1
|
Sumioka A, Usuki F, Fujimura M. Development of a sensor to detect methylmercury toxicity. Sci Rep 2024; 14:21832. [PMID: 39294331 PMCID: PMC11411131 DOI: 10.1038/s41598-024-72788-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 09/10/2024] [Indexed: 09/20/2024] Open
Abstract
Methylmercury (MeHg) is a well-known neurotoxicant that induces various cellular functions depending on cellular- and developmental-specific vulnerabilities. MeHg has a high affinity for selenol and thiol groups, thus impairing the antioxidant system. Such affinity characteristics of MeHg led us to develop sensor vectors to assess MeHg toxicity. In this study, MeHg-mediated defects in selenocysteine (Sec) incorporation were demonstrated using thioredoxin reductase 1 cDNA fused with the hemagglutinin tag sequence at the C-terminus. Taking advantage of such MeHg-mediated defects in Sec incorporation, a cDNA encoding luciferase with a Sec substituted for cysteine-491 was constructed. This construct showed MeHg-induced decreases in signaling in a dose-dependent manner. To directly detect truncated luciferase under MeHg exposure, we further constructed a new sensor vector fused with a target for proteasomal degradation. However, this construct was inadequate because of the low rate of Sec insertion, even in the absence of MeHg. Finally, a Krab transcriptional suppressor fused with Sec was constructed and assessed to demonstrate MeHg-dependent increases in signal intensity. We confirmed that the vector responded specifically and in a dose-dependent manner to MeHg in cultured cerebellar granule cells. This vector is expected to allow monitoring of MeHg-specific toxicity via spatial and temporal imaging.
Collapse
Affiliation(s)
- Akio Sumioka
- Department of Basic Medical Sciences, National Institute for Minamata Disease, 4058-18 Hama, Minamata, Kumamoto, 867-0008, Japan.
| | - Fusako Usuki
- Division of Neuroimmunology, Joint Research Center for Human Retrovirus Infection, Kagoshima University, Kagoshima, 890-8544, Japan
| | - Masatake Fujimura
- Department of Basic Medical Sciences, National Institute for Minamata Disease, 4058-18 Hama, Minamata, Kumamoto, 867-0008, Japan
| |
Collapse
|
2
|
Radrizzani S, Kudla G, Izsvák Z, Hurst LD. Selection on synonymous sites: the unwanted transcript hypothesis. Nat Rev Genet 2024; 25:431-448. [PMID: 38297070 DOI: 10.1038/s41576-023-00686-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/04/2023] [Indexed: 02/02/2024]
Abstract
Although translational selection to favour codons that match the most abundant tRNAs is not readily observed in humans, there is nonetheless selection in humans on synonymous mutations. We hypothesize that much of this synonymous site selection can be explained in terms of protection against unwanted RNAs - spurious transcripts, mis-spliced forms or RNAs derived from transposable elements or viruses. We propose not only that selection on synonymous sites functions to reduce the rate of creation of unwanted transcripts (for example, through selection on exonic splice enhancers and cryptic splice sites) but also that high-GC content (but low-CpG content), together with intron presence and position, is both particular to functional native mRNAs and used to recognize transcripts as native. In support of this hypothesis, transcription, nuclear export, liquid phase condensation and RNA degradation have all recently been shown to promote GC-rich transcripts and suppress AU/CpG-rich ones. With such 'traps' being set against AU/CpG-rich transcripts, the codon usage of native genes has, in turn, evolved to avoid such suppression. That parallel filters against AU/CpG-rich transcripts also affect the endosomal import of RNAs further supports the unwanted transcript hypothesis of synonymous site selection and explains the similar design rules that have enabled the successful use of transgenes and RNA vaccines.
Collapse
Affiliation(s)
- Sofia Radrizzani
- Milner Centre for Evolution, Department of Life Sciences, University of Bath, Bath, UK
- Milner Therapeutics Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | - Grzegorz Kudla
- MRC Human Genetics Unit, Institute for Genetics and Cancer, The University of Edinburgh, Edinburgh, UK
| | - Zsuzsanna Izsvák
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Society, Berlin, Germany
| | - Laurence D Hurst
- Milner Centre for Evolution, Department of Life Sciences, University of Bath, Bath, UK.
| |
Collapse
|
3
|
Luha R, Rana V, Vainstein A, Kumar V. Nonsense-mediated mRNA decay pathway in plants under stress: general gene regulatory mechanism and advances. PLANTA 2024; 259:51. [PMID: 38289504 DOI: 10.1007/s00425-023-04317-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 12/23/2023] [Indexed: 02/01/2024]
Abstract
MAIN CONCLUSION Nonsense-mediated mRNA decay in eukaryotes is vital to cellular homeostasis. Further knowledge of its putative role in plant RNA metabolism under stress is pivotal to developing fitness-optimizing strategies. Nonsense-mediated mRNA decay (NMD), part of the mRNA surveillance pathway, is an evolutionarily conserved form of gene regulation in all living organisms. Degradation of mRNA-bearing premature termination codons and regulation of physiological RNA levels highlight NMD's role in shaping the cellular transcriptome. Initially regarded as purely a tool for cellular RNA quality control, NMD is now considered to mediate various aspects of plant developmental processes and responses to environmental changes. Here we offer a basic understanding of NMD in eukaryotes by explaining the concept of premature termination codon recognition and NMD complex formation. We also provide a detailed overview of the NMD mechanism and its role in gene regulation. The potential role of effectors, including ABCE1, in ribosome recycling during the translation process is also explained. Recent reports of alternatively spliced variants of corresponding genes targeted by NMD in Arabidopsis thaliana are provided in tabular format. Detailed figures are also provided to clarify the NMD concept in plants. In particular, accumulating evidence shows that NMD can serve as a novel alternative strategy for genetic manipulation and can help design RNA-based therapies to combat stress in plants. A key point of emphasis is its function as a gene regulatory mechanism as well as its dynamic regulation by environmental and developmental factors. Overall, a detailed molecular understanding of the NMD mechanism can lead to further diverse applications, such as improving cellular homeostasis in living organisms.
Collapse
Affiliation(s)
- Rashmita Luha
- Department of Botany, School for Basic Sciences, Central University of Punjab, Bathinda, India
- Centre for Biosystems Science and Engineering, Indian Institute of Science Bangalore, Bangaluru, India
| | - Varnika Rana
- Department of Botany, School for Basic Sciences, Central University of Punjab, Bathinda, India
| | - Alexander Vainstein
- Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Vinay Kumar
- Department of Botany, School for Basic Sciences, Central University of Punjab, Bathinda, India.
| |
Collapse
|
4
|
Aranega AE, Franco D. Posttranscriptional Regulation by Proteins and Noncoding RNAs. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1441:313-339. [PMID: 38884719 DOI: 10.1007/978-3-031-44087-8_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Posttranscriptional regulation comprises those mechanisms occurring after the initial copy of the DNA sequence is transcribed into an intermediate RNA molecule (i.e., messenger RNA) until such a molecule is used as a template to generate a protein. A subset of these posttranscriptional regulatory mechanisms essentially are destined to process the immature mRNA toward its mature form, conferring the adequate mRNA stability, providing the means for pertinent introns excision, and controlling mRNA turnover rate and quality control check. An additional layer of complexity is added in certain cases, since discrete nucleotide modifications in the mature RNA molecule are added by RNA editing, a process that provides large mature mRNA diversity. Moreover, a number of posttranscriptional regulatory mechanisms occur in a cell- and tissue-specific manner, such as alternative splicing and noncoding RNA-mediated regulation. In this chapter, we will briefly summarize current state-of-the-art knowledge of general posttranscriptional mechanisms, while major emphases will be devoted to those tissue-specific posttranscriptional modifications that impact on cardiac development and congenital heart disease.
Collapse
Affiliation(s)
- Amelia E Aranega
- Cardiovascular Research Group, Department of Experimental Biology, University of Jaén, Jaén, Spain
| | - Diego Franco
- Cardiovascular Research Group, Department of Experimental Biology, University of Jaén, Jaén, Spain.
| |
Collapse
|
5
|
Pacelli C, Rossi A, Milella M, Colombo T, Le Pera L. RNA-Based Strategies for Cancer Therapy: In Silico Design and Evaluation of ASOs for Targeted Exon Skipping. Int J Mol Sci 2023; 24:14862. [PMID: 37834310 PMCID: PMC10573945 DOI: 10.3390/ijms241914862] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
Precision medicine in oncology has made significant progress in recent years by approving drugs that target specific genetic mutations. However, many cancer driver genes remain challenging to pharmacologically target ("undruggable"). To tackle this issue, RNA-based methods like antisense oligonucleotides (ASOs) that induce targeted exon skipping (ES) could provide a promising alternative. In this work, a comprehensive computational procedure is presented, focused on the development of ES-based cancer treatments. The procedure aims to produce specific protein variants, including inactive oncogenes and partially restored tumor suppressors. This novel computational procedure encompasses target-exon selection, in silico prediction of ES products, and identification of the best candidate ASOs for further experimental validation. The method was effectively employed on extensively mutated cancer genes, prioritized according to their suitability for ES-based interventions. Notable genes, such as NRAS and VHL, exhibited potential for this therapeutic approach, as specific target exons were identified and optimal ASO sequences were devised to induce their skipping. To the best of our knowledge, this is the first computational procedure that encompasses all necessary steps for designing ASO sequences tailored for targeted ES, contributing with a versatile and innovative approach to addressing the challenges posed by undruggable cancer driver genes and beyond.
Collapse
Affiliation(s)
- Chiara Pacelli
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, 00185 Rome, Italy
| | - Alice Rossi
- Section of Oncology, Department of Medicine, University of Verona-School of Medicine and Verona University Hospital Trust, 37134 Verona, Italy
| | - Michele Milella
- Section of Oncology, Department of Medicine, University of Verona-School of Medicine and Verona University Hospital Trust, 37134 Verona, Italy
| | - Teresa Colombo
- Institute of Molecular Biology and Pathology (IBPM), National Research Council (CNR), 00185 Rome, Italy
| | - Loredana Le Pera
- Core Facilities, Italian National Institute of Health (ISS), 00161 Rome, Italy
| |
Collapse
|
6
|
de la Peña JB, Chase R, Kunder N, Smith PR, Lou TF, Stanowick A, Suresh P, Shukla T, Butcher SE, Price TJ, Campbell ZT. Inhibition of Nonsense-Mediated Decay Induces Nociceptive Sensitization through Activation of the Integrated Stress Response. J Neurosci 2023; 43:2921-2933. [PMID: 36894318 PMCID: PMC10124962 DOI: 10.1523/jneurosci.1604-22.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 02/20/2023] [Accepted: 03/01/2023] [Indexed: 03/11/2023] Open
Abstract
RNA stability is meticulously controlled. Here, we sought to determine whether an essential post-transcriptional regulatory mechanism plays a role in pain. Nonsense-mediated decay (NMD) safeguards against translation of mRNAs that harbor premature termination codons and controls the stability of ∼10% of typical protein-coding mRNAs. It hinges on the activity of the conserved kinase SMG1. Both SMG1 and its target, UPF1, are expressed in murine DRG sensory neurons. SMG1 protein is present in both the DRG and sciatic nerve. Using high-throughput sequencing, we examined changes in mRNA abundance following inhibition of SMG1. We confirmed multiple NMD stability targets in sensory neurons, including ATF4. ATF4 is preferentially translated during the integrated stress response (ISR). This led us to ask whether suspension of NMD induces the ISR. Inhibition of NMD increased eIF2-α phosphorylation and reduced the abundance of the eIF2-α phosphatase constitutive repressor of eIF2-α phosphorylation. Finally, we examined the effects of SMG1 inhibition on pain-associated behaviors. Peripheral inhibition of SMG1 results in mechanical hypersensitivity in males and females that persists for several days and priming to a subthreshold dose of PGE2. Priming was fully rescued by a small-molecule inhibitor of the ISR. Collectively, our results indicate that suspension of NMD promotes pain through stimulation of the ISR.SIGNIFICANCE STATEMENT Nociceptors undergo long-lived changes in their plasticity which may contribute to chronic pain. Translational regulation has emerged as a dominant mechanism in pain. Here, we investigate the role of a major pathway of RNA surveillance called nonsense-mediated decay (NMD). Modulation of NMD is potentially beneficial for a broad array of diseases caused by frameshift or nonsense mutations. Our results suggest that inhibition of the rate-limiting step of NMD drives behaviors associated with pain through activation of the ISR. This work reveals complex interconnectivity between RNA stability and translational regulation and suggests an important consideration in harnessing the salubrious benefits of NMD disruption.
Collapse
Affiliation(s)
- June Bryan de la Peña
- Department of Anesthesiology, University of Wisconsin-Madison, Madison, Wisconsin 53792
| | - Rebecca Chase
- Department of Biological Sciences, University of Texas at Dallas, Richardson, Texas 75080
| | - Nikesh Kunder
- Department of Biological Sciences, University of Texas at Dallas, Richardson, Texas 75080
| | - Patrick R Smith
- Department of Anesthesiology, University of Wisconsin-Madison, Madison, Wisconsin 53792
| | - Tzu-Fang Lou
- Department of Biological Sciences, University of Texas at Dallas, Richardson, Texas 75080
| | - Alexander Stanowick
- Department of Biological Sciences, University of Texas at Dallas, Richardson, Texas 75080
| | - Prarthana Suresh
- Department of Biological Sciences, University of Texas at Dallas, Richardson, Texas 75080
| | - Tarjani Shukla
- Department of Anesthesiology, University of Wisconsin-Madison, Madison, Wisconsin 53792
| | - Samuel E Butcher
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53792
| | - Theodore J Price
- Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, Texas 75080
- Department of Neuroscience, University of Texas at Dallas, Richardson, Texas 75080
| | - Zachary T Campbell
- Department of Anesthesiology, University of Wisconsin-Madison, Madison, Wisconsin 53792
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53792
| |
Collapse
|
7
|
Li W, Guo H. De novo truncating variants of TRIM8 and atypical neuro-renal syndrome: a case report and literature review. Ital J Pediatr 2023; 49:46. [PMID: 37061734 PMCID: PMC10105407 DOI: 10.1186/s13052-023-01453-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 04/05/2023] [Indexed: 04/17/2023] Open
Abstract
BACKGROUND The TRIM8 gene encodes a protein that participates in various biological processes. TRIM8 variants can lead to early termination of protein translation, which can cause a rare disease called neuro-renal syndrome. This syndrome is characterized by epilepsy, psychomotor retardation, and focal segmental glomerulosclerosis. However, we found that some patients may not present the above typical triad, and the reason may be related to their variant sites. CASE PRESENTATION We report a case of a 6-year-old boy with nephrotic-range proteinuria as the first prominent manifestation of TRIM8 variant. He had stage 3 chronic kidney disease at the time of presentation, specific facial features, and a neurogenic bladder. He had not experienced seizures previously. There were no apparent abnormalities in his growth, intelligence, or motor development. The results of whole exome sequencing showed a TRIM8 variant. Renal biopsy revealed focal segmental glomerulosclerosis and renal tubular cystic dilatation. He did not respond to hormone and angiotensin-converting enzyme inhibitor treatment; however, the symptoms of neurogenic bladder were relieved after treatment with Solifenacin. CONCLUSION In this case, renal disease was the prominent manifestation; the patient had no other obvious neurological symptoms except a neurogenic bladder. Notably, the variant site is the closest to the C-terminal to date. Based on the analysis of previously reported cases, we found that as the TRIM8 variant became closer to the C-terminal, the renal lesions became more prominent, and there were fewer neurologic lesions. Our findings provide a new understanding of neuro-renal syndrome caused by TRIM8 variant. Patients may only have kidney disease as a prominent manifestation. At the same time, we found that we should also pay attention to the eye lesions of these patients. Therefore, gene analysis is helpful in identifying the etiology and guiding the prognosis of patients with hormone-resistant proteinuria. We suggest that TRIM8 should be included in gene panels designed for the genetic evaluation of hormone-resistant proteinuria.
Collapse
Affiliation(s)
- Wei Li
- Department of Child Health Care, West China Second University Hospital, Sichuan University, No. 20, Section 3, Renmin South Road, Wuhou District, Chengdu, 610044, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, 610044, China
| | - Hui Guo
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, 610044, China.
- Department of Pediatric Nephrology, West China Second University Hospital, Sichuan University, No. 20, Section 3, Renmin South Road, Wuhou District, Chengdu, 610044, Sichuan, China.
| |
Collapse
|
8
|
Cymerman MA, Saul H, Farhi R, Vexler K, Gottlieb D, Berezin I, Shaul O. Plant transcripts with long or structured upstream open reading frames in the NDL2 5' UTR can escape nonsense-mediated mRNA decay in a reinitiation-independent manner. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:91-103. [PMID: 36169317 DOI: 10.1093/jxb/erac385] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Many eukaryotic transcripts contain upstream open reading frames (uORFs). Translated uORFs can inhibit the translation of main ORFs by imposing the need for reinitiation of translation. Translated uORFs can also lead to transcript degradation by the nonsense-mediated mRNA decay (NMD) pathway. In mammalian cells, translated uORFs were shown to target their transcripts to NMD if the uORFs were long (>23-32 amino acids), structured, or inhibit reinitiation. Reinitiation was shown to rescue uORF-containing mammalian transcripts from NMD. Much less is known about the significance of the length, structure, and reinitiation efficiency of translated uORFs for NMD targeting in plants. Although high-throughput studies suggested that uORFs do not globally reduce plant transcript abundance, it was not clear whether this was due to NMD-escape-permitting parameters of uORF recognition, length, structure, or reinitiation efficiency. We expressed in Arabidopsis reporter genes that included NDL2 5' untranslated region and various uORFs with modulation of the above parameters. We found that transcripts can escape NMD in plants even when they include efficiently translated uORFs up to 70 amino acids long, or structured uORFs, in the absence of reinitiation. These data highlight an apparent difference between the rules that govern the exposure of uORF-containing transcripts to NMD in mammalian and plant cells.
Collapse
Affiliation(s)
- Miryam A Cymerman
- The Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Helen Saul
- The Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Ronit Farhi
- The Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Karina Vexler
- The Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Dror Gottlieb
- The Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Irina Berezin
- The Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Orit Shaul
- The Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| |
Collapse
|
9
|
Athanasopoulou K, Adamopoulos PG, Scorilas A. Structural characterization and expression analysis of novel MAPK1 transcript variants with the development of a multiplexed targeted nanopore sequencing approach. Int J Biochem Cell Biol 2022; 150:106272. [PMID: 35878809 DOI: 10.1016/j.biocel.2022.106272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 06/17/2022] [Accepted: 07/21/2022] [Indexed: 11/27/2022]
Abstract
Mitogen-activated protein kinases (MAPKs) represent a protein family firmly involved in many signaling cascades, regulating a vast spectrum of stimulated cellular processes. Studies have shown that alternatively spliced isoforms of MAPKs play a crucial role in determining the desired cell fate in response to specific stimulations. Although the implication of most MAPKs transcript variants in the MAPK signaling cascades has been clarified, the transcriptional profile of a pivotal member, MAPK1, has not been investigated for the existence of additional isoforms. In the current study we developed and implemented targeted long-read and short-read sequencing approaches to identify novel MAPK1 splice variants. The combination of nanopore sequencing and NGS enabled the implementation of a long-read polishing pipeline using error-rate correction algorithms, which empowered the high accuracy of the results and increased the sequencing efficiency. The utilized multiplexing option in the nanopore sequencing approach allowed not only the identification of novel MAPK1 mRNAs, but also elucidated their expression profile in multiple human malignancies and non-cancerous cell lines. Our study highlights for the first time the existence of ten previously undescribed MAPK1 mRNAs (MAPK1 v.3 - v.12) and evaluates their relative expression levels in comparison to the main MAPK1 v.1. The optimization and employment of qPCR assays revealed that MAPK1 v.3 - v.12 can be quantified in a wide spectrum of human cell lines with notable specificity. Finally, our findings suggest that the novel protein-coding mRNAs are highly expected to participate in the regulation of MAPK pathways, demonstrating differential localizations and functionalities.
Collapse
Affiliation(s)
- Konstantina Athanasopoulou
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Panagiotis G Adamopoulos
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece.
| |
Collapse
|
10
|
Zaheri B, Morse D. An overview of transcription in dinoflagellates. Gene 2022; 829:146505. [PMID: 35447242 DOI: 10.1016/j.gene.2022.146505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 02/18/2022] [Accepted: 04/14/2022] [Indexed: 11/25/2022]
Abstract
Dinoflagellates are a vital diverse family of unicellular algae widespread in various aquatic environments. Typically large genomes and permanently condensed chromosomes without histones make these organisms unique among eukaryotes in terms of chromatin structure and gene expression. Genomic and transcriptomic sequencing projects have provided new insight into the genetic foundation of dinoflagellate behaviors. Genes in tandem arrays, trans-splicing of mRNAs and lower levels of transcriptional regulation compared to other eukaryotes all contribute to the differences seen. Here we present a general overview of transcription in dinoflagellates based on previously described work.
Collapse
Affiliation(s)
- Bahareh Zaheri
- Institut de Recherche en Biologie Végétale, Département de Sciences Biologiques, 4101 Sherbrooke est, Université de Montréal, Montréal H1X 2B2, Canada
| | - David Morse
- Institut de Recherche en Biologie Végétale, Département de Sciences Biologiques, 4101 Sherbrooke est, Université de Montréal, Montréal H1X 2B2, Canada.
| |
Collapse
|
11
|
Keegan NP, Wilton SD, Fletcher S. Analysis of Pathogenic Pseudoexons Reveals Novel Mechanisms Driving Cryptic Splicing. Front Genet 2022; 12:806946. [PMID: 35140743 PMCID: PMC8819188 DOI: 10.3389/fgene.2021.806946] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/09/2021] [Indexed: 12/16/2022] Open
Abstract
Understanding pre-mRNA splicing is crucial to accurately diagnosing and treating genetic diseases. However, mutations that alter splicing can exert highly diverse effects. Of all the known types of splicing mutations, perhaps the rarest and most difficult to predict are those that activate pseudoexons, sometimes also called cryptic exons. Unlike other splicing mutations that either destroy or redirect existing splice events, pseudoexon mutations appear to create entirely new exons within introns. Since exon definition in vertebrates requires coordinated arrangements of numerous RNA motifs, one might expect that pseudoexons would only arise when rearrangements of intronic DNA create novel exons by chance. Surprisingly, although such mutations do occur, a far more common cause of pseudoexons is deep-intronic single nucleotide variants, raising the question of why these latent exon-like tracts near the mutation sites have not already been purged from the genome by the evolutionary advantage of more efficient splicing. Possible answers may lie in deep intronic splicing processes such as recursive splicing or poison exon splicing. Because these processes utilize intronic motifs that benignly engage with the spliceosome, the regions involved may be more susceptible to exonization than other intronic regions would be. We speculated that a comprehensive study of reported pseudoexons might detect alignments with known deep intronic splice sites and could also permit the characterisation of novel pseudoexon categories. In this report, we present and analyse a catalogue of over 400 published pseudoexon splice events. In addition to confirming prior observations of the most common pseudoexon mutation types, the size of this catalogue also enabled us to suggest new categories for some of the rarer types of pseudoexon mutation. By comparing our catalogue against published datasets of non-canonical splice events, we also found that 15.7% of pseudoexons exhibit some splicing activity at one or both of their splice sites in non-mutant cells. Importantly, this included seven examples of experimentally confirmed recursive splice sites, confirming for the first time a long-suspected link between these two splicing phenomena. These findings have the potential to improve the fidelity of genetic diagnostics and reveal new targets for splice-modulating therapies.
Collapse
Affiliation(s)
- Niall P. Keegan
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Perth, WA, Australia
- Centre for Neuromuscular and Neurological Disorders, Perron Institute for Neurological and Translational Science, The University of Western Australia, Perth, WA, Australia
| | - Steve D. Wilton
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Perth, WA, Australia
- Centre for Neuromuscular and Neurological Disorders, Perron Institute for Neurological and Translational Science, The University of Western Australia, Perth, WA, Australia
| | - Sue Fletcher
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Perth, WA, Australia
- Centre for Neuromuscular and Neurological Disorders, Perron Institute for Neurological and Translational Science, The University of Western Australia, Perth, WA, Australia
| |
Collapse
|
12
|
Floxed exon (Flexon): A flexibly positioned stop cassette for recombinase-mediated conditional gene expression. Proc Natl Acad Sci U S A 2022; 119:2117451119. [PMID: 35027456 PMCID: PMC8784106 DOI: 10.1073/pnas.2117451119] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/04/2021] [Indexed: 12/15/2022] Open
Abstract
Tools that afford spatiotemporal control of gene expression are crucial for studying genes and processes in multicellular organisms. Stop cassettes consist of exogenous sequences that interrupt gene expression and flanking site-specific recombinase sites to allow for tissue-specific excision and restoration of function by expression of the cognate recombinase. We describe a stop cassette called a flexon, composed of an artificial exon flanked by artificial introns that can be flexibly positioned in a gene. We demonstrate its efficacy in Caenorhabditis elegans for lineage-specific control of gene expression and for tissue-specific RNA interference and discuss other potential uses. The Flexon approach should be feasible in any system amenable to site-specific recombination-based methods and applicable to diverse areas including development, neuroscience, and metabolism. Conditional gene expression is a powerful tool for genetic analysis of biological phenomena. In the widely used “lox-stop-lox” approach, insertion of a stop cassette consisting of a series of stop codons and polyadenylation signals flanked by lox sites into the 5′ untranslated region (UTR) of a gene prevents expression until the cassette is excised by tissue-specific expression of Cre recombinase. Although lox-stop-lox and similar approaches using other site-specific recombinases have been successfully used in many experimental systems, this design has certain limitations. Here, we describe the Floxed exon (Flexon) approach, which uses a stop cassette composed of an artificial exon flanked by artificial introns, designed to cause premature termination of translation and nonsense-mediated decay of the mRNA and allowing for flexible placement into a gene. We demonstrate its efficacy in Caenorhabditis elegans by showing that, when promoters that cause weak and/or transient cell-specific expression are used to drive Cre in combination with a gfp(flexon) transgene, strong and sustained expression of green fluorescent protein (GFP) is obtained in specific lineages. We also demonstrate its efficacy in an endogenous gene context: we inserted a flexon into the Argonaute gene rde-1 to abrogate RNA interference (RNAi), and restored RNAi tissue specifically by expression of Cre. Finally, we describe several potential additional applications of the Flexon approach, including more precise control of gene expression using intersectional methods, tissue-specific protein degradation, and generation of genetic mosaics. The Flexon approach should be feasible in any system where a site-specific recombination-based method may be applied.
Collapse
|
13
|
Lejeune F. Nonsense-Mediated mRNA Decay, a Finely Regulated Mechanism. Biomedicines 2022; 10:biomedicines10010141. [PMID: 35052820 PMCID: PMC8773229 DOI: 10.3390/biomedicines10010141] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 02/01/2023] Open
Abstract
Nonsense-mediated mRNA decay (NMD) is both a mechanism for rapidly eliminating mRNAs carrying a premature termination codon and a pathway that regulates many genes. This implies that NMD must be subject to regulation in order to allow, under certain physiological conditions, the expression of genes that are normally repressed by NMD. Therapeutically, it might be interesting to express certain NMD-repressed genes or to allow the synthesis of functional truncated proteins. Developing such approaches will require a good understanding of NMD regulation. This review describes the different levels of this regulation in human cells.
Collapse
Affiliation(s)
- Fabrice Lejeune
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277—CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France;
- Unité Tumorigenèse et Résistance aux Traitements, Institut Pasteur de Lille, F-59000 Lille, France
| |
Collapse
|
14
|
Morris C, Cluet D, Ricci EP. Ribosome dynamics and mRNA turnover, a complex relationship under constant cellular scrutiny. WILEY INTERDISCIPLINARY REVIEWS. RNA 2021; 12:e1658. [PMID: 33949788 PMCID: PMC8519046 DOI: 10.1002/wrna.1658] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/26/2021] [Accepted: 03/26/2021] [Indexed: 12/01/2022]
Abstract
Eukaryotic gene expression is closely regulated by translation and turnover of mRNAs. Recent advances highlight the importance of translation in the control of mRNA degradation, both for aberrant and apparently normal mRNAs. During translation, the information contained in mRNAs is decoded by ribosomes, one codon at a time, and tRNAs, by specifically recognizing codons, translate the nucleotide code into amino acids. Such a decoding step does not process regularly, with various obstacles that can hinder ribosome progression, then leading to ribosome stalling or collisions. The progression of ribosomes is constantly monitored by the cell which has evolved several translation-dependent mRNA surveillance pathways, including nonsense-mediated decay (NMD), no-go decay (NGD), and non-stop decay (NSD), to degrade certain problematic mRNAs and the incomplete protein products. Recent progress in sequencing and ribosome profiling has made it possible to discover new mechanisms controlling ribosome dynamics, with numerous crosstalks between translation and mRNA decay. We discuss here various translation features critical for mRNA decay, with particular focus on current insights from the complexity of the genetic code and also the emerging role for the ribosome as a regulatory hub orchestrating mRNA decay, quality control, and stress signaling. Even if the interplay between mRNA translation and degradation is no longer to be demonstrated, a better understanding of their precise coordination is worthy of further investigation. This article is categorized under: RNA Turnover and Surveillance > Regulation of RNA Stability Translation > Translation Regulation RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes.
Collapse
Affiliation(s)
- Christelle Morris
- Laboratory of Biology and Modeling of the CellUniversité de Lyon, ENS de Lyon, Université Claude Bernard, CNRS UMR 5239, Inserm U1293LyonFrance
| | - David Cluet
- Laboratory of Biology and Modeling of the CellUniversité de Lyon, ENS de Lyon, Université Claude Bernard, CNRS UMR 5239, Inserm U1293LyonFrance
| | - Emiliano P. Ricci
- Laboratory of Biology and Modeling of the CellUniversité de Lyon, ENS de Lyon, Université Claude Bernard, CNRS UMR 5239, Inserm U1293LyonFrance
| |
Collapse
|
15
|
Keegan NP, Fletcher S. A spotter's guide to SNPtic exons: The common splice variants underlying some SNP-phenotype correlations. Mol Genet Genomic Med 2021; 10:e1840. [PMID: 34708937 PMCID: PMC8801146 DOI: 10.1002/mgg3.1840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 10/12/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Cryptic exons are typically characterised as deleterious splicing aberrations caused by deep intronic mutations. However, low-level splicing of cryptic exons is sometimes observed in the absence of any pathogenic mutation. Five recent reports have described how low-level splicing of cryptic exons can be modulated by common single-nucleotide polymorphisms (SNPs), resulting in phenotypic differences amongst different genotypes. METHODS We sought to investigate whether additional 'SNPtic' exons may exist, and whether these could provide an explanatory mechanism for some of the genotype-phenotype correlations revealed by genome-wide association studies. We thoroughly searched the literature for reported cryptic exons, cross-referenced their genomic coordinates against the dbSNP database of common SNPs, then screened out SNPs with no reported phenotype associations. RESULTS This method discovered five probable SNPtic exons in the genes APC, FGB, GHRL, MYPBC3 and OTC. For four of these five exons, we observed that the phenotype associated with the SNP was compatible with the predicted splicing effect of the nucleotide change, whilst the fifth (in GHRL) likely had a more complex splice-switching effect. CONCLUSION Application of our search methods could augment the knowledge value of future cryptic exon reports and aid in generating better hypotheses for genome-wide association studies.
Collapse
Affiliation(s)
- Niall Patrick Keegan
- Murdoch University, Murdoch, Western Australia, Australia.,Centre for Molecular Medicine and Innovative Therapeutics, Perth, Western Australia, Australia.,Perron Institute, Perth, Western Australia, Australia
| | - Sue Fletcher
- Murdoch University, Murdoch, Western Australia, Australia.,Centre for Molecular Medicine and Innovative Therapeutics, Perth, Western Australia, Australia.,University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
16
|
Adamopoulos PG, Athanasopoulou K, Tsiakanikas P, Scorilas A. A comprehensive nanopore sequencing methodology deciphers the complete transcriptional landscape of cyclin-dependent kinase 4 (CDK4) in human malignancies. FEBS J 2021; 289:712-729. [PMID: 34535948 DOI: 10.1111/febs.16201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 08/02/2021] [Accepted: 09/14/2021] [Indexed: 10/20/2022]
Abstract
Cyclin-dependent kinase 4 (CDK4) is a member of the cyclin-dependent kinases, a family of protein kinases with outstanding roles in signaling pathways, transcription regulation, and cell division. Defective or overactivated CDK4/cyclin D1 pathway leads to enhanced cellular proliferation, thus being implicated in human cancers. Although the biological role of CDK4 has been extensively studied, its pre-mRNA processing mechanism under normal or pathological conditions is neglected. Thus, the identification of novel CDK4 mRNA transcripts, especially protein-coding ones, could lead to the identification of new diagnostic and/or prognostic biomarkers or new therapeutic targets. In the present study, instead of using the 'gold standard' direct RNA sequencing application, we designed and employed a targeted nanopore sequencing approach, which offers higher sequencing depth and enables the thorough investigation of new mRNAs of any target gene. Our study elucidates for the first time the complex transcriptional landscape of the human CDK4 gene, highlighting the existence of previously unknown CDK4 transcripts with new alternative splicing events and protein-coding capacities. The relative expression levels of each novel CDK4 transcript in human malignancies were elucidated with custom qPCR-based assays. The presented wide spectrum of CDK4 transcripts (CDK4 v.2-v.42) is only the first step to distinguish and assemble the missing pieces regarding the exact functions and implications of this fundamental kinase in cellular homeostasis and pathophysiology.
Collapse
Affiliation(s)
- Panagiotis G Adamopoulos
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantina Athanasopoulou
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Panagiotis Tsiakanikas
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
17
|
Karousis ED, Gypas F, Zavolan M, Mühlemann O. Nanopore sequencing reveals endogenous NMD-targeted isoforms in human cells. Genome Biol 2021; 22:223. [PMID: 34389041 PMCID: PMC8361881 DOI: 10.1186/s13059-021-02439-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/26/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Nonsense-mediated mRNA decay (NMD) is a eukaryotic, translation-dependent degradation pathway that targets mRNAs with premature termination codons and also regulates the expression of some mRNAs that encode full-length proteins. Although many genes express NMD-sensitive transcripts, identifying them based on short-read sequencing data remains a challenge. RESULTS To identify and analyze endogenous targets of NMD, we apply cDNA Nanopore sequencing and short-read sequencing to human cells with varying expression levels of NMD factors. Our approach detects full-length NMD substrates that are highly unstable and increase in levels or even only appear when NMD is inhibited. Among the many new NMD-targeted isoforms that our analysis identifies, most derive from alternative exon usage. The isoform-aware analysis reveals many genes with significant changes in splicing but no significant changes in overall expression levels upon NMD knockdown. NMD-sensitive mRNAs have more exons in the 3΄UTR and, for those mRNAs with a termination codon in the last exon, the length of the 3΄UTR per se does not correlate with NMD sensitivity. Analysis of splicing signals reveals isoforms where NMD has been co-opted in the regulation of gene expression, though the main function of NMD seems to be ridding the transcriptome of isoforms resulting from spurious splicing events. CONCLUSIONS Long-read sequencing enables the identification of many novel NMD-sensitive mRNAs and reveals both known and unexpected features concerning their biogenesis and their biological role. Our data provide a highly valuable resource of human NMD transcript targets for future genomic and transcriptomic applications.
Collapse
Affiliation(s)
- Evangelos D Karousis
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012, Bern, Switzerland
| | - Foivos Gypas
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058, Basel, Switzerland
| | - Mihaela Zavolan
- Biozentrum, University of Basel and Swiss Institute of Bioinformatics, Klingelbergstrasse 50-70, 4056, Basel, Switzerland
| | - Oliver Mühlemann
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012, Bern, Switzerland.
| |
Collapse
|
18
|
Cheruiyot A, Li S, Nonavinkere Srivatsan S, Ahmed T, Chen Y, Lemacon DS, Li Y, Yang Z, Wadugu BA, Warner WA, Pruett-Miller SM, Obeng EA, Link DC, He D, Xiao F, Wang X, Bailis JM, Walter MJ, You Z. Nonsense-Mediated RNA Decay Is a Unique Vulnerability of Cancer Cells Harboring SF3B1 or U2AF1 Mutations. Cancer Res 2021; 81:4499-4513. [PMID: 34215620 DOI: 10.1158/0008-5472.can-20-4016] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 05/26/2021] [Accepted: 06/30/2021] [Indexed: 11/16/2022]
Abstract
Nonsense-mediated RNA decay (NMD) is recognized as an RNA surveillance pathway that targets aberrant mRNAs with premature translation termination codons (PTC) for degradation, however, its molecular mechanisms and roles in health and disease remain incompletely understood. In this study, we developed a novel reporter system to accurately measure NMD activity in individual cells. A genome-wide CRISPR-Cas9 knockout screen using this reporter system identified novel NMD-promoting factors, including multiple components of the SF3B complex and other U2 spliceosome factors. Interestingly, cells with mutations in the spliceosome genes SF3B1 and U2AF1, which are commonly found in myelodysplastic syndrome (MDS) and cancers, have overall attenuated NMD activity. Compared with wild-type (WT) cells, SF3B1- and U2AF1-mutant cells were more sensitive to NMD inhibition, a phenotype that is accompanied by elevated DNA replication obstruction, DNA damage, and chromosomal instability. Remarkably, the sensitivity of spliceosome mutant cells to NMD inhibition was rescued by overexpression of RNase H1, which removes R-loops in the genome. Together, these findings shed new light on the functional interplay between NMD and RNA splicing and suggest a novel synthetic lethal strategy for the treatment of MDS and cancers with spliceosome mutations. SIGNIFICANCE: This study has developed a novel NMD reporter system and identified a potential therapeutic approach of targeting the NMD pathway to treat cancer with spliceosome gene mutations.
Collapse
Affiliation(s)
- Abigael Cheruiyot
- Department of Cell Biology and Physiology, School of Medicine, Washington University in St. Louis, St. Louis, Missouri
| | - Shan Li
- Department of Cell Biology and Physiology, School of Medicine, Washington University in St. Louis, St. Louis, Missouri
| | - Sridhar Nonavinkere Srivatsan
- Division of Hematology and Oncology, Department of Medicine, School of Medicine, Washington University School in St. Louis, St. Louis, Missouri
| | - Tanzir Ahmed
- Division of Hematology and Oncology, Department of Medicine, School of Medicine, Washington University School in St. Louis, St. Louis, Missouri
| | - Yuhao Chen
- Department of Radiation Oncology, School of Medicine, Washington University in St. Louis, St. Louis, Missouri
| | - Delphine S Lemacon
- Department of Cell Biology and Physiology, School of Medicine, Washington University in St. Louis, St. Louis, Missouri
| | - Ying Li
- Department of Cell Biology and Physiology, School of Medicine, Washington University in St. Louis, St. Louis, Missouri.,Clinical Biobank, The Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, P.R. China
| | - Zheng Yang
- Department of Cell Biology and Physiology, School of Medicine, Washington University in St. Louis, St. Louis, Missouri.,Department of Urology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an, China
| | - Brian A Wadugu
- Division of Hematology and Oncology, Department of Medicine, School of Medicine, Washington University School in St. Louis, St. Louis, Missouri
| | - Wayne A Warner
- Division of Hematology and Oncology, Department of Medicine, School of Medicine, Washington University School in St. Louis, St. Louis, Missouri
| | - Shondra M Pruett-Miller
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Esther A Obeng
- Molecular Oncology Division, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Daniel C Link
- Division of Hematology and Oncology, Department of Medicine, School of Medicine, Washington University School in St. Louis, St. Louis, Missouri
| | - Dalin He
- Department of Urology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an, China
| | - Fei Xiao
- Clinical Biobank, The Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, P.R. China
| | - Xiaowei Wang
- Department of Radiation Oncology, School of Medicine, Washington University in St. Louis, St. Louis, Missouri
| | | | - Matthew J Walter
- Division of Hematology and Oncology, Department of Medicine, School of Medicine, Washington University School in St. Louis, St. Louis, Missouri
| | - Zhongsheng You
- Department of Cell Biology and Physiology, School of Medicine, Washington University in St. Louis, St. Louis, Missouri.
| |
Collapse
|
19
|
Zimowski KL, Petrillo T, Ho MD, Wechsler J, Shields JE, Denning G, Jhita N, Rivera AA, Escobar MA, Kempton CL, Camire RM, Doering CB. F5-Atlanta: A novel mutation in F5 associated with enhanced East Texas splicing and FV-short production. J Thromb Haemost 2021; 19:1653-1665. [PMID: 33773040 DOI: 10.1111/jth.15314] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 03/21/2021] [Accepted: 03/22/2021] [Indexed: 01/14/2023]
Abstract
BACKGROUND Elucidating the molecular pathogenesis underlying East Texas bleeding disorder (ET) led to the discovery of alternatively spliced F5 transcripts harboring large deletions within exon 13. These alternatively spliced transcripts produce a shortened form of coagulation factor V (FV) in which a large portion of its B-domain is deleted. These FV isoforms bind tissue factor pathway inhibitor alpha (TFPIα) with high affinity, prolonging its circulatory half-life and enhancing its anticoagulant effects. While two missense pathogenic variants highlighted this alternative splicing event, similar internally deleted FV proteins are found in healthy controls. OBJECTIVE We identified a novel heterozygous 832 base pair deletion within F5 exon 13, termed F5-Atlanta (F5-ATL), in a patient with severe bleeding. Our objective is to investigate the effect of this deletion on F5 and FV expression. METHODS & RESULTS Assessment of patient plasma revealed markedly elevated levels of total and free TFPI and a FV isoform similar in size to the FV-short described in ET. Sequencing analyses of cDNA revealed the presence of a transcript alternatively spliced using the ET splice sites, thereby removing the F5-ATL deletion. This alternative splicing pattern was recapitulated by heterologous expression in mammalian cells. CONCLUSIONS These findings support a mechanistic model consisting of cis-acting regulatory sequences encoded within F5 exon 13 that control alternative splicing at the ET splice sites and thereby regulate circulating FV-short and TFPIα levels.
