1
|
Vassiliadis D, Wong KH, Andrianopoulos A, Monahan BJ. A genome-wide analysis of carbon catabolite repression in Schizosaccharomyces pombe. BMC Genomics 2019; 20:251. [PMID: 30922219 PMCID: PMC6440086 DOI: 10.1186/s12864-019-5602-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 03/12/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Optimal glucose metabolism is central to the growth and development of cells. In microbial eukaryotes, carbon catabolite repression (CCR) mediates the preferential utilization of glucose, primarily by repressing alternate carbon source utilization. In fission yeast, CCR is mediated by transcriptional repressors Scr1 and the Tup/Ssn6 complex, with the Rst2 transcription factor important for activation of gluconeogenesis and sexual differentiation genes upon derepression. Through genetic and genome-wide methods, this study aimed to comprehensively characterize CCR in fission yeast by identifying the genes and biological processes that are regulated by Scr1, Tup/Ssn6 and Rst2, the core CCR machinery. RESULTS The transcriptional response of fission yeast to glucose-sufficient or glucose-deficient growth conditions in wild type and CCR mutant cells was determined by RNA-seq and ChIP-seq. Scr1 was found to regulate genes involved in carbon metabolism, hexose uptake, gluconeogenesis and the TCA cycle. Surprisingly, a role for Scr1 in the suppression of sexual differentiation was also identified, as homothallic scr1 deletion mutants showed ectopic meiosis in carbon and nitrogen rich conditions. ChIP-seq characterised the targets of Tup/Ssn6 and Rst2 identifying regulatory roles within and independent of CCR. Finally, a subset of genes bound by all three factors was identified, implying that regulation of certain loci may be modulated in a competitive fashion between the Scr1, Tup/Ssn6 repressors and the Rst2 activator. CONCLUSIONS By identifying the genes directly and indirectly regulated by Scr1, Tup/Ssn6 and Rst2, this study comprehensively defined the gene regulatory networks of CCR in fission yeast and revealed the transcriptional complexities governing this system.
Collapse
Affiliation(s)
- Dane Vassiliadis
- Genetics, Genomics & Systems Biology, School of Biosciences, The University of Melbourne, Parkville, Victoria, Australia. .,Commonwealth Scientific and Industrial Research Organisation (CSIRO), Parkville, Victoria, Australia.
| | - Koon Ho Wong
- Faculty of Health Sciences, University of Macau, Macau, China.,Institute of Translational Medicine, University of Macau, Macau, China
| | - Alex Andrianopoulos
- Genetics, Genomics & Systems Biology, School of Biosciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Brendon J Monahan
- Genetics, Genomics & Systems Biology, School of Biosciences, The University of Melbourne, Parkville, Victoria, Australia. .,Commonwealth Scientific and Industrial Research Organisation (CSIRO), Parkville, Victoria, Australia. .,Cancer Therapeutics (CTx), Parkville, Victoria, Australia.
| |
Collapse
|
2
|
Computational mechanisms in genetic regulation by RNA. J Theor Biol 2018; 458:156-168. [PMID: 30240577 DOI: 10.1016/j.jtbi.2018.09.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 09/01/2018] [Accepted: 09/16/2018] [Indexed: 11/22/2022]
Abstract
The evolution of the genome has led to very sophisticated and complex regulation. Because of the abundance of non-coding RNA (ncRNA) in the cell, different species will promiscuously associate with each other, suggesting collective dynamics similar to artificial neural networks. A simple mechanism is proposed allowing ncRNA to perform computations equivalent to neural network algorithms such as Boltzmann machines and the Hopfield model. The quantities analogous to the neural couplings are the equilibrium constants between different RNA species. The relatively rapid equilibration of RNA binding and unbinding is regulated by a slower process that degrades and creates new RNA. The model requires that the creation rate for each species be an increasing function of the ratio of total to unbound RNA. Similar mechanisms have already been found to exist experimentally for ncRNA regulation. With the overall concentration of RNA regulated, equilibrium constants can be chosen to store many different patterns, or many different input-output relations. The network is also quite insensitive to random mutations in equilibrium constants. Therefore one expects that this kind of mechanism will have a much higher mutation rate than ones typically regarded as being under evolutionary constraint.
Collapse
|
3
|
Takemata N, Ohta K. Role of non-coding RNA transcription around gene regulatory elements in transcription factor recruitment. RNA Biol 2016; 14:1-5. [PMID: 27763805 PMCID: PMC5270525 DOI: 10.1080/15476286.2016.1248020] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Eukaryotic cells produce a variety of non-coding RNAs (ncRNAs), many of which have been shown to play pivotal roles in biological processes such as differentiation, maintenance of pluripotency of stem cells, and cellular response to various stresses. Genome-wide analyses have revealed that many ncRNAs are transcribed around regulatory DNA elements located proximal or distal to gene promoters, but their biological functions are largely unknown. Recently, it has been demonstrated in yeast and mouse that ncRNA transcription around gene promoters and enhancers facilitates DNA binding of transcription factors to their target sites. These results suggest universal roles of promoter/enhancer-associated ncRNAs in the recruitment of transcription factors to their binding sites.
Collapse
Affiliation(s)
| | - Kunihiro Ohta
- a Department of Life Sciences , The University of Tokyo , Japan.,b Department of Biological Sciences , The University of Tokyo , Japan
| |
Collapse
|
4
|
Takemata N, Oda A, Yamada T, Galipon J, Miyoshi T, Suzuki Y, Sugano S, Hoffman CS, Hirota K, Ohta K. Local potentiation of stress-responsive genes by upstream noncoding transcription. Nucleic Acids Res 2016; 44:5174-89. [PMID: 26945040 PMCID: PMC4914089 DOI: 10.1093/nar/gkw142] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Accepted: 02/25/2016] [Indexed: 02/06/2023] Open
Abstract
It has been postulated that a myriad of long noncoding RNAs (lncRNAs) contribute to gene regulation. In fission yeast, glucose starvation triggers lncRNA transcription across promoter regions of stress-responsive genes including fbp1 (fructose-1,6-bisphosphatase1). At the fbp1 promoter, this transcription promotes chromatin remodeling and fbp1 mRNA expression. Here, we demonstrate that such upstream noncoding transcription facilitates promoter association of the stress-responsive transcriptional activator Atf1 at the sites of transcription, leading to activation of the downstream stress genes. Genome-wide analyses revealed that ∼50 Atf1-binding sites show marked decrease in Atf1 occupancy when cells are treated with a transcription inhibitor. Most of these transcription-enhanced Atf1-binding sites are associated with stress-dependent induction of the adjacent mRNAs or lncRNAs, as observed in fbp1. These Atf1-binding sites exhibit low Atf1 occupancy and high histone density in glucose-rich conditions, and undergo dramatic changes in chromatin status after glucose depletion: enhanced Atf1 binding, histone eviction, and histone H3 acetylation. We also found that upstream transcripts bind to the Groucho-Tup1 type transcriptional corepressors Tup11 and Tup12, and locally antagonize their repressive functions on Atf1 binding. These results reveal a new mechanism in which upstream noncoding transcription locally magnifies the specific activation of stress-inducible genes via counteraction of corepressors.
