1
|
Shaukat A, Bakhtiari MH, Chaudhry DS, Khan MHF, Akhtar J, Abro AH, Haseeb MA, Sarwar A, Mazhar K, Umer Z, Tariq M. Mask exhibits trxG-like behavior and associates with H3K27ac marked chromatin. Dev Biol 2024; 505:130-140. [PMID: 37981061 DOI: 10.1016/j.ydbio.2023.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/28/2023] [Accepted: 11/13/2023] [Indexed: 11/21/2023]
Abstract
The Trithorax group (trxG) proteins counteract the repressive effect of Polycomb group (PcG) complexes and maintain transcriptional memory of active states of key developmental genes. Although chromatin structure and modifications appear to play a fundamental role in this process, it is not clear how trxG prevents PcG-silencing and heritably maintains an active gene expression state. Here, we report a hitherto unknown role of Drosophila Multiple ankyrin repeats single KH domain (Mask), which emerged as one of the candidate trxG genes in our reverse genetic screen. The genome-wide binding profile of Mask correlates with known trxG binding sites across the Drosophila genome. In particular, the association of Mask at chromatin overlaps with CBP and H3K27ac, which are known hallmarks of actively transcribed genes by trxG. Importantly, Mask predominantly associates with actively transcribed genes in Drosophila. Depletion of Mask not only results in the downregulation of trxG targets but also correlates with diminished levels of H3K27ac. The fact that Mask positively regulates H3K27ac levels in flies was also found to be conserved in human cells. Strong suppression of Pc mutant phenotype by mutation in mask provides physiological relevance that Mask contributes to the anti-silencing effect of trxG, maintaining expression of key developmental genes. Since Mask is a downstream effector of multiple cell signaling pathways, we propose that Mask may connect cell signaling with chromatin mediated epigenetic cell memory governed by trxG.
Collapse
Affiliation(s)
- Ammad Shaukat
- Epigenetics and Gene Regulation Laboratory, Department of Life Sciences, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, 54792, Pakistan
| | - Mahnoor Hussain Bakhtiari
- Epigenetics and Gene Regulation Laboratory, Department of Life Sciences, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, 54792, Pakistan
| | - Daim Shiraz Chaudhry
- Epigenetics and Gene Regulation Laboratory, Department of Life Sciences, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, 54792, Pakistan
| | - Muhammad Haider Farooq Khan
- Epigenetics and Gene Regulation Laboratory, Department of Life Sciences, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, 54792, Pakistan
| | - Jawad Akhtar
- Epigenetics and Gene Regulation Laboratory, Department of Life Sciences, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, 54792, Pakistan
| | - Ahmed Hassan Abro
- Epigenetics and Gene Regulation Laboratory, Department of Life Sciences, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, 54792, Pakistan
| | - Muhammad Abdul Haseeb
- Epigenetics and Gene Regulation Laboratory, Department of Life Sciences, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, 54792, Pakistan
| | - Aaminah Sarwar
- Epigenetics and Gene Regulation Laboratory, Department of Life Sciences, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, 54792, Pakistan
| | - Khalida Mazhar
- Epigenetics and Gene Regulation Laboratory, Department of Life Sciences, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, 54792, Pakistan
| | - Zain Umer
- Epigenetics and Gene Regulation Laboratory, Department of Life Sciences, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, 54792, Pakistan
| | - Muhammad Tariq
- Epigenetics and Gene Regulation Laboratory, Department of Life Sciences, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, 54792, Pakistan.
| |
Collapse
|
2
|
Yu Y, Wang S, Wang Z, Gao R, Lee J. Arabidopsis thaliana: a powerful model organism to explore histone modifications and their upstream regulations. Epigenetics 2023; 18:2211362. [PMID: 37196184 DOI: 10.1080/15592294.2023.2211362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 04/07/2023] [Accepted: 04/28/2023] [Indexed: 05/19/2023] Open
Abstract
Histones are subjected to extensive covalent modifications that affect inter-nucleosomal interactions as well as alter chromatin structure and DNA accessibility. Through switching the corresponding histone modifications, the level of transcription and diverse downstream biological processes can be regulated. Although animal systems are widely used in studying histone modifications, the signalling processes that occur outside the nucleus prior to histone modifications have not been well understood due to the limitations including non viable mutants, partial lethality, and infertility of survivors. Here, we review the benefits of using Arabidopsis thaliana as the model organism to study histone modifications and their upstream regulations. Similarities among histones and key histone modifiers such as the Polycomb group (PcG) and Trithorax group (TrxG) in Drosophila, Human, and Arabidopsis are examined. Furthermore, prolonged cold-induced vernalization system has been well-studied and revealed the relationship between the controllable environment input (duration of vernalization), its chromatin modifications of FLOWERING LOCUS C (FLC), following gene expression, and the corresponding phenotypes. Such evidence suggests that research on Arabidopsis can bring insights into incomplete signalling pathways outside of the histone box, which can be achieved through viable reverse genetic screenings based on the phenotypes instead of direct monitoring of histone modifications among individual mutants. The potential upstream regulators in Arabidopsis can provide cues or directions for animal research based on the similarities between them.
Collapse
Affiliation(s)
- Yang Yu
- Division of Natural and Applied Sciences, Duke Kunshan University, Kunshan, Jiangsu, China
| | - Sihan Wang
- Division of Natural and Applied Sciences, Duke Kunshan University, Kunshan, Jiangsu, China
| | - Ziqin Wang
- Division of Natural and Applied Sciences, Duke Kunshan University, Kunshan, Jiangsu, China
| | - Renwei Gao
- Division of Natural and Applied Sciences, Duke Kunshan University, Kunshan, Jiangsu, China
| | - Joohyun Lee
- Division of Natural and Applied Sciences, Duke Kunshan University, Kunshan, Jiangsu, China
| |
Collapse
|
3
|
Cheng Q, Xie H, Zhang X, Wang M, Bi C, Wang Q, Wang R, Fang M. An essential role for
PTIP
in mediating Hox gene regulation along
PcG
and
trxG
pathways. FEBS J 2022; 289:6324-6341. [DOI: 10.1111/febs.16541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/19/2022] [Accepted: 05/31/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Qian Cheng
- School of Life Science and Technology, MOE Key Laboratory of Developmental Genes and Human Diseases Southeast University Nanjing China
| | - Hao Xie
- School of Life Science and Technology, MOE Key Laboratory of Developmental Genes and Human Diseases Southeast University Nanjing China
| | - Xiao‐Yan Zhang
- Department of Genetic Medicine Johns Hopkins University School of Medicine Baltimore MD USA
| | - Ming‐Ying Wang
- School of Life Science and Technology, MOE Key Laboratory of Developmental Genes and Human Diseases Southeast University Nanjing China
| | - Cai‐Li Bi
- School of Life Science and Technology, MOE Key Laboratory of Developmental Genes and Human Diseases Southeast University Nanjing China
- Institute of Translational Medicine, Medical College Yangzhou University China
| | - Qiang Wang
- School of Life Science and Technology, MOE Key Laboratory of Developmental Genes and Human Diseases Southeast University Nanjing China
| | - Rui Wang
- School of Life Science and Technology, MOE Key Laboratory of Developmental Genes and Human Diseases Southeast University Nanjing China
| | - Ming Fang
- School of Life Science and Technology, MOE Key Laboratory of Developmental Genes and Human Diseases Southeast University Nanjing China
| |
Collapse
|
4
|
Bredesen BA, Rehmsmeier M. DNA sequence models of genome-wide Drosophila melanogaster Polycomb binding sites improve generalization to independent Polycomb Response Elements. Nucleic Acids Res 2019; 47:7781-7797. [PMID: 31340029 PMCID: PMC6735708 DOI: 10.1093/nar/gkz617] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 07/01/2019] [Accepted: 07/11/2019] [Indexed: 12/12/2022] Open
Abstract
Polycomb Response Elements (PREs) are cis-regulatory DNA elements that maintain gene transcription states through DNA replication and mitosis. PREs have little sequence similarity, but are enriched in a number of sequence motifs. Previous methods for modelling Drosophila melanogaster PRE sequences (PREdictor and EpiPredictor) have used a set of 7 motifs and a training set of 12 PREs and 16-23 non-PREs. Advances in experimental methods for mapping chromatin binding factors and modifications has led to the publication of several genome-wide sets of Polycomb targets. In addition to the seven motifs previously used, PREs are enriched in the GTGT motif, recently associated with the sequence-specific DNA binding protein Combgap. We investigated whether models trained on genome-wide Polycomb sites generalize to independent PREs when trained with control sequences generated by naive PRE models and including the GTGT motif. We also developed a new PRE predictor: SVM-MOCCA. Training PRE predictors with genome-wide experimental data improves generalization to independent data, and SVM-MOCCA predicts the majority of PREs in three independent experimental sets. We present 2908 candidate PREs enriched in sequence and chromatin signatures. 2412 of these are also enriched in H3K4me1, a mark of Trithorax activated chromatin, suggesting that PREs/TREs have a common sequence code.
