1
|
Mondal S, Sarvari G, Boehr DD. Picornavirus 3C Proteins Intervene in Host Cell Processes through Proteolysis and Interactions with RNA. Viruses 2023; 15:2413. [PMID: 38140654 PMCID: PMC10747604 DOI: 10.3390/v15122413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/07/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
The Picornaviridae family comprises a large group of non-enveloped viruses with enormous impact on human and animal health. The picornaviral genome contains one open reading frame encoding a single polyprotein that can be processed by viral proteases. The picornaviral 3C proteases share similar three-dimensional structures and play a significant role in the viral life cycle and virus-host interactions. Picornaviral 3C proteins also have conserved RNA-binding activities that contribute to the assembly of the viral RNA replication complex. The 3C protease is important for regulating the host cell response through the cleavage of critical host cell proteins, acting to selectively 'hijack' host factors involved in gene expression, promoting picornavirus replication, and inactivating key factors in innate immunity signaling pathways. The protease and RNA-binding activities of 3C are involved in viral polyprotein processing and the initiation of viral RNA synthesis. Most importantly, 3C modifies critical molecules in host organelles and maintains virus infection by subtly subverting host cell death through the blocking of transcription, translation, and nucleocytoplasmic trafficking to modulate cell physiology for viral replication. Here, we discuss the molecular mechanisms through which 3C mediates physiological processes involved in promoting virus infection, replication, and release.
Collapse
Affiliation(s)
| | | | - David D. Boehr
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
2
|
Serganov AA, Udi Y, Stein ME, Patel V, Fridy PC, Rice CM, Saeed M, Jacobs EY, Chait BT, Rout MP. Proteomic elucidation of the targets and primary functions of the picornavirus 2A protease. J Biol Chem 2022; 298:101882. [PMID: 35367208 PMCID: PMC9168619 DOI: 10.1016/j.jbc.2022.101882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 03/04/2022] [Accepted: 03/06/2022] [Indexed: 11/19/2022] Open
Abstract
Picornaviruses are small RNA viruses that hijack host cell machinery to promote their replication. During infection, these viruses express two proteases, 2Apro and 3Cpro, which process viral proteins. They also subvert a number of host functions, including innate immune responses, host protein synthesis, and intracellular transport, by utilizing poorly understood mechanisms for rapidly and specifically targeting critical host proteins. Here, we used proteomic tools to characterize 2Apro interacting partners, functions, and targeting mechanisms. Our data indicate that, initially, 2Apro primarily targets just two cellular proteins: eukaryotic translation initiation factor eIF4G (a critical component of the protein synthesis machinery) and Nup98 (an essential component of the nuclear pore complex, responsible for nucleocytoplasmic transport). The protease appears to employ two different cleavage mechanisms; it likely interacts with eIF3L, utilizing the eIF3 complex to proteolytically access the eIF4G protein but also directly binds and degrades Nup98. This Nup98 cleavage results in only a marginal effect on nuclear import of proteins, while nuclear export of proteins and mRNAs were more strongly affected. Collectively, our data indicate that 2Apro selectively inhibits protein translation, key nuclear export pathways, and cellular mRNA localization early in infection to benefit viral replication at the expense of particular cell functions.
Collapse
Affiliation(s)
- Artem A Serganov
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, New York, USA
| | - Yael Udi
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, New York, USA.
| | - Milana E Stein
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, New York, USA
| | - Valay Patel
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, New York, USA
| | - Peter C Fridy
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, New York, USA
| | - Charles M Rice
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, USA
| | - Mohsan Saeed
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, USA; Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, USA; National Emerging Infectious Diseases Laboratories, Boston University School of Medicine, Boston University, Massachusetts, USA.
| | - Erica Y Jacobs
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, New York, USA; Chemistry Department, St John's University, Queens, New York, USA.
| | - Brian T Chait
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, New York, USA.
| | - Michael P Rout
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, New York, USA.
| |
Collapse
|
3
|
Smart D, Filippi I, Blume C, Smalley B, Davies D, McCormick CJ. Rhinovirus 2A is the key protease responsible for instigating the early block to gene expression in infected cells. J Cell Sci 2020; 133:jcs.232504. [PMID: 31822628 DOI: 10.1242/jcs.232504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 12/02/2019] [Indexed: 11/20/2022] Open
Abstract
Human rhinoviruses (HRVs) express 2 cysteine proteases, 2A and 3C, that are responsible for viral polyprotein processing. Both proteases also suppress host gene expression by inhibiting mRNA transcription, nuclear export and cap-dependent translation. However, the relative contribution that each makes in achieving this goal remains unclear. In this study, we have compared both the combined and individual ability of the two proteases to shut down cellular gene expression using a novel dynamic reporter system. Our findings show that 2A inhibits host gene expression much more rapidly than 3C. By comparing the activities of a representative set of proteases from the three different HRV species, we also find variation in the speed at which host gene expression is suppressed. Our work highlights the key role that 2A plays in early suppression of the infected host cell response and shows that this can be influenced by natural variation in the activity of this enzyme.
Collapse
Affiliation(s)
- David Smart
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Sir Henry Wellcome Laboratories, University Hospital Southampton, Southampton SO16 6YD, UK.,Southampton NIHR Respiratory Biomedical Research Centre, University Hospital Southampton, Southampton SO16 6YD, UK
| | - Irene Filippi
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Sir Henry Wellcome Laboratories, University Hospital Southampton, Southampton SO16 6YD, UK.,Southampton NIHR Respiratory Biomedical Research Centre, University Hospital Southampton, Southampton SO16 6YD, UK
| | - Cornelia Blume
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Sir Henry Wellcome Laboratories, University Hospital Southampton, Southampton SO16 6YD, UK.,Southampton NIHR Respiratory Biomedical Research Centre, University Hospital Southampton, Southampton SO16 6YD, UK
| | - Benjamin Smalley
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Sir Henry Wellcome Laboratories, University Hospital Southampton, Southampton SO16 6YD, UK
| | - Donna Davies
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Sir Henry Wellcome Laboratories, University Hospital Southampton, Southampton SO16 6YD, UK.,Southampton NIHR Respiratory Biomedical Research Centre, University Hospital Southampton, Southampton SO16 6YD, UK.,Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Christopher J McCormick
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Sir Henry Wellcome Laboratories, University Hospital Southampton, Southampton SO16 6YD, UK
| |
Collapse
|
4
|
Lei J, Hilgenfeld R. RNA-virus proteases counteracting host innate immunity. FEBS Lett 2017; 591:3190-3210. [PMID: 28850669 PMCID: PMC7163997 DOI: 10.1002/1873-3468.12827] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 08/21/2017] [Accepted: 08/22/2017] [Indexed: 01/20/2023]
Abstract
Virus invasion triggers host immune responses, in particular, innate immune responses. Pathogen‐associated molecular patterns of viruses (such as dsRNA, ssRNA, or viral proteins) released during virus replication are detected by the corresponding pattern‐recognition receptors of the host, and innate immune responses are induced. Through production of type‐I and type‐III interferons as well as various other cytokines, the host innate immune system forms the frontline to protect host cells and inhibit virus infection. Not surprisingly, viruses have evolved diverse strategies to counter this antiviral system. In this review, we discuss the multiple strategies used by proteases of positive‐sense single‐stranded RNA viruses of the families Picornaviridae, Coronaviridae, and Flaviviridae, when counteracting host innate immune responses.
Collapse
Affiliation(s)
- Jian Lei
- Institute of Biochemistry, Center for Structural and Cell Biology in Medicine, University of Lübeck, Germany
| | - Rolf Hilgenfeld
- Institute of Biochemistry, Center for Structural and Cell Biology in Medicine, University of Lübeck, Germany.,German Center for Infection Research (DZIF), Hamburg - Lübeck - Borstel - Riems Site, University of Lübeck, Germany
| |
Collapse
|
5
|
In vitro translation of mRNAs that are in their native ribonucleoprotein complexes. Biochem J 2015; 472:111-9. [PMID: 26349537 DOI: 10.1042/bj20150772] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 09/08/2015] [Indexed: 11/17/2022]
Abstract
mRNA is bound to a complex network of hundreds of RNA-binding proteins (RBPs) which constitute the mature ribonucleoprotein (mRNP). Such a complex particle is initially scaffolded in the nucleus and stays associated throughout mRNA's journey to the cytoplasm, where it participates in translation. However, due to the size, complexity and variability of the mRNP, it remains technically challenging to assess its impact on translation. By designing a novel in vitro translational assay, we have been able to compare the translational efficiency of reporter mRNAs that are, or are not, associated with their cognate RBPs. This showed the strong impact of these RBPs on translational efficiency, and revealed intrinsic variations according to the structure of both the mRNA and its nuclear history, e.g. the use of intron-containing mRNA constructs showed that splicing strongly enhanced translation. The present study shows that nuclear and cytoplasmic gene expression steps in vitro are coupled in eukaryotes and this is determined from the very birth of the mRNA in the nucleus by a network of hundreds of RBPs.