Collapse
Affiliation(s)
- Naomichi Takemata
- Department of Life Sciences, The University of Tokyo, Meguro-ku, Tokyo 153-8902, Japan
| | - Arisa Oda
- Department of Life Sciences, The University of Tokyo, Meguro-ku, Tokyo 153-8902, Japan
| | - Takatomi Yamada
- Department of Biological Sciences, Chuo University, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Josephine Galipon
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0035, Japan
| | - Tomoichiro Miyoshi
- Department of Life Sciences, The University of Tokyo, Meguro-ku, Tokyo 153-8902, Japan
| | - Yutaka Suzuki
- Department of Medical Genome Sciences, The University of Tokyo, Kashiwa, Chiba 277-8561, Japan
| | - Sumio Sugano
- Department of Medical Genome Sciences, The University of Tokyo, Kashiwa, Chiba 277-8561, Japan
| | | | - Kouji Hirota
- Department of Chemistry, Tokyo Metropolitan University, Hachi-Ohji, Tokyo 192-0397, Japan
| | - Kunihiro Ohta
- Department of Life Sciences, The University of Tokyo, Meguro-ku, Tokyo 153-8902, Japan Department of Biological Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
5
|
Tanaka N, Mukai Y. Yeast Cyc8p and Tup1p proteins function as coactivators for transcription of Stp1/2p-dependent amino acid transporter genes. Biochem Biophys Res Commun 2015; 468:32-8. [DOI: 10.1016/j.bbrc.2015.11.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 11/01/2015] [Indexed: 10/22/2022]
|
6
|
High Confidence Fission Yeast SUMO Conjugates Identified by Tandem Denaturing Affinity Purification. Sci Rep 2015; 5:14389. [PMID: 26404184 PMCID: PMC4585906 DOI: 10.1038/srep14389] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 08/27/2015] [Indexed: 01/01/2023] Open
Abstract
Covalent attachment of the small ubiquitin-like modifier (SUMO) to key targets in the proteome critically regulates the evolutionarily conserved processes of cell cycle control, transcription, DNA replication and maintenance of genome stability. The proteome-wide identification of SUMO conjugates in budding yeast has been invaluable in helping to define roles of SUMO in these processes. Like budding yeast, fission yeast is an important and popular model organism; however, the fission yeast Schizosaccharomyces pombe community currently lacks proteome-wide knowledge of SUMO pathway targets. To begin to address this deficiency, we adapted and used a highly stringent Tandem Denaturing Affinity Purification (TDAP) method, coupled with mass spectrometry, to identify fission yeast SUMO conjugates. Comparison of our data with that compiled in budding yeast reveals conservation of SUMO target enrichment in nuclear and chromatin-associated processes. Moreover, the SUMO "cloud" phenomenon, whereby multiple components of a single protein complex are SUMOylated, is also conserved. Overall, SUMO TDAP provides both a key resource of high confidence SUMO-modified target proteins in fission yeast, and a robust method for future analyses of SUMO function.
Collapse
|
7
|
Matsumura H, Kusaka N, Nakamura T, Tanaka N, Sagegami K, Uegaki K, Inoue T, Mukai Y. Crystal structure of the N-terminal domain of the yeast general corepressor Tup1p and its functional implications. J Biol Chem 2012; 287:26528-38. [PMID: 22707714 DOI: 10.1074/jbc.m112.369652] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The yeast Cyc8p-Tup1p protein complex is a general transcriptional corepressor of genes involved in many different physiological processes. Herein, we present the crystal structure of the Tup1p N-terminal domain (residues 1-92), essential for Tup1p self-assembly and interaction with Cyc8p. This domain tetramerizes to form a novel antiparallel four-helix bundle. Coiled coil interactions near the helical ends hold each dimer together, whereas interdimeric association involves only two sets of two residues located toward the chain centers. A mutagenesis study confirmed that the nonpolar residues responsible for the association of the protomers as dimers are also required for transcriptional repression. An additional structural study demonstrated that the domain containing an Leu(62) → Arg mutation that had been shown not to bind Cyc8p exhibits an altered structure, distinct from the wild type. This altered structure explains why the mutant cannot bind Cyc8p. The data presented herein highlight the importance of the architecture of the Tup1p N-terminal domain for self-association.
Collapse
Affiliation(s)
- Hiroyoshi Matsumura
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Promotion of glycerol utilization using ethanol and 1-propanol in Schizosaccharomyces pombe. Appl Microbiol Biotechnol 2012; 95:441-9. [DOI: 10.1007/s00253-012-3971-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 02/13/2012] [Accepted: 02/13/2012] [Indexed: 01/27/2023]
|
9
|
The Ubiquitin ligase Ubr11 is essential for oligopeptide utilization in the fission yeast Schizosaccharomyces pombe. EUKARYOTIC CELL 2012; 11:302-10. [PMID: 22226946 DOI: 10.1128/ec.05253-11] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Uptake of extracellular oligopeptides in yeast is mediated mainly by specific transporters of the peptide transporter (PTR) and oligopeptide transporter (OPT) families. Here, we investigated the role of potential peptide transporters in the yeast Schizosaccharomyces pombe. Utilization of naturally occurring dipeptides required only Ptr2/SPBC13A2.04c and none of the other 3 OPT proteins (Isp4, Pgt1, and Opt3), whereas only Isp4 was indispensable for tetrapeptide utilization. Both Ptr2 and Isp4 localized to the cell surface, but under rich nutrient conditions Isp4 localized in the Golgi apparatus through the function of the ubiquitin ligase Pub1. Furthermore, the ubiquitin ligase Ubr11 played a significant role in oligopeptide utilization. The mRNA levels of both the ptr2 and isp4 genes were significantly reduced in ubr11Δ cells, and the dipeptide utilization defect in the ubr11Δ mutant was rescued by the forced expression of Ptr2. Consistent with its role in transcriptional regulation of peptide transporter genes, the Ubr11 protein was accumulated in the nucleus. Unlike the situation in Saccharomyces cerevisiae, the oligopeptide utilization defect in the S. pombe ubr11Δ mutant was not rescued by inactivation of the Tup11/12 transcriptional corepressors, suggesting that the requirement for the Ubr ubiquitin ligase in the upregulation of peptide transporter mRNA levels is conserved in both yeasts; however, the actual mechanism underlying the control appears to be different. We also found that the peptidomimetic proteasome inhibitor MG132 was still operative in a strain lacking all known PTR and OPT peptide transporters. Therefore, irrespective of its peptide-like structure, MG132 is carried into cells independently of the representative peptide transporters.
Collapse
|
10
|
Matsuzawa T, Morita T, Tanaka N, Tohda H, Takegawa K. Identification of a galactose-specific flocculin essential for non-sexual flocculation and filamentous growth in Schizosaccharomyces pombe. Mol Microbiol 2011; 82:1531-44. [DOI: 10.1111/j.1365-2958.2011.07908.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
11
|
Sansó M, Vargas-Pérez I, García P, Ayté J, Hidalgo E. Nuclear roles and regulation of chromatin structure by the stress-dependent MAP kinase Sty1 of Schizosaccharomyces pombe. Mol Microbiol 2011; 82:542-54. [DOI: 10.1111/j.1365-2958.2011.07851.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
12
|
Ferreira ME, Berndt KD, Nilsson J, Wright APH. WD40 domain divergence is important for functional differences between the fission yeast Tup11 and Tup12 co-repressor proteins. PLoS One 2010; 5:e11009. [PMID: 20544037 PMCID: PMC2882346 DOI: 10.1371/journal.pone.0011009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Accepted: 04/28/2010] [Indexed: 11/19/2022] Open
Abstract
We have previously demonstrated that subsets of Ssn6/Tup target genes have distinct requirements for the Schizosaccharomyces pombe homologs of the Tup1/Groucho/TLE co-repressor proteins, Tup11 and Tup12. The very high level of divergence in the histone interacting repression domains of the two proteins suggested that determinants distinguishing Tup11 and Tup12 might be located in this domain. Here we have combined phylogenetic and structural analysis as well as phenotypic characterization, under stress conditions that specifically require Tup12, to identify and characterize the domains involved in Tup12-specific action. The results indicate that divergence in the repression domain is not generally relevant for Tup12-specific function. Instead, we show that the more highly conserved C-terminal WD40 repeat domain of Tup12 is important for Tup12-specific function. Surface amino acid residues specific for the WD40 repeat domain of Tup12 proteins in different fission yeasts are clustered in blade 3 of the propeller-like structure that is characteristic of WD40 repeat domains. The Tup11 and Tup12 proteins in fission yeasts thus provide an excellent model system for studying the functional divergence of WD40 repeat domains.
Collapse
Affiliation(s)
- Monica E. Ferreira
- School of Life Sciences, Södertörn University, Huddinge, Sweden
- Center for Biosciences, Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Kurt D. Berndt
- School of Life Sciences, Södertörn University, Huddinge, Sweden
- Center for Biosciences, Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Johan Nilsson
- School of Life Sciences, Södertörn University, Huddinge, Sweden
| | - Anthony P. H. Wright
- School of Life Sciences, Södertörn University, Huddinge, Sweden
- Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden
- Center for Biosciences, Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| |
Collapse
|
13
|
The gld1+ gene encoding glycerol dehydrogenase is required for glycerol metabolism in Schizosaccharomyces pombe. Appl Microbiol Biotechnol 2010; 87:715-27. [PMID: 20396879 DOI: 10.1007/s00253-010-2586-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2010] [Revised: 03/23/2010] [Accepted: 03/24/2010] [Indexed: 10/19/2022]
Abstract
The budding yeast Saccharomyces cerevisiae is able to utilize glycerol as the sole carbon source via two pathways (glycerol 3-phosphate pathway and dihydroxyacetone [DHA] pathway). In contrast, the fission yeast Schizosaccharomyces pombe does not grow on media containing glycerol as the sole carbon source. However, in the presence of other carbon sources such as galactose and ethanol, S. pombe could assimilate glycerol and glycerol was preferentially utilized over ethanol and galactose. No equivalent of S. cerevisiae Gcy1/glycerol dehydrogenase has been identified in S. pombe. However, we identified a gene in S. pombe, SPAC13F5.03c (gld1 (+)), that is homologous to bacterial glycerol dehydrogenase. Deletion of gld1 caused a reduction in glycerol dehydrogenase activity and prevented glycerol assimilation. The gld1 Delta cells grew on 50 mM DHA as the sole carbon source, indicating that the glycerol dehydrogenase encoded by gld1 (+) is essential for glycerol assimilation in S. pombe. Strains of S. pombe deleted for dak1 (+) and dak2 (+) encoding DHA kinases could not grow on glycerol and showed sensitivity to a higher concentration of DHA. The dak1 Delta strain showed a more severe reduction of growth on glycerol and DHA than the dak2 Delta strain because the expression of dak1 (+) mRNA was higher than that of dak2 (+). In wild-type S. pombe, expression of the gld1 (+), dak1 (+), and dak2 (+) genes was repressed at a high concentration of glucose and was derepressed during glucose starvation. We found that gld1 (+) was regulated by glucose repression and that it was derepressed in scr1 Delta and tup12 Delta strains.
Collapse
|
14
|
Kang WH, Park YH, Park HM. The LAMMER kinase homolog, Lkh1, regulates Tup transcriptional repressors through phosphorylation in Schizosaccharomyces pombe. J Biol Chem 2010; 285:13797-806. [PMID: 20200159 PMCID: PMC2859543 DOI: 10.1074/jbc.m110.113555] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Disruption of the fission yeast LAMMER kinase, Lkh1, gene resulted in diverse phenotypes, including adhesive filamentous growth and oxidative stress sensitivity, but an exact cellular function had not been assigned to Lkh1. Through an in vitro pull-down approach, a transcriptional repressor, Tup12, was identified as an Lkh1 binding partner. Interactions between Lkh1 and Tup11 or Tup12 were confirmed by in vitro and in vivo binding assays. Tup proteins were phosphorylated by Lkh1 in a LAMMER motif-dependent manner. The LAMMER motif was also necessary for substrate recognition in vitro and cellular function in vivo. Transcriptional activity assays using promoters negatively regulated by Tup11 and Tup12 showed 6 or 2 times higher activity in the Δlkh1 mutant than the wild type, respectively. Northern analysis revealed derepressed expression of the fbp1+ mRNA in Δlkh1 and in Δtup11Δtup12 mutant cells under repressed conditions. Δlkh1 and Δtup11Δtup12 mutant cells showed flocculation, which was reversed by co-expression of Tup11 and -12 with Ssn6. Here, we presented a new aspect of the LAMMER kinase by demonstrating that the activities of global transcriptional repressors, Tup11 and Tup12, were positively regulated by Lkh1-mediated phosphorylation.
Collapse
Affiliation(s)
- Won-Hwa Kang
- Department of Microbiology, School of Bioscience and Biotechnology, Chungnam National University, Gung-dong 220, Yuseong-gu, Daejeon 305-764, Korea
| | | | | |
Collapse
|
15
|
Hirota K, Hoffman CS, Ohta K. Reciprocal nuclear shuttling of two antagonizing Zn finger proteins modulates Tup family corepressor function to repress chromatin remodeling. EUKARYOTIC CELL 2006; 5:1980-9. [PMID: 17028240 PMCID: PMC1694817 DOI: 10.1128/ec.00272-06] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/28/2006] [Accepted: 09/26/2006] [Indexed: 11/20/2022]
Abstract
The Schizosaccharomyces pombe global corepressors Tup11 and Tup12, which are orthologs of Saccharomyces cerevisiae Tup1, are involved in glucose-dependent transcriptional repression and chromatin alteration of the fbp1+ gene. The fbp1+ promoter contains two regulatory elements, UAS1 and UAS2, one of which (UAS2) serves as a binding site for two antagonizing C2H2 Zn finger transcription factors, the Rst2 activator and the Scr1 repressor. In this study, we analyzed the role of Tup proteins and Scr1 in chromatin remodeling at fbp1+ during glucose repression. We found that Scr1, cooperating with Tup11 and Tup12, functions to maintain the chromatin of the fbp1+ promoter in a transcriptionally inactive state under glucose-rich conditions. Consistent with this notion, Scr1 is quickly exported from the nucleus to the cytoplasm at the initial stage of derepression, immediately after glucose starvation, at which time Rst2 is known to be imported into the nucleus. In addition, chromatin immunoprecipitation assays revealed a switching of Scr1 to Rst2 bound at UAS2 during glucose derepression. On the other hand, Tup11 and Tup12 persist in the nucleus and bind to the fbp1+ promoter under both derepressed and repressed conditions. These observations suggest that Tup1-like proteins recruited to the fbp1+ promoter are controlled by either of two antagonizing C2H2 Zn finger proteins. We propose that the actions of Tup11 and Tup12 are regulated by reciprocal nuclear shuttling of the two antagonizing Zn finger proteins in response to the extracellular glucose concentration. This notion provides new insights into the molecular mechanisms of the Tup family corepressors in gene regulation.
Collapse
Affiliation(s)
- Kouji Hirota
- Genetic System Regulation Laboratory, RIKEN (The Institute of Physical and Chemical Research), Discovery Research Institute, Wako-shi, Saitama 351-0198, Japan.
| | | | | |
Collapse
|
16
|
Fagerström-Billai F, Durand-Dubief M, Ekwall K, Wright APH. Individual subunits of the Ssn6-Tup11/12 corepressor are selectively required for repression of different target genes. Mol Cell Biol 2006; 27:1069-82. [PMID: 17101775 PMCID: PMC1800702 DOI: 10.1128/mcb.01674-06] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Saccharomyces cerevisiae Ssn6 and Tup1 proteins form a corepressor complex that is recruited to target genes by DNA-bound repressor proteins. Repression occurs via several mechanisms, including interaction with hypoacetylated N termini of histones, recruitment of histone deacetylases (HDACs), and interactions with the RNA polymerase II holoenzyme. The distantly related fission yeast, Schizosaccharomyces pombe, has two partially redundant Tup1-like proteins that are dispensable during normal growth. In contrast, we show that Ssn6 is an essential protein in S. pombe, suggesting a function that is independent of Tup11 and Tup12. Consistently, the group of genes that requires Ssn6 for their regulation overlaps but is distinct from the group of genes that depend on Tup11 or Tup12. Global chip-on-chip analysis shows that Ssn6 is almost invariably found in the same genomic locations as Tup11 and/or Tup12. All three corepressor subunits are generally bound to genes that are selectively regulated by Ssn6 or Tup11/12, and thus, the subunit specificity is probably manifested in the context of a corepressor complex containing all three subunits. The corepressor binds to both the intergenic and coding regions of genes, but differential localization of the corepressor within genes does not appear to account for the selective dependence of target genes on the Ssn6 or Tup11/12 subunits. Ssn6, Tup11, and Tup12 are preferentially found at genomic locations at which histones are deacetylated, primarily by the Clr6 class I HDAC. Clr6 is also important for the repression of corepressor target genes. Interestingly, a subset of corepressor target genes, including direct target genes affected by Ssn6 overexpression, is associated with the function of class II (Clr3) and III (Hst4 and Sir2) HDACs.
Collapse
|
17
|
Stiefel J, Wang L, Kelly DA, Janoo RTK, Seitz J, Whitehall SK, Hoffman CS. Suppressors of an adenylate cyclase deletion in the fission yeast Schizosaccharomyces pombe. EUKARYOTIC CELL 2005; 3:610-9. [PMID: 15189983 PMCID: PMC420129 DOI: 10.1128/ec.3.3.610-619.2004] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Schizosaccharomyces pombe utilizes two opposing signaling pathways to sense and respond to its nutritional environment. Glucose detection triggers a cyclic AMP signal to activate protein kinase A (PKA), while glucose or nitrogen starvation activates the Spc1/Sty1 stress-activated protein kinase (SAPK). One process controlled by these pathways is fbp1+ transcription, which is glucose repressed. In this study, we isolated strains carrying mutations that reduce high-level fbp1+ transcription conferred by the loss of adenylate cyclase (git2delta), including both wis1- (SAPK kinase) and spc1- (SAPK) mutants. While characterizing the git2delta suppressor strains, we found that the git2delta parental strains are KCl sensitive, though not osmotically sensitive. Of 102 git2delta suppressor strains, 17 strains display KCl-resistant growth and comprise a single linkage group, carrying mutations in the cgs1+ PKA regulatory subunit gene. Surprisingly, some of these mutants are mostly wild type for mating and stationary-phase viability, unlike the previously characterized cgs1-1 mutant, while showing a significant defect in fbp1-lacZ expression. Thus, certain cgs1- mutant alleles dramatically affect some PKA-regulated processes while having little effect on others. We demonstrate that the PKA and SAPK pathways regulate both cgs1+ and pka1+ transcription, providing a mechanism for cross talk between these two antagonistically acting pathways and feedback regulation of the PKA pathway. Finally, strains defective in both the PKA and SAPK pathways display transcriptional regulation of cgs1+ and pka1+, suggesting the presence of a third glucose-responsive signaling pathway.
Collapse
Affiliation(s)
- Jeffrey Stiefel
- Biology Department, Boston College, Chestnut Hill, MA 02467, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Fagerström-Billai F, Wright APH. Functional comparison of the Tup11 and Tup12 transcriptional corepressors in fission yeast. Mol Cell Biol 2005; 25:716-27. [PMID: 15632072 PMCID: PMC543428 DOI: 10.1128/mcb.25.2.716-727.2005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Gene duplication is considered an important evolutionary mechanism. Unlike many characterized species, the fission yeast Schizosaccharomyces pombe contains two paralogous genes, tup11+ and tup12+, that encode transcriptional corepressors similar to the well-characterized budding yeast Tup1 protein. Previous reports have suggested that Tup11 and Tup12 proteins play redundant roles. Consistently, we show that the two Tup proteins can interact together when expressed at normal levels and that each can independently interact with the Ssn6 protein, as seen for Tup1 in budding yeast. However, tup11- and tup12- mutants have different phenotypes on media containing KCl and CaCl2. Consistent with the functional difference between tup11- and tup12- mutants, we identified a number of genes in genome-wide gene expression experiments that are differentially affected by mutations in the tup11+ and tup12+ genes. Many of these genes are differentially derepressed in tup11- mutants and are over-represented in genes that have previously been shown to respond to a range of different stress conditions. Genes specifically derepressed in tup12- mutants require the Ssn6 protein for their repression. As for Tup12, Ssn6 is also required for efficient adaptation to KCl- and CaCl2-mediated stress. We conclude that Tup11 and Tup12 are at least partly functionally diverged and suggest that the Tup12 and Ssn6 proteins have adopted a specific role in regulation of the stress response.
Collapse
|
19
|
Lee H, Chang YC, Kwon-Chung KJ. TUP1 disruption reveals biological differences between MATa and MATα strains of Cryptococcus neoformans. Mol Microbiol 2004; 55:1222-32. [PMID: 15686566 DOI: 10.1111/j.1365-2958.2004.04458.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Cryptococcus neoformans exists in two mating types MATa and MATalpha. Although the morphology, growth characteristics and genetic segregation patterns among MATa and MATalpha strains are indistinguishable in the laboratory, the predominance of MATalpha strains in nature suggests that MATalpha strains are better suited for survival in nature. We disrupted the TUP1 gene, a global repressor, to find the possible biological differences in congenic MATalpha and MATa cells of C. neoformans. Disruption of TUP1 affected neither the yeast nor the hyphal cell morphology but resulted in a similar reduction of mating frequencies in both MATalpha and MATa cells. Disruption of TUP1, however, functionally manifested itself in several mating type-dependent phenotypes: (i) MATalpha cells became more sensitive to 0.8 M KCl while MATa cells showed no change in sensitivity, (ii) a temperature-dependent growth reduction was exhibited at both 30 degrees C and 25 degrees C in MATa but a similar growth reduction was not observed in MATalpha cells until the temperature was lowered to 25 degrees C and (iii) the transcriptional level of genes in several different biological pathways was markedly altered in a mating type-dependent manner. This work is the first case in which non-mating-related biological differences are observed between two congenic mating partners in yeast.
Collapse
Affiliation(s)
- Hyeseung Lee
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | | |
Collapse
|
20
|
Hirota K, Hoffman CS, Shibata T, Ohta K. Fission yeast Tup1-like repressors repress chromatin remodeling at the fbp1+ promoter and the ade6-M26 recombination hotspot. Genetics 2004; 165:505-15. [PMID: 14573465 PMCID: PMC1462784 DOI: 10.1093/genetics/165.2.505] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Chromatin remodeling plays crucial roles in the regulation of gene expression and recombination. Transcription of the fission yeast fbp1(+) gene and recombination at the meiotic recombination hotspot ade6-M26 (M26) are both regulated by cAMP responsive element (CRE)-like sequences and the CREB/ATF-type transcription factor Atf1*Pcr1. The Tup11 and Tup12 proteins, the fission yeast counterparts of the Saccharomyces cerevisiae Tup1 corepressor, are involved in glucose repression of the fbp1(+) transcription. We have analyzed roles of the Tup1-like corepressors in chromatin regulation around the fbp1(+) promoter and the M26 hotspot. We found that the chromatin structure around two regulatory elements for fbp1(+) was remodeled under derepressed conditions in concert with the robust activation of fbp1(+) transcription. Strains with tup11delta tup12delta double deletions grown in repressed conditions exhibited the chromatin state associated with wild-type cells grown in derepressed conditions. Interestingly, deletion of rst2(+), encoding a transcription factor controlled by the cAMP-dependent kinase, alleviated the tup11delta tup12delta defects in chromatin regulation but not in transcription repression. The chromatin at the M26 site in mitotic cultures of a tup11delta tup12delta mutant resembled that of wild-type meiotic cells. These observations suggest that these fission yeast Tup1-like corepressors repress chromatin remodeling at CRE-related sequences and that Rst2 antagonizes this function.