Collapse
Affiliation(s)
- Bjørn André Bredesen
- Computational Biology Unit, Department of Informatics, University of Bergen, P.O. Box 7803, N-5020 Bergen, Norway
| | - Marc Rehmsmeier
- Computational Biology Unit, Department of Informatics, University of Bergen, P.O. Box 7803, N-5020 Bergen, Norway.,Integrated Research Institute (IRI) for the Life Sciences and Department of Biology, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany
| |
Collapse
|
5
|
Umer Z, Akhtar J, Khan MHF, Shaheen N, Haseeb MA, Mazhar K, Mithani A, Anwar S, Tariq M. Genome-wide RNAi screen in Drosophila reveals Enok as a novel trithorax group regulator. Epigenetics Chromatin 2019; 12:55. [PMID: 31547845 PMCID: PMC6757429 DOI: 10.1186/s13072-019-0301-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 09/03/2019] [Indexed: 12/17/2022] Open
Abstract
Background Polycomb group (PcG) and trithorax group (trxG) proteins contribute to the specialization of cell types by maintaining differential gene expression patterns. Initially discovered as positive regulators of HOX genes in forward genetic screens, trxG counteracts PcG-mediated repression of cell type-specific genes. Despite decades of extensive analysis, molecular understanding of trxG action and regulation are still punctuated by many unknowns. This study aimed at discovering novel factors that elicit an anti-silencing effect to facilitate trxG-mediated gene activation. Results We have developed a cell-based reporter system and performed a genome-wide RNAi screen to discover novel factors involved in trxG-mediated gene regulation in Drosophila. We identified more than 200 genes affecting the reporter in a manner similar to trxG genes. From the list of top candidates, we have characterized Enoki mushroom (Enok), a known histone acetyltransferase, as an important regulator of trxG in Drosophila. Mutants of enok strongly suppressed extra sex comb phenotype of Pc mutants and enhanced homeotic transformations associated with trx mutations. Enok colocalizes with both TRX and PC at chromatin. Moreover, depletion of Enok specifically resulted in an increased enrichment of PC and consequently silencing of trxG targets. This downregulation of trxG targets was also accompanied by a decreased occupancy of RNA-Pol-II in the gene body, correlating with an increased stalling at the transcription start sites of these genes. We propose that Enok facilitates trxG-mediated maintenance of gene activation by specifically counteracting PcG-mediated repression. Conclusion Our ex vivo approach led to identification of new trxG candidate genes that warrant further investigation. Presence of chromatin modifiers as well as known members of trxG and their interactors in the genome-wide RNAi screen validated our reverse genetics approach. Genetic and molecular characterization of Enok revealed a hitherto unknown interplay between Enok and PcG/trxG system. We conclude that histone acetylation by Enok positively impacts the maintenance of trxG-regulated gene activation by inhibiting PRC1-mediated transcriptional repression.
Collapse
Affiliation(s)
- Zain Umer
- Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, 54792, Pakistan
| | - Jawad Akhtar
- Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, 54792, Pakistan
| | - Muhammad Haider Farooq Khan
- Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, 54792, Pakistan
| | - Najma Shaheen
- Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, 54792, Pakistan
| | - Muhammad Abdul Haseeb
- Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, 54792, Pakistan
| | - Khalida Mazhar
- Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, 54792, Pakistan
| | - Aziz Mithani
- Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, 54792, Pakistan
| | - Saima Anwar
- Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, 54792, Pakistan.,Biomedical Engineering Centre, University of Engineering and Technology Lahore, KSK Campus, Lahore, Pakistan
| | - Muhammad Tariq
- Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, 54792, Pakistan.
| |
Collapse
|
6
|
Burlin AI, Tillib SV. Differentially Expressed Long Noncoding RNAs in the Promoter Region of the fork head Gene in Drosophila melanogaster Detected by Northern Blot Hybridization. Mol Biol 2019. [DOI: 10.1134/s0026893319030038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
7
|
Kassis JA, Kennison JA, Tamkun JW. Polycomb and Trithorax Group Genes in Drosophila. Genetics 2017; 206:1699-1725. [PMID: 28778878 PMCID: PMC5560782 DOI: 10.1534/genetics.115.185116] [Citation(s) in RCA: 148] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 05/15/2017] [Indexed: 01/08/2023] Open
Abstract
Polycomb group (PcG) and Trithorax group (TrxG) genes encode important regulators of development and differentiation in metazoans. These two groups of genes were discovered in Drosophila by their opposing effects on homeotic gene (Hox) expression. PcG genes collectively behave as genetic repressors of Hox genes, while the TrxG genes are necessary for HOX gene expression or function. Biochemical studies showed that many PcG proteins are present in two protein complexes, Polycomb repressive complexes 1 and 2, which repress transcription via chromatin modifications. TrxG proteins activate transcription via a variety of mechanisms. Here we summarize the large body of genetic and biochemical experiments in Drosophila on these two important groups of genes.
Collapse
Affiliation(s)
- Judith A Kassis
- Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | - James A Kennison
- Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | - John W Tamkun
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, California 95064
| |
Collapse
|
8
|
Morimoto M, Choi K, Boerkoel CF, Cho KS. Chromatin changes in SMARCAL1 deficiency: A hypothesis for the gene expression alterations of Schimke immuno-osseous dysplasia. Nucleus 2017; 7:560-571. [PMID: 27813696 DOI: 10.1080/19491034.2016.1255835] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Mutations in SMARCAL1, which encodes a DNA annealing helicase with roles in DNA replication fork restart, DNA repair, and gene expression modulation, cause Schimke immuno-osseous dysplasia (SIOD), an autosomal recessive disease characterized by skeletal dysplasia, renal disease, T-cell immunodeficiency, and arteriosclerosis. The clinical features of SIOD arise from pathological changes in gene expression; however, the underlying mechanism for these gene expression alterations remains unclear. We hypothesized that changes of the epigenome alter gene expression in SIOD. To test this, we performed a genetic screen for interaction between Marcal1, the Drosophila melanogaster ortholog of SMARCAL1, and the genes of the trithorax group (trxG) and Polycomb group (PcG), which encode epigenetic regulators. SMARCAL1 and Marcal1 genetically interacted with trxG and PcG members. A homozygous null mutation of Marcal1 suppressed the wing-to-haltere transformation, ectopic Ultrabithorax (Ubx) expression, and ectopic Ubx minigene expression caused by PcG deficiency. The suppression of ectopic Ubx expression correlated with reduced chromatin accessibility of the Ubx promoter. To our knowledge, this is the first in vivo evidence for deficiency of a SMARCAL1 ortholog altering the chromatin structure of a gene.
Collapse
Affiliation(s)
- Marie Morimoto
- a Department of Medical Genetics , University of British Columbia , Vancouver , BC , Canada
| | - Kunho Choi
- a Department of Medical Genetics , University of British Columbia , Vancouver , BC , Canada
| | - Cornelius F Boerkoel
- a Department of Medical Genetics , University of British Columbia , Vancouver , BC , Canada
| | - Kyoung Sang Cho
- b Department of Biological Sciences , Konkuk University , Seoul , Republic of Korea
| |
Collapse
|
9
|
Maini J, Ghasemi M, Yandhuri D, Thakur SS, Brahmachari V. Human PRE-PIK3C2B, an intronic cis-element with dual function of activation and repression. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1860:196-204. [PMID: 27932267 DOI: 10.1016/j.bbagrm.2016.12.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 10/28/2016] [Accepted: 12/02/2016] [Indexed: 02/01/2023]
Abstract
The Polycomb/Trithorax Responsive Elements (PRE/TREs) are the cis-regulatory sequences that interact with both repressive (PcG) as well as activating (TrxG) complexes. However, most of the mammalian PREs are demonstrated to interact with the repressive polycomb (PcG) complexes only. We have carried out an unbiased search for proteins interacting with human PRE-PIK3C2B (hPRE-PIK3C2B) based on DNA affinity purification followed by mass spectrometry and identified MLL, MLL4 and WDR87 among other proteins in three biological replicates in HEK, U87 and HeLa cell lines. The hPRE-PIK3C2B interacts with the members of multiple activating complexes (COMPASS-like). The increase in the interaction of MLL and MLL4 on depletion of YY1 and the increase in the enrichment of YY1 and EZH2 upon MLL knockdown at the hPRE-PIK3C2B indicate the dual occupancy and suggest a concentration dependent enrichment of the activator or the repressor complex at hPRE-PIK3C2B. Further, we show that the hPRE-PIK3C2B interacts with the Drosophila homologues of PcG and TrxG proteins in transgenic flies. Here, we found that there is an increased enrichment of Pc (Polycomb) in comparison to Trx (TrxG protein) at hPRE-PIK3C2B in the Drosophila transgenic flies and this seems to be the default state while the balance is tipped towards the trithorax complex in PcG mutants. To the best of our knowledge, this is one of the early demonstrations of human PRE acting as a TRE without any sequence alteration.