Collapse
|
6
|
Lei X, Cui S, Zhao Z, Wang J. Etiology, pathogenesis, antivirals and vaccines of hand, foot, and mouth disease. Natl Sci Rev 2015. [DOI: 10.1093/nsr/nwv038] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Abstract
Hand, foot, and mouth disease (HFMD), caused by enteroviruses, is a syndrome characterized by fever with vesicular eruptions mainly on the skin of the hands, feet, and oral cavity. HFMD primarily affects infants and young children. Although infection is usually self-limited, severe neurological complications in the central nervous system can present in some cases, which can lead to death. Widespread infection of HFMD across the Asia-Pacific region over the past two decades has made HFMD a major public health challenge, ranking first among the category C notifiable communicable diseases in China every year since 2008. This review summarizes our understanding of HFMD, focusing on the etiology and pathogenesis of the disease, as well as on progress toward antivirals and vaccines. The review also discusses the implications of these studies as they relate to the control and prevention of the disease.
Collapse
Affiliation(s)
- Xiaobo Lei
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Sheng Cui
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Zhendong Zhao
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Jianwei Wang
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310003, China
| |
Collapse
|
7
|
González-Almela E, Sanz MA, García-Moreno M, Northcote P, Pelletier J, Carrasco L. Differential action of pateamine A on translation of genomic and subgenomic mRNAs from Sindbis virus. Virology 2015; 484:41-50. [PMID: 26057151 DOI: 10.1016/j.virol.2015.05.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 04/28/2015] [Accepted: 05/03/2015] [Indexed: 12/14/2022]
Abstract
Pateamine A (Pat A) is a natural marine product that interacts specifically with the translation initiation factor eIF4A leading to the disruption of the eIF4F complex. In the present study, we have examined the activity of Pat A on the translation of Sindbis virus (SINV) mRNAs. Translation of genomic mRNA is strongly suppressed by Pat A, as shown by the reduction of nsP1 or nsP2 synthesis. Notably, protein synthesis directed by subgenomic mRNA is resistant to Pat A inhibition when the compound is added at late times following infection; however, subgenomic mRNA is sensitive to Pat A in transfected cells or in cell free systems, indicating that this viral mRNA exhibits a dual mechanism of translation. A detailed kinetic analysis of Pat A inhibition in SINV-infected cells demonstrates that a switch occurs approximately 4h after infection, rendering subgenomic mRNA translation more resistant to Pat A inhibition.
Collapse
Affiliation(s)
- Esther González-Almela
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), C/Nicolás Cabrera, 1, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Miguel Angel Sanz
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), C/Nicolás Cabrera, 1, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Manuel García-Moreno
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), C/Nicolás Cabrera, 1, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Peter Northcote
- School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington 6140, New Zealand
| | - Jerry Pelletier
- Department of Biochemistry and Goodman Cancer Center, McIntyre Medical Sciences Building, 3655 Promenade Sir William Osler, McGill University, Montreal, Quebec, Canada H3G 1Y6
| | - Luis Carrasco
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), C/Nicolás Cabrera, 1, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain.
| |
Collapse
|
8
|
Álvarez E, Castelló A, Carrasco L, Izquierdo JM. Alternative splicing, a new target to block cellular gene expression by poliovirus 2A protease. Biochem Biophys Res Commun 2011; 414:142-7. [PMID: 21945619 DOI: 10.1016/j.bbrc.2011.09.040] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Accepted: 09/08/2011] [Indexed: 11/29/2022]
Abstract
Viruses have developed multiple strategies to interfere with the gene expression of host cells at different stages to ensure their own survival. Here we report a new role for poliovirus 2A(pro) modulating the alternative splicing of pre-mRNAs. Expression of 2A(pro) potently inhibits splicing of reporter genes in HeLa cells. Low amounts of 2A(pro) abrogate Fas exon 6 skipping, whereas higher levels of protease fully abolish Fas and FGFR2 splicing. In vitro splicing of MINX mRNA using nuclear extracts is also strongly inhibited by 2A(pro), leading to accumulation of the first exon and the lariat product containing the unspliced second exon. These findings reveal that the mechanism of action of 2A(pro) on splicing is to selectively block the second catalytic step.
Collapse
Affiliation(s)
- Enrique Álvarez
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Nicolás Cabrera, 1 Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain.
| | | | | | | |
Collapse
|
9
|
The multifaceted poliovirus 2A protease: regulation of gene expression by picornavirus proteases. J Biomed Biotechnol 2011; 2011:369648. [PMID: 21541224 PMCID: PMC3085340 DOI: 10.1155/2011/369648] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Revised: 01/18/2011] [Accepted: 02/17/2011] [Indexed: 11/17/2022] Open
Abstract
After entry into animal cells, most viruses hijack essential components involved in gene expression. This is the case of poliovirus, which abrogates cellular translation soon after virus internalization. Abrogation is achieved by cleavage of both eIF4GI and eIF4GII by the viral protease 2A. Apart from the interference of poliovirus with cellular protein synthesis, other gene expression steps such as RNA and protein trafficking between nucleus and cytoplasm are also altered. Poliovirus 2Apro is capable of hydrolyzing components of the nuclear pore, thus preventing an efficient antiviral response by the host cell. Here, we compare in detail poliovirus 2Apro with other viral proteins (from picornaviruses and unrelated families) as regard to their activity on key host factors that control gene expression. It is possible that future analyses to determine the cellular proteins targeted by 2Apro will uncover other cellular functions ablated by poliovirus infection. Further understanding of the cellular proteins hydrolyzed by 2Apro will add further insight into the molecular mechanism by which poliovirus and other viruses interact with the host cell.
Collapse
|
10
|
Schaeffer V, Arbabi S, Garcia IA, Knoll ML, Cuschieri J, Bulger EM, Maier RV. Role of the mTOR pathway in LPS-activated monocytes: influence of hypertonic saline. J Surg Res 2010; 171:769-76. [PMID: 20828737 DOI: 10.1016/j.jss.2010.05.035] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2010] [Revised: 04/22/2010] [Accepted: 05/13/2010] [Indexed: 10/19/2022]
Abstract
BACKGROUND As heightened protein synthesis is the hallmark of many inflammatory syndromes, we hypothesize that the mammalian target of rapamycin (mTOR) pathway, which control the cap-dependent translation initiation phase, was activated by lipopolysaccharide (LPS). In addition, we studied the effect of hypertonic saline solution (HTS) on the mTOR cascade in peripheral blood mononuclear cells (PBMCs). MATERIALS AND METHODS PBMCs were isolated from healthy volunteers and treated with LPS. Cells were pretreated with phosphatidylinositol 3-kinase (PI3K) and mTOR inhibitors, or with HTS. Supernatants were harvested 20 h following LPS treatment, and interleukin-10 (IL-10), interleukin-6 (IL-6) and tumor necrosis alpha (TNFα) were analyzed by ELISA. Immunoblot experiments were performed for components of the PI3K/Akt/mTOR pathway at various time points. RNA was extracted after 90 min for real-time RT-PCR quantification. RESULTS The mTOR pathway is activated in PBMCs within 1 h of LPS stimulation. Pretreatment with rapamycin, a specific inhibitor of mTOR, resulted in a significant decrease of IL-10 and IL-6 translation and expression but did not affect the LPS-induced TNFα production. Both the mTOR pathway and the LPS-induced IL-6 production were down-regulated by HTS pretreatment. CONCLUSIONS The PI3k/Akt/mTOR cascade modulates LPS-induced cytokines production differentially. IL-10 and IL-6 expression are both up-regulated by activation of the mTOR pathway in response to LPS in PBMCs, while TNFα is not controlled by the mTOR cascade. Meanwhile, pretreatment of PBMCs with a HTS solution suppresses mTOR activity as well as LPS-induced IL-6, suggesting a more central role for mTOR as a regulator of the immuno-inflammatory response.
Collapse
Affiliation(s)
- Valérie Schaeffer
- Harborview Medical Center, University of Washington, Seattle, Washington 98109, USA.
| | | | | | | | | | | | | |
Collapse
|
11
|
Castelló A, Franco D, Moral-López P, Berlanga JJ, Álvarez E, Wimmer E, Carrasco L. HIV- 1 protease inhibits Cap- and poly(A)-dependent translation upon eIF4GI and PABP cleavage. PLoS One 2009; 4:e7997. [PMID: 19956697 PMCID: PMC2776998 DOI: 10.1371/journal.pone.0007997] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2009] [Accepted: 10/20/2009] [Indexed: 11/18/2022] Open
Abstract
A number of viral proteases are able to cleave translation initiation factors leading to the inhibition of cellular translation. This is the case of human immunodeficiency virus type 1 protease (HIV-1 PR), which hydrolyzes eIF4GI and poly(A)-binding protein (PABP). Here, the effect of HIV-1 PR on cellular and viral protein synthesis has been examined using cell-free systems. HIV-1 PR strongly hampers translation of pre-existing capped luc mRNAs, particularly when these mRNAs contain a poly(A) tail. In fact, HIV-1 PR efficiently blocks cap- and poly(A)-dependent translation initiation in HeLa extracts. Addition of exogenous PABP to HIV-1 PR treated extracts partially restores the translation of polyadenylated luc mRNAs, suggesting that PABP cleavage is directly involved in the inhibition of poly(A)-dependent translation. In contrast to these data, PABP cleavage induced by HIV-1 PR has little impact on the translation of polyadenylated encephalomyocarditis virus internal ribosome entry site (IRES)-containing mRNAs. In this case, the loss of poly(A)-dependent translation is compensated by the IRES transactivation provided by eIF4G cleavage. Finally, translation of capped and polyadenylated HIV-1 genomic mRNA takes place in HeLa extracts when eIF4GI and PABP have been cleaved by HIV-1 PR. Together these results suggest that proteolytic cleavage of eIF4GI and PABP by HIV-1 PR blocks cap- and poly(A)-dependent initiation of translation, leading to the inhibition of cellular protein synthesis. However, HIV-1 genomic mRNA can be translated under these conditions, giving rise to the production of Gag polyprotein.
Collapse
Affiliation(s)
- Alfredo Castelló
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Nicolás Cabrera 1, Universidad Autónoma de Madrid, Cantoblanco, Spain
| | - David Franco
- State University of New York at Stony Brook, Long Island, New York, United States of America
| | - Pablo Moral-López
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Nicolás Cabrera 1, Universidad Autónoma de Madrid, Cantoblanco, Spain
| | - Juan J. Berlanga
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Nicolás Cabrera 1, Universidad Autónoma de Madrid, Cantoblanco, Spain
| | - Enrique Álvarez
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Nicolás Cabrera 1, Universidad Autónoma de Madrid, Cantoblanco, Spain
| | - Eckard Wimmer
- State University of New York at Stony Brook, Long Island, New York, United States of America
| | - Luis Carrasco
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Nicolás Cabrera 1, Universidad Autónoma de Madrid, Cantoblanco, Spain
- * E-mail:
| |
Collapse
|
12
|
Castelló A, Izquierdo JM, Welnowska E, Carrasco L. RNA nuclear export is blocked by poliovirus 2A protease and is concomitant with nucleoporin cleavage. J Cell Sci 2009; 122:3799-809. [PMID: 19789179 DOI: 10.1242/jcs.055988] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Cytopathic viruses have developed successful strategies to block or, at least, to attenuate host interference with their replication. Here, we have analyzed the effects of poliovirus 2A protease on RNA nuclear export. 2A protease interferes with trafficking of mRNAs, rRNAs and U snRNAs from the nucleus to the cytoplasm, without any apparent effect on tRNA transport. Traffic of newly produced mRNAs is more strongly affected than traffic of other mRNAs over-represented in the cytoplasm, such as mRNA encoding beta-actin. Inhibition of RNA nuclear export in HeLa cells expressing 2A protease is concomitant with the cleavage of Nup98, Nup153, Nup62 and their subsequent subcellular redistribution. The expression of an inactive 2A protease failed to interfere with RNA nuclear export. In addition, other related proteases, such as poliovirus 3C or foot and mouth disease virus L(pro) did not affect mRNA distribution or Nup98 integrity. Treatment of HeLa cells with interferon (IFN)-gamma increased the relative amount of Nup98. Under such conditions, the cleavage of Nup98 induced by 2A protease is partial, and thus IFN-gamma prevents the inhibition of RNA nuclear export. Taken together, these results are consistent with a specific proteolysis of Nup98 by 2A protease to prevent de novo mRNA traffic in poliovirus-infected cells.
Collapse
Affiliation(s)
- Alfredo Castelló
- Centro de Biología Molecular, Severo Ochoa (CSIC-UAM), C/Nicolás Cabrera, 1 Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | | | | | | |
Collapse
|
13
|
Translation of mRNAs from vesicular stomatitis virus and vaccinia virus is differentially blocked in cells with depletion of eIF4GI and/or eIF4GII. J Mol Biol 2009; 394:506-21. [PMID: 19769989 DOI: 10.1016/j.jmb.2009.09.036] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Revised: 09/02/2009] [Accepted: 09/15/2009] [Indexed: 12/16/2022]
Abstract
Cytolytic viruses abrogate host protein synthesis to maximize the translation of their own mRNAs. In this study, we analyzed the eukaryotic initiation factor (eIF) 4G requirement for translation of vesicular stomatitis virus (VSV) and vaccinia virus (VV) mRNAs in HeLa cells using two different strategies: eIF4G depletion by small interfering RNAs or cleavage of eIF4G by expression of poliovirus 2A protease. Depletion of eIF4GI or eIF4GII moderately inhibits cellular protein synthesis, whereas silencing of both factors has only a slightly higher effect. Under these conditions, the extent of VSV protein synthesis is similar to that of nondepleted control cells, whereas VV expression is substantially reduced. Similar results were obtained when eIF4E was depleted. On the other hand, eIF4G cleavage by poliovirus 2A protease strongly inhibits translation of VV protein expression, whereas translation directed by VSV mRNAs is not abrogated, even though VSV mRNAs are capped. Therefore, the requirement for eIF4F activity is different for VV and VSV, suggesting that the molecular mechanism by which their mRNAs initiate their translation is also different. Consistent with these findings, eIF4GI does not colocalize with ribosomes in VSV-infected cells, while eIF2alpha locates at perinuclear sites coincident with ribosomes.
Collapse
|
14
|
Huang BPH, Wang Y, Wang X, Wang Z, Proud CG. Blocking eukaryotic initiation factor 4F complex formation does not inhibit the mTORC1-dependent activation of protein synthesis in cardiomyocytes. Am J Physiol Heart Circ Physiol 2009; 296:H505-14. [DOI: 10.1152/ajpheart.01105.2008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Activation of the mammalian target of rapamycin complex 1 (mTORC1) causes the dissociation of eukaryotic initiation factor 4E complex (eIF4E)-binding protein 1 (4E-BP1) from eIF4E, leading to increased eIF4F complex formation. mTORC1 positively regulates protein synthesis and is implicated in several diseases including cardiac hypertrophy, a potentially fatal disorder involving increased cardiomyocyte size. The importance of 4E-BP1 in mTORC1-regulated protein synthesis was investigated by overexpressing 4E-BP1, which blocks eIF4F formation in isolated primary cardiomyocytes without affecting other targets for mTORC1 signaling. Interestingly, blocking eIF4F formation did not impair the degree of activation of overall protein synthesis by the hypertrophic agent phenylephrine (PE), which, furthermore, remained dependent on mTORC1. Overexpressing 4E-BP1 also only had a small effect on PE-induced cardiomyocyte growth. Overexpressing 4E-BP1 did diminish the PE-stimulated synthesis of luciferase encoded by structured mRNAs, confirming that such mRNAs do require eIF4F for their translation in cardiomyocytes. These data imply that the substantial inhibition of cardiomyocyte protein synthesis and growth caused by inhibiting mTORC1 cannot be attributed to the activation of 4E-BP1 or loss of eIF4F complexes. Our data indicate that increased eIF4F formation plays, at most, only a minor role in the mTORC1-dependent activation of overall protein synthesis in these primary cells but is required for the translation of structured mRNAs. Therefore, other mTORC1 targets are more important in the inhibition by rapamycin of the rapid activation of protein synthesis and of cell growth.
Collapse
|
15
|
Yamaguchi S, Ishihara H, Yamada T, Tamura A, Usui M, Tominaga R, Munakata Y, Satake C, Katagiri H, Tashiro F, Aburatani H, Tsukiyama-Kohara K, Miyazaki JI, Sonenberg N, Oka Y. ATF4-mediated induction of 4E-BP1 contributes to pancreatic beta cell survival under endoplasmic reticulum stress. Cell Metab 2008; 7:269-76. [PMID: 18316032 DOI: 10.1016/j.cmet.2008.01.008] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2007] [Revised: 12/02/2007] [Accepted: 01/30/2008] [Indexed: 01/09/2023]
Abstract
Endoplasmic reticulum (ER) stress-mediated apoptosis may play a crucial role in loss of pancreatic beta cell mass, contributing to the development of diabetes. Here we show that induction of 4E-BP1, the suppressor of the mRNA 5' cap-binding protein eukaryotic initiation factor 4E (eIF4E), is involved in beta cell survival under ER stress. 4E-BP1 expression was increased in islets under ER stress in several mouse models of diabetes. The Eif4ebp1 gene encoding 4E-BP1 was revealed to be a direct target of the transcription factor ATF4. Deletion of the Eif4ebp1 gene increased susceptibility to ER stress-mediated apoptosis in MIN6 beta cells and mouse islets, which was accompanied by deregulated translational control. Furthermore, Eif4ebp1 deletion accelerated beta cell loss and exacerbated hyperglycemia in mouse models of diabetes. Thus, 4E-BP1 induction contributes to the maintenance of beta cell homeostasis during ER stress and is a potential therapeutic target for diabetes.