Collapse
Affiliation(s)
- Kouji Hirota
- Genetic Dynamics Research Unit-Laboratory, The Institute of Physical and Chemical Research (RIKEN), Wako-shi, Saitama 351-0198, Japan.
| | | | | | | |
Collapse
|
21
|
Znaidi S, Pelletier B, Mukai Y, Labbé S. The Schizosaccharomyces pombe corepressor Tup11 interacts with the iron-responsive transcription factor Fep1. J Biol Chem 2004; 279:9462-9474. [PMID: 14668334 DOI: 10.1074/jbc.m312787200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Schizosaccharomyces pombe fep1(+) gene encodes a GATA transcription factor that represses the expression of iron transport genes in response to elevated iron concentrations. This transcriptional response is altered only in strains harboring a combined deletion of both tup11(+) and tup12(+) genes. This suggests that Tup11 is capable of negatively regulating iron transport gene expression in the absence of Tup12 and vice versa. The tup11(+)- and tup12(+)-encoded proteins resemble the Saccharomyces cerevisiae Tup1 corepressor. Using yeast two-hybrid analysis we show that Tup11 and Fep1 physically interact with each other. The C-terminal region from amino acids 242 to 564 of Fep1 is required for interaction with Tup11. Within this region, a minimal domain encompassing amino acids 405-541 was sufficient for Tup11-Fep1 association. Deletion mapping analysis revealed that the WD40-repeat sequence motifs of Tup11 are necessary for its interaction with Fep1. Analysis of Tup11 mutants with single amino acid substitutions in the WD40 repeats suggested that the Fep1 transcription factor interacts with a putative flat upper surface on the predicted beta-propeller structure of this motif. Further analysis by in vivo coimmunoprecipitation showed that Tup11 and Fep1 are physically associated. In vitro pull-down experiments further verified a direct interaction between the Fep1 C terminus and the Tup11 C-terminal WD40 repeat domain. Taken together, these results describe the first example of a physical interaction between a corepressor and an iron-sensing factor controlling the expression of iron uptake genes.
Collapse
Affiliation(s)
- Sadri Znaidi
- Département de Biochimie, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | | | | | | |
Collapse
|
22
|
Hirota K, Hasemi T, Yamada T, Mizuno KI, Hoffman CS, Shibata T, Ohta K. Fission yeast global repressors regulate the specificity of chromatin alteration in response to distinct environmental stresses. Nucleic Acids Res 2004; 32:855-62. [PMID: 14762213 PMCID: PMC373364 DOI: 10.1093/nar/gkh251] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The specific induction of genes in response to distinct environmental stress is vital for all eukaryotes. To study the mechanisms that result in selective gene responses, we examined the role of the fission yeast Tup1 family repressors in chromatin regulation. We found that chromatin structure around a cAMP-responsive element (CRE)-like sequence in ade6-M26 that is bound by Atf1.Pcr1 transcriptional activation was altered in response to osmotic stress but not to heat and oxidative stresses. Such chromatin structure alteration occurred later than the Atf1 phosphorylation but correlated well with stress-induced transcriptional activation at ade6-M26. This chromatin structure alteration required components for the stress-activated protein kinase (SAPK) cascade and both subunits of the M26-binding CREB/ATF-type protein Atf1.Pcr1. Cation stress and glucose starvation selectively caused chromatin structure alteration around CRE-like sequences in cta3(+) and fbp1(+) promoters, respectively, in correlation with transcriptional activation. However, the tup11Delta tup12Delta double deletion mutants lost the selectivity of stress responses of chromatin structure and transcriptional regulation of cta3(+) and fbp1(+). These data indicate that the Tup1-like repressors regulate the chromatin structure to ensure the specificity of gene activation in response to particular stresses. Such a role for these proteins may serve as a paradigm for the regulation of stress response in higher eukaryotes.
Collapse
MESH Headings
- Activating Transcription Factor 1
- Cations/pharmacology
- Chromatin/drug effects
- Chromatin/genetics
- Chromatin/metabolism
- Chromatin Assembly and Disassembly/drug effects
- Environment
- Gene Expression Regulation, Fungal/drug effects
- Genes, Fungal/genetics
- Glucose/pharmacology
- Hot Temperature
- Mitogen-Activated Protein Kinase Kinases/metabolism
- Mutation/genetics
- Nitrogen/deficiency
- Nitrogen/pharmacology
- Osmotic Pressure/drug effects
- Oxidative Stress
- Phosphoproteins/genetics
- Phosphoproteins/metabolism
- Promoter Regions, Genetic/genetics
- RNA, Fungal/genetics
- RNA, Fungal/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Recombination, Genetic/genetics
- Repressor Proteins/genetics
- Repressor Proteins/metabolism
- Schizosaccharomyces/drug effects
- Schizosaccharomyces/genetics
- Schizosaccharomyces/metabolism
- Schizosaccharomyces pombe Proteins/genetics
- Schizosaccharomyces pombe Proteins/metabolism
- Signal Transduction/drug effects
- Substrate Specificity
- Transcription, Genetic/drug effects
- Transcription, Genetic/genetics
- Transcriptional Activation
Collapse
Affiliation(s)
- Kouji Hirota
- Genetic Dynamics Research Unit-Laboratory, RIKEN (Institute of Physical and Chemical Research), Wako-shi, Saitama 351-0198, Japan
| | | | | | | | | | | | | |
Collapse
|
23
|
Chen MS, Fellers JP, Stuart JJ, Reese JC, Liu X. A group of related cDNAs encoding secreted proteins from Hessian fly [Mayetiola destructor (Say)] salivary glands. INSECT MOLECULAR BIOLOGY 2004; 13:101-108. [PMID: 14728671 DOI: 10.1111/j.1365-2583.2004.00465.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
A group of cDNAs has been isolated and characterized from Hessian fly [Mayetiola destructor (Say)] salivary glands. Members in this group appear to encode proteins with secretion signal peptides at the N-terminals. The mature putative proteins are small, basic proteins with calculated molecular weights that ranged from 8.5 to 10 kDa, and isoelectric points from 9.92 to 10.90. Sequence analysis indicated a strong selection for mutations that generate amino acid changes within the coding region. Northern blot analysis revealed that these genes are expressed only in the first instar larvae, a critical stage that determines if the interaction between a specific Hessian fly biotype and a specific wheat cultivar is compatible. Genomic analysis demonstrated that multiple copies of similar genes are clustered within a short region on chromosome 2A. This is the same arm in which two avirulence genes have been mapped.
Collapse
Affiliation(s)
- M-S Chen
- USDA-ARS, Plant Science and Entomology Research Unit, Department of Entomology, Kansas State University, Manhattan, KS 66506, USA.
| | | | | | | | | |
Collapse
|
24
|
van Nocker S, Ludwig P. The WD-repeat protein superfamily in Arabidopsis: conservation and divergence in structure and function. BMC Genomics 2003; 4:50. [PMID: 14672542 PMCID: PMC317288 DOI: 10.1186/1471-2164-4-50] [Citation(s) in RCA: 222] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2003] [Accepted: 12/12/2003] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The WD motif (also known as the Trp-Asp or WD40 motif) is found in a multitude of eukaryotic proteins involved in a variety of cellular processes. Where studied, repeated WD motifs act as a site for protein-protein interaction, and proteins containing WD repeats (WDRs) are known to serve as platforms for the assembly of protein complexes or mediators of transient interplay among other proteins. In the model plant Arabidopsis thaliana, members of this superfamily are increasingly being recognized as key regulators of plant-specific developmental events. RESULTS We analyzed the predicted complement of WDR proteins from Arabidopsis, and compared this to those from budding yeast, fruit fly and human to illustrate both conservation and divergence in structure and function. This analysis identified 237 potential Arabidopsis proteins containing four or more recognizable copies of the motif. These were classified into 143 distinct families, 49 of which contained more than one Arabidopsis member. Approximately 113 of these families or individual proteins showed clear homology with WDR proteins from the other eukaryotes analyzed. Where conservation was found, it often extended across all of these organisms, suggesting that many of these proteins are linked to basic cellular mechanisms. The functional characterization of conserved WDR proteins in Arabidopsis reveals that these proteins help adapt basic mechanisms for plant-specific processes. CONCLUSIONS Our results show that most Arabidopsis WDR proteins are strongly conserved across eukaryotes, including those that have been found to play key roles in plant-specific processes, with diversity in function conferred at least in part by divergence in upstream signaling pathways, downstream regulatory targets and /or structure outside of the WDR regions.
