identified a Star-PAP recognition nucleotide motif and showed that suboptimal DSE on Star-PAP target pre-mRNA 3′-UTRs inhibit CstF-64 binding, thus preventing PAPα recruitment onto it. Altering 3′-UTR cis-elements on a Star-PAP target pre-mRNA can switch the regulatory PAP from Star-PAP to PAPα. Our results suggest a mechanism of poly (A) site selection that has potential implication on the regulation of alternative polyadenylation.
Collapse
Affiliation(s)
- Divya T Kandala
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Trivandrum 695014, India
| | - Nimmy Mohan
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Trivandrum 695014, India
| | - Vivekanand A
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Trivandrum 695014, India
| | - Sudheesh A P
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Trivandrum 695014, India
| | - Reshmi G
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Trivandrum 695014, India
| | - Rakesh S Laishram
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Trivandrum 695014, India
| |
Collapse
|
40
|
Michalski D, Steiniger M. In vivo characterization of the Drosophila mRNA 3' end processing core cleavage complex. RNA (NEW YORK, N.Y.) 2015; 21:1404-18. [PMID: 26081560 PMCID: PMC4509931 DOI: 10.1261/rna.049551.115] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 04/15/2015] [Indexed: 05/07/2023]
Abstract
A core cleavage complex (CCC) consisting of CPSF73, CPSF100, and Symplekin is required for cotranscriptional 3' end processing of all metazoan pre-mRNAs, yet little is known about the in vivo molecular interactions within this complex. The CCC is a component of two distinct complexes, the cleavage/polyadenylation complex and the complex that processes nonpolyadenylated histone pre-mRNAs. RNAi-depletion of CCC factors in Drosophila culture cells causes reduction of CCC processing activity on histone mRNAs, resulting in read through transcription. In contrast, RNAi-depletion of factors only required for histone mRNA processing allows use of downstream cryptic polyadenylation signals to produce polyadenylated histone mRNAs. We used Dmel-2 tissue culture cells stably expressing tagged CCC components to determine that amino acids 272-1080 of Symplekin and the C-terminal approximately 200 amino acids of both CPSF73 and CPSF100 are required for efficient CCC formation in vivo. Additional experiments reveal that the C-terminal 241 amino acids of CPSF100 are sufficient for histone mRNA processing indicating that the first 524 amino acids of CPSF100 are dispensable for both CCC formation and histone mRNA 3' end processing. CCCs containing deletions of Symplekin lacking the first 271 amino acids resulted in dramatic increased use of downstream polyadenylation sites for histone mRNA 3' end processing similar to RNAi-depletion of histone-specific 3' end processing factors FLASH, SLBP, and U7 snRNA. We propose a model in which CCC formation is mediated by CPSF73, CPSF100, and Symplekin C-termini, and the N-terminal region of Symplekin facilitates cotranscriptional 3' end processing of histone mRNAs.
Collapse
Affiliation(s)
- Daniel Michalski
- Department of Biology, University of Missouri-St. Louis, St. Louis, Missouri 63121, USA
| | - Mindy Steiniger
- Department of Biology, University of Missouri-St. Louis, St. Louis, Missouri 63121, USA
| |
Collapse
|
41
|
Shi Y, Manley JL. The end of the message: multiple protein-RNA interactions define the mRNA polyadenylation site. Genes Dev 2015; 29:889-97. [PMID: 25934501 PMCID: PMC4421977 DOI: 10.1101/gad.261974.115] [Citation(s) in RCA: 190] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Recent studies have significantly reshaped current models for the protein–RNA interactions involved in poly(A) site recognition. Here, Shi and Manley review the recent advances in this area and provide a perspective for future studies. The key RNA sequence elements and protein factors necessary for 3′ processing of polyadenylated mRNA precursors are well known. Recent studies, however, have significantly reshaped current models for the protein–RNA interactions involved in poly(A) site recognition, painting a picture more complex than previously envisioned and also providing new insights into regulation of this important step in gene expression. Here we review the recent advances in this area and provide a perspective for future studies.
Collapse
Affiliation(s)
- Yongsheng Shi
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California at Irvine, Irvine, California 92697, USA;
| | - James L Manley
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| |
Collapse
|
42
|
Abstract
RRM-containing proteins are involved in most of the RNA metabolism steps. Their functions are closely related to their mode of RNA recognition, which has been studied by structural biologists for more than 20 years. In this chapter, we report on high-resolution structures of single and multi RRM-RNA complexes to explain the numerous strategies used by these domains to interact specifically with a large repertoire of RNA sequences. We show that multiple variations of their canonical fold can be used to adapt to different single-stranded sequences with a large range of affinities. Furthermore, we describe the consequences on RNA binding of the different structural arrangements found in tandem RRMs and higher order RNPs. Importantly, these structures also reveal with very high accuracy the RNA motifs bound specifically by RRM-containing proteins, which correspond very often to consensus sequences identified with genome-wide approaches. Finally, we show how structural and cellular biology can benefit from each other and pave a way for understanding, defining, and predicting a code of RNA recognition by the RRMs.