Collapse
Affiliation(s)
- Suguru Yamaguchi
- Division of Molecular Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
|
17
|
Chau DHW, Yuan J, Zhang H, Cheung P, Lim T, Liu Z, Sall A, Yang D. Coxsackievirus B3 proteases 2A and 3C induce apoptotic cell death through mitochondrial injury and cleavage of eIF4GI but not DAP5/p97/NAT1. Apoptosis 2007; 12:513-24. [PMID: 17195095 DOI: 10.1007/s10495-006-0013-0] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2006] [Accepted: 11/09/2006] [Indexed: 02/08/2023]
Abstract
By transfection of Coxsackievirus B3 (CVB3) individual protease gene into HeLa cells, we demonstrated that 2A(pro) and 3C(pro) induced apoptosis through multiple converging pathways. Firstly, both 2A(pro) and 3C(pro) induced caspase-8-mediated activation of caspase-3 and dramatically reduced cell viability. Secondly, they both activated the intrinsic mitochondria-mediated apoptosis pathway leading to cytochrome c release from mitochondria and activation of caspase-9. However, 3C(pro) induced these events via both up-regulation of Bax and cleavage of Bid, and 2A(pro) induced these events via cleavage of Bid only. Nevertheless, neither altered Bcl-2 expression. Thirdly, both proteases induced cell death through cleavage or down regulation of cellular factors for translation and transcription: both 2A(pro) and 3C(pro) cleaved eukaryotic translation initiation factor 4GI but their cleavage products are different, indicating different cleavage sites; further, both 2A(pro) and 3C(pro) down-regulated cyclic AMP responsive element binding protein, a transcription factor, with 2A(pro) exhibiting a stronger effect than 3C(pro). Surprisingly, neither could cleave DAP5/p97/NAT1, a translation regulator, although this cleavage was observed during CVB3 infection and could not be blocked by caspase inhibitor z-VAD-fmk. Taken together, these data suggest that 2A(pro) and 3C(pro) induce apoptosis through both activation of proapoptotic mediators and suppression of translation and transcription.
Collapse
Affiliation(s)
- David H W Chau
- Department of Pathology and Laboratory Medicine, The James Hogg iCAPTURE Centre, University of British Columbia, St. Paul's Hospital, Room 166, 1081 Burrard Street, Vancouver, BC, Canada
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Hinton TM, Coldwell MJ, Carpenter GA, Morley SJ, Pain VM. Functional analysis of individual binding activities of the scaffold protein eIF4G. J Biol Chem 2006; 282:1695-708. [PMID: 17130132 DOI: 10.1074/jbc.m602780200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Eukaryotic initiation factor (eIF) 4G is an integral member of the translation initiation machinery. The molecule serves as a scaffold for several other initiation factors, including eIF4E, eIF4AI, the eIF3 complex, and poly(A)-binding protein (PABP). Previous work indicates that complexes between these proteins exhibit enhanced mRNA cap-binding and RNA helicase activities relative to the respective individual proteins, eIF4E and eIF4A. The eIF4G-PABP interaction has been implicated in enhancing the formation of 48 S and 80 S initiation complexes and ribosome recycling through mRNA circularization. The eIF3-eIF4GI interaction is believed to forge the link between the 40 S subunit and the mRNA. Here we have investigated the behavior in vitro and in intact cells of eIF4GIf molecules lacking either the PABP-binding site, the eIF3-binding site, the middle domain eIF4A-binding site, or the C-terminal segment that includes the second eIF4A-binding site. Although in some cases the mutant forms were recruited more slowly, all of these eIF4G variants could form complexes with eIF4E, enter 48 S complexes and polysomes in vivo and in vitro, and partially rescue translation in cells targeted with eIF4GI short interfering RNA. In the reticulocyte lysate, eIF4G unable to interact directly with PABP showed little impairment in its ability to support translation, whereas loss of either of the eIF4A-binding sites or the eIF3-binding site resulted in a marked decrease in activity. We conclude that there is considerable redundancy in the mechanisms forming initiation complexes in mammalian cells, such that many individual interactions have regulatory rather than essential roles.
Collapse
Affiliation(s)
- Tracey M Hinton
- Department of Biochemistry, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, United Kingdom
| | | | | | | | | |
Collapse
|
19
|
Coldwell MJ, Morley SJ. Specific isoforms of translation initiation factor 4GI show differences in translational activity. Mol Cell Biol 2006; 26:8448-60. [PMID: 16982693 PMCID: PMC1636793 DOI: 10.1128/mcb.01248-06] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The eukaryotic initiation factor (eIF) 4GI gene locus (eIF4GI) contains three identified promoters, generating alternately spliced mRNAs, yielding a total of five eIF4GI protein isoforms. Although eIF4GI plays a critical role in mRNA recruitment to the ribosomes, little is known about the functions of the different isoforms, their partner binding capacities, or the role of the homolog, eIF4GII, in translation initiation. To directly address this, we have used short interfering RNAs (siRNAs) expressed from DNA vectors to silence the expression of eIF4GI in HeLa cells. Here we show that reduced levels of specific mRNA and eIF4GI isoforms in HeLa cells promoted aberrant morphology and a partial inhibition of translation. The latter reflected dephosphorylation of 4E-BP1 and decreased eIF4F complex levels, with no change in eIF2alpha phosphorylation. Expression of siRNA-resistant Myc-tagged eIF4GI isoforms has allowed us to show that the different isoforms exhibit significant differences in their ability to restore translation rates. Here we quantify the efficiency of eIF4GI promoter usage in mammalian cells and demonstrate that even though the longest isoform of eIF4GI (eIF4GIf) was relatively poorly expressed when reintroduced, it was more efficient at promoting the translation of cellular mRNAs than the more highly expressed shorter isoforms used in previous functional studies.
Collapse
Affiliation(s)
- Mark J Coldwell
- Department of Biochemistry, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, United Kingdom
| | | |
Collapse
|
20
|
Castelló A, Alvarez E, Carrasco L. Differential cleavage of eIF4GI and eIF4GII in mammalian cells. Effects on translation. J Biol Chem 2006; 281:33206-16. [PMID: 16959778 DOI: 10.1074/jbc.m604340200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Two isoforms of the translation initiation factor eIF4G, eIF4GI and eIF4GII, have been described in eukaryotic cells. The exact function of each isoform during the initiation of protein synthesis is still under investigation. We have developed an efficient and reliable method of expressing poliovirus 2Apro, which differentially proteolyzes eIF4GI and eIF4GII in a time- and dose-dependent manner. This system is based on the electroporation of an in vitro transcribed mRNA that contains the encephalomyocarditis virus internal ribosome entry site followed by the sequence of poliovirus 2Apro. In contrast to HeLa cells, expression of this protease in BHK-21 cells induces delayed hydrolysis kinetics of eIF4GI with respect to eIF4GII. Moreover, under these conditions the polyadenylate binding protein is not cleaved. Interestingly, translation of de novo synthesized luciferase mRNA is highly dependent on eIF4GI integrity, whereas ongoing translation is inhibited at the same time as eIF4GII cleavage. Moreover, reinitiation of a preexisting mRNA translation after polysome run-off is dependent on the integrity of eIF4GII. Notably, de novo translation of heat shock protein 70 mRNA depends little on eIF4GI integrity but is more susceptible to eIF4GII hydrolysis. Finally, translation of an mRNA containing encephalomyocarditis virus internal ribosome entry site when the two isoforms of eIF4G are differentially hydrolyzed has been examined.
Collapse
Affiliation(s)
- Alfredo Castelló
- Centro de Biología Molecular Severo Ochoa, Facultad de Ciencias and Centro Nacional de Biotecnología Universidad Autónoma, Cantoblanco, 28049 Madrid, Spain
| | | | | |
Collapse
|
21
|
Svitkin YV, Herdy B, Costa-Mattioli M, Gingras AC, Raught B, Sonenberg N. Eukaryotic translation initiation factor 4E availability controls the switch between cap-dependent and internal ribosomal entry site-mediated translation. Mol Cell Biol 2005; 25:10556-65. [PMID: 16287867 PMCID: PMC1291233 DOI: 10.1128/mcb.25.23.10556-10565.2005] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Translation of m7G-capped cellular mRNAs is initiated by recruitment of ribosomes to the 5' end of mRNAs via eukaryotic translation initiation factor 4F (eIF4F), a heterotrimeric complex comprised of a cap-binding subunit (eIF4E) and an RNA helicase (eIF4A) bridged by a scaffolding molecule (eIF4G). Internal translation initiation bypasses the requirement for the cap and eIF4E and occurs on viral and cellular mRNAs containing internal ribosomal entry sites (IRESs). Here we demonstrate that eIF4E availability plays a critical role in the switch from cap-dependent to IRES-mediated translation in picornavirus-infected cells. When both capped and IRES-containing mRNAs are present (as in intact cells or in vitro translation extracts), a decrease in the amount of eIF4E associated with the eIF4F complex elicits a striking increase in IRES-mediated viral mRNA translation. This effect is not observed in translation extracts depleted of capped mRNAs, indicating that capped mRNAs compete with IRES-containing mRNAs for translation. These data explain numerous reported observations where viral mRNAs are preferentially translated during infection.