Collapse
Affiliation(s)
- Jayant Maini
- Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi 110007, India
| | - Mohsen Ghasemi
- Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi 110007, India
| | - Deepti Yandhuri
- CSIR-Centre for Cellular & Molecular Biology, Uppal Road, Habsiguda, Hyderabad 500007, India
| | - Suman S Thakur
- CSIR-Centre for Cellular & Molecular Biology, Uppal Road, Habsiguda, Hyderabad 500007, India
| | - Vani Brahmachari
- Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi 110007, India.
| |
Collapse
|
10
|
McCracken A, Locke J. Mutations in ash1 and trx enhance P-element-dependent silencing in Drosophila melanogaster. Genome 2016; 59:527-40. [PMID: 27373142 DOI: 10.1139/gen-2014-0127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In Drosophila melanogaster, the mini-w(+) transgene in Pci is normally expressed throughout the adult eye; however, when other P or KP elements are present, a variegated-eye phenotype results, indicating random w(+) silencing during development called P-element-dependent silencing (PDS). Mutant Su(var)205 and Su(var)3-7 alleles act as haplo-suppressors/triplo-enhancers of this variegated phenotype, indicating that these heterochromatic modifiers act dose dependently in PDS. Previously, we recovered a spontaneous mutation of P{lacW}ci(Dplac) called P{lacW}ci(DplacE1) (E1) that variegated in the absence of P elements, presumably due to the insertion of an adjacent gypsy element. From a screen for genetic modifiers of E1 variegation, we describe here the isolation of five mutations in ash1 and three in trx that enhance the E1 variegated phenotype in a dose-dependent and cumulative manner. These mutant alleles enhance PDS at E1, and in E1/P{lacW}ci(Dplac), but suppress position effect variegation (PEV) at In(1)w(m)(4). This opposite action is consistent with a model where ASH1 and TRX mark transcriptionally active chromatin domains. If ASH1 or TRX function is lost or reduced, heterochromatin can spread into these domains creating a sink that diverts heterochromatic proteins from other variegating locations, which then may express a suppressed phenotype.
Collapse
Affiliation(s)
- Allen McCracken
- Department of Biological Sciences, CW 405, Biological Sciences Building, University of Alberta, Edmonton, AB T6G 2E9, Canada.,Department of Biological Sciences, CW 405, Biological Sciences Building, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - John Locke
- Department of Biological Sciences, CW 405, Biological Sciences Building, University of Alberta, Edmonton, AB T6G 2E9, Canada.,Department of Biological Sciences, CW 405, Biological Sciences Building, University of Alberta, Edmonton, AB T6G 2E9, Canada
| |
Collapse
|
11
|
Kyrchanova OV, Georgiev PG. The bithorax complex of Drosophila melanogaster as a model for studying specific long-distance interactions between enhancers and promoters. RUSS J GENET+ 2015. [DOI: 10.1134/s1022795415050038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
12
|
Deb M, Kar S, Sengupta D, Shilpi A, Parbin S, Rath SK, Londhe VA, Patra SK. Chromatin dynamics: H3K4 methylation and H3 variant replacement during development and in cancer. Cell Mol Life Sci 2014; 71:3439-63. [PMID: 24676717 PMCID: PMC11113154 DOI: 10.1007/s00018-014-1605-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2013] [Revised: 02/11/2014] [Accepted: 03/06/2014] [Indexed: 12/11/2022]
Abstract
The dynamic nature of chromatin and its myriad modifications play a crucial role in gene regulation (expression and repression) during development, cellular survival, homeostasis, ageing, and apoptosis/death. Histone 3 lysine 4 methylation (H3K4 methylation) catalyzed by H3K4 specific histone methyltransferases is one of the more critical chromatin modifications that is generally associated with gene activation. Additionally, the deposition of H3 variant(s) in conjunction with H3K4 methylation generates an intricately reliable epigenetic regulatory circuit that guides transcriptional activity in normal development and homeostasis. Consequently, alterations in this epigenetic circuit may trigger disease development. The mechanistic relationship between H3 variant deposition and H3K4 methylation during normal development has remained foggy. However, recent investigations in the field of chromatin dynamics in various model organisms, tumors, cancer tissues, and cell lines cultured without and with therapeutic agents, as well as from model reconstituted chromatins reveal that there may be different subsets of chromatin assemblage with specific patterns of histone replacement executing similar functions. In this light, we attempt to explain the intricate control system that maintains chromatin structure and dynamics during normal development as well as during tumor development and cancer progression in this review. Our focus is to highlight the contribution of H3K4 methylation-histone variant crosstalk in regulating chromatin architecture and subsequently its function.
Collapse
Affiliation(s)
- Moonmoon Deb
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008 India
| | - Swayamsiddha Kar
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008 India
| | - Dipta Sengupta
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008 India
| | - Arunima Shilpi
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008 India
| | - Sabnam Parbin
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008 India
| | - Sandip K. Rath
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008 India
| | - Vedang A. Londhe
- Division of Neonatology and Developmental Biology, Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1752 USA
| | - Samir Kumar Patra
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008 India
| |
Collapse
|
13
|
Elgart M, Snir O, Soen Y. Stress-mediated tuning of developmental robustness and plasticity in flies. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1849:462-6. [PMID: 25134463 DOI: 10.1016/j.bbagrm.2014.08.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 07/31/2014] [Accepted: 08/02/2014] [Indexed: 11/30/2022]
Abstract
Organisms have to be sufficiently robust to environmental and genetic perturbations, yet plastic enough to cope with stressful scenarios to which they are not fully adapted. How this apparent conflict between robustness and plasticity is resolved at the cellular and whole organism levels is not clear. Here we review and discuss evidence in flies suggesting that the environment can modulate the balance between robustness and plasticity. The outcomes of this modulation can vary from mild sensitizations that are hardly noticeable, to overt qualitative changes in phenotype. The effects could be at both the cellular and whole organism levels and can include cellular de-/trans-differentiation ('Cellular reprogramming') and gross disfigurements such as homeotic transformations ('Tissue/whole organism reprogramming'). When the stress is mild enough, plastic changes in some processes may prevent drastic changes in more robust traits such as cell identity and tissue integrity. However, when the stress is sufficiently severe, this buffering may no longer be able to prevent such overt changes, and the resulting phenotypic variability could be subjected to selection and might assist survival at the population level. This article is part of a Special Issue entitled: Stress as a fundamental theme in cell plasticity.
Collapse
Affiliation(s)
- M Elgart
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - O Snir
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Y Soen
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
14
|
Duncan EJ, Gluckman PD, Dearden PK. Epigenetics, plasticity, and evolution: How do we link epigenetic change to phenotype? JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2014; 322:208-20. [PMID: 24719220 DOI: 10.1002/jez.b.22571] [Citation(s) in RCA: 156] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 03/13/2014] [Accepted: 03/15/2014] [Indexed: 12/12/2022]
Abstract
Epigenetic mechanisms are proposed as an important way in which the genome responds to the environment. Epigenetic marks, including DNA methylation and Histone modifications, can be triggered by environmental effects, and lead to permanent changes in gene expression, affecting the phenotype of an organism. Epigenetic mechanisms have been proposed as key in plasticity, allowing environmental exposure to shape future gene expression. While we are beginning to understand how these mechanisms have roles in human biology and disease, we have little understanding of their roles and impacts on ecology and evolution. In this review, we discuss different types of epigenetic marks, their roles in gene expression and plasticity, methods for assaying epigenetic changes, and point out the future advances we require to understand fully the impact of this field.
Collapse
Affiliation(s)
- Elizabeth J Duncan
- Genetics Otago and Gravida, The National Centre for Growth and Development, Biochemistry Department, University of Otago, Dunedin, New Zealand
| | | | | |
Collapse
|
15
|
Homeotic gene regulation: a paradigm for epigenetic mechanisms underlying organismal development. Subcell Biochem 2014; 61:177-207. [PMID: 23150252 DOI: 10.1007/978-94-007-4525-4_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The organization of eukaryotic genome into chromatin within the nucleus eventually dictates the cell type specific expression pattern of genes. This higher order of chromatin organization is established during development and dynamically maintained throughout the life span. Developmental mechanisms are conserved in bilaterians and hence they have body plan in common, which is achieved by regulatory networks controlling cell type specific gene expression. Homeotic genes are conserved in metazoans and are crucial for animal development as they specify cell type identity along the anterior-posterior body axis. Hox genes are the best studied in the context of epigenetic regulation that has led to significant understanding of the organismal development. Epigenome specific regulation is brought about by conserved chromatin modulating factors like PcG/trxG proteins during development and differentiation. Here we discuss the conserved epigenetic mechanisms relevant to homeotic gene regulation in metazoans.