Collapse
|
43
|
Wolter JM, Kotagama K, Pierre-Bez AC, Firago M, Mangone M. 3'LIFE: a functional assay to detect miRNA targets in high-throughput. Nucleic Acids Res 2014; 42:e132. [PMID: 25074381 PMCID: PMC4176154 DOI: 10.1093/nar/gku626] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
MicroRNAs (miRNAs) are short non-coding RNAs that regulate gene output at the post-transcriptional level by targeting degenerate elements primarily in 3'untranslated regions (3'UTRs) of mRNAs. Individual miRNAs can regulate networks of hundreds of genes, yet for the majority of miRNAs few, if any, targets are known. Misexpression of miRNAs is also a major contributor to cancer progression, thus there is a critical need to validate miRNA targets in high-throughput to understand miRNAs' contribution to tumorigenesis. Here we introduce a novel high-throughput assay to detect miRNA targets in 3'UTRs, called Luminescent Identification of Functional Elements in 3'UTRs (3'LIFE). We demonstrate the feasibility of 3'LIFE using a data set of 275 human 3'UTRs and two cancer-relevant miRNAs, let-7c and miR-10b, and compare our results to alternative methods to detect miRNA targets throughout the genome. We identify a large number of novel gene targets for these miRNAs, with only 32% of hits being bioinformatically predicted and 27% directed by non-canonical interactions. Functional analysis of target genes reveals consistent roles for each miRNA as either a tumor suppressor (let-7c) or oncogenic miRNA (miR-10b), and preferentially target multiple genes within regulatory networks, suggesting 3'LIFE is a rapid and sensitive method to detect miRNA targets in high-throughput.
Collapse
Affiliation(s)
- Justin M Wolter
- School of Life Sciences, Arizona State University, 427 E Tyler Mall, Tempe, AZ 85287, USA Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, 1001 S. McAllister Dr., Tempe, AZ 85287, USA
| | - Kasuen Kotagama
- School of Life Sciences, Arizona State University, 427 E Tyler Mall, Tempe, AZ 85287, USA Barrett, The Honors College, Arizona State University, 751 E Lemon Mall, Tempe, AZ 85287, USA
| | - Alexandra C Pierre-Bez
- Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, 1001 S. McAllister Dr., Tempe, AZ 85287, USA
| | - Mari Firago
- School of Life Sciences, Arizona State University, 427 E Tyler Mall, Tempe, AZ 85287, USA
| | - Marco Mangone
- School of Life Sciences, Arizona State University, 427 E Tyler Mall, Tempe, AZ 85287, USA Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, 1001 S. McAllister Dr., Tempe, AZ 85287, USA Barrett, The Honors College, Arizona State University, 751 E Lemon Mall, Tempe, AZ 85287, USA
| |
Collapse
|
44
|
Laishram RS. Poly(A) polymerase (PAP) diversity in gene expression--star-PAP vs canonical PAP. FEBS Lett 2014; 588:2185-97. [PMID: 24873880 PMCID: PMC6309179 DOI: 10.1016/j.febslet.2014.05.029] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 05/02/2014] [Accepted: 05/15/2014] [Indexed: 01/09/2023]
Abstract
Almost all eukaryotic mRNAs acquire a poly(A) tail at the 3'-end by a concerted RNA processing event: cleavage and polyadenylation. The canonical PAP, PAPα, was considered the only nuclear PAP involved in general polyadenylation of mRNAs. A phosphoinositide-modulated nuclear PAP, Star-PAP, was then reported to regulate a select set of mRNAs in the cell. In addition, several non-canonical PAPs have been identified with diverse cellular functions. Further, canonical PAP itself exists in multiple isoforms thus illustrating the diversity of PAPs. In this review, we compare two nuclear PAPs, Star-PAP and PAPα with a general overview of PAP diversity in the cell. Emerging evidence suggests distinct niches of target pre-mRNAs for the two PAPs and that modulation of these PAPs regulates distinct cellular functions.
Collapse
Affiliation(s)
- Rakesh S Laishram
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, India.
| |
Collapse
|
45
|
Delineating the structural blueprint of the pre-mRNA 3'-end processing machinery. Mol Cell Biol 2014; 34:1894-910. [PMID: 24591651 DOI: 10.1128/mcb.00084-14] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Processing of mRNA precursors (pre-mRNAs) by polyadenylation is an essential step in gene expression. Polyadenylation consists of two steps, cleavage and poly(A) synthesis, and requires multiple cis elements in the pre-mRNA and a megadalton protein complex bearing the two essential enzymatic activities. While genetic and biochemical studies remain the major approaches in characterizing these factors, structural biology has emerged during the past decade to help understand the molecular assembly and mechanistic details of the process. With structural information about more proteins and higher-order complexes becoming available, we are coming closer to obtaining a structural blueprint of the polyadenylation machinery that explains both how this complex functions and how it is regulated and connected to other cellular processes.
