1
|
Zhang L, Wu J, Feng Y, Khadka B, Fang Z, Gu J, Tang B, Xiao R, Pan G, Liu JJ. A Regulatory Loop Involving Notch and Wnt Signaling Maintains Leukemia Stem Cells in T-Cell Acute Lymphoblastic Leukemia. Front Cell Dev Biol 2021; 9:678544. [PMID: 34179007 PMCID: PMC8226090 DOI: 10.3389/fcell.2021.678544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 04/12/2021] [Indexed: 11/13/2022] Open
Abstract
Leukemia-initiating cells play critical role in relapse, resistance to therapies and metastases but the mechanism remains largely elusive. We report that β-catenin is over-expressed in almost all T-ALL patients and flow sorted β-cateninhigh fractions are highly resistant to therapy, leading to liver metastases in nude mice as well as dysregulated lncRNAs. Pharmacological inhibition through XAV-939 as well as si-RNA mediated inhibition of β-catenin is initially effective in re-sensitization to therapy, however, prolonged inhibition shifts dependency from β-catenin to Notch signaling, with particularly high levels of receptors Notch 1 and Notch 2. The results are verifiable in a cohort of T-ALL patients comprising of responders vs. those who have progressed, with β-catenin, Notch 1 and Notch 2 elevated in progressed patients. Further, in patients-derived cells, silencing of Notch 1 or Notch 2 does not counter resistance to β-catenin inhibition, rather pharmacological pan-Notch inhibition is needed to overcome resistance and its effect on in vitro tumor sphere formations as well as in vivo liver metastases. Thus, wnt and Notch signaling are part of a regulatory loop mutually compensating for each other in T-ALL, while ensuring the maintenance of stem cell phenotype.
Collapse
Affiliation(s)
- Ling Zhang
- Department of Hematology and Hematology Institute of Sun Yat-sen University, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jieying Wu
- Department of Hematology and Hematology Institute of Sun Yat-sen University, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yashu Feng
- Department of Hematology and Hematology Institute of Sun Yat-sen University, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Bijay Khadka
- Department of Hematology and Hematology Institute of Sun Yat-sen University, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhigang Fang
- Department of Hematology and Hematology Institute of Sun Yat-sen University, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jiaming Gu
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Baoqiang Tang
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Ruozhi Xiao
- Department of Hematology and Hematology Institute of Sun Yat-sen University, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Guangjin Pan
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Jia-Jun Liu
- Department of Hematology and Hematology Institute of Sun Yat-sen University, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
2
|
Chu Q, Wang L, Zhang J, Wang W, Wang Y. CDK5 positively regulates Notch1 signaling in pancreatic cancer cells by phosphorylation. Cancer Med 2021; 10:3689-3699. [PMID: 33960694 PMCID: PMC8178504 DOI: 10.1002/cam4.3916] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 03/24/2021] [Accepted: 03/30/2021] [Indexed: 12/14/2022] Open
Abstract
The marked overexpression of cyclin‐dependent kinase 5 (CDK5) or Notch1 receptor, which plays critical roles in pancreatic ductal adenocarcinoma (PDAC) development, has been detected in numerous PDAC cell lines and tissues. Although, a previous study has demonstrated that CDK5 inhibition disrupts Notch1 functions in human umbilical vein endothelial cells, the mechanism underlying Notch1 activation regulated by CDK5 remains unclear. Herein, we identified a physical interaction between CDK5 and Notch1 in PDAC cells, with the Notch1 peptide phosphorylated by CDK5/p25 kinase. CDK5 blockade resulted in the profound inhibition of Notch signaling. Accordingly, CDK5 inhibition sensitized PDAC cell proliferation and migration following Notch inhibition. In conclusion, CDK5 positively regulates Notch1 function via phosphorylation, which in turn promotes cell proliferation and migration. The combinational inhibition of CDK5 and Notch signaling may be an effective strategy in the treatment of PDAC.