Collapse
|
16
|
|
17
|
Histone methylation in the nervous system: functions and dysfunctions. Mol Neurobiol 2012; 47:740-56. [PMID: 23161382 DOI: 10.1007/s12035-012-8376-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Accepted: 11/04/2012] [Indexed: 11/26/2022]
Abstract
Chromatin remodeling is a key epigenetic process controlling the regulation of gene transcription. Local changes of chromatin architecture can be achieved by post-translational modifications of histones such as methylation, acetylation, phosphorylation, ubiquitination, sumoylation, and ADP-ribosylation. These changes are dynamic and allow for rapid repression or de-repression of specific target genes. Chromatin remodeling enzymes are largely involved in the control of cellular differentiation, and loss or gain of function is often correlated with pathological events. For these reasons, research on chromatin remodeling enzymes is currently very active and rapidly expanding, these enzymes representing very promising targets for the design of novel therapeutics in different areas of medicine including oncology and neurology. In this review, we focus on histone methylation in the nervous system. We provide an overview on mammalian histone methyltransferases and demethylases and their mechanisms of action, and we discuss their roles in the development of the nervous system and their involvement in neurodevelopmental, neurodegenerative, and behavioral disorders.
Collapse
|
18
|
Petruk S, Sedkov Y, Johnston DM, Hodgson JW, Black KL, Kovermann SK, Beck S, Canaani E, Brock HW, Mazo A. TrxG and PcG proteins but not methylated histones remain associated with DNA through replication. Cell 2012; 150:922-33. [PMID: 22921915 DOI: 10.1016/j.cell.2012.06.046] [Citation(s) in RCA: 192] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 05/08/2012] [Accepted: 06/26/2012] [Indexed: 12/01/2022]
Abstract
Propagation of gene-expression patterns through the cell cycle requires the existence of an epigenetic mark that re-establishes the chromatin architecture of the parental cell in the daughter cells. We devised assays to determine which potential epigenetic marks associate with epigenetic maintenance elements during DNA replication in Drosophila embryos. Histone H3 trimethylated at lysines 4 or 27 is present during transcription but, surprisingly, is replaced by nonmethylated H3 following DNA replication. Methylated H3 is detected on DNA only in nuclei not in S phase. In contrast, the TrxG and PcG proteins Trithorax and Enhancer-of-Zeste, which are H3K4 and H3K27 methylases, and Polycomb continuously associate with their response elements on the newly replicated DNA. We suggest that histone modification enzymes may re-establish the histone code on newly assembled unmethylated histones and thus may act as epigenetic marks.
Collapse
Affiliation(s)
- Svetlana Petruk
- Department of Biochemistry and Molecular Biology and Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Srivastava S, Mishra RK, Dhawan J. Regulation of cellular chromatin state: insights from quiescence and differentiation. Organogenesis 2012; 6:37-47. [PMID: 20592864 DOI: 10.4161/org.6.1.11337] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2009] [Revised: 01/19/2010] [Accepted: 01/29/2010] [Indexed: 11/19/2022] Open
Abstract
The identity and functionality of eukaryotic cells is defined not just by their genomic sequence which remains constant between cell types, but by their gene expression profiles governed by epigenetic mechanisms. Epigenetic controls maintain and change the chromatin state throughout development, as exemplified by the setting up of cellular memory for the regulation and maintenance of homeotic genes in proliferating progenitors during embryonic development. Higher order chromatin structure in reversibly arrested adult stem cells also involves epigenetic regulation and in this review we highlight common trends governing chromatin states, focusing on quiescence and differentiation during myogenesis. Together, these diverse developmental modules reveal the dynamic nature of chromatin regulation providing fresh insights into the role of epigenetic mechanisms in potentiating development and differentiation.
Collapse
Affiliation(s)
- Surabhi Srivastava
- Centre for Cellular and Molecular Biology, Council of Scientific and Industrial Research, Hyderabad, India.
| | | | | |
Collapse
|
20
|
Abstract
Organisms require an appropriate balance of stability and reversibility in gene expression programmes to maintain cell identity or to enable responses to stimuli; epigenetic regulation is integral to this dynamic control. Post-translational modification of histones by methylation is an important and widespread type of chromatin modification that is known to influence biological processes in the context of development and cellular responses. To evaluate how histone methylation contributes to stable or reversible control, we provide a broad overview of how histone methylation is regulated and leads to biological outcomes. The importance of appropriately maintaining or reprogramming histone methylation is illustrated by its links to disease and ageing and possibly to transmission of traits across generations.
Collapse
Affiliation(s)
- Eric L Greer
- Cell Biology Department, Harvard Medical School and Division of Newborn Medicine, Children's Hospital Boston, 300 Longwood Avenue, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
21
|
Shilatifard A. The COMPASS family of histone H3K4 methylases: mechanisms of regulation in development and disease pathogenesis. Annu Rev Biochem 2012; 81:65-95. [PMID: 22663077 PMCID: PMC4010150 DOI: 10.1146/annurev-biochem-051710-134100] [Citation(s) in RCA: 806] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The Saccharomyces cerevisiae Set1/COMPASS was the first histone H3 lysine 4 (H3K4) methylase identified over 10 years ago. Since then, it has been demonstrated that Set1/COMPASS and its enzymatic product, H3K4 methylation, is highly conserved across the evolutionary tree. Although there is only one COMPASS in yeast, Drosophila possesses three and humans bear six COMPASS family members, each capable of methylating H3K4 with nonredundant functions. In yeast, the histone H2B monoubiquitinase Rad6/Bre1 is required for proper H3K4 and H3K79 trimethylations. The machineries involved in this process are also highly conserved from yeast to human. In this review, the process of histone H2B monoubiquitination-dependent and -independent histone H3K4 methylation as a mark of active transcription, enhancer signatures, and developmentally poised genes is discussed. The misregulation of histone H2B monoubiquitination and H3K4 methylation result in the pathogenesis of human diseases, including cancer. Recent findings in this regard are also examined.
Collapse
Affiliation(s)
- Ali Shilatifard
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA.
| |
Collapse
|
22
|
Fang M, Ren H, Liu J, Cadigan KM, Patel SR, Dressler GR. Drosophila ptip is essential for anterior/posterior patterning in development and interacts with the PcG and trxG pathways. Development 2009; 136:1929-38. [PMID: 19429789 DOI: 10.1242/dev.026559] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Development of the fruit fly Drosophila depends in part on epigenetic regulation carried out by the concerted actions of the Polycomb and Trithorax group of proteins, many of which are associated with histone methyltransferase activity. Mouse PTIP is part of a histone H3K4 methyltransferase complex and contains six BRCT domains and a glutamine-rich region. In this article, we describe an essential role for the Drosophila ortholog of the mammalian Ptip (Paxip1) gene in early development and imaginal disc patterning. Both maternal and zygotic ptip are required for segmentation and axis patterning during larval development. Loss of ptip results in a decrease in global levels of H3K4 methylation and an increase in the levels of H3K27 methylation. In cell culture, Drosophila ptip is required to activate homeotic gene expression in response to the derepression of Polycomb group genes. Activation of developmental genes is coincident with PTIP protein binding to promoter sequences and increased H3K4 trimethylation. These data suggest a highly conserved function for ptip in epigenetic control of development and differentiation.
Collapse
Affiliation(s)
- Ming Fang
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA.
| | | | | | | | | | | |
Collapse
|
23
|
Petruk S, Smith ST, Sedkov Y, Mazo A. Association of trxG and PcG proteins with the bxd maintenance element depends on transcriptional activity. Development 2008; 135:2383-90. [PMID: 18550707 DOI: 10.1242/dev.023275] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Polycomb group (PcG) and trithorax group (trxG) proteins act in an epigenetic fashion to maintain active and repressive states of expression of the Hox and other target genes by altering their chromatin structure. Genetically, mutations in trxG and PcG genes can antagonize each other's function, whereas mutations of genes within each group have synergistic effects. Here, we show in Drosophila that multiple trxG and PcG proteins act through the same or juxtaposed sequences in the maintenance element (ME) of the homeotic gene Ultrabithorax. Surprisingly, trxG or PcG proteins, but not both, associate in vivo in any one cell in a salivary gland with the ME of an activated or repressed Ultrabithorax transgene, respectively. Among several trxG and PcG proteins, only Ash1 and Asx require Trithorax in order to bind to their target genes. Together, our data argue that at the single-cell level, association of repressors and activators correlates with gene silencing and activation, respectively. There is, however, no overall synergism or antagonism between and within the trxG and PcG proteins and, instead, only subsets of trxG proteins act synergistically.
Collapse
Affiliation(s)
- Svetlana Petruk
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | | | |
Collapse
|
24
|
Chopra VS, Srinivasan A, Kumar RP, Mishra K, Basquin D, Docquier M, Seum C, Pauli D, Mishra RK. Transcriptional activation by GAGA factor is through its direct interaction with dmTAF3. Dev Biol 2008; 317:660-70. [PMID: 18367161 DOI: 10.1016/j.ydbio.2008.02.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2007] [Revised: 01/27/2008] [Accepted: 02/02/2008] [Indexed: 01/02/2023]
Abstract
The GAGA factor (GAF), encoded by the Trithorax like gene (Trl) is a multifunctional protein involved in gene activation, Polycomb-dependent repression, chromatin remodeling and is a component of chromatin domain boundaries. Although first isolated as transcriptional activator of the Drosophila homeotic gene Ultrabithorax (Ubx), the molecular basis of this GAF activity is unknown. Here we show that dmTAF3 (also known as BIP2 and dTAF(II)155), a component of TFIID, interacts directly with GAF. We generated mutations in dmTAF3 and show that, in Trl mutant background, they affect transcription of Ubx leading to enhancement of Ubx phenotype. These results reveal that the gene activation pathway involving GAF is through its direct interaction with dmTAF3.