Collapse
|
46
|
Dupin AF, Fribourg S. Structural basis for ATP loss by Clp1p in a G135R mutant protein. Biochimie 2014; 101:203-7. [PMID: 24508575 DOI: 10.1016/j.biochi.2014.01.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 01/17/2014] [Indexed: 01/05/2023]
Abstract
Pcf11p and Clp1p form a heterodimer and are subunits of the Cleavage Factor IA (CF IA), a complex that is involved in the maturation of the 3'-end of mRNAs in Saccharomyces cerevisiae. The role of Clp1p protein in polyadenylation remains elusive, as does the need for ATP binding by Clp1p. In order to obtain structural details at atomic resolution of point mutants of Clp1p, we solved the crystal structure of Clp1-1p (G135R) point mutant complexed with Pcf11p (454-563) domain. The Clp1-1p-Pcf11p structure provides the atomic details for ATP loss while the point mutation preserves intact the Pcf11p interaction surface of Clp1p. This provides a rationale for the absence of phenotype in the yeast clp1-1 strain. Additionally, the structure allows for the description of an extended binding interface of Pcf11p with Clp1p which is likely to be S. cerevisiae specific.
Collapse
Affiliation(s)
- Adrien F Dupin
- Univ. Bordeaux, IECB, F-33607 Pessac, France; INSERM, U869, F-33077 Pessac, France
| | - Sébastien Fribourg
- Univ. Bordeaux, IECB, F-33607 Pessac, France; INSERM, U869, F-33077 Pessac, France.
| |
Collapse
|
47
|
Hockert JA, MacDonald CC. The stem-loop luciferase assay for polyadenylation (SLAP) method for determining CstF-64-dependent polyadenylation activity. Methods Mol Biol 2014; 1125:109-17. [PMID: 24590783 PMCID: PMC5417545 DOI: 10.1007/978-1-62703-971-0_9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Polyadenylation is an essential cellular process in eukaryotic cells (Edmonds M and Abrams R, J Biol Chem 235, 1142-1149, 1960; Zhao J et al., Microbiol Mol Biol Rev 63, 405-445, 1999; Edmonds M, Progr Nucleic Acid Res Mol Biol 71, 285-389, 2002). For this reason, it has been difficult to examine the functions of specific polyadenylation proteins in vivo. Here, we describe a cell culture assay that allows structure-function experiments on CstF-64, a protein that binds to pre-mRNAs downstream of the cleavage site for accurate and efficient polyadenylation. We also demonstrate that the stem-loop luciferase assay for polyadenylation (SLAP) accurately reflects CstF-64-dependent polyadenylation. This assay could be easily adapted to the study of other important RNA-binding proteins in polyadenylation.
Collapse
|
48
|
Yao C, Choi EA, Weng L, Xie X, Wan J, Xing Y, Moresco JJ, Tu PG, Yates JR, Shi Y. Overlapping and distinct functions of CstF64 and CstF64τ in mammalian mRNA 3' processing. RNA (NEW YORK, N.Y.) 2013; 19:1781-1790. [PMID: 24149845 PMCID: PMC3884657 DOI: 10.1261/rna.042317.113] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 09/12/2013] [Indexed: 06/02/2023]
Abstract
mRNA 3' processing is dynamically regulated spatially and temporally. However, the underlying mechanisms remain poorly understood. CstF64τ is a paralog of the general mRNA 3' processing factor, CstF64, and has been implicated in mediating testis-specific mRNA alternative polyadenylation (APA). However, the functions of CstF64τ in mRNA 3' processing have not been systematically investigated. We carried out a comprehensive characterization of CstF64τ and compared its properties to those of CstF64. In contrast to previous reports, we found that both CstF64 and CstF64τ are widely expressed in mammalian tissues, and their protein levels display tissue-specific variations. We further demonstrated that CstF64 and CstF64τ have highly similar RNA-binding specificities both in vitro and in vivo. CstF64 and CstF64τ modulate one another's expression and play overlapping as well as distinct roles in regulating global APA profiles. Interestingly, protein interactome analyses revealed key differences between CstF64 and CstF64τ, including their interactions with another mRNA 3' processing factor, symplekin. Together, our study of CstF64 and CstF64τ revealed both functional overlap and specificity of these two important mRNA 3' processing factors and provided new insights into the regulatory mechanisms of mRNA 3' processing.