Collapse
Affiliation(s)
- Qiaoyun Chu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Liyong Wang
- Core Facilities for Molecular Biology, Capital Medical University, Beijing, China
| | - Jie Zhang
- Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing, China
| | - Wei Wang
- Centre for Precision Health, School of Medical and Health Sciences, Edith Cowan University, Perth, Australia
| | - Youxin Wang
- Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing, China
| |
Collapse
|
3
|
Hunter GL, Giniger E. Phosphorylation and Proteolytic Cleavage of Notch in Canonical and Noncanonical Notch Signaling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1227:51-68. [DOI: 10.1007/978-3-030-36422-9_4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
4
|
Mansour MR, He S, Li Z, Lobbardi R, Abraham BJ, Hug C, Rahman S, Leon TE, Kuang YY, Zimmerman MW, Blonquist T, Gjini E, Gutierrez A, Tang Q, Garcia-Perez L, Pike-Overzet K, Anders L, Berezovskaya A, Zhou Y, Zon LI, Neuberg D, Fielding AK, Staal FJT, Langenau DM, Sanda T, Young RA, Look AT. JDP2: An oncogenic bZIP transcription factor in T cell acute lymphoblastic leukemia. J Exp Med 2018; 215:1929-1945. [PMID: 29941549 PMCID: PMC6028512 DOI: 10.1084/jem.20170484] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 03/14/2018] [Accepted: 05/30/2018] [Indexed: 01/14/2023] Open
Abstract
A substantial subset of patients with T cell acute lymphoblastic leukemia (T-ALL) develops resistance to steroids and succumbs to their disease. JDP2 encodes a bZIP protein that has been implicated as a T-ALL oncogene from insertional mutagenesis studies in mice, but its role in human T-ALL pathogenesis has remained obscure. Here we show that JDP2 is aberrantly expressed in a subset of T-ALL patients and is associated with poor survival. JDP2 is required for T-ALL cell survival, as its depletion by short hairpin RNA knockdown leads to apoptosis. Mechanistically, JDP2 regulates prosurvival signaling through direct transcriptional regulation of MCL1. Furthermore, JDP2 is one of few oncogenes capable of initiating T-ALL in transgenic zebrafish. Notably, thymocytes from rag2:jdp2 transgenic zebrafish express high levels of mcl1 and demonstrate resistance to steroids in vivo. These studies establish JDP2 as a novel oncogene in high-risk T-ALL and implicate overexpression of MCL1 as a mechanism of steroid resistance in JDP2-overexpressing cells.
Collapse
Affiliation(s)
- Marc R Mansour
- Department of Haematology, University College London Cancer Institute, London, England, UK
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Shuning He
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Zhaodong Li
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Riadh Lobbardi
- Molecular Pathology and Cancer Center, Massachusetts General Hospital, Boston, MA
- Harvard Stem Cell Institute, Stem Cell and Regenerative Biology Department, Harvard University, Cambridge, MA
| | | | - Clemens Hug
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Sunniyat Rahman
- Department of Haematology, University College London Cancer Institute, London, England, UK
| | - Theresa E Leon
- Department of Haematology, University College London Cancer Institute, London, England, UK
| | - You-Yi Kuang
- Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Harbin, China
| | - Mark W Zimmerman
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Traci Blonquist
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA
| | - Evisa Gjini
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Alejandro Gutierrez
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA
| | - Qin Tang
- Molecular Pathology and Cancer Center, Massachusetts General Hospital, Boston, MA
- Harvard Stem Cell Institute, Stem Cell and Regenerative Biology Department, Harvard University, Cambridge, MA
| | - Laura Garcia-Perez
- Department of Immunohematology, Leiden University Medical Center, Leiden, Netherlands
| | - Karin Pike-Overzet
- Department of Immunohematology, Leiden University Medical Center, Leiden, Netherlands
| | - Lars Anders
- Whitehead Institute for Biomedical Research, Cambridge, MA
| | - Alla Berezovskaya
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Yi Zhou
- Harvard Stem Cell Institute, Stem Cell and Regenerative Biology Department, Harvard University, Cambridge, MA
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA
| | - Leonard I Zon
- Harvard Stem Cell Institute, Stem Cell and Regenerative Biology Department, Harvard University, Cambridge, MA
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA
| | - Donna Neuberg
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA
| | - Adele K Fielding
- Department of Haematology, University College London Cancer Institute, London, England, UK
| | - Frank J T Staal
- Department of Immunohematology, Leiden University Medical Center, Leiden, Netherlands
| | - David M Langenau
- Molecular Pathology and Cancer Center, Massachusetts General Hospital, Boston, MA
- Harvard Stem Cell Institute, Stem Cell and Regenerative Biology Department, Harvard University, Cambridge, MA
| | - Takaomi Sanda
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, Singapore
| | - Richard A Young
- Whitehead Institute for Biomedical Research, Cambridge, MA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA
| | - A Thomas Look
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| |
Collapse
|
5
|
Knittel G, Metzner M, Beck-Engeser G, Kan A, Ahrends T, Eilat D, Huppi K, Wabl M. Insertional hypermutation in mineral oil-induced plasmacytomas. Eur J Immunol 2014; 44:2785-801. [PMID: 24975032 PMCID: PMC4165787 DOI: 10.1002/eji.201344322] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 05/22/2014] [Accepted: 06/24/2014] [Indexed: 01/07/2023]
Abstract
Unless stