1
|
Devlin L, Okletey J, Perkins G, Bowen JR, Nakos K, Montagna C, Spiliotis ET. Proteomic profiling of the oncogenic septin 9 reveals isoform-specific interactions in breast cancer cells. Proteomics 2021; 21:e2100155. [PMID: 34409731 DOI: 10.1002/pmic.202100155] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/05/2021] [Indexed: 02/06/2023]
Abstract
Septins are a family of multimeric GTP-binding proteins, which are abnormally expressed in cancer. Septin 9 (SEPT9) is an essential and ubiquitously expressed septin with multiple isoforms, which have differential expression patterns and effects in breast cancer cells. It is unknown, however, if SEPT9 isoforms associate with different molecular networks and functions. Here, we performed a proteomic screen in MCF-7 breast cancer cells to identify the interactome of GFP-SEPT9 isoforms 1, 4 and 5, which vary significantly in their N-terminal extensions. While all three isoforms associated with SEPT2 and SEPT7, the truncated SEPT9_i4 and SEPT9_i5 interacted with septins of the SEPT6 group more promiscuously than SEPT9_i1, which bound predominately SEPT8. Spatial mapping and functional clustering of non-septin partners showed isoform-specific differences in interactions with proteins of distinct subcellular organelles (e.g., nuclei, centrosomes, cilia) and functions such as cell signalling and ubiquitination. The interactome of the full length SEPT9_i1 was more enriched in cytoskeletal regulators, while the truncated SEPT9_i4 and SEPT9_i5 exhibited preferential and isoform-specific interactions with nuclear, signalling, and ubiquitinating proteins. These data provide evidence for isoform-specific interactions, which arise from truncations in the N-terminal extensions of SEPT9, and point to novel roles in the pathogenesis of breast cancer.
Collapse
Affiliation(s)
- Louis Devlin
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, USA.,Sanofi Pasteur, Swiftwater, Pennsylvania, USA
| | - Joshua Okletey
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, USA
| | | | - Jonathan R Bowen
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, USA
| | - Konstantinos Nakos
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, USA
| | - Cristina Montagna
- Department of Radiology & Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, USA
| | - Elias T Spiliotis
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
2
|
Müller PM, Rademacher J, Bagshaw RD, Wortmann C, Barth C, van Unen J, Alp KM, Giudice G, Eccles RL, Heinrich LE, Pascual-Vargas P, Sanchez-Castro M, Brandenburg L, Mbamalu G, Tucholska M, Spatt L, Czajkowski MT, Welke RW, Zhang S, Nguyen V, Rrustemi T, Trnka P, Freitag K, Larsen B, Popp O, Mertins P, Gingras AC, Roth FP, Colwill K, Bakal C, Pertz O, Pawson T, Petsalaki E, Rocks O. Systems analysis of RhoGEF and RhoGAP regulatory proteins reveals spatially organized RAC1 signalling from integrin adhesions. Nat Cell Biol 2020; 22:498-511. [PMID: 32203420 DOI: 10.1038/s41556-020-0488-x] [Citation(s) in RCA: 135] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 02/18/2020] [Indexed: 02/07/2023]
Abstract
Rho GTPases are central regulators of the cytoskeleton and, in humans, are controlled by 145 multidomain guanine nucleotide exchange factors (RhoGEFs) and GTPase-activating proteins (RhoGAPs). How Rho signalling patterns are established in dynamic cell spaces to control cellular morphogenesis is unclear. Through a family-wide characterization of substrate specificities, interactomes and localization, we reveal at the systems level how RhoGEFs and RhoGAPs contextualize and spatiotemporally control Rho signalling. These proteins are widely autoinhibited to allow local regulation, form complexes to jointly coordinate their networks and provide positional information for signalling. RhoGAPs are more promiscuous than RhoGEFs to confine Rho activity gradients. Our resource enabled us to uncover a multi-RhoGEF complex downstream of G-protein-coupled receptors controlling CDC42-RHOA crosstalk. Moreover, we show that integrin adhesions spatially segregate GEFs and GAPs to shape RAC1 activity zones in response to mechanical cues. This mechanism controls the protrusion and contraction dynamics fundamental to cell motility. Our systems analysis of Rho regulators is key to revealing emergent organization principles of Rho signalling.
Collapse
Affiliation(s)
- Paul M Müller
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | | | - Richard D Bagshaw
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
| | | | - Carolin Barth
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Jakobus van Unen
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - Keziban M Alp
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Girolamo Giudice
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, UK
| | | | - Louise E Heinrich
- Institute of Cancer Research, Chester Beatty Laboratories, London, UK
| | | | - Marta Sanchez-Castro
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
| | | | - Geraldine Mbamalu
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
| | - Monika Tucholska
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
| | - Lisa Spatt
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Maciej T Czajkowski
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | | | - Sunqu Zhang
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
| | - Vivian Nguyen
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
| | | | - Philipp Trnka
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Kiara Freitag
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Brett Larsen
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
| | - Oliver Popp
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Philipp Mertins
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Frederick P Roth
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
- Donnelly Centre and Departments of Molecular Genetics and Computer Science, University of Toronto, Toronto, Ontario, Canada
- Canadian Institute for Advanced Research, Toronto, Ontario, Canada
| | - Karen Colwill
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
| | - Chris Bakal
- Institute of Cancer Research, Chester Beatty Laboratories, London, UK
| | - Olivier Pertz
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - Tony Pawson
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Evangelia Petsalaki
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada.
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, UK.
| | - Oliver Rocks
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany.
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada.
| |
Collapse
|
3
|
Filić V, Marinović M, Šoštar M, Weber I. Modulation of small GTPase activity by NME proteins. J Transl Med 2018; 98:589-601. [PMID: 29434248 DOI: 10.1038/s41374-018-0023-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 12/06/2017] [Accepted: 12/29/2017] [Indexed: 12/26/2022] Open
Abstract
NME proteins are reported to influence signal transduction activity of small GTPases from the Ras superfamily by diverse mechanisms in addition to their generic NDP kinase activity, which replenishes the cytoplasmic pool of GTP. Comprehensive evidence shows that NME proteins modulate the activity of Ras GTPases, in particular members of the Rho family, via binding to their major activators GEFs. Direct interaction between several NMEs and Ras GTPases were also indicated in vitro and in vivo. These modes of regulation are mainly independent of the NME's kinase activity. NMEs also modulate the Ras-mediated signal transduction by interfering with the formation of a Ras signaling complex at the plasma membrane. In several examples, NMEs were proposed to perform the role of GAP proteins by promoting hydrolysis of the bound GTP, but this activity still requires additional verification. Early suggestions that NMEs can activate small GTPases by direct phosphorylation of the bound GDP, or by high-rate loading of GTP onto a closely apposed GTPase, were largely dismissed. In this review article, we survey and put into perspective published examples of identified and hypothetical mechanisms of Ras signaling modulation by NME proteins. We also point out involvement of NMEs in the transcriptional regulation of components of Ras GTPases-mediated signal transduction pathways, and reciprocal regulation of NME function by small GTPases, particularly related to NME's binding to membranes.
Collapse
Affiliation(s)
- Vedrana Filić
- Ruđer Bošković Institute, Division of Molecular Biology, Bijenička 54, HR-10000, Zagreb, Croatia
| | - Maja Marinović
- Ruđer Bošković Institute, Division of Molecular Biology, Bijenička 54, HR-10000, Zagreb, Croatia
| | - Marko Šoštar
- Ruđer Bošković Institute, Division of Molecular Biology, Bijenička 54, HR-10000, Zagreb, Croatia
| | - Igor Weber
- Ruđer Bošković Institute, Division of Molecular Biology, Bijenička 54, HR-10000, Zagreb, Croatia.
| |
Collapse
|
4
|
Reggi E, Diviani D. The role of A-kinase anchoring proteins in cancer development. Cell Signal 2017; 40:143-155. [DOI: 10.1016/j.cellsig.2017.09.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 09/08/2017] [Accepted: 09/14/2017] [Indexed: 02/06/2023]
|
5
|
Kangawa Y, Yoshida T, Tanaka T, Kataoka A, Koyama N, Ohsumi T, Hayashi SM, Shibutani M. Expression of A-kinase anchor protein 13 and Rho-associated coiled-coil containing protein kinase in restituted and regenerated mucosal epithelial cells following mucosal injury and colorectal cancer cells in mouse models. ACTA ACUST UNITED AC 2017; 69:443-450. [PMID: 28434818 DOI: 10.1016/j.etp.2017.04.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 04/03/2017] [Indexed: 10/19/2022]
Abstract
We demonstrate the expression patterns of A-kinase anchor protein 13 (AKAP13), a scaffold protein that acts upstream of Rho signaling, and Rho-associated coiled-coil containing protein kinase (ROCK) 1/2 in mouse colorectal cancer and during the healing stage of mouse colitis. BALB/c mice received an intraperitoneal injection of azoxymethane at 10mg/kg, followed by two 7-day cycles of 3% dextran sulfate sodium (DSS) administered through their drinking water to induce colon cancer, or a 7-day administration of 4% DSS to induce colitis. The colorectal tissue was then analyzed for gene expression, histopathology, and immunohistochemistry. In the colorectal cancer, AKAP13 and ROCK1/2 were highly expressed in adenocarcinoma compared to the control tissue and low-grade dysplasia. In colitis, AKAP13 and ROCK1 were highly expressed in the restituted and regenerated mucosa but were only moderately expressed in the injured mucosal epithelium, compared to the normal epithelium that exhibited weak expression levels. ROCK2 was weakly expressed in these cells, consistent with the expression of AKAP13 and ROCK1. Furthermore, we found several clumps of epithelial cells expressing AKAP13 and ROCK1/2 in the lamina propria during the mucosal healing process, and these cells also expressed interleukin-6, which is a multipotential cytokine for both inflammation and healing. These data suggest that AKAP13 was expressed in relation with ROCK1/2, which probably play an overall role in both mucosal healing and tumorigenesis.
Collapse
Affiliation(s)
- Yumi Kangawa
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan; Pharmacokinetics and Safety Department, Drug Research Center, Kaken Pharmaceutical Co., Ltd., 301 Gensuke, Fujieda, Shizuoka, 426-8646, Japan
| | - Toshinori Yoshida
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan.
| | - Takeshi Tanaka
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan; Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu, 501-1193, Japan
| | - Akira Kataoka
- Pharmacokinetics and Safety Department, Drug Research Center, Kaken Pharmaceutical Co., Ltd., 301 Gensuke, Fujieda, Shizuoka, 426-8646, Japan
| | - Naomi Koyama
- Pharmacokinetics and Safety Department, Drug Research Center, Kaken Pharmaceutical Co., Ltd., 301 Gensuke, Fujieda, Shizuoka, 426-8646, Japan
| | - Tomoka Ohsumi
- Pharmacokinetics and Safety Department, Drug Research Center, Kaken Pharmaceutical Co., Ltd., 301 Gensuke, Fujieda, Shizuoka, 426-8646, Japan
| | - Shim-Mo Hayashi
- Global Scientific and Regulatory Affairs, San-Ei Gen F. F. I., Inc., 1-1-11 Sanwa-cho, Toyonaka, Osaka, 561-8588, Japan
| | - Makoto Shibutani
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan
| |
Collapse
|
6
|
Abstract
AKAP-Lbc is a Rho-activating guanine nucleotide exchange factor (RhoGEF) important in heart development and pro-fibrotic signaling in cardiomyocytes. Heterotrimeric G proteins of the G12/13 subfamily, comprising Gα12 and Gα13, are well characterized as stimulating a specialized group of RhoGEFs through interaction with their RGS-homology (RH) domain. Despite lacking an RH domain, AKAP-Lbc is bound by Gα12 through an unknown mechanism to activate Rho signaling. We identified a Gα12-binding region near the C-terminus of AKAP-Lbc, closely homologous to a region of p114RhoGEF that we also discovered to interact with Gα12. This binding mechanism is distinct from the well-studied interface between RH-RhoGEFs and G12/13 α subunits, as demonstrated by Gα12 mutants selectively impaired in binding either this AKAP-Lbc/p114RhoGEF region or RH-RhoGEFs. AKAP-Lbc and p114RhoGEF showed high specificity for binding Gα12 in comparison to Gα13, and experiments using chimeric G12/13 α subunits mapped determinants of this selectivity to the N-terminal region of Gα12. In cultured cells expressing constitutively GDP-bound Gα12 or Gα13, the Gα12 construct was more potent in exerting a dominant-negative effect on serum-mediated signaling to p114RhoGEF, demonstrating coupling of these signaling proteins in a cellular pathway. In addition, charge-reversal of conserved residues in AKAP-Lbc and p114RhoGEF disrupted Gα12 binding for both proteins, suggesting they harbor a common structural mechanism for interaction with this α subunit. Our results provide the first evidence of p114RhoGEF as a Gα12 signaling effector, and define a novel region conserved between AKAP-Lbc and p114RhoGEF that allows Gα12 signaling input to these non-RH RhoGEFs.