Collapse
Affiliation(s)
- Karen L Zimowski
- Aflac Cancer and Blood Disorders Center, Emory University/Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Teodolinda Petrillo
- The Children's Hospital of Philadelphia, The Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Philadelphia, Pennsylvania, USA
| | - Michelle D Ho
- The Children's Hospital of Philadelphia, The Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Philadelphia, Pennsylvania, USA
| | - Julie Wechsler
- Aflac Cancer and Blood Disorders Center, Emory University/Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Jordan E Shields
- Aflac Cancer and Blood Disorders Center, Emory University/Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | | | | | | | - Miguel A Escobar
- University of Texas Houston Health Science Center, Houston, Texas, USA
| | - Christine L Kempton
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Rodney M Camire
- The Children's Hospital of Philadelphia, The Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Philadelphia, Pennsylvania, USA
- Division of Hematology, Department of Pediatrics, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Christopher B Doering
- Aflac Cancer and Blood Disorders Center, Emory University/Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| |
Collapse
|
20
|
Supek F, Lehner B, Lindeboom RG. To NMD or Not To NMD: Nonsense-Mediated mRNA Decay in Cancer and Other Genetic Diseases. Trends Genet 2021; 37:657-668. [DOI: 10.1016/j.tig.2020.11.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 02/07/2023]
|
21
|
SMG5-SMG7 authorize nonsense-mediated mRNA decay by enabling SMG6 endonucleolytic activity. Nat Commun 2021; 12:3965. [PMID: 34172724 PMCID: PMC8233366 DOI: 10.1038/s41467-021-24046-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 05/30/2021] [Indexed: 12/28/2022] Open
Abstract
Eukaryotic gene expression is constantly controlled by the translation-coupled nonsense-mediated mRNA decay (NMD) pathway. Aberrant translation termination leads to NMD activation, resulting in phosphorylation of the central NMD factor UPF1 and robust clearance of NMD targets via two seemingly independent and redundant mRNA degradation branches. Here, we uncover that the loss of the first SMG5-SMG7-dependent pathway also inactivates the second SMG6-dependent branch, indicating an unexpected functional connection between the final NMD steps. Transcriptome-wide analyses of SMG5-SMG7-depleted cells confirm exhaustive NMD inhibition resulting in massive transcriptomic alterations. Intriguingly, we find that the functionally underestimated SMG5 can substitute the role of SMG7 and individually activate NMD. Furthermore, the presence of either SMG5 or SMG7 is sufficient to support SMG6-mediated endonucleolysis of NMD targets. Our data support an improved model for NMD execution that features two-factor authentication involving UPF1 phosphorylation and SMG5-SMG7 recruitment to access SMG6 activity. Degradation of nonsense mediated mRNA decay (NMD) substrates is carried out by two seemingly independent pathways, SMG6-mediated endonucleolytic cleavage and/or SMG5-SMG7-induced accelerated deadenylation. Here the authors show that SMG5-SMG7 maintain NMD activity by permitting SMG6 activation.
Collapse
|
22
|
Ho AT, Hurst LD. Effective Population Size Predicts Local Rates but Not Local Mitigation of Read-through Errors. Mol Biol Evol 2021; 38:244-262. [PMID: 32797190 PMCID: PMC7783166 DOI: 10.1093/molbev/msaa210] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In correctly predicting that selection efficiency is positively correlated with the effective population size (Ne), the nearly neutral theory provides a coherent understanding of between-species variation in numerous genomic parameters, including heritable error (germline mutation) rates. Does the same theory also explain variation in phenotypic error rates and in abundance of error mitigation mechanisms? Translational read-through provides a model to investigate both issues as it is common, mostly nonadaptive, and has good proxy for rate (TAA being the least leaky stop codon) and potential error mitigation via "fail-safe" 3' additional stop codons (ASCs). Prior theory of translational read-through has suggested that when population sizes are high, weak selection for local mitigation can be effective thus predicting a positive correlation between ASC enrichment and Ne. Contra to prediction, we find that ASC enrichment is not correlated with Ne. ASC enrichment, although highly phylogenetically patchy, is, however, more common both in unicellular species and in genes expressed in unicellular modes in multicellular species. By contrast, Ne does positively correlate with TAA enrichment. These results imply that local phenotypic error rates, not local mitigation rates, are consistent with a drift barrier/nearly neutral model.
Collapse
Affiliation(s)
- Alexander T Ho
- Milner Centre for Evolution, University of Bath, Bath, United Kingdom
- Corresponding author: E-mail:
| | - Laurence D Hurst
- Milner Centre for Evolution, University of Bath, Bath, United Kingdom
| |
Collapse
|
23
|
Weng PL, Majmundar AJ, Khan K, Lim TY, Shril S, Jin G, Musgrove J, Wang M, Ahram DF, Aggarwal VS, Bier LE, Heinzen EL, Onuchic-Whitford AC, Mann N, Buerger F, Schneider R, Deutsch K, Kitzler TM, Klämbt V, Kolb A, Mao Y, Moufawad El Achkar C, Mitrotti A, Martino J, Beck BB, Altmüller J, Benz MR, Yano S, Mikati MA, Gunduz T, Cope H, Shashi V, Trachtman H, Bodria M, Caridi G, Pisani I, Fiaccadori E, AbuMaziad AS, Martinez-Agosto JA, Yadin O, Zuckerman J, Kim A, John-Kroegel U, Tyndall AV, Parboosingh JS, Innes AM, Bierzynska A, Koziell AB, Muorah M, Saleem MA, Hoefele J, Riedhammer KM, Gharavi AG, Jobanputra V, Pierce-Hoffman E, Seaby EG, O'Donnell-Luria A, Rehm HL, Mane S, D'Agati VD, Pollak MR, Ghiggeri GM, Lifton RP, Goldstein DB, Davis EE, Hildebrandt F, Sanna-Cherchi S. De novo TRIM8 variants impair its protein localization to nuclear bodies and cause developmental delay, epilepsy, and focal segmental glomerulosclerosis. Am J Hum Genet 2021; 108:357-367. [PMID: 33508234 PMCID: PMC7895901 DOI: 10.1016/j.ajhg.2021.01.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 01/11/2021] [Indexed: 12/14/2022] Open
Abstract
Focal segmental glomerulosclerosis (FSGS) is the main pathology underlying steroid-resistant nephrotic syndrome (SRNS) and a leading cause of chronic kidney disease. Monogenic forms of pediatric SRNS are predominantly caused by recessive mutations, while the contribution of de novo variants (DNVs) to this trait is poorly understood. Using exome sequencing (ES) in a proband with FSGS/SRNS, developmental delay, and epilepsy, we discovered a nonsense DNV in TRIM8, which encodes the E3 ubiquitin ligase tripartite motif containing 8. To establish whether TRIM8 variants represent a cause of FSGS, we aggregated exome/genome-sequencing data for 2,501 pediatric FSGS/SRNS-affected individuals and 48,556 control subjects, detecting eight heterozygous TRIM8 truncating variants in affected subjects but none in control subjects (p = 3.28 × 10-11). In all six cases with available parental DNA, we demonstrated de novo inheritance (p = 2.21 × 10-15). Reverse phenotyping revealed neurodevelopmental disease in all eight families. We next analyzed ES from 9,067 individuals with epilepsy, yielding three additional families with truncating TRIM8 variants. Clinical review revealed FSGS in all. All TRIM8 variants cause protein truncation clustering within the last exon between residues 390 and 487 of the 551 amino acid protein, indicating a correlation between this syndrome and loss of the TRIM8 C-terminal region. Wild-type TRIM8 overexpressed in immortalized human podocytes and neuronal cells localized to nuclear bodies, while constructs harboring patient-specific variants mislocalized diffusely to the nucleoplasm. Co-localization studies demonstrated that Gemini and Cajal bodies frequently abut a TRIM8 nuclear body. Truncating TRIM8 DNVs cause a neuro-renal syndrome via aberrant TRIM8 localization, implicating nuclear bodies in FSGS and developmental brain disease.
Collapse
Affiliation(s)
- Patricia L Weng
- Division of Pediatric Nephrology, UCLA, Los Angeles, CA 90095, USA
| | - Amar J Majmundar
- Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA
| | - Kamal Khan
- Center for Disease Modeling, Duke University, Durham, NC 27701, USA; Advanced Center for Translational and Genetic Medicine (ACT-GeM), Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA
| | - Tze Y Lim
- Division of Nephrology, Columbia University, New York, NY 10032, USA
| | - Shirlee Shril
- Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA
| | - Gina Jin
- Division of Nephrology, Columbia University, New York, NY 10032, USA
| | - John Musgrove
- Center for Disease Modeling, Duke University, Durham, NC 27701, USA; Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, NC 27705, USA
| | - Minxian Wang
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Medical and Population Genetics Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Dina F Ahram
- Division of Nephrology, Columbia University, New York, NY 10032, USA
| | - Vimla S Aggarwal
- Institute of Genomic Medicine, Columbia University, New York, NY 10032, USA; Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| | - Louise E Bier
- Institute of Genomic Medicine, Columbia University, New York, NY 10032, USA
| | - Erin L Heinzen
- Institute of Genomic Medicine, Columbia University, New York, NY 10032, USA
| | - Ana C Onuchic-Whitford
- Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA; Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Nina Mann
- Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA
| | - Florian Buerger
- Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA
| | - Ronen Schneider
- Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA
| | - Konstantin Deutsch
- Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA
| | - Thomas M Kitzler
- Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA
| | - Verena Klämbt
- Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA
| | - Amy Kolb
- Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA
| | - Youying Mao
- Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA
| | - Christelle Moufawad El Achkar
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Adele Mitrotti
- Division of Nephrology, Columbia University, New York, NY 10032, USA
| | - Jeremiah Martino
- Division of Nephrology, Columbia University, New York, NY 10032, USA
| | - Bodo B Beck
- Institute of Human Genetics, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; Center for Molecular Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Janine Altmüller
- Center for Molecular Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; Cologne Center for Genomics, University of Cologne, 50931 Cologne, Germany
| | | | - Shoji Yano
- Genetics Division, Department of Pediatrics, LAC+USC Medical Center, Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Mohamad A Mikati
- Division of Pediatric Neurology and Developmental Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Talha Gunduz
- Division of Pediatric Neurology and Developmental Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Heidi Cope
- Department of Pediatrics, Division of Medical Genetics. Duke University Medical Center, Durham, NC 27710, USA
| | - Vandana Shashi
- Department of Pediatrics, Division of Medical Genetics. Duke University Medical Center, Durham, NC 27710, USA
| | - Howard Trachtman
- Department of Pediatrics, Division of Nephrology, New York University Langone Health, New York, NY 10016, USA
| | - Monica Bodria
- Division of Nephrology, Dialysis and Transplantation, Istituto di Ricovero e Cura a Carattere Scientifico, Istituto Giannina Gaslini, 16147 Genova GE, Italy
| | - Gianluca Caridi
- Division of Nephrology, Dialysis and Transplantation, Istituto di Ricovero e Cura a Carattere Scientifico, Istituto Giannina Gaslini, 16147 Genova GE, Italy
| | - Isabella Pisani
- U.O. Nefrologia, Azienda Ospedaliero-Universitaria di Parma and Dipartimento di Medicina e Chirurgia, Università di Parma, 43126 Parma PR, Italy
| | - Enrico Fiaccadori
- U.O. Nefrologia, Azienda Ospedaliero-Universitaria di Parma and Dipartimento di Medicina e Chirurgia, Università di Parma, 43126 Parma PR, Italy
| | - Asmaa S AbuMaziad
- Division of Pediatric Nephrology, University of Arizona-Tucson, AZ 85724, USA
| | - Julian A Martinez-Agosto
- Department of Pediatrics, Division of Medical Genetics, UCLA, Los Angeles, CA 90095, USA; Department of Human Genetics, UCLA, Los Angeles, CA 90095, USA; Department of Psychiatry, UCLA, Los Angeles, CA 90095, USA
| | - Ora Yadin
- Division of Pediatric Nephrology, UCLA, Los Angeles, CA 90095, USA
| | - Jonathan Zuckerman
- Department of Pathology and Laboratory Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Arang Kim
- Department of Pediatrics, Division of Medical Genetics, UCLA, Los Angeles, CA 90095, USA
| | | | - Amanda V Tyndall
- Department of Medical Genetics and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Jillian S Parboosingh
- Department of Medical Genetics and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - A Micheil Innes
- Department of Medical Genetics and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Agnieszka Bierzynska
- Bristol Renal, University of Bristol and Bristol Royal Hospital for Children, Bristol BS2 8BJ, UK
| | - Ania B Koziell
- Department of Paediatric Nephrology, Evelina London, London SE1 7EH, UK; Faculty of Life Sciences, King's College London SE1 9RT, UK
| | - Mordi Muorah
- Renal Unit, Birmingham Children's Hospital, Birmingham, B4 6NH, UK
| | - Moin A Saleem
- Bristol Renal, University of Bristol and Bristol Royal Hospital for Children, Bristol BS2 8BJ, UK
| | - Julia Hoefele
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Korbinian M Riedhammer
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, 81675 Munich, Germany; Department of Nephrology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Ali G Gharavi
- Division of Nephrology, Columbia University, New York, NY 10032, USA
| | - Vaidehi Jobanputra
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA; New York Genome Center, New York, NY 10013, USA
| | - Emma Pierce-Hoffman
- Broad Center for Mendelian Genetics, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Eleanor G Seaby
- Broad Center for Mendelian Genetics, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Anne O'Donnell-Luria
- Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA; Broad Center for Mendelian Genetics, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Heidi L Rehm
- Broad Center for Mendelian Genetics, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Shrikant Mane
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA; Yale Center for Mendelian Genomics, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Vivette D D'Agati
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| | - Martin R Pollak
- Division of Nephrology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Gian Marco Ghiggeri
- Division of Nephrology, Dialysis and Transplantation, Istituto di Ricovero e Cura a Carattere Scientifico, Istituto Giannina Gaslini, 16147 Genova GE, Italy
| | - Richard P Lifton
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA; Yale Center for Mendelian Genomics, Yale University School of Medicine, New Haven, CT 06520, USA; Laboratory of Human Genetics and Genomics, The Rockefeller University, New York, NY 10065, USA
| | - David B Goldstein
- Institute of Genomic Medicine, Columbia University, New York, NY 10032, USA
| | - Erica E Davis
- Center for Disease Modeling, Duke University, Durham, NC 27701, USA; Advanced Center for Translational and Genetic Medicine (ACT-GeM), Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA; Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | | | | |
Collapse
|
24
|
UPF2 leads to degradation of dendritically targeted mRNAs to regulate synaptic plasticity and cognitive function. Mol Psychiatry 2020; 25:3360-3379. [PMID: 31636381 PMCID: PMC7566522 DOI: 10.1038/s41380-019-0547-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 08/13/2019] [Accepted: 08/19/2019] [Indexed: 12/21/2022]
Abstract
Synaptic plasticity requires a tight control of mRNA levels in dendrites. RNA translation and degradation pathways have been recently linked to neurodevelopmental and neuropsychiatric diseases, suggesting a role for RNA regulation in synaptic plasticity and cognition. While the local translation of specific mRNAs has been implicated in synaptic plasticity, the tightly controlled mechanisms that regulate local quantity of specific mRNAs remain poorly understood. Despite being the only RNA regulatory pathway that is associated with multiple mental illnesses, the nonsense-mediated mRNA decay (NMD) pathway presents an unexplored regulatory mechanism for synaptic function and plasticity. Here, we show that neuron-specific disruption of UPF2, an NMD component, in adulthood attenuates learning, memory, spine density, synaptic plasticity (L-LTP), and potentiates perseverative/repetitive behavior in mice. We report that the NMD pathway operates within dendrites to regulate Glutamate Receptor 1 (GLUR1) surface levels. Specifically, UPF2 modulates the internalization of GLUR1 and promotes its local synthesis in dendrites. We identified neuronal Prkag3 mRNA as a mechanistic substrate for NMD that contributes to the UPF2-mediated regulation of GLUR1 by limiting total GLUR1 levels. These data establish that UPF2 regulates synaptic plasticity, cognition, and local protein synthesis in dendrites, providing fundamental insight into the neuron-specific function of NMD within the brain.