Collapse
|
25
|
DeVido SK, Kwon D, Brown JL, Kassis JA. The role of Polycomb-group response elements in regulation of engrailed transcription in Drosophila. Development 2008; 135:669-76. [PMID: 18199580 DOI: 10.1242/dev.014779] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Polycomb group proteins are required for long-term repression of many genes in Drosophila and all metazoans. In Drosophila, DNA fragments called Polycomb-group response elements (PREs) have been identified that mediate the action of Polycomb-group proteins. Previous studies have shown that a 2 kb fragment located from -2.4 kb to -395 bp upstream of the Drosophila engrailed promoter contains a multipartite PRE that can mediate mini-white silencing and act as a PRE in an Ubx-reporter construct. Here, we study the role of this 2 kb fragment in the regulation of the engrailed gene itself. Our results show that within this 2 kb fragment, there are two subfragments that can act as PREs in embryos. In addition to their role in gene silencing, these two adjacent PRE fragments can facilitate the activation of the engrailed promoter by distant enhancers. The repressive action of the engrailed PRE can also act over a distance. A 181 bp subfragment can act as a PRE and also mediate positive effects in an enhancer-detector construct. Finally, a deletion of 530 bp of the 2 kb PRE fragment within the endogenous engrailed gene causes a loss-of-function phenotype, showing the importance of the positive regulatory effects of this PRE-containing fragment. Our data are consistent with the model that engrailed PREs bring chromatin together, allowing both positive and negative regulatory interactions between distantly located DNA fragments.
Collapse
Affiliation(s)
- Sarah K DeVido
- Laboratory of Molecular Genetics, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20982, USA
| | | | | | | |
Collapse
|
26
|
Ryakhovskiy AA, Tillib SV. S/MAR and TRE can be found co-localized within regulatory chromosome regions of some tissue-specifically expressed genes of Drosophila melanogaster. DOKL BIOCHEM BIOPHYS 2007; 416:264-7. [PMID: 18064828 DOI: 10.1134/s1607672907050109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- A A Ryakhovskiy
- Institute of Gene Biology, Russian Academy of Sciences, ul. Vavilova 34/5, Moscow, 119334, Russia
| | | |
Collapse
|
27
|
Ryakhovskiy AA, Tillib SV. Immunoprecipitation mapping of TRX-associated chromosome elements in the fork head gene promoter in Drosophila melanogaster salivary gland cells. RUSS J GENET+ 2007. [DOI: 10.1134/s1022795407090037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
28
|
Sipos L, Kozma G, Molnár E, Bender W. In situ dissection of a Polycomb response element in Drosophila melanogaster. Proc Natl Acad Sci U S A 2007; 104:12416-21. [PMID: 17640916 PMCID: PMC1941339 DOI: 10.1073/pnas.0703144104] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Genes of the Polycomb group maintain long-term, segment-specific repression of the homeotic genes in Drosophila. DNA targets of Polycomb group proteins, called Polycomb response elements (PREs), have been defined by several assays, but they have not been dissected in their original chromosomal context. An enhanced method of gene conversion was developed to generate a series of small, targeted deletions encompassing the best-studied PRE, upstream of the Ultrabithorax (Ubx) transcription unit in the bithorax complex. Deletions that removed an essential 185-bp core of the PRE caused anterior misexpression of Ubx and posterior segmental transformations, including the conversion of the third thoracic segment toward a duplicate first abdominal segment. These phenotypes were variable, suggesting some cooperation between this PRE and others in the bithorax complex. Larger deletions up to 3 kb were also created, which removed DNA sites reportedly needed for Ubx activation, including putative trithorax response elements. These deletions resulted in neither loss of Ubx expression nor loss-of-function phenotypes. Thus, the 3-kb region including the PRE is required for repression, but not for activation, of Ubx.
Collapse
Affiliation(s)
- László Sipos
- Institute of Genetics, Biological Research Center of Hungarian Academy of Sciences, H-6701 Szeged, Hungary
| | | | | | | |
Collapse
|
29
|
Chang YL, King B, Lin SC, Kennison JA, Huang DH. A double-bromodomain protein, FSH-S, activates the homeotic gene ultrabithorax through a critical promoter-proximal region. Mol Cell Biol 2007; 27:5486-98. [PMID: 17526731 PMCID: PMC1952094 DOI: 10.1128/mcb.00692-07] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
More than a dozen trithorax group (trxG) proteins are involved in activation of Drosophila HOX genes. How they act coordinately to integrate signals from distantly located enhancers is not fully understood. The female sterile (1) homeotic (fs(1)h) gene is one of the trxG genes that is most critical for Ultrabithorax (Ubx) activation. We show that one of the two double-bromodomain proteins encoded by fs(1)h acts as an essential factor in the Ubx proximal promoter. First, overexpression of the small isoform FSH-S, but not the larger one, can induce ectopic expression of HOX genes and cause body malformation. Second, FSH-S can stimulate Ubx promoter in cultured cells through a critical proximal region in a bromodomain-dependent manner. Third, purified FSH-S can bind specifically to a motif within this region that was previously known as the ZESTE site. The physiological relevance of FSH-S is ascertained using transgenic embryos containing a modified Ubx proximal promoter and chromatin immunoprecipitation. In addition, we show that FSH-S is involved in phosphorylation of itself and other regulatory factors. We suggest that FSH-S acts as a critical component of a regulatory circuitry mediating long-range effects of distant enhancers.
Collapse
Affiliation(s)
- Yuh-Long Chang
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan 115, Republic of China
| | | | | | | | | |
Collapse
|
30
|
Abstract
SUMMARY
It is usually thought that the development of complex organisms is controlled by protein regulatory factors and morphogenetic signals exchanged between cells and differentiating tissues during ontogeny. However, it is now evident that the majority of all animal genomes is transcribed, apparently in a developmentally regulated manner, suggesting that these genomes largely encode RNA machines and that there may be a vast hidden layer of RNA regulatory transactions in the background. I propose that the epigenetic trajectories of differentiation and development are primarily programmed by feed-forward RNA regulatory networks and that most of the information required for multicellular development is embedded in these networks, with cell–cell signalling required to provide important positional information and to correct stochastic errors in the endogenous RNA-directed program.
Collapse
Affiliation(s)
- John S Mattick
- ARC Centre for Functional and Applied Genomics, Institute for Molecular Bioscience, University of Queensland, St Lucia QLD 4072, Australia.
| |
Collapse
|
31
|
Schuettengruber B, Chourrout D, Vervoort M, Leblanc B, Cavalli G. Genome regulation by polycomb and trithorax proteins. Cell 2007; 128:735-45. [PMID: 17320510 DOI: 10.1016/j.cell.2007.02.009] [Citation(s) in RCA: 1043] [Impact Index Per Article: 57.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Polycomb group (PcG) and trithorax group (trxG) proteins are critical regulators of numerous developmental genes. To silence or activate gene expression, respectively, PcG and trxG proteins bind to specific regions of DNA and direct the posttranslational modification of histones. Recent work suggests that PcG proteins regulate the nuclear organization of their target genes and that PcG-mediated gene silencing involves noncoding RNAs and the RNAi machinery.
Collapse
Affiliation(s)
- Bernd Schuettengruber
- Institute of Human Genetics, CNRS, 141, rue de la Cardonille, 34396 Montpellier Cedex 5, France
| | | | | | | | | |
Collapse
|
32
|
Kim SY, Levenson JM, Korsmeyer S, Sweatt JD, Schumacher A. Developmental regulation of Eed complex composition governs a switch in global histone modification in brain. J Biol Chem 2007; 282:9962-9972. [PMID: 17259173 DOI: 10.1074/jbc.m608722200] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Originally discovered as epigenetic regulators of developmental gene expression, the Polycomb (PcG) and trithorax (trxG) group of proteins form distinct nuclear complexes governing post-translational modification of histone tails. This study identified a novel, developmentally regulated interface between Eed and Mll, pivotal constituents of PcG and trxG pathways, respectively, in mouse brain. Although the PcG proteins Eed and EzH2 (Enhancer of Zeste protein-2) engaged in a common complex during neurodevelopment, Eed associated with the trxG protein Mll upon brain maturation. Comprehensive analysis of multiple histone modifications revealed differential substrate specificity of the novel Eed-Mll complex in adult brain compared with the developmental Eed-EzH2 complex. Newborn brain from eed heterozygotes and eed;Mll double heterozygotes exhibited decreased trimethylation at lysine 27 of histone H3, as well as hyperacetylation of histone H4. In contrast, adult hippocampus from Mll heterozygotes was remarkable for decreased acetylation of histone H4, which restored to wild-type levels in eed;Mll double heterozygotes. A physiological role for the Eed-Mll complex in adult brain was evident from complementary defects in synaptic plasticity in eed and Mll mutant hippocampi. These results support the notion that developmental regulation of complex composition bestows the predominant Eed complex with the chromatin remodeling activity conducive for gene regulation during neurodevelopment and adult brain function. Thus, this study suggests dynamic regulation of chromatin complex composition as a molecular mechanism to co-opt constituents of developmental pathways into the regulation of neuronal memory formation in adult brain.