Collapse
Affiliation(s)
- Steven van Nocker
- Cell and Molecular Biology Program and Department of Horticulture, 390 Plant and Soil Sciences Building, Michigan State University, East Lansing, MI, 48824, USA
| | - Philip Ludwig
- Cell and Molecular Biology Program and MSU-DOE Plant Research Laboratory, 2240 Biomedical Physical Sciences Building, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
25
|
Davie JK, Edmondson DG, Coco CB, Dent SYR. Tup1-Ssn6 Interacts with Multiple Class I Histone Deacetylases in Vivo. J Biol Chem 2003; 278:50158-62. [PMID: 14525981 DOI: 10.1074/jbc.m309753200] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Tup1-Ssn6 corepressor complex in Saccharomyces cerevisiae represses the transcription of a diverse set of genes. Chromatin is an important component of Tup1-Ssn6-mediated repression. Tup1 binds to underacetylated histone tails and requires multiple histone deacetylases (HDACs) for its repressive functions. Here, we describe physical interactions of the corepressor complex with the class I HDACs Rpd3, Hos2, and Hos1. In contrast, no in vivo interaction was observed between Tup-Ssn6 and Hda1, a class II HDAC. We demonstrate that Rpd3 interacts with both Tup1 and Ssn6. Rpd3 and Hos2 interact with Ssn6 independently of Tup1 via distinct tetratricopeptide domains within Ssn6, suggesting that these two HDACs may contact the corepressor at the same time.
Collapse
Affiliation(s)
- Judith K Davie
- Department of Biochemistry and Molecular Biology, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
26
|
Mukai Y, Davie JK, Dent SYR. Physical and functional interaction of the yeast corepressor Tup1 with mRNA 5'-triphosphatase. J Biol Chem 2003; 278:18895-901. [PMID: 12637515 DOI: 10.1074/jbc.m302155200] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Tup1-Ssn6 complex is an important corepressor in Saccharomyces cerevisiae that inhibits transcription through interactions with the basal transcription machinery and by remodeling chromatin. In a two-hybrid screen for factors that interact with the Schizosaccharomyces pombe Tup1 ortholog, Tup11, we isolated the pct1+ cDNA. The pct1+ gene encodes an mRNA 5'-triphosphatase, which catalyzes the first step of mRNA capping reactions. Pct1 did not interact with the S. pombe Ssn6 ortholog. In vitro glutathione S-transferase pull-down experiments revealed that Pct1 binds to the WD repeat regions of Tup11 and the functionally redundant Tup12 protein. Similarly, the S. cerevisiae Tup1 protein associates with the mRNA 5'-triphosphatase encoded by the CET1 gene. The highly conserved C-terminal domain of Cet1 interacts with Tup1 in vitro, and Tup1-Ssn6 complexes co-purify with the Cet1 protein, indicating that in vivo interactions also occur between these proteins. Over-expression of CET1 compromised repression of an MFA2-lacZ reporter gene that is subject to Tup1-Ssn6 repression. These genetic and biochemical interactions between Tup1-Ssn6 and Cet1 indicate that the capping enzyme associated with RNA polymerase II is a target of the corepressor complex.
Collapse
Affiliation(s)
- Yukio Mukai
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | | | | |
Collapse
|
27
|
Hwang CS, Oh JH, Huh WK, Yim HS, Kang SO. Ssn6, an important factor of morphological conversion and virulence in Candida albicans. Mol Microbiol 2003; 47:1029-43. [PMID: 12581357 DOI: 10.1046/j.1365-2958.2003.03353.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Candida albicans, the major fungal pathogen in humans, undergoes morphological conversion from yeasts to filamentous growth forms depending upon various environmental conditions. Here, we have identified a C. albicans gene, namely SSN6, encoding a putative global transcriptional co-repressor that is highly homologous to the Saccharomyces cerevisiae Ssn6. The isolated C. albicans SSN6 complemented the pleiotropic phenotypes of S. cerevisiae ssn6 mutation, and its expression levels declined significantly in response to a strong true hyphal inducer, serum. The mutant lacking C. albicans Ssn6 displayed a stubby pseudohyphal growth pattern, derepressed filament-specific genes in response to elevated temperature 37 degrees C and failed to develop true hyphae, extensive filamentation and virulence. Such morphological defects of ssn6/ssn6 mutant were not rescued by overexpression of Tup1, Cph1 or Efg1. Moreover, epistatic analysis showed that, as far as cell morphology was concerned, Ssn6 was epistatic to Tup1 at the higher temperature but that, at the lower temperature, the ssn6/ssn6 tup1/tup1 double mutant grew in a stubby form of pseudohyphae distinct from the phenotypes of either single mutant. Furthermore, overexpression of SSN6 in C. albicans led to enhanced filamentous growth and attenuated virulence. These findings suggest that Ssn6 may function as an activator as well as a repressor of filamentous growth and be a target for candidacidal drugs, as its excess or deficiency resulted in impaired virulence.
Collapse
Affiliation(s)
- Cheol-Sang Hwang
- Laboratory of Biophysics, School of Biological Sciences, and Institute of Microbiology, Seoul National University, Seoul 151-742, Republic of Korea
| | | | | | | | | |
Collapse
|
28
|
Greenall A, Hadcroft AP, Malakasi P, Jones N, Morgan BA, Hoffman CS, Whitehall SK. Role of fission yeast Tup1-like repressors and Prr1 transcription factor in response to salt stress. Mol Biol Cell 2002; 13:2977-89. [PMID: 12221110 PMCID: PMC124137 DOI: 10.1091/mbc.01-12-0568] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
In Schizosaccharomyces pombe, the Sty1 mitogen-activated protein kinase and the Atf1 transcription factor control transcriptional induction in response to elevated salt concentrations. Herein, we demonstrate that two repressors, Tup11 and Tup12, and the Prr1 transcription factor also function in the response to salt shock. We find that deletion of both tup genes together results in hypersensitivity to elevated cation concentrations (K(+) and Ca(2+)) and we identify cta3(+), which encodes an intracellular cation transporter, as a novel stress gene whose expression is positively controlled by the Sty1 pathway and negatively regulated by Tup repressors. The expression of cta3(+) is maintained at low levels by the Tup repressors, and relief from repression requires the Sty1, Atf1, and Prr1. Prr1 is also required for KCl-mediated induction of several other Sty1-dependent genes such as gpx1(+) and ctt1(+). Surprisingly, the KCl-mediated induction of cta3(+) expression occurs independently of Sty1 in a tup11Delta tup12Delta mutant and so the Tup repressors link induction to the Sty1 pathway. We also report that in contrast to a number of other Sty1- and Atf1-dependent genes, the expression of cta3(+) is induced only by high salt concentrations. However, in the absence of the Tup repressors this specificity is lost and a range of stresses induces cta3(+) expression.
