1
|
Tourigny JP, Schumacher K, Saleh MM, Devys D, Zentner GE. Architectural Mediator subunits are differentially essential for global transcription in Saccharomyces cerevisiae. Genetics 2021; 217:iyaa042. [PMID: 33789343 PMCID: PMC8045717 DOI: 10.1093/genetics/iyaa042] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 12/16/2020] [Indexed: 12/18/2022] Open
Abstract
Mediator is a modular coactivator complex involved in the transcription of the majority of RNA polymerase II-regulated genes. However, the degrees to which individual core subunits of Mediator contribute to its activity have been unclear. Here, we investigate the contribution of two essential architectural subunits of Mediator to transcription in Saccharomyces cerevisiae. We show that acute depletion of the main complex scaffold Med14 or the head module nucleator Med17 is lethal and results in global transcriptional downregulation, though Med17 removal has a markedly greater negative effect. Consistent with this, Med17 depletion impairs preinitiation complex (PIC) assembly to a greater extent than Med14 removal. Co-depletion of Med14 and Med17 reduced transcription and TFIIB promoter occupancy similarly to Med17 ablation alone, indicating that the contributions of Med14 and Med17 to Mediator function are not additive. We propose that, while the structural integrity of complete Mediator and the head module are both important for PIC assembly and transcription, the head module plays a greater role in this process and is thus the key functional module of Mediator in this regard.
Collapse
Affiliation(s)
- Jason P Tourigny
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Kenny Schumacher
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France
- UMR7104, Centre National de la Recherche Scientifique, 67404 Illkirch, France
- U964, Institut National de la Santé et de la Recherche Médicale, 67404 Illkirch, France
- Université de Strasbourg, 67404 Illkirch, France
| | - Moustafa M Saleh
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Didier Devys
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France
- UMR7104, Centre National de la Recherche Scientifique, 67404 Illkirch, France
- U964, Institut National de la Santé et de la Recherche Médicale, 67404 Illkirch, France
- Université de Strasbourg, 67404 Illkirch, France
| | - Gabriel E Zentner
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
- Indiana University Melvin and Bren Simon Cancer Center, Indianapolis, IN 46202, USA
| |
Collapse
|
2
|
The Regulatory Properties of the Ccr4-Not Complex. Cells 2020; 9:cells9112379. [PMID: 33138308 PMCID: PMC7692201 DOI: 10.3390/cells9112379] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/21/2020] [Accepted: 10/26/2020] [Indexed: 12/12/2022] Open
Abstract
The mammalian Ccr4–Not complex, carbon catabolite repression 4 (Ccr4)-negative on TATA-less (Not), is a large, highly conserved, multifunctional assembly of proteins that acts at different cellular levels to regulate gene expression. In the nucleus, it is involved in the regulation of the cell cycle, chromatin modification, activation and inhibition of transcription initiation, control of transcription elongation, RNA export, nuclear RNA surveillance, and DNA damage repair. In the cytoplasm, the Ccr4–Not complex plays a central role in mRNA decay and affects protein quality control. Most of our original knowledge of the Ccr4–Not complex is derived, primarily, from studies in yeast. More recent studies have shown that the mammalian complex has a comparable structure and similar properties. In this review, we summarize the evidence for the multiple roles of both the yeast and mammalian Ccr4–Not complexes, highlighting their similarities.
Collapse
|
3
|
Trnka MJ, Pellarin R, Robinson PJ. Role of integrative structural biology in understanding transcriptional initiation. Methods 2019; 159-160:4-22. [PMID: 30890443 PMCID: PMC6617507 DOI: 10.1016/j.ymeth.2019.03.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 03/14/2019] [Accepted: 03/15/2019] [Indexed: 12/12/2022] Open
Abstract
Integrative structural biology combines data from multiple experimental techniques to generate complete structural models for the biological system of interest. Most commonly cross-linking data sets are employed alongside electron microscopy maps, crystallographic structures, and other data by computational methods that integrate all known information and produce structural models at a level of resolution that is appropriate to the input data. The precision of these modelled solutions is limited by the sparseness of cross-links observed, the length of the cross-linking reagent, the ambiguity arisen from the presence of multiple copies of the same protein, and structural and compositional heterogeneity. In recent years integrative structural biology approaches have been successfully applied to a range of RNA polymerase II complexes. Here we will provide a general background to integrative structural biology, a description of how it should be practically implemented and how it has furthered our understanding of the biology of large transcriptional assemblies. Finally, in the context of recent breakthroughs in microscope and direct electron detector technology, where increasingly EM is capable of resolving structural features directly without the aid of other structural techniques, we will discuss the future role of integrative structural techniques.
Collapse
Affiliation(s)
- Michael J Trnka
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
| | - Riccardo Pellarin
- Institut Pasteur, Structural Bioinformatics Unit, Department of Structural Biology and Chemistry, CNRS UMR 3528, C3BI USR 3756 CNRS & IP, Paris, France
| | - Philip J Robinson
- Department of Biological Sciences, Birkbeck University of London, Institute of Structural and Molecular Biology, London, United Kingdom.
| |
Collapse
|
4
|
Timmers HTM, Tora L. Transcript Buffering: A Balancing Act between mRNA Synthesis and mRNA Degradation. Mol Cell 2019; 72:10-17. [PMID: 30290147 DOI: 10.1016/j.molcel.2018.08.023] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 07/20/2018] [Accepted: 08/15/2018] [Indexed: 10/28/2022]
Abstract
Transcript buffering involves reciprocal adjustments between overall rates in mRNA synthesis and degradation to maintain similar cellular concentrations of mRNAs. This phenomenon was first discovered in yeast and encompasses coordination between the nuclear and cytoplasmic compartments. Transcript buffering was revealed by novel methods for pulse labeling of RNA to determine in vivo synthesis and degradation rates. In this Perspective, we discuss the current knowledge of transcript buffering. Emphasis is placed on the future challenges to determine the nature and directionality of the buffering signals, the generality of transcript buffering beyond yeast, and the molecular mechanisms responsible for this balancing.
Collapse
Affiliation(s)
- H Th Marc Timmers
- German Cancer Consortium (DKTK), partner site Freiburg, German Cancer Research Center (DKFZ) Zentrale Klinische Forschung (ZKF), and Medical Faculty-University of Freiburg, Breisacher Str. 66, 79106 Freiburg, Germany.
| | - László Tora
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique, UMR7104, INSERM U1258 and Université de Strasbourg, 67404 Illkirch, France.
| |
Collapse
|
5
|
Postrecruitment Function of Yeast Med6 Protein during the Transcriptional Activation by Mediator Complex. Biochem Res Int 2018; 2018:6406372. [PMID: 29992056 PMCID: PMC5818915 DOI: 10.1155/2018/6406372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 10/29/2017] [Indexed: 11/17/2022] Open
Abstract
Med6 protein (Med6p) is a hallmark component of evolutionarily conserved Mediator complexes, and the genuine role of Med6p in Mediator functions remains elusive. For the functional analysis of Saccharomyces cerevisiae Med6p (scMed6p), we generated a series of scMed6p mutants harboring a small internal deletion. Genetic analysis of these mutants revealed that three regions (amino acids 33-42 (Δ2), 125-134 (Δ5), and 157-166 (Δ6)) of scMed6p are required for cell viability and are located at highly conserved regions of Med6 homologs. Notably, the Med6p-Δ2 mutant was barely detectable in whole-cell extracts and purified Mediator, suggesting a loss of Mediator association and concurrent rapid degradation. Consistent with this, the recombinant forms of Med6p having these mutations partially (Δ2) restore or fail (Δ5 and Δ6) to restore in vitro transcriptional defects caused by temperature-sensitive med6 mutation. In an artificial recruitment assay, Mediator containing a LexA-fused wild-type Med6p or Med6p-Δ5 was recruited to the lexA operator region with TBP and activated reporter gene expression. However, the recruitment of Mediator containing LexA-Med6p-Δ6 to lexA operator region resulted in neither TBP recruitment nor reporter gene expression. This result demonstrates a pivotal role of Med6p in the postrecruitment function of Mediator, which is essential for transcriptional activation by Mediator.
Collapse
|
6
|
Robinson PJ, Trnka MJ, Pellarin R, Greenberg CH, Bushnell DA, Davis R, Burlingame AL, Sali A, Kornberg RD. Molecular architecture of the yeast Mediator complex. eLife 2015; 4. [PMID: 26402457 PMCID: PMC4631838 DOI: 10.7554/elife.08719] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 09/23/2015] [Indexed: 12/18/2022] Open
Abstract
The 21-subunit Mediator complex transduces regulatory information from enhancers to promoters, and performs an essential role in the initiation of transcription in all eukaryotes. Structural information on two-thirds of the complex has been limited to coarse subunit mapping onto 2-D images from electron micrographs. We have performed chemical cross-linking and mass spectrometry, and combined the results with information from X-ray crystallography, homology modeling, and cryo-electron microscopy by an integrative modeling approach to determine a 3-D model of the entire Mediator complex. The approach is validated by the use of X-ray crystal structures as internal controls and by consistency with previous results from electron microscopy and yeast two-hybrid screens. The model shows the locations and orientations of all Mediator subunits, as well as subunit interfaces and some secondary structural elements. Segments of 20–40 amino acid residues are placed with an average precision of 20 Å. The model reveals roles of individual subunits in the organization of the complex. DOI:http://dx.doi.org/10.7554/eLife.08719.001 Inside a cell, proteins are made from instructions encoded by DNA. To produce a particular protein, a section of DNA within a gene is copied into a molecule of messenger ribonucleic acid (or mRNA). This process is called transcription and is carried out by an enzyme known as RNA polymerase. Transcription begins in a region of DNA called a promoter, which is found at the start of the gene. RNA polymerase is brought to the DNA by many proteins, including the so-called Mediator complex. Mediator receives signals from within the cell and from the environment, processes the information, and instructs RNA polymerase whether to transcribe the gene or not. Mediator performs this important role in all organisms from yeast to humans, but it is not clear how it works. A crucial step towards the solution of this problem is to understand the three-dimensional structure of the complex. Previous research using a technique called ‘electron microscopy’ showed that Mediator is composed of three modules, referred to as Head, Middle and Tail. The images from electron microscopy were not sufficiently detailed to reveal the organization of the proteins within these modules. An open-source Integrative Modeling Platform (IMP for short) was recently developed to arrive at structural models of large protein complexes from a combination of experimental data and computer models. Now, Robinson, Trnka, Pellarin et al. have used this platform to study the Mediator complex. First, Robinson, Trnka, Pellarin et al. collected experimental data on the structure of the Mediator complex using two approaches called ‘chemical cross-linking’ and ‘mass spectrometry’. This data was combined with biochemical and structural information from previous studies to generate a three-dimensional model of the structure of the entire Mediator using IMP. The model is detailed enough to show the location and orientation of all the proteins in the complex. For example, a protein called Med17 connects the Head and Middle modules, while another subunit—known as Med14—spans the entire complex and makes extensive contacts with other proteins in all three modules. DOI:http://dx.doi.org/10.7554/eLife.08719.002
Collapse
Affiliation(s)
- Philip J Robinson
- Department of Structural Biology, Stanford University School of Medicine, Stanford, United States
| | - Michael J Trnka
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, United States
| | - Riccardo Pellarin
- Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, United States.,Structural Bioinformatics Unit, Paris, France
| | - Charles H Greenberg
- Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, United States
| | - David A Bushnell
- Department of Structural Biology, Stanford University School of Medicine, Stanford, United States
| | - Ralph Davis
- Department of Structural Biology, Stanford University School of Medicine, Stanford, United States
| | - Alma L Burlingame
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, United States
| | - Andrej Sali
- Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, United States
| | - Roger D Kornberg
- Department of Structural Biology, Stanford University School of Medicine, Stanford, United States
| |
Collapse
|
7
|
Shirai YT, Suzuki T, Morita M, Takahashi A, Yamamoto T. Multifunctional roles of the mammalian CCR4-NOT complex in physiological phenomena. Front Genet 2014; 5:286. [PMID: 25191340 PMCID: PMC4139912 DOI: 10.3389/fgene.2014.00286] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 08/04/2014] [Indexed: 01/12/2023] Open
Abstract
The carbon catabolite repression 4 (CCR4)–negative on TATA-less (NOT) complex serves as one of the major deadenylases of eukaryotes. Although it was originally identified and characterized in yeast, recent studies have revealed that the CCR4–NOT complex also exerts important functions in mammals, -including humans. However, there are some differences in the composition and functions of the CCR4–NOT complex between mammals and yeast. It is noteworthy that each subunit of the CCR4–NOT complex has unique, multifunctional roles and is responsible for various physiological phenomena. This heterogeneity and versatility of the CCR4–NOT complex makes an overall understanding of this complex difficult. Here, we describe the functions of each subunit of the mammalian CCR4–NOT complex and discuss the molecular mechanisms by which it regulates homeostasis in mammals. Furthermore, a possible link between the disruption of the CCR4–NOT complex and various diseases will be discussed. Finally, we propose that the analysis of mice with each CCR4–NOT subunit knocked out is an effective strategy for clarifying its complicated functions and networks in mammals.
Collapse
Affiliation(s)
- Yo-Taro Shirai
- Cell Signal Unit, Okinawa Institute of Science and Technology Graduate University Onna-son, Japan
| | - Toru Suzuki
- Cell Signal Unit, Okinawa Institute of Science and Technology Graduate University Onna-son, Japan
| | - Masahiro Morita
- Department of Biochemistry, McGill University Montreal, QC, Canada ; Goodman Cancer Research Centre, McGill University Montreal, QC, Canada
| | - Akinori Takahashi
- Cell Signal Unit, Okinawa Institute of Science and Technology Graduate University Onna-son, Japan
| | - Tadashi Yamamoto
- Cell Signal Unit, Okinawa Institute of Science and Technology Graduate University Onna-son, Japan
| |
Collapse
|
8
|
Xu K, Bai Y, Zhang A, Zhang Q, Bartlam MG. Insights into the structure and architecture of the CCR4-NOT complex. Front Genet 2014; 5:137. [PMID: 24904637 PMCID: PMC4032980 DOI: 10.3389/fgene.2014.00137] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 04/26/2014] [Indexed: 12/22/2022] Open
Abstract
The CCR4–NOT complex is a highly conserved, multifunctional machinery with a general role in controlling mRNA metabolism. It has been implicated in a number of different aspects of mRNA and protein expression, including mRNA degradation, transcription initiation and elongation, ubiquitination, and protein modification. The core CCR4–NOT complex is evolutionarily conserved and consists of at least three NOT proteins and two catalytic subunits. The L-shaped complex is characterized by two functional modules bound to the CNOT1/Not1 scaffold protein: the deadenylase or nuclease module containing two enzymes required for deadenylation, and the NOT module. In this review, we will summarize the currently available information regarding the three-dimensional structure and assembly of the CCR4–NOT complex, in order to provide insight into its roles in mRNA degradation and other biological processes.
Collapse
Affiliation(s)
- Kun Xu
- State Key Laboratory of Medicinal Chemical Biology, Nankai University Tianjin, China ; College of Life Sciences, Nankai University Tianjin, China
| | - Yuwei Bai
- State Key Laboratory of Medicinal Chemical Biology, Nankai University Tianjin, China
| | - Aili Zhang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University Tianjin, China ; College of Life Sciences, Nankai University Tianjin, China
| | - Qionglin Zhang
- College of Life Sciences, Nankai University Tianjin, China
| | - Mark G Bartlam
- State Key Laboratory of Medicinal Chemical Biology, Nankai University Tianjin, China ; College of Life Sciences, Nankai University Tianjin, China
| |
Collapse
|
9
|
Lacombe T, Poh SL, Barbey R, Kuras L. Mediator is an intrinsic component of the basal RNA polymerase II machinery in vivo. Nucleic Acids Res 2013; 41:9651-62. [PMID: 23963697 PMCID: PMC3834807 DOI: 10.1093/nar/gkt701] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Mediator is a prominent multisubunit coactivator that functions as a bridge between gene-specific activators and the basal RNA polymerase (Pol) II initiation machinery. Here, we study the poorly documented role of Mediator in basal, or activator-independent, transcription in vivo. We show that Mediator is still present at the promoter when the Pol II machinery is recruited in the absence of an activator, in this case through a direct fusion between a basal transcription factor and a heterologous DNA binding protein bound to the promoter. Moreover, transcription resulting from activator-independent recruitment of the Pol II machinery is impaired by inactivation of the essential Mediator subunit Med17 due to the loss of Pol II from the promoter. Our results strongly support that Mediator is an integral component of the minimal machinery essential in vivo for stable Pol II association with the promoter.
Collapse
Affiliation(s)
- Thierry Lacombe
- Centre de Génétique Moléculaire, Centre National de la Recherche Scientifique, affiliated with Université Paris-Sud, Gif-sur-Yvette 91198, France
| | | | | | | |
Collapse
|
10
|
Abstract
Gene transcription by RNA polymerase (Pol) II requires the coactivator complex Mediator. Mediator connects transcriptional regulators and Pol II, and is linked to human disease. Mediator from the yeast Saccharomyces cerevisiae has a molecular mass of 1.4 megadaltons and comprises 25 subunits that form the head, middle, tail and kinase modules. The head module constitutes one-half of the essential Mediator core, and comprises the conserved subunits Med6, Med8, Med11, Med17, Med18, Med20 and Med22. Recent X-ray analysis of the S. cerevisiae head module at 4.3 Å resolution led to a partial architectural model with three submodules called neck, fixed jaw and moveable jaw. Here we determine de novo the crystal structure of the head module from the fission yeast Schizosaccharomyces pombe at 3.4 Å resolution. Structure solution was enabled by new structures of Med6 and the fixed jaw, and previous structures of the moveable jaw and part of the neck, and required deletion of Med20. The S. pombe head module resembles the head of a crocodile with eight distinct elements, of which at least four are mobile. The fixed jaw comprises tooth and nose domains, whereas the neck submodule contains a helical spine and one limb, with shoulder, arm and finger elements. The arm and the essential shoulder contact other parts of Mediator. The jaws and a central joint are implicated in interactions with Pol II and its carboxy-terminal domain, and the joint is required for transcription in vitro. The S. pombe head module structure leads to a revised model of the S. cerevisiae module, reveals a high conservation and flexibility, explains known mutations, and provides the basis for unravelling a central mechanism of gene regulation.
Collapse
|
11
|
Abstract
The purpose of this review is to provide an analysis of the latest developments on the functions of the carbon catabolite-repression 4-Not (Ccr4-Not) complex in regulating eukaryotic gene expression. Ccr4-Not is a nine-subunit protein complex that is conserved in sequence and function throughout the eukaryotic kingdom. Although Ccr4-Not has been studied since the 1980s, our understanding of what it does is constantly evolving. Once thought to solely regulate transcription, it is now clear that it has much broader roles in gene regulation, such as in mRNA decay and quality control, RNA export, translational repression and protein ubiquitylation. The mechanism of actions for each of its functions is still being debated. Some of the difficulty in drawing a clear picture is that it has been implicated in so many processes that regulate mRNAs and proteins in both the cytoplasm and the nucleus. We will describe what is known about the Ccr4-Not complex in yeast and other eukaryotes in an effort to synthesize a unified model for how this complex coordinates multiple steps in gene regulation and provide insights into what questions will be most exciting to answer in the future.
Collapse
Affiliation(s)
- Jason E. Miller
- Department of Biochemistry and Molecular Biology, Center for Eukaryotic Gene Regulation, Center for RNA Molecular Biology, Penn State University, University Park, PA 16802
| | - Joseph C. Reese
- Department of Biochemistry and Molecular Biology, Center for Eukaryotic Gene Regulation, Center for RNA Molecular Biology, Penn State University, University Park, PA 16802
| |
Collapse
|
12
|
Collart MA, Panasenko OO. The Ccr4--not complex. Gene 2011; 492:42-53. [PMID: 22027279 DOI: 10.1016/j.gene.2011.09.033] [Citation(s) in RCA: 219] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Revised: 09/06/2011] [Accepted: 09/29/2011] [Indexed: 12/11/2022]
Abstract
The Ccr4-Not complex is a unique, essential and conserved multi-subunit complex that acts at the level of many different cellular functions to regulate gene expression. Two enzymatic activities, namely ubiquitination and deadenylation, are provided by different subunits of the complex. However, studies over the last decade have demonstrated a tantalizing multi-functionality of this complex that extends well beyond its identified enzymatic activities. Most of our initial knowledge about the Ccr4-Not complex stemmed from studies in yeast, but an increasing number of reports on this complex in other species are emerging. In this review we will discuss the structure and composition of the complex, and describe the different cellular functions with which the Ccr4-Not complex has been connected in different organisms. Finally, based upon our current state of knowledge, we will propose a model to explain how one complex can provide such multi-functionality. This model suggests that the Ccr4-Not complex might function as a "chaperone platform".