Collapse
Affiliation(s)
- Chengguo Yao
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, Irvine, California 92697, USA
| | - Eun-A Choi
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, Irvine, California 92697, USA
| | - Lingjie Weng
- Institute for Genomics and Bioinformatics, University of California, Irvine, Irvine, California 92697, USA
- Department of Computer Science, University of California, Irvine, Irvine, California 92697, USA
| | - Xiaohui Xie
- Institute for Genomics and Bioinformatics, University of California, Irvine, Irvine, California 92697, USA
- Department of Computer Science, University of California, Irvine, Irvine, California 92697, USA
| | - Ji Wan
- Interdepartmental Graduate Program in Genetics, University of Iowa, Iowa City, Iowa 52242, USA
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa 52242, USA
| | - Yi Xing
- Interdepartmental Graduate Program in Genetics, University of Iowa, Iowa City, Iowa 52242, USA
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa 52242, USA
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, California 90095, USA
| | - James J. Moresco
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Patricia G. Tu
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California 92037, USA
| | - John R. Yates
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Yongsheng Shi
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, Irvine, California 92697, USA
| |
Collapse
|
49
|
Gruber AR, Martin G, Keller W, Zavolan M. Means to an end: mechanisms of alternative polyadenylation of messenger RNA precursors. WILEY INTERDISCIPLINARY REVIEWS-RNA 2013; 5:183-96. [PMID: 24243805 PMCID: PMC4282565 DOI: 10.1002/wrna.1206] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 10/16/2013] [Accepted: 10/18/2013] [Indexed: 12/24/2022]
Abstract
Expression of mature messenger RNAs (mRNAs) requires appropriate transcription initiation and termination, as well as pre-mRNA processing by capping, splicing, cleavage, and polyadenylation. A core 3'-end processing complex carries out the cleavage and polyadenylation reactions, but many proteins have been implicated in the selection of polyadenylation sites among the multiple alternatives that eukaryotic genes typically have. In recent years, high-throughput approaches to map both the 3'-end processing sites as well as the binding sites of proteins that are involved in the selection of cleavage sites and in the processing reactions have been developed. Here, we review these approaches as well as the insights into the mechanisms of polyadenylation that emerged from genome-wide studies of polyadenylation across a range of cell types and states.
Collapse
Affiliation(s)
- Andreas R Gruber
- Computational and Systems Biology, Biozentrum, University of Basel, Basel, Switzerland
| | | | | | | |
Collapse
|
50
|
Prasad MK, Bhalla K, Pan ZH, O’Connell JR, Weder AB, Chakravarti A, Tian B, Chang YPC. A polymorphic 3'UTR element in ATP1B1 regulates alternative polyadenylation and is associated with blood pressure. PLoS One 2013; 8:e76290. [PMID: 24098465 PMCID: PMC3788127 DOI: 10.1371/journal.pone.0076290] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 08/22/2013] [Indexed: 12/31/2022] Open
Abstract
Although variants in many genes have previously been shown to be associated with blood pressure (BP) levels, the molecular mechanism underlying these associations are mostly unknown. We identified a multi-allelic T-rich sequence (TRS) in the 3’UTR of ATP1B1 that varies in length and sequence composition (T22-27 and T12GT 3GT6). The 3’UTR of ATP1B1 contains 2 functional polyadenylation signals and the TRS is downstream of the proximal polyadenylation site (A2). Therefore, we hypothesized that alleles of this TRS might influence ATP1B1 expression by regulating alternative polyadenylation. In vitro, the T12GT 3GT6 allele increases polyadenylation at the A2 polyadenylation site as compared to the T23 allele. Consistent with our hypothesis, the relative abundance of the A2-polyadenylated ATP1B1 mRNA was higher in human kidneys with at least one copy of the T12GT 3GT6 allele than in those lacking this allele. The T12GT 3GT6 allele is also associated with higher systolic BP (beta = 3.3 mmHg, p = 0.014) and diastolic BP (beta = 2.4 mmHg, p = 0.003) in a European-American population. Therefore, we have identified a novel multi-allelic TRS in the 3’UTR of ATP1B1 that is associated with higher BP and may mediate its effect by regulating the polyadenylation of the ATP1B1 mRNA.
Collapse
Affiliation(s)
- Megana K. Prasad
- Division of Endocrinology, Diabetes and Nutrition, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Kavita Bhalla
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Zhen Hua Pan
- Department of Biochemistry & Molecular Biology, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, Newark, New Jersey, United States of America
| | - Jeffrey R. O’Connell
- Division of Endocrinology, Diabetes and Nutrition, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Alan B. Weder
- Department of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, Michigan, United States of America
| | - Aravinda Chakravarti
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Bin Tian
- Department of Biochemistry & Molecular Biology, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, Newark, New Jersey, United States of America
| | - Yen-Pei C. Chang
- Division of Endocrinology, Diabetes and Nutrition, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|