Collapse
Affiliation(s)
- Amanda Greenall
- School of Biochemistry and Genetics, University of Newcastle upon Tyne, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
29
|
Pelletier B, Beaudoin J, Mukai Y, Labbé S. Fep1, an iron sensor regulating iron transporter gene expression in Schizosaccharomyces pombe. J Biol Chem 2002; 277:22950-22958. [PMID: 11956219 DOI: 10.1074/jbc.m202682200] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Schizosaccharomyces pombe cells acquire iron under high affinity conditions through the action of a cell surface ferric reductase encoded by the frp1(+) gene and a two-component iron-transporting complex encoded by the fip1(+) and fio1(+) genes. When cells are grown in the presence of iron, transcription of all three genes is blocked. A conserved regulatory element, 5'-(A/T)GATAA-3', located upstream of the frp1(+), fip1(+), and fio1(+) genes, is necessary for iron repression. We have cloned a novel gene, termed fep1(+), which encodes an iron-sensing transcription factor. Binding studies reveal that the putative DNA binding domain of Fep1 expressed as a fusion protein in Escherichia coli specifically interacts with the 5'-(A/T)GATAA-3' sequence in an iron-dependent manner. In a fep1 Delta mutant strain, the fio1(+) gene is highly expressed and is unregulated by iron. Furthermore, the fep1 Delta mutation increases activity of the cell surface iron reductase and renders cells hypersensitive to the iron-dependent free radical generator phleomycin. Mutations in the transcriptional co-repressors tup11(+) and tup12(+) are phenocopies to fep1(+). Indeed, strains with both tup11 Delta and tup12 Delta deletions fail to sense iron. This suggests that in the presence of iron and Fep1, the Tup11 and Tup12 proteins may act as co-repressors for down-regulation of genes encoding components of the reductive iron transport machinery.
Collapse
Affiliation(s)
- Benoit Pelletier
- Département de Biochimie, Université de Sherbrooke, Sherbrooke, J1H 5N4, Canada
| | | | | | | |
Collapse
|
30
|
Affiliation(s)
- J R Bone
- Department of Biochemistry and Molecular Biology, Box 117, University of Texas, M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | | |
Collapse
|
31
|
Deckert J, Struhl K. Histone acetylation at promoters is differentially affected by specific activators and repressors. Mol Cell Biol 2001; 21:2726-35. [PMID: 11283252 PMCID: PMC86903 DOI: 10.1128/mcb.21.8.2726-2735.2001] [Citation(s) in RCA: 169] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We analyzed the relationship between histone acetylation and transcriptional regulation at 40 Saccharomyces cerevisiae promoters that respond to specific activators and repressors. In accord with the general correlation between histone acetylation and transcriptional activity, Gcn4 and the general stress activators (Msn2 and Msn4) cause increased acetylation of histones H3 and H4. Surprisingly, Gal4-dependent activation is associated with a dramatic decrease in histone H4 acetylation, whereas acetylation of histone H3 is unaffected. A specific decrease in H4 acetylation is also observed, to a lesser extent, at promoters activated by Hap4, Adr1, Met4, and Ace1. Activation by heat shock factor has multiple effects; H4 acetylation increases at some promoters, whereas other promoters show an apparent decrease in H3 and H4 acetylation that probably reflects nucleosome loss or gross alteration of chromatin structure. Repression by targeted recruitment of the Sin3-Rpd3 histone deacetylase is associated with decreased H3 and H4 acetylation, whereas repression by Cyc8-Tup1 is associated with decreased H3 acetylation but variable effects on H4 acetylation; this suggests that Cyc8-Tup1 uses multiple mechanisms to reduce histone acetylation at promoters. Thus, individual activators confer distinct patterns of histone acetylation on target promoters, and transcriptional activation is not necessarily associated with increased acetylation. We speculate that the activator-specific decrease in histone H4 acetylation is due to blocking the access or function of an H4-specific histone acetylase such as Esa1.
Collapse
Affiliation(s)
- J Deckert
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
32
|
Janoo RT, Neely LA, Braun BR, Whitehall SK, Hoffman CS. Transcriptional regulators of the Schizosaccharomyces pombe fbp1 gene include two redundant Tup1p-like corepressors and the CCAAT binding factor activation complex. Genetics 2001; 157:1205-15. [PMID: 11238405 PMCID: PMC1461578 DOI: 10.1093/genetics/157.3.1205] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The Schizosaccharomyces pombe fbp1 gene, which encodes fructose-1,6-bis-phosphatase, is transcriptionally repressed by glucose through the activation of the cAMP-dependent protein kinase A (PKA) and transcriptionally activated by glucose starvation through the activation of a mitogen-activated protein kinase (MAPK). To identify transcriptional regulators acting downstream from or in parallel to PKA, we screened an adh-driven cDNA plasmid library for genes that increase fbp1 transcription in a strain with elevated PKA activity. Two such clones express amino-terminally truncated forms of the S. pombe tup12 protein that resembles the Saccharomyces cerevisiae Tup1p global corepressor. These clones appear to act as dominant negative alleles. Deletion of both tup12 and the closely related tup11 gene causes a 100-fold increase in fbp1-lacZ expression, indicating that tup11 and tup12 are redundant negative regulators of fbp1 transcription. In strains lacking tup11 and tup12, the atf1-pcr1 transcriptional activator continues to play a central role in fbp1-lacZ expression; however, spc1 MAPK phosphorylation of atf1 is no longer essential for its activation. We discuss possible models for the role of tup11- and tup12-mediated repression with respect to signaling from the MAPK and PKA pathways. A third clone identified in our screen expresses the php5 protein subunit of the CCAAT-binding factor (CBF). Deletion of php5 reduces fbp1 expression under both repressed and derepressed conditions. The CBF appears to act in parallel to atf1-pcr1, although it is unclear whether or not CBF activity is regulated by PKA.
Collapse
Affiliation(s)
- R T Janoo
- Biology Department, Boston College, Chestnut Hill, Massachusetts 02467, USA
| | | | | | | | | |
Collapse
|
33
|
Hicks J, Lockington RA, Strauss J, Dieringer D, Kubicek CP, Kelly J, Keller N. RcoA has pleiotropic effects on Aspergillus nidulans cellular development. Mol Microbiol 2001; 39:1482-93. [PMID: 11260466 DOI: 10.1046/j.1365-2958.2001.02332.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Aspergillus nidulans rcoA encodes a member of the WD repeat family of proteins. The RcoA protein shares sequence similarity with other members of this protein family, including the Saccharomyces cerevisiae Tup1p and Neurospora crassa RCO1. Tup1p is involved in negative regulation of an array of functions including carbon catabolite repression. RCO1 functions in regulating pleiotropic developmental processes, but not carbon catabolite repression. In A. nidulans, deletion of rcoA (DeltarcoA), a recessive mutation, resulted in gross defects in vegetative growth, asexual spore production and sterigmatocystin (ST) biosynthesis. Expression of the asexual and ST pathway-specific regulatory genes, brlA and aflR, respectively, but not the signal transduction genes (i.e. flbA, fluG or fadA) regulating brlA and aflR expression was delayed (brlA) or eliminated (aflR) in a DeltarcoA strain. Overexpression of aflR in a DeltarcoA strain could not rescue normal expression of downstream targets of AflR. CreA-dependent carbon catabolite repression of starch and ethanol utilization was only weakly affected in a DeltarcoA strain. The strong role of RcoA in development, vegetative growth and ST production, compared with a relatively weak role in carbon catabolite repression, is similar to the role of RCO1 in N. crassa.
Collapse
Affiliation(s)
- J Hicks
- Department of Plant Pathology and Microbiology, TAMUS 2132, Texas A&M University, College Station, TX 77843-2132, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Watson AD, Edmondson DG, Bone JR, Mukai Y, Yu Y, Du W, Stillman DJ, Roth SY. Ssn6-Tup1 interacts with class I histone deacetylases required for repression. Genes Dev 2000; 14:2737-44. [PMID: 11069890 PMCID: PMC317033 DOI: 10.1101/gad.829100] [Citation(s) in RCA: 139] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2000] [Accepted: 09/13/2000] [Indexed: 11/25/2022]
Abstract
Ssn6-Tup1 regulates multiple genes in yeast, providing a paradigm for corepressor functions. Tup1 interacts directly with histones H3 and H4, and mutation of these histones synergistically compromises Ssn6-Tup1-mediated repression. In vitro, Tup1 interacts preferentially with underacetylated isoforms of H3 and H4, suggesting that histone acetylation may modulate Tup1 functions in vivo. Here we report that histone hyperacetylation caused by combined mutations in genes encoding the histone deacetylases (HDACs) Rpd3, Hos1, and Hos2 abolishes Ssn6-Tup1 repression. Unlike HDAC mutations that do not affect repression, this combination of mutations causes concomitant hyperacetylation of both H3 and H4. Strikingly, two of these class I HDACs interact physically with Ssn6-Tup1. These findings suggest that Ssn6-Tup1 actively recruits deacetylase activities to deacetylate adjacent nucleosomes and promote Tup1-histone interactions.