Collapse
Affiliation(s)
- Yuri V Svitkin
- Department of Biochemistry, McGill University, 3655 Promenade Sir William Osler, Montreal, Quebec, Canada H3G 1Y6
| | | | | | | | | | | |
Collapse
|
22
|
Castelló A, Sanz MA, Molina S, Carrasco L. Translation of Sindbis virus 26S mRNA does not require intact eukariotic initiation factor 4G. J Mol Biol 2005; 355:942-56. [PMID: 16343528 DOI: 10.1016/j.jmb.2005.11.024] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2005] [Revised: 10/28/2005] [Accepted: 11/09/2005] [Indexed: 11/15/2022]
Abstract
The infection of baby hamster kidney (BHK) cells by Sindbis virus gives rise to a drastic inhibition of cellular translation, while under these conditions the synthesis of viral structural proteins directed by the subgenomic 26S mRNA takes place efficiently. Here, the requirement for intact initiation factor eIF4G for the translation of this subgenomic mRNA has been examined. To this end, SV replicons that contain the protease of human immunodeficiency virus type 1 (HIV-1) or the poliovirus 2A(pro) replacing the sequences of SV glycoproteins have been constructed. BHK cells electroporated with the different RNAs synthesize protein C and the corresponding protease at late times. Notably, the proteolysis of eIF4G by both proteases has little effect on the translation of the 26S mRNA. In addition, recombinant viable SVs were engineered that encode HIV-1 PR or poliovirus 2A protease under the control of a duplicated late promoter. Viral protein synthesis at late times of infection by the recombinant viruses is slightly affected in BHK cells that contain proteolysed eIF4G. The translatability of SV genomic 49S mRNA was assayed in BHK cells infected with a recombinant virus that synthesizes luciferase and transfected with a replicon that expresses poliovirus 2Apro. Under conditions where eIF4G has been hydrolysed significantly the translation of genomic SV RNA was deeply inhibited. These findings indicate a different requirement for intact eIF4G in the translation of genomic and subgenomic SV mRNAs. Finally, the translation of the reporter gene that encodes green fluorescent protein, placed under the control of a second duplicate late promoter, is also resistant to the cleavage of eIF4G. In conclusion, despite the presence of a cap structure in the 5' end of the subgenomic SV mRNA, intact eIF4G is not necessary for its translation.
Collapse
Affiliation(s)
- Alfredo Castelló
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Facultad de Ciencias, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain.
| | | | | | | |
Collapse
|
23
|
Perales C, Carrasco L, González ME. Regulation of HIV-1 env mRNA translation by Rev protein. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2005; 1743:169-75. [PMID: 15777852 DOI: 10.1016/j.bbamcr.2004.09.030] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2003] [Revised: 07/20/2004] [Accepted: 09/24/2004] [Indexed: 11/21/2022]
Abstract
We have examined the effect of Rev on the regulation of the expression of RRE containing mRNAs when they were synthesised in the nucleus or directly in the cytoplasm. In the nuclear expression system, Rev enhanced env mRNA transport by about 1.6-fold, while translation of this mRNA was increased more than a 100-fold. These findings indicate that the target of Rev activity is located mainly at the translational level. Synthesis of Env using a recombinant vaccinia virus system, which synthesised env mRNA directly in the cytoplasm, is also enhanced by Rev. Finally, RRE functioning was examined using a luciferase mRNA bearing this element. Rev stimulated the synthesis of Luciferase both when the luc mRNA was made in the nucleus or in cytoplasm. Our results indicate that the effect of Rev on env mRNA transport is low compared with the enhancement of translation of this mRNA.
Collapse
Affiliation(s)
- Celia Perales
- Centro de Biología Molecular Severo Ochoa, Facultad de Ciencias, Universidad Autónoma, Cantoblanco, 28049 Madrid, Spain
| | | | | |
Collapse
|
24
|
Hasselblatt P, Hockenjos B, Thoma C, Blum HE, Offensperger WB. Translation of stable hepadnaviral mRNA cleavage fragments induced by the action of phosphorothioate-modified antisense oligodeoxynucleotides. Nucleic Acids Res 2005; 33:114-25. [PMID: 15640448 PMCID: PMC546143 DOI: 10.1093/nar/gki155] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Phosphorothioate-modified antisense oligodeoxynucleotides (ASOs) are used to suppress gene expression by inducing RNase H-mediated cleavage with subsequent degradation of the target mRNA. However, previous observations suggest that ASO/RNase H can also result in the generation of stable mRNA cleavage fragments and expression of truncated proteins. Here, we addressed the underlying translational mechanisms in more detail using hepadnavirus-transfected hepatoma cells as a model system of antisense therapy. Generation of stable mRNA cleavage fragments was restricted to the ASO/RNase H pathway and not observed upon cotransfection of isosequential small interfering RNA or RNase H-incompetent oligonucleotides. Furthermore, direct evidence for translation of mRNA fragments was established by polysome analysis. Polysome-associated RNA contained cleavage fragments devoid of a 5′ cap structure indicating that translation was, at least in part, cap-independent. Further analysis of the uncapped cleavage fragments revealed that their 5′ terminus and initiation codon were only separated by a few nucleotides suggesting a 5′ end-dependent mode of translation, whereas internal initiation could be ruled out. However, the efficiency of translation was moderate compared to uncleaved mRNA and amounted to 13–24% depending on the ASO used. These findings provide a rationale for understanding the translation of mRNA fragments generated by ASO/RNase H mechanistically.
Collapse
Affiliation(s)
- Peter Hasselblatt
- Department of Medicine II, University of Freiburg Hugstetter Strasse 55, D-79106 Freiburg, Germany.
| | | | | | | | | |
Collapse
|
25
|
Blondel B, Colbère-Garapin F, Couderc T, Wirotius A, Guivel-Benhassine F. Poliovirus, pathogenesis of poliomyelitis, and apoptosis. Curr Top Microbiol Immunol 2005; 289:25-56. [PMID: 15791950 DOI: 10.1007/3-540-27320-4_2] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Poliovirus (PV) is the causal agent of paralytic poliomyelitis, an acute disease of the central nervous system (CNS) resulting in flaccid paralysis. The development of new animal and cell models has allowed the key steps of the pathogenesis of poliomyelitis to be investigated at the molecular level. In particular, it has been shown that PV-induced apoptosis is an important component of the tissue injury in the CNS of infected mice, which leads to paralysis. In this review the molecular biology of PV and the pathogenesis of poliomyelitis are briefly described, and then several models of PV-induced apoptosis are considered; the role of the cellular receptor of PV, CD155, in the modulation of apoptosis is also addressed.
Collapse
Affiliation(s)
- B Blondel
- Laboratoire des Virus Entérotropes et Stratégies Antivirales, Institut Pasteur, 75724 Paris Cedex 15, France.
| | | | | | | | | |
Collapse
|
26
|
Naegele S, Morley SJ. Molecular Cross-talk between MEK1/2 and mTOR Signaling during Recovery of 293 Cells from Hypertonic Stress. J Biol Chem 2004; 279:46023-34. [PMID: 15292274 DOI: 10.1074/jbc.m404945200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
To investigate the role for initiation factor phosphorylation in de novo translation, we have studied the recovery of human kidney cells from hypertonic stress. Previously, we have demonstrated that hypertonic shock causes a rapid inhibition of protein synthesis, the disaggregation of polysomes, the dephosphorylation of eukaryotic translation initiation factor (eIF)4E, 4E-BP1, and ribosomal protein S6, and increased association of 4E-BP1 with eIF4E. The return of cells to isotonic medium promotes a transient activation of Erk1/2 and the phosphorylation of initiation factors, promoting an increase in protein synthesis that is independent of a requirement for eIF4E phosphorylation. As de novo translation is associated with the phosphorylation of 4E-BP1, we have investigated the role of the signaling pathways required for this event by the use of cell-permeable inhibitors. Surprisingly, although rapamycin, RAD001, wortmannin, and LY294002 inhibited the phosphorylation of 4E-BP1 and its release from eIF4E, they did not prevent the recovery of translation rates. These data suggest that only a small proportion of the available eIF4F complex is required for maximal translation rates under these conditions. Similarly, prevention of Erk1/2 activity alone with low concentrations of PD184352 did not impinge upon de novo translation until later times of recovery from salt shock. However, U0126, which prevented the phosphorylation of Erk1/2, ribosomal protein S6, TSC2, and 4E-BP1, attenuated de novo protein synthesis in recovering cells. These results indicate that the phosphorylation of 4E-BP1 is mediated by both phosphatidylinositol 3-kinase-dependent rapamycin-sensitive and Erk1/2-dependent signaling pathways and that activation of either pathway in isolation is sufficient to promote de novo translation.