Collapse
Affiliation(s)
- Martine A Collart
- Dpt Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, 1 rue Michel Servet, 1211 Geneva 4, Switzerland.
| | | |
Collapse
|
13
|
Seizl M, Larivière L, Pfaffeneder T, Wenzeck L, Cramer P. Mediator head subcomplex Med11/22 contains a common helix bundle building block with a specific function in transcription initiation complex stabilization. Nucleic Acids Res 2011; 39:6291-304. [PMID: 21498544 PMCID: PMC3152362 DOI: 10.1093/nar/gkr229] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mediator is a multiprotein co-activator of RNA polymerase (Pol) II transcription. Mediator contains a conserved core that comprises the ‘head’ and ‘middle’ modules. We present here a structure–function analysis of the essential Med11/22 heterodimer, a part of the head module. Med11/22 forms a conserved four-helix bundle domain with C-terminal extensions, which bind the central head subunit Med17. A highly conserved patch on the bundle surface is required for stable transcription pre-initiation complex formation on a Pol II promoter in vitro and in vivo and may recruit the general transcription factor TFIIH. The bundle domain fold is also present in the Mediator middle module subcomplex Med7/21 and is predicted in the Mediator heterodimers Med2/3, Med4/9, Med10/14 and Med28/30. The bundle domain thus represents a common building block that has been multiplied and functionally diversified during Mediator evolution in eukaryotes.
Collapse
Affiliation(s)
- Martin Seizl
- Gene Center and Department of Biochemistry, Center for Integrated Protein Science Munich, Ludwig-Maximilians-Universität München, Feodor-Lynen-Strasse 25, 81377 Munich, Germany
| | | | | | | | | |
Collapse
|
14
|
Drosophila TIEG is a modulator of different signalling pathways involved in wing patterning and cell proliferation. PLoS One 2011; 6:e18418. [PMID: 21494610 PMCID: PMC3072976 DOI: 10.1371/journal.pone.0018418] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Accepted: 03/07/2011] [Indexed: 11/19/2022] Open
Abstract
Acquisition of a final shape and size during organ development requires a
regulated program of growth and patterning controlled by a complex genetic
network of signalling molecules that must be coordinated to provide positional
information to each cell within the corresponding organ or tissue. The mechanism
by which all these signals are coordinated to yield a final response is not well
understood. Here, I have characterized the Drosophila ortholog
of the human TGF-β Inducible Early Gene 1 (dTIEG). TIEG are zinc-finger
proteins that belong to the Krüppel-like factor (KLF) family and were
initially identified in human osteoblasts and pancreatic tumor cells for the
ability to enhance TGF-β response. Using the developing wing of
Drosophila as “in vivo” model, the dTIEG
function has been studied in the control of cell proliferation and patterning.
These results show that dTIEG can modulate Dpp signalling. Furthermore, dTIEG
also regulates the activity of JAK/STAT pathway suggesting a conserved role of
TIEG proteins as positive regulators of TGF-β signalling and as mediators of
the crosstalk between signalling pathways acting in a same cellular context.
Collapse
|
15
|
Crystal structure of the human CNOT6L nuclease domain reveals strict poly(A) substrate specificity. EMBO J 2010; 29:2566-76. [PMID: 20628353 PMCID: PMC2928688 DOI: 10.1038/emboj.2010.152] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2010] [Accepted: 06/16/2010] [Indexed: 01/07/2023] Open
Abstract
CCR4, an evolutionarily conserved member of the CCR4-NOT complex, is the main cytoplasmic deadenylase. It contains a C-terminal nuclease domain with homology to the endonuclease-exonuclease-phosphatase (EEP) family of enzymes. We have determined the high-resolution three-dimensional structure of the nuclease domain of CNOT6L, a human homologue of CCR4, by X-ray crystallography using the single-wavelength anomalous dispersion method. This first structure of a deadenylase belonging to the EEP family adopts a complete alpha/beta sandwich fold typical of hydrolases with highly conserved active site residues similar to APE1. The active site of CNOT6L should recognize the RNA substrate through its negatively charged surface. In vitro deadenylase assays confirm the critical active site residues and show that the nuclease domain of CNOT6L exhibits full Mg(2+)-dependent deadenylase activity with strict poly(A) RNA substrate specificity. To understand the structural basis for poly(A) RNA substrate binding, crystal structures of the CNOT6L nuclease domain have also been determined in complex with AMP and poly(A) DNA. The resulting structures suggest a molecular deadenylase mechanism involving a pentacovalent phosphate transition.
Collapse
|
16
|
The structural basis for deadenylation by the CCR4-NOT complex. Protein Cell 2010; 1:443-52. [PMID: 21203959 DOI: 10.1007/s13238-010-0060-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Accepted: 05/05/2010] [Indexed: 10/19/2022] Open
Abstract
The CCR4-NOT complex is a highly conserved, multifunctional machinery controlling mRNA metabolism. Its components have been implicated in several aspects of mRNA and protein expression, including transcription initiation, elongation, mRNA degradation, ubiquitination, and protein modification. In this review, we will focus on the role of the CCR4-NOT complex in mRNA degradation. The complex contains two types of deadenylase enzymes, one belonging to the DEDD-type family and one belonging to the EEP-type family, which shorten the poly(A) tails of mRNA. We will review the present state of structure-function analyses into the CCR4-NOT deadenylases and summarize current understanding of their roles in mRNA degradation. We will also review structural and functional work on the Tob/BTG family of proteins, which are known to interact with the CCR4-NOT complex and which have been reported to suppress deadenylase activity in vitro.
Collapse
|
17
|
Peiró-Chova L, Estruch F. The yeast RNA polymerase II-associated factor Iwr1p is involved in the basal and regulated transcription of specific genes. J Biol Chem 2009; 284:28958-67. [PMID: 19679657 DOI: 10.1074/jbc.m109.012153] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
RNA polymerase II (RNA pol II) is a multisubunit enzyme that requires many auxiliary factors for its activity. Over the years, these factors have been identified using both biochemical and genetic approaches. Recently, the systematic characterization of protein complexes by tandem affinity purification and mass spectroscopy has allowed the identification of new components of well established complexes, including the RNA pol II holoenzyme. Using this approach, a novel and highly conserved factor, Iwr1p, that physically interacts with most of the RNA pol II subunits has been described in yeast. Here we show that Iwr1p genetically interacts with components of the basal transcription machinery and plays a role in both basal and regulated transcription. We report that mutation of the IWR1 gene is able to bypass the otherwise essential requirement for the transcriptional regulator negative cofactor 2, which occurs with different components of the basal transcription machinery, including TFIIA and subunits of the mediator complex. Deletion of the IWR1 gene leads to an altered expression of specific genes, including phosphate-responsive genes and SUC2. Our results show that Iwr1p is a nucleocytoplasmic shuttling protein and suggest that Iwr1p acts early in the formation of the pre-initiation complex by mediating the interaction of certain activators with the basal transcription apparatus.
Collapse
Affiliation(s)
- Lorena Peiró-Chova
- Department of Biochemistry and Molecular Biology, Universitat de València, 46100 Burjassot, Spain
| | | |
Collapse
|
18
|
Boorsma A, Lu XJ, Zakrzewska A, Klis FM, Bussemaker HJ. Inferring condition-specific modulation of transcription factor activity in yeast through regulon-based analysis of genomewide expression. PLoS One 2008; 3:e3112. [PMID: 18769540 PMCID: PMC2518834 DOI: 10.1371/journal.pone.0003112] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2008] [Accepted: 08/07/2008] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND A key goal of systems biology is to understand how genomewide mRNA expression levels are controlled by transcription factors (TFs) in a condition-specific fashion. TF activity is frequently modulated at the post-translational level through ligand binding, covalent modification, or changes in sub-cellular localization. In this paper, we demonstrate how prior information about regulatory network connectivity can be exploited to infer condition-specific TF activity as a hidden variable from the genomewide mRNA expression pattern in the yeast Saccharomyces cerevisiae. METHODOLOGY/PRINCIPAL FINDINGS We first validate experimentally that by scoring differential expression at the level of gene sets or "regulons" comprised of the putative targets of a TF, we can accurately predict modulation of TF activity at the post-translational level. Next, we create an interactive database of inferred activities for a large number of TFs across a large number of experimental conditions in S. cerevisiae. This allows us to perform TF-centric analysis of the yeast regulatory network. CONCLUSIONS/SIGNIFICANCE We analyze the degree to which the mRNA expression level of each TF is predictive of its regulatory activity. We also organize TFs into "co-modulation networks" based on their inferred activity profile across conditions, and find that this reveals functional and mechanistic relationships. Finally, we present evidence that the PAC and rRPE motifs antagonize TBP-dependent regulation, and function as core promoter elements governed by the transcription regulator NC2. Regulon-based monitoring of TF activity modulation is a powerful tool for analyzing regulatory network function that should be applicable in other organisms. Tools and results are available online at http://bussemakerlab.org/RegulonProfiler/.
Collapse
Affiliation(s)
- André Boorsma
- Swammerdam Institute for Life Sciences, University of Amsterdam, BioCentrum Amsterdam, Amsterdam, The Netherlands
| | - Xiang-Jun Lu
- Department of Biological Sciences, Columbia University, New York, New York, United States of America
| | - Anna Zakrzewska
- Swammerdam Institute for Life Sciences, University of Amsterdam, BioCentrum Amsterdam, Amsterdam, The Netherlands
| | - Frans M. Klis
- Swammerdam Institute for Life Sciences, University of Amsterdam, BioCentrum Amsterdam, Amsterdam, The Netherlands
| | - Harmen J. Bussemaker
- Department of Biological Sciences, Columbia University, New York, New York, United States of America
- Center for Computational Biology and Bioinformatics, Columbia University, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
19
|
van Werven FJ, van Bakel H, van Teeffelen HAAM, Altelaar AFM, Koerkamp MG, Heck AJR, Holstege FCP, Timmers HTM. Cooperative action of NC2 and Mot1p to regulate TATA-binding protein function across the genome. Genes Dev 2008; 22:2359-69. [PMID: 18703679 DOI: 10.1101/gad.1682308] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Promoter recognition by TATA-binding protein (TBP) is an essential step in the initiation of RNA polymerase II (pol II) mediated transcription. Genetic and biochemical studies in yeast have shown that Mot1p and NC2 play important roles in inhibiting TBP activity. To understand how TBP activity is regulated in a genome-wide manner, we profiled the binding of TBP, NC2, Mot1p, TFIID, SAGA, and pol II across the yeast genome using chromatin immunoprecipitation (ChIP)-chip for cells in exponential growth and during reprogramming of transcription. We find that TBP, NC2, and Mot1p colocalize at transcriptionally active pol II core promoters. Relative binding of NC2alpha and Mot1p is higher at TATA promoters, whereas NC2beta has a preference for TATA-less promoters. In line with the ChIP-chip data, we isolated a stable TBP-NC2-Mot1p-DNA complex from chromatin extracts. ATP hydrolysis releases NC2 and DNA from the Mot1p-TBP complex. In vivo experiments indicate that promoter dissociation of TBP and NC2 is highly dynamic, which is dependent on Mot1p function. Based on these results, we propose that NC2 and Mot1p cooperate to dynamically restrict TBP activity on transcribed promoters.
Collapse
Affiliation(s)
- Folkert J van Werven
- Department of Physiological Chemistry, University Medical Center Utrecht, 3584 CG Utrecht, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Mulder KW, Inagaki A, Cameroni E, Mousson F, Winkler GS, De Virgilio C, Collart MA, Timmers HTM. Modulation of Ubc4p/Ubc5p-mediated stress responses by the RING-finger-dependent ubiquitin-protein ligase Not4p in Saccharomyces cerevisiae. Genetics 2007; 176:181-92. [PMID: 17513889 PMCID: PMC1893070 DOI: 10.1534/genetics.106.060640] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Ccr4-Not complex consists of nine subunits and acts as a regulator of mRNA biogenesis in Saccharomyces cerevisiae. The human ortholog of yeast NOT4, CNOT4, displays UbcH5B-dependent ubiquitin-protein ligase (E3 ligase) activity in a reconstituted in vitro system. However, an in vivo role for this enzymatic activity has not been identified. Site-directed mutagenesis of the RING finger of yeast Not4p identified residues required for interaction with Ubc4p and Ubc5p, the yeast orthologs of UbcH5B. Subsequent in vitro assays with purified Ccr4-Not complexes showed Not4p-mediated E3 ligase activity, which was dependent on the interaction with Ubc4p. To investigate the in vivo relevance of this activity, we performed synthetic genetic array (SGA) analyses using not4Delta and not4L35A alleles. This indicates involvement of the RING finger of Not4p in transcription, ubiquitylation, and DNA damage responses. In addition, we found a phenotypic overlap between deletions of UBC4 and mutants encoding single-amino-acid substitutions of the RING finger of Not4p. Together, our results show that Not4p functions as an E3 ligase by modulating Ubc4p/Ubc5p-mediated stress responses in vivo.
Collapse
Affiliation(s)
- Klaas W Mulder
- Department of Physiological Chemistry, University Medical Centre Utrecht, Utrecht, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Albert TK, Grote K, Boeing S, Stelzer G, Schepers A, Meisterernst M. Global distribution of negative cofactor 2 subunit-alpha on human promoters. Proc Natl Acad Sci U S A 2007; 104:10000-5. [PMID: 17548813 PMCID: PMC1891239 DOI: 10.1073/pnas.0703490104] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Negative cofactor 2 (NC2) forms a stable complex with TATA-binding protein (TBP) on promoters in vitro. Its association with TBP prevents the binding of TFIIB and leads to inhibition of preinitiation complex formation. Here, we investigate the association of NC2 subunit-alpha with human RNA polymerase II promoter regions by using gene-specific ChIP and genome-wide promoter ChIPchip analyses. We find NC2alpha associated with a large number of human promoters, where it peaks close to the core regions. NC2 occupancy in vivo positively correlates with mRNA levels, which perhaps reflects its capacity to stabilize TBP on promoter regions. In single gene analyses, we confirm core promoter binding and in addition map the NC2 complex to enhancer proximal regions. High-occupancy histone genes display a stable NC2/TFIIB ratio during the cell cycle, which otherwise varies markedly from one gene to another. The latter is at least in part explained by an observed negative correlation of NC2 occupancy with the presence of the TFIIB recognition element in core promoter regions. Our data establish the genome-wide basis for general and gene-specific functions of NC2 in mammalian cells.
Collapse
Affiliation(s)
| | - Korbinian Grote
- Genomatix Software GmbH, Bayerstrasse 85a, 80335 Munich, Germany
| | | | | | - Aloys Schepers
- Gene Vectors, GSF–National Research Center for Environment and Health, Marchioninistrasse 25, 81377 Munich, Germany; and
| | - Michael Meisterernst
- Departments of *Gene Expression and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
22
|
Mulder KW, Brenkman AB, Inagaki A, van den Broek NJF, Marc Timmers HT. Regulation of histone H3K4 tri-methylation and PAF complex recruitment by the Ccr4-Not complex. Nucleic Acids Res 2007; 35:2428-39. [PMID: 17392337 PMCID: PMC1874646 DOI: 10.1093/nar/gkm175] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Efficient transcription is linked to modification of chromatin. For instance, tri-methylation of lysine 4 on histone H3 (H3K4) strongly correlates with transcriptional activity and is regulated by the Bur1/2 kinase complex. We found that the evolutionarily conserved Ccr4-Not complex is involved in establishing H3K4 tri-methylation in Saccharomyces cerevisiae. We observed synthetic lethal interactions of Ccr4-Not components with BUR1 and BUR2. Further analysis indicated that the genes encoding the Not-proteins are essential for efficient regulation of H3K4me3, but not H3K4me1/2, H3K36me2 or H3K79me2/3 levels. Moreover, regulation of H3K4me3 levels by NOT4 is independent of defects in RNA polymerase II loading. We found NOT4 to be important for ubiquitylation of histone H2B via recruitment of the PAF complex, but not for recruitment or activation of the Bur1/2 complex. These results suggest a mechanism in which the Ccr4-Not complex functions parallel to or downstream of the Bur1/2 kinase to facilitate H3K4me3 via PAF complex recruitment.
Collapse
Affiliation(s)
- Klaas W. Mulder
- Department of Physiological Chemistry and Department of Physiological Chemistry Mass Spectrometry Unit, University Medical Centre Utrecht, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| | - Arjan B. Brenkman
- Department of Physiological Chemistry and Department of Physiological Chemistry Mass Spectrometry Unit, University Medical Centre Utrecht, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| | - Akiko Inagaki
- Department of Physiological Chemistry and Department of Physiological Chemistry Mass Spectrometry Unit, University Medical Centre Utrecht, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| | - Niels J. F. van den Broek
- Department of Physiological Chemistry and Department of Physiological Chemistry Mass Spectrometry Unit, University Medical Centre Utrecht, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| | - H. Th. Marc Timmers
- Department of Physiological Chemistry and Department of Physiological Chemistry Mass Spectrometry Unit, University Medical Centre Utrecht, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
- *To whom correspondence should be addressed. +31-30-2538981+31-30-2539035
| |
Collapse
|
23
|
Larivière L, Geiger S, Hoeppner S, Röther S, Strässer K, Cramer P. Structure and TBP binding of the Mediator head subcomplex Med8-Med18-Med20. Nat Struct Mol Biol 2006; 13:895-901. [PMID: 16964259 DOI: 10.1038/nsmb1143] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2006] [Accepted: 08/15/2006] [Indexed: 11/09/2022]
Abstract
The Mediator head module stimulates basal RNA polymerase II (Pol II) transcription and enables transcriptional regulation. Here we show that the head subunits Med8, Med18 and Med20 form a subcomplex (Med8/18/20) with two submodules. The highly conserved N-terminal domain of Med8 forms one submodule that binds the TATA box-binding protein (TBP) in vitro and is essential in vivo. The second submodule consists of the C-terminal region of Med8 (Med8C), Med18 and Med20. X-ray analysis of this submodule reveals that Med18 and Med20 form related beta-barrel folds. A conserved putative protein-interaction face on the Med8C/18/20 submodule includes sites altered by srb mutations, which counteract defects resulting from Pol II truncation. Our results and published data support a positive role of the Med8/18/20 subcomplex in initiation-complex formation and suggest that the Mediator head contains a multipartite TBP-binding site that can be modulated by transcriptional activators.
Collapse
Affiliation(s)
- Laurent Larivière
- Gene Center Munich, Department of Chemistry and Biochemistry, Ludwig-Maximilians-Universität München, Feodor-Lynen-Str. 25, 81377 Munich, Germany
| | | | | | | | | | | |
Collapse
|
24
|
The classical srb4-138 mutant allele causes dissociation of yeast Mediator. Biochem Biophys Res Commun 2006; 349:948-53. [PMID: 16962561 DOI: 10.1016/j.bbrc.2006.08.099] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2006] [Accepted: 08/17/2006] [Indexed: 11/16/2022]
Abstract
The Mediator complex is an essential co-activator for RNA polymerase II-dependent transcription in the budding yeast Saccharomyces cerevisiae. The S. cerevisiae core Mediator complex consists of three larger domains that are termed head, middle, and tail. The Med17 subunit is located within the head domain and is essential for cell viability. A temperature-sensitive allele of the MED17 gene known as srb4-138 causes all RNA polymerase II-dependent transcription to cease at the non-permissive temperature. The phenotype of srb4-138 allele has served as the main in vivo proof of the importance of Mediator, but the molecular basis for the effect of this mutant has not been determined. We here characterize Mediator from cells carrying the srb4-138 allele and find that the Mediator complex consistently breaks apart at the head/middle domain boundary even at lower temperatures. We find that both the head and middle domains are able to associate with the RNA polymerase independently of each other. Interestingly, both sub-complexes are able to associate with an active promoter at the permissive temperature but at the non-permissive temperature the head domain is lost from the promoter.
Collapse
|
25
|
Winkler GS, Mulder KW, Bardwell VJ, Kalkhoven E, Timmers HTM. Human Ccr4-Not complex is a ligand-dependent repressor of nuclear receptor-mediated transcription. EMBO J 2006; 25:3089-99. [PMID: 16778766 PMCID: PMC1500986 DOI: 10.1038/sj.emboj.7601194] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2005] [Accepted: 05/17/2006] [Indexed: 12/27/2022] Open
Abstract
The Ccr4-Not complex is a highly conserved regulator of mRNA metabolism. The transcription regulatory function of this complex in higher eukaryotes, however, is largely unexplored. Here we report that CNOT1, the large human subunit, represses the ligand-dependent transcriptional activation function of oestrogen receptor (ER) alpha. Promoter recruitment assays indicate that CNOT1 contains an intrinsic ability to mediate transcriptional repression. Furthermore, CNOT1 can interact with the ligand-binding domain of ERalpha in a hormone-dependent fashion and is recruited with other Ccr4-Not subunits to endogenous oestrogen-regulated promoters dependent on the presence of ligand. In addition, siRNA-mediated depletion of endogenous CNOT1 or other Ccr4-Not subunits in breast cancer cells results in deregulation of ERalpha target genes. Finally, CNOT1 interacts in a ligand-dependent manner with RXR and represses transcription mediated by several RXR heterodimers. These findings define a function for the human Ccr4-Not complex as a transcriptional repressor of nuclear receptor signalling that is relevant for the understanding of molecular pathways involved in cancer.
Collapse
Affiliation(s)
- G Sebastiaan Winkler
- Department of Physiological Chemistry, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Klaas W Mulder
- Department of Physiological Chemistry, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Vivian J Bardwell
- Department of Genetics, Cell Biology and Development & Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Eric Kalkhoven
- Department of Metabolic and Endocrine Diseases, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - H Th Marc Timmers
- Department of Physiological Chemistry, University Medical Centre Utrecht, Utrecht, The Netherlands
| |
Collapse
|
26
|
Baek HJ, Kang YK, Roeder RG. Human Mediator enhances basal transcription by facilitating recruitment of transcription factor IIB during preinitiation complex assembly. J Biol Chem 2006; 281:15172-81. [PMID: 16595664 DOI: 10.1074/jbc.m601983200] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The multisubunit Mediator is a well established transcription coactivator for gene-specific activators. However, recent studies have shown that, although not essential for basal transcription by purified RNA polymerase II (pol II) and general initiation factors, Mediator is essential for basal transcription in nuclear extracts that contain a more physiological complement of factors (Mittler, G., Kremmer, E., Timmers, H. T., and Meisterernst, M. (2001) EMBO Rep. 2, 808-813; Baek, H. J., Malik, S., Qin, J., and Roeder, R. G. (2002) Mol. Cell. Biol. 22, 2842-2852). Here, mechanistic studies with immobilized DNA templates, purified factors, and factor-depleted HeLa extracts have shown (i) that Mediator enhancement of basal transcription correlates with Mediator-dependent recruitment of pol II and general initiation factors (transcription factor (TF) IIB and TFIIE) to the promoter; (ii) that Mediator and TFIIB, which both interact with pol II, are jointly required for pol II recruitment to the promoter and that TFIIB recruitment is Mediator-dependent, whereas Mediator recruitment is TFIIB-independent; (iii) that a high level of TFIIB can bypass the Mediator requirement for basal transcription and pol II recruitment in nuclear extract, thus indicating a conditional restriction of TFIIB function and a key role of Mediator in overcoming this restriction; and (iv) that an earlier rate-limiting step involves formation of a TFIID-Mediator-promoter complex. These results support a stepwise assembly model, rather than a preformed holoenzyme model, for Mediator-dependent assembly of a basal preinitiation complex and, more important, identify a step involving TFIIB as a key site of action of Mediator.
Collapse
Affiliation(s)
- Hwa Jin Baek
- Laboratory of Biochemistry and Molecular Biology, Rockefeller University, New York, New York 10021, USA
| | | | | |
Collapse
|
27
|
Mulder KW, Winkler GS, Timmers HTM. DNA damage and replication stress induced transcription of RNR genes is dependent on the Ccr4-Not complex. Nucleic Acids Res 2005; 33:6384-92. [PMID: 16275785 PMCID: PMC1278945 DOI: 10.1093/nar/gki938] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Genetic experiments have indicated a role for the Ccr4–Not complex in the response to hydroxyurea (HU) induced replication stress and ionizing radiation in yeast. This response includes transcriptional induction of the four genes constituting the ribonucleotide reductase (RNR) enzymatic complex, RNR1-4 and degradation of its inhibitor, Sml1p. The Ccr4–Not complex has originally been described as a negative regulator of RNA polymerase II (pol II) transcription, but it has also been implicated in mRNA turnover and protein ubiquitination. We investigated the mechanism of the HU sensitivity conferred by mutation of CCR4-NOT genes. We found that the ubiquitin protein ligase activity of Not4p does not play a role in HU induced Sml1p degradation. We show, however, that the HU sensitivity of ccr4-not mutant strains correlated very well with a defect in accumulation of RNR2, RNR3 and RNR4 mRNA after HU or methyl-methane sulfonate (MMS) treatment. Chromatin immunoprecipitation (ChIP) experiments show that TBP, pol II and Set1p recruitment to the activated RNR3 locus is defective in cells lacking NOT4. Moreover, RNR3-promoter activity is not induced by HU in these cells. Our experiments show that induction of RNR gene transcription is defective in ccr4-not mutant strains, providing an explanation for their sensitivity to HU.
Collapse
Affiliation(s)
| | | | - H. Th. Marc Timmers
- To whom correspondence should be addressed. Tel: +31 30 2538981; Fax: +31 30 2539035;
| |
Collapse
|
28
|
Abstract
Others have shown that yeast strains bearing a ts mutation in the Srb4 subunit of Mediator cease transcription of all mRNA at the restrictive temperature, in a manner virtually indistinguishable from a strain bearing a ts mutation in the largest subunit of RNA polymerase II. We find that srb4ts Mediator is defective for the stimulation of basal RNA polymerase II transcription at the restrictive temperature in vitro. Taken together, these findings lead to the suggestion that Mediator is required for basal RNA polymerase II transcription in vivo. On this basis, Mediator is identified as a general transcription factor, comparable in importance to RNA polymerase II and other general factors for the initiation of transcription. The possibility that Mediator serves as an anti-inhibitor, opposing the effects of global negative regulators, is largely excluded.
Collapse
Affiliation(s)
- Yuichiro Takagi
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California 94305-5400, USA
| | | |
Collapse
|
29
|
Blazek E, Mittler G, Meisterernst M. The Mediator of RNA polymerase II. Chromosoma 2005; 113:399-408. [PMID: 15690163 DOI: 10.1007/s00412-005-0329-5] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2004] [Revised: 12/21/2004] [Accepted: 12/22/2004] [Indexed: 11/28/2022]
Abstract
Mediator (TRAP/ARC/PC2) is a large (22-28 subunit) protein complex that binds RNA polymerase II and controls transcription from class II genes. The evolutionarily conserved core of Mediator is found in all eukaryotes. It binds RNA polymerase II and is probably critical for basal transcription but it also mediates activation and repression of transcription. During evolution the complex has acquired additional species-specific subunits. These serve as an interface for regulatory factors and support specific signalling pathways. Recent mechanistic studies are consistent with the hypothesis that Mediator marks genes for binding by RNA polymerase II whereupon it subsequently activates the preinitiation complex. It is further likely that Mediator coordinates the recruitment of chromatin-modifying cofactor activities.
Collapse
Affiliation(s)
- Erik Blazek
- National Research Center for Environment and Health-GSF, Gene Expression, Institute of Molecular Immunology, Marchioninistrasse 25, 81377, Munich, Germany
| | | | | |
Collapse
|
30
|
Lenssen E, James N, Pedruzzi I, Dubouloz F, Cameroni E, Bisig R, Maillet L, Werner M, Roosen J, Petrovic K, Winderickx J, Collart MA, De Virgilio C. The Ccr4-Not complex independently controls both Msn2-dependent transcriptional activation--via a newly identified Glc7/Bud14 type I protein phosphatase module--and TFIID promoter distribution. Mol Cell Biol 2005; 25:488-98. [PMID: 15601868 PMCID: PMC538800 DOI: 10.1128/mcb.25.1.488-498.2005] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Ccr4-Not complex is a conserved global regulator of gene expression, which serves as a regulatory platform that senses and/or transmits nutrient and stress signals to various downstream effectors. Presumed effectors of this complex in yeast are TFIID, a general transcription factor that associates with the core promoter, and Msn2, a key transcription factor that regulates expression of stress-responsive element (STRE)-controlled genes. Here we show that the constitutively high level of STRE-driven expression in ccr4-not mutants results from two independent effects. Accordingly, loss of Ccr4-Not function causes a dramatic Msn2-independent redistribution of TFIID on promoters with a particular bias for STRE-controlled over ribosomal protein gene promoters. In parallel, loss of Ccr4-Not complex function results in an alteration of the posttranslational modification status of Msn2, which depends on the type 1 protein phosphatase Glc7 and its newly identified subunit Bud14. Tests of epistasis as well as transcriptional analyses of Bud14-dependent transcription support a model in which the Ccr4-Not complex prevents activation of Msn2 via inhibition of the Bud14/Glc7 module in exponentially growing cells. Thus, increased activity of STRE genes in ccr4-not mutants may result from both altered general distribution of TFIID and unscheduled activation of Msn2.
