1
|
Ma G, Liu Z, Song S, Gao J, Liao S, Cao S, Xie Y, Cao L, Hu L, Jing H, Chen L. The LpHsfA2-molecular module confers thermotolerance via fine tuning of its transcription in perennial ryegrass (Lolium perenne L.). JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024. [PMID: 39422287 DOI: 10.1111/jipb.13789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 09/25/2024] [Indexed: 10/19/2024]
Abstract
Temperature sensitivity and tolerance play a key role in plant survival and production. Perennial ryegrass (Lolium perenne L.), widely cultivated in cool-season for forage supply and turfgrass, is extremely susceptible to high temperatures, therefore serving as an excellent grass for dissecting the genomic and genetic basis of high-temperature adaptation. In this study, expression analysis revealed that LpHsfA2, an important gene associated with high-temperature tolerance in perennial ryegrass, is rapidly and substantially induced under heat stress. Additionally, heat-tolerant varieties consistently display elevated expression levels of LpHsfA2 compared with heat-sensitive ones. Comparative haplotype analysis of the LpHsfA2 promoter indicated an uneven distribution of two haplotypes (HsfA2Hap1 and HsfA2Hap2) across varieties with differing heat tolerance. Specifically, the HsfA2Hap1 allele is predominantly present in heat-tolerant varieties, while the HsfA2Hap2 allele exhibits the opposite pattern. Overexpression of LpHsfA2 confers enhanced thermotolerance, whereas silencing of LpHsfA2 compromises heat tolerance. Furthermore, LpHsfA2 orchestrates its protective effects by directly binding to the promoters of LpHSP18.2 and LpAPX1 to activate their expression, preventing the non-specific misfolding of intracellular protein and the accumulation of reactive oxygen species in cells. Additionally, LpHsfA4 and LpHsfA5 were shown to engage directly with the promoter of LpHsfA2, upregulating its expression as well as the expression of LpHSP18.2 and LpAPX1, thus contributing to enhanced heat tolerance. Markedly, LpHsfA2 possesses autoregulatory ability by directly binding to its own promoter to modulate the self-transcription. Based on these findings, we propose a model for modulating the thermotolerance of perennial ryegrass by precisely regulating the expression of LpHsfA2. Collectively, these findings provide a scientific basis for the development of thermotolerant perennial ryegrass cultivars.
Collapse
Affiliation(s)
- Guangjing Ma
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhihao Liu
- Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi, 435002, China
| | - Shurui Song
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Gao
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shujie Liao
- Department of Pratacultural Sciences, College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Shilong Cao
- Department of Pratacultural Sciences, College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Yan Xie
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Liwen Cao
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Longxing Hu
- Department of Pratacultural Sciences, College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Haichun Jing
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- Academician Workstation of Agricultural High-tech Industrial Area of the Yellow River Delta, National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying, 257300, China
| | - Liang Chen
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Academician Workstation of Agricultural High-tech Industrial Area of the Yellow River Delta, National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying, 257300, China
| |
Collapse
|
2
|
Bakery A, Vraggalas S, Shalha B, Chauhan H, Benhamed M, Fragkostefanakis S. Heat stress transcription factors as the central molecular rheostat to optimize plant survival and recovery from heat stress. THE NEW PHYTOLOGIST 2024; 244:51-64. [PMID: 39061112 DOI: 10.1111/nph.20017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024]
Abstract
Heat stress transcription factors (HSFs) are the core regulators of the heat stress (HS) response in plants. HSFs are considered as a molecular rheostat: their activities define the response intensity, incorporating information about the environmental temperature through a network of partner proteins. A prompted activation of HSFs is required for survival, for example the de novo synthesis of heat shock proteins. Furthermore, a timely attenuation of the stress response is necessary for the restoration of cellular functions and recovery from stress. In an ever-changing environment, the balance between thermotolerance and developmental processes such as reproductive fitness highlights the importance of a tightly tuned response. In many cases, the response is described as an ON/OFF mode, while in reality, it is very dynamic. This review compiles recent findings to update existing models about the HSF-regulated HS response and address two timely questions: How do plants adjust the intensity of cellular HS response corresponding to the temperature they experience? How does this adjustment contribute to the fine-tuning of the HS and developmental networks? Understanding these processes is crucial not only for enhancing our basic understanding of plant biology but also for developing strategies to improve crop resilience and productivity under stressful conditions.
Collapse
Affiliation(s)
- Ayat Bakery
- Institute of Molecular Biosciences, Plant Cell and Molecular Biology, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany
- Botany Department, Faculty of Science, Ain Shams University, 11517, Cairo, Egypt
| | - Stavros Vraggalas
- Institute of Molecular Biosciences, Plant Cell and Molecular Biology, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany
| | - Boushra Shalha
- Institute of Molecular Biosciences, Plant Cell and Molecular Biology, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany
| | - Harsh Chauhan
- Institute of Molecular Biosciences, Plant Cell and Molecular Biology, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247 667, Uttarakhand, India
| | - Moussa Benhamed
- Université de Paris Cité, Institute of Plant Sciences Paris-Saclay (IPS2), F-91190, Gif-sur-Yvette, France
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay, 91405, France
- Institut Universitaire de France (IUF), Orsay, 91405, France
| | - Sotirios Fragkostefanakis
- Institute of Molecular Biosciences, Plant Cell and Molecular Biology, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany
| |
Collapse
|
3
|
Ma J, Wang Y, Hong Y, Zhao M, Ma X, Liu J, Chai W, Zhao W, Sun L, Yang R, Wang S, Huang H. SlWRKY55 coordinately acts with SlVQ11 to enhance tomato thermotolerance by activating SlHsfA2. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024. [PMID: 39101617 DOI: 10.1111/tpj.16960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/13/2024] [Accepted: 07/23/2024] [Indexed: 08/06/2024]
Abstract
High temperature (HT) severely restricts plant growth, development, and productivity. Plants have evolved a set of mechanisms to cope with HT, including the regulation of heat stress transcription factors (Hsfs) and heat shock proteins (Hsps). However, it is not clear how the transcriptional and translational levels of Hsfs and Hsps are controlled in tomato. Here, we reported that the HT-induced transcription factor SlWRKY55 recruited SlVQ11 to coordinately regulate defense against HT. SlWRKY55 directly bound to the promoter of SlHsfA2 and promoted its expression, which was increased by SlVQ11. Moreover, both SlWRKY55 and SlVQ11 physically interacted with SlHsfA2 to enhance the transcriptional activity of SlHsfA2. Thus, our results revealed a molecular mechanism that the SlWRKY55/SlVQ11-SlHsfA2 cascade enhanced thermotolerance and provided potential target genes for improving the adaptability of crops to HT.
Collapse
Affiliation(s)
- Jilin Ma
- Plant Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Yingying Wang
- Plant Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Yihan Hong
- Plant Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Mingjie Zhao
- Plant Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Xuechun Ma
- Plant Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Jiapeng Liu
- Plant Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Weizhe Chai
- Plant Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Wenchao Zhao
- Plant Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing, 102206, China
| | - Lulu Sun
- Plant Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing, 102206, China
| | - Rui Yang
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing, 102206, China
| | - Shaohui Wang
- Plant Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing, 102206, China
| | - Huang Huang
- Plant Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing, 102206, China
| |
Collapse
|
4
|
Mahapatra K, Mukherjee A, Suyal S, Dar MA, Bhagavatula L, Datta S. Regulation of chloroplast biogenesis, development, and signaling by endogenous and exogenous cues. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:167-183. [PMID: 38623168 PMCID: PMC11016055 DOI: 10.1007/s12298-024-01427-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 02/07/2024] [Accepted: 02/27/2024] [Indexed: 04/17/2024]
Abstract
Chloroplasts are one of the defining features in most plants, primarily known for their unique property to carry out photosynthesis. Besides this, chloroplasts are also associated with hormone and metabolite productions. For this, biogenesis and development of chloroplast are required to be synchronized with the seedling growth to corroborate the maximum rate of photosynthesis following the emergence of seedlings. Chloroplast biogenesis and development are dependent on the signaling to and from the chloroplast, which are in turn regulated by several endogenous and exogenous cues. Light and hormones play a crucial role in chloroplast maturation and development. Chloroplast signaling involves a coordinated two-way connection between the chloroplast and nucleus, termed retrograde and anterograde signaling, respectively. Anterograde and retrograde signaling are involved in regulation at the transcriptional level and downstream modifications and are modulated by several metabolic and external cues. The communication between chloroplast and nucleus is essential for plants to develop strategies to cope with various stresses including high light or high heat. In this review, we have summarized several aspects of chloroplast development and its regulation through the interplay of various external and internal factors. We have also discussed the involvement of chloroplasts as sensors of various external environment stress factors including high light and temperature, and communicate via a series of retrograde signals to the nucleus, thus playing an essential role in plants' abiotic stress response.
Collapse
Affiliation(s)
- Kalyan Mahapatra
- Plant Cell and Developmental Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Bhopal, Madhya Pradesh 462066 India
| | - Arpan Mukherjee
- Plant Cell and Developmental Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Bhopal, Madhya Pradesh 462066 India
| | - Shikha Suyal
- Plant Cell and Developmental Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Bhopal, Madhya Pradesh 462066 India
| | - Mansoor Ali Dar
- Plant Cell and Developmental Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Bhopal, Madhya Pradesh 462066 India
| | | | - Sourav Datta
- Plant Cell and Developmental Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Bhopal, Madhya Pradesh 462066 India
| |
Collapse
|
5
|
Vassileva V, Georgieva M, Todorov D, Mishev K. Small Sized Yet Powerful: Nuclear Distribution C Proteins in Plants. PLANTS (BASEL, SWITZERLAND) 2023; 13:119. [PMID: 38202427 PMCID: PMC10780334 DOI: 10.3390/plants13010119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/12/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024]
Abstract
The family of Nuclear Distribution C (NudC) proteins plays a pivotal and evolutionarily conserved role in all eukaryotes. In animal systems, these proteins influence vital cellular processes like cell division, protein folding, nuclear migration and positioning, intracellular transport, and stress response. This review synthesizes past and current research on NudC family members, focusing on their growing importance in plants and intricate contributions to plant growth, development, and stress tolerance. Leveraging information from available genomic databases, we conducted a thorough characterization of NudC family members, utilizing phylogenetic analysis and assessing gene structure, motif organization, and conserved protein domains. Our spotlight on two Arabidopsis NudC genes, BOB1 and NMig1, underscores their indispensable roles in embryogenesis and postembryonic development, stress responses, and tolerance mechanisms. Emphasizing the chaperone activity of plant NudC family members, crucial for mitigating stress effects and enhancing plant resilience, we highlight their potential as valuable targets for enhancing crop performance. Moreover, the structural and functional conservation of NudC proteins across species suggests their potential applications in medical research, particularly in functions related to cell division, microtubule regulation, and associated pathways. Finally, we outline future research avenues centering on the exploration of under investigated functions of NudC proteins in plants.
Collapse
Affiliation(s)
- Valya Vassileva
- Department of Molecular Biology and Genetics, Laboratory of Regulation of Gene Expression, Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (M.G.); (D.T.)
| | | | | | - Kiril Mishev
- Department of Molecular Biology and Genetics, Laboratory of Regulation of Gene Expression, Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (M.G.); (D.T.)
| |
Collapse
|
6
|
Pardal R, Scheres B, Heidstra R. SCHIZORIZA domain-function analysis identifies requirements for its specific role in cell fate segregation. PLANT PHYSIOLOGY 2023; 193:1866-1879. [PMID: 37584278 PMCID: PMC10602604 DOI: 10.1093/plphys/kiad456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 07/14/2023] [Accepted: 07/19/2023] [Indexed: 08/17/2023]
Abstract
Plant development continues postembryonically with a lifelong ability to form new tissues and organs. Asymmetric cell division, coupled with fate segregation, is essential to create cellular diversity during tissue and organ formation. Arabidopsis (Arabidopsis thaliana) plants harboring mutations in the SCHIZORIZA (SCZ) gene display fate segregation defects in their roots, resulting in the presence of an additional layer of endodermis, production of root hairs from subepidermal tissue, and misexpression of several tissue identity markers. Some of these defects are observed in tissues where SCZ is not expressed, indicating that part of the SCZ function is nonautonomous. As a class B HEAT-SHOCK TRANSCRIPTION FACTOR (HSFB), the SCZ protein contains several conserved domains and motifs. However, which domain(s) discriminates SCZ from its family members to obtain a role in development remains unknown. Here, we investigate how each domain contributes to SCZ function in Arabidopsis root patterning by generating altered versions of SCZ by domain swapping and mutation. We show that the SCZ DNA-binding domain is the main factor for its developmental function, and that SCZ likely acts as a nonmotile transcriptional repressor. Our results demonstrate how members of the HSF family can evolve toward functions beyond stress response.
Collapse
Affiliation(s)
- Renan Pardal
- Cluster of Plant Developmental Biology, Laboratory of Molecular Biology, Wageningen University & Research, 6708 PB, Wageningen, The Netherlands
| | - Ben Scheres
- Cluster of Plant Developmental Biology, Laboratory of Molecular Biology, Wageningen University & Research, 6708 PB, Wageningen, The Netherlands
| | - Renze Heidstra
- Cluster of Plant Developmental Biology, Laboratory of Molecular Biology, Wageningen University & Research, 6708 PB, Wageningen, The Netherlands
| |
Collapse
|
7
|
Chaudhary S, Selvaraj V, Awasthi P, Bhuria S, Purohit R, Kumar S, Hallan V. Small Heat Shock Protein (sHsp22.98) from Trialeurodes vaporariorum Plays Important Role in Apple Scar Skin Viroid Transmission. Viruses 2023; 15:2069. [PMID: 37896846 PMCID: PMC10611230 DOI: 10.3390/v15102069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/11/2023] [Accepted: 09/16/2023] [Indexed: 10/29/2023] Open
Abstract
Trialeurodes vaporariorum, commonly known as the greenhouse whitefly, severely infests important crops and serves as a vector for apple scar skin viroid (ASSVd). This vector-mediated transmission may cause the spread of infection to other herbaceous crops. For effective management of ASSVd, it is important to explore the whitefly's proteins, which interact with ASSVd RNA and are thereby involved in its transmission. In this study, it was found that a small heat shock protein (sHsp) from T. vaporariorum, which is expressed under stress, binds to ASSVd RNA. The sHsp gene is 606 bp in length and encodes for 202 amino acids, with a molecular weight of 22.98 kDa and an isoelectric point of 8.95. Intermolecular interaction was confirmed through in silico analysis, using electrophoretic mobility shift assays (EMSAs) and northwestern assays. The sHsp22.98 protein was found to exist in both monomeric and dimeric forms, and both forms showed strong binding to ASSVd RNA. To investigate the role of sHsp22.98 during ASSVd infection, transient silencing of sHsp22.98 was conducted, using a tobacco rattle virus (TRV)-based virus-induced gene silencing system. The sHsp22.98-silenced whiteflies showed an approximate 50% decrease in ASSVd transmission. These results suggest that sHsp22.98 from T. vaporariorum is associated with viroid RNA and plays a significant role in transmission.
Collapse
Affiliation(s)
- Savita Chaudhary
- Plant Virology Laboratory, Division of Biotechnology, CSIR—Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India (R.P.)
| | - Vijayanandraj Selvaraj
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India (R.P.)
- Plant Molecular Virology Laboratory, Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow 226001, Uttar Pradesh, India
| | - Preshika Awasthi
- Plant Virology Laboratory, Division of Biotechnology, CSIR—Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India
| | - Swati Bhuria
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India (R.P.)
- Plant Molecular Virology Laboratory, Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow 226001, Uttar Pradesh, India
| | - Rituraj Purohit
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India (R.P.)
- Bioinformatics Lab, Division of Biotechnology, CSIR—Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India
| | - Surender Kumar
- Plant Virology Laboratory, Division of Biotechnology, CSIR—Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India
| | - Vipin Hallan
- Plant Virology Laboratory, Division of Biotechnology, CSIR—Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India (R.P.)
| |
Collapse
|
8
|
Mizoi J, Todaka D, Imatomi T, Kidokoro S, Sakurai T, Kodaira KS, Takayama H, Shinozaki K, Yamaguchi-Shinozaki K. The ability to induce heat shock transcription factor-regulated genes in response to lethal heat stress is associated with thermotolerance in tomato cultivars. FRONTIERS IN PLANT SCIENCE 2023; 14:1269964. [PMID: 37868310 PMCID: PMC10585066 DOI: 10.3389/fpls.2023.1269964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/18/2023] [Indexed: 10/24/2023]
Abstract
Heat stress is a severe challenge for plant production, and the use of thermotolerant cultivars is critical to ensure stable production in high-temperature-prone environments. However, the selection of thermotolerant cultivars is difficult due to the complex nature of heat stress and the time and space needed for evaluation. In this study, we characterized genome-wide differences in gene expression between thermotolerant and thermosensitive tomato cultivars and examined the possibility of selecting gene expression markers to estimate thermotolerance among different tomato cultivars. We selected one thermotolerant and one thermosensitive cultivar based on physiological evaluations and compared heat-responsive gene expression in these cultivars under stepwise heat stress and acute heat shock conditions. Transcriptomic analyses reveled that two heat-inducible gene expression pathways, controlled by the heat shock element (HSE) and the evening element (EE), respectively, presented different responses depending on heat stress conditions. HSE-regulated gene expression was induced under both conditions, while EE-regulated gene expression was only induced under gradual heat stress conditions in both cultivars. Furthermore, HSE-regulated genes showed higher expression in the thermotolerant cultivar than the sensitive cultivar under acute heat shock conditions. Then, candidate expression biomarker genes were selected based on the transcriptome data, and the usefulness of these candidate genes was validated in five cultivars. This study shows that the thermotolerance of tomato is correlated with its ability to maintain the heat shock response (HSR) under acute severe heat shock conditions. Furthermore, it raises the possibility that the robustness of the HSR under severe heat stress can be used as an indicator to evaluate the thermotolerance of crop cultivars.
Collapse
Affiliation(s)
- Junya Mizoi
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Daisuke Todaka
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Tomohiro Imatomi
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Satoshi Kidokoro
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Tetsuya Sakurai
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
- Interdisciplinary Science Unit, Multidisciplinary Science Cluster, Research and Education Faculty, Kochi University, Nankoku, Japan
| | - Ken-Suke Kodaira
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | | | - Kazuo Shinozaki
- Gene Discovery Research Group, RIKEN Center for Sustainable Resource Science, Tsukuba, Japan
- Institute for Advanced Research, Nagoya University, Nagoya, Japan
| | - Kazuko Yamaguchi-Shinozaki
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
- Research Institute for Agricultural and Life Sciences, Tokyo University of Agriculture, Tokyo, Japan
| |
Collapse
|
9
|
Li L, Ju Y, Zhang C, Tong B, Lu Y, Xie X, Li W. Genome-wide analysis of the heat shock transcription factor family reveals saline-alkali stress responses in Xanthoceras sorbifolium. PeerJ 2023; 11:e15929. [PMID: 37753174 PMCID: PMC10519200 DOI: 10.7717/peerj.15929] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 07/30/2023] [Indexed: 09/28/2023] Open
Abstract
The heat shock transcription factor (HSF) family is involved in regulating growth, development, and abiotic stress. The characteristics and biological functions of HSF family member in X. sorbifolium, an important oil and ornamental plant, have never been reported. In this study, 21 XsHSF genes were identified from the genome of X. sorbifolium and named XsHSF1-XsHSF21 based on their chromosomal positions. Those genes were divided into three groups, A, B, and C, containing 12, one, and eight genes, respectively. Among them, 20 XsHSF genes are located on 11 chromosomes. Protein structure analysis suggested that XsHSF proteins were conserved, displaying typical DNA binding domains (DBD) and oligomerization domains (OD). Moreover, HSF proteins within the same group contain specific motifs, such as motif 5 in the HSFC group. All XsHSF genes have one intron in the CDS region, except XsHSF1 which has two introns. Promoter analysis revealed that in addition to defense and stress responsiveness elements, some promoters also contained a MYB binding site and elements involved in multiple hormones responsiveness and anaerobic induction. Duplication analysis revealed that XsHSF1 and XsHSF4 genes were segmentally duplicated while XsHSF2, XsHSF9, and XsHSF13 genes might have arisen from transposition. Expression pattern analysis of leaves and roots following salt-alkali treatment using qRT-PCR indicated that five XsHSF genes were upregulated and one XsHSF gene was downregulated in leaves upon NaCl treatment suggesting these genes may play important roles in salt response. Additionally, the expression levels of most XsHSFs were decreased in leaves and roots following alkali-induced stress, indicating that those XsHSFs may function as negative regulators in alkali tolerance. MicroRNA target site prediction indicated that 16 of the XsHSF genes may be regulated by multiple microRNAs, for example XsHSF2 might be regulated by miR156, miR394, miR395, miR408, miR7129, and miR854. And miR164 may effect the mRNA levels of XsHSF3 and XsHSF17, XsHSF9 gene may be regulated by miR172. The expression trends of miR172 and miR164 in leaves and roots on salt treatments were opposite to the expression trend of XsHSF9 and XsHSF3 genes, respectively. Promoter analysis showed that XsHSFs might be involved in light and hormone responses, plant development, as well as abiotic stress responses. Our results thus provide an overview of the HSF family in X. sorbifolium and lay a foundation for future functional studies to reveal its roles in saline-alkali response.
Collapse
Affiliation(s)
- Lulu Li
- Qingdao Agricultural University, Qingdao, China
| | - Yiqian Ju
- Qingdao Agricultural University, Qingdao, China
| | | | - Boqiang Tong
- Shandong Provincial Center of Forest and Grass Germplasm Resources, Jinan, China
| | - Yizeng Lu
- Shandong Provincial Center of Forest and Grass Germplasm Resources, Jinan, China
| | - Xiaoman Xie
- Shandong Provincial Center of Forest and Grass Germplasm Resources, Jinan, China
| | - Wei Li
- Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
10
|
Wang Q, Zhang Z, Guo C, Zhao X, Li Z, Mou Y, Sun Q, Wang J, Yuan C, Li C, Cong P, Shan S. Hsf transcription factor gene family in peanut ( Arachis hypogaea L.): genome-wide characterization and expression analysis under drought and salt stresses. FRONTIERS IN PLANT SCIENCE 2023; 14:1214732. [PMID: 37476167 PMCID: PMC10355374 DOI: 10.3389/fpls.2023.1214732] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 06/07/2023] [Indexed: 07/22/2023]
Abstract
Heat shock transcription factors (Hsfs) play important roles in plant developmental regulations and various stress responses. In present study, 46 Hsf genes in peanut (AhHsf) were identified and analyzed. The 46 AhHsf genes were classed into three groups (A, B, and C) and 14 subgroups (A1-A9, B1-B4, and C1) together with their Arabidopsis homologs according to phylogenetic analyses, and 46 AhHsf genes unequally located on 17 chromosomes. Gene structure and protein motif analysis revealed that members from the same subgroup possessed similar exon/intron and motif organization, further supporting the results of phylogenetic analyses. Gene duplication events were found in peanut Hsf gene family via syntenic analysis, which were important in Hsf gene family expansion in peanut. The expression of AhHsf genes were detected in different tissues using published data, implying that AhHsf genes may differ in function. In addition, several AhHsf genes (AhHsf5, AhHsf11, AhHsf20, AhHsf24, AhHsf30, AhHsf35) were induced by drought and salt stresses. Furthermore, the stress-induced member AhHsf20 was found to be located in nucleus. Notably, overexpression of AhHsf20 was able to enhance salt tolerance. These results from this study may provide valuable information for further functional analysis of peanut Hsf genes.
Collapse
Affiliation(s)
- Qi Wang
- Shandong Peanut Research Institute, Qingdao, China
| | - Zhenbiao Zhang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Cun Guo
- Kunming Branch of Yunnan Provincial Tobacco Company, Kunming, China
| | - Xiaobo Zhao
- Shandong Peanut Research Institute, Qingdao, China
| | - Zhiyuan Li
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Yifei Mou
- Shandong Peanut Research Institute, Qingdao, China
| | - Quanxi Sun
- Shandong Peanut Research Institute, Qingdao, China
| | - Juan Wang
- Shandong Peanut Research Institute, Qingdao, China
| | - Cuiling Yuan
- Shandong Peanut Research Institute, Qingdao, China
| | - Chunjuan Li
- Shandong Peanut Research Institute, Qingdao, China
| | - Ping Cong
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Shihua Shan
- Shandong Peanut Research Institute, Qingdao, China
| |
Collapse
|
11
|
Zhou Y, Xu F, Shao Y, He J. Regulatory Mechanisms of Heat Stress Response and Thermomorphogenesis in Plants. PLANTS (BASEL, SWITZERLAND) 2022; 11:3410. [PMID: 36559522 PMCID: PMC9788449 DOI: 10.3390/plants11243410] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/18/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
As worldwide warming intensifies, the average temperature of the earth continues to increase. Temperature is a key factor for the growth and development of all organisms and governs the distribution and seasonal behavior of plants. High temperatures lead to various biochemical, physiological, and morphological changes in plants and threaten plant productivity. As sessile organisms, plants are subjected to various hostile environmental factors and forced to change their cellular state and morphological architecture to successfully deal with the damage they suffer. Therefore, plants have evolved multiple strategies to cope with an abnormal rise in temperature. There are two main mechanisms by which plants respond to elevated environmental temperatures. One is the heat stress response, which is activated under extremely high temperatures; the other is the thermomorphogenesis response, which is activated under moderately elevated temperatures, below the heat-stress range. In this review, we summarize recent progress in the study of these two important heat-responsive molecular regulatory pathways mediated, respectively, by the Heat Shock Transcription Factor (HSF)-Heat Shock Protein (HSP) pathway and PHYTOCHROME INTER-ACTING FACTOR 4 (PIF4) pathways in plants and elucidate the regulatory mechanisms of the genes involved in these pathways to provide comprehensive data for researchers studying the heat response. We also discuss future perspectives in this field.
Collapse
Affiliation(s)
| | | | | | - Junna He
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, College of Horticulture, China Agricultural University, Beijing 100193, China
| |
Collapse
|
12
|
Lee HY, Hwang OJ, Back K. Phytomelatonin as a signaling molecule for protein quality control via chaperone, autophagy, and ubiquitin-proteasome systems in plants. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:5863-5873. [PMID: 35246975 DOI: 10.1093/jxb/erac002] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
Physiological effects mediated by melatonin are attributable to its potent antioxidant activity as well as its role as a signaling molecule in inducing a vast array of melatonin-mediated genes. Here, we propose melatonin as a signaling molecule essential for protein quality control (PQC) in plants. PQC occurs by the coordinated activities of three systems: the chaperone network, autophagy, and the ubiquitin-proteasome system. With regard to the melatonin-mediated chaperone pathway, melatonin increases thermotolerance by induction of heat shock proteins and confers endoplasmic reticulum stress tolerance by increasing endoplasmic reticulum chaperone proteins. In chloroplasts, melatonin-induced chaperones, including Clps and CpHSP70s, play key roles in the PQC of chloroplast-localized proteins, such as Lhcb1, Lhcb4, and RBCL, during growth. Melatonin regulates PQC by autophagy processes, in which melatonin induces many autophagy (ATG) genes and autophagosome formation under stress conditions. Finally, melatonin-mediated plant stress tolerance is associated with up-regulation of stress-induced transcription factors, which are regulated by the ubiquitin-proteasome system. In this review, we propose that melatonin plays a pivotal role in PQC and consequently functions as a pleiotropic molecule under non-stress and adverse conditions in plants.
Collapse
Affiliation(s)
- Hyoung Yool Lee
- Department of Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, South Korea
| | - Ok Jin Hwang
- Department of Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, South Korea
| | - Kyoungwhan Back
- Department of Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, South Korea
| |
Collapse
|
13
|
Tang B, Li X, Zhang X, Yin Q, Xie L, Zou X, Liu F, Dai X. Transcriptome data reveal gene clusters and key genes in pepper response to heat shock. FRONTIERS IN PLANT SCIENCE 2022; 13:946475. [PMID: 36212322 PMCID: PMC9532576 DOI: 10.3389/fpls.2022.946475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 08/08/2022] [Indexed: 06/16/2023]
Abstract
Climate change and global warming pose a great threat to plant growth and development as well as crop productivity. To better study the genome-wide gene expression under heat, we performed a time-course (0.5 to 24 h) transcriptome analysis in the leaf and root of 40-day-old pepper plants under 40°C as well as in control plants. Clustering analysis (K-means) showed that the expression of 29,249 genes can be grouped into 12 clusters with distinct expression dynamics under stress. Gene ontology (GO) enrichment analysis and transcription factor (TF) identification were performed on the clusters with certain expression patterns. Comparative analysis between the heat-treated and control plants also identified differentially expressed genes (DEGs), which showed the largest degree of change at 24 h. Interestingly, more DEGs were identified in the root than in the leaf. Moreover, we analyzed the gene expression of 25 heat shock factor genes (HSFs) in pepper after heat stress, identified five of these HSFs that responded to heat stress, and characterized the role of these genes in heat-tolerant (17CL30) and heat-susceptible (05S180) pepper lines. The findings of this study improve our understanding of the genome-wide heat stress response in pepper.