Collapse
Affiliation(s)
- A D Watson
- Department of Biochemistry and Molecular Biology, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Flores CL, Rodríguez C, Petit T, Gancedo C. Carbohydrate and energy-yielding metabolism in non-conventional yeasts. FEMS Microbiol Rev 2000; 24:507-29. [PMID: 10978549 DOI: 10.1111/j.1574-6976.2000.tb00553.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Sugars are excellent carbon sources for all yeasts. Since a vast amount of information is available on the components of the pathways of sugar utilization in Saccharomyces cerevisiae it has been tacitly assumed that other yeasts use sugars in the same way. However, although the pathways of sugar utilization follow the same theme in all yeasts, important biochemical and genetic variations on it exist. Basically, in most non-conventional yeasts, in contrast to S. cerevisiae, respiration in the presence of oxygen is prominent for the use of sugars. This review provides comparative information on the different steps of the fundamental pathways of sugar utilization in non-conventional yeasts: glycolysis, fermentation, tricarboxylic acid cycle, pentose phosphate pathway and respiration. We consider also gluconeogenesis and, briefly, catabolite repression. We have centered our attention in the genera Kluyveromyces, Candida, Pichia, Yarrowia and Schizosaccharomyces, although occasional reference to other genera is made. The review shows that basic knowledge is missing on many components of these pathways and also that studies on regulation of critical steps are scarce. Information on these points would be important to generate genetically engineered yeast strains for certain industrial uses.
Collapse
Affiliation(s)
- C L Flores
- Instituto de Investigaciones Biomédicas Alberto Sols C.S.I.C.-UAM, Unidad de Bioquímica y Genética de Levaduras, 28029, Madrid, Spain
| | | | | | | |
Collapse
|
36
|
Neely LA, Hoffman CS. Protein kinase A and mitogen-activated protein kinase pathways antagonistically regulate fission yeast fbp1 transcription by employing different modes of action at two upstream activation sites. Mol Cell Biol 2000; 20:6426-34. [PMID: 10938120 PMCID: PMC86118 DOI: 10.1128/mcb.20.17.6426-6434.2000] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A significant challenge to our understanding of eukaryotic transcriptional regulation is to determine how multiple signal transduction pathways converge on a single promoter to regulate transcription in divergent fashions. To study this, we have investigated the transcriptional regulation of the Schizosaccharomyces pombe fbp1 gene that is repressed by a cyclic AMP (cAMP)-dependent protein kinase A (PKA) pathway and is activated by a stress-activated mitogen-activated protein kinase (MAPK) pathway. In this study, we identified and characterized two cis-acting elements in the fbp1 promoter required for activation of fbp1 transcription. Upstream activation site 1 (UAS1), located approximately 900 bp from the transcriptional start site, resembles a cAMP response element (CRE) that is the binding site for the atf1-pcr1 heterodimeric transcriptional activator. Binding of this activator to UAS1 is positively regulated by the MAPK pathway and negatively regulated by PKA. UAS2, located approximately 250 bp from the transcriptional start site, resembles a Saccharomyces cerevisiae stress response element. UAS2 is bound by transcriptional activators and repressors regulated by both the PKA and MAPK pathways, although atf1 itself is not present in these complexes. Transcriptional regulation of fbp1 promoter constructs containing only UAS1 or UAS2 confirms that the PKA and MAPK regulation is targeted to both sites. We conclude that the PKA and MAPK signal transduction pathways regulate fbp1 transcription at UAS1 and UAS2, but that the antagonistic interactions between these pathways involve different mechanisms at each site.
Collapse
Affiliation(s)
- L A Neely
- Department of Biology, Boston College, Massachusetts 02467, USA
| | | |
Collapse
|
37
|
Smith RL, Johnson AD. Turning genes off by Ssn6-Tup1: a conserved system of transcriptional repression in eukaryotes. Trends Biochem Sci 2000; 25:325-30. [PMID: 10871883 DOI: 10.1016/s0968-0004(00)01592-9] [Citation(s) in RCA: 255] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The Ssn6-Tup1 repressor forms one of the largest and most important gene-regulatory circuits in budding yeast. This circuit, which appears conserved in flies, worms and mammals, exemplifies how a 'global' repressor (i.e. a repressor that regulates many genes in the cell) can be highly selective in the genes it represses. It also explains how, given the appropriate signal, specific subsets of these genes can be derepressed. Ssn6-Tup1 seems especially robust, bringing about a high level of repression irrespective of its precise placement on DNA or of specific features of the DNA control regions of its target genes. This high degree of repression probably results from several distinct mechanisms acting together.
Collapse
Affiliation(s)
- R L Smith
- Dept of Biochemistry and Biophysics, University of California San Francisco, Box 0414, San Francisco, CA 94143, USA
| | | |
Collapse
|
38
|
Guenther MG, Lane WS, Fischle W, Verdin E, Lazar MA, Shiekhattar R. A core SMRT corepressor complex containing HDAC3 and TBL1, a WD40-repeat protein linked to deafness. Genes Dev 2000; 14:1048-57. [PMID: 10809664 PMCID: PMC316569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2000] [Accepted: 03/21/2000] [Indexed: 02/16/2023]
Abstract
The corepressor SMRT mediates repression by thyroid hormone receptor (TR) as well as other nuclear hormone receptors and transcription factors. Here we report the isolation of a novel SMRT-containing complex from HeLa cells. This complex contains transducin beta-like protein 1 (TBL1), whose gene is mutated in human sensorineural deafness. It also contains HDAC3, a histone deacetylase not previously thought to interact with SMRT. TBL1 displays structural and functional similarities to Tup1 and Groucho corepressors, sharing their ability to interact with histone H3. In vivo, TBL1 is bridged to HDAC3 through SMRT and can potentiate repression by TR. Intriguingly, loss-of-function TRbeta mutations cause deafness in mice and humans. These results define a new TR corepressor complex with a physical link to histone structure and a potential biological link to deafness.
Collapse
Affiliation(s)
- M G Guenther
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine and Genetics, and The Penn Diabetes Center, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104 USA
| | | | | | | | | | | |
Collapse
|
39
|
Guenther MG, Lane WS, Fischle W, Verdin E, Lazar MA, Shiekhattar R. A core SMRT corepressor complex containing HDAC3 and TBL1, a WD40-repeat protein linked to deafness. Genes Dev 2000. [DOI: 10.1101/gad.14.9.1048] [Citation(s) in RCA: 252] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The corepressor SMRT mediates repression by thyroid hormone receptor (TR) as well as other nuclear hormone receptors and transcription factors. Here we report the isolation of a novel SMRT-containing complex from HeLa cells. This complex contains transducin β-like protein 1 (TBL1), whose gene is mutated in human sensorineural deafness. It also contains HDAC3, a histone deacetylase not previously thought to interact with SMRT. TBL1 displays structural and functional similarities to Tup1 and Groucho corepressors, sharing their ability to interact with histone H3. In vivo, TBL1 is bridged to HDAC3 through SMRT and can potentiate repression by TR. Intriguingly, loss-of-function TRβ mutations cause deafness in mice and humans. These results define a new TR corepressor complex with a physical link to histone structure and a potential biological link to deafness.
Collapse
|