Collapse
|
25
|
Papatsirou M, Adamopoulos PG, Artemaki PI, Georganti VP, Scorilas A, Vassilacopoulou D, Kontos CK. Next-generation sequencing reveals alternative L-DOPA decarboxylase (DDC) splice variants bearing novel exons, in human hepatocellular and lung cancer cells. Gene 2020; 768:145262. [PMID: 33141052 DOI: 10.1016/j.gene.2020.145262] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 10/14/2020] [Accepted: 10/20/2020] [Indexed: 12/26/2022]
Abstract
The human L-DOPA decarboxylase (DDC) is an enzyme that displays a pivotal role in metabolic processes. It is implicated in various human disorders, including hepatocellular and lung cancer. Several splice variants of DDC have previously been described, most of which encode for protein isoforms of this enzyme. In the present study, we used next-generation sequencing (NGS) technology along with nested touchdown PCR and Sanger sequencing to identify new splice variants bearing novel exons of the DDC gene, in hepatocellular and lung cancer cell lines. Using an in-house-developed algorithm, we discovered seven novel DDC exons. Next, we determined the structure of ten novel DDC transcripts, three of which contain an open reading frame (ORF) and probably encode for three previously unknown protein isoforms of this enzyme. Future studies should focus on the elucidation of their role in cellular physiology and cancer pathobiology.
Collapse
Affiliation(s)
- Maria Papatsirou
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Panagiotis G Adamopoulos
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Pinelopi I Artemaki
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Vasiliki P Georganti
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Dido Vassilacopoulou
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece.
| | - Christos K Kontos
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece.
| |
Collapse
|
26
|
Fujimura M, Usuki F. Methylmercury-Mediated Oxidative Stress and Activation of the Cellular Protective System. Antioxidants (Basel) 2020; 9:antiox9101004. [PMID: 33081221 PMCID: PMC7602710 DOI: 10.3390/antiox9101004] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/09/2020] [Accepted: 10/14/2020] [Indexed: 12/17/2022] Open
Abstract
Methylmercury (MeHg) is a well-known neurotoxicant that causes severe intoxication in humans. In Japan, it is referred to as Minamata disease, which involves two characteristic clinical forms: fetal type and adult type depending on the exposed age. In addition to MeHg burden level, individual susceptibility to MeHg plays a role in the manifestation of MeHg toxicity. Research progress has pointed out the importance of oxidative stress in the pathogenesis of MeHg toxicity. MeHg has a high affinity for selenohydryl groups, sulfhydryl groups, and selenides. It has been clarified that such affinity characteristics cause the impairment of antioxidant enzymes and proteins, resulting in the disruption of antioxidant systems. Furthermore, MeHg-induced intracellular selenium deficiency due to the greater affinity of MeHg for selenohydryl groups and selenides leads to failure in the recoding of a UGA codon for selenocysteine and results in the degradation of antioxidant selenoenzyme mRNA by nonsense-mediated mRNA decay. The defect of antioxidant selenoenzyme replenishment exacerbates MeHg-mediated oxidative stress. On the other hand, it has also been revealed that MeHg can directly activate the antioxidant Keap1/Nrf2 signaling pathway. This review summarizes the incidence of MeHg-mediated oxidative stress from the viewpoint of the individual intracellular redox system interactions and the MeHg-mediated aforementioned intracellular events. In addition, the mechanisms of cellular stress pathways and neuronal cell death triggered by MeHg-mediated oxidative stress and direct interactions of MeHg with reactive residues of proteins are mentioned.
Collapse
Affiliation(s)
- Masatake Fujimura
- Department of Basic Medical Sciences, National Institute for Minamata Disease, Kumamoto 867-0008, Japan;
| | - Fusako Usuki
- Division of Neuroimmunology, Joint Research Center for Human Retrovirus Infection, Kagoshima University, Kagoshima 890-8544, Japan
- Correspondence: ; Tel.: +81-99-275-6246; Fax: +81-99-275-5942
| |
Collapse
|
27
|
Adamopoulos PG, Koukouzeli FΕ, Kontos CK, Scorilas A. Identification of six novel alternative transcripts of the human kallikrein-related peptidase 15 (KLK15), using 3'RACE and high-throughput sequencing. Gene 2020; 749:144708. [PMID: 32334022 DOI: 10.1016/j.gene.2020.144708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 03/31/2020] [Accepted: 04/21/2020] [Indexed: 11/18/2022]
Abstract
The kallikrein-related peptidase 15 (KLK15) gene is a member of the largest cluster of serine proteases in the human genome. Exhibiting trypsin-like activity, KLK15 is most likely involved in the activation of prostate-specific antigen (PSA; also known as KLK3), an established biomarker for the diagnosis and screening of prostate cancer. High mRNA expression levels of KLK15 have already been reported in ovarian and prostate cancer, in contrast with breast cancer, where KLK15 has been proposed as a biomarker of favorable prognosis. In this study, we exploited the next-generation sequencing (NGS) technology along with 3' rapid amplification of cDNA ends (3' RACE) to discover alternative KLK15 splice variants. Extensive computational analysis of the obtained NGS data revealed the existence of novel splice junctions, thus supporting the existence of novel KLK15 transcripts. Six novel KLK15 splice variants were identified and verified by Sanger sequencing. Two of them (KLK15 v.11 and v.12) contain an open reading frame and are hence predicted to encode two novel KLK15 protein isoforms. Expression analysis of each KLK15 splice variant in sixteen cDNA pools from malignant cell lines and in normal cell lines (HEK293, HaCaT, and BJ cells) revealed very different expression profiles of particular KLK15 transcripts. Moreover, the new KLK15 splice variants were shown to be expressed in breast, ovarian, prostate, urinary bladder, colon, and renal tissue specimens. Due to the prominent clinical value of KLK15 mRNA expression, the novel KLK15 transcripts appear as candidate cancer biomarkers for diagnostic and/or prognostic purposes and, therefore, merit further investigation.
Collapse
Affiliation(s)
- Panagiotis G Adamopoulos
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece
| | - Fotini Ε Koukouzeli
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece
| | - Christos K Kontos
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece.
| |
Collapse
|
28
|
Long L, Yang X, Southwood M, Moore S, Crosby A, Upton PD, Dunmore BJ, Morrell NW. Targeting translational read-through of premature termination mutations in BMPR2 with PTC124 for pulmonary arterial hypertension. Pulm Circ 2020; 10:2045894020935783. [PMID: 32733669 PMCID: PMC7372630 DOI: 10.1177/2045894020935783] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 05/28/2020] [Indexed: 02/02/2023] Open
Abstract
Pulmonary arterial hypertension is a fatal disorder of the lung circulation in which accumulation of vascular cells progressively obliterates the pulmonary arterioles. This results in sustained elevation in pulmonary artery pressure leading eventually to right heart failure. Approximately, 80% of familial and 20% of sporadic idiopathic pulmonary arterial hypertension cases are caused by mutations in the bone morphogenetic protein receptor type 2 (BMPR2). Nonsense mutations in BMPR2 are amongst the most common mutations found, where the insertion of a premature termination codon causes mRNA degradation via activation of the nonsense-mediated decay pathway leading to a state of haploinsufficiency. Ataluren (PTC124), a compound that permits ribosomal read-through of premature stop codons, has been previously reported to increase BMPR2 protein expression in cells derived from pulmonary arterial hypertension patients harbouring nonsense mutations. In this study, we characterised the effects of PTC124 on a range of nonsense BMPR2 mutations, focusing on the R584X mutation both in vitro and in vivo. Treatment with PTC124 partially restored BMPR2 protein expression in blood outgrowth endothelial cells isolated from a patient harbouring the R584X mutation. Furthermore, a downstream bone morphogenetic protein signalling target, Id1, was rescued by PTC124 treatment. Mutant cells also exhibited increased lipopolysaccharide-induced permeability, which was reversed by PTC124 treatment. Increased proliferation and apoptosis in R584X blood outgrowth endothelial cells were also significantly reduced by PTC124. Moreover, oral PTC124 increased lung BMPR2 protein expression in mice harbouring the R584X mutation (Bmpr2 +/R584X ). Our findings provide support for future experimental medicine studies of PTC124 in pulmonary arterial hypertension patients with specific nonsense BMPR2 mutations.
Collapse
Affiliation(s)
- Lu Long
- Department of Medicine, University of
Cambridge School of Clinical Medicine, Cambridge, UK
| | - Xudong Yang
- Department of Medicine, University of
Cambridge School of Clinical Medicine, Cambridge, UK
| | - Mark Southwood
- Pathology Research, Royal Papworth
Hospital NHS Foundation Trust, Cambridge, UK
| | - Stephen Moore
- Department of Medicine, University of
Cambridge School of Clinical Medicine, Cambridge, UK
| | - Alexi Crosby
- Department of Medicine, University of
Cambridge School of Clinical Medicine, Cambridge, UK
| | - Paul D. Upton
- Department of Medicine, University of
Cambridge School of Clinical Medicine, Cambridge, UK
| | - Benjamin J. Dunmore
- Department of Medicine, University of
Cambridge School of Clinical Medicine, Cambridge, UK
| | - Nicholas W. Morrell
- Department of Medicine, University of
Cambridge School of Clinical Medicine, Cambridge, UK,Nicholas W. Morrell, Division of Respiratory
Medicine, Department of Medicine, Box 157, Addenbrooke's Hospital, Hills Road,
Cambridge CB2 0QQ, United Kingdom.
| |
Collapse
|
29
|
Zisi Z, Adamopoulos PG, Kontos CK, Scorilas A. Identification and expression analysis of novel splice variants of the human carcinoembryonic antigen-related cell adhesion molecule 19 (CEACAM19) gene using a high-throughput sequencing approach. Genomics 2020; 112:4268-4276. [PMID: 32659328 DOI: 10.1016/j.ygeno.2020.06.043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 03/12/2020] [Accepted: 06/25/2020] [Indexed: 02/01/2023]
Abstract
Alternative splicing is commonly involved in carcinogenesis, being highly implicated in differential expression of cancer-related genes. Recent studies have shown that the human CEACAM19 gene is overexpressed in malignant breast and ovarian tumors, possessing significant biomarker attributes. In the present study, 3' rapid amplification of cDNA ends (3' RACE) and next-generation sequencing (NGS) were used for the detection and identification of novel CEACAM19 transcripts. Bioinformatical analysis of our NGS data revealed novel splice junctions between previously annotated exons and ultimately new exons. Next, fifteen novel CEACAM19 transcripts were identified with Sanger sequencing. Additionally, their expression profile was investigated in a wide panel of human cell lines, using nested PCR with variant-specific primers. The broad expression pattern of the CEACAM19 gene, along with the fact that its overexpression has previously been associated with ovarian and breast cancer progression, indicate the potential of novel CEACAM19 transcripts as putative diagnostic and/or prognostic biomarkers.