Collapse
Affiliation(s)
- Bingqian Tang
- College of Horticulture, Hunan Agricultural University, Changsha, China
- Longping Branch, Graduate School of Hunan University, Changsha, China
- ERC for Germplasm Innovation and New Variety, Breeding of Horticultural Crops, Changsha, China
- Key Laboratory for Vegetable Biology of Hunan Province, Changsha, China
| | - Xiumin Li
- Longping Branch, Graduate School of Hunan University, Changsha, China
| | - Xinhao Zhang
- College of Horticulture, Hunan Agricultural University, Changsha, China
| | - Qinbiao Yin
- College of Horticulture, Hunan Agricultural University, Changsha, China
| | - LingLing Xie
- Key Laboratory for Vegetable Biology of Hunan Province, Changsha, China
| | - Xuexiao Zou
- College of Horticulture, Hunan Agricultural University, Changsha, China
- Longping Branch, Graduate School of Hunan University, Changsha, China
- ERC for Germplasm Innovation and New Variety, Breeding of Horticultural Crops, Changsha, China
- Key Laboratory for Vegetable Biology of Hunan Province, Changsha, China
| | - Feng Liu
- College of Horticulture, Hunan Agricultural University, Changsha, China
- Longping Branch, Graduate School of Hunan University, Changsha, China
- ERC for Germplasm Innovation and New Variety, Breeding of Horticultural Crops, Changsha, China
- Key Laboratory for Vegetable Biology of Hunan Province, Changsha, China
| | - Xiongze Dai
- College of Horticulture, Hunan Agricultural University, Changsha, China
- ERC for Germplasm Innovation and New Variety, Breeding of Horticultural Crops, Changsha, China
- Key Laboratory for Vegetable Biology of Hunan Province, Changsha, China
| |
Collapse
|
14
|
The heat stress transcription factor family in Aegilops tauschii: genome-wide identification and expression analysis under various abiotic stresses and light conditions. Mol Genet Genomics 2022; 297:1689-1709. [DOI: 10.1007/s00438-022-01952-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 09/03/2022] [Indexed: 10/14/2022]
|
15
|
Meng X, Zhao B, Li M, Liu R, Ren Q, Li G, Guo X. Characteristics and Regulating Roles of Wheat TaHsfA2-13 in Abiotic Stresses. FRONTIERS IN PLANT SCIENCE 2022; 13:922561. [PMID: 35832224 PMCID: PMC9271894 DOI: 10.3389/fpls.2022.922561] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
Heat shock transcription factor (Hsf) exists widely in eukaryotes and responds to various abiotic stresses by regulating the expression of downstream transcription factors, functional enzymes, and molecular chaperones. In this study, TaHsfA2-13, a heat shock transcription factor belonging to A2 subclass, was cloned from wheat (Triticum aestivum) and its function was analyzed. TaHsfA2-13 encodes a protein containing 368 amino acids and has the basic characteristics of Hsfs. Multiple sequence alignment analysis showed that TaHsfA2-13 protein had the highest similarity with TdHsfA2c-like protein from Triticum dicoccoides, which reached 100%. The analysis of tissue expression characteristics revealed that TaHsfA2-13 was highly expressed in root, shoot, and leaf during the seedling stage of wheat. The expression of TaHsfA2-13 could be upregulated by heat stress, low temperature, H2O2, mannitol, salinity and multiple phytohormones. The TaHsfA2-13 protein was located in the nucleus under the normal growth conditions and showed a transcriptional activation activity in yeast. Further studies found that overexpression of TaHsfA2-13 in Arabidopsis thaliana Col-0 or athsfa2 mutant results in improved tolerance to heat stress, H2O2, SA and mannitol by regulating the expression of multiple heat shock protein (Hsp) genes. In summary, our study identified TaHsfA2-13 from wheat, revealed its regulatory function in varieties of abiotic stresses, and will provide a new target gene to improve stress tolerance for wheat breeding.
Collapse
Affiliation(s)
- Xiangzhao Meng
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences/Plant Genetic Engineering Center of Hebei Province, Shijiazhuang, China
| | - Baihui Zhao
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences/Plant Genetic Engineering Center of Hebei Province, Shijiazhuang, China
- College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Mingyue Li
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences/Plant Genetic Engineering Center of Hebei Province, Shijiazhuang, China
- College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Ran Liu
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences/Plant Genetic Engineering Center of Hebei Province, Shijiazhuang, China
- College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Qianqian Ren
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences/Plant Genetic Engineering Center of Hebei Province, Shijiazhuang, China
- College of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, China
| | - Guoliang Li
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences/Plant Genetic Engineering Center of Hebei Province, Shijiazhuang, China
| | - Xiulin Guo
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences/Plant Genetic Engineering Center of Hebei Province, Shijiazhuang, China
| |
Collapse
|
16
|
Zhou Y, Wang Y, Xu F, Song C, Yang X, Zhang Z, Yi M, Ma N, Zhou X, He J. Small HSPs play an important role in crosstalk between HSF-HSP and ROS pathways in heat stress response through transcriptomic analysis in lilies (Lilium longiflorum). BMC PLANT BIOLOGY 2022; 22:202. [PMID: 35439940 PMCID: PMC9017035 DOI: 10.1186/s12870-022-03587-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 04/01/2022] [Indexed: 05/12/2023]
Abstract
BACKGROUND High temperature seriously limits the annual production of fresh cut lilies, which is one of the four major cut flowers in the global cut flower market. There were few transcriptomes focused on the gene expression of lilies under heat stress. In order to reveal the potential heat response patterns in bulbous plants and provide important genes for further genetic engineering techniques to improve thermotolerance of lily, RNA sequencing of lilies under heat treatments were conducted. RESULTS In this study, seedlings of Lilium longiflorum 'White Heaven' were heat-treated at 37 °C for different lengths of time (0 h, 0.5 h, 1 h, 3 h, 6 h, and 12 h with a 12 h-light/12 h-dark cycle). The leaves of these lily seedlings were immediately collected after heat treatments and quickly put into liquid nitrogen for RNA sequencing. 109,364,486-171,487,430 clean reads and 55,044 unigenes including 21,608 differentially expressed genes (DEGs) (fold change ≥2) were obtained after heat treatment. The number of DEGs increased sharply during the heat treatments of 0.5 h-1 h and 1 h-3 h compared to that of other periods. Genes of the heat stress transcription factor (HSF) family and the small heat shock proteins (small HSPs, also known as HSP20) family responded to heat stress early and quickly. Compared to that of the calcium signal and hormone pathways, DEGs of the HSF-HSP pathway and reactive oxygen species (ROS) pathway were significantly and highly induced. Moreover, they had the similar expression pattern in response to heat stress. Small HSPs family genes were the major components in the 50 most highly induced genes at each heat stress treatment and involved in ROS pathway in the rapid response to heat stress. Furthermore, the barley stripe mosaic virus induced gene silencing (BSMV-VIGS) of LlHsfA2 caused a significantly reduced thermotolerance phenotype in Lilium longiflorum 'White Heaven', meanwhile decreasing the expression of small HSPs family genes and increasing the ROS scavenging enzyme ascorbate peroxidase (APX) genes, indicating the potential interplay between these two pathways. CONCLUSIONS Based on our transcriptomic analysis, we provide a new finding that small HSPs play important roles in crosstalk between HSF-HSP and ROS pathways in heat stress response of lily, which also supply the groundwork for understanding the mechanism of heat stress in bulbous plants.
Collapse
Affiliation(s)
- Yunzhuan Zhou
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, College of Horticulture, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Yue Wang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, College of Horticulture, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Fuxiang Xu
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, College of Horticulture, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Cunxu Song
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, College of Horticulture, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Xi Yang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, College of Horticulture, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Zhao Zhang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, College of Horticulture, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Mingfang Yi
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, College of Horticulture, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Nan Ma
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, College of Horticulture, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Xiaofeng Zhou
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, College of Horticulture, China Agricultural University, Beijing, 100193, People's Republic of China.
| | - Junna He
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, College of Horticulture, China Agricultural University, Beijing, 100193, People's Republic of China.
| |
Collapse
|
17
|
Meena S, Samtani H, Khurana P. Elucidating the functional role of heat stress transcription factor A6b (TaHsfA6b) in linking heat stress response and the unfolded protein response in wheat. PLANT MOLECULAR BIOLOGY 2022; 108:621-634. [PMID: 35305221 DOI: 10.1007/s11103-022-01252-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 02/07/2022] [Indexed: 05/26/2023]
Abstract
TaHsfA6b-4D relocalizes intracellularly upon heat stress and play a significant role in linking the heat stress response to unfolded-protein response so as to maintain cellular homeostasis. Heat stress transcription factors (Hsfs) play a crucial role in protecting the plants against heat stress (HS). In case of wheat, TaHsfA6b-4D (earlier known as TaHsfA2d) has been identified as a seed preferential transcription factor and its role has been shown in various abiotic stresses such as heat, salt and drought stress. In the present study, a homeologue of TaHsfA6b gene (TaHsfA6b-4A) was identified and was found to be transcriptionally inactive but it localized to the nucleus. Interestingly, TaHsfA6b-4D localized to the endoplasmic reticulum-Golgi complex and peroxisomes under non-stress conditions, but was observed to accumulate in the nucleus upon HS. The expression of TaHsfA6b-4D was upregulated by dithiothreitol (DTT), which is a known ER stress inducer. Consistent with this, Arabidopsis transgenic plants overexpressing TaHsfA6b-4D performed better on DTT containing media, which further corroborated with the increased expression of ER stress marker genes in these transgenic plants in comparison to the wild type plants. Thus, these studies together suggest that TaHsfA6b-4D may relocalize intracellularly upon heat stress and may play a significant role in linking the unfolded-protein response with heat stress response so as to maintain protein homeostasis inside the cell under heat stress.
Collapse
Affiliation(s)
- Shaloo Meena
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Harsha Samtani
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Paramjit Khurana
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India.
| |
Collapse
|
18
|
Zhao D, Qi X, Zhang Y, Zhang R, Wang C, Sun T, Zheng J, Lu Y. Genome-wide analysis of the heat shock transcription factor gene family in Sorbus pohuashanensis (Hance) Hedl identifies potential candidates for resistance to abiotic stresses. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 175:68-80. [PMID: 35180530 DOI: 10.1016/j.plaphy.2022.02.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 01/13/2022] [Accepted: 02/08/2022] [Indexed: 06/14/2023]
Abstract
Heat shock transcription factors (Hsfs) are essential regulators of plant responses to abiotic stresses, growth, and development. However, all the Hsf family members have not been identified in Sorbus pohuashanensis. Therefore, the aim of this study was to identify the Hsf family members in S. pohuashanensis and examine their expression under abiotic stress conditions through the integration of gene structure, phylogenetic relationships, chromosome location, and expression patterns. Bioinformatics-based methods, identified 33 Hsfs in S. pohuashanensis. Phylogenetic analysis of Hsfs from S. pohuashanensis and other species revealed that they were more closely related to apples and white pears, followed by Populus trichocarpa, and most distantly related to Arabidopsis. Moreover, the Hsfs were clustered into three major groups: A, B, and C. Gene structure and conserved motif analysis revealed a high degree of conservation among members of the same class. Collinearity analysis revealed that segmental duplication played an essential role in increasing the size of the SpHsfs gene family in S. pohuashanensis. Additionally, several cis-acting elements associated with growth and development, hormone response, and stress were found in the promoter region of SpHsfs genes. Furthermore, expression analysis in various tissues of S. pohuashanensis showed that the genes were closely associated with heat, drought, salt stress, growth, and developmental processes. Overall, these results provide valuable information on the evolutionary relationships of the Hsf gene family. These genes stand as strong functional candidates for further studies on the resistance of S. pohuashanensis to abiotic stresses.
Collapse
Affiliation(s)
- Dongxue Zhao
- School of Landscape Architecture, Beijing University of Agriculture, Beijing, 102206, China
| | - Xiangyu Qi
- School of Landscape Architecture, Beijing University of Agriculture, Beijing, 102206, China
| | - Yan Zhang
- School of Landscape Architecture, Beijing University of Agriculture, Beijing, 102206, China
| | - Ruili Zhang
- School of Landscape Architecture, Beijing University of Agriculture, Beijing, 102206, China
| | - Cong Wang
- School of Landscape Architecture, Beijing University of Agriculture, Beijing, 102206, China
| | - Tianxu Sun
- Shandong Institute of Territorial and Spatial Planning, Jinan, Shandong Province, 250000, China
| | - Jian Zheng
- School of Landscape Architecture, Beijing University of Agriculture, Beijing, 102206, China.
| | - Yizeng Lu
- Shandong Provincial Center of Forest Tree Germplasm Resources, Jinan, Shandong Province, 250102, China.
| |
Collapse
|
19
|
HsfA7 coordinates the transition from mild to strong heat stress response by controlling the activity of the master regulator HsfA1a in tomato. Cell Rep 2022; 38:110224. [PMID: 35021091 DOI: 10.1016/j.celrep.2021.110224] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 08/18/2021] [Accepted: 12/15/2021] [Indexed: 11/21/2022] Open
Abstract
Plants respond to higher temperatures by the action of heat stress (HS) transcription factors (Hsfs), which control the onset, early response, and long-term acclimation to HS. Members of the HsfA1 subfamily, such as tomato HsfA1a, are the central regulators of HS response, and their activity is fine-tuned by other Hsfs. We identify tomato HsfA7 as capacitor of HsfA1a during the early HS response. Upon a mild temperature increase, HsfA7 is induced in an HsfA1a-dependent manner. The subsequent interaction of the two Hsfs prevents the stabilization of HsfA1a resulting in a negative feedback mechanism. Under prolonged or severe HS, HsfA1a and HsfA7 complexes stimulate the induction of genes required for thermotolerance. Therefore, HsfA7 exhibits a co-repressor mode at mild HS by regulating HsfA1a abundance to moderate the upregulation of HS-responsive genes. HsfA7 undergoes a temperature-dependent transition toward a co-activator of HsfA1a to enhance the acquired thermotolerance capacity of tomato plants.