Collapse
Affiliation(s)
- Susanne Naegele
- Biochemistry Laboratory, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, United Kingdom
| | | |
Collapse
|
27
|
Tuxworth WJ, Saghir AN, Spruill LS, Menick DR, McDermott PJ. Regulation of protein synthesis by eIF4E phosphorylation in adult cardiocytes: the consequence of secondary structure in the 5'-untranslated region of mRNA. Biochem J 2004; 378:73-82. [PMID: 14629199 PMCID: PMC1223941 DOI: 10.1042/bj20031027] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2003] [Revised: 10/31/2003] [Accepted: 11/20/2003] [Indexed: 11/17/2022]
Abstract
In adult cardiocytes, eIF4E (eukaryotic initiation factor 4E) activity and protein synthesis are increased concomitantly in response to stimuli that induce hypertrophic growth. We tested the hypothesis that increases in eIF4E activity selectively improve the translational efficiency of mRNAs that have an excessive amount of secondary structure in the 5'-UTR (5'-untranslated region). The activity of eIF4E was modified in primary cultures of adult cardiocytes using adenoviral gene transfer to increase either the amount of eIF4E or the extent of endogenous eIF4E phosphorylation. Subsequently, the effects of eIF4E on translational efficiency were assayed following adenoviral-mediated expression of luciferase reporter mRNAs that were either 'stronger' (less structure in the 5'-UTR) or 'weaker' (more structure in the 5'-UTR) with respect to translational efficiency. The insertion of G+C-rich repeats into the 5'-UTR doubled the predicted amount of secondary structure and was sufficient to reduce translational efficiency of the reporter mRNA by 48+/-13%. Translational efficiency of the weaker reporter mRNA was not significantly improved by overexpression of wild-type eIF4E when compared with the stronger reporter mRNA. In contrast, overexpression of the eIF4E kinase Mnk1 [MAP (mitogen-activated protein) kinase signal-integrating kinase 1] was sufficient to increase the translational efficiency of either reporter mRNA, independent of the amount of secondary structure in their respective 5'-UTRs. The increases in translational efficiency produced by Mnk1 occurred in association with corresponding decreases in mRNA levels. These findings indicate that the positive effect of eIF4E phosphorylation on translational efficiency in adult cardiocytes is coupled with the stability of mRNA.
Collapse
Affiliation(s)
- William J Tuxworth
- Department of Medicine, the Gazes Cardiac Research Institute, Medical University of South Carolina, and the Ralph H. Johnson Department of Veterans Affairs Medical Center, Charleston, SC 29403, USA
| | | | | | | | | |
Collapse
|
28
|
Blondel B, Couderc T, Simonin Y, Gosselin AS, Guivel-Benhassine F. Poliovirus and Apoptosis. VIRUSES AND APOPTOSIS 2004; 36:151-69. [PMID: 15171611 DOI: 10.1007/978-3-540-74264-7_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- B Blondel
- Unité de Neurovirologie et Régénération du Système Nerveux, Institut Pasteur, 75724 Paris cedex 15, France
| | | | | | | | | |
Collapse
|
29
|
Schlatter S, Senn C, Fussenegger M. Modulation of translation-initiation in CHO-K1 cells by rapamycin-induced heterodimerization of engineered eIF4G fusion proteins. Biotechnol Bioeng 2003; 83:210-25. [PMID: 12768627 DOI: 10.1002/bit.10662] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Translation-initiation is a predominant checkpoint in mammalian cells which controls protein synthesis and fine-tunes the flow of information from gene to protein. In eukaryotes, translation-initiation is typically initiated at a 7-methyl-guanylic acid cap posttranscriptionally linked to the 5' end of mRNAs. Alternative cap-independent translation-initiation involves 5' untranslated regions (UTR) known as internal ribosome entry sites, which adopt a particular secondary structure. Translation-initiating ribosome assembly at cap or IRES elements is mediated by a multiprotein complex of which the initiation factor 4F (eIF4F) consisting of eIF4A (helicase), eIF4E (cap-binding protein), and eIF4G is a major constituent. eIF4G is a key target of picornaviral protease 2A, which cleaves this initiation factor into eIF4G(Delta) and (Delta)eIF4G to redirect the cellular translation machinery exclusively to its own IRES-containing transcripts. We have designed a novel translation control system (TCS) for conditional as well as adjustable translation of cap- and IRES-dependent transgene mRNAs in mammalian cells. eIF4G(Delta) and (Delta)eIF4G were fused C- and N-terminally to the FK506-binding protein (FKBP) and the FKBP-rapamycin-binding domain (FRB) of the human FKBP-rapamycin-associated protein (FRAP), respectively. Rapamycin-induced heterodimerization of eIF4G(Delta)-FKBP and FRB-(Delta)eIF4G fusion proteins reconstituted a functional chimeric elongation factor 4G in a dose-dependent manner. Rigorous quantitative expression analysis of cap- and IRES-dependent SEAP- (human placental secreted alkaline phosphatase) and luc- (Photinus pyralis luciferase) encoding reporter constructs confirmed adjustable translation control and revealed increased production of desired proteins in response to dimerization-induced heterologous eIF4G in Chinese hamster ovary (CHO-K1) cells.
Collapse
Affiliation(s)
- Stefan Schlatter
- Institute of Biotechnology, Swiss Federal Institute of Technology, ETH Zurich, CH-8093 Zurich, Switzerland
| | | | | |
Collapse
|
30
|
Zhao X, Lamphear BJ, Xiong D, Knowlton K, Rhoads RE. Protection of cap-dependent protein synthesis in vivo and in vitro with an eIF4G-1 variant highly resistant to cleavage by Coxsackievirus 2A protease. J Biol Chem 2003; 278:4449-57. [PMID: 12475969 DOI: 10.1074/jbc.m212393200] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The shutoff of host protein synthesis by certain picornaviruses is mediated, at least in part, by proteolytic cleavage of eIF4G-1. Previously, we developed a cleavage site variant of eIF4G-1, termed eIF4G-1(SM), that was 100-fold more resistant to in vitro cleavage by Coxsackievirus 2A protease (2A(Pro)) than wild-type eIF4G-1 (eIF4G-1(WT)), but it was still digested at high protease concentrations. Here we identified a secondary cleavage site upstream of the primary site. We changed Gly at the P1'-position of the secondary site to Ala to produce eIF4G-1(DM). eIF4G-1(DM) was 1,000-10,000-fold more resistant to cleavage in vitro than eIF4G-1(WT). Full functional activity of eIF4G-1(DM) was demonstrated in vitro by its ability to restore cap-dependent translation to a 2A(Pro)-pretreated rabbit reticulocyte system. An isoform containing the binding site for poly(A)-binding protein, eIF4G-1e(DM), was more active in this assay than an isoform lacking it, eIF4G-1a(DM), but only with polyadenylated mRNA. Functional activity was also demonstrated in vivo with stably transfected HeLa cells expressing eIF4G-1(DM) from a tetracycline-regulated promoter. Cap-dependent green fluorescent protein synthesis was drastically inhibited by 2A(Pro) expression, but synthesis was almost fully restored by induction of either eIF4G-1a(DM) or eIF4G-1e(DM). By contrast, encephalomyocarditis virus internal ribosome entry site-dependent green fluorescent protein synthesis was stimulated by 2A(Pro); stimulation was suppressed by eIF4G-1e(DM) but not eIF4G-1a(DM).
Collapse
Affiliation(s)
- Xiaohong Zhao
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, Louisiana 71130-3932, USA
| | | | | | | | | |
Collapse
|
31
|
Morley SJ, Naegele S. Phosphorylation of eukaryotic initiation factor (eIF) 4E is not required for de novo protein synthesis following recovery from hypertonic stress in human kidney cells. J Biol Chem 2002; 277:32855-9. [PMID: 12138083 DOI: 10.1074/jbc.c200376200] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Previous work has suggested that increased phosphorylation of eukaryotic initiation factor (eIF) 4E at Ser-209 in the C-terminal loop of the protein often correlates with increased translation rates. However, the functional consequences of phosphorylation have remained contentious with our understanding of the role of eIF4E phosphorylation in translational control far from complete. To investigate the role for eIF4E phosphorylation in de novo translation, we studied the recovery of human kidney cells from hypertonic stress. Results show that hypertonic shock caused a rapid inhibition of protein synthesis and the disaggregation of polysomes. These changes were associated with the dephosphorylation of eIF4G, eIF4E, 4E-binding protein 1 (4E-BP1), and ribosomal protein S6. In addition, decreased levels of the eIF4F complex and increased association of 4E-BP1 with eIF4E were observed over a similar time course. The return of cells to isotonic medium rapidly promoted the phosphorylation of these initiation factors, increased levels of eIF4F complexes, promoted polysome assembly, and increased rates of translation. However, by using a cell-permeable, specific inhibitor of eIF4E kinase, Mnk1 (CGP57380), we show that de novo initiation of translation and eIF4F complex assembly during this recovery phase did not require eIF4E phosphorylation.