Collapse
Affiliation(s)
- Eve Lenssen
- Département de Microbiologie et Médecine Moléculaire, CMU, 1 rue Michel Servet, 1211 Geneva 4, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Klejman MP, Pereira LA, van Zeeburg HJT, Gilfillan S, Meisterernst M, Timmers HTM. NC2alpha interacts with BTAF1 and stimulates its ATP-dependent association with TATA-binding protein. Mol Cell Biol 2004; 24:10072-82. [PMID: 15509807 PMCID: PMC525489 DOI: 10.1128/mcb.24.22.10072-10082.2004] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transcriptional activity of the TATA-binding protein (TBP) is controlled by a variety of proteins. The BTAF1 protein (formerly known as TAF(II)170/TAF-172 and the human ortholog of Saccharomyces cerevisiae Mot1p) and the NC2 complex composed of NC2alpha (DRAP1) and NC2beta (Dr1) are able to bind to TBP directly and regulate RNA polymerase II transcription both positively and negatively. Here, we present evidence that the NC2alpha subunit interacts with BTAF1. In contrast, the NC2beta subunit is not able to associate with BTAF1 and seems to interfere with the BTAF1-TBP interaction. Addition of NC2alpha or the NC2 complex can stimulate the ability of BTAF1 to interact with TBP. This function is dependent on the presence of ATP in cell extracts but does not involve the ATPase activity of BTAF1 nor phosphorylation of NC2alpha. Together, our results constitute the first evidence of the physical cooperation between BTAF1 and NC2alpha in TBP regulation and provide a framework to understand transcription functions of NC2alpha and NC2beta in vivo.
Collapse
Affiliation(s)
- Marcin P Klejman
- Department of Physiological Chemistry, Division of Biomedical Genetics, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| | | | | | | | | | | |
Collapse
|
32
|
Oda T, Fukuda A, Hagiwara H, Masuho Y, Muramatsu MA, Hisatake K, Yamashita T. ABT1-associated protein (ABTAP), a novel nuclear protein conserved from yeast to mammals, represses transcriptional activation by ABT1. J Cell Biochem 2004; 93:788-806. [PMID: 15660422 DOI: 10.1002/jcb.20114] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Various TATA-binding protein (TBP)-associated proteins are involved in the regulation of gene expression through control of basal transcription directed by RNA polymerase (Pol) II. We recently identified a novel nuclear protein, activator of basal transcription 1 (ABT1), which binds TBP and DNA, and enhances Pol II-directed basal transcription. To better understand regulatory mechanisms for ABT1, we searched for ABT1-binding proteins using a yeast two-hybrid screening and isolated a cDNA clone encoding a novel protein termed ABT1-associated protein (ABTAP). ABTAP formed a complex with ABT1 and suppressed the ABT1-induced activation of Pol II-directed transcription in mammalian cells. Furthermore, ABTAP directly bound to ABT1, disrupted the interaction between ABT1 and TBP, and suppressed the ABT1-induced activation of Pol II-directed basal transcription in vitro. These two proteins colocalized in the nucleolus and nucleoplasm and were concomitantly relocalized into discrete nuclear bodies at higher expression of ABTAP. Taken together, these results suggest that ABTAP binds and negatively regulates ABT1. The ABT1/ABTAP complex is evolutionarily conserved and may constitute a novel regulatory system for basal transcription.
Collapse
Affiliation(s)
- Tsukasa Oda
- Division of Genetic Diagnosis, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | | | | | | | | | | | | |
Collapse
|
33
|
Guglielmi B, van Berkum NL, Klapholz B, Bijma T, Boube M, Boschiero C, Bourbon HM, Holstege FCP, Werner M. A high resolution protein interaction map of the yeast Mediator complex. Nucleic Acids Res 2004; 32:5379-91. [PMID: 15477388 PMCID: PMC524289 DOI: 10.1093/nar/gkh878] [Citation(s) in RCA: 181] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2004] [Revised: 09/20/2004] [Accepted: 09/20/2004] [Indexed: 11/13/2022] Open
Abstract
Mediator is a large, modular protein complex remotely conserved from yeast to man that conveys regulatory signals from DNA-binding transcription factors to RNA polymerase II. In Saccharomyces cerevisiae, Mediator is thought to be composed of 24 subunits organized in four sub-complexes, termed the head, middle, tail and Cdk8 (Srb8-11) modules. In this work, we have used screening and pair-wise two-hybrid approaches to investigate protein-protein contacts between budding yeast Mediator subunits. The derived interaction map includes the delineation of numerous interaction domains between Mediator subunits, frequently corresponding to segments that have been conserved in evolution, as well as novel connections between the Cdk8 (Srb8-11) and head modules, the head and middle modules, and the middle and tail modules. The two-hybrid analysis, together with co-immunoprecipitation studies and gel filtration experiments revealed that Med31 (Soh1) is associated with the yeast Mediator that therefore comprises 25 subunits. Finally, analysis of the protein interaction network within the Drosophila Mediator middle module indicated that the structural organization of the Mediator complex is conserved from yeast to metazoans. The resulting interaction map provides a framework for delineating Mediator structure-function and investigating how Mediator function is regulated.
Collapse
Affiliation(s)
- Benjamin Guglielmi
- Service de Biochimie et Génétique Moléculaire, Bâtiment 144, CEA/Saclay, 91191 Gif-sur-Yvette Cedex, France
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Berthet C, Morera AM, Asensio MJ, Chauvin MA, Morel AP, Dijoud F, Magaud JP, Durand P, Rouault JP. CCR4-associated factor CAF1 is an essential factor for spermatogenesis. Mol Cell Biol 2004; 24:5808-20. [PMID: 15199137 PMCID: PMC480892 DOI: 10.1128/mcb.24.13.5808-5820.2004] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The CCR4-associated protein CAF1 has been demonstrated to play several roles in the control of transcription and of mRNA decay. To gain further insight into its physiological function, we generated CAF1-deficient mice. They are viable, healthy, and normal in appearance; however, mCAF1(-/-) male mice are sterile. The crossing of mCAF1(+/-) mice gave a Mendelian ratio of mCAF1(+/+), mCAF1(+/-), and mCAF1(-/-) pups, indicating that haploid mCAF1-deficient germ cells differentiate normally. The onset of the defect occurs during the first wave of spermatogenesis at 19 to 20 days after birth, during progression of pachytene spermatocytes to haploid spermatids and spermatozoa. Early disruption of spermatogenesis was evidenced by Sertoli cell vacuolization and tubular disorganization. The most mature germ cells were the most severely depleted, but progressively all germ cells were affected, giving Sertoli cell-only tubes, large interstitial spaces, and small testes. This phenotype could be linked to a defect(s) in germ cells and/or to inadequate Sertoli cell function, leading to seminiferous tubule disorganization and finally to a total disappearance of germ cells. The mCAF1-deficient mouse provides a new model of failed spermatogenesis in the adult that may be relevant to some cases of human male sterility.
Collapse
|
35
|
Qiu H, Hu C, Yoon S, Natarajan K, Swanson MJ, Hinnebusch AG. An array of coactivators is required for optimal recruitment of TATA binding protein and RNA polymerase II by promoter-bound Gcn4p. Mol Cell Biol 2004; 24:4104-17. [PMID: 15121833 PMCID: PMC400468 DOI: 10.1128/mcb.24.10.4104-4117.2004] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2003] [Revised: 12/05/2003] [Accepted: 02/23/2004] [Indexed: 11/20/2022] Open
Abstract
Wild-type transcriptional activation by Gcn4p is dependent on multiple coactivators, including SAGA, SWI/SNF, Srb mediator, CCR4-NOT, and RSC, which are all recruited by Gcn4p to its target promoters in vivo. It was not known whether these coactivators are required for assembly of the preinitiation complex (PIC) or for subsequent steps in the initiation or elongation phase of transcription. We find that mutations in subunits of these coactivators reduce the recruitment of TATA binding protein (TBP) and RNA polymerase II (Pol II) by Gcn4p at ARG1, ARG4, and SNZ1, implicating all five coactivators in PIC assembly at Gcn4p target genes. Recruitment of Pol II at SNZ1 and ARG1 was eliminated by mutations in TBP or by deletion of the TATA box, indicating that TBP binding is a prerequisite for Pol II recruitment by Gcn4p. However, several mutations in SAGA subunits and deletion of SRB10 had a greater impact on promoter occupancy of Pol II versus TBP, suggesting that SAGA and Srb mediator can promote Pol II binding independently of their stimulatory effects on TBP recruitment. Our results reveal an unexpected complexity in the cofactor requirements for the enhancement of PIC assembly by a single activator protein.
Collapse
Affiliation(s)
- Hongfang Qiu
- Laboratory of Gene Regulation and Development, National Institute of Child Health and Human Development, Bethesda, Maryland 20892, USA
| | | | | | | | | | | |
Collapse
|
36
|
Winkler GS, Albert TK, Dominguez C, Legtenberg YIA, Boelens R, Timmers HTM. An Altered-specificity Ubiquitin-conjugating Enzyme/Ubiquitin–Protein Ligase Pair. J Mol Biol 2004; 337:157-65. [PMID: 15001359 DOI: 10.1016/j.jmb.2004.01.031] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2003] [Revised: 01/14/2004] [Accepted: 01/14/2004] [Indexed: 11/16/2022]
Abstract
The human CCR4-NOT complex is a global regulator of RNA polymerase II transcription. Recently, we showed that the RING domain CNOT4 subunit contains intrinsic ubiquitin-protein ligase (E3) activity. Here we show that binding of the CNOT4 RING finger to the ubiquitin-conjugating enzyme (E2) UbcH5B is highly selective. To understand the basis for this interaction, we identified several basic residues of UbcH5B important for binding to CNOT4 by mutational analysis. Subsequently, we tested pairs of UbcH5B and CNOT4 mutants for restoration of interaction. Concomitant charge-alteration of E49 of CNOT4 and K63 of UbcH5B restored binding and re-created a functional enzyme pair, indicative of an electrostatic interaction between these residues. The corresponding amino acids in the yeast orthologues can also be used to create a similarly designed E2-E3 enzyme pair. These are the first examples of altered-specificity E2-E3 enzyme pairs and give further insight into how E2-E3 specificity is obtained.