Collapse
|
20
|
Liu L, Wang D, Zhang C, Liu H, Guo H, Cheng H, Liu E, Su X. The heat shock factor GhHSFA4a positively regulates cotton resistance to Verticillium dahliae. FRONTIERS IN PLANT SCIENCE 2022; 13:1050216. [PMID: 36407619 PMCID: PMC9669655 DOI: 10.3389/fpls.2022.1050216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 10/19/2022] [Indexed: 05/16/2023]
Abstract
Heat shock factors (HSFs) play a crucial role in the environmental stress responses of numerous plant species, including defense responses to pathogens; however, their role in cotton resistance to Verticillium dahliae remains unclear. We have previously identified several differentially expressed genes (DEGs) in Arabidopsis thaliana after inoculation with V. dahliae. Here, we discovered that GhHSFA4a in Gossypium hirsutum (cotton) after inoculation with V. dahliae shares a high identity with a DEG in A. thaliana in response to V. dahliae infection. Quantitative real-time PCR (qRT-PCR) analysis indicated that GhHSFA4a expression was rapidly induced by V. dahliae and ubiquitous in cotton roots, stems, and leaves. In a localization analysis using transient expression, GhHSFA4a was shown to be localized to the nucleus. Virus-induced gene silencing (VIGS) revealed that downregulation of GhHSFA4a significantly increased cotton susceptibility to V. dahliae. To investigate GhHSFA4a-mediated defense, 814 DEGs were identified between GhHSFA4a-silenced plants and controls using comparative RNA-seq analysis. The Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that DEGs were enriched in "flavonoid biosynthesis", "sesquiterpenoid and triterpenoid biosynthesis", "linoleic acid metabolism" and "alpha-linolenic acid metabolism". The expression levels of marker genes for these four pathways were triggered after inoculation with V. dahliae. Moreover, GhHSFA4a-overexpressing lines of A. thaliana displayed enhanced resistance against V. dahliae compared to that of the wild type. These results indicate that GhHSFA4a is involved in the synthesis of secondary metabolites and signal transduction, which are indispensable for innate immunity against V. dahliae in cotton.
Collapse
Affiliation(s)
- Lu Liu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Di Wang
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing, China
| | - Chao Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, College of Life Science, Hebei Agricultural University, Baoding, China
| | - Haiyang Liu
- Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Huiming Guo
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- Hainan Yazhou Bay Seed Lab, Sanya, China
| | - Hongmei Cheng
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- Hainan Yazhou Bay Seed Lab, Sanya, China
| | - Enliang Liu
- Institute of Grain Crops, Xinjiang Academy of Agricultural ScienceS, Urumqi, China
- *Correspondence: Xiaofeng Su, ; Enliang Liu,
| | - Xiaofeng Su
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- Hainan Yazhou Bay Seed Lab, Sanya, China
- *Correspondence: Xiaofeng Su, ; Enliang Liu,
| |
Collapse
|
21
|
Han SH, Kim JY, Lee JH, Park CM. Safeguarding genome integrity under heat stress in plants. JOURNAL OF EXPERIMENTAL BOTANY 2021:erab355. [PMID: 34343307 DOI: 10.1093/jxb/erab355] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Indexed: 06/13/2023]
Abstract
Heat stress adversely affects an array of molecular and cellular events in plant cells, such as denaturation of protein and lipid molecules and malformation of cellular membranes and cytoskeleton networks. Genome organization and DNA integrity are also disturbed under heat stress, and accordingly, plants have evolved sophisticated adaptive mechanisms that either protect their genomes from deleterious heat-induced damages or stimulate genome restoration responses. In particular, it is emerging that DNA damage responses are a critical defense process that underlies the acquirement of thermotolerance in plants, during which molecular players constituting the DNA repair machinery are rapidly activated. In recent years, thermotolerance genes that mediate the maintenance of genome integrity or trigger DNA repair responses have been functionally characterized in various plant species. Furthermore, accumulating evidence supports that genome integrity is safeguarded through multiple layers of thermoinduced protection routes in plant cells, including transcriptome adjustment, orchestration of RNA metabolism, protein homeostasis, and chromatin reorganization. In this review, we summarize topical progresses and research trends in understanding how plants cope with heat stress to secure genome intactness. We focus on molecular regulatory mechanisms by which plant genomes are secured against the DNA-damaging effects of heat stress and DNA damages are effectively repaired. We will also explore the practical interface between heat stress response and securing genome integrity in view of developing biotechnological ways of improving thermotolerance in crop species under global climate changes, a worldwide ecological concern in agriculture.
Collapse
Affiliation(s)
- Shin-Hee Han
- Department of Chemistry, Seoul National University, Seoul, Korea
| | - Jae Young Kim
- Department of Chemistry, Seoul National University, Seoul, Korea
| | - June-Hee Lee
- Department of Chemistry, Seoul National University, Seoul, Korea
| | - Chung-Mo Park
- Department of Chemistry, Seoul National University, Seoul, Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, Korea
| |
Collapse
|
22
|
Rabara RC, Msanne J, Basu S, Ferrer MC, Roychoudhury A. Coping with inclement weather conditions due to high temperature and water deficit in rice: An insight from genetic and biochemical perspectives. PHYSIOLOGIA PLANTARUM 2021; 172:487-504. [PMID: 33179306 DOI: 10.1111/ppl.13272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/13/2020] [Accepted: 11/06/2020] [Indexed: 06/11/2023]
Abstract
Climatic fluctuations, temperature extremes, and water scarcity are becoming increasingly unpredictable with the passage of time. Such environmental atrocities have been the scourge of agriculture over the ages, bringing with them poor harvests and threat of famine. Rice production, owing to its high-water requirement for cultivation, is highly vulnerable to the threat of changing climate, particularly prolonged drought and high temperature, individually or in combination. Amidst all the abiotic stresses, heat and drought are considered as the most important concurrent stressors, largely affecting rice yield and productivity under the current scenario. Such threats heighten the need for new breeding and cultivation strategies in generating abiotic stress-resilient rice varieties with better yield potential. Responses of rice to these stresses can be categorized at the morphological, physiological and biochemical levels. This review examines the physiological and molecular mechanism, in the form of up regulation of several defense machineries of rice varieties to cope with drought stress (DS), high temperature stress (HTS), and their combination (DS-HTS). Genotypic differences among rice varieties in their tolerance ability have also been addressed. The review also appraises research studies conducted in rice regarding various phenotypic traits, genetic loci and response mechanisms to stress conditions to help craft new breeding strategies for improved tolerance to DS and HTS, singly or in combination. The review also encompasses the gene regulatory networks and transcription factors, and their cross-talks in mediating tolerance to such stresses. Understanding the epigenetic regulation, involving DNA methylation and histone modification during such hostile situations, will also play a crucial role in our comprehensive understanding of combinatorial stress responses. Taken together, this review consolidates current research and available information on promising rice cultivars with desirable traits as well as advocates synergistic and complementary approaches in molecular and systems biology to develop new rice breeds that favorably respond to DS-HTS-induced abiotic stress.
Collapse
Affiliation(s)
- Roel C Rabara
- Department of Biology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Joseph Msanne
- New Mexico Consortium, Los Alamos, NM, New Mexico, United States of America
| | - Supratim Basu
- New Mexico Consortium, Los Alamos, NM, New Mexico, United States of America
| | - Marilyn C Ferrer
- Genetic Resources Division, Philippine Rice Research Institute, Science City of Muñoz, Nueva Ecija, Philippines
| | - Aryadeep Roychoudhury
- Department of Biotechnology, St. Xavier's College (Autonomous), Kolkata, West Bengal, India
| |
Collapse
|
23
|
Wang L, Liu Y, Chai M, Chen H, Aslam M, Niu X, Qin Y, Cai H. Genome-wide identification, classification, and expression analysis of the HSF gene family in pineapple ( Ananas comosus). PeerJ 2021; 9:e11329. [PMID: 33987013 PMCID: PMC8086565 DOI: 10.7717/peerj.11329] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/31/2021] [Indexed: 11/28/2022] Open
Abstract
Transcription factors (TFs), such as heat shock transcription factors (HSFs), usually play critical regulatory functions in plant development, growth, and response to environmental cues. However, no HSFs have been characterized in pineapple thus far. Here, we identified 22 AcHSF genes from the pineapple genome. Gene structure, motifs, and phylogenetic analysis showed that AcHSF families were distinctly grouped into three subfamilies (12 in Group A, seven in Group B, and four in Group C). The AcHSF promoters contained various cis-elements associated with stress, hormones, and plant development processes, for instance, STRE, WRKY, and ABRE binding sites. The majority of HSFs were expressed in diverse pineapple tissues and developmental stages. The expression of AcHSF-B4b/AcHSF-B4c and AcHSF-A7b/AcHSF-A1c were enriched in the ovules and fruits, respectively. Six genes (AcHSF-A1a , AcHSF-A2, AcHSF-A9a, AcHSF-B1a, AcHSF-B2a, and AcHSF-C1a) were transcriptionally modified by cold, heat, and ABA. Our results provide an overview and lay the foundation for future functional characterization of the pineapple HSF gene family.
Collapse
Affiliation(s)
- Lulu Wang
- State Key Lab of Ecological Pest Control for Fujian and Taiwan Crops; Key Lab of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education; Fujian Provincial Key Lab of Haixia Applied Plant Systems Biology, College of Life Sciences, Fuji, Fuzhou, Fujian, China
| | - Yanhui Liu
- State Key Lab of Ecological Pest Control for Fujian and Taiwan Crops; Key Lab of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education; Fujian Provincial Key Lab of Haixia Applied Plant Systems Biology, College of Life Sciences, Fuji, Fuzhou, Fujian, China
| | - Mengnan Chai
- State Key Lab of Ecological Pest Control for Fujian and Taiwan Crops; Key Lab of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education; Fujian Provincial Key Lab of Haixia Applied Plant Systems Biology, College of Life Sciences, Fuji, Fuzhou, Fujian, China
| | - Huihuang Chen
- State Key Lab of Ecological Pest Control for Fujian and Taiwan Crops; Key Lab of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education; Fujian Provincial Key Lab of Haixia Applied Plant Systems Biology, College of Life Sciences, Fuji, Fuzhou, Fujian, China
| | - Mohammad Aslam
- State Key Lab of Ecological Pest Control for Fujian and Taiwan Crops; Key Lab of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education; Fujian Provincial Key Lab of Haixia Applied Plant Systems Biology, College of Life Sciences, Fuji, Fuzhou, Fujian, China
| | - Xiaoping Niu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Lab of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, Guangxi, China
| | - Yuan Qin
- State Key Lab of Ecological Pest Control for Fujian and Taiwan Crops; Key Lab of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education; Fujian Provincial Key Lab of Haixia Applied Plant Systems Biology, College of Life Sciences, Fuji, Fuzhou, Fujian, China.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Lab of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, Guangxi, China
| | - Hanyang Cai
- State Key Lab of Ecological Pest Control for Fujian and Taiwan Crops; Key Lab of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education; Fujian Provincial Key Lab of Haixia Applied Plant Systems Biology, College of Life Sciences, Fuji, Fuzhou, Fujian, China
| |
Collapse
|
24
|
Rehman A, Atif RM, Azhar MT, Peng Z, Li H, Qin G, Jia Y, Pan Z, He S, Qayyum A, Du X. Genome wide identification, classification and functional characterization of heat shock transcription factors in cultivated and ancestral cottons (Gossypium spp.). Int J Biol Macromol 2021; 182:1507-1527. [PMID: 33965497 DOI: 10.1016/j.ijbiomac.2021.05.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 04/30/2021] [Accepted: 05/03/2021] [Indexed: 11/30/2022]
Abstract
Heat shock transcription factors (HSF) have been demonstrated to play a significant transcriptional regulatory role in plants and considered as an integral part of signal transduction pathways against environmental stresses especially heat stress. Despite of their importance, HSFs have not yet been identified and characterized in all cotton species. In this study, we report the identification of 42, 39, 67, and 79 non-redundant HSF genes from diploid cottons G. arboreum (A2) and G. raimondii (D5), and tetraploid cottons G. barbadense (AD2) and G. hirsutum (AD1) respectively. The chromosome localization of identified HSFs revealed their random distribution on all the 13 chromosomes of A and D genomes of cotton with few regions containing HSFs in clusters. The genes structure and conserved domain analysis revealed the family-specific conservation of intron/exon organization and conserved domains in HSFs. Various abiotic stress-related cis-regulatory elements were identified from the putative promoter regions of cotton HSFs suggesting their possible role in mediating abiotic stress tolerance. The combined phylogenetic analysis of all the cotton HSFs grouped them into three subfamilies; with 145 HSFs belong to class A, 85 to class B, and 17 to class C subfamily. Moreover, a detailed analysis of HSF gene family in four species of cotton elucidated the role of allopolyploid and hybridization during evolutionary cascade of allotetraploid cotton. Comparatively, existence of more orthologous genes in cotton species than Arabidopsis, advocated that polyploidization produced new cotton specific orthologous gene clusters. Phylogenetic, collinearity and multiple synteny analyses exhibited dispersed, segmental, proximal, and tandem gene duplication events in HSF gene family. Duplication of gene events suggests that HSF gene family of cotton evolution was under strong purifying selection. Expression analysis revealed that GarHSF04 were found to be actively involved in PEG and salinity tolerance in G. arboreum. GhiHSF14 upregulated in heat and downregulated in salinity whilst almost illustrated similar behavior under cold and PEG treatments and GhiHSF21 exhibited down regulation almost across all the stresses in G. hirsutum. Overwhelmingly, present study paves the way to better understand the evolution of cotton HSF TFs and lays a foundation for future investigation of HSFs in improving abiotic stress tolerance in cotton.
Collapse
Affiliation(s)
- Abdul Rehman
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450000, China; State Key Laboratory of Cotton Biology, Institute of Cotton Research Chinese Academy of Agricultural Science, Anyang 455000, Henan, China; Department of Plant Breeding and Genetics, Bahauddin Zakariya university, Multan 60800, Pakistan
| | - Rana Muhammad Atif
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad 38040, Pakistan; Center of Advanced Studies in Agriculture & Food Security, University of Agriculture, Faisalabad 38040, Pakistan.
| | - Muhammad Tehseen Azhar
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450000, China; Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Zhen Peng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research Chinese Academy of Agricultural Science, Anyang 455000, Henan, China
| | - Hongge Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research Chinese Academy of Agricultural Science, Anyang 455000, Henan, China
| | - Guangyong Qin
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450000, China
| | - Yinhua Jia
- State Key Laboratory of Cotton Biology, Institute of Cotton Research Chinese Academy of Agricultural Science, Anyang 455000, Henan, China
| | - Zhaoe Pan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research Chinese Academy of Agricultural Science, Anyang 455000, Henan, China
| | - Shoupu He
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450000, China; State Key Laboratory of Cotton Biology, Institute of Cotton Research Chinese Academy of Agricultural Science, Anyang 455000, Henan, China
| | - Abdul Qayyum
- Department of Plant Breeding and Genetics, Bahauddin Zakariya university, Multan 60800, Pakistan
| | - Xiongming Du
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450000, China; State Key Laboratory of Cotton Biology, Institute of Cotton Research Chinese Academy of Agricultural Science, Anyang 455000, Henan, China.
| |
Collapse
|
25
|
Andrási N, Pettkó-Szandtner A, Szabados L. Diversity of plant heat shock factors: regulation, interactions, and functions. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:1558-1575. [PMID: 33277993 DOI: 10.1093/jxb/eraa576] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 12/03/2020] [Indexed: 05/24/2023]
Abstract
Plants heat shock factors (HSFs) are encoded by large gene families with variable structure, expression, and function. HSFs are components of complex signaling systems that control responses not only to high temperatures but also to a number of abiotic stresses such as cold, drought, hypoxic conditions, soil salinity, toxic minerals, strong irradiation, and to pathogen threats. Here we provide an overview of the diverse world of plant HSFs through compilation and analysis of their functional versatility, diverse regulation, and interactions. Bioinformatic data on gene expression profiles of Arabidopsis HSF genes were re-analyzed to reveal their characteristic transcript patterns. While HSFs are regulated primarily at the transcript level, alternative splicing and post-translational modifications such as phosphorylation and sumoylation provides further variability. Plant HSFs are involved in an intricate web of protein-protein interactions which adds considerable complexity to their biological function. A list of such interactions was compiled from public databases and published data, and discussed to pinpoint their relevance in transcription control. Although most fundamental studies of plant HSFs have been conducted in the model plant, Arabidopsis, information on HSFs is accumulating in other plants such as tomato, rice, wheat, and sunflower. Understanding the function, interactions, and regulation of HSFs will facilitate the design of novel strategies to use engineered proteins to improve tolerance and adaptation of crops to adverse environmental conditions.
Collapse
Affiliation(s)
- Norbert Andrási
- Institute of Plant Biology, Biological Research Centre, Temesvári krt., Szeged, Hungary
| | | | - László Szabados
- Institute of Plant Biology, Biological Research Centre, Temesvári krt., Szeged, Hungary
| |
Collapse
|
26
|
Tian F, Hu XL, Yao T, Yang X, Chen JG, Lu MZ, Zhang J. Recent Advances in the Roles of HSFs and HSPs in Heat Stress Response in Woody Plants. FRONTIERS IN PLANT SCIENCE 2021; 12:704905. [PMID: 34305991 PMCID: PMC8299100 DOI: 10.3389/fpls.2021.704905] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 06/07/2021] [Indexed: 05/08/2023]
Abstract
A continuous increase in ambient temperature caused by global warming has been considered a worldwide threat. As sessile organisms, plants have evolved sophisticated heat shock response (HSR) to respond to elevated temperatures and other abiotic stresses, thereby minimizing damage and ensuring the protection of cellular homeostasis. In particular, for perennial trees, HSR is crucial for their long life cycle and development. HSR is a cell stress response that increases the number of chaperones including heat shock proteins (HSPs) to counter the negative effects on proteins caused by heat and other stresses. There are a large number of HSPs in plants, and their expression is directly regulated by a series of heat shock transcription factors (HSFs). Therefore, understanding the detailed molecular mechanisms of woody plants in response to extreme temperature is critical for exploring how woody species will be affected by climate changes. In this review article, we summarize the latest findings of the role of HSFs and HSPs in the HSR of woody species and discuss their regulatory networks and cross talk in HSR. In addition, strategies and programs for future research studies on the functions of HSFs and HSPs in the HSR of woody species are also proposed.
Collapse
Affiliation(s)
- Fengxia Tian
- College of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang, China
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Xiao-Li Hu
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Tao Yao
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Xiaohan Yang
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Jin-Gui Chen
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Meng-Zhu Lu
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Jin Zhang
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
- *Correspondence: Jin Zhang ; orcid.org/0000-0002-8397-5078
| |
Collapse
|
27
|
Rosenkranz RRE, Bachiri S, Vraggalas S, Keller M, Simm S, Schleiff E, Fragkostefanakis S. Identification and Regulation of Tomato Serine/Arginine-Rich Proteins Under High Temperatures. FRONTIERS IN PLANT SCIENCE 2021; 12:645689. [PMID: 33854522 PMCID: PMC8039515 DOI: 10.3389/fpls.2021.645689] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/03/2021] [Indexed: 05/15/2023]
Abstract
Alternative splicing is an important mechanism for the regulation of gene expression in eukaryotes during development, cell differentiation or stress response. Alterations in the splicing profiles of genes under high temperatures that cause heat stress (HS) can impact the maintenance of cellular homeostasis and thermotolerance. Consequently, information on factors involved in HS-sensitive alternative splicing is required to formulate the principles of HS response. Serine/arginine-rich (SR) proteins have a central role in alternative splicing. We aimed for the identification and characterization of SR-coding genes in tomato (Solanum lycopersicum), a plant extensively used in HS studies. We identified 17 canonical SR and two SR-like genes. Several SR-coding genes show differential expression and altered splicing profiles in different organs as well as in response to HS. The transcriptional induction of five SR and one SR-like genes is partially dependent on the master regulator of HS response, HS transcription factor HsfA1a. Cis-elements in the promoters of these SR genes were predicted, which can be putatively recognized by HS-induced transcription factors. Further, transiently expressed SRs show reduced or steady-state protein levels in response to HS. Thus, the levels of SRs under HS are regulated by changes in transcription, alternative splicing and protein stability. We propose that the accumulation or reduction of SRs under HS can impact temperature-sensitive alternative splicing.
Collapse
Affiliation(s)
- Remus R. E. Rosenkranz
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, Frankfurt am Main, Germany
| | - Samia Bachiri
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, Frankfurt am Main, Germany
| | - Stavros Vraggalas
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, Frankfurt am Main, Germany
| | - Mario Keller
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, Frankfurt am Main, Germany
- Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt am Main, Germany
| | - Stefan Simm
- Institute of Bioinformatics, University Medicine Greifswald, Greifswald, Germany
| | - Enrico Schleiff
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, Frankfurt am Main, Germany
- Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt am Main, Germany
- Frankfurt Institute of Advanced Studies, Frankfurt am Main, Germany
- *Correspondence: Enrico Schleiff
| | - Sotirios Fragkostefanakis
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, Frankfurt am Main, Germany
- Sotirios Fragkostefanakis
| |
Collapse
|
28
|
Wang N, Liu W, Yu L, Guo Z, Chen Z, Jiang S, Xu H, Fang H, Wang Y, Zhang Z, Chen X. HEAT SHOCK FACTOR A8a Modulates Flavonoid Synthesis and Drought Tolerance. PLANT PHYSIOLOGY 2020; 184:1273-1290. [PMID: 32958560 PMCID: PMC7608180 DOI: 10.1104/pp.20.01106] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 09/13/2020] [Indexed: 05/19/2023]
Abstract
Drought is an important environmental factor affecting the growth and production of agricultural crops and fruits worldwide, including apple (Malus domestica). Heat shock factors (HSFs) have well-documented functions in stress responses, but their roles in flavonoid synthesis and the flavonoid-mediated drought response mechanism remain elusive. In this study, we demonstrated that a drought-responsive HSF, designated MdHSFA8a, promotes the accumulation of flavonoids, scavenging of reactive oxygen species, and plant survival under drought conditions. A chaperone, HEAT SHOCK PROTEIN90 (HSP90), interacted with MdHSFA8a to inhibit its binding activity and transcriptional activation. However, under drought stress, the MdHSP90-MdHSFA8a complex dissociated and the released MdHSFA8a further interacted with the APETALA2/ETHYLENE RESPONSIVE FACTOR family transcription factor RELATED TO AP2.12 to activate downstream gene activity. In addition, we demonstrated that MdHSFA8a participates in abscisic acid-induced stomatal closure and promotes the expression of abscisic acid signaling-related genes. Collectively, these findings provide insight into the mechanism by which stress-inducible MdHSFA8a modulates flavonoid synthesis to regulate drought tolerance.
Collapse
Affiliation(s)
- Nan Wang
- State Key Laboratory of Crop Biology, College of Horticulture Sciences, Shandong Agricultural University, 271018 Tai'an, Shandong, China
| | - Wenjun Liu
- State Key Laboratory of Crop Biology, College of Horticulture Sciences, Shandong Agricultural University, 271018 Tai'an, Shandong, China
| | - Lei Yu
- State Key Laboratory of Crop Biology, College of Horticulture Sciences, Shandong Agricultural University, 271018 Tai'an, Shandong, China
| | - Zhangwen Guo
- State Key Laboratory of Crop Biology, College of Horticulture Sciences, Shandong Agricultural University, 271018 Tai'an, Shandong, China
| | - Zijing Chen
- State Key Laboratory of Crop Biology, College of Horticulture Sciences, Shandong Agricultural University, 271018 Tai'an, Shandong, China
| | - Shenghui Jiang
- State Key Laboratory of Crop Biology, College of Horticulture Sciences, Shandong Agricultural University, 271018 Tai'an, Shandong, China
| | - Haifeng Xu
- State Key Laboratory of Crop Biology, College of Horticulture Sciences, Shandong Agricultural University, 271018 Tai'an, Shandong, China
| | - Hongcheng Fang
- State Forestry and Grassland Administration Key Laboratory of Silviculture in the Downstream Areas of the Yellow River, College of Forestry, Shandong Agricultural University, 271018 Tai'an, Shandong, China
| | - Yicheng Wang
- State Key Laboratory of Crop Biology, College of Horticulture Sciences, Shandong Agricultural University, 271018 Tai'an, Shandong, China
| | - Zongying Zhang
- State Key Laboratory of Crop Biology, College of Horticulture Sciences, Shandong Agricultural University, 271018 Tai'an, Shandong, China
| | - Xuesen Chen
- State Key Laboratory of Crop Biology, College of Horticulture Sciences, Shandong Agricultural University, 271018 Tai'an, Shandong, China
| |
Collapse
|
29
|
Revisiting the Concept of Stress in the Prognosis of Solid Tumors: A Role for Stress Granules Proteins? Cancers (Basel) 2020; 12:cancers12092470. [PMID: 32882814 PMCID: PMC7564653 DOI: 10.3390/cancers12092470] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 08/27/2020] [Accepted: 08/28/2020] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Stress Granules (SGs) were discovered in 1999 and while the first decade of research has focused on some fundamental questions, the field is now investigating their role in human pathogenesis. Since then, evidences of a link between SGs and cancerology are accumulating in vitro and in vivo. In this work we summarized the role of SGs proteins in cancer development and their prognostic values. We find that level of expression of protein involved in SGs formation (and not mRNA level) could serve a prognostic marker in cancer. With this review we strongly suggest that SGs (proteins) could be targets of choice to block cancer development and counteract resistance to improve patients care. Abstract Cancer treatments are constantly evolving with new approaches to improve patient outcomes. Despite progresses, too many patients remain refractory to treatment due to either the development of resistance to therapeutic drugs and/or metastasis occurrence. Growing evidence suggests that these two barriers are due to transient survival mechanisms that are similar to those observed during stress response. We review the literature and current available open databases to study the potential role of stress response and, most particularly, the involvement of Stress Granules (proteins) in cancer. We propose that Stress Granule proteins may have prognostic value for patients.
Collapse
|
30
|
Guo XL, Yuan SN, Zhang HN, Zhang YY, Zhang YJ, Wang GY, Li YQ, Li GL. Heat-response patterns of the heat shock transcription factor family in advanced development stages of wheat (Triticum aestivum L.) and thermotolerance-regulation by TaHsfA2-10. BMC PLANT BIOLOGY 2020; 20:364. [PMID: 32746866 PMCID: PMC7397617 DOI: 10.1186/s12870-020-02555-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 07/19/2020] [Indexed: 05/26/2023]
Abstract
BACKGROUND Heat shock transcription factors (Hsfs) are present in majority of plants and play central roles in thermotolerance, transgenerational thermomemory, and many other stress responses. Our previous paper identified at least 82 Hsf members in a genome-wide study on wheat (Triticum aestivum L.). In this study, we analyzed the Hsf expression profiles in the advanced development stages of wheat, isolated the markedly heat-responsive gene TaHsfA2-10 (GenBank accession number MK922287), and characterized this gene and its role in thermotolerance regulation in seedlings of Arabidopsis thaliana (L. Heynh.). RESULTS In the advanced development stages, wheat Hsf family transcription profiles exhibit different expression patterns and varying heat-responses in leaves and roots, and Hsfs are constitutively expressed to different degrees under the normal growth conditions. Overall, the majority of group A and B Hsfs are expressed in leaves while group C Hsfs are expressed at higher levels in roots. The expression of a few Hsf genes could not be detected. Heat shock (HS) caused upregulation about a quarter of genes in leaves and roots, while a number of genes were downregulated in response to HS. The highly heat-responsive gene TaHsfA2-10 was isolated through homeologous cloning. qRT-PCR revealed that TaHsfA2-10 is expressed in a wide range of tissues and organs of different development stages of wheat under the normal growth conditions. Compared to non-stress treatment, TaHsfA2-10 was highly upregulated in response to HS, H2O2, and salicylic acid (SA), and was downregulated by abscisic acid (ABA) treatment in two-leaf-old seedlings. Transient transfection of tobacco epidermal cells revealed subcellular localization of TaHsfA2-10 in the nucleus under the normal growth conditions. Phenotypic observation indicated that TaHsfA2-10 could improve both basal thermotolerance and acquired thermotolerance of transgenic Arabidopsis thaliana seedlings and rescue the thermotolerance defect of the T-DNA insertion mutant athsfa2 during HS. Compared to wild type (WT) seedlings, the TaHsfA2-10-overexpressing lines displayed both higher chlorophyll contents and higher survival rates. Yeast one-hybrid assay results revealed that TaHsfA2-10 had transactivation activity. The expression levels of thermotolerance-related AtHsps in the TaHsfA2-10 transgeinc Arabidopsis thaliana were higher than those in WT after HS. CONCLUSIONS Wheat Hsf family members exhibit diversification and specificity of transcription expression patterns in advanced development stages under the normal conditions and after HS. As a markedly responsive transcriptional factor to HS, SA and H2O2, TaHsfA2-10 involves in thermotolerance regulation of plants through binding to the HS responsive element in promoter domain of relative Hsps and upregulating the expression of Hsp genes.
Collapse
Affiliation(s)
- Xiu-lin Guo
- Institute of Genetics and Physiology, Hebei Academy of Agriculture and Forestry Sciences / Plant Genetic Engineering Center of Hebei Province, No. 598, Heping West Street, Shijiazhuang, 050051 PR China
| | - Sai-nan Yuan
- Institute of Genetics and Physiology, Hebei Academy of Agriculture and Forestry Sciences / Plant Genetic Engineering Center of Hebei Province, No. 598, Heping West Street, Shijiazhuang, 050051 PR China
- College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024 PR China
| | - Hua-ning Zhang
- Institute of Genetics and Physiology, Hebei Academy of Agriculture and Forestry Sciences / Plant Genetic Engineering Center of Hebei Province, No. 598, Heping West Street, Shijiazhuang, 050051 PR China
| | - Yuan-yuan Zhang
- Institute of Genetics and Physiology, Hebei Academy of Agriculture and Forestry Sciences / Plant Genetic Engineering Center of Hebei Province, No. 598, Heping West Street, Shijiazhuang, 050051 PR China
- College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024 PR China
| | - Yu-jie Zhang
- Institute of Genetics and Physiology, Hebei Academy of Agriculture and Forestry Sciences / Plant Genetic Engineering Center of Hebei Province, No. 598, Heping West Street, Shijiazhuang, 050051 PR China
| | - Gui-yan Wang
- Faculty of Agronomy, Hebei Agricultural University, No. 2596, Lekai South Street, Baoding, 071001 PR China
| | - Ya-qing Li
- Shijiazhuang Academy of Agriculture and Forestry Science, No. 479, Shengli North Street, Shijiazhuang, 050000 PR China
| | - Guo-liang Li
- Institute of Genetics and Physiology, Hebei Academy of Agriculture and Forestry Sciences / Plant Genetic Engineering Center of Hebei Province, No. 598, Heping West Street, Shijiazhuang, 050051 PR China
| |
Collapse
|
31
|
Lawrence R, Kaplinsky N. Arabidopsis Heat Shock Granules exhibit dynamic cellular behavior and can form in response to protein misfolding in the absence of elevated temperatures. MICROPUBLICATION BIOLOGY 2020; 2020:10.17912/micropub.biology.000285. [PMID: 32760882 PMCID: PMC7396158 DOI: 10.17912/micropub.biology.000285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
| | - Nick Kaplinsky
- Swarthmore College,
Correspondence to: Nick Kaplinsky ()
| |
Collapse
|
32
|
Wang J, Hu H, Wang W, Wei Q, Hu T, Bao C. Genome-Wide Identification and Functional Characterization of the Heat Shock Factor Family in Eggplant ( Solanum melongena L.) under Abiotic Stress Conditions. PLANTS 2020; 9:plants9070915. [PMID: 32698415 PMCID: PMC7412109 DOI: 10.3390/plants9070915] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 01/10/2023]
Abstract
Plant heat shock factors (Hsfs) play crucial roles in various environmental stress responses. Eggplant (Solanum melongena L.) is an agronomically important and thermophilic vegetable grown worldwide. Although the functions of Hsfs under environmental stress conditions have been characterized in the model plant Arabidopsis thaliana and tomato, their roles in responding to various stresses remain unclear in eggplant. Therefore, we characterized the eggplant SmeHsf family and surveyed expression profiles mediated by the SmeHsfs under various stress conditions. Here, using reported Hsfs from other species as queries to search SmeHsfs in the eggplant genome and confirming the typical conserved domains, we identified 20 SmeHsf genes. The SmeHsfs were further classified into 14 subgroups on the basis of their structure. Additionally, quantitative real-time PCR revealed that SmeHsfs responded to four stresses—cold, heat, salinity and drought—which indicated that SmeHsfs play crucial roles in improving tolerance to various abiotic stresses. The expression pattern of SmeHsfA6b exhibited the most immediate response to the various environmental stresses, except drought. The genome-wide identification and abiotic stress-responsive expression pattern analysis provide clues for further analysis of the roles and regulatory mechanism of SmeHsfs under environmental stresses.
Collapse
|
33
|
Khan A, Khan AL, Imran M, Asaf S, Kim YH, Bilal S, Numan M, Al-Harrasi A, Al-Rawahi A, Lee IJ. Silicon-induced thermotolerance in Solanum lycopersicum L. via activation of antioxidant system, heat shock proteins, and endogenous phytohormones. BMC PLANT BIOLOGY 2020; 20:248. [PMID: 32493420 PMCID: PMC7268409 DOI: 10.1186/s12870-020-02456-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 05/21/2020] [Indexed: 05/08/2023]
Abstract
BACKGROUND Abiotic stresses (e.g., heat or limited water and nutrient availability) limit crop production worldwide. With the progression of climate change, the severity and variation of these stresses are expected to increase. Exogenous silicon (Si) has shown beneficial effects on plant growth; however, its role in combating the negative effects of heat stress and their underlying molecular dynamics are not fully understood. RESULTS Exogenous Si significantly mitigated the adverse impact of heat stress by improving tomato plant biomass, photosynthetic pigments, and relative water content. Si induced stress tolerance by decreasing the concentrations of superoxide anions and malondialdehyde, as well as mitigating oxidative stress by increasing the gene expression for antioxidant enzymes (peroxidases, catalases, ascorbate peroxidases, superoxide dismutases, and glutathione reductases) under stress conditions. This was attributed to increased Si uptake in the shoots via the upregulation of low silicon (SlLsi1 and SlLsi2) gene expression under heat stress. Interestingly, Si stimulated the expression and transcript accumulation of heat shock proteins by upregulating heat transcription factors (Hsfs) such as SlHsfA1a-b, SlHsfA2-A3, and SlHsfA7 in tomato plants under heat stress. On the other hand, defense and stress signaling-related endogenous phytohormones (salicylic acid [SA]/abscisic acid [ABA]) exhibited a decrease in their concentration and biosynthesis following Si application. Additionally, the mRNA and gene expression levels for SA (SlR1b1, SlPR-P2, SlICS, and SlPAL) and ABA (SlNCEDI) were downregulated after exposure to stress conditions. CONCLUSION Si treatment resulted in greater tolerance to abiotic stress conditions, exhibiting higher plant growth dynamics and molecular physiology by regulating the antioxidant defense system, SA/ABA signaling, and Hsfs during heat stress.
Collapse
Affiliation(s)
- Adil Khan
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa, 616, Oman
| | - Abdul Latif Khan
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa, 616, Oman.
| | - Muhammad Imran
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, South Korea
| | - Sajjad Asaf
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa, 616, Oman
| | - Yoon-Ha Kim
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, South Korea
| | - Saqib Bilal
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa, 616, Oman
| | - Muhammad Numan
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa, 616, Oman
| | - Ahmed Al-Harrasi
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa, 616, Oman.
| | - Ahmed Al-Rawahi
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa, 616, Oman
| | - In-Jung Lee
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, South Korea
| |
Collapse
|
34
|
Zhang H, Li G, Fu C, Duan S, Hu D, Guo X. Genome-wide identification, transcriptome analysis and alternative splicing events of Hsf family genes in maize. Sci Rep 2020; 10:8073. [PMID: 32415117 PMCID: PMC7229205 DOI: 10.1038/s41598-020-65068-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 04/26/2020] [Indexed: 12/13/2022] Open
Abstract
Heat shock transcription factor (Hsf) plays a transcriptional regulatory role in plants during heat stress and other abiotic stresses. 31 non-redundant ZmHsf genes from maize were identified and clustered in the reference genome sequenced by Single Molecule Real Time (SMRT). The amino acid length, chromosome location, and presence of functional domains and motifs of all ZmHsfs sequences were analyzed and determined. Phylogenetics and collinearity analyses reveal gene duplication events in Hsf family and collinearity blocks shared by maize, rice and sorghum. The results of RNA-Seq analysis of anthesis and post-anthesis periods in maize show different expression patterns of ZmHsf family members. Specially, ZmHsf26 of A2 subclass and ZmHsf23 of A6 subclass were distinctly up-regulated after heat shock (HS) at post-anthesis stage. Nanopore transcriptome sequencing of maize seedlings showed that alternative splicing (AS) events occur in ZmHsf04 and ZmHsf17 which belong to subclass A2 after heat shock. Through sequence alignment, semi-quantitative and quantitative RT-PCR, we found that intron retention events occur in response to heat shock, and newly splice isoforms, ZmHsf04-II and ZmHsf17-II, were transcribed. Both new isoforms contain several premature termination codons in their introns which may lead to early termination of translation. The ZmHsf04 expression was highly increased than that of ZmHsf17, and the up-regulation of ZmHsf04-I transcription level were significantly higher than that of ZmHsf04-II after HS.
Collapse
Affiliation(s)
- Huaning Zhang
- Plant Genetic Engineering Center of Hebei Province/Institute of Genetics and Physiology, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, 050051, P.R. China
| | - Guoliang Li
- Plant Genetic Engineering Center of Hebei Province/Institute of Genetics and Physiology, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, 050051, P.R. China
| | - Cai Fu
- Plant Genetic Engineering Center of Hebei Province/Institute of Genetics and Physiology, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, 050051, P.R. China
| | - Shuonan Duan
- Plant Genetic Engineering Center of Hebei Province/Institute of Genetics and Physiology, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, 050051, P.R. China
| | - Dong Hu
- Plant Genetic Engineering Center of Hebei Province/Institute of Genetics and Physiology, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, 050051, P.R. China.
| | - Xiulin Guo
- Plant Genetic Engineering Center of Hebei Province/Institute of Genetics and Physiology, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, 050051, P.R. China.
| |
Collapse
|
35
|
Wang X, Zhang H, Xie Q, Liu Y, Lv H, Bai R, Ma R, Li X, Zhang X, Guo YD, Zhang N. SlSNAT Interacts with HSP40, a Molecular Chaperone, to Regulate Melatonin Biosynthesis and Promote Thermotolerance in Tomato. PLANT & CELL PHYSIOLOGY 2020; 61:909-921. [PMID: 32065633 DOI: 10.1093/pcp/pcaa018] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 02/10/2020] [Indexed: 05/22/2023]
Abstract
The SNAT enzyme participates in the biosynthesis of melatonin, which is reported to regulate thermotolerance in many plants. However, the mechanistic basis of this regulation remains unclear. In this study, we identified the SlSNAT gene, which is responsible for melatonin biosynthesis in tomato. SlSNAT expression levels were 3- and 5-fold higher in SlSNAT overexpression lines OX-2 and OX-6, respectively. The melatonin levels were 3- and 4-fold higher than those in wild type. The melatonin levels decreased by 50% when the expression of SlSNAT was downregulated to 40%. Overexpression of SlSNAT in tomato plants provided significantly enhanced thermotolerance with better growth performance in Photosystem II (PSII) maximum photochemical quantum yield (Fv/Fm) and alleviated heat injury. Both exogenous melatonin treatment and endogenous melatonin manipulation by SlSNAT overexpression decreased the levels of reactive oxygen species�accumulation and Fv/Fm. The SlSNAT overexpression line showed protected ribulose bisphosphate carboxylase oxygenase proteins and upregulated response of heat transcription factors and heat shock proteins under heat stress. HSP40, a DnaJ-type chaperone, was found to interact with SlSNAT in the chloroplast. Downregulation of HSP40 showed lower melatonin synthesis under heat stress. HSP40 functions as a chaperone to protect the SNAT enzyme during melatonin synthesis under heat stress. HSP40 interacted with SlSNAT and together participated in melatonin-related thermotolerance regulation in tomato.
Collapse
Affiliation(s)
- Xiaoyun Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Haijun Zhang
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Qian Xie
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Ying Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Hongmei Lv
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Ruyue Bai
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Rui Ma
- Agro-Biotechnology Research Institute, Jilin Academy of Agricultural Sciences, Changchun 130124, China
| | - Xiangdong Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Xichun Zhang
- College of Plant Science & Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Yang-Dong Guo
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Na Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Horticulture, China Agricultural University, Beijing 100193, China
| |
Collapse
|
36
|
Zhang H, Li G, Hu D, Zhang Y, Zhang Y, Shao H, Zhao L, Yang R, Guo X. Functional characterization of maize heat shock transcription factor gene ZmHsf01 in thermotolerance. PeerJ 2020; 8:e8926. [PMID: 32309048 PMCID: PMC7153558 DOI: 10.7717/peerj.8926] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 03/17/2020] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Heat waves can critically influence maize crop yields. Plant heat shock transcription factors (HSFs) play a key regulating role in the heat shock (HS) signal transduction pathway. METHOD In this study, a homologous cloning method was used to clone HSF gene ZmHsf01 (accession number: MK888854) from young maize leaves. The transcript levels of ZmHsf01 were detected using qRT-PCR in different tissues and treated by HS, abscisic acid (ABA), hydrogen peroxide (H2O2), respectively, and the functions of gene ZmHsf01 were studied in transgenic yeast and Arabidopsis. RESULT ZmHsf01 had a coding sequence (CDS) of 1176 bp and encoded a protein consisting of 391 amino acids. The homologous analysis results showed that ZmHsf01 and SbHsfA2d had the highest protein sequence identities. Subcellular localization experiments confirmed that ZmHsf01 was localized in the nucleus. ZmHsf01 was expressed in many maize tissues. It was up-regulated by HS, and up-regulated in roots and down-regulated in leaves under ABA and H2O2treatments. ZmHsf01-overexpressing yeast cells showed increased thermotolerance. In Arabidopsis seedlings, ZmHsf01 compensated for the thermotolerance defects of mutant athsfa2, and ZmHsf01-overexpressing lines showed enhanced basal and acquired thermotolerance. When compared to wild type (WT) seedlings, ZmHsf01-overexpressing lines showed higher chlorophyll content and survival rates after HS. Heat shock protein (HSP) gene expression levels were more up-regulated in ZmHsf01-overexpressing Arabidopsis seedlings than WT seedlings. These results suggest that ZmHsf01 plays a vital role in response to HS in plant.
Collapse
Affiliation(s)
- Huaning Zhang
- Plant Genetic Engineering Center of Hebei Province/Institute of Genetics and Physiology, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| | - Guoliang Li
- Plant Genetic Engineering Center of Hebei Province/Institute of Genetics and Physiology, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| | - Dong Hu
- Plant Genetic Engineering Center of Hebei Province/Institute of Genetics and Physiology, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| | - Yuanyuan Zhang
- College of Life Science, Hebei Normal University, Shijiazhuang, Hebei, China
| | - Yujie Zhang
- College of Agriculture and Forestry Science and Technology, Hebei North University, Zhangjiakou, China
| | - Hongbo Shao
- Salt-soil Agricultural Center, Key Laboratory of Agricultural Environment in the Lower Reaches of Yangtze River Plain, Institute of Agriculture Resources and Environment, Jiangsu Academy of Agricultural Sciences (JAAS), Nanjing, P.R. China
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Yancheng Teachers University, Yancheng, Jiangsu, China
- College of Environment and Safety Engineering, Qingdao University of Science & Technology, Qingdao, China
| | - Lina Zhao
- College of Life Science, Hebei Normal University, Shijiazhuang, Hebei, China
| | - Ruiping Yang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Yancheng Teachers University, Yancheng, Jiangsu, China
| | - Xiulin Guo
- Plant Genetic Engineering Center of Hebei Province/Institute of Genetics and Physiology, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| |
Collapse
|
37
|
Abstract
Many proteins, particularly those that are intrinsically disordered and carry charges have a tendency to undergo liquid liquid phase separation (LLPS). Phase separation is a widespread mechanism by which cells concentrate a set of proteins to perform molecular reactions, and appear to compartmentalize molecular functions. Among the intrinsically disordered proteins are a subset that tend to form solid inclusions in cells and contribute to the pathology of several neurodegenerative diseases. Among this subset is the tau protein, a critically important inclusion in a class of conditions known as the tauopathies, which include Alzheimer's disease. Tau in neurons strongly and selectively associates with RNA species, most notably tRNA with a nanomolar dissociation constant. Furthermore, tau and RNA, under charge matching conditions, undergo LLPS in a process known as complex coacervation. Tau-RNA LLPS is reversible, and can persist for more than 15 h without subsequent fibrilization, although after longer time periods β-sheet content can be detected by thioflavin T. These findings suggest that LLPS tau droplets or condensates can be placed on a pathway to fibrillization and be arrested by solidification or dissolve into a soluble state, depending on the condition at hand, suggesting a regulatory and physiological role for the phase separated state of tau.
Collapse
|
38
|
Hu S, Ding Y, Zhu C. Sensitivity and Responses of Chloroplasts to Heat Stress in Plants. FRONTIERS IN PLANT SCIENCE 2020; 11:375. [PMID: 32300353 PMCID: PMC7142257 DOI: 10.3389/fpls.2020.00375] [Citation(s) in RCA: 139] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 03/16/2020] [Indexed: 05/21/2023]
Abstract
Increased temperatures caused by global warming threaten agricultural production, as warmer conditions can inhibit plant growth and development or even destroy crops in extreme circumstances. Extensive research over the past several decades has revealed that chloroplasts, the photosynthetic organelles of plants, are highly sensitive to heat stress, which affects a variety of photosynthetic processes including chlorophyll biosynthesis, photochemical reactions, electron transport, and CO2 assimilation. Important mechanisms by which plant cells respond to heat stress to protect these photosynthetic organelles have been identified and analyzed. More recent studies have made it clear that chloroplasts play an important role in inducing the expression of nuclear heat-response genes during the heat stress response. In this review, we summarize these important advances in plant-based research and discuss how the sensitivity, responses, and signaling roles of chloroplasts contribute to plant heat sensitivity and tolerance.
Collapse
Affiliation(s)
| | | | - Cheng Zhu
- Key Laboratory of Marine Food Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, China
| |
Collapse
|
39
|
Hu Y, Mesihovic A, Jiménez-Gómez JM, Röth S, Gebhardt P, Bublak D, Bovy A, Scharf KD, Schleiff E, Fragkostefanakis S. Natural variation in HsfA2 pre-mRNA splicing is associated with changes in thermotolerance during tomato domestication. THE NEW PHYTOLOGIST 2020; 225:1297-1310. [PMID: 31556121 DOI: 10.1111/nph.16221] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 09/18/2019] [Indexed: 05/22/2023]
Abstract
Wild relatives of crops thrive in habitats where environmental conditions can be restrictive for productivity and survival of cultivated species. The genetic basis of this variability, particularly for tolerance to high temperatures, is not well understood. We examined the capacity of wild and cultivated accessions to acclimate to rapid temperature elevations that cause heat stress (HS). We investigated genotypic variation in thermotolerance of seedlings of wild and cultivated accessions. The contribution of polymorphisms associated with thermotolerance variation was examined regarding alterations in function of the identified gene. We show that tomato germplasm underwent a progressive loss of acclimation to strong temperature elevations. Sensitivity is associated with intronic polymorphisms in the HS transcription factor HsfA2 which affect the splicing efficiency of its pre-mRNA. Intron splicing in wild species results in increased synthesis of isoform HsfA2-II, implicated in the early stress response, at the expense of HsfA2-I which is involved in establishing short-term acclimation and thermotolerance. We propose that the selection for modern HsfA2 haplotypes reduced the ability of cultivated tomatoes to rapidly acclimate to temperature elevations, but enhanced their short-term acclimation capacity. Hence, we provide evidence that alternative splicing has a central role in the definition of plant fitness plasticity to stressful conditions.
Collapse
Affiliation(s)
- Yangjie Hu
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, D-60438, Frankfurt am Main, Germany
| | - Anida Mesihovic
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, D-60438, Frankfurt am Main, Germany
| | - José M Jiménez-Gómez
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, 78026, Versailles Cedex, France
- Department of Plant Breeding and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Cologne, Germany
| | - Sascha Röth
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, D-60438, Frankfurt am Main, Germany
| | - Philipp Gebhardt
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, D-60438, Frankfurt am Main, Germany
| | - Daniela Bublak
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, D-60438, Frankfurt am Main, Germany
| | - Arnaud Bovy
- Plant Breeding, Wageningen University, Wageningen, 6708PB, the Netherlands
| | - Klaus-Dieter Scharf
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, D-60438, Frankfurt am Main, Germany
| | - Enrico Schleiff
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, D-60438, Frankfurt am Main, Germany
- Cluster of Excellence Frankfurt, Goethe University, D-60438, Frankfurt am Main, Germany
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University, D-60438, Frankfurt am Main, Germany
- Frankfurt Institute of Advanced Studies (FIAS), D-60438, Frankfurt am Main, Germany
| | - Sotirios Fragkostefanakis
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, D-60438, Frankfurt am Main, Germany
| |
Collapse
|
40
|
Andrási N, Rigó G, Zsigmond L, Pérez-Salamó I, Papdi C, Klement E, Pettkó-Szandtner A, Baba AI, Ayaydin F, Dasari R, Cséplő Á, Szabados L. The mitogen-activated protein kinase 4-phosphorylated heat shock factor A4A regulates responses to combined salt and heat stresses. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:4903-4918. [PMID: 31086987 PMCID: PMC6760271 DOI: 10.1093/jxb/erz217] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 05/04/2019] [Indexed: 05/21/2023]
Abstract
Heat shock factors regulate responses to high temperature, salinity, water deprivation, or heavy metals. Their function in combinations of stresses is, however, not known. Arabidopsis HEAT SHOCK FACTOR A4A (HSFA4A) was previously reported to regulate responses to salt and oxidative stresses. Here we show, that the HSFA4A gene is induced by salt, elevated temperature, and a combination of these conditions. Fast translocation of HSFA4A tagged with yellow fluorescent protein from cytosol to nuclei takes place in salt-treated cells. HSFA4A can be phosphorylated not only by mitogen-activated protein (MAP) kinases MPK3 and MPK6 but also by MPK4, and Ser309 is the dominant MAP kinase phosphorylation site. In vivo data suggest that HSFA4A can be the substrate of other kinases as well. Changing Ser309 to Asp or Ala alters intramolecular multimerization. Chromatin immunoprecipitation assays confirmed binding of HSFA4A to promoters of target genes encoding the small heat shock protein HSP17.6A and transcription factors WRKY30 and ZAT12. HSFA4A overexpression enhanced tolerance to individually and simultaneously applied heat and salt stresses through reduction of oxidative damage. Our results suggest that this heat shock factor is a component of a complex stress regulatory pathway, connecting upstream signals mediated by MAP kinases MPK3/6 and MPK4 with transcription regulation of a set of stress-induced target genes.
Collapse
Affiliation(s)
- Norbert Andrási
- Biological Research Centre, Temesvári krt 62,Szeged, Hungary
| | - Gábor Rigó
- Biological Research Centre, Temesvári krt 62,Szeged, Hungary
- Department of Plant Biology, University of Szeged, Szeged, Hungary
| | - Laura Zsigmond
- Biological Research Centre, Temesvári krt 62,Szeged, Hungary
| | - Imma Pérez-Salamó
- School of Biological Sciences, Royal Holloway, University of London, Egham Hill, Surrey, UK
| | - Csaba Papdi
- School of Biological Sciences, Royal Holloway, University of London, Egham Hill, Surrey, UK
| | - Eva Klement
- Biological Research Centre, Temesvári krt 62,Szeged, Hungary
| | | | - Abu Imran Baba
- Biological Research Centre, Temesvári krt 62,Szeged, Hungary
| | - Ferhan Ayaydin
- Biological Research Centre, Temesvári krt 62,Szeged, Hungary
| | - Ramakrishna Dasari
- Biological Research Centre, Temesvári krt 62,Szeged, Hungary
- Department of Biotechnology, Kakatiya University, Warangal, India
| | - Ágnes Cséplő
- Biological Research Centre, Temesvári krt 62,Szeged, Hungary
| | - László Szabados
- Biological Research Centre, Temesvári krt 62,Szeged, Hungary
- Correspondence:
| |
Collapse
|
41
|
Functional diversification of tomato HsfA1 factors is based on DNA binding domain properties. Gene 2019; 714:143985. [PMID: 31330236 DOI: 10.1016/j.gene.2019.143985] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 07/13/2019] [Accepted: 07/15/2019] [Indexed: 12/14/2022]
Abstract
In all eukaryotes, the response to heat stress (HS) is dependent on the activity of HS transcription factors (Hsfs). Plants contain a large number of Hsfs, however, only members of the HsfA1 subfamily are considered as master regulators of stress response and thermotolerance. In Solanum lycopersicum, among the four HsfA1 members, only HsfA1a has been proposed to possess a master regulator function. We performed a comparative analysis of HsfA1a, HsfA1b, HsfA1c and HsfA1e at different levels of regulation and function. HsfA1a is constitutively expressed under control and stress conditions, while the other members are induced in specific tissues and stages of HS response. Despite that all members are localized in the nucleus when expressed in protoplasts, only HsfA1a shows a wide range of basal activity on several HS-induced genes. In contrast, HsfA1b, HsfA1c, and HsfA1e show only high activity for specific subsets of genes. Domain swapping mutants between HsfA1a and HsfA1c revealed that the variation in that transcriptional transactivation activity is due to differences in the DNA binding domain (DBD). Specifically, we identified a conserved arginine (R107) residue in the turn of β3 and β4 sheet in the C-terminus of the DBD of HsfA1a that is highly conserved in plant HsfA1 proteins, but is replaced by leucine and cysteine in tomato HsfA1c and HsfA1e, respectively. Although not directly involved in DNA interaction, R107 contributes to DNA binding and consequently the activity of HsfA1a. Thus, we demonstrate that this variation in DBD in part explains the functional diversification of tomato HsfA1 members.
Collapse
|
42
|
Li GL, Zhang HN, Shao H, Wang GY, Zhang YY, Zhang YJ, Zhao LN, Guo XL, Sheteiwy MS. ZmHsf05, a new heat shock transcription factor from Zea mays L. improves thermotolerance in Arabidopsis thaliana and rescues thermotolerance defects of the athsfa2 mutant. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 283:375-384. [PMID: 31128708 DOI: 10.1016/j.plantsci.2019.03.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 03/07/2019] [Accepted: 03/08/2019] [Indexed: 05/05/2023]
Abstract
High temperature directly affects the yield and quality of crops. Plant Hsfs play vital roles in plant response to heat shock. In the present study, ZmHsf05 was isolated from maize (Zea mays L.) using homologous cloning methods. The sequencing analysis demonstrated that CDS of ZmHsf05 was 1080 bp length and encoded a protein containing 359 amino acids. The putative amino acid sequence of ZmHsf05 contained typical Hsf domains, such as DBD, OD, NLS and AHA motif. Subcellular localization assays displayed that the ZmHsf05 is localized to the nucleus. ZmHsf05 was expressed in many maize tissues and its expression level was increased by heat stress treatment. ZmHsf05 rescued the reduced thermotolerance of the athsfa2 mutant in Arabidopsis seedlings. Arabidopsis seedlings of ZmHsf05-overexpressing increased both the basal and acquired thermotolerances. After heat stress, the ZmHsf05-overexpressing lines showed enhanced survival rate and chlorophyll content compared with WT seedlings. The expression of Hsps was up-regulated in the ZmHsf05-overexpressing Arabidopsis lines after heat stress treatment. These results suggested that ZmHsf05 plays an important role in both basal and acquired thermotolerance in plants.
Collapse
Affiliation(s)
- Guo-Liang Li
- Plant Genetic Engineering Center of Hebei Province/Institute of Genetics and Physiology, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, PR China
| | - Hua-Ning Zhang
- Plant Genetic Engineering Center of Hebei Province/Institute of Genetics and Physiology, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, PR China
| | - Hongbo Shao
- Salt-soil Agricultural Center, Key Laboratory of Agricultural Environment in the Lower Reaches of Yangtze River Plain, Institute of Agriculture Resources and Environment, Jiangsu Academy of Agriculture Science(JAAS), Nanjing, 210014, PR China; College of Environment and Safety Engineering, Qingdao University of Science & Technology, Qingdao 266000, China; Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Yancheng Teachers University, Yancheng, 224002, PR China.
| | - Gui-Yan Wang
- Faculty of Agronomy, Hebei Agricultural University, Baoding, 071001, PR China.
| | - Yuan-Yuan Zhang
- Plant Genetic Engineering Center of Hebei Province/Institute of Genetics and Physiology, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, PR China; College of Life Science, Hebei Normal University, Shijiazhuang 050024, PR China
| | - Yu-Jie Zhang
- Plant Genetic Engineering Center of Hebei Province/Institute of Genetics and Physiology, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, PR China; College of Agriculture and Forestry Science and Technology, Hebei North University, Zhangjiakou, 075000, PR China
| | - Li-Na Zhao
- Plant Genetic Engineering Center of Hebei Province/Institute of Genetics and Physiology, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, PR China; Faculty of Agronomy, Hebei Agricultural University, Baoding, 071001, PR China
| | - Xiu-Lin Guo
- Plant Genetic Engineering Center of Hebei Province/Institute of Genetics and Physiology, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, PR China.
| | - Mohamed Salah Sheteiwy
- Salt-soil Agricultural Center, Key Laboratory of Agricultural Environment in the Lower Reaches of Yangtze River Plain, Institute of Agriculture Resources and Environment, Jiangsu Academy of Agriculture Science(JAAS), Nanjing, 210014, PR China
| |
Collapse
|
43
|
Kozeko LY. The Role of HSP90 Chaperones in Stability and Plasticity of Ontogenesis of Plants under Normal and Stressful Conditions (Arabidopsis thaliana). CYTOL GENET+ 2019. [DOI: 10.3103/s0095452719020063] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
44
|
Fragkostefanakis S, Simm S, El-Shershaby A, Hu Y, Bublak D, Mesihovic A, Darm K, Mishra SK, Tschiersch B, Theres K, Scharf C, Schleiff E, Scharf KD. The repressor and co-activator HsfB1 regulates the major heat stress transcription factors in tomato. PLANT, CELL & ENVIRONMENT 2019; 42:874-890. [PMID: 30187931 DOI: 10.1111/pce.13434] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Accepted: 08/23/2018] [Indexed: 05/08/2023]
Abstract
Plants code for a multitude of heat stress transcription factors (Hsfs). Three of them act as central regulators of heat stress (HS) response in tomato (Solanum lycopersicum). HsfA1a regulates the initial response, and HsfA2 controls acquired thermotolerance. HsfB1 is a transcriptional repressor but can also act as co-activator of HsfA1a. Currently, the mode of action and the relevance of the dual function of HsfB1 remain elusive. We examined this in HsfB1 overexpression or suppression transgenic tomato lines. Proteome analysis revealed that HsfB1 overexpression stimulates the co-activator function of HsfB1 and consequently the accumulation of HS-related proteins under non-stress conditions. Plants with enhanced levels of HsfB1 show aberrant growth and development but enhanced thermotolerance. HsfB1 suppression has no significant effect prior to stress. Upon HS, HsfB1 suppression strongly enhances the induction of heat shock proteins due to the higher activity of other HS-induced Hsfs, resulting in increased thermotolerance compared with wild-type. Thereby, HsfB1 acts as co-activator of HsfA1a for several Hsps, but as a transcriptional repressor on other Hsfs, including HsfA1b and HsfA2. The dual function explains the activation of chaperones to enhance protection and regulate the balance between growth and stress response upon deviations from the homeostatic levels of HsfB1.