Collapse
Affiliation(s)
- Se Young Kim
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030
| | - Jonathan M Levenson
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030
| | - Stanley Korsmeyer
- Howard Hughes Medical Institute, Department of Pathology and Medicine, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115
| | - J David Sweatt
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030
| | - Armin Schumacher
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030.
| |
Collapse
|
33
|
Petruk S, Sedkov Y, Riley KM, Hodgson J, Schweisguth F, Hirose S, Jaynes JB, Brock HW, Mazo A. Transcription of bxd noncoding RNAs promoted by trithorax represses Ubx in cis by transcriptional interference. Cell 2007; 127:1209-21. [PMID: 17174895 PMCID: PMC1866366 DOI: 10.1016/j.cell.2006.10.039] [Citation(s) in RCA: 212] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2006] [Revised: 08/08/2006] [Accepted: 10/27/2006] [Indexed: 10/23/2022]
Abstract
Much of the genome is transcribed into long noncoding RNAs (ncRNAs). Previous data suggested that bithoraxoid (bxd) ncRNAs of the Drosophila bithorax complex (BX-C) prevent silencing of Ultrabithorax (Ubx) and recruit activating proteins of the trithorax group (trxG) to their maintenance elements (MEs). We found that, surprisingly, Ubx and several bxd ncRNAs are expressed in nonoverlapping patterns in both embryos and imaginal discs, suggesting that transcription of these ncRNAs is associated with repression, not activation, of Ubx. Our data rule out siRNA or miRNA-based mechanisms for repression by bxd ncRNAs. Rather, ncRNA transcription itself, acting in cis, represses Ubx. The Trithorax complex TAC1 binds the Ubx coding region in nuclei expressing Ubx, and the bxd region in nuclei not expressing Ubx. We propose that TAC1 promotes the mosaic pattern of Ubx expression by facilitating transcriptional elongation of bxd ncRNAs, which represses Ubx transcription.
Collapse
Affiliation(s)
- Svetlana Petruk
- Department of Biochemistry, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Yurii Sedkov
- Department of Biochemistry, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Kristen M. Riley
- Department of Biochemistry, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Jacob Hodgson
- Department of Zoology, University of British Columbia, 6270 University Boulevard, V6T 1Z4, Vancouver, BC, Canada
| | | | - Susumu Hirose
- Department of Developmental Genetics, National Institute of Genetics, and Graduate University for Advanced Studies, Mishima, Shizuoka-ken 411-8540, Japan
| | - James B. Jaynes
- Department of Biochemistry, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Hugh W. Brock
- Department of Zoology, University of British Columbia, 6270 University Boulevard, V6T 1Z4, Vancouver, BC, Canada
| | - Alexander Mazo
- Department of Biochemistry, Thomas Jefferson University, Philadelphia, PA 19107, USA
- * Correspondence:
| |
Collapse
|
34
|
Ringrose L, Paro R. Polycomb/Trithorax response elements and epigenetic memory of cell identity. Development 2007; 134:223-32. [PMID: 17185323 DOI: 10.1242/dev.02723] [Citation(s) in RCA: 339] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Polycomb/Trithorax group response elements (PRE/TREs) are fascinating chromosomal pieces. Just a few hundred base pairs long, these elements can remember and maintain the active or silent transcriptional state of their associated genes for many cell generations, long after the initial determining activators and repressors have disappeared. Recently, substantial progress has been made towards understanding the nuts and bolts of PRE/TRE function at the molecular level and in experimentally mapping PRE/TRE sites across whole genomes. Here we examine the insights, controversies and new questions that have been generated by this recent flood of data.
Collapse
Affiliation(s)
- Leonie Ringrose
- IMBA - Institute of Molecular Biotechnology GmbH, Dr Bohr-Gasse 3, 1030 Vienna, Austria.
| | | |
Collapse
|
35
|
Breiling A, Sessa L, Orlando V. Biology of Polycomb and Trithorax Group Proteins. INTERNATIONAL REVIEW OF CYTOLOGY 2007; 258:83-136. [PMID: 17338920 DOI: 10.1016/s0074-7696(07)58002-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cellular phenotypes can be ascribed to different patterns of gene expression. Epigenetic mechanisms control the generation of different phenotypes from the same genotype. Thus differentiation is basically a process driven by changes in gene activity during development, often in response to transient factors or environmental stimuli. To keep the specific characteristics of cell types, tissue-specific gene expression patterns must be transmitted stably from one cell to the daughter cells, also in the absence of the early-acting determination factors. This heritability of patterns of active and inactive genes is enabled by epigenetic mechanisms that create a layer of information on top of the DNA sequence that ensures mitotic and sometimes also meiotic transmission of expression patterns. The proteins of the Polycomb and Trithorax group comprise such a cellular memory mechanism that preserves gene expression patterns through many rounds of cell division. This review provides an overview of the genetics and molecular biology of these maintenance proteins, concentrating mainly on mechanisms of Polycomb group-mediated repression.
Collapse
Affiliation(s)
- Achim Breiling
- Dulbecco Telethon Institute, Institute of Genetics and Biophysics, CNR, 80131 Naples, Italy
| | | | | |
Collapse
|
36
|
Grimaud C, Nègre N, Cavalli G. From genetics to epigenetics: the tale of Polycomb group and trithorax group genes. Chromosome Res 2006; 14:363-75. [PMID: 16821133 DOI: 10.1007/s10577-006-1069-y] [Citation(s) in RCA: 137] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The Polycomb gene was discovered 60 years ago as a mutation inducing a particular homeotic phenotype. Subsequent work showed that Polycomb is a general repressor of homeotic genes. Other genes with similar function were identified and named Polycomb group (PcG) genes, while trithorax group (trxG) genes were shown to counteract PcG-mediated repression of homeotic genes. We now know that PcG and trxG proteins are conserved factors that regulate hundreds of different genomic loci. A sophisticated pathway is responsible for recruitment of these proteins at regulatory regions that were named PcG and trxG response elements (PRE and TRE). Once recruited to their targets, multimeric PcG and trxG protein complexes regulate transcription by modulating chromatin structure, in particular via deposition of specific post-translational histone modification marks and control of chromatin accessibility, as well as regulation of the three-dimensional nuclear organization of PRE and TRE. Here, we recapitulate the history of PcG and trxG gene discovery, we review the current evidence on their molecular function and, based on this evidence, we propose a revised classification of genes involved in PcG and trxG regulatory pathways.
Collapse
Affiliation(s)
- Charlotte Grimaud
- Institute of Human Genetics, CNRS, 141, rue de la Cardonille, 34396, Montpellier Cedex 5, France
| | | | | |
Collapse
|
37
|
Völkel P, Angrand PO. The control of histone lysine methylation in epigenetic regulation. Biochimie 2006; 89:1-20. [PMID: 16919862 DOI: 10.1016/j.biochi.2006.07.009] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2006] [Accepted: 07/07/2006] [Indexed: 01/24/2023]
Abstract
Histone lysine methylation plays a fundamental role in chromatin organization and function. This epigenetic mark is involved in many biological processes such as heterochromatin formation, chromosome X inactivation, genomic imprinting and transcriptional regulation. Here, we review recent advances in how histone lysine methylation participates in these biological events, and the enzymes that control histone lysine methylation and demethylation.
Collapse
Affiliation(s)
- Pamela Völkel
- Institut de Recherche Interdisciplinaire, CNRS FRE 2963, IRI @ Institut de Biologie de Lille, 1, rue du Pr. Calmette, F-59021 Lille Cedex, France
| | | |
Collapse
|
38
|
Papp B, Müller J. Histone trimethylation and the maintenance of transcriptional ON and OFF states by trxG and PcG proteins. Genes Dev 2006; 20:2041-54. [PMID: 16882982 PMCID: PMC1536056 DOI: 10.1101/gad.388706] [Citation(s) in RCA: 320] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2006] [Accepted: 05/24/2006] [Indexed: 01/17/2023]
Abstract
Polycomb group (PcG) and trithorax group (trxG) proteins act as antagonistic regulators to maintain transcriptional OFF and ON states of HOX and other target genes. To study the molecular basis of PcG/trxG control, we analyzed the chromatin of the HOX gene Ultrabithorax (Ubx) in Ubx(OFF)and Ubx(ON)cells purified from developing Drosophila. We find that PcG protein complexes PhoRC, PRC1, and PRC2 and the Trx protein are all constitutively bound to Polycomb response elements (PREs) in the OFF and ON state. In contrast, the trxG protein Ash1 is only bound in the ON state; not at PREs but downstream of the transcription start site. In the OFF state, we find extensive trimethylation at H3-K27, H3-K9, and H4-K20 across the entire Ubx gene; i.e., throughout the upstream control, promoter, and coding region. In the ON state, the upstream control region is also trimethylated at H3-K27, H3-K9, and H4-K20, but all three modifications are absent in the promoter and 5' coding region. Our analyses of mutants that lack the PcG histone methyltransferase (HMTase) E(z) or the trxG HMTase Ash1 provide strong evidence that differential histone lysine trimethylation at the promoter and in the coding region confers transcriptional ON and OFF states of Ubx. In particular, our results suggest that PRE-tethered PcG protein complexes act over long distances to generate Pc-repressed chromatin that is trimethylated at H3-K27, H3-K9, and H4-K20, but that the trxG HMTase Ash1 selectively prevents this trimethylation in the promoter and coding region in the ON state.