Collapse
|
7
|
Koide H, Holmbeck K, Lui JC, Guo XC, Driggers P, Chu T, Tatsuno I, Quaglieri C, Kino T, Baron J, Young MF, Robey PG, Segars JH. Mice Deficient in AKAP13 (BRX) Are Osteoporotic and Have Impaired Osteogenesis. J Bone Miner Res 2015; 30:1887-95. [PMID: 25892096 PMCID: PMC4590282 DOI: 10.1002/jbmr.2534] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 04/03/2015] [Accepted: 04/15/2015] [Indexed: 01/23/2023]
Abstract
Mechanical stimulation is crucial to bone growth and triggers osteogenic differentiation through a process involving Rho and protein kinase A. We previously cloned a gene (AKAP13, aka BRX) encoding a protein kinase A-anchoring protein in the N-terminus, a guanine nucleotide-exchange factor for RhoA in the mid-section, coupled to a carboxyl region that binds to estrogen and glucocorticoid nuclear receptors. Because of the critical role of Rho, estrogen, and glucocorticoids in bone remodeling, we examined the multifunctional role of Akap13. Akap13 was expressed in bone, and mice haploinsufficient for Akap13 (Akap13(+/-)) displayed reduced bone mineral density, reduced bone volume/total volume, and trabecular number, and increased trabecular spacing; resembling the changes observed in osteoporotic bone. Consistent with the osteoporotic phenotype, Colony forming unit-fibroblast numbers were diminished in Akap13(+/-) mice, as were osteoblast numbers and extracellular matrix production when compared to control littermates. Transcripts of Runx2, an essential transcription factor for the osteogenic lineage, and alkaline phosphatase (Alp), an indicator of osteogenic commitment, were both reduced in femora of Akap13(+/-) mice. Knockdown of Akap13 reduced levels of Runx2 and Alp transcripts in immortalized bone marrow stem cells. These findings suggest that Akap13 haploinsufficient mice have a deficiency in early osteogenesis with a corresponding reduction in osteoblast number, but no impairment of mature osteoblast activity.
Collapse
Affiliation(s)
- Hisashi Koide
- Unit of Reproductive Endocrinology, Program in Reproductive and Adult Endocrinology (PRAE), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Kenn Holmbeck
- Craniofacial and Skeletal Diseases Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Julian C Lui
- Program in Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Xiaoxiao C Guo
- Unit of Reproductive Endocrinology, Program in Reproductive and Adult Endocrinology (PRAE), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Paul Driggers
- Unit of Reproductive Endocrinology, Program in Reproductive and Adult Endocrinology (PRAE), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Tiffany Chu
- Unit of Reproductive Endocrinology, Program in Reproductive and Adult Endocrinology (PRAE), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Ichiro Tatsuno
- Center for Diabetes, Metabolism and Endocrinology, Toho University Sakura Medical Center, Chiba, Japan
| | - Caroline Quaglieri
- Unit of Reproductive Endocrinology, Program in Reproductive and Adult Endocrinology (PRAE), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Tomoshige Kino
- Unit of Reproductive Endocrinology, Program in Reproductive and Adult Endocrinology (PRAE), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Jeffrey Baron
- Program in Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Marian F Young
- Craniofacial and Skeletal Diseases Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Pamela G Robey
- Craniofacial and Skeletal Diseases Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health (NIH), Bethesda, MD, USA
| | - James H Segars
- Unit of Reproductive Endocrinology, Program in Reproductive and Adult Endocrinology (PRAE), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA
| |
Collapse
|
8
|
Dema A, Perets E, Schulz MS, Deák VA, Klussmann E. Pharmacological targeting of AKAP-directed compartmentalized cAMP signalling. Cell Signal 2015; 27:2474-87. [PMID: 26386412 DOI: 10.1016/j.cellsig.2015.09.008] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 09/08/2015] [Accepted: 09/14/2015] [Indexed: 01/26/2023]
Abstract
The second messenger cyclic adenosine monophosphate (cAMP) can bind and activate protein kinase A (PKA). The cAMP/PKA system is ubiquitous and involved in a wide array of biological processes and therefore requires tight spatial and temporal regulation. Important components of the safeguard system are the A-kinase anchoring proteins (AKAPs), a heterogeneous family of scaffolding proteins defined by its ability to directly bind PKA. AKAPs tether PKA to specific subcellular compartments, and they bind further interaction partners to create local signalling hubs. The recent discovery of new AKAPs and advances in the field that shed light on the relevance of these hubs for human disease highlight unique opportunities for pharmacological modulation. This review exemplifies how interference with signalling, particularly cAMP signalling, at such hubs can reshape signalling responses and discusses how this could lead to novel pharmacological concepts for the treatment of disease with an unmet medical need such as cardiovascular disease and cancer.
Collapse
Affiliation(s)
- Alessandro Dema
- Max Delbrück Center for Molecular Medicine Berlin in the Helmholtz Association (MDC), Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Ekaterina Perets
- Max Delbrück Center for Molecular Medicine Berlin in the Helmholtz Association (MDC), Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Maike Svenja Schulz
- Max Delbrück Center for Molecular Medicine Berlin in the Helmholtz Association (MDC), Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Veronika Anita Deák
- Max Delbrück Center for Molecular Medicine Berlin in the Helmholtz Association (MDC), Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Enno Klussmann
- Max Delbrück Center for Molecular Medicine Berlin in the Helmholtz Association (MDC), Robert-Rössle-Straße 10, 13125 Berlin, Germany; DZHK, German Centre for Cardiovascular Research, Oudenarder Straße 16, 13347 Berlin, Germany.
| |
Collapse
|
9
|
Bear MD, Liu T, Abualkhair S, Ghamloush MA, Hill NS, Preston I, Fanburg BL, Kayyali US, Toksoz D. Alpha-Catulin Co-Localizes With Vimentin Intermediate Filaments and Functions in Pulmonary Vascular Endothelial Cell Migration via ROCK. J Cell Physiol 2015; 231:934-43. [PMID: 26377600 DOI: 10.1002/jcp.25185] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 09/03/2015] [Indexed: 01/01/2023]
Abstract
The ubiquitous α-catulin acts as a scaffold for distinct signalosomes including RhoA/ROCK; however, its function is not well understood. While α-catulin has homology to the cytoskeletal linkers α-catenin and vinculin, it appears to be functionally divergent. Here we further investigated α-catulin function in pulmonary vascular endothelial cells (VEC) on the premise that α-catulin has a unique cytoskeletal role. Examination of endogenous α-catulin intracellular localization by immunofluorescence revealed a highly organized cytosolic filamentous network suggestive of a cytoskeletal system in a variety of cultured VEC. Double-immunofluorescence analyses of VEC showed endogenous α-catulin co-localization with vimentin intermediate filaments. Similar to vimentin, α-catulin was found to distribute into detergent-soluble and -insoluble fractions. Treatment of VEC with withaferinA, an agent that targets vimentin filaments, disrupted the α-catulin network distribution and altered α-catulin solubility. Vimentin participates in cell migration, and withaferinA was found to inhibit VEC migration in vitro; similarly, α-catulin knock-down reduced VEC migration. Based on previous reports showing that ROCK modulates vimentin, we found that ROCK depletion attenuated VEC migration; furthermore, α-catulin depletion was shown to reduce ROCK-induced signaling. These findings indicate that α-catulin has a unique function in co-localization with vimentin filaments that contributes to VEC migration via a pathway that may involve ROCK signaling. J. Cell. Physiol. 231: 934-943, 2016. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Michael D Bear
- Division of Pulmonary, Critical Care and Sleep, Tupper Research Institute, Tufts Medical Center, Tufts University School of Medicine, Boston, Massachusetts
| | - Tiegang Liu
- Division of Pulmonary, Critical Care and Sleep, Tupper Research Institute, Tufts Medical Center, Tufts University School of Medicine, Boston, Massachusetts
| | - Shereen Abualkhair
- Division of Pulmonary, Critical Care and Sleep, Tupper Research Institute, Tufts Medical Center, Tufts University School of Medicine, Boston, Massachusetts
| | | | - Nicholas S Hill
- Division of Pulmonary, Critical Care and Sleep, Tupper Research Institute, Tufts Medical Center, Tufts University School of Medicine, Boston, Massachusetts
| | - Ioana Preston
- Division of Pulmonary, Critical Care and Sleep, Tupper Research Institute, Tufts Medical Center, Tufts University School of Medicine, Boston, Massachusetts
| | - Barry L Fanburg
- Division of Pulmonary, Critical Care and Sleep, Tupper Research Institute, Tufts Medical Center, Tufts University School of Medicine, Boston, Massachusetts
| | - Usamah S Kayyali
- Division of Pulmonary, Critical Care and Sleep, Tupper Research Institute, Tufts Medical Center, Tufts University School of Medicine, Boston, Massachusetts
| | - Deniz Toksoz
- Division of Pulmonary, Critical Care and Sleep, Tupper Research Institute, Tufts Medical Center, Tufts University School of Medicine, Boston, Massachusetts
| |
Collapse
|
10
|
Abstract
The RhoGEF (Rho GTPase guanine-nucleotide-exchange factor) domain of AKAP-Lbc (A-kinase-anchoring protein-Lbc, also known as AKAP13) catalyses nucleotide exchange on RhoA and is involved in the development of cardiac hypertrophy. The RhoGEF activity of AKAP-Lbc has also been implicated in cancer. We have determined the X-ray crystal structure of the complex between RhoA–GDP and the AKAP-Lbc RhoGEF [DH (Dbl-homologous)–PH (pleckstrin homology)] domain to 2.1 Å (1 Å=0.1 nm) resolution. The structure reveals important differences compared with related RhoGEF proteins such as leukaemia-associated RhoGEF. Nucleotide-exchange assays comparing the activity of the DH–PH domain to the DH domain alone showed no role for the PH domain in nucleotide exchange, which is explained by the RhoA–AKAP-Lbc structure. Comparison with a structure of the isolated AKAP-Lbc DH domain revealed a change in conformation of the N-terminal ‘GEF switch’ region upon binding to RhoA. Isothermal titration calorimetry showed that AKAP-Lbc has only micromolar affinity for RhoA, which combined with the presence of potential binding pockets for small molecules on AKAP-Lbc, raises the possibility of targeting AKAP-Lbc with GEF inhibitors. The crystal structure of the RhoGEF domain of AKAP-Lbc in complex with RhoA combined with nucleotide exchange assays explain differences to related RhoGEF proteins and allow the possibility of targeting the AKAP-Lbc RhoGEF domain with small molecules.
Collapse
|
11
|
Janus-faces of NME-oncoprotein interactions. Naunyn Schmiedebergs Arch Pharmacol 2014; 388:175-87. [PMID: 25366701 DOI: 10.1007/s00210-014-1062-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 10/15/2014] [Indexed: 12/26/2022]
Abstract
Since the identification of Nm23 (NME1, NME/NM23 nucleoside diphosphate kinase 1) as the first non-metastatic protein, a great deal of research on members of the NME family of proteins has focused on roles in processes implicated in carcinogenesis and particularly their regulation of cellular motility and the process of metastatic spread. To date, there are ten identified members of this family of genes, and these can be dichotomized into groups both taxonomically and by the presence or absence of their nucleoside diphosphate kinase activity with NMEs 1-4 encoding nucleoside diphosphate kinases (NDPKs) and NMEs 5-9 plus RP2 displaying little if any NDPK activity. NMEs are relatively small proteins that can form hetero-oligomers (typically hexamers), and given the apparent genetic redundancy of some NMEs and the number of different isoforms, it is perhaps not surprising that there remains a great deal of uncertainty regarding their function and even more regarding cellular mechanisms of action. Since residues that contribute to NDPK activity span much of the protein, it seems likely that the consequences of NME expression must be mediated through their NDPK activity, through interactions with other structures in cells including protein-protein interactions or through combinations of these. Our goal in this review is to focus on some of the protein-protein interactions that have been identified and to highlight some of the challenges that face this area of research.