Collapse
Affiliation(s)
- Sotirios Fragkostefanakis
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, Frankfurt am Main, Germany
| | - Stefan Simm
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, Frankfurt am Main, Germany
- Frankfurt Institute of Advanced Studies (FIAS), Frankfurt am Main, Germany
| | - Asmaa El-Shershaby
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, Frankfurt am Main, Germany
| | - Yangjie Hu
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, Frankfurt am Main, Germany
| | - Daniela Bublak
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, Frankfurt am Main, Germany
| | - Anida Mesihovic
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, Frankfurt am Main, Germany
| | - Katrin Darm
- Department of Otorhinolaryngology, Head and Neck Surgery, University Medicine, Greifswald, Germany
| | - Shravan Kumar Mishra
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, Frankfurt am Main, Germany
| | | | - Klaus Theres
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Christian Scharf
- Department of Otorhinolaryngology, Head and Neck Surgery, University Medicine, Greifswald, Germany
| | - Enrico Schleiff
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, Frankfurt am Main, Germany
- Frankfurt Institute of Advanced Studies (FIAS), Frankfurt am Main, Germany
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University, Frankfurt am Main, Germany
| | - Klaus-Dieter Scharf
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
45
|
RNA Granules and Their Role in Neurodegenerative Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1203:195-245. [DOI: 10.1007/978-3-030-31434-7_8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
46
|
Zhu X, Wang Y, Liu Y, Zhou W, Yan B, Yang J, Shen Y. Overexpression of BcHsfA1 transcription factor from Brassica campestris improved heat tolerance of transgenic tobacco. PLoS One 2018; 13:e0207277. [PMID: 30427910 PMCID: PMC6235349 DOI: 10.1371/journal.pone.0207277] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Accepted: 10/29/2018] [Indexed: 01/31/2023] Open
Abstract
Heat shock proteins (HSPs) are a type of conserved molecular chaperone. They exist extensively in plants and greatly contribute to their survival under heat stress. The transcriptional regulation factor heat shock factor (HSF) is thought to regulate the expression of Hsps. In this study, a novel gene designated BcHsfA1 was cloned and characterized from Brassica campestris. Bioinformatic analysis implied that BcHsfA1 belongs to the HsfA gene family and is most closely related to HsfA1 from other plants. Constitutive overexpression of BcHsfA1 significantly improved heat tolerance of tobacco seedlings by affecting physiological and biochemical processes. Moreover, the chlorophyll content of transgenic tobacco plants was significantly increased compared with wild type after heat stress, as were the activities of the important enzymatic antioxidants superoxide dismutase and peroxidase. BcHsfA1 overexpression also resulted in decreased malondialdehyde content and comparative electrical conductivity and increased soluble sugar content in transgenic tobacco plants than wild-type plants exposed to heat stress. Furthermore, we identified 11 candidate heat response genes that were significantly up-regulated in the transgenic lines exposed to heat stress. Together, these results suggested that BcHsfA1 is effective in improving heat tolerance of tobacco seedlings, which may be useful in the development of new heat-resisitant B. campestris strains by genetic engineering.
Collapse
Affiliation(s)
- Xiangtao Zhu
- College of Jiyang, Zhejiang A&F University, Zhuji,China
| | - Yang Wang
- School of Agriculture and Food Science, Key Laboratory of Agricultural Products Quality Improvement Technology in Zhejiang Province, Zhejiang A&F University, Hangzhou, China
| | - Yunhui Liu
- School of Agriculture and Food Science, Key Laboratory of Agricultural Products Quality Improvement Technology in Zhejiang Province, Zhejiang A&F University, Hangzhou, China
| | - Wei Zhou
- School of Agriculture and Food Science, Key Laboratory of Agricultural Products Quality Improvement Technology in Zhejiang Province, Zhejiang A&F University, Hangzhou, China
| | - Bin Yan
- Laboratory of Plant Biotechnology, College of Life and Environment Sciences, Shanghai Normal University, Shanghai,China
| | - Jian Yang
- Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Yafang Shen
- School of Agriculture and Food Science, Key Laboratory of Agricultural Products Quality Improvement Technology in Zhejiang Province, Zhejiang A&F University, Hangzhou, China
| |
Collapse
|
47
|
Sun M, Jiang F, Cen B, Wen J, Zhou Y, Wu Z. Respiratory burst oxidase homologue-dependent H 2 O 2 and chloroplast H 2 O 2 are essential for the maintenance of acquired thermotolerance during recovery after acclimation. PLANT, CELL & ENVIRONMENT 2018; 41:2373-2389. [PMID: 29851102 DOI: 10.1111/pce.13351] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 05/21/2018] [Accepted: 05/21/2018] [Indexed: 05/22/2023]
Abstract
Thermotolerance is improved by heat stress (HS) acclimation, and the thermotolerance level is "remembered" by plants. However, the underlying signalling mechanisms remain largely unknown. Here, we showed NADPH oxidase-mediated H2 O2 (NADPH-H2 O2 ), and chloroplast-H2 O2 promoted the sustained expression of HS-responsive genes and programmed cell death (PCD) genes, respectively, during recovery after HS acclimation. When spraying the NADPH oxidase inhibitor, diphenylene iodonium, after HS acclimation, the NADPH-H2 O2 level significantly decreased, resulting in a decrease in the expression of HS-responsive genes and the loss of maintenance of acquired thermotolerance (MAT). In contrast, compared with HS acclimation, NADPH-H2 O2 declined but chloroplast-H2 O2 further enhanced during recovery after HS over-acclimation, resulting in the reduced expression of HS-responsive genes and substantial production of PCD. Notably, the further inhibition of NADPH-H2 O2 after HS over-acclimation also inhibited chloroplast-H2 O2 , alleviating the severe PCD and surpassing the MAT of HS over-acclimation treatment. Due to the change in subcellular H2 O2 after HS acclimation, the tomato seedlings maintained a constant H2 O2 level during recovery, resulting in stable and lower total H2 O2 levels during a tester HS challenge conducted after recovery. We conclude that tomato seedlings increase their MAT by enhancing NADPH-H2 O2 content and controlling chloroplast-H2 O2 production during recovery, which enhances the expression of HS-responsive genes and balances PCD levels, respectively.
Collapse
Affiliation(s)
- Mintao Sun
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in East China, Ministry of Agriculture, Nanjing, China
| | - Fangling Jiang
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in East China, Ministry of Agriculture, Nanjing, China
| | - Benjian Cen
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in East China, Ministry of Agriculture, Nanjing, China
| | - Junqin Wen
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in East China, Ministry of Agriculture, Nanjing, China
| | - Yanzhao Zhou
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in East China, Ministry of Agriculture, Nanjing, China
| | - Zhen Wu
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in East China, Ministry of Agriculture, Nanjing, China
| |
Collapse
|
48
|
Hamada T, Yako M, Minegishi M, Sato M, Kamei Y, Yanagawa Y, Toyooka K, Watanabe Y, Hara-Nishimura I. Stress granule formation is induced by a threshold temperature rather than a temperature difference in Arabidopsis. J Cell Sci 2018; 131:jcs.216051. [PMID: 30030372 DOI: 10.1242/jcs.216051] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 07/12/2018] [Indexed: 12/12/2022] Open
Abstract
Stress granules, a type of cytoplasmic RNA granule in eukaryotic cells, are induced in response to various environmental stresses, including high temperature. However, how high temperatures induce the formation of these stress granules in plant cells is largely unknown. Here, we characterized the process of stress granule formation in Arabidopsis thaliana by combining live imaging and electron microscopy analysis. In seedlings grown at 22°C, stress granule formation was induced at temperatures above a critical threshold level of 34°C in the absence of transpiration. The threshold temperature was the same, regardless of whether the seedlings were grown at 22°C or 4°C. High-resolution live imaging microscopy revealed that stress granule formation is not correlated with the sizes of pre-existing RNA processing bodies (P-bodies) but that the two structures often associated rapidly. Immunoelectron microscopy revealed a previously unidentified characteristic of the fine structures of Arabidopsis stress granules and P-bodies: the lack of ribosomes and the presence of characteristic electron-dense globular and filamentous structures. These results provide new insights into the universal nature of stress granules in eukaryotic cells.
Collapse
Affiliation(s)
- Takahiro Hamada
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
| | - Mako Yako
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
| | - Marina Minegishi
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
| | - Mayuko Sato
- RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan
| | - Yasuhiro Kamei
- National Institute for Basic Biology, Aichi 444-8585, Japan
| | - Yuki Yanagawa
- Institute of Agrobiological Sciences, NARO, Tsukuba 305-8602, Japan
| | - Kiminori Toyooka
- RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan
| | - Yuichiro Watanabe
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
| | | |
Collapse
|
49
|
Lavania D, Dhingra A, Grover A. Analysis of transactivation potential of rice (Oryza sativa L.) heat shock factors. PLANTA 2018; 247:1267-1276. [PMID: 29453664 DOI: 10.1007/s00425-018-2865-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 01/29/2018] [Indexed: 05/14/2023]
Abstract
Based on yeast one-hybrid assays, we show that the presence of C-terminal AHA motifs is not a prerequisite for transactivation potential in rice heat shock factors. Transcriptional activation or transactivation (TA) of heat stress responsive genes takes place by binding of heat shock factors (Hsfs) to heat shock elements. Analysis of TA potential of thirteen rice (Oryza sativa L.) Hsfs (OsHsfs) carried out in this study by yeast one-hybrid assay showed that OsHsfsA3 possesses strong TA potential while OsHsfs A1a, A2a, A2b, A4a, A4d, A5, A7b, B1, B2a, B2b, B2c and B4d lack TA potential. From a near complete picture of TA potential of the OsHsf family (comprising of 25 members) emerging from this study and an earlier report from our group (Mittal et al. in FEBS J 278(17):3076-3085, 2011), it is concluded that (1) overall, six OsHsfs, namely A3, A6a, A6b, A8, C1a and C1b possess TA potential; (2) four class A OsHsfs, namely A3, A6a, A6b and A8 have TA potential out of which A6a and A6b contain AHA motifs while A3 and A8 lack AHA motifs; (3) nine class A OsHsfs, namely A1a, A2a, A2b, A2e, A4a, A4d, A5, A7a and A7b containing AHA motif(s) lack TA function in the yeast assay system; (4) all class B OsHsfs lack AHA motifs and TA potential (B4a not analyzed) and (5) though all class C OsHsf members lack AHA motifs, two members C1a and C1b possess TA function, while one member C2a lacks TA potential (C2b not analyzed). Thus, the presence or absence of AHA motif is possibly not the only factor determining TA potential of OsHsfs. Our findings will help to identify the transcriptional activators of rice heat shock response.
Collapse
Affiliation(s)
- Dhruv Lavania
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, 110021, India
| | - Anuradha Dhingra
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, 110021, India
| | - Anil Grover
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, 110021, India.
| |
Collapse
|
50
|
Zhang X, Zhang M, Su Y, Wang Z, Zhao Q, Zhu H, Qian Z, Xu J, Tang S, Wu D, Lin Y, Kemper N, Hartung J, Bao E. Inhibition of heat stress-related apoptosis of chicken myocardial cells through inducing Hsp90 expression by aspirin administration in vivo. Br Poult Sci 2018; 59:308-317. [PMID: 29557194 DOI: 10.1080/00071668.2018.1454585] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
1. This experiment investigated the anti-apoptosis effects and the mechanism of aspirin action in the heat shock response of chicken myocardial cells in vivo, via changes in the heat stress (HS) protein Hsp90 and the rate of apoptosis. Broiler chickens were administered aspirin (1 mg/kg body weight) 2 h before exposure to HS, and then exposed to 40 ± 1°C for 0, 1, 2, 3, 5, 7, 10, 15 and 24 h. 2. The induction and consumption of the HS factor heat shock factor (HSF)-1, and reductions of HSF-2 and HSF-3 induced by HS led to a delay in Hsp90 expression. HSF-1, 2 and 3 regulation of hsp90 expression in turn inhibited the synthesis and activation of protein kinase β (Akt), which resulted in a significant increase in caspase-3 at 2 and 10 h, caspase-9 from 1 to 7 h (except at 5 h), and the heat-stressed apoptosis of the myocardial cells. 3. Administration of aspirin changed the expression patterns of HSF-1, 2 and 3 such that the expression of Hsp90 protein was significantly upregulated (by 2.3-4.1 times compared with that of the non-treated cells). The resultant increase in Akt expression and activation, compared with the HS group, inhibited caspase-3 and caspase-9 activities and reduced the myocardial cells apoptosis rate (by 2.14-2.56 times). 4. Aspirin administration could inhibit heat-stressed apoptosis of myocardial cells in vivo and may be closely associated with its promotion of HS response of chicken hearts, especially Hsp90 expression.
Collapse
Affiliation(s)
- X Zhang
- a College of Veterinary Medicine, Nanjing Agricultural University , Nanjing , China
| | - M Zhang
- b College of Animal Science and Technology , Jinling Institute of Technology , Nanjing , China
| | - Y Su
- a College of Veterinary Medicine, Nanjing Agricultural University , Nanjing , China
| | - Z Wang
- a College of Veterinary Medicine, Nanjing Agricultural University , Nanjing , China
| | - Q Zhao
- a College of Veterinary Medicine, Nanjing Agricultural University , Nanjing , China
| | - H Zhu
- a College of Veterinary Medicine, Nanjing Agricultural University , Nanjing , China
| | - Z Qian
- a College of Veterinary Medicine, Nanjing Agricultural University , Nanjing , China
| | - J Xu
- a College of Veterinary Medicine, Nanjing Agricultural University , Nanjing , China
| | - S Tang
- a College of Veterinary Medicine, Nanjing Agricultural University , Nanjing , China
| | - D Wu
- a College of Veterinary Medicine, Nanjing Agricultural University , Nanjing , China
| | - Y Lin
- a College of Veterinary Medicine, Nanjing Agricultural University , Nanjing , China
| | - N Kemper
- c Institute for Animal Hygiene, Animal Welfare and Farm Animal Behaviour , University of Veterinary Medicine Hannover , Hannover , Germany
| | - J Hartung
- c Institute for Animal Hygiene, Animal Welfare and Farm Animal Behaviour , University of Veterinary Medicine Hannover , Hannover , Germany
| | - E Bao
- a College of Veterinary Medicine, Nanjing Agricultural University , Nanjing , China
| |
Collapse
|