Collapse
Affiliation(s)
- Bernadett Papp
- European Molecular Biology Laboratory, Gene Expression Programme, Heidelberg, Germany
| | | |
Collapse
|
39
|
Mihaly J, Barges S, Sipos L, Maeda R, Cléard F, Hogga I, Bender W, Gyurkovics H, Karch F. Dissecting the regulatory landscape of the Abd-B gene of the bithorax complex. Development 2006; 133:2983-93. [PMID: 16818450 DOI: 10.1242/dev.02451] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The three homeotic genes of the bithorax complex (BX-C), Ubx, abd-A and Abd-B control the identity of the posterior thorax and all abdominal segments. Large segment-specific cis-regulatory regions control the expression of Ubx, abd-A or Abd-B in each of the segments. These segment-specific cis-regulatory regions span the whole 300 kb of the BX-C and are arranged on the chromosome in the same order as the segments they specify. Experiments with lacZ reporter constructs revealed the existence of several types of regulatory elements in each of the cis-regulatory regions. These include initiation elements, maintenance elements, cell type- or tissue-specific enhancers, chromatin insulators and the promoter targeting sequence. In this paper, we extend the analysis of regulatory elements within the BX-C by describing a series of internal deficiencies that affect the Abd-B regulatory region. Many of the elements uncovered by these deficiencies are further verified in transgenic reporter assays. Our results highlight four key features of the iab-5, iab-6 and iab-7 cis-regulatory region of Abd-B. First, the whole Abd-B region is modular by nature and can be divided into discrete functional domains. Second, each domain seems to control specifically the level of Abd-B expression in only one parasegment. Third, each domain is itself modular and made up of a similar set of definable regulatory elements. And finally, the activity of each domain is absolutely dependent on the presence of an initiator element.
Collapse
Affiliation(s)
- Jozsef Mihaly
- Institute of Genetics, Biological Research Center, Hungarian Academy of Sciences, 6723 Szeged, Hungary
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Pirrotta V. Polycomb silencing mechanisms and genomic programming. ERNST SCHERING RESEARCH FOUNDATION WORKSHOP 2006:97-113. [PMID: 16568951 DOI: 10.1007/3-540-37633-x_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/25/2023]
Abstract
Polycomb complexes, best known for their role in the epigenetic silencing of homeotic genes, are now known to regulate a large number of functions in organisms from flies to man. They control transcription activators, pattern-forming genes, maintenance of stem cells and are implicated in cell proliferation and oncogenesis. Our understanding of Polycomb mechanisms derives principally from the study of homeotic genes in Drosophila, where they act in an all-or-none fashion to silence expression in inappropriate parts of the organism. This review summarizes what has been learned from homeotic genes and examines the possible extensions of Polycomb mechanisms to allow for dynamic regulatory behavior and the reprogramming of silenced chromatin states.
Collapse
Affiliation(s)
- V Pirrotta
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ 08854, USA.
| |
Collapse
|
41
|
Grimaud C, Bantignies F, Pal-Bhadra M, Ghana P, Bhadra U, Cavalli G. RNAi Components Are Required for Nuclear Clustering of Polycomb Group Response Elements. Cell 2006; 124:957-71. [PMID: 16530043 DOI: 10.1016/j.cell.2006.01.036] [Citation(s) in RCA: 232] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2005] [Revised: 12/02/2005] [Accepted: 01/17/2006] [Indexed: 01/14/2023]
Abstract
Drosophila Polycomb group (PcG) proteins silence homeotic genes through binding to Polycomb group response elements (PREs). Fab-7 is a PRE-containing regulatory element from the homeotic gene Abdominal-B. When present in multiple copies in the genome, Fab-7 can induce long-distance gene contacts that enhance PcG-dependent silencing. We show here that components of the RNA interference (RNAi) machinery are involved in PcG-mediated silencing at Fab-7 and in the production of small RNAs at transgenic Fab-7 copies. In general, these mutations do not affect the recruitment of PcG components, but they are specifically required for the maintenance of long-range contacts between Fab-7 copies. Dicer-2, PIWI, and Argonaute1, three RNAi components, frequently colocalize with PcG bodies, and their mutation significantly reduces the frequency of PcG-dependent chromosomal associations of endogenous homeotic genes. This suggests a novel role for the RNAi machinery in regulating the nuclear organization of PcG chromatin targets.
Collapse
Affiliation(s)
- Charlotte Grimaud
- Institute of Human Genetics, CNRS, 141 rue de la Cardonille, 34396 Montpellier Cedex 5, France
| | | | | | | | | | | |
Collapse
|
42
|
Blastyák A, Mishra RK, Karch F, Gyurkovics H. Efficient and specific targeting of Polycomb group proteins requires cooperative interaction between Grainyhead and Pleiohomeotic. Mol Cell Biol 2006; 26:1434-44. [PMID: 16449654 PMCID: PMC1367177 DOI: 10.1128/mcb.26.4.1434-1444.2006] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2005] [Revised: 08/06/2005] [Accepted: 12/02/2005] [Indexed: 11/20/2022] Open
Abstract
Specific targeting of the protein complexes formed by the Polycomb group of proteins is critically required to maintain the inactive state of a group of developmentally regulated genes. Although the role of DNA binding proteins in this process has been well established, it is still not understood how these proteins target the Polycomb complexes specifically to their response elements. Here we show that the grainyhead gene, which encodes a DNA binding protein, interacts with one such Polycomb response element of the bithorax complex. Grainyhead binds to this element in vitro. Moreover, grainyhead interacts genetically with pleiohomeotic in a transgene-based, pairing-dependent silencing assay. Grainyhead also interacts with Pleiohomeotic in vitro, which facilitates the binding of both proteins to their respective target DNAs. Such interactions between two DNA binding proteins could provide the basis for the cooperative assembly of a nucleoprotein complex formed in vitro. Based on these results and the available data, we propose that the role of DNA binding proteins in Polycomb group-dependent silencing could be described by a model very similar to that of an enhanceosome, wherein the unique arrangement of protein-protein interaction modules exposed by the cooperatively interacting DNA binding proteins provides targeting specificity.
Collapse
Affiliation(s)
- András Blastyák
- Hungarian Academy of Sciences, Biological Research Center, Institute of Genetics, Temesvari krt. 62, P.O.B. 521, H-6701 Szeged, Hungary.
| | | | | | | |
Collapse
|
43
|
Bejarano F, González I, Vidal M, Busturia A. The Drosophila RYBP gene functions as a Polycomb-dependent transcriptional repressor. Mech Dev 2006; 122:1118-29. [PMID: 16125914 DOI: 10.1016/j.mod.2005.06.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2005] [Revised: 06/07/2005] [Accepted: 06/07/2005] [Indexed: 10/25/2022]
Abstract
The Polycomb and trithorax groups of genes control the maintenance of homeotic gene expression in a variety of organisms. A putative participant in the regulation of this process is the murine RYBP (Ring and YY1 Binding Protein) gene. Sequence comparison between different species has identified the homologous gene in Drosophila, the dRYBP gene. We have investigated whether dRYBP participates in the mechanisms of silencing of homeotic genes expression. We first studied its expression by RNA in situ hybridisation and detected dRYBP expression ubiquitously and throughout development. Moreover, we generated a polyclonal anti-dRYBP antibody that recognises the dRYBP protein. dRYBP protein is nuclear and expressed maternally and ubiquitously throughout development. To study the transcriptional activity of dRYBP, we generated a fusion protein containing the entire dRYBP protein and the GAL4 DNA binding domain. This fusion protein functions, in vivo, as a transcriptional repressor throughout development. Importantly, this repression is dependent on the function of the Polycomb group genes. Furthermore, using the GAL4/UAS system, we have over expressed dRYBP in the haltere and the wing imaginal discs. In the haltere discs, high levels of dRYBP repress the expression of the homeotic Ultrabithorax gene. This repression is Polycomb dependent. In the wing discs, dRYBP over expression produces a variety of phenotypes suggesting the overall miss regulation of the many putative genes affected by high levels of dRYBP. Taking together, our results indicate that dRYBP is able to interact with PcG proteins to repress transcription suggesting that the dRYBP gene might belong to the Polycomb group of genes in Drosophila.