Collapse
Affiliation(s)
- Simon J Morley
- Biochemistry Laboratory, School of Biological Sciences, University of Sussex, Falmer, Brighton BN1 9QG, United Kingdom.
| | | |
Collapse
|
32
|
Rubin CM, Kimura RH, Schmid CW. Selective stimulation of translational expression by Alu RNA. Nucleic Acids Res 2002; 30:3253-61. [PMID: 12136107 PMCID: PMC135740 DOI: 10.1093/nar/gkf419] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Human Alu and adenovirus VA1 RNAs each stimulate the translational expression of reporter genes in co-transient transfection assays without affecting either the rate of global protein synthesis or the abundance of the reporter mRNA. This selective, post-transcriptional stimulation of expression, which is observed in human and mouse cell lines and for three reporters, acts through a PKR- independent mechanism. The activity of Alu and VA1 RNAs in this assay is transient, causing a reduction in the lag time for the translational expression of the newly synthesized reporter mRNAs. The reduction in this lag time accounts for the relative selectivity of the effect upon the expression of the reporter and suggests novel roles for Alu and VA1 RNA in cell stress recovery and viral infection. Deletion analysis demonstrates that a specific region residing within the right monomer of the dimeric Alu consensus sequence is necessary for activity. Highly abundant left Alu monomer transcripts are inactive but the right Alu monomer is fully active, although its transcripts are scarce. Mouse B1 and B2 SINE RNAs stimulate reporter gene expression in mouse cells, suggesting that this activity is a general property of eucaryotic SINEs.
Collapse
Affiliation(s)
- Carol M Rubin
- Section of Molecular and Cellular Biology, University of California-Davis, Davis, CA 95616, USA
| | | | | |
Collapse
|
33
|
Patel J, McLeod LE, Vries RGJ, Flynn A, Wang X, Proud CG. Cellular stresses profoundly inhibit protein synthesis and modulate the states of phosphorylation of multiple translation factors. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:3076-85. [PMID: 12071973 DOI: 10.1046/j.1432-1033.2002.02992.x] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have examined the effects of widely used stress-inducing agents on protein synthesis and on regulatory components of the translational machinery. The three stresses chosen, arsenite, hydrogen peroxide and sorbitol, exert their effects in quite different ways. Nonetheless, all three rapidly ( approximately 30 min) caused a profound inhibition of protein synthesis. In each case this was accompanied by dephosphorylation of the eukaryotic initiation factor (eIF) 4E-binding protein 1 (4E-BP1) and increased binding of this repressor protein to eIF4E. Binding of 4E-BP1 to eIF4E correlated with loss of eIF4F complexes. Sorbitol and hydrogen peroxide each caused inhibition of the 70-kDa ribosomal protein S6 kinase, while arsenite activated it. The effects of stresses on the phosphorylation of eukaryotic elongation factor 2 also differed: oxidative stress elicited a marked increase in eEF2 phosphorylation, which is expected to contribute to inhibition of translation, while the other stresses did not have this effect. Although all three proteins (4E-BP1, p70 S6 kinase and eEF2) can be regulated through the mammalian target of rapamycin (mTOR), our data imply that stresses do not interfere with mTOR function but act in different ways on these three proteins. All three stresses activate the p38 MAP kinase pathway but we were able to exclude a role for this in their effects on 4E-BP1. Our data reveal that these stress-inducing agents, which are widely used to study stress-signalling in mammalian cells, exert multiple and complex inhibitory effects on the translational machinery.
Collapse
Affiliation(s)
- Jashmin Patel
- Department of Biosciences, University of Kent at Canterbury, Canterbury, UK
| | | | | | | | | | | |
Collapse
|
34
|
Scheper GC, van Kollenburg B, Hu J, Luo Y, Goss DJ, Proud CG. Phosphorylation of eukaryotic initiation factor 4E markedly reduces its affinity for capped mRNA. J Biol Chem 2002; 277:3303-9. [PMID: 11723111 DOI: 10.1074/jbc.m103607200] [Citation(s) in RCA: 210] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In eukaryotes, a key step in the initiation of translation is the binding of the eukaryotic initiation factor 4E (eIF4E) to the cap structure of the mRNA. Subsequent recruitment of several components, including the small ribosomal subunit, is thought to allow migration of initiation complexes and recognition of the initiation codon. Mitogens and cytokines stimulate the phosphorylation of eIF4E at Ser(209), but the functional consequences of this modification have remained a major unresolved question. Using fluorescence spectroscopy and surface plasmon resonance techniques, we show that phosphorylation of eIF4E markedly reduces its affinity for capped RNA, primarily due to an increased rate of dissociation. Variant eIF4E proteins harboring negatively charged acidic residues at position 209 also showed decreased binding to capped RNA. Furthermore, a basic residue at position 159 was shown to be essential for cap binding. Although eIF4E-binding protein 1 greatly stabilized binding of phosphorylated eIF4E to capped RNA, in the presence of eIF4E-binding protein 1 the phosphorylated form still dissociated faster compared with nonphopshorylated eIF4E. The implications of our findings for the mechanism of translation initiation are discussed.
Collapse
Affiliation(s)
- Gert C Scheper
- School of Life Sciences, MSI/WTB Complex, University of Dundee, Dundee DD1 5EH, United Kingdom.
| | | | | | | | | | | |
Collapse
|
35
|
Neznanov N, Kondratova A, Chumakov KM, Angres B, Zhumabayeva B, Agol VI, Gudkov AV. Poliovirus protein 3A inhibits tumor necrosis factor (TNF)-induced apoptosis by eliminating the TNF receptor from the cell surface. J Virol 2001; 75:10409-20. [PMID: 11581409 PMCID: PMC114615 DOI: 10.1128/jvi.75.21.10409-10420.2001] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Viral infections often trigger host defensive reactions by activating intrinsic (intracellular) and extrinsic (receptor-mediated) apoptotic pathways. Poliovirus is known to encode an antiapoptotic function(s) suppressing the intrinsic pathway. Here, the effect of poliovirus nonstructural proteins on cell sensitivity to tumor necrosis factor (TNF)-induced (i.e., receptor-mediated) apoptosis was studied. This sensitivity is dramatically enhanced by the viral proteinase 2A, due, most likely, to inhibition of cellular translation. On the other hand, cells expressing poliovirus noncapsid proteins 3A and 2B exhibit strong TNF resistance. Expression of 3A neutralizes the proapoptotic activity of 2A and results in a specific suppression of TNF signaling, including the lack of activation of NF-kappaB, due to elimination of the TNF receptor from the cell surface. In agreement with this, poliovirus infection results in a dramatic decrease in TNF receptor abundance on the surfaces of infected cells as early as 4 h postinfection. Poliovirus proteins that confer resistance to TNF interfere with endoplasmic reticulum-Golgi protein trafficking, and their effect on TNF signaling can be imitated by brefeldin A, suggesting that the mechanism of poliovirus-mediated resistance to TNF is a result of aberrant TNF receptor trafficking.
Collapse
Affiliation(s)
- N Neznanov
- Department of Molecular Genetics, University of Illinois at Chicago, Chicago, Illinois 60607, USA.
| | | | | | | | | | | | | |
Collapse
|
36
|
Tee AR, Proud CG. Staurosporine inhibits phosphorylation of translational regulators linked to mTOR. Cell Death Differ 2001; 8:841-9. [PMID: 11526437 DOI: 10.1038/sj.cdd.4400876] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2000] [Revised: 02/16/2001] [Accepted: 03/08/2001] [Indexed: 11/08/2022] Open
Abstract
Treatment of Swiss 3T3 cells with staurosporine resulted in dephosphorylation of two proteins which play key roles in regulating mRNA translation. This occurred before the execution of apoptosis, assessed by caspase-3 activity. These translation regulators are p70 S6 kinase, which phosphorylates ribosomal protein S6, and eukaryotic initiation factor (eIF) 4E binding protein 1 (4E-BP1), which both lie downstream of the mammalian target of rapamycin (mTOR). This resulted in decreased p70 S6 kinase activity, dephosphorylation of ribosomal protein S6, increased binding of 4E-BP1 to eIF4E and a concomitant decrease in eIF4F complexes. Our data show that staurosporine impairs mTOR signalling in vivo but that this not due to direct inhibition of mTOR or to inhibition of protein kinase C. It is becoming clear that agents which cause apoptosis inactivate mTOR signalling as a common early response prior to the execution of apoptosis, i.e., before caspase activation.
Collapse
Affiliation(s)
- A R Tee
- School of Life Sciences, Medical Sciences Institute/Wellcome Trust Building Complex, University of Dundee, Dow Street, Dundee, DD1 5EH, UK.
| | | |
Collapse
|
37
|
Abstract
Several mechanisms have been identified by which protein synthesis may be regulated during the response of mammalian cells to physiological stresses and conditions that induce apoptotic cell death (reviewed in Clemens et al., Cell Death and Differentiation 7, 603-615, 2000). Recent developments allow us to up-date this analysis and in this article I concentrate on one particular aspect of this regulation that has not previously been reviewed in depth in relation to apoptosis, viz. the control of the initiation of protein synthesis by eukaryotic initiation factor eIF4E and the eIF4E binding proteins (4E-BPs). Changes in the state of phosphorylation of the 4E-BPs and in the extent of their association with eIF4E occur at an early stage in the response of cells to apoptotic inducers. The review discusses the mechanisms by which these events are regulated and the significance of the changes for the control of protein synthesis, cell proliferation and cell survival.