Collapse
Affiliation(s)
- G Sebastiaan Winkler
- Department of Physiological Chemistry, University Medical Centre Utrecht, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| | | | | | | | | | | |
Collapse
|
37
|
Denis CL, Chen J. The CCR4-NOT complex plays diverse roles in mRNA metabolism. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2004; 73:221-50. [PMID: 12882519 DOI: 10.1016/s0079-6603(03)01007-9] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
It is increasingly clear that the synthesis of eukaryotic mRNA involves an integrated series of events involving large multisubunit protein complexes. The evolutionarily conserved CCR4-NOT complex of proteins has been found to be involved in several aspects of mRNA formation, including repression and activation of mRNA initiation, control of mRNA elongation, and the deadenylation and subsequent degradation of mRNA. Its roles in such diverse processes make the CCR4-NOT complex central to the regulation of mRNA metabolism. In this review we describe the CCR4-NOT complex, its constituents, and its organization, discussing both the well characterized yeast proteins and their higher eukaryotic orthologs. The known biochemical roles of the individual components and of the complex are described with particular emphasis on the two known functions of the complex, repression of TFIID action and deadenylation of mRNA. Finally, the functional diversity of the CCR4-NOT complex is related to its mediating responses from a number of cellular signaling pathways.
Collapse
Affiliation(s)
- Clyde L Denis
- Department of Biochemistry and Molecular Biology, University of New Hampshire, New Hampshire Durham, 03824, USA
| | | |
Collapse
|
38
|
Zwartjes CGM, Jayne S, van den Berg DLC, Timmers HTM. Repression of promoter activity by CNOT2, a subunit of the transcription regulatory Ccr4-not complex. J Biol Chem 2004; 279:10848-54. [PMID: 14707134 DOI: 10.1074/jbc.m311747200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The evolutionary conserved Ccr4-Not complex controls mRNA metabolism at multiple levels in eukaryotic cells. Genetic analysis of not mutants in yeast identifies a negative role in transcription, which is dependent on core promoter structure. To obtain direct support for this we targeted individual core subunits of the human Ccr4-Not complex to promoters in transient transfections of human cells. In this experimental setup we found that the CNOT2 and CNOT9(hRcd1/hCaf40) subunits act as repressors of reporter gene activity. Interestingly, recruitment of other Ccr4-Not subunits did not affect the reporter gene. The major repression function of CNOT2 is localized in a specialized protein motif, the Not-Box. This conserved motif is present in all CNOT2 orthologs and surprisingly also in CNOT3 orthologs. Repression by the Not-Box was sensitive to treatment with the histone deacetylase inhibitor trichostatin A. In addition, mutation of a canonical TATA-box enhanced repression. Our experiments show for the first time direct regulation of promoter activity by components of the Ccr4-Not complex.
Collapse
Affiliation(s)
- Carin G M Zwartjes
- Department of Physiological Chemistry, Stratenum STR 3.229, University Medical Center Utrecht, Universiteitsweg 100, Utrecht 3584 CG, The Netherlands
| | | | | | | |
Collapse
|
39
|
Collart MA, Timmers HTM. The eukaryotic Ccr4-not complex: a regulatory platform integrating mRNA metabolism with cellular signaling pathways? PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2004; 77:289-322. [PMID: 15196896 DOI: 10.1016/s0079-6603(04)77008-7] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Martine A Collart
- Department of Medical Biochemistry, CMU, 1 rue Michel Servet, 1211 Geneva 4, Switzerland
| | | |
Collapse
|
40
|
Affiliation(s)
- Stefan Björklund
- Department of Medical Biochemistry, Umeå University, S-901 87 Umeå, Sweden
| | | |
Collapse
|
41
|
Pereira LA, Klejman MP, Timmers HTM. Roles for BTAF1 and Mot1p in dynamics of TATA-binding protein and regulation of RNA polymerase II transcription. Gene 2003; 315:1-13. [PMID: 14557059 DOI: 10.1016/s0378-1119(03)00714-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Regulation of RNA polymerase II (pol II) transcription is a highly dynamic process requiring the coordinated interaction of an array of regulatory proteins. Central to this process is the TATA-binding protein (TBP), the key component of the multiprotein complex TFIID. Interaction of TBP with core promoters nucleates the assembly of the preinitiation complex and subsequent recruitment of pol II. Despite recent advances in our understanding of the dynamic nature of the pol II transcription apparatus, the dynamics of TBP function on pol II promoters has remained largely unexplored. Human BTAF1 (TAF(II)170/TAF-172) and its yeast ortholog, Mot1p, are evolutionarily conserved members of the SNF2-like family of ATPase proteins. Genetic identification of Mot1p as a repressor of pol II transcription was supported by findings that Mot1p and BTAF1 could dissociate TBP from TATA DNA complexes using the energy of ATP hydrolysis. Recent data have revealed new aspects of BTAF1 and Mot1p as positive regulators of TBP function in the pol II system and have described new observations relating to their molecular mechanism of action. We review these data in the context of previous findings with particular attention paid to how human BTAF1 and Mot1p may dynamically regulate TBP function on pol II promoters in cells.
Collapse
Affiliation(s)
- Lloyd A Pereira
- Laboratory for Physiological Chemistry, Division of Biomedical Genetics, UMC-U, Universiteitsweg 100, 3584 Utrecht CG, The Netherlands
| | | | | |
Collapse
|
42
|
Lewis BA, Reinberg D. The mediator coactivator complex: functional and physical roles in transcriptional regulation. J Cell Sci 2003; 116:3667-75. [PMID: 12917354 DOI: 10.1242/jcs.00734] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In vivo, the DNA is packed into chromatin and transcription is dependent upon activators that recruit other factors to reverse the repressive effects of chromatin. The response to activators requires additional factors referred to as coactivators. One such coactivator, mediator, is a multi-subunit complex capable of responding to different activators. It plays an key role in activation, bridging DNA-bound activators, the general transcriptional machinery, especially RNA polymerase II, and the core promoter. Its subunits are necessary for a variety of positive and negative regulatory processes and serve as the direct targets of activators themselves. In vivo and in vitro studies support various roles for mediator in transcription initiation, while structural studies demonstrate that it engages in multiple interactions with RNA polymerase II, and adopts conformations that are activator specific.
Collapse
Affiliation(s)
- Brian A Lewis
- Howard Hughes Medical Institute, Division of Nucleic Acids Enzymology, Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | | |
Collapse
|
43
|
Flanagan J, Healey S, Young J, Whitehall V, Chenevix-Trench G. Analysis of the transcription regulator, CNOT7, as a candidate chromosome 8 tumor suppressor gene in colorectal cancer. Int J Cancer 2003; 106:505-509. [PMID: 12845644 DOI: 10.1002/ijc.11264] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Loss of heterozygosity (LOH) on the short arm of chromosome 8 occurs at high frequencies in many tumor types, including colorectal carcinoma. We have previously used microcell-mediated chromosome transfer (MMCT) to map an approximately 7.7 Mb colorectal cancer suppressor region (CRCSR) at 8p22-23.1. We have now taken a candidate gene approach to identify the putative tumor suppressor gene located within the CRCSR. CNOT7 encodes a subunit of the CCR4-Not transcription complex and is located at 8p22. We showed that CNOT7 is expressed in normal colonic mucosa and in colonic crypt cells, as well as in colorectal cell lines and primary tumors. We assembled a panel of 88 primary colorectal tumors comprising 20 MSI-high (high microsatellite instability), 19 MSI-low and 49 MSS (microsatellite stable) tumors for mutation analysis of the CNOT7 gene. Denaturing high-performance liquid chromatography (DHPLC) analysis of the entire coding region of the CNOT7 gene revealed only one somatic missense mutation in an MSS tumor. The rarity of somatic mutations in CNOT7, and its expression in primary colorectal tumors and cell lines, suggests that CNOT7 is not the target tumor suppressor gene in the 8p22-23.1 CRCSR.
Collapse
MESH Headings
- Carcinoma, Squamous Cell/genetics
- Chromatin Assembly Factor-1
- Chromatography, High Pressure Liquid
- Chromosomal Proteins, Non-Histone
- Chromosome Deletion
- Chromosome Mapping
- Chromosomes, Human, Pair 8/genetics
- Colon/metabolism
- Colorectal Neoplasms/genetics
- DNA Mutational Analysis
- DNA Primers/chemistry
- DNA, Neoplasm/analysis
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Exons/genetics
- Gene Expression Regulation, Neoplastic
- Genes, Tumor Suppressor
- Humans
- Loss of Heterozygosity
- Microsatellite Repeats
- RNA, Neoplasm/analysis
- Reverse Transcriptase Polymerase Chain Reaction
- Transcription, Genetic
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- James Flanagan
- The Queensland Institute of Medical Research, Royal Brisbane Hospital, Herston, Queensland, Australia
| | - Sue Healey
- The Queensland Institute of Medical Research, Royal Brisbane Hospital, Herston, Queensland, Australia
| | - Joanne Young
- Royal Brisbane Hospital Department of Pathology, Herston, Queensland, Australia
| | - Vicki Whitehall
- The Queensland Institute of Medical Research, Royal Brisbane Hospital, Herston, Queensland, Australia
| | - Georgia Chenevix-Trench
- The Queensland Institute of Medical Research, Royal Brisbane Hospital, Herston, Queensland, Australia
| |
Collapse
|
44
|
Abstract
The Ccr4-Not complex is a global regulator of gene expression that is conserved from yeast to human. It is a large complex that in the yeast Saccharmyces cerevisiae exists in two prominent forms of 0.9-1.2 and 1.9-2 MDa, and consists of at least nine core subunits: the five Not proteins (Not1p to Not5p), Caf1p, Caf40p, Caf130p and Ccr4p. It was initially described to be a global regulator of transcription, based upon the observation that the levels of many transcripts were increased or decreased in mutants. However, the recent finding that Caf1p and Ccr4p encode the major yeast deadenylase has suggested that this complex may additionally play a role in RNA degradation. In this review, the events that led to the identification of the Ccr4-Not complex are described and the elements that clearly demonstrate that the Ccr4-Not complex regulates many different cellular functions are discussed, including RNA degradation and transcription initiation. The evidence points to a role for the Ccr4-Not complex as a regulatory platform that senses nutrient levels and stress.