Collapse
Affiliation(s)
- Fernando Bejarano
- Centro de Biología Molecular CSIC-UAM, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain
| | | | | | | |
Collapse
|
44
|
Chanas G, Maschat F. Tissue specificity of hedgehog repression by the Polycomb group during Drosophila melanogaster development. Mech Dev 2005; 122:975-87. [PMID: 16024236 DOI: 10.1016/j.mod.2005.05.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2005] [Revised: 04/25/2005] [Accepted: 05/02/2005] [Indexed: 10/25/2022]
Abstract
During embryogenesis and wing disc morphogenesis in Drosophila, different developmental mechanisms are used along the antero-posterior (A-P) axis. The establishment of antero-posterior polarity requires the secreted protein Hedgehog, which is only expressed in P compartments and which is a key effector of the Engrailed transcription factor. At the same time, it is essential that both engrailed and hedgehog (hh) remain in a repressed state in A compartments. In this article, we show that hh is maintained in a repressed state by the Polycomb group (PcG) chromatin proteins. We show that this process takes place during embryogenesis through two genomic elements that display genetic properties of a PRE. Interestingly, hh expression is not regulated by PcG genes in salivary glands, although at the same developmental stage PcG proteins repress hh in the A compartment of the wing disc. In addition, no PcG binding sites were found on polytene chromosomes, neither within hh transgenic constructs nor at the hh endogenous locus. Together, these results suggest that hh repression by the PcG acts in a tissue-specific manner.
Collapse
Affiliation(s)
- Grégory Chanas
- Institut de Génétique Humaine (IGH-CNRS UPR 1142) 141 rue de la Cardonille 34396 Montpellier France
| | | |
Collapse
|
45
|
Kim CA, Sawaya MR, Cascio D, Kim W, Bowie JU. Structural Organization of a Sex-comb-on-midleg/Polyhomeotic Copolymer. J Biol Chem 2005; 280:27769-75. [PMID: 15905166 DOI: 10.1074/jbc.m503055200] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The polycomb group proteins are required for the stable maintenance of gene repression patterns established during development. They function as part of large multiprotein complexes created via a multitude of protein-protein interaction domains. Here we examine the interaction between the SAM domains of the polycomb group proteins polyhomeotic (Ph) and Sex-comb-on-midleg (Scm). Previously we showed that Ph-SAM polymerizes as a helical structure. We find that Scm-SAM also polymerizes, and a crystal structure reveals an architecture similar to the Ph-SAM polymer. These results suggest that Ph-SAM and Scm-SAM form a copolymer. Binding affinity measurements between Scm-SAM and Ph-SAM subunits in different orientations indicate a preference for the formation of a single junction copolymer. To provide a model of the copolymer, we determined the structure of the Ph-SAM/Scm-SAM junction. Similar binding modes are observed in both homo- and heterocomplex formation with minimal change in helix axis direction at the polymer joint. The copolymer model suggests that polymeric Scm complexes could extend beyond the local domains of polymeric Ph complexes on chromatin, possibly playing a role in long range repression.
Collapse
Affiliation(s)
- Chongwoo A Kim
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, USA
| | | | | | | | | |
Collapse
|
46
|
Ringrose L, Paro R. Epigenetic regulation of cellular memory by the Polycomb and Trithorax group proteins. Annu Rev Genet 2005; 38:413-43. [PMID: 15568982 DOI: 10.1146/annurev.genet.38.072902.091907] [Citation(s) in RCA: 781] [Impact Index Per Article: 39.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
During the development of multicellular organisms, cells become different from one another by changing their genetic program in response to transient stimuli. Long after the stimulus is gone, "cellular memory" mechanisms enable cells to remember their chosen fate over many cell divisions. The Polycomb and Trithorax groups of proteins, respectively, work to maintain repressed or active transcription states of developmentally important genes through many rounds of cell division. Here we review current ideas on the protein and DNA components of this transcriptional memory system and how they interact dynamically with each other to orchestrate cellular memory for several hundred genes.
Collapse
|
47
|
Déjardin J, Cavalli G. Epigenetic inheritance of chromatin states mediated by Polycomb and trithorax group proteins in Drosophila. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2005; 38:31-63. [PMID: 15881890 DOI: 10.1007/3-540-27310-7_2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Proteins of the Polycomb group (PcG) and of the trithorax group (trxG) are involved in the regulation of key developmental genes, such as homeotic genes. PcG proteins maintain silent states of gene expression, while the trxG of genes counteracts silencing with a chromatin opening function. These factors form multimeric complexes that act on their target chromatin by regulating post-translational modifications of histones as well as ATP-dependent remodelling of nucleosome positions. In Drosophila, PcG and trxG complexes are recruited to specific DNA elements named as PcG and trxG response elements (PREs and TREs, respectively). Once recruited, these complexes seem to be able to establish silent or open chromatin states that can be inherited through multiple cell divisions even after decay of the primary silencing or activating signal. In recent years, many components of both groups of factors have been characterized, and the molecular mechanisms underlying their recruitment as well as their mechanism of action on their target genes have been partly elucidated. This chapter summarizes our current knowledge on these aspects and outlines crucial open questions in the field.
Collapse
Affiliation(s)
- Jérôme Déjardin
- Institute of Human Genetics, CNRS, 34396 Montpellier Cedex 5, France
| | | |
Collapse
|
48
|
Abstract
In development, cells pass on established gene expression patterns to daughter cells over multiple rounds of cell division. The cellular memory of the gene expression state is termed maintenance, and the proteins required for this process are termed maintenance proteins. The best characterized are proteins of the Polycomb and trithorax Groups that are required for silencing and maintenance of activation of target loci, respectively. These proteins act through DNA elements termed maintenance elements. Here, we re-examine the genetics and molecular biology of maintenance proteins. We discuss molecular models for the maintenance of activation and silencing, and the establishment of epigenetic marks, and suggest that maintenance proteins may play a role in propagating the mark through DNA synthesis.
Collapse
Affiliation(s)
- Hugh W Brock
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada.
| | | |
Collapse
|
49
|
Kirmizis A, Farnham PJ. Genomic approaches that aid in the identification of transcription factor target genes. Exp Biol Med (Maywood) 2004; 229:705-21. [PMID: 15337825 DOI: 10.1177/153537020422900803] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
It is well-established that deregulation of the transcriptional activity of many different genes has been causatively linked to human diseases. In cancer, altered patterns of gene expression are often the result of the inappropriate expression of a specific transcriptional activator or repressor. Functional studies of cancer-specific transcription factors have relied upon the study of candidate target genes. More recently, gene expression profiling using DNA microarrays that contain tens of thousands of cDNAs corresponding to human mRNAs has allowed for a large-scale identification of genes that respond to increased or decreased levels of a particular transcription factor. However, such experiments do not distinguish direct versus indirect target genes. Coupling chromatin immunoprecipitation to micro-arrays that contain genomic regions (ChIP-chip) has provided investigators with the ability to identify, in a high-throughput manner, promoters directly bound by specific transcription factors. Clearly, knowledge gained from both types of arrays provides complementary information, allowing greater confidence that a transcription factor regulates a particular gene. In this review, we focus on Polycomb group (PcG) complexes as an example of transcriptional regulators that are implicated in various cellular processes but about which very little is known concerning their target gene specificity. We provide examples of how both expression arrays and ChIP-chip microarray-based assays can be used to identify target genes of a particular PcG complex and suggest improvements in the application of array technology for faster and more comprehensive identification of directly regulated target genes.
Collapse
Affiliation(s)
- Antonis Kirmizis
- McArdle Laboratory for Cancer Research, University of Wisconsin Medical School, Madison 533706, USA
| | | |
Collapse
|
50
|
Gorfinkiel N, Fanti L, Melgar T, García E, Pimpinelli S, Guerrero I, Vidal M. The Drosophila Polycomb group gene Sex combs extra encodes the ortholog of mammalian Ring1 proteins. Mech Dev 2004; 121:449-62. [PMID: 15147763 DOI: 10.1016/j.mod.2004.03.019] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2004] [Revised: 03/26/2004] [Accepted: 03/26/2004] [Indexed: 11/28/2022]
Abstract
In Drosophila, the Polycomb group (PcG) of genes is required for the maintenance of homeotic gene repression during development. Here, we have characterized the Drosophila ortholog of the products of the mammalian Ring1/Ring1A and Rnf2/Ring1B genes. We show that Drosophila Ring corresponds to the Sex combs extra (Sce), a previously described PcG gene. We find that Ring/Sce is expressed and required throughout development and that the extreme Pc embryonic phenotype due to the lack of maternal and zygotic Sce can be rescued by ectopic expression of Ring/Sce. This phenotypic rescue is also obtained by ectopic expression of the murine Ring1/Ring1A, suggesting a functional conservation of the proteins during evolution. In addition, we find that Ring/Sce binds to about 100 sites on polytene chromosomes, 70% of which overlap those of other PcG products such as Polycomb, Posterior sex combs and Polyhomeotic, and 30% of which are unique. We also show that Ring/Sce interacts directly with PcG proteins, as it occurs in mammals.
Collapse
Affiliation(s)
- Nicole Gorfinkiel
- Centro de Biologia Molecular Severo Ochoa, CSIC-UAM Universidad Autónoma de Madrid, Cantoblanco, E-28049 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|