Collapse
Affiliation(s)
- Zafeiro Zisi
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Panagiotis G Adamopoulos
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Christos K Kontos
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece.
| |
Collapse
|
30
|
Arribere JA, Kuroyanagi H, Hundley HA. mRNA Editing, Processing and Quality Control in Caenorhabditis elegans. Genetics 2020; 215:531-568. [PMID: 32632025 PMCID: PMC7337075 DOI: 10.1534/genetics.119.301807] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 05/03/2020] [Indexed: 02/06/2023] Open
Abstract
While DNA serves as the blueprint of life, the distinct functions of each cell are determined by the dynamic expression of genes from the static genome. The amount and specific sequences of RNAs expressed in a given cell involves a number of regulated processes including RNA synthesis (transcription), processing, splicing, modification, polyadenylation, stability, translation, and degradation. As errors during mRNA production can create gene products that are deleterious to the organism, quality control mechanisms exist to survey and remove errors in mRNA expression and processing. Here, we will provide an overview of mRNA processing and quality control mechanisms that occur in Caenorhabditis elegans, with a focus on those that occur on protein-coding genes after transcription initiation. In addition, we will describe the genetic and technical approaches that have allowed studies in C. elegans to reveal important mechanistic insight into these processes.
Collapse
Affiliation(s)
| | - Hidehito Kuroyanagi
- Laboratory of Gene Expression, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 113-8510, Japan, and
| | - Heather A Hundley
- Medical Sciences Program, Indiana University School of Medicine-Bloomington, Indiana 47405
| |
Collapse
|
31
|
Mufarrege EF, Benizio EL, Prieto CC, Chiappini F, Rodriguez MC, Etcheverrigaray M, Kratje RB. Development of Magoh protein-overexpressing HEK cells for optimized therapeutic protein production. Biotechnol Appl Biochem 2020; 68:230-238. [PMID: 32249976 DOI: 10.1002/bab.1915] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 03/25/2020] [Indexed: 11/07/2022]
Abstract
In the pharmaceutical industry, the need for high levels of protein expression in mammalian cells has prompted the search for new strategies, including technologies to obtain cells with improved mechanisms that enhance its transcriptional activity, folding, or protein secretion. Chinese Hamster Ovary (CHO) cells are by far the most used host cell for therapeutic protein expression. However, these cells produce specific glycans that are not present in human cells and therefore potentially immunogenic. As a result, there is an increased interest in the use of human-derived cells for therapeutic protein production. For many decades, human embryonic kidney (HEK) cells were exclusively used for research. However, two products for therapeutic indication were recently approved in the United States. It was previously shown that tethered Magoh, an Exon-junction complex core component, to specific mRNA sequences, have had significant positive effects on mRNA translational efficiency. In this study, a HEK Magoh-overexpressing cell line and clones, designated here as HEK-MAGO, were developed for the first time. These cells exhibited improved characteristics in protein expression, reaching -two- to threefold increases in rhEPO protein production in comparison with the wild-type cells. Moreover, this effect was promoter independent highlighting the versatility of this expression platform.
Collapse
Affiliation(s)
- Eduardo F Mufarrege
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Edificio FBCB - Ciudad Universitaria UNL, Santa Fe, Argentina.,Cell Culture Laboratory, Edificio FBCB, Ciudad Universitaria UNL, Santa Fe, Argentina
| | - Evangelina L Benizio
- Cell Culture Laboratory, Edificio FBCB, Ciudad Universitaria UNL, Santa Fe, Argentina
| | - Claudio C Prieto
- Cell Culture Laboratory, Edificio FBCB, Ciudad Universitaria UNL, Santa Fe, Argentina
| | - Fabricio Chiappini
- Cell Culture Laboratory, Edificio FBCB, Ciudad Universitaria UNL, Santa Fe, Argentina
| | | | - Marina Etcheverrigaray
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Edificio FBCB - Ciudad Universitaria UNL, Santa Fe, Argentina.,Cell Culture Laboratory, Edificio FBCB, Ciudad Universitaria UNL, Santa Fe, Argentina
| | - Ricardo B Kratje
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Edificio FBCB - Ciudad Universitaria UNL, Santa Fe, Argentina.,Cell Culture Laboratory, Edificio FBCB, Ciudad Universitaria UNL, Santa Fe, Argentina
| |
Collapse
|
32
|
Kurosaki T, Popp MW, Maquat LE. Quality and quantity control of gene expression by nonsense-mediated mRNA decay. Nat Rev Mol Cell Biol 2020; 20:406-420. [PMID: 30992545 DOI: 10.1038/s41580-019-0126-2] [Citation(s) in RCA: 446] [Impact Index Per Article: 111.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nonsense-mediated mRNA decay (NMD) is one of the best characterized and most evolutionarily conserved cellular quality control mechanisms. Although NMD was first found to target one-third of mutated, disease-causing mRNAs, it is now known to also target ~10% of unmutated mammalian mRNAs to facilitate appropriate cellular responses - adaptation, differentiation or death - to environmental changes. Mutations in NMD genes in humans are associated with intellectual disability and cancer. In this Review, we discuss how NMD serves multiple purposes in human cells by degrading both mutated mRNAs to protect the integrity of the transcriptome and normal mRNAs to control the quantities of unmutated transcripts.
Collapse
Affiliation(s)
- Tatsuaki Kurosaki
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA.,Center for RNA Biology, University of Rochester, Rochester, NY, USA
| | - Maximilian W Popp
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA.,Center for RNA Biology, University of Rochester, Rochester, NY, USA
| | - Lynne E Maquat
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA. .,Center for RNA Biology, University of Rochester, Rochester, NY, USA.
| |
Collapse
|
33
|
Adamopoulos PG, Kontos CK, Scorilas A, Sideris DC. Identification of novel alternative transcripts of the human Ribonuclease κ (RNASEK) gene using 3′ RACE and high-throughput sequencing approaches. Genomics 2020; 112:943-951. [DOI: 10.1016/j.ygeno.2019.06.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/13/2019] [Accepted: 06/10/2019] [Indexed: 01/25/2023]
|
34
|
Ho AT, Hurst LD. In eubacteria, unlike eukaryotes, there is no evidence for selection favouring fail-safe 3' additional stop codons. PLoS Genet 2019; 15:e1008386. [PMID: 31527909 PMCID: PMC6764699 DOI: 10.1371/journal.pgen.1008386] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 09/27/2019] [Accepted: 08/27/2019] [Indexed: 12/23/2022] Open
Abstract
Errors throughout gene expression are likely deleterious, hence genomes are under selection to ameliorate their consequences. Additional stop codons (ASCs) are in-frame nonsense ‘codons’ downstream of the primary stop which may be read by translational machinery should the primary stop have been accidentally read through. Prior evidence in several eukaryotes suggests that ASCs are selected to prevent potentially-deleterious consequences of read-through. We extend this evidence showing that enrichment of ASCs is common but not universal for single cell eukaryotes. By contrast, there is limited evidence as to whether the same is true in other taxa. Here, we provide the first systematic test of the hypothesis that ASCs act as a fail-safe mechanism in eubacteria, a group with high read-through rates. Contra to the predictions of the hypothesis we find: there is paucity, not enrichment, of ASCs downstream; substitutions that degrade stops are more frequent in-frame than out-of-frame in 3’ sequence; highly expressed genes are no more likely to have ASCs than lowly expressed genes; usage of the leakiest primary stop (TGA) in highly expressed genes does not predict ASC enrichment even compared to usage of non-leaky stops (TAA) in lowly expressed genes, beyond downstream codon +1. Any effect at the codon immediately proximal to the primary stop can be accounted for by a preference for a T/U residue immediately following the stop, although if anything, TT- and TC- starting codons are preferred. We conclude that there is no compelling evidence for ASC selection in eubacteria. This presents an unusual case in which the same error could be solved by the same mechanism in eukaryotes and prokaryotes but is not. We discuss two possible explanations: that, owing to the absence of nonsense mediated decay, bacteria may solve read-through via gene truncation and in eukaryotes certain prion states cause raised read-through rates. In all organisms, gene expression is error-prone. One such error, translational read-through, occurs where the primary stop codon of an expressed gene is missed by the translational machinery. Failure to terminate is likely to be costly, hence genomes are under selection to prevent this from happening. One proposed error-proofing strategy involves in-frame proximal additional stop codons (ASCs) which may act as a ‘fail-safe’ mechanism by providing another opportunity for translation to terminate. There is evidence for ASC enrichment in several eukaryotes. We extend this evidence showing it to be common but not universal in single celled eukaryotes. However, the situation in bacteria is poorly understood, despite bacteria having high read-through rates. Here, we test the fail-safe hypothesis within a broad range of bacteria. To our surprise, we find that not only are ASCs not enriched, but they may even be selected against. This provides evidence for an unusual circumstance where eukaryotes and prokaryotes could solve the same problem the same way but don’t. What are we to make of this? We suggest that if read-through is the problem, ASCs are not necessarily the expected solution. Owing to the absence of nonsense-mediated decay, a process that makes gene truncation in eukaryotes less viable, we propose bacteria may rescue a leaky stop by mutation that creates a new stop upstream. Alternatively, raised read-through rates in some particular conditions in eukaryotes might explain the difference.
Collapse
Affiliation(s)
- Alexander T. Ho
- Milner Centre for Evolution, University of Bath, Bath, United Kingdom
- * E-mail:
| | - Laurence D. Hurst
- Milner Centre for Evolution, University of Bath, Bath, United Kingdom
| |
Collapse
|
35
|
Adamopoulos PG, Tsiakanikas P, Kontos CK, Panagiotou A, Vassilacopoulou D, Scorilas A. Identification of novel alternative splice variants of the human L-DOPA decarboxylase (DDC) gene in human cancer cells, using high-throughput sequencing approaches. Gene 2019; 719:144075. [PMID: 31449843 DOI: 10.1016/j.gene.2019.144075] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 08/21/2019] [Indexed: 12/15/2022]
Abstract
The human L-DOPA decarboxylase (DDC) is a gene that has been in the center of research attention in many laboratories the last decades, due to its major implication in various disorders, including many types of cancer. In the current work, we used in-house developed RACE and high-throughput sequencing approaches, in order to detect and identify novel DDC transcripts. Bioinformatic analysis revealed new alternative splicing events that support the existence of novel DDC transcripts. As a result, a total of 14 DDC splice variants were identified and their expression profile was investigated in a wide panel of human cancer cell lines. From all 14 novel DDC transcripts that were identified, 9 transcripts are predicted to encode new protein isoforms, while the remaining 5 are nonsense-mediated mRNA decay (NMD) candidates. Our results demonstrate that the human DDC gene undergoes complex processing leading to the figuration of multiple mRNA isoforms in cancer cells.
Collapse
Affiliation(s)
- Panagiotis G Adamopoulos
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Greece
| | - Panagiotis Tsiakanikas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Greece
| | - Christos K Kontos
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Greece
| | - Aristeidis Panagiotou
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Greece
| | - Dido Vassilacopoulou
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Greece
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Greece.
| |
Collapse
|
36
|
Adamopoulos PG, Mavrogiannis AV, Kontos CK, Scorilas A. Novel alternative splice variants of the human protein arginine methyltransferase 1 (PRMT1) gene, discovered using next-generation sequencing. Gene 2019; 699:135-144. [PMID: 30849541 DOI: 10.1016/j.gene.2019.02.072] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 01/24/2019] [Accepted: 02/17/2019] [Indexed: 02/07/2023]
Abstract
Next-generation sequencing (NGS) technology is highly expected to help researchers disclose the complexity of alternative splicing and understand its association with carcinogenesis. Alternative splicing alterations are firmly associated with multiple malignancies, in terms of functional roles in malignant transformation, motility, and/or metastasis of cancer cells. One perfect example illustrating the connection between alternative splicing and cancer is the human protein arginine methyltransferase 1 (PRMT1) gene, previously cloned from members of our research group and involved in a variety of processes including transcription, DNA repair, and signal transduction. Two splice variants of PRMT1 (variants v.1 and v.2) are downregulated in breast cancer. In addition, PRMT1 v.2 promotes the survival and invasiveness of breast cancer cells, while it could serve as a biomarker of unfavorable prognosis in colon cancer patients. The aim of this study was the molecular cloning of novel alternative splice variants of PRMT1 with the use of 3' RACE coupled with NGS technology. Extensive bioinformatics and computational analysis revealed a significant number of 19 novel alternative splicing events between annotated exons of PRMT1 as well as one novel exon, resulting in the discovery of multiple PRMT1 transcripts. In order to validate the full sequence of the novel transcripts, RT-PCR was carried out with the use of variant-specific primers. As a result, 58 novel PRMT1 transcripts were identified, 34 of which are mRNAs encoding new protein isoforms, whereas the rest 24 transcripts are candidates for nonsense-mediated mRNA decay (NMD).