Collapse
|
12
|
Lenoir M, Sugawara M, Kaur J, Ball LJ, Overduin M. Structural insights into the activation of the RhoA GTPase by the lymphoid blast crisis (Lbc) oncoprotein. J Biol Chem 2014; 289:23992-4004. [PMID: 24993829 PMCID: PMC4156082 DOI: 10.1074/jbc.m114.561787] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The small GTPase RhoA promotes deregulated signaling upon interaction with lymphoid blast crisis (Lbc), the oncogenic form of A-kinase anchoring protein 13 (AKAP13). The onco-Lbc protein is a hyperactive Rho-specific guanine nucleotide exchange factor (GEF), but its structural mechanism has not been reported despite its involvement in cardiac hypertrophy and cancer causation. The pleckstrin homology (PH) domain of Lbc is located at the C-terminal end of the protein and is shown here to specifically recognize activated RhoA rather than lipids. The isolated dbl homology (DH) domain can function as an independent activator with an enhanced activity. However, the DH domain normally does not act as a solitary Lbc interface with RhoA-GDP. Instead it is negatively controlled by the PH domain. In particular, the DH helical bundle is coupled to the structurally dependent PH domain through a helical linker, which reduces its activity. Together the two domains form a rigid scaffold in solution as evidenced by small angle x-ray scattering and 1H,13C,15N-based NMR spectroscopy. The two domains assume a “chair” shape with its back possessing independent GEF activity and the PH domain providing a broad seat for RhoA-GTP docking rather than membrane recognition. This provides structural and dynamical insights into how DH and PH domains work together in solution to support regulated RhoA activity. Mutational analysis supports the bifunctional PH domain mediation of DH-RhoA interactions and explains why the tandem domain is required for controlled GEF signaling.
Collapse
Affiliation(s)
- Marc Lenoir
- From the School of Cancer Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Masae Sugawara
- From the School of Cancer Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Jaswant Kaur
- From the School of Cancer Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Linda J Ball
- Structural Genomics Consortium, University of Oxford, Oxford OX3 7DQ, United Kingdom, and The Leibniz Institute of Molecular Pharmacology, Campus Buch, 13125 Berlin, Germany
| | - Michael Overduin
- From the School of Cancer Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom,
| |
Collapse
|
13
|
Kher SS, Struckhoff AP, Alberts AS, Worthylake RA. A novel role for p115RhoGEF in regulation of epithelial plasticity. PLoS One 2014; 9:e85409. [PMID: 24465552 PMCID: PMC3900421 DOI: 10.1371/journal.pone.0085409] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Accepted: 12/05/2013] [Indexed: 12/15/2022] Open
Abstract
Epithelial plasticity plays a critical role during physiological processes, such as wound healing and tissue regeneration, and dysregulation of epithelial plasticity can lead to pathological conditions, such as cancer. Cell-cell junctions are a critical feature of epithelial cells and loss of junctions is associated with acquisition of mesenchymal features, such as enhanced protrusion and migration. Although Rho has been implicated in regulation of junctions in epithelial cells, the role of Rho signaling in the regulation of epithelial plasticity has not been understood. We show that members of the RGS RhoGEFs family play a critical role in regulation of epithelial cell-cell junctions in breast epithelial cells. We identify a novel role for p115RhoGEF in regulation of epithelial plasticity. Loss of p115RhoGEF leads to decreased junctional E-cadherin and enhanced protrusiveness and migration. Conversely, overexpression of p115RhoGEF enhanced junctional E-cadherin and inhibited cell protrusion and migration. siRNA screen of 23 Rho effectors showed that members of the Diaphanous-Related Formin (DRF) family are required for p115RhoGEF-mediated changes in epithelial plasticity. Thus, our data indicates a novel role for p115RhoGEF in regulation of epithelial plasticity, which is dependent on Rho-DRF signaling module.
Collapse
Affiliation(s)
- Swapnil S. Kher
- Department of Pharmacology and Experimental Therapeutics, LSU Health Sciences Center, New Orleans, Louisiana, United States of America
| | - Amanda P. Struckhoff
- Stanley S. Scott Cancer Center, LSU Health Sciences Center, New Orleans, Louisiana, United States of America
| | - Arthur S. Alberts
- Center for Cancer and Cell Biology, Van Andel Research Institute, Grand Rapids, Michigan, United States of America
| | - Rebecca A Worthylake
- Department of Oral Biology, LSU Health Sciences Center, New Orleans, Louisiana, United States of America
- * E-mail:
| |
Collapse
|
14
|
Kasaian K, Wiseman SM, Thiessen N, Mungall KL, Corbett RD, Qian JQ, Nip KM, He A, Tse K, Chuah E, Varhol RJ, Pandoh P, McDonald H, Zeng T, Tam A, Schein J, Birol I, Mungall AJ, Moore RA, Zhao Y, Hirst M, Marra MA, Walker BA, Jones SJM. Complete genomic landscape of a recurring sporadic parathyroid carcinoma. J Pathol 2013; 230:249-60. [PMID: 23616356 DOI: 10.1002/path.4203] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 04/14/2013] [Accepted: 04/16/2013] [Indexed: 12/17/2022]
Abstract
Parathyroid carcinoma is a rare endocrine malignancy with an estimated incidence of less than 1 per million population. Excessive secretion of parathyroid hormone, extremely high serum calcium level, and the deleterious effects of hypercalcaemia are the clinical manifestations of the disease. Up to 60% of patients develop multiple disease recurrences and although long-term survival is possible with palliative surgery, permanent remission is rarely achieved. Molecular drivers of sporadic parathyroid carcinoma have remained largely unknown. Previous studies, mostly based on familial cases of the disease, suggested potential roles for the tumour suppressor MEN1 and proto-oncogene RET in benign parathyroid tumourigenesis, while the tumour suppressor HRPT2 and proto-oncogene CCND1 may also act as drivers in parathyroid cancer. Here, we report the complete genomic analysis of a sporadic and recurring parathyroid carcinoma. Mutational landscapes of the primary and recurrent tumour specimens were analysed using high-throughput sequencing technologies. Such molecular profiling allowed for identification of somatic mutations never previously identified in this malignancy. These included single nucleotide point mutations in well-characterized cancer genes such as mTOR, MLL2, CDKN2C, and PIK3CA. Comparison of acquired mutations in patient-matched primary and recurrent tumours revealed loss of PIK3CA activating mutation during the evolution of the tumour from the primary to the recurrence. Structural variations leading to gene fusions and regions of copy loss and gain were identified at a single-base resolution. Loss of the short arm of chromosome 1, along with somatic missense and truncating mutations in CDKN2C and THRAP3, respectively, provides new evidence for the potential role of these genes as tumour suppressors in parathyroid cancer. The key somatic mutations identified in this study can serve as novel diagnostic markers as well as therapeutic targets.
Collapse
Affiliation(s)
- Katayoon Kasaian
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Viaud J, Gaits-Iacovoni F, Payrastre B. Regulation of the DH-PH tandem of guanine nucleotide exchange factor for Rho GTPases by phosphoinositides. Adv Biol Regul 2012; 52:303-14. [PMID: 22781744 DOI: 10.1016/j.jbior.2012.04.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 04/04/2012] [Indexed: 10/28/2022]
Abstract
Rho GTPases act as molecular switches central in cellular processes such as cytoskeleton dynamics, migration, cell proliferation, growth or survival. Their activation is tightly regulated downstream of cell surface receptors by Guanine nucleotide Exchange Factors (GEFs), that are responsible for the specificity, the accuracy, and the spatial restriction of Rho GTPases response to extracellular cues. Because there is about four time more RhoGEFs that Rho GTPases, and GEFs do not always show a strict specificity for GTPases, it is clear that their regulation depends on specific interactions with the subcellular environment. RhoGEFs bear a peculiar structure, highly conserved though evolution, consisting of a DH-PH tandem, the DH (Dbl homology) domain being responsible for the exchange activity. The function of the PH (Pleckstrin homology) domain known to bind phosphoinositides, however, remains elusive, and reports are in many cases rather confusing. This review summarizes data on the regulation of RhoGEFs activity through interaction of the PH-associated DH domain with phosphoinositides which are considered as critical players in the spatial organization of major signaling pathways.
Collapse
Affiliation(s)
- Julien Viaud
- INSERM, UMR1048, Université Paul Sabatier, Institut des Maladies Métaboliques et Cardiovasculaires, I2MC, 1 Avenue Jean Poulhès, BP 84225, 31432 Toulouse Cedex 4, France
| | | | | |
Collapse
|
16
|
Chen J, Hou J, Zhang J, An Y, Zhang X, Yue L, Liu J, Li X. Atorvastatin synergizes with IFN-γ in treating human non-small cell lung carcinomas via potent inhibition of RhoA activity. Eur J Pharmacol 2012; 682:161-70. [PMID: 22510296 DOI: 10.1016/j.ejphar.2012.02.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Revised: 01/30/2012] [Accepted: 02/09/2012] [Indexed: 01/12/2023]
Abstract
Interferon-γ (IFN-γ) has been widely used to treat various malignant tumors including human non-small-cell-lung carcinomas (NSCLCs). However, the tumor-inhibitory effect of IFN-γ displays not satisfactory in NSCLC treatment due to the lack of immunogenicity of NSCLCs. This study demonstrated that inhibition of RhoA activity led to significant inhibition of NSCLC cell growth accompanied by decreased expression of c-myc and cyclin D1 and increased levels of major histocompatibility complex (MHC) class I and peptide transporter protein 1 (TAP1) which are involved in tumor immunity. Combination treatment of atorvastatin and IFN-γ resulted in a synergistic inhibition of NSCLC cell growth both in vitro and in vivo. Though IFN-γ alone exerted minimal inhibitory effect on RhoA activity, additional administration of atorvastatin could result in a significant inhibition of RhoA activity, thus substantially suppressing NSCLC cell growth. Specifically, atorvastatin could induce specific deposition of endogenous IFN-γ in tumors while not in other normal tissues in LLC-harbored mice. In conclusion, atorvastatin can enhance IFN-γ sensitivity in NSCLCs both in vitro and in vivo, probably through induction of a synergistic inhibitory effect on RhoA activity. This study also suggests a potential alternative of combination of atorvastatin and IFN-γ in clinical therapy against NSCLCs.
Collapse
Affiliation(s)
- Jie Chen
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, and Institute of System Biomedicine, Peking University, Beijing 100191, China
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Kintscher C, Wuertenberger S, Eylenstein R, Uhlendorf T, Groemping Y. Autoinhibition of GEF activity in Intersectin 1 is mediated by the short SH3-DH domain linker. Protein Sci 2011; 19:2164-74. [PMID: 20842712 DOI: 10.1002/pro.500] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Intersectin 1L (ITSN1L) acts as a specific guanine nucleotide exchange factor (GEF) for the small guanine nucleotide binding protein Cdc42 via its C-terminal DH domain. Interestingly, constructs of ITSN1L that comprise additional domains, for instance the five SH3 domains amino-terminal of the DH domain, were shown to be inhibited in their exchange factor activity. Here, we investigate the inhibitory mechanism of ITSN1L in detail and identify a novel short amino acid motif which mediates autoinhibition. We found this motif to be located in the linker region between the SH3 domains and the DH domain, and we show that within this motif W1221 acts as key residue in establishing the inhibitory interaction. This assigns ITSN1L to a growing class of GEFs that are regulated by a short amino acid motif inhibiting GEF activity by an intramolecular interaction. Moreover, we quantify the interaction between the ITSN1L SH3 domains and the Cdc42 effector N-WASP using fluorescence anisotropy binding experiments. As the SH3 domains are not involved in autoinhibition, binding of N-WASP does not release inhibition of nucleotide exchange activity in kinetic experiments, in contrast to earlier observations.
Collapse
Affiliation(s)
- Carsten Kintscher
- Department of Protein Evolution, Max Planck Institute for Developmental Biology, Tuebingen D-72076, Germany
| | | | | | | | | |
Collapse
|
18
|
Terry SJ, Zihni C, Elbediwy A, Vitiello E, San IVLC, Balda MS, Matter K. Spatially restricted activation of RhoA signalling at epithelial junctions by p114RhoGEF drives junction formation and morphogenesis. Nat Cell Biol 2011; 13:159-66. [PMID: 21258369 PMCID: PMC3032653 DOI: 10.1038/ncb2156] [Citation(s) in RCA: 179] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Accepted: 11/24/2010] [Indexed: 12/14/2022]
Abstract
Signalling by the GTPase RhoA, a key regulator of epithelial cell behaviour, can stimulate opposing processes: RhoA can promote junction formation and apical constriction, and reduce adhesion and cell spreading. Molecular mechanisms are thus required that ensure spatially restricted and process-specific RhoA activation. For many fundamental processes, including assembly of the epithelial junctional complex, such mechanisms are still unknown. Here we show that p114RhoGEF is a junction-associated protein that drives RhoA signalling at the junctional complex and regulates tight-junction assembly and epithelial morphogenesis. p114RhoGEF is required for RhoA activation at cell-cell junctions, and its depletion stimulates non-junctional Rho signalling and induction of myosin phosphorylation along the basal domain. Depletion of GEF-H1, a RhoA activator inhibited by junctional recruitment, does not reduce junction-associated RhoA activation. p114RhoGEF associates with a complex containing myosin II, Rock II and the junctional adaptor cingulin, indicating that p114RhoGEF is a component of a junction-associated Rho signalling module that drives spatially restricted activation of RhoA to regulate junction formation and epithelial morphogenesis.
Collapse
Affiliation(s)
- Stephen J. Terry
- Department of Cell Biology, UCL Institute of Ophthalmology, University College London, Bath Street, London EC1V 9EL, UK
| | - Ceniz Zihni
- Department of Cell Biology, UCL Institute of Ophthalmology, University College London, Bath Street, London EC1V 9EL, UK
| | - Ahmed Elbediwy
- Department of Cell Biology, UCL Institute of Ophthalmology, University College London, Bath Street, London EC1V 9EL, UK
| | - Elisa Vitiello
- Department of Cell Biology, UCL Institute of Ophthalmology, University College London, Bath Street, London EC1V 9EL, UK
| | - Isabelle V. Leefa Chong San
- Department of Cell Biology, UCL Institute of Ophthalmology, University College London, Bath Street, London EC1V 9EL, UK
| | - Maria S. Balda
- Department of Cell Biology, UCL Institute of Ophthalmology, University College London, Bath Street, London EC1V 9EL, UK
| | - Karl Matter
- Department of Cell Biology, UCL Institute of Ophthalmology, University College London, Bath Street, London EC1V 9EL, UK
| |
Collapse
|
19
|
Hong KW, Lim JE, Oh B. A regulatory SNP in AKAP13 is associated with blood pressure in Koreans. J Hum Genet 2011; 56:205-10. [PMID: 21228793 DOI: 10.1038/jhg.2010.167] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
High blood pressure contributes to more than 10 million deaths per year worldwide through stroke and ischemic heart disease. Yet, genome-wide association studies (GWASs) have identified a small fraction of its underlying genetic factors. To identify biologically important single-nucleotide polymorphisms (SNPs) that regulate variations in blood pressure, we analyzed SNPs in a genome-wide association study. Genome-wide genotype data (original study n = 7551, SNP = 352,228; replication study n = 3703, SNP = 20) were obtained from the Korea National Institute of Health, wherein 29,921 of 352,228 SNPs lay within 5 kbp upstream of genes. Linear regression analysis was performed for systolic and diastolic blood pressure (DBP) by controlling for cohort, age, sex and body mass index. For the 20 SNPs that were associated with both blood pressure values, a replication study was performed in an independent population. A total of 20 SNPs were significantly associated with both blood pressure values in the original study, 13 of which lay in a conserved transcription factor-binding site. One SNP (rs11638762), in the GATA-3 binding site upstream of the AKAP13 gene, was significantly replicated in another cohort (P-value of the meta-analysis = 1.4 × 10(-5) for systolic blood pressure and 6.3 × 10(-4) for DBP). A functional GWAS was performed using upstream SNPs, and a novel genetic factor (AKAP13), which is essential for cardiac myocyte development in mice, was identified as a regulator of blood pressure.
Collapse
Affiliation(s)
- Kyung-Won Hong
- Department of Biomedical Engineering, School of Medicine, Kyung Hee University, Seoul, Korea
| | | | | |
Collapse
|
20
|
Bear MD, Li M, Liu Y, Giel-Moloney MA, Fanburg BL, Toksoz D. The Lbc Rho guanine nucleotide exchange factor α-catulin axis functions in serotonin-induced vascular smooth muscle cell mitogenesis and RhoA/ROCK activation. J Biol Chem 2010; 285:32919-32926. [PMID: 20696764 DOI: 10.1074/jbc.m109.062513] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Serotonin (5-hydroxytryptamine, 5-HT) is mitogenic for several cell types including pulmonary arterial smooth muscle cells (PASMC), and is associated with the abnormal vascular smooth muscle remodeling that occurs in pulmonary arterial hypertension. RhoA/Rho kinase (ROCK) function is required for 5-HT-induced PASMC mitogenesis, and 5-HT activates RhoA; however, the signaling steps are poorly defined. Rho guanine nucleotide exchange factors (Rho GEFs) transduce extracellular signals to Rho, and we found that 5-HT treatment of PASMC led to increased membrane-associated Lbc Rho GEF, suggesting modulation by 5-HT. Lbc knockdown by siRNA attenuated 5-HT-induced thymidine uptake in PASMC, indicating a role in PASMC mitogenesis. 5-HT triggered Rho-dependent serum response factor-mediated reporter activation in PASMC, and this was reduced by Lbc depletion. Lbc knockdown reduced 5-HT-induced RhoA/ROCK activation, but not p42/44 ERK MAP kinase activation, suggesting that Lbc is an intermediary between 5-HT and RhoA/ROCK, but not ERK. 5-HT stimulation of PASMC led to increased association between Lbc, RhoA, and the α-catulin scaffold. Furthermore, α-catulin knockdown attenuated 5-HT-induced PASMC thymidine uptake. 5-HT-induced PASMC mitogenesis was reduced by dominant-negative G(q) protein, suggesting cooperation with Lbc/α-catulin. These results for the first time define a Rho GEF involved in vascular smooth muscle cell growth and serotonin signaling, and suggest that Lbc Rho GEF family members play distinct roles. Thus, the Lbc/α-catulin axis participates in 5-HT-induced PASMC mitogenesis and RhoA/ROCK signaling, and may be an interventional target in diseases involving vascular smooth muscle remodeling.
Collapse
Affiliation(s)
- Michael D Bear
- From the Division of Pulmonary and Critical Care, Tupper Research Institute, Tufts Medical Center, Boston, Massachusetts 02111
| | - Min Li
- From the Division of Pulmonary and Critical Care, Tupper Research Institute, Tufts Medical Center, Boston, Massachusetts 02111
| | - Yinglin Liu
- From the Division of Pulmonary and Critical Care, Tupper Research Institute, Tufts Medical Center, Boston, Massachusetts 02111
| | - Maryann A Giel-Moloney
- Department of Physiology, Tufts University School of Medicine, Boston, Massachusetts 02111
| | - Barry L Fanburg
- From the Division of Pulmonary and Critical Care, Tupper Research Institute, Tufts Medical Center, Boston, Massachusetts 02111
| | - Deniz Toksoz
- From the Division of Pulmonary and Critical Care, Tupper Research Institute, Tufts Medical Center, Boston, Massachusetts 02111.
| |
Collapse
|
21
|
Kino T, Segars JH, Chrousos GP. The Guanine Nucleotide Exchange Factor Brx: A Link between Osmotic Stress, Inflammation and Organ Physiology and Pathophysiology. Expert Rev Endocrinol Metab 2010; 5:603-614. [PMID: 21037977 PMCID: PMC2964845 DOI: 10.1586/eem.10.3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Dehydration, and consequent intracellular hyperosmolarity, is a major challenge to land organisms, as it is associated with extraction of water from cells and disturbance of global cellular function. Organisms have thus developed a highly conserved regulatory mechanism that transduces the hyperosmolarity signal from the cell surface to the cell nucleus and adjusts the expression of cellular osmolarity-regulating genes. We recently found that the Rho-type guanine nucleotide exchange factor Brx, or AKAP13, is essential for osmotic stress-stimulated expression of nuclear factor of activated T-cells 5 (NFAT5), a key transcription factor of intracellular osmolarity. It accomplishes this by first attracting cJun kinase (JNK)-interacting protein (JIP) 4 and then coupling activated Rho-type small G-proteins to cascade components of the p38 MAPK signaling pathway, ultimately activating NFAT5. We describe the potential implications of osmotic stress and Brx activation in organ physiology and pathophysiology and connect activation of this system to key human homeostatic states.
Collapse
Affiliation(s)
- Tomoshige Kino
- Program in Reproductive and Adult Endocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
22
|
Ahmad KF, Lim WA. The minimal autoinhibited unit of the guanine nucleotide exchange factor intersectin. PLoS One 2010; 5:e11291. [PMID: 20585582 PMCID: PMC2892021 DOI: 10.1371/journal.pone.0011291] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2009] [Accepted: 06/02/2010] [Indexed: 01/21/2023] Open
Abstract
Intersectin-1L is a member of the Dbl homology (DH) domain guanine nucleotide exchange factors (GEF) which control Rho-family GTPase signaling. Intersectin-1L is a GEF that is specific for Cdc42. It plays an important role in endocytosis, and is regulated by several partners including the actin regulator N-WASP. Intact intersectin-1L shows low Cdc42 exchange activity, although the isolated catalytic DH domain shows high activity. This finding suggests that the molecule is autoinhibited. To investigate the mechanism of autoinhibition we have constructed a series of domain deletions. We find that the five SH3 domains of intersectin are important for autoinhibition, with the fifth domain (SH3(E)) being sufficient for the bulk of the autoinhibitory effect. This SH3 domain appears to primarily interact with the DH domain. We have determined the crystal structure of the SH3(E)-DH domain construct, which shows a domain swapped arrangement in which the SH3 from one monomer interacts with the DH domain of the other monomer. Analytical ultracentrifugation and gel filtration, however, show that under biochemical concentrations, the construct is fully monomeric. Thus we propose that the actual autoinhibited structure contains the related intramolecular SH3(E)-DH interaction. We propose a model in which this intramolecular interaction may block or distort the GTPase binding region of the DH domain.
Collapse
Affiliation(s)
- K. Farid Ahmad
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California, United States of America
| | - Wendell A. Lim
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
23
|
Mayers CM, Wadell J, McLean K, Venere M, Malik M, Shibata T, Driggers PH, Kino T, Guo XC, Koide H, Gorivodsky M, Grinberg A, Mukhopadhyay M, Abu-Asab M, Westphal H, Segars JH. The Rho guanine nucleotide exchange factor AKAP13 (BRX) is essential for cardiac development in mice. J Biol Chem 2010; 285:12344-54. [PMID: 20139090 DOI: 10.1074/jbc.m110.106856] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A fundamental biologic principle is that diverse biologic signals are channeled through shared signaling cascades to regulate development. Large scaffold proteins that bind multiple proteins are capable of coordinating shared signaling pathways to provide specificity to activation of key developmental genes. Although much is known about transcription factors and target genes that regulate cardiomyocyte differentiation, less is known about scaffold proteins that couple signals at the cell surface to differentiation factors in developing heart cells. Here we show that AKAP13 (also known as Brx-1, AKAP-Lbc, and proto-Lbc), a unique protein kinase A-anchoring protein (AKAP) guanine nucleotide exchange region belonging to the Dbl family of oncogenes, is essential for cardiac development. Cardiomyocytes of Akap13-null mice had deficient sarcomere formation, and developing hearts were thin-walled and mice died at embryonic day 10.5-11.0. Disruption of Akap13 was accompanied by reduced expression of Mef2C. Consistent with a role of AKAP13 upstream of MEF2C, Akap13 siRNA led to a reduction in Mef2C mRNA, and overexpression of AKAP13 augmented MEF2C-dependent reporter activity. The results suggest that AKAP13 coordinates Galpha(12) and Rho signaling to an essential transcription program in developing cardiomyocytes.
Collapse
Affiliation(s)
- Chantal M Mayers
- Program in Reproductive and Adult Endocrinology, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Mechanisms of protein kinase A anchoring. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2010; 283:235-330. [PMID: 20801421 DOI: 10.1016/s1937-6448(10)83005-9] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The second messenger cyclic adenosine monophosphate (cAMP), which is produced by adenylyl cyclases following stimulation of G-protein-coupled receptors, exerts its effect mainly through the cAMP-dependent serine/threonine protein kinase A (PKA). Due to the ubiquitous nature of the cAMP/PKA system, PKA signaling pathways underlie strict spatial and temporal control to achieve specificity. A-kinase anchoring proteins (AKAPs) bind to the regulatory subunit dimer of the tetrameric PKA holoenzyme and thereby target PKA to defined cellular compartments in the vicinity of its substrates. AKAPs promote the termination of cAMP signals by recruiting phosphodiesterases and protein phosphatases, and the integration of signaling pathways by binding additional signaling proteins. AKAPs are a heterogeneous family of proteins that only display similarity within their PKA-binding domains, amphipathic helixes docking into a hydrophobic groove formed by the PKA regulatory subunit dimer. This review summarizes the current state of information on compartmentalized cAMP/PKA signaling with a major focus on structural aspects, evolution, diversity, and (patho)physiological functions of AKAPs and intends to outline newly emerging directions of the field, such as the elucidation of AKAP mutations and alterations of AKAP expression in human diseases, and the validation of AKAP-dependent protein-protein interactions as new drug targets. In addition, alternative PKA anchoring mechanisms employed by noncanonical AKAPs and PKA catalytic subunit-interacting proteins are illustrated.
Collapse
|
25
|
Sugawara M, Whittaker SBM, Bishop S, Ball L, Overduin M. Resonance assignments of the human AKAP13-PH domain and stabilizing DH helix. BIOMOLECULAR NMR ASSIGNMENTS 2009; 3:215-218. [PMID: 19888694 DOI: 10.1007/s12104-009-9178-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2009] [Accepted: 06/30/2009] [Indexed: 05/28/2023]
Abstract
The human AKAP13 protein contains DH and PH domains, which are responsible for its cell transforming activity. Despite its biomedical importance, the contribution of the PH domain to AKAP13 activity remains unclear and no three dimensional structure is available to date. Here we report the backbone and side chain (1)H, (13)C and (15)N resonance assignments of a 20 kDa construct comprising the uniformly (13)C and( 15)N labeled AKAP13-PH domain and an associated helix from the DH domain which is required for its stable expression. Resonance assignment has been achieved using conventional triple resonance experiments; 95% of all back bone resonances and more than 90% of side chain resonances have been successfully assigned. The (1)H, (13)C and (15)N chemical shifts have been deposited in BMRB with accession number of 16195.
Collapse
Affiliation(s)
- Masae Sugawara
- School of Cancer Sciences, University of Birmingham, Birmingham, B15 2TT, UK.
| | | | | | | | | |
Collapse
|
26
|
Aittaleb M, Boguth CA, Tesmer JJG. Structure and function of heterotrimeric G protein-regulated Rho guanine nucleotide exchange factors. Mol Pharmacol 2009; 77:111-25. [PMID: 19880753 DOI: 10.1124/mol.109.061234] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Activation of certain classes of G protein-coupled receptors (GPCRs) can lead to alterations in the actin cytoskeleton, gene transcription, cell transformation, and other processes that are known to be regulated by Rho family small-molecular-weight GTPases. Although these responses can occur indirectly via cross-talk from canonical heterotrimeric G protein cascades, it has recently been demonstrated that Dbl family Rho guanine nucleotide exchange factors (RhoGEFs) can serve as the direct downstream effectors of heterotrimeric G proteins. Heterotrimeric Galpha(12/13), Galpha(q), and Gbetagamma subunits are each now known to directly bind and regulate RhoGEFs. Atomic structures have recently been determined for several of these RhoGEFs and their G protein complexes, providing fresh insight into the molecular mechanisms of signal transduction between GPCRs and small molecular weight G proteins. This review covers what is currently known about the structure, function, and regulation of these recently recognized effectors of heterotrimeric G proteins.
Collapse
|
27
|
Soh UJK, Low BC. BNIP2 extra long inhibits RhoA and cellular transformation by Lbc RhoGEF via its BCH domain. J Cell Sci 2008; 121:1739-49. [DOI: 10.1242/jcs.021774] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Increased expression of BCH-motif-containing molecule at the C-terminal region 1 (BMCC1) correlates with a favourable prognosis in neuroblastoma, but the underlying mechanism remains unknown. We here isolated BNIPXL (BNIP2 Extra Long) as a single contig of the extended, in-vitro-assembled BMCC1. Here, we show that in addition to homophilic interactions, the BNIP2 and Cdc42GAP homology (BCH) domain of BNIPXL interacts with specific conformers of RhoA and also mediates association with the catalytic DH-PH domains of Lbc, a RhoA-specific guanine nucleotide exchange factor (RhoGEF). BNIPXL does not recognize the constitutive active G14V and Q63L mutants of RhoA but targets the fast-cycling F30L and the dominant-negative T19N mutants. A second region at the N-terminus of BNIPXL also targets the proline-rich region of Lbc. Whereas overexpression of BNIPXL reduces active RhoA levels, knockdown of BNIPXL expression has the reverse effect. Consequently, BNIPXL inhibits Lbc-induced oncogenic transformation. Interestingly, BNIPXL can also interact with RhoC, but not with RhoB. Given the importance of RhoA and RhoGEF signaling in tumorigenesis, BNIPXL could suppress cellular transformation by preventing sustained Rho activation in concert with restricting RhoA and Lbc binding via its BCH domain. This could provide a general mechanism for regulating RhoGEFs and their target GTPases.
Collapse
Affiliation(s)
- Unice J. K. Soh
- Cell Signaling and Developmental Biology Laboratory, Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Republic of Singapore
| | - Boon Chuan Low
- Cell Signaling and Developmental Biology Laboratory, Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Republic of Singapore
| |
Collapse
|
28
|
A 2-gene classifier for predicting response to the farnesyltransferase inhibitor tipifarnib in acute myeloid leukemia. Blood 2008; 111:2589-96. [PMID: 18160667 DOI: 10.1182/blood-2007-09-112730] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
At present, there is no method available to predict response to farnesyltransferase inhibitors (FTIs). We analyzed gene expression profiles from the bone marrow of patients from a phase 2 study of the FTI tipifarnib in older adults with previously untreated acute myeloid leukemia (AML). The RASGRP1/APTX gene expression ratio was found to predict response to tipifarnib with the greatest accuracy using a “leave one out” cross validation (LOOCV; 96%). RASGRP1 is a guanine nucleotide exchange factor that activates RAS, while APTX (aprataxin) is involved in DNA excision repair. The utility of this classifier for predicting response to tipifarnib was validated in an independent set of 58 samples from relapsed or refractory AML, with a negative predictive value (NPV) and positive predictive value (PPV) of 92% and 28%, respectively (odds ratio of 4.4). The classifier also predicted for improved overall survival (154 vs 56 days; P < .001), which was independent of other covariates, including a previously described prognostic gene expression classifier. Therefore, these data indicate that a 2-gene expression assay may have utility in categorizing a population of patients with AML who are more likely to respond to tipifarnib.
Collapse
|
29
|
Finlay GA, Malhowski AJ, Liu Y, Fanburg BL, Kwiatkowski DJ, Toksoz D. Selective inhibition of growth of tuberous sclerosis complex 2 null cells by atorvastatin is associated with impaired Rheb and Rho GTPase function and reduced mTOR/S6 kinase activity. Cancer Res 2007; 67:9878-86. [PMID: 17942919 DOI: 10.1158/0008-5472.can-07-1394] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Inactivating mutations in the tuberous sclerosis complex 2 (TSC2) gene, which encodes tuberin, result in the development of TSC and lymphangioleiomyomatosis (LAM). The tumor suppressor effect of tuberin lies in its GTPase-activating protein activity toward Ras homologue enriched in brain (Rheb), a Ras GTPase superfamily member. The statins, 3-hydroxy-3-methylglutaryl CoA reductase inhibitors, have pleiotropic effects which may involve interference with the isoprenylation of Ras and Rho GTPases. We show that atorvastatin selectively inhibits the proliferation of Tsc2-/- mouse embryo fibroblasts and ELT-3 smooth muscle cells in response to serum and estrogen, and under serum-free conditions. The isoprenoids farnesylpyrophosphate (FPP) and geranylgeranylpyrophosphate (GGPP) significantly reverse atorvastatin-induced inhibition of Tsc2-/- cell growth, suggesting that atorvastatin dually targets a farnesylated protein, such as Rheb, and a geranylgeranylated protein, such as Rho, both of which have elevated activity in Tsc2-/- cells. Atorvastatin reduced Rheb isoprenylation, GTP loading, and membrane localization. Atorvastatin also inhibited the constitutive phosphorylation of mammalian target of rapamycin, S6 kinase, and S6 found in Tsc2-/- cells in an FPP-reversible manner and attenuated the high levels of phosphorylated S6 in Tsc2-heterozygous mice. Atorvastatin, but not rapamycin, attenuated the increased levels of activated RhoA in Tsc2-/- cells, and this was reversed by GGPP. These results suggest that atorvastatin may inhibit both rapamycin-sensitive and rapamycin-insensitive mechanisms of tuberin-null cell growth, likely via Rheb and Rho inhibition, respectively. Atorvastatin may have potential therapeutic benefit in TSC syndromes, including LAM.
Collapse
Affiliation(s)
- Geraldine A Finlay
- Pulmonary and Critical Care Division, Department of Medicine, Tupper Research Institute, Tufts-New England Medical Center, Boston, MA 02111, USA.
| | | | | | | | | | | |
Collapse
|
30
|
Shibolet O, Giallourakis C, Rosenberg I, Mueller T, Xavier RJ, Podolsky DK. AKAP13, a RhoA GTPase-specific guanine exchange factor, is a novel regulator of TLR2 signaling. J Biol Chem 2007; 282:35308-17. [PMID: 17878165 DOI: 10.1074/jbc.m704426200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Members of the guanine exchange factor (GEF) family of scaffold proteins are involved in the integration of signal flow downstream of many receptors in adaptive immunity. However, the full complement of GEFs that function downstream of Toll-like receptors (TLRs) requires further identification and functional understanding. By systematically integrating expression profiles from immune and epithelial cells with functional studies, we demonstrate that protein kinase A anchoring protein 13 (AKAP13), a scaffold protein with GEF activity, is an activator of NF-kappaB downstream of TLR2 signaling. Stimulation of the human macrophage cell line THP-1 and epithelial cells with a TLR2 ligand caused a significant up-regulation in AKAP13 mRNA, corresponding to an increase in protein expression. Analysis of TLR2 reporter cell lines deficient in AKAP13 expression revealed significantly reduced NF-kappaB activation and reduced secretion of interleukin-8 and MCP-1 in response to specific ligand stimulation. Furthermore, NF-kappaB activation was partially inhibited by a GEF-deficient AKAP13 mutant. AKAP13 was also involved in phosphorylation of JNK but not of extracellular signal-regulated kinase ERK1 and -2 following ligand stimulation. Together, our results suggest that AKAP13 plays a role in TLR2-mediated NF-kappaB activation and suggest that GEF-containing scaffold proteins may confer specificity to innate immune responses downstream of TLRs.
Collapse
Affiliation(s)
- Oren Shibolet
- Gastroenterology Unit, Center for Study of Inflammatory Bowel Disease, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA
| | | | | | | | | | | |
Collapse
|
31
|
Raponi M, Harousseau JL, Lancet JE, Löwenberg B, Stone R, Zhang Y, Rackoff W, Wang Y, Atkins D. Identification of molecular predictors of response in a study of tipifarnib treatment in relapsed and refractory acute myelogenous leukemia. Clin Cancer Res 2007; 13:2254-60. [PMID: 17404110 DOI: 10.1158/1078-0432.ccr-06-2609] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Microarray technology was used to identify gene expression markers that predict response to the orally available farnesyltransferase inhibitor tipifarnib (Zarnestra, R115777) in acute myelogenous leukemia (AML). EXPERIMENTAL DESIGN Gene expression profiles from 58 bone marrow samples from a cohort of relapsed and refractory AML patients were analyzed on the Affymetrix U133A gene chip that contains approximately 22,000 genes. RESULTS Supervised statistical analysis identified eight gene expression markers that could predict patient response to tipifarnib. The most robust gene was the lymphoid blast crisis oncogene (AKAP13), which predicted response with an overall accuracy of 63%. This gene provided a negative predictive value of 93% and a positive predictive value of 31% (increased from 18%). AKAP13 was overexpressed in patients who were resistant to tipifarnib. When overexpressed in the HL60 and THP1 cell lines, AKAP13 increased the resistance to tipifarnib by approximately 5- to 7-fold. CONCLUSION Diagnostic gene expression signatures may be used to select a group of AML patients that might respond to tipifarnib.
Collapse
Affiliation(s)
- Mitch Raponi
- Veridex, L.L.C. a Johnson & Johnson Company, San Diego, California 92121, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Li M, Liu Y, Dutt P, Fanburg BL, Toksoz D. Inhibition of serotonin-induced mitogenesis, migration, and ERK MAPK nuclear translocation in vascular smooth muscle cells by atorvastatin. Am J Physiol Lung Cell Mol Physiol 2007; 293:L463-71. [PMID: 17545489 DOI: 10.1152/ajplung.00133.2007] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The HMG-CoA reductase inhibitors, statins, have pleiotropic effects which may include interference with the isoprenylation of Ras and Rho small GTPases. Statins have beneficial effects in animal models of pulmonary hypertension, although their mechanisms of action remain to be determined. Serotonin [5-hydroxytryptamine (5-HT)] is implicated in the process of pulmonary artery smooth muscle (PASM) remodeling as part of the pathophysiology of pulmonary hypertension. We examined the effect of atorvastatin on 5-HT-induced PASM cell responses. Atorvastatin dose dependently inhibits 5-HT-induced mitogenesis and migration of cultured bovine PASM cells. Inhibition by atorvastatin was reversed by mevalonate and geranylgeranylpyrophosphate (GGPP) supplement, suggesting that the statin targets a geranylgeranylated protein such as Rho. Concordantly, atorvastatin inhibits 5-HT-induced cellular RhoA activation, membrane localization, and Rho kinase-mediated phosphorylation of myosin phosphatase-1 subunit. Atorvastatin reduced activated RhoA-induced serum response factor-mediated reporter activity in HEK293 cells, indicating that atorvastatin inhibits Rho signaling, and this was reversed by GGPP. While 5-HT-induced ERK MAP and Akt kinase activation were unaffected by atorvastatin, 5-HT-induced ERK nuclear translocation was attenuated in a GGPP-dependent fashion. These studies suggest that atorvastatin inhibits 5-HT-induced PASM cell mitogenesis and migration through targeting isoprenylation which may, in part, attenuate the Rho pathway, a mechanism that may apply to statin effects on in vivo models of pulmonary hypertension.
Collapse
Affiliation(s)
- Min Li
- Pulmonary and Critical Care Division, Tupper Research Institute, Tufts-New England Medical Center, Boston, MA 02111, USA
| | | | | | | | | |
Collapse
|
33
|
Edgerton ME, Fisher DH, Tang L, Frey LJ, Chen Z. Data mining for gene networks relevant to poor prognosis in lung cancer via backward-chaining rule induction. Cancer Inform 2007; 3:93-114. [PMID: 19455237 PMCID: PMC2312096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
We use Backward Chaining Rule Induction (BCRI), a novel data mining method for hypothesizing causative mechanisms, to mine lung cancer gene expression array data for mechanisms that could impact survival. Initially, a supervised learning system is used to generate a prediction model in the form of "IF <conditions> THEN <outcome>" style rules. Next, each antecedent (i.e. an IF condition) of a previously discovered rule becomes the outcome class for subsequent application of supervised rule induction. This step is repeated until a termination condition is satisfied. "Chains" of rules are created by working backward from an initial condition (e.g. survival status). Through this iterative process of "backward chaining," BCRI searches for rules that describe plausible gene interactions for subsequent validation. Thus, BCRI is a semi-supervised approach that constrains the search through the vast space of plausible causal mechanisms by using a top-level outcome to kick-start the process. We demonstrate the general BCRI task sequence, how to implement it, the validation process, and how BCRI-rules discovered from lung cancer microarray data can be combined with prior knowledge to generate hypotheses about functional genomics.
Collapse
Affiliation(s)
- Mary E. Edgerton
- Department of Pathology and Department of Biomedical Informatics, Vanderbilt University, currently Department of Anatomic Pathology, University of Texas, M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030,Correspondence: Mary E. Edgerton, M.D., Ph.D., Department of Anatomic Pathology, University of Texas, M.D. Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030.
| | - Douglas H. Fisher
- Department of Electrical Engineering and Computer Science, Vanderbilt University
| | - Lianhong Tang
- Vanderbilt-Ingram Cancer Center, currently Department of Biomedical Informatics, Vanderbilt University
| | - Lewis J. Frey
- Department of Biomedical Informatics, Vanderbilt University, currently Department of Biomedical Informatics, University of Utah School of Medicine, Salt Lake City, UT 84112
| | - Zhihua Chen
- Department of Electrical Engineering and Computer Science, Vanderbilt University, currently Department of Interdisciplinary Oncology, H. Lee Moffitt Cancer Center and Research Institute, SRB3, 12902 Magnolia Drive, Tampa, FL 33612
| |
Collapse
|
34
|
Zhang D, Zhang M. Bayesian profiling of molecular signatures to predict event times. Theor Biol Med Model 2007; 4:3. [PMID: 17239251 PMCID: PMC1796541 DOI: 10.1186/1742-4682-4-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2006] [Accepted: 01/19/2007] [Indexed: 01/28/2023] Open
Abstract
Background It is of particular interest to identify cancer-specific molecular signatures for early diagnosis, monitoring effects of treatment and predicting patient survival time. Molecular information about patients is usually generated from high throughput technologies such as microarray and mass spectrometry. Statistically, we are challenged by the large number of candidates but only a small number of patients in the study, and the right-censored clinical data further complicate the analysis. Results We present a two-stage procedure to profile molecular signatures for survival outcomes. Firstly, we group closely-related molecular features into linkage clusters, each portraying either similar or opposite functions and playing similar roles in prognosis; secondly, a Bayesian approach is developed to rank the centroids of these linkage clusters and provide a list of the main molecular features closely related to the outcome of interest. A simulation study showed the superior performance of our approach. When it was applied to data on diffuse large B-cell lymphoma (DLBCL), we were able to identify some new candidate signatures for disease prognosis. Conclusion This multivariate approach provides researchers with a more reliable list of molecular features profiled in terms of their prognostic relationship to the event times, and generates dependable information for subsequent identification of prognostic molecular signatures through either biological procedures or further data analysis.
Collapse
Affiliation(s)
- Dabao Zhang
- Department of Statistics, Purdue University, 150 N. University Street, West Lafayette, Indiana 47907-2067, USA
| | - Min Zhang
- Department of Statistics, Purdue University, 150 N. University Street, West Lafayette, Indiana 47907-2067, USA
| |
Collapse
|
35
|
Edgerton ME, Fisher DH, Tang L, Frey LJ, Chen Z. Data Mining for Gene Networks Relevant to Poor Prognosis in Lung Cancer via Backward-Chaining Rule Induction. Cancer Inform 2007. [DOI: 10.1177/117693510700300016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
We use Backward Chaining Rule Induction (BCRI), a novel data mining method for hypothesizing causative mechanisms, to mine lung cancer gene expression array data for mechanisms that could impact survival. Initially, a supervised learning system is used to generate a prediction model in the form of “IF <conditions> THEN <outcome>” style rules. Next, each antecedent (i.e. an IF condition) of a previously discovered rule becomes the outcome class for subsequent application of supervised rule induction. This step is repeated until a termination condition is satisfied. “Chains” of rules are created by working backward from an initial condition (e.g. survival status). Through this iterative process of “backward chaining,” BCRI searches for rules that describe plausible gene interactions for subsequent validation. Thus, BCRI is a semi-supervised approach that constrains the search through the vast space of plausible causal mechanisms by using a top-level outcome to kick-start the process. We demonstrate the general BCRI task sequence, how to implement it, the validation process, and how BCRI-rules discovered from lung cancer microarray data can be combined with prior knowledge to generate hypotheses about functional genomics.
Collapse
Affiliation(s)
- Mary E. Edgerton
- Department of Pathology and Department of Biomedical Informatics, Vanderbilt University, currently Department of Anatomic Pathology, University of Texas, M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030
| | - Douglas H. Fisher
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Salt Lake City, UT 84112
| | - Lianhong Tang
- Vanderbilt-Ingram Cancer Center, currently Department of Biomedical Informatics, Vanderbilt University, Salt Lake City, UT 84112
| | - Lewis J. Frey
- Department of Biomedical Informatics, Vanderbilt University, currently Department of Biomedical Informatics, University of Utah School of Medicine, Salt Lake City, UT 84112
| | - Zhihua Chen
- Department of Electrical Engineering and Computer Science, Vanderbilt University, currently Department of Interdisciplinary Oncology, H. Lee Moffitt Cancer Center and Research Institute, SRB3,12902 Magnolia Drive, Tampa, FL 33612
| |
Collapse
|
36
|
Sternweis PC, Carter AM, Chen Z, Danesh SM, Hsiung YF, Singer WD. Regulation of Rho guanine nucleotide exchange factors by G proteins. ADVANCES IN PROTEIN CHEMISTRY 2007; 74:189-228. [PMID: 17854659 DOI: 10.1016/s0065-3233(07)74006-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Monomeric Rho GTPases regulate cellular dynamics through remodeling of the cytoskeleton, modulation of immediate signaling pathways, and longer-term regulation of gene transcription. One family of guanine nucleotide exchange factors for Rho proteins (RhoGEFs) provides a direct pathway for regulation of RhoA by cell surface receptors coupled to heterotrimeric G proteins. Some of these RhoGEFs also contain RGS domains that can attenuate signaling by the G(12) and G(13) proteins. The regulation provided by these RhoGEFs is defined by their selective regulation by specific G proteins, phosphorylation by kinases, and potential localization with signaling partners. Evidence of their physiological importance is derived from gene knockouts in Drosophila and mice. Current understanding of the basic regulatory mechanisms of these RhoGEFs is discussed. An overview of identified interactions with other signaling proteins suggests the growing spectrum of their involvement in numerous signaling pathways.
Collapse
Affiliation(s)
- Paul C Sternweis
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | | | | | | | | | | |
Collapse
|
37
|
Hamann MJ, Lubking CM, Luchini DN, Billadeau DD. Asef2 functions as a Cdc42 exchange factor and is stimulated by the release of an autoinhibitory module from a concealed C-terminal activation element. Mol Cell Biol 2006; 27:1380-93. [PMID: 17145773 PMCID: PMC1800726 DOI: 10.1128/mcb.01608-06] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Asef (herein called Asef1) was identified as a Rac1-specific exchange factor stimulated by adenomatous polyposis coli (APC), contributing to colorectal cancer cell metastasis. We investigated Asef2, an Asef1 homologue having a similar N-terminal APC binding region (ABR) and Src-homology 3 (SH3) domain. Contrary to previous reports, we found that Asef1 and Asef2 exchange activity is Cdc42 specific. Moreover, the ABR of Asef2 did not function independently but acted in tandem with the SH3 domain to bind APC. The ABRSH3 also bound the C-terminal tail of Asef2, allowing it to function as an autoinhibitory module within the protein. Deletion of the C-terminal tail did not constitutively activate Asef2 as predicted; rather, a conserved C-terminal segment was required for augmented Cdc42 GDP/GTP exchange. Thus, Asef2 activation involves APC releasing the ABRSH3 from the C-terminal tail, resulting in Cdc42 exchange. These results highlight a novel exchange factor regulatory mechanism and establish Asef1 and Asef2 as Cdc42 exchange factors, providing a more appropriate context for understanding the contribution of APC in establishing cell polarity and migration.
Collapse
Affiliation(s)
- Michael J Hamann
- Division of Oncology Research, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | | | | | | |
Collapse
|
38
|
Sterpetti P, Marucci L, Candelaresi C, Toksoz D, Alpini G, Ugili L, Baroni GS, Macarri G, Benedetti A. Cell proliferation and drug resistance in hepatocellular carcinoma are modulated by Rho GTPase signals. Am J Physiol Gastrointest Liver Physiol 2006; 290:G624-32. [PMID: 16322093 DOI: 10.1152/ajpgi.00128.2005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Hepatocellular carcinoma is highly resistant to chemotherapeutic agents, thus the need to discover effective therapeutic molecules to suppress cancer cell growth and to overcome drug resistance is urgent. The Rho GTPase is implicated in cancer and metastasis and is directly activated by the Lymphoid blast crisis (Lbc) protooncogene, a Rho guanine-nucleotide exchange factor. The aim of the study was to analyze the expression of Lbc in hepatocarcinoma and to determine the effect of Lbc-induced Rho signaling on expression, growth rate and resistance to genotoxic stress. We found, by immunohistochemical analysis of biopsy samples and Northern and Western blot analyses of cell lines, that Lbc is absent in normal adult liver but is abundantly expressed in hepatocarcinoma, implying an increased Rho pathway signaling. Lbc stably transfected hepatocarcinoma cells exhibit increased proliferation and levels of ERK and cyclin D1 activation, which are blocked by a Rho inhibitor. In contrast, AKT activation was not altered. Moreover, Lbc expression confers increased resistance to genotoxic stress induced by doxorubicin, which is associated with upregulation of Bcl-2 and BAD phosphorylation, and this is reversed by a Rho inhibitor. In conclusion, these data support a role for Rho in liver cancer progression and resistance to therapy and may provide a basis for developing effective treatment for hepatocarcinoma.
Collapse
Affiliation(s)
- Paola Sterpetti
- Department of Gastroenterology, Polytechnic University of Marche, Ancona, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Longhurst DM, Watanabe M, Rothstein JD, Jackson M. Interaction of PDZRhoGEF with Microtubule-associated Protein 1 Light Chains. J Biol Chem 2006; 281:12030-40. [PMID: 16478718 DOI: 10.1074/jbc.m513756200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Rat (r) PDZRhoGEF, initially identified as a glutamate transporter EAAT4-associated protein, is a member of a novel RhoGEF subfamily. The N terminus of the protein contains a PDZ and a proline-rich domain, two motifs known to be involved in protein-protein interactions. By using the yeast two-hybrid approach, we screened for proteins that interact with the N terminus of rPDZRhoGEF. The light chain 2 of microtubule-associated protein 1 (LC2) was the only protein identified from the screen that does not contain a type I PDZ-binding motif at its extreme C terminus (-(S/T)Xphi-COOH, where phi is a hydrophobic amino acid). However, the C terminus does conform to a type II-binding motif (-phiXphi). We report here that rPDZRhoGEF interacts with LC2 via the PDZ domain, and the interaction is abolished by mutations in the carboxylate-binding loop. The specificity of the interaction was confirmed using GST fusion protein pull-down assays and coimmunoprecipitations. Expression of rPDZRhoGEF mutants that are unable to interact with proteins via the carboxylate-binding loop induced changes in cell morphology and actin organization. These mutants alter the activation of RhoGTPases, and coexpression of dominant-negative RhoGTPases prevent the morphological changes. Furthermore, in cells expressing wild type rPDZRhoGEF, drug-induced microtubule depolymerization produces changes in cell morphology that are similar to those induced by rPDZRhoGEF mutants. These results indicate that modulation of the guanine nucleotide exchange activity of rPDZRhoGEF through interaction with microtubule-associated protein light chains may coordinate microtubule integrity and the reorganization of actin cytoskeleton. This coordinated action of the actin and microtubular cytoskeletons is essential for the development and maintenance of neuronal polarity.
Collapse
Affiliation(s)
- David M Longhurst
- Centre for Neuroscience Research, the University of Edinburgh, Edinburgh EH9 1QH, Scotland, United Kingdom
| | | | | | | |
Collapse
|
40
|
Wirtenberger M, Tchatchou S, Hemminki K, Klaes R, Schmutzler RK, Bermejo JL, Chen B, Wappenschmidt B, Meindl A, Bartram CR, Burwinkel B. Association of genetic variants in the Rho guanine nucleotide exchange factor AKAP13 with familial breast cancer. Carcinogenesis 2005; 27:593-8. [PMID: 16234258 DOI: 10.1093/carcin/bgi245] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The A-kinase anchor protein 13 (AKAP13, alias BRX and lbc) tethers cAMP-dependent protein kinase to its subcellular environment and catalyses Rho GTPases activity as a guanine nucleotide exchange factor. The crucial role of members of the Rho family of GTPases in carcinogenesis is well established and targeting Rho proteins with antineoplastic compounds has become a major effort in the fight against cancer. Thus, genetic alterations within the candidate cancer susceptibility gene AKAP13 would be expected to provoke a constitutive Rho signalling, thereby facilitating the development of cancer. Here, we analysed the potential impact of four polymorphic non-conservative amino acid exchanges (Arg494Trp, Lys526Gln, Asn1086Asp and Gly2461Ser) in AKAP13 on familial breast cancer. We performed a case-control study using genomic DNA of BRCA1/2 mutation-negative German female index patients from 601 unrelated families, among a subset of 356 high-risk families, and 1053 German female unrelated controls. The newfound Lys526Gln polymorphism revealed a significant association with familial breast cancer (OR = 1.58, 95% CI = 1.07-2.35) and an even stronger association with high-risk familial breast cancer (OR = 1.85, 95% CI = 1.19-2.88). Haplotype analyses were in line with genotype results displaying a similar significance as analyses of individual polymorphisms. Due to the pivotal role of AKAP13 in the Rho GTPases signalling network, this variant might affect the susceptibility to other cancers as well.
Collapse
Affiliation(s)
- Michael Wirtenberger
- Division of Molecular Genetic Epidemiology, German Cancer Research Centre (DKFZ) and Institute of Human Genetics, University of Heidelberg, Heidelberg, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Kwan KM, Kirschner MW. A microtubule-binding Rho-GEF controls cell morphology during convergent extension of Xenopus laevis. Development 2005; 132:4599-610. [PMID: 16176947 PMCID: PMC1783841 DOI: 10.1242/dev.02041] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
During Xenopus development, convergent extension movements mediated by cell intercalation drive axial elongation. While many genes required for convergent extension have been identified, little is known of regulation of the cytoskeleton during these cell movements. Although microtubules are required for convergent extension, this applies only to initial stages of gastrulation, between stages 10 and 10.5. To examine the cytoskeleton more directly during convergent extension, we visualized actin and microtubules simultaneously in live explants using spinning disk confocal fluorescence microscopy. Microtubule depolymerization by nocodazole inhibits lamellipodial protrusions and cell-cell contact, thereby inhibiting convergent extension. However, neither taxol nor vinblastine, both of which block microtubule dynamics while stabilizing a polymer form of tubulin, inhibits lamellipodia or convergent extension. This suggests an unusual explanation: the mass of polymerized tubulin, not dynamics of the microtubule cytoskeleton, is crucial for convergent extension. Because microtubule depolymerization elicits striking effects on actin-based protrusions, the role of Rho-family GTPases was tested. The effects of nocodazole are partially rescued using dominant negative Rho, Rho-kinase inhibitor, or constitutively active Rac, suggesting that microtubules regulate small GTPases, possibly via a guanine-nucleotide exchange factor. We cloned full-length XLfc, a microtubule-binding Rho-GEF. Nucleotide exchange activity of XLfc is required for nocodazole-mediated inhibition of convergent extension; constitutively active XLfc recapitulates the effects of microtubule depolymerization. Morpholino knockdown of XLfc abrogates the ability of nocodazole to inhibit convergent extension. Therefore, we believe that XLfc is a crucial regulator of cell morphology during convergent extension, and microtubules limit its activity through binding to the lattice.
Collapse
Affiliation(s)
| | - Marc W. Kirschner
- Department of Systems Biology, Harvard Medical School, Boston, MA
02115, USA
| |
Collapse
|
42
|
Kostenko EV, Mahon GM, Cheng L, Whitehead IP. The Sec14 Homology Domain Regulates the Cellular Distribution and Transforming Activity of the Rho-specific Guanine Nucleotide Exchange Factor Dbs. J Biol Chem 2005; 280:2807-17. [PMID: 15531584 DOI: 10.1074/jbc.m411139200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Dbs is a Rho-specific guanine nucleotide exchange factor that was identified in a screen for proteins whose overexpression cause deregulated growth in murine fibroblasts. Dbs contains multiple recognizable motifs including a centrally located Rho-specific guanine nucleotide exchange factor domain, a COOH-terminal Src homology 3 domain, two spectrin-like repeats, and a recently identified NH(2)-terminal Sec14 homology domain. The transforming potential of Dbs is substantially activated by the removal of inhibitory sequences that lie outside of the core catalytic sequences, and in this current study we mapped this inhibition to the Sec14 domain. Surprisingly removal of the NH(2) terminus did not alter the catalytic activity of Dbs in vivo but rather altered its subcellular distribution. Whereas full-length Dbs was distributed primarily in a perinuclear structure that coincides with a marker for the Golgi apparatus, removal of the Sec14 domain was associated with translocation of Dbs to the cell periphery where it accumulated within membrane ruffles and lamellipodia. However, translocation of Dbs and the concomitant changes in the actin cytoskeleton were not sufficient to fully activate Dbs transformation. The Sec14 domain also forms intramolecular contacts with the pleckstrin homology domain, and these contacts must also be relieved to achieve full transforming activity. Collectively these observations suggest that the Sec14 domain regulates Dbs transformation through at least two distinct mechanisms, neither of which appears to directly influence the in vivo exchange activity of the protein.
Collapse
Affiliation(s)
- Elena V Kostenko
- Department of Microbiology and Molecular Genetics, University of Medicine and Dentistry of New Jersey-New Jersey Medical School, Newark, New Jersey 07103, USA
| | | | | | | |
Collapse
|
43
|
Iwashita S, Fujii M, Mukai H, Ono Y, Miyamoto M. Lbc proto-oncogene product binds to and could be negatively regulated by metastasis suppressor nm23-H2. Biochem Biophys Res Commun 2004; 320:1063-8. [PMID: 15249197 DOI: 10.1016/j.bbrc.2004.06.067] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2004] [Indexed: 11/27/2022]
Abstract
Lbc was identified as transforming gene from human leukemic cells and encodes Rho type guanine nucleotide exchange factor with 47kDa molecular weight. We isolated overlapping cDNAs of Lbc from human lung tissue. Full-length Lbc cDNA encodes 309kDa huge protein with Ht31 PKA anchoring motif, Dof domain, C1 domain, and coiled-coil structure. In order to analyze the regulatory mechanism of its activity, we searched for binding proteins. By yeast two-hybrid screening, we identified metastasis suppressor nm23-H2 as binding protein, which interacts with amino-terminal region of Lbc containing Dof domain. nm23 gene family encodes nucleoside diphosphate kinase, however, the binding of nm23-H2 to Lbc was independent of kinase activity. nm23-H1, which binds to Rac-specific GEF Tiam1, could not bind to Lbc suggesting nm23-H2 would be specific regulator for Lbc. Expression of nm23-H2 in cells leads to decrease the amount of GTP-bound Rho and suppress stress fiber formation stimulated by expression of Lbc. Our data suggest that metastasis suppressor nm23-H2 could regulate Lbc negatively by binding to amino-terminal region of Lbc proto-oncogene product.
Collapse
Affiliation(s)
- Shinki Iwashita
- Graduate School of Science and Technology, Kobe University, 1-1Rokkodai-cho Nada, Kobe 657-8501, Japan
| | | | | | | | | |
Collapse
|
44
|
Shin EY, Woo KN, Lee CS, Koo SH, Kim YG, Kim WJ, Bae CD, Chang SI, Kim EG. Basic fibroblast growth factor stimulates activation of Rac1 through a p85 betaPIX phosphorylation-dependent pathway. J Biol Chem 2003; 279:1994-2004. [PMID: 14557270 DOI: 10.1074/jbc.m307330200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
In a previous study (Shin, E. Y., Shin, K. S., Lee, C. S., Woo, K. N., Quan, S. H., Soung, N. K., Kim, Y. G., Cha, C. I., Kim, S. R., Park, D., Bokoch, G. M., and Kim, E. G. (2002) J. Biol. Chem. 277, 44417-44430) we reported that phosphorylation of p85 betaPIX, a guanine nucleotide exchange factor (GEF) for Rac1/Cdc42, is a signal for translocation of the PIX complex to neuronal growth cones and is associated with basic fibroblast growth factor (bFGF)-induced neurite outgrowth. However, the issue of whether p85 betaPIX phosphorylation affects GEF activity on Rac1/Cdc42 is yet to be explored. Here we show that Rac1 activation occurs in a p85 betaPIX phosphorylation-dependent manner. A GST-PBD binding assay reveals that Rac1 is activated in a dose- and time-dependent manner in PC12 cells in response to bFGF. Inhibition of ERK or PAK2, the kinases upstream of p85 betaPIX in the bFGF signaling, prevents Rac1 activation, suggesting that phosphorylation of p85 betaPIX functions upstream of Rac1 activation. To directly address this issue, transfection studies with wild-type and mutant p85 betaPIX (S525A/T526A, a non-phosphorylatable form) were performed. Expression of mutant PIX markedly inhibits both bFGF- and nerve growth factor (NGF)-induced activation of Rac1, indicating that phosphorylation of p85 betaPIX is responsible for activation of this G protein. Both wild-type and mutant p85 betaPIX displaying negative GEF activity (L238R/L239S) are similarly recruited to growth cones, suggesting that Rac1 activation is not essential for translocation of the PIX complex (PAK2-p85 betaPIX-Rac1). However, expression of mutant p85 betaPIX (L238R/L239S) results in retraction of the pre-existing neurites. Our results provide evidence that bFGF- and NGF-induced phosphorylation of p85 betaPIX mediates Rac1 activation, which in turn regulates cytoskeletal reorganization at growth cones, but not translocation of the PIX complex.