Collapse
Affiliation(s)
- Martine A Collart
- Department of Medical Biochemistry, University of Geneva Medical School, 1211 4 Geneva, Switzerland
| |
Collapse
|
45
|
Swanson MJ, Qiu H, Sumibcay L, Krueger A, Kim SJ, Natarajan K, Yoon S, Hinnebusch AG. A multiplicity of coactivators is required by Gcn4p at individual promoters in vivo. Mol Cell Biol 2003; 23:2800-20. [PMID: 12665580 PMCID: PMC152555 DOI: 10.1128/mcb.23.8.2800-2820.2003] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2002] [Revised: 10/22/2002] [Accepted: 01/15/2003] [Indexed: 11/20/2022] Open
Abstract
Transcriptional activators interact with multisubunit coactivators that modify chromatin structure or recruit the general transcriptional machinery to their target genes. Budding yeast cells respond to amino acid starvation by inducing an activator of amino acid biosynthetic genes, Gcn4p. We conducted a comprehensive analysis of viable mutants affecting known coactivator subunits from the Saccharomyces Genome Deletion Project for defects in activation by Gcn4p in vivo. The results confirm previous findings that Gcn4p requires SAGA, SWI/SNF, and SRB mediator (SRB/MED) and identify key nonessential subunits of these complexes required for activation. Among the numerous histone acetyltransferases examined, only that present in SAGA, Gcn5p, was required by Gcn4p. We also uncovered a dependence on CCR4-NOT, RSC, and the Paf1 complex. In vitro binding experiments suggest that the Gcn4p activation domain interacts specifically with CCR4-NOT and RSC in addition to SAGA, SWI/SNF, and SRB/MED. Chromatin immunoprecipitation experiments show that Mbf1p, SAGA, SWI/SNF, SRB/MED, RSC, CCR4-NOT, and the Paf1 complex all are recruited by Gcn4p to one of its target genes (ARG1) in vivo. We observed considerable differences in coactivator requirements among several Gcn4p-dependent promoters; thus, only a subset of the array of coactivators that can be recruited by Gcn4p is required at a given target gene in vivo.
Collapse
Affiliation(s)
- Mark J Swanson
- Laboratory of Gene Regulation and Development, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
NC2 is a heterodimeric regulator of transcription that plays both positive and negative roles in vivo. Here we show that the alpha and beta subunits of yeast NC2 are not always associated in a tight complex. Rather, their association is regulated, in particular by glucose depletion. Indeed, stable NC2 alpha/beta complexes can only be purified from cells after the diauxic shift when glucose has been depleted from the growth medium. In vivo, the presence of NC2 alpha, but not NC2 beta, at promoters generally correlates with the presence of TBP and transcriptional activity. In contrast, increased presence of NC2 beta relative to TBP correlates with transcriptional repression. NC2 is regulated by phosphorylation. We found that mutation of genes encoding casein kinase II (CKII) subunits as well as potential CKII phosphorylation sites in NC2 alpha and beta affected gene repression. Interestingly, NC2-dependent repression in the phosphorylation site mutants was only perturbed in high glucose when NC2 beta and NC2 alpha are not associated, but not after the diauxic shift when NC2 alpha and beta form stable complexes. Thus, the separation of NC2 alpha and beta function indicated by these mutants also supports the existence of multiple NC2 complexes with different functions in transcription.
Collapse
|
47
|
Geisberg JV, Moqtaderi Z, Kuras L, Struhl K. Mot1 associates with transcriptionally active promoters and inhibits association of NC2 in Saccharomyces cerevisiae. Mol Cell Biol 2002; 22:8122-34. [PMID: 12417716 PMCID: PMC134071 DOI: 10.1128/mcb.22.23.8122-8134.2002] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mot1 stably associates with the TATA-binding protein (TBP), and it can dissociate TBP from DNA in an ATP-dependent manner. Mot1 acts as a negative regulator of TBP function in vitro, but genome-wide transcriptional profiling suggests that Mot1 positively affects about 10% of yeast genes and negatively affects about 5%. Unexpectedly, Mot1 associates with active RNA polymerase (Pol) II and III promoters, and it is rapidly recruited in response to activator proteins. At Pol II promoters, Mot1 association requires TBP and is strongly correlated with the level of TBP occupancy. However, the Mot1/TBP occupancy ratio at both Mot1-stimulated and Mot1-inhibited promoters is high relative to that at typical promoters, strongly suggesting that Mot1 directly affects transcriptional activity in a positive or negative manner, depending on the gene. The effect of Mot1 at the HIS3 promoter region depends on the functional quality and DNA sequence of the TATA element. Unlike TBP, Mot1 association is largely independent of the Srb4 component of Pol II holoenzyme, and it also can occur downstream of the promoter region. Mot1 removes TBP, but not TBP complexes or preinitiation complexes, from inappropriate genomic locations. Mot1 inhibits the association of NC2 with promoters, suggesting that the TBP-Mot1 and TBP-NC2 complexes compete for promoter occupancy in vivo. We speculate that Mot1 does not form transcriptionally active TBP complexes but rather regulates transcription in vivo by modulating the activity of free TBP and/or by affecting promoter DNA structure.
Collapse
Affiliation(s)
- Joseph V Geisberg
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
48
|
Cang Y, Prelich G. Direct stimulation of transcription by negative cofactor 2 (NC2) through TATA-binding protein (TBP). Proc Natl Acad Sci U S A 2002; 99:12727-32. [PMID: 12237409 PMCID: PMC130528 DOI: 10.1073/pnas.202236699] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Negative cofactor 2 (NC2) is an evolutionarily conserved transcriptional regulator that was originally identified as an inhibitor of basal transcription. Its inhibitory mechanism has been extensively characterized; NC2 binds to the TATA-binding protein (TBP), blocking the recruitment of TFIIA and TFIIB, and thereby inhibiting preinitiation complex assembly. NC2 is also required for expression of many yeast genes in vivo and stimulates TATA-less transcription in a Drosophila in vitro transcription system, but the mechanism responsible for the NC2-mediated stimulation of transcription is not understood. Here we establish that yeast NC2 can directly stimulate activated transcription from TATA-driven promoters both in vivo and in vitro, and moreover that this positive role requires the same surface of TBP that mediates the NC2 repression activity. On the basis of these results, we propose a model to explain how NC2 can mediate both repression and activation through the same surface of TBP.
Collapse
Affiliation(s)
- Yong Cang
- Department of Molecular Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | | |
Collapse
|
49
|
Deluen C, James N, Maillet L, Molinete M, Theiler G, Lemaire M, Paquet N, Collart MA. The Ccr4-not complex and yTAF1 (yTaf(II)130p/yTaf(II)145p) show physical and functional interactions. Mol Cell Biol 2002; 22:6735-49. [PMID: 12215531 PMCID: PMC134042 DOI: 10.1128/mcb.22.19.6735-6749.2002] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Saccharomyces cerevisiae Ccr4-Not complex is a global regulator of transcription that is thought to regulate TATA binding protein (TBP) function at certain promoters specifically. In this paper, we show interactions between the essential domain of Not1p, which interacts with Not4p and Not5p, and the N-terminal domain of yTAF1. We isolated a temperature-sensitive nonsense allele of TAF1, taf1-4, which is synthetically lethal at the permissive temperature when combined with not4 and not5 mutants and which produces high levels of a C-terminally truncated yTAF1 derivative. Overexpression of C-terminally truncated yTAF1 is toxic in not4 or not5 mutants, whereas overexpression of full-length yTAF1 suppresses not4. Furthermore, mutations in the autoinhibitory N-terminal TAND domain of yTAF1 suppress not5, and the overexpression of similar mutants does not suppress not4. We find that, like Not5p, yTAF1 acts as a repressor of stress response element-dependent transcription. Finally, we have evidence for stress-regulated occupancy of promoter DNA by Not5p and for Not5p-dependent regulation of yTAF1 association with promoter DNA. Taken together with our finding that Not1p copurifies with glutathione S-transferase-yTaf1 in large complexes, these results provide the first molecular evidence that the Ccr4-Not complex might interact with yTAF1 to regulate its association at promoters, a function that might in turn regulate the autoinhibitory N-terminal domain of yTAF1.
Collapse
Affiliation(s)
- Cécile Deluen
- Département de Biochimie Médicale, CMU, 1211 Geneva 4, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Aoki T, Okada N, Wakamatsu T, Tamura TA. TBP-interacting protein 120B, which is induced in relation to myogenesis, binds to NOT3. Biochem Biophys Res Commun 2002; 296:1097-103. [PMID: 12207886 DOI: 10.1016/s0006-291x(02)02031-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
TBP-interacting protein 120 (TIP120) has been identified by TBP-mediated affinity screening. Classical TIP120, TIP120A, which functions as a transcriptional activator, is expressed ubiquitously whereas TIP120B is specifically expressed in muscle tissues. We found that TIP120B gene was induced in C2C12 myoblasts when these cells differentiated into myotubes, whereas TIP120A gene expression was down-regulated. Whole-mount in situ hybridization revealed that TIP120B mRNA was concentrated in limb buds of mouse embryos. TIP120B is thus thought to be a myogenesis-responding gene. We searched for TIP120B-binding proteins by yeast two-hybrid screening and identified NOT3. NOT3, a constituent of CCR4-NOT complex, is suggested to be involved in global gene regulation via interaction with TBP. The human NOT3 (hNOT3L), which we identified, has an extra 144 amino acids (AAs) at the C-terminus of a classical NOT3. GST pull-down and yeast two-hybrid assays demonstrated that hNOT3L is associated with TIP120B but not with TIP120A. A hNOT3L-specific C-terminal region of 92 AAs was assigned as a TIP120B-interacting domain. The N-terminus of 209 AAs of TIP120B was responsible for this binding. TIP120B presumably affects tissue-specific transcriptional regulation via interaction with NOT3.
Collapse
Affiliation(s)
- Tsutomu Aoki
- Department of Biology, Faculty of Science, Chiba University, 1-33 Yayoicho, Inage-ku, 263-8522, Chiba, Japan
| | | | | | | |
Collapse
|