Collapse
Affiliation(s)
- Panagiotis G Adamopoulos
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece
| | - Adamantios V Mavrogiannis
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece
| | - Christos K Kontos
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece.
| |
Collapse
|
37
|
Aksit MA, Bowling AD, Evans TA, Joynt AT, Osorio D, Patel S, West N, Merlo C, Sosnay PR, Cutting GR, Sharma N. Decreased mRNA and protein stability of W1282X limits response to modulator therapy. J Cyst Fibros 2019; 18:606-613. [PMID: 30803905 DOI: 10.1016/j.jcf.2019.02.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 02/14/2019] [Accepted: 02/14/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND Cell-based studies have shown that W1282X generates a truncated protein that can be functionally augmented by modulators. However, modulator treatment of primary cells from individuals who carry two copies of W1282X generates no functional CFTR. To understand the lack of response to modulators, we investigated the effect of W1282X on CFTR RNA transcript levels. METHODS qRT-PCR and RNA-seq were performed on primary nasal epithelial (NE) cells of a previously studied individual who is homozygous for W1282X, her carrier parents and control individuals without nonsense variants in CFTR. RESULTS CFTR RNA bearing W1282X in NE cells shows a steady-state level of 4.2 ± 0.9% of wild-type (WT) CFTR RNA in the mother and 12.4 ± 1.3% in the father. NMDI14, an inhibitor of nonsense-mediated mRNA decay (NMD), restored W1282X mRNA to almost 50% of WT levels in the parental NE cells. RNA-seq of the NE cells homozygous for W1282X showed that CFTR transcript level was reduced to 1.7% of WT (p-value: 4.6e-3). Negligible truncated CFTR protein was generated by Flp-In 293 cells stably expressing the W1282X EMG even though CFTR transcript was well above levels observed in the parents and proband. Finally, we demonstrated that NMD inhibition improved the stability and response to correctors of W1282X-CFTR protein expressed in the Flp-In-293 cells. CONCLUSION These results show that W1282X can cause substantial degradation of CFTR mRNA that has to be addressed before efforts aimed at augmenting CFTR protein function can be effective.
Collapse
Affiliation(s)
- M A Aksit
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - A D Bowling
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - T A Evans
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - A T Joynt
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - D Osorio
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - S Patel
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins Hospital, Baltimore, MD, United States
| | - N West
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins Hospital, Baltimore, MD, United States
| | - C Merlo
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins Hospital, Baltimore, MD, United States
| | - P R Sosnay
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins Hospital, Baltimore, MD, United States
| | - G R Cutting
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - N Sharma
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
38
|
Stalke A, Pfister ED, Baumann U, Eilers M, Schäffer V, Illig T, Auber B, Schlegelberger B, Brackmann R, Prokisch H, Krooss S, Bohne J, Skawran B. Homozygous frame shift variant in ATP7B exon 1 leads to bypass of nonsense-mediated mRNA decay and to a protein capable of copper export. Eur J Hum Genet 2019; 27:879-887. [PMID: 30723317 DOI: 10.1038/s41431-019-0345-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 12/06/2018] [Accepted: 01/05/2019] [Indexed: 12/13/2022] Open
Abstract
Wilson disease (WD) is an autosomal recessive disease of copper excess due to pathogenic variants in the ATP7B gene coding for a copper-transporting ATPase. We present a 5-year-old girl with the homozygous frame shift variant NM_000053.3: c.19_20del in exon 1 of ATP7B (consecutive exon numbering with c.1 as first nucleotide of exon 1), detected by whole-exome sequencing as a secondary finding. The variant leads to a premature termination codon in exon 2. The girl exhibited no WD symptoms and no abnormalities in liver biopsy. ATP7B liver mRNA expression was comparable to healthy controls suggesting that nonsense-mediated mRNA decay (NMD) could be bypassed by the mechanism of translation reinitiation. To verify this hypothesis, a CMV-driven ATP7B minigene (pcDNA3) was equipped with the authentic ATP7B 5' untranslated region and a truncated intron 2. We introduced c.19_20del by site-directed mutagenesis and overexpressed the constructs in HEK293T cells. We analyzed ATP7B expression by qRT-PCR, northern and western blot, and examined protein function by copper export capacity assays. Northern blot, qRT-PCR, and western blot revealed that c.19_20del ATP7B mRNA and protein is expressed in size and amount comparable to wild-type. Copper export capacity was also comparable to wild-type. Our results indicate that c.19_20del in ATP7B is able to bypass NMD by translation reinitiation, demonstrating that the classification of truncating variants as pathogenic without additional investigations should be done carefully.
Collapse
Affiliation(s)
- Amelie Stalke
- Department of Human Genetics, Hannover Medical School, Hannover, Germany. .,Division of Pediatric Gastroenterology and Hepatology, Department of Kidney, Liver and Metabolic Disease, Hannover Medical School, Hannover, Germany.
| | - Eva-Doreen Pfister
- Division of Pediatric Gastroenterology and Hepatology, Department of Kidney, Liver and Metabolic Disease, Hannover Medical School, Hannover, Germany
| | - Ulrich Baumann
- Division of Pediatric Gastroenterology and Hepatology, Department of Kidney, Liver and Metabolic Disease, Hannover Medical School, Hannover, Germany
| | - Marlies Eilers
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Vera Schäffer
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Thomas Illig
- Department of Human Genetics, Hannover Medical School, Hannover, Germany.,Hannover Unified Biobank, Hannover Medical School, Hannover, Germany
| | - Bernd Auber
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | | | - Renate Brackmann
- Department of Child and Adolescent Medicine, Klinikum Herford, Herford, Germany
| | - Holger Prokisch
- Institute of Human Genetics, Helmholtz Center Munich, Neuherberg, Germany.,Institute of Human Genetics, Technical University Munich, Munich, Germany
| | - Simon Krooss
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Jens Bohne
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Britta Skawran
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| |
Collapse
|
39
|
Exon junction complex components Y14 and Mago still play a role in budding yeast. Sci Rep 2019; 9:849. [PMID: 30696855 PMCID: PMC6351623 DOI: 10.1038/s41598-018-36785-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 11/26/2018] [Indexed: 11/26/2022] Open
Abstract
Since their divergence from Pezizomycotina, the mRNA metabolism of budding yeasts have undergone regressive evolution. With the dramatic loss of introns, a number of quality control mechanisms have been simplified or lost during evolution, such as the exon junction complex (EJC). We report the identification of the core EJC components, Mago, Y14, and eIF4A3, in at least seven Saccharomycotina species, including Yarrowia lipolytica. Peripheral factors that join EJC, either to mediate its assembly (Ibp160 or Cwc22), or trigger downstream processes, are present in the same species, forming an evolutionary package. Co-immunoprecipitation studies in Y. lipolytica showed that Mago and Y14 have retained the capacity to form heterodimers, which successively bind to the peripheral factors Upf3, Aly/REF, and Pym. Phenotypes and RNA-Seq analysis of EJC mutants showed evidence of Y14 and Mago involvement in mRNA metabolism. Differences in unspliced mRNA levels suggest that Y14 binding either interferes with pre-mRNA splicing or retains mRNA in the nucleus before their export and translation. These findings indicate that yeast could be a relevant model for understanding EJC function.
Collapse
|
40
|
Sharma N, Evans TA, Pellicore MJ, Davis E, Aksit MA, McCague AF, Joynt AT, Lu Z, Han ST, Anzmann AF, Lam ATN, Thaxton A, West N, Merlo C, Gottschalk LB, Raraigh KS, Sosnay PR, Cotton CU, Cutting GR. Capitalizing on the heterogeneous effects of CFTR nonsense and frameshift variants to inform therapeutic strategy for cystic fibrosis. PLoS Genet 2018; 14:e1007723. [PMID: 30444886 PMCID: PMC6267994 DOI: 10.1371/journal.pgen.1007723] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 11/30/2018] [Accepted: 09/28/2018] [Indexed: 12/18/2022] Open
Abstract
CFTR modulators have revolutionized the treatment of individuals with cystic fibrosis (CF) by improving the function of existing protein. Unfortunately, almost half of the disease-causing variants in CFTR are predicted to introduce premature termination codons (PTC) thereby causing absence of full-length CFTR protein. We hypothesized that a subset of nonsense and frameshift variants in CFTR allow expression of truncated protein that might respond to FDA-approved CFTR modulators. To address this concept, we selected 26 PTC-generating variants from four regions of CFTR and determined their consequences on CFTR mRNA, protein and function using intron-containing minigenes expressed in 3 cell lines (HEK293, MDCK and CFBE41o-) and patient-derived conditionally reprogrammed primary nasal epithelial cells. The PTC-generating variants fell into five groups based on RNA and protein effects. Group A (reduced mRNA, immature (core glycosylated) protein, function <1% (n = 5)) and Group B (normal mRNA, immature protein, function <1% (n = 10)) variants were unresponsive to modulator treatment. However, Group C (normal mRNA, mature (fully glycosylated) protein, function >1% (n = 5)), Group D (reduced mRNA, mature protein, function >1% (n = 5)) and Group E (aberrant RNA splicing, mature protein, function > 1% (n = 1)) variants responded to modulators. Increasing mRNA level by inhibition of NMD led to a significant amplification of modulator effect upon a Group D variant while response of a Group A variant was unaltered. Our work shows that PTC-generating variants should not be generalized as genetic 'nulls' as some may allow generation of protein that can be targeted to achieve clinical benefit.
Collapse
Affiliation(s)
- Neeraj Sharma
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Taylor A. Evans
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Matthew J. Pellicore
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Emily Davis
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Melis A. Aksit
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Allison F. McCague
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Anya T. Joynt
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Zhongzhu Lu
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Sangwoo T. Han
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Arianna F. Anzmann
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Anh-Thu N. Lam
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Abigail Thaxton
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins Hospital, Baltimore, Maryland, United States of America
| | - Natalie West
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins Hospital, Baltimore, Maryland, United States of America
| | - Christian Merlo
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins Hospital, Baltimore, Maryland, United States of America
| | - Laura B. Gottschalk
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Karen S. Raraigh
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Patrick R. Sosnay
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins Hospital, Baltimore, Maryland, United States of America
| | - Calvin U. Cotton
- Departments of Pediatrics, Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Garry R. Cutting
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| |
Collapse
|
41
|
Schikora-Tamarit MÀ, Carey LB. Poor codon optimality as a signal to degrade transcripts with frameshifts. Transcription 2018; 9:327-333. [PMID: 30105929 DOI: 10.1080/21541264.2018.1511676] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Frameshifting errors are common and mRNA quality control pathways, such as nonsense-mediated decay (NMD), exist to degrade these aberrant transcripts. Recent work has shown the existence of a genetic link between NMD and codon-usage mediated mRNA decay. Here we present computational evidence that these pathways are synergic for removing frameshifts.
Collapse
Affiliation(s)
- Miquel Àngel Schikora-Tamarit
- a Systems Bioengineering Program, Department of Experimental and Health Sciences , Universitat Pompeu Fabra , Barcelona , Spain
| | - Lucas B Carey
- a Systems Bioengineering Program, Department of Experimental and Health Sciences , Universitat Pompeu Fabra , Barcelona , Spain
| |
Collapse
|
42
|
Ergun MA, Citirik M, Bilgili G, Ergun SG, Polat G. A novel RP1 mutation demonstrated in a Turkish family with autosomal recessive retinitis pigmentosa. GENE REPORTS 2018. [DOI: 10.1016/j.genrep.2018.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
43
|
Adamopoulos PG, Raptis GD, Kontos CK, Scorilas A. Discovery and expression analysis of novel transcripts of the human SR-related CTD-associated factor 1 (SCAF1) gene in human cancer cells using Next-Generation Sequencing. Gene 2018; 670:155-165. [PMID: 29787824 DOI: 10.1016/j.gene.2018.05.044] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 05/13/2018] [Indexed: 02/07/2023]
Abstract
The human SR-related CTD associated factor 1 (SCAF1) gene is a new member of the human SR (Ser/Arg-rich) superfamily of pre-mRNA splicing factors, which has been discovered and cloned by members of our lab. SCAF1 interacts with the CTD domain of the RNA polymerase II polypeptide A and is firmly involved in pre-mRNA splicing. Although it was found to be expressed widely in multiple human tissues, its mRNA levels vary a lot. The significant relation of SCAF1 with cancer has been confirmed by many studies, since SCAF1 mRNA transcript was found to be overexpressed in breast and ovarian tumors, confirming its significant prognostic value as a cancer biomarker in both these human malignancies. In this study, we describe the discovery and cloning of fifteen novel transcripts of the human SCAF1 gene (SCAF1 v.2 - v.16), using nested PCR and NGS technology. In detail, extensive bioinformatic analysis revealed that these novel SCAF1 splice variants comprise a total of nine novel alternative splicing events between the annotated exons of the gene, thus producing seven novel SCAF1 transcripts with open-reading frames, which are predicted to encode novel SCAF1 isoforms and eight novel SCAF1 transcripts with premature termination codons that are likely long non-coding RNAs. Additionally, a novel 3' UTR was discovered and cloned using nested 3' RACE and was validated with Sanger sequencing. In order to validate the NGS findings as well as to investigate the expression profile of each novel transcript, RT-PCR experiments were carried out with the use of variant-specific primers. Since SCAF1 is implicated in many human malignancies, qualifying as a potential biomarker, the quantification of the presented novel transcripts in human samples may have clinical applications in different types of cancer.