Collapse
Affiliation(s)
- Eun-Young Shin
- Department of Biochemistry, College of Medicine, Medical Research Institute and Biotechnology Research Institute, College of Natural Sciences, Chungbuk National University, San 48, Gaesin-dong, Heungduk-ku, Cheongju 361-763, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Tosello-Trampont AC, Nakada-Tsukui K, Ravichandran KS. Engulfment of apoptotic cells is negatively regulated by Rho-mediated signaling. J Biol Chem 2003; 278:49911-9. [PMID: 14514696 DOI: 10.1074/jbc.m306079200] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The rapid and efficient phagocytosis of apoptotic cells plays a critical role in preventing secondary necrosis, inflammation as well as in tissue remodeling and regulating immune responses. However, the molecular details of engulfment are just beginning to be elucidated. Among the Rho family GTPases, previous studies have implicated a role for Rac and Cdc42 in the uptake of apoptotic cells by phagocytes, yet the role of Rho has remained unclear. Here, we present evidence that Rho-GTP levels decrease during engulfment. RhoA seems to negatively affect basal engulfment, such that inhibition of Rho-mediated signaling in phagocytes enhanced the uptake of apoptotic targets. Activation of endogenous Rho or overexpression of constitutively active forms of Rho also inhibited engulfment. By testing mutants of RhoA that selectively activate downstream effectors, the Rho-kinase seemed to be primarily responsible for this inhibitory effect. Taken together, these data suggest that inhibition of Rho- and Rho-kinase-mediated signaling might be important during engulfment, which could have important implications for several clinical trials involving inhibition of the Rho kinase.
Collapse
Affiliation(s)
- Annie-Carole Tosello-Trampont
- Beirne Carter Center for Immunology Research and the Department of Microbiology, University of Virginia, Charlottesville, Virginia 22908, USA
| | | | | |
Collapse
|
46
|
Genth H, Gerhard R, Maeda A, Amano M, Kaibuchi K, Aktories K, Just I. Entrapment of Rho ADP-ribosylated by Clostridium botulinum C3 exoenzyme in the Rho-guanine nucleotide dissociation inhibitor-1 complex. J Biol Chem 2003; 278:28523-7. [PMID: 12750364 DOI: 10.1074/jbc.m301915200] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
RhoA, -B, and -C are ADP-ribosylated by Clostridium botulinum exoenzyme C3 to induce redistribution of the actin filaments in intact cells, a finding that has led to the notion that the ADP-ribosylation blocks coupling of Rho to the downstream effectors. ADP-ribosylation, however, does not alter nucleotide binding, intrinsic, and GTPase-activating protein-stimulated GTPase activity. ADP-ribosylated Rho is even capable of activating the effector protein ROK in a recombinant system. Treatment of cells with a cell-permeable chimeric C3 toxin led to complete localization of modified Rho to the cytosolic fraction based on the complexation of ADP-ribosylated Rho with the guanine-nucleotide dissociation inhibitor-1 (GDI-1). The modified complex turned out to be resistant to phosphatidylinositol 4,5-bisphosphate- and GTPgammaS-induced release of Rho from GDI-1. Thus, ADP-ribosylation leads to entrapment of Rho in the GDI-1 complex. The increased stability of the GDI complex prevented binding of Rho to membrane-associated players of the GTPase cycle such as the activating guanine nucleotide exchange factors and effector proteins.
Collapse
Affiliation(s)
- Harald Genth
- Institut für Toxikologie, Medizinische Hochschule D-30625 Hannover, Germany.
| | | | | | | | | | | | | |
Collapse
|
47
|
Spierings E, Brickner AG, Caldwell JA, Zegveld S, Tatsis N, Blokland E, Pool J, Pierce RA, Mollah S, Shabanowitz J, Eisenlohr LC, van Veelen P, Ossendorp F, Hunt DF, Goulmy E, Engelhard VH. The minor histocompatibility antigen HA-3 arises from differential proteasome-mediated cleavage of the lymphoid blast crisis (Lbc) oncoprotein. Blood 2003; 102:621-9. [PMID: 12663445 DOI: 10.1182/blood-2003-01-0260] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Minor histocompatibility (H) antigens crucially affect the outcome of human leukocyte antigen (HLA)-identical allogeneic stem cell transplantation (SCT). To understand the basis of alloimmune responses against minor H antigens, identification of minor H peptides and their antigenicity-determining mechanisms is essential. Here we report the identification of HA-3 and its encoding gene. The HA-3 peptide, VTEPGTAQY (HA-3T), is encoded by the lymphoid blast crisis (Lbc) oncogene. We thus show for the first time that a leukemia-associated oncogene can give rise to immunogenic T-cell epitopes that may have participated in antihost and antileukemic alloimmune responses. Genotypic analysis of HA-3- individuals revealed the allelic counterpart VMEPGTAQY (HA-3M). Despite the lack of T-cell recognition of HA-3- cells, the Thr-->Met substitution had only a modest effect on peptide binding to HLA-A1 and a minimal impact on recognition by T cells when added exogenously to target cells. This substitution did not influence transporter associated with antigen processing (TAP) transport, but, in contrast to the HA-3T peptide, HA-3M is destroyed by proteasome-mediated digestion. Thus, the immunogenicity of minor H antigens can result from proteasome-mediated destruction of the negative allelic peptide.
Collapse
MESH Headings
- A Kinase Anchor Proteins
- ATP Binding Cassette Transporter, Subfamily B, Member 2
- ATP-Binding Cassette Transporters/metabolism
- Acute Disease
- Adaptor Proteins, Signal Transducing
- Alleles
- Amino Acid Sequence
- Amino Acid Substitution
- Antigen Presentation
- CD8-Positive T-Lymphocytes/immunology
- Clone Cells/immunology
- Cysteine Endopeptidases/metabolism
- Epitopes, T-Lymphocyte/genetics
- Epitopes, T-Lymphocyte/immunology
- Epitopes, T-Lymphocyte/metabolism
- Female
- Genotype
- HLA-A1 Antigen/metabolism
- Humans
- Leukemia, Myeloid/immunology
- Leukemia, Myeloid/therapy
- Male
- Minor Histocompatibility Antigens
- Molecular Sequence Data
- Multienzyme Complexes/metabolism
- Pedigree
- Peripheral Blood Stem Cell Transplantation
- Polymorphism, Genetic
- Proteasome Endopeptidase Complex
- Protein Isoforms/genetics
- Protein Isoforms/metabolism
- Protein Processing, Post-Translational
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/metabolism
- Sequence Alignment
- Sequence Homology, Amino Acid
Collapse
Affiliation(s)
- Eric Spierings
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Ito K, Fujita T, Akada M, Kiniwa Y, Tsukamoto M, Yamamoto A, Matsuzaki Y, Matsushita M, Asano T, Nakashima J, Tachibana M, Hayakawa M, Ikeda H, Murai M, Kawakami Y. Identification of bladder cancer antigens recognized by IgG antibodies of a patient with metastatic bladder cancer. Int J Cancer 2003; 108:712-24. [PMID: 14696098 DOI: 10.1002/ijc.11625] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
To identify tumor antigens useful for the diagnosis and treatment of patients with bladder cancer, a lambda phage cDNA library constructed from a high-grade bladder cancer cell line was screened with autologous serum from a patient with metastatic bladder cancer. Forty-eight distinct antigens were isolated. By evaluating the immunogenicity and the tissue-specific expression, KU-BL-1 and KU-BL-2 were identified as immunogenic antigens with restricted tissue expression. KU-BL-1 was found to be a putative human lipoic acid synthetase with a metal-binding site, CXXXCXXC, that was expressed in bladder cancer cell lines and most bladder cancer tissues, as well as normal bladder mucosa and testis tissues. Immunoglobulin (Ig)G antibody to KU-BL-1 was detected in 2 of 28 patients with bladder cancer, but not in 30 healthy individuals. KU-BL-2 was found to be a putative human kelch-like protein that was homologous to Drosophila kelch, with a BTB/POZ domain and kelch repeats. KU-BL-2 was expressed in bladder cancer cell lines, most bladder cancer tissues, testis and heart, but not in normal bladder mucosa. IgG antibody to KU-BL-2 was detected in 8 of 28 patients with bladder cancer, but not in 16 healthy individuals. Tumor reactive T cells were induced from peripheral blood mononuclear cells (PBMC) by stimulation with one of the HLA-A24 binding KU-BL-2 peptides. Therefore, KU-BL-1 and KU-BL-2, which showed preferential expression in bladder cancer with restricted expression in normal tissues, as well as immunogenicity in multiple patients with bladder cancer, may be useful for the development of diagnostic and therapeutic methods for patients with bladder cancer.
Collapse
Affiliation(s)
- Keiichi Ito
- Division of Cellular Signaling, Institute for Advanced Medical Research, Keio University, School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Dutt P, Kjoller L, Giel M, Hall A, Toksoz D. Activated Galphaq family members induce Rho GTPase activation and Rho-dependent actin filament assembly. FEBS Lett 2002; 531:565-9. [PMID: 12435612 DOI: 10.1016/s0014-5793(02)03625-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Rho GTPase is required for actin filament assembly and serum response element (SRE)-dependent gene transcription. Certain G protein-coupled receptors (GPCRs) induce Rho-dependent responses, but the intermediary signaling steps are poorly understood. The heterotrimeric Galpha12 family can induce Rho-dependent responses. In contrast, there are conflicting reports on the role of the Galphaq family in Rho signaling. We report that expression of activated Galphaq members, or activation of endogenous Galphaq via GPCR stimulation, induces SRE reporter activation via Rho, and increased GTP-Rho levels. Moreover, microinjection of activated Galphaq in fibroblasts induces actin stress fiber formation via Rho. Galphaq functionally cooperates with Lbc Rho guanine nucleotide exchange factor. Overall, these findings indicate that Galphaq family signals are sufficient to induce Rho-dependent cellular responses.
Collapse
Affiliation(s)
- Parmesh Dutt
- Physiology Department, 136 Harrison Avenue, Tufts University School of Medicine, Boston, MA 02111, USA
| | | | | | | | | |
Collapse
|
50
|
Park B, Nguyen NT, Dutt P, Merdek KD, Bashar M, Sterpetti P, Tosolini A, Testa JR, Toksoz D. Association of Lbc Rho guanine nucleotide exchange factor with alpha-catenin-related protein, alpha-catulin/CTNNAL1, supports serum response factor activation. J Biol Chem 2002; 277:45361-70. [PMID: 12270917 DOI: 10.1074/jbc.m202447200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Rho GTPase signaling pathway is required for actin cytoskeletal organization and serum response factor-dependent gene transcription. Lbc is a Rho-specific guanine nucleotide exchange factor that contains a modulatory C-terminal region. To elucidate Lbc regulatory mechanism(s), a yeast two-hybrid screen for proteins that interact with the Lbc C-terminal region was carried out, resulting in multiple isolation of cDNAs encoding the same 734-amino acid Lbc interacting protein. The Lbc interacting protein has homology with the alpha-catenin cell adhesion component and is identical to the alpha-catenin-like alpha-catulin protein of unknown function. The human alpha-catulin gene (CTNNAL1) maps to 9q31-32. Here we identify the predicted endogenous alpha-catulin product, document alpha-catulin and Lbc co-expression in multiple human cell lines, and show alpha-catulin and Lbc subcellular co-fractionation and intracellular localization. The required regions for Lbc and alpha-catulin interaction were mapped, and complex formation between Lbc and alpha-catulin in mammalian cells was detected. Functionally, alpha-catulin co-expression leads to increased Lbc-induced serum response factor activation in vivo as measured by a transcriptional reporter assay. Furthermore, alpha-catulin co-expression enhances Lbc-induced GTP-Rho formation in vivo. These results support the concept that the recently identified alpha-catulin protein may modulate Rho pathway signaling in vivo by providing a scaffold for the Lbc Rho guanine nucleotide exchange factor.
Collapse
Affiliation(s)
- Brian Park
- Department of Physiology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | | | | | | | | | | | | | | | |
Collapse
|