Collapse
Affiliation(s)
- M J Clemens
- Department of Biochemistry and Immunology, Cellular and Molecular Sciences Group, St George's Hospital Medical School, Cranmer Terrace, London SW17 0RE, UK.
| |
Collapse
|
38
|
de Moor CH, Richter JD. Translational control in vertebrate development. INTERNATIONAL REVIEW OF CYTOLOGY 2001; 203:567-608. [PMID: 11131527 DOI: 10.1016/s0074-7696(01)03017-0] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Translational control plays a large role in vertebrate oocyte maturation and contributes to the induction of the germ layers. Translational regulation is also observed in the regulation of cell proliferation and differentiation. The features of an mRNA that mediate translational control are found both in the 5' and in the 3' untranslated regions (UTRs). In the 5' UTR, secondary structure, the binding of proteins, and the presence of upstream open reading frames can interfere with the association of initiation factors with the cap, or with scanning of the initiation complex. The 3' UTR can mediate translational activation by directing cytoplasmic polyadenylation and can confer translational repression by interference with the assembly of initiation complexes. Besides mRNA-specific translational control elements, the nonspecific RNA-binding proteins contribute to the modulation of translation in development. This review discusses examples of translational control and their relevance for developmental regulation.
Collapse
Affiliation(s)
- C H de Moor
- Department of Molecular Genetics and Microbiology, University of Massachusetts Medical School, Worcester 01655, USA
| | | |
Collapse
|
39
|
Affiliation(s)
- M Kozak
- Department of Biochemistry, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, Piscataway, New Jersey 08854, USA.
| |
Collapse
|
40
|
Scheper GC, Van Wijk R, Thomas AAM. Regulation of the Activity of Eukaryotic Initiation Factors in Stressed Cells. SIGNALING PATHWAYS FOR TRANSLATION 2001. [DOI: 10.1007/978-3-662-09889-9_2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|
41
|
Abstract
Many viruses interfere with host cell function in ways that are harmful or pathological. This often results in changes in cell morphology referred to as cytopathic effects. However, pathogenesis of virus infections also involves inhibition of host cell gene expression. Thus the term "cytopathogenesis," or pathogenesis at the cellular level, is meant to be broader than the term "cytopathic effects" and includes other cellular changes that contribute to viral pathogenesis in addition to those changes that are visible at the microscopic level. The goal of this review is to place recent work on the inhibition of host gene expression by RNA viruses in the context of the pathogenesis of virus infections. Three different RNA virus families, picornaviruses, influenza viruses, and rhabdoviruses, are used to illustrate common principles involved in cytopathogenesis. These examples were chosen because viral gene products responsible for inhibiting host gene expression have been identified, as have some of the molecular targets of the host. The argument is made that the role of the virus-induced inhibition of host gene expression is to inhibit the host antiviral response, such as the response to double-stranded RNA. Viral cytopathogenesis is presented as a balance between the host antiviral response and the ability of viruses to inhibit that response through the overall inhibition of host gene expression. This balance is a major determinant of viral tissue tropism in infections of intact animals.
Collapse
Affiliation(s)
- D S Lyles
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157-1064, USA.
| |
Collapse
|
42
|
Thompson SR, Sarnow P. Regulation of host cell translation by viruses and effects on cell function. Curr Opin Microbiol 2000; 3:366-70. [PMID: 10972496 DOI: 10.1016/s1369-5274(00)00106-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Viruses have evolved a remarkable variety of strategies to modulate the host cell translation apparatus with the aim of optimizing viral mRNA translation and replication. Recent studies have revealed that modulation of both host and viral mRNA translation can be accomplished by selective alteration of translation factors in virus-infected cells. These findings provide new insights into the functioning of the translational apparatus in both uninfected and infected cells.
Collapse
Affiliation(s)
- S R Thompson
- Department of Microbiology and Immunology, Stanford University School of Medicine, CA 94305, USA.
| | | |
Collapse
|
43
|
Barco A, Feduchi E, Carrasco L. A stable HeLa cell line that inducibly expresses poliovirus 2A(pro): effects on cellular and viral gene expression. J Virol 2000; 74:2383-92. [PMID: 10666269 PMCID: PMC111720 DOI: 10.1128/jvi.74.5.2383-2392.2000] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A HeLa cell clone (2A7d) that inducibly expresses the gene for poliovirus protease 2A (2A(pro)) under the control of tetracycline has been obtained. Synthesis of 2A(pro) induces severe morphological changes in 2A7d cells. One day after tetracycline removal, cells round up and a few hours later die. Poliovirus 2A(pro) cleaves both forms of initiation factor eIF4G, causing extensive inhibition of capped-mRNA translation a few hours after protease induction. Methoxysuccinyl-Ala-Ala-Pro-Val-chloromethylketone, a selective inhibitor of 2A(pro), prevents both eIF4G cleavage and inhibition of translation but not cellular death. Expression of 2A(pro) still allows both the replication of poliovirus and the translation of mRNAs containing a picornavirus leader sequence, while vaccinia virus replication is drastically inhibited. Translation of transfected capped mRNA is blocked in 2A7d-On cells, while luciferase synthesis from a mRNA bearing a picornavirus internal ribosome entry site (IRES) sequence is enhanced by the presence of 2A(pro). Moreover, synthesis of 2A(pro) in 2A7d cells complements the translational defect of a poliovirus 2A(pro)-defective variant. These results show that poliovirus 2A(pro) expression mimics some phenotypical characteristics of poliovirus-infected cells, such as cell rounding, inhibition of protein synthesis and enhancement of IRES-driven translation. This cell line constitutes a useful tool to further analyze 2A(pro) functions, to complement poliovirus 2A(pro) mutants, and to test antiviral compounds.
Collapse
Affiliation(s)
- A Barco
- Centro de Biología Molecular, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | | | | |
Collapse
|
44
|
Preiss T, Hentze MW. From factors to mechanisms: translation and translational control in eukaryotes. Curr Opin Genet Dev 1999; 9:515-21. [PMID: 10508691 DOI: 10.1016/s0959-437x(99)00005-2] [Citation(s) in RCA: 102] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Biochemical and genetic studies are revealing a network of interactions between eukaryotic translation initiation factors, further refining or redefining perceptions of their function. The notion of translated mRNA as a 'closed-loop' has gained support from the identification of physical and functional interactions between the two mRNA ends and their associated factors. Translational control mechanisms are beginning to unravel in sufficient detail to pinpoint the affected step in the initiation pathway.
Collapse
Affiliation(s)
- T Preiss
- Gene Expression Programme European Molecular Biology Laboratory Meyerhofstrasse 1, D-69117, Heidelberg, Germany.
| | | |
Collapse
|
45
|
Abstract
The mechanisms whereby ribosomes engage a messenger RNA and select the start site for translation differ between prokaryotes and eukaryotes. Initiation sites in polycistronic prokaryotic mRNAs are usually selected via base pairing with ribosomal RNA. That straightforward mechanism is made complicated and interesting by cis- and trans-acting elements employed to regulate translation. Initiation sites in eukaryotic mRNAs are reached via a scanning mechanism which predicts that translation should start at the AUG codon nearest the 5' end of the mRNA. Interest has focused on mechanisms that occasionally allow escape from this first-AUG rule. With natural mRNAs, three escape mechanisms - context-dependent leaky scanning, reinitiation, and possibly direct internal initiation - allow access to AUG codons which, although not first, are still close to the 5' end of the mRNA. This constraint on the initiation step of translation in eukaryotes dictates the location of transcriptional promoters and may have contributed to the evolution of splicing.The binding of Met-tRNA to ribosomes is mediated by a GTP-binding protein in both prokaryotes and eukaryotes, but the more complex structure of the eukaryotic factor (eIF-2) and its association with other proteins underlie some aspects of initiation unique to eukaryotes. Modulation of GTP hydrolysis by eIF-2 is important during the scanning phase of initiation, while modulating the release of GDP from eIF-2 is a key mechanism for regulating translation in eukaryotes. Our understanding of how some other protein factors participate in the initiation phase of translation is in flux. Genetic tests suggest that some proteins conventionally counted as eukaryotic initiation factors may not be required for translation, while other tests have uncovered interesting new candidates. Some popular ideas about the initiation pathway are predicated on static interactions between isolated factors and mRNA. The need for functional testing of these complexes is discussed. Interspersed with these theoretical topics are some practical points concerning the interpretation of cDNA sequences and the use of in vitro translation systems. Some human diseases resulting from defects in the initiation step of translation are also discussed.
Collapse
Affiliation(s)
- M Kozak
- Department of Biochemistry, University of Medicine and Dentistry of New Jersey, 675 Hoes Lane, Piscataway, NJ 08854, USA
| |
Collapse
|