Collapse
Affiliation(s)
- Panagiotis G Adamopoulos
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Georgios D Raptis
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Christos K Kontos
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece.
| |
Collapse
|
44
|
Discovery of novel transcripts of the human tissue kallikrein (KLK1) and kallikrein-related peptidase 2 (KLK2) in human cancer cells, exploiting Next-Generation Sequencing technology. Genomics 2018; 111:642-652. [PMID: 29614347 DOI: 10.1016/j.ygeno.2018.03.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 03/16/2018] [Accepted: 03/30/2018] [Indexed: 01/02/2023]
Abstract
Tissue kallikrein, kallikrein-related peptidases (KLKs), and plasma kallikrein form the largest group of serine proteases in the human genome, sharing many structural and functional properties. Several KLK transcripts have been found aberrantly expressed in numerous human malignancies, confirming their prognostic or/and diagnostic values. However, the process of alternative splicing can now be studied in-depth due to the development of Next-Generation Sequencing (NGS). In the present study, we used NGS to discover novel transcripts of the KLK1 and KLK2 genes, after nested touchdown PCR. Bioinformatics analysis and PCR experiments revealed a total of eleven novel KLK transcripts (two KLK1 and nine KLK2 transcripts). In addition, the expression profiles of each novel transcript were investigated with nested PCR experiments using variant-specific primers. Since KLKs are implicated in human malignancies, qualifying as potential biomarkers, the quantification of the presented novel transcripts in human samples may have clinical applications in different types of cancer.
Collapse
|
45
|
Imbriano C, Molinari S. Alternative Splicing of Transcription Factors Genes in Muscle Physiology and Pathology. Genes (Basel) 2018; 9:genes9020107. [PMID: 29463057 PMCID: PMC5852603 DOI: 10.3390/genes9020107] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 02/10/2018] [Accepted: 02/13/2018] [Indexed: 12/13/2022] Open
Abstract
Skeletal muscle formation is a multi-step process that is governed by complex networks of transcription factors. The regulation of their functions is in turn multifaceted, including several mechanisms, among them alternative splicing (AS) plays a primary role. On the other hand, altered AS has a role in the pathogenesis of numerous muscular pathologies. Despite these premises, the causal role played by the altered splicing pattern of transcripts encoding myogenic transcription factors in neuromuscular diseases has been neglected so far. In this review, we systematically investigate what has been described about the AS patterns of transcription factors both in the physiology of the skeletal muscle formation process and in neuromuscular diseases, in the hope that this may be useful in re-evaluating the potential role of altered splicing of transcription factors in such diseases.
Collapse
Affiliation(s)
- Carol Imbriano
- University of Modena and Reggio Emilia, Department of Life Sciences, Modena, Italy.
| | - Susanna Molinari
- University of Modena and Reggio Emilia, Department of Life Sciences, Modena, Italy.
| |
Collapse
|
46
|
Lejeune F. Nonsense-mediated mRNA decay at the crossroads of many cellular pathways. BMB Rep 2018; 50:175-185. [PMID: 28115040 PMCID: PMC5437961 DOI: 10.5483/bmbrep.2017.50.4.015] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Indexed: 12/22/2022] Open
Abstract
Nonsense-mediated mRNA decay (NMD) is a surveillance mechanism ensuring the fast decay of mRNAs harboring a premature termination codon (PTC). As a quality control mechanism, NMD distinguishes PTCs from normal termination codons in order to degrade PTC-carrying mRNAs only. For this, NMD is connected to various other cell processes which regulate or activate it under specific cell conditions or in response to mutations, mis-regulations, stresses, or particular cell programs. These cell processes and their connections with NMD are the focus of this review, which aims both to illustrate the complexity of the NMD mechanism and its regulation and to highlight the cellular consequences of NMD inhibition.
Collapse
Affiliation(s)
- Fabrice Lejeune
- University Lille, UMR8161 - M3T - Mechanisms of Tumorigenesis and Target Therapies; CNRS, UMR 8161, 3Institut Pasteur de Lille, F-59000 Lille, France
| |
Collapse
|
47
|
Adamopoulos PG, Kontos CK, Scorilas A. Molecular cloning of novel transcripts of human kallikrein-related peptidases 5, 6, 7, 8 and 9 (KLK5 - KLK9), using Next-generation sequencing. Sci Rep 2017; 7:17299. [PMID: 29229980 PMCID: PMC5725587 DOI: 10.1038/s41598-017-16269-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 08/04/2017] [Indexed: 11/26/2022] Open
Abstract
Alternative splicing of cancer-related genes is a common cellular mechanism accounting for cancer cell transcriptome complexity and affecting cell cycle control, proliferation, apoptosis, angiogenesis, invasion, and metastasis. In this study, we describe the discovery and molecular cloning of thirty novel transcripts of the human KLK5, KLK6, KLK7, KLK8 and KLK9 genes, using 3′ rapid amplification of cDNA ends (3′ RACE) and NGS technology, as well as their expression analysis in many established cell lines, originating from several distinct cancerous and normal tissues. Extensive bioinformatic analysis revealed novel splice variants of these five members of the KLK family, comprising entirely new exons, previously unknown boundaries of the already annotated exons (extensions and truncations) as well as alternative splicing events between these exons. Nested RT-PCR in a panel of human cell lines originating from seventeen cancerous and two normal tissues with the use of variant-specific pairs of primers was carried out for expression analysis of these novel splice variants, and Sanger sequencing of the respective amplicons confirmed our NGS results. Given that some splice variants of KLK family members possess clinical value, novel alternatively spliced transcripts appear as new candidate biomarkers for diagnostic and/or prognostic purposes and as targets for therapeutic strategies.
Collapse
Affiliation(s)
- Panagiotis G Adamopoulos
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, 15701, Greece
| | - Christos K Kontos
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, 15701, Greece
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, 15701, Greece.
| |
Collapse
|
48
|
Thomas CA, Tejwani L, Trujillo CA, Negraes PD, Herai RH, Mesci P, Macia A, Crow YJ, Muotri AR. Modeling of TREX1-Dependent Autoimmune Disease using Human Stem Cells Highlights L1 Accumulation as a Source of Neuroinflammation. Cell Stem Cell 2017; 21:319-331.e8. [PMID: 28803918 PMCID: PMC5591075 DOI: 10.1016/j.stem.2017.07.009] [Citation(s) in RCA: 210] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Revised: 05/16/2017] [Accepted: 07/14/2017] [Indexed: 01/20/2023]
Abstract
Three-prime repair exonuclease 1 (TREX1) is an anti-viral enzyme that cleaves nucleic acids in the cytosol, preventing accumulation and a subsequent type I interferon-associated inflammatory response. Autoimmune diseases, including Aicardi-Goutières syndrome (AGS) and systemic lupus erythematosus, can arise when TREX1 function is compromised. AGS is a neuroinflammatory disorder with severe and persistent intellectual and physical problems. Here we generated a human AGS model that recapitulates disease-relevant phenotypes using pluripotent stem cells lacking TREX1. We observed abundant extrachromosomal DNA in TREX1-deficient neural cells, of which endogenous Long Interspersed Element-1 retrotransposons were a major source. TREX1-deficient neurons also exhibited increased apoptosis and formed three-dimensional cortical organoids of reduced size. TREX1-deficient astrocytes further contributed to the observed neurotoxicity through increased type I interferon secretion. In this model, reverse-transcriptase inhibitors rescued the neurotoxicity of AGS neurons and organoids, highlighting their potential utility in therapeutic regimens for AGS and related disorders.
Collapse
Affiliation(s)
- Charles A Thomas
- Department of Pediatrics/Rady Children's Hospital San Diego, School of Medicine, University of California, San Diego, La Jolla, CA, USA; Department of Cellular & Molecular Medicine, Kavli Institute for Brain and Mind, University of California, San Diego, La Jolla, CA, USA; Stem Cell Program, Center for Academic Research and Training in Anthropogeny (CARTA), University of California, San Diego, La Jolla, CA, USA
| | - Leon Tejwani
- Department of Pediatrics/Rady Children's Hospital San Diego, School of Medicine, University of California, San Diego, La Jolla, CA, USA; Department of Cellular & Molecular Medicine, Kavli Institute for Brain and Mind, University of California, San Diego, La Jolla, CA, USA; Stem Cell Program, Center for Academic Research and Training in Anthropogeny (CARTA), University of California, San Diego, La Jolla, CA, USA; Interdepartmental Neuroscience Program, Yale University, New Haven, CT, USA
| | - Cleber A Trujillo
- Department of Pediatrics/Rady Children's Hospital San Diego, School of Medicine, University of California, San Diego, La Jolla, CA, USA; Department of Cellular & Molecular Medicine, Kavli Institute for Brain and Mind, University of California, San Diego, La Jolla, CA, USA; Stem Cell Program, Center for Academic Research and Training in Anthropogeny (CARTA), University of California, San Diego, La Jolla, CA, USA
| | - Priscilla D Negraes
- Department of Pediatrics/Rady Children's Hospital San Diego, School of Medicine, University of California, San Diego, La Jolla, CA, USA; Department of Cellular & Molecular Medicine, Kavli Institute for Brain and Mind, University of California, San Diego, La Jolla, CA, USA; Stem Cell Program, Center for Academic Research and Training in Anthropogeny (CARTA), University of California, San Diego, La Jolla, CA, USA
| | - Roberto H Herai
- Department of Pediatrics/Rady Children's Hospital San Diego, School of Medicine, University of California, San Diego, La Jolla, CA, USA; Department of Cellular & Molecular Medicine, Kavli Institute for Brain and Mind, University of California, San Diego, La Jolla, CA, USA; Stem Cell Program, Center for Academic Research and Training in Anthropogeny (CARTA), University of California, San Diego, La Jolla, CA, USA; School of Medicine, Graduate Program in Health Sciences, Pontifícia Universidade Católica do Paraná, Curitiba, Paraná, Brazil
| | - Pinar Mesci
- Department of Pediatrics/Rady Children's Hospital San Diego, School of Medicine, University of California, San Diego, La Jolla, CA, USA; Department of Cellular & Molecular Medicine, Kavli Institute for Brain and Mind, University of California, San Diego, La Jolla, CA, USA; Stem Cell Program, Center for Academic Research and Training in Anthropogeny (CARTA), University of California, San Diego, La Jolla, CA, USA
| | - Angela Macia
- Department of Pediatrics/Rady Children's Hospital San Diego, School of Medicine, University of California, San Diego, La Jolla, CA, USA; Department of Cellular & Molecular Medicine, Kavli Institute for Brain and Mind, University of California, San Diego, La Jolla, CA, USA; Stem Cell Program, Center for Academic Research and Training in Anthropogeny (CARTA), University of California, San Diego, La Jolla, CA, USA
| | - Yanick J Crow
- INSERM UMR 1163, Laboratory of Neurogenetics and Neuroinflammation, Paris Descartes - Sorbonne Paris Cité University, Institut Imagine, Hôpital Necker, Paris, France; Medical and Human Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK
| | - Alysson R Muotri
- Department of Pediatrics/Rady Children's Hospital San Diego, School of Medicine, University of California, San Diego, La Jolla, CA, USA; Department of Cellular & Molecular Medicine, Kavli Institute for Brain and Mind, University of California, San Diego, La Jolla, CA, USA; Stem Cell Program, Center for Academic Research and Training in Anthropogeny (CARTA), University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
49
|
Shaul O. How introns enhance gene expression. Int J Biochem Cell Biol 2017; 91:145-155. [PMID: 28673892 DOI: 10.1016/j.biocel.2017.06.016] [Citation(s) in RCA: 236] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Revised: 06/26/2017] [Accepted: 06/30/2017] [Indexed: 01/18/2023]
Abstract
In many eukaryotes, including mammals, plants, yeast, and insects, introns can increase gene expression without functioning as a binding site for transcription factors. This phenomenon was termed 'intron-mediated enhancement'. Introns can increase transcript levels by affecting the rate of transcription, nuclear export, and transcript stability. Moreover, introns can also increase the efficiency of mRNA translation. This review discusses the current knowledge about these processes. The role of splicing in IME and the significance of intron position relative to the sites of transcription and translation initiation are elaborated. Particular emphasis is placed on the question why different introns, present at the same location of the same genes and spliced at a similar high efficiency, can have very different impacts on expression - from almost no effect to considerable stimulation. This situation can be at least partly accounted for by the identification of splicing-unrelated intronic elements with a special ability to enhance mRNA accumulation or translational efficiency. The many factors that could lead to the large variation observed between the impact of introns in different genes and experimental systems are highlighted. It is suggested that there is no sole, definite answer to the question "how do introns enhance gene expression". Rather, each intron-gene combination might undergo its own unique mixture of processes that lead to the perceptible outcome.
Collapse
Affiliation(s)
- Orit Shaul
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel.
| |
Collapse
|
50
|
Hu Z, Yau C, Ahmed AA. A pan-cancer genome-wide analysis reveals tumour dependencies by induction of nonsense-mediated decay. Nat Commun 2017; 8:15943. [PMID: 28649990 PMCID: PMC5490262 DOI: 10.1038/ncomms15943] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 05/15/2017] [Indexed: 12/12/2022] Open
Abstract
Nonsense-mediated decay (NMD) eliminates transcripts with premature termination codons. Although NMD-induced loss-of-function has been shown to contribute to the genesis of particular cancers, its global functional consequence in tumours has not been characterized. Here we develop an algorithm to predict NMD and apply it on somatic mutations reported in The Cancer Genome Atlas. We identify more than 73 K mutations that are predicted to elicit NMD (NMD-elicit). NMD-elicit mutations in tumour suppressor genes (TSGs) are associated with significant reduction in gene expression. We discover cancer-specific NMD-elicit signatures in TSGs and cancer-associated genes. Our analysis reveals a previously unrecognized dependence of hypermutated tumours on hypofunction of genes that are involved in chromatin remodelling and translation. Half of hypermutated stomach adenocarcinomas are associated with NMD-elicit mutations of the translation initiators LARP4B and EIF5B. Our results unravel strong therapeutic opportunities by targeting tumour dependencies on NMD-elicit mutations.
Collapse
Affiliation(s)
- Zhiyuan Hu
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DU, UK
- Nuffield Department of Obstetrics and Gynaecology, University of Oxford, Oxford OX3 9DU, UK
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Christopher Yau
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
- Centre for Computational Biology, Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Ahmed Ashour Ahmed
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DU, UK
- Nuffield Department of Obstetrics and Gynaecology, University of Oxford, Oxford OX3 9DU, UK
| |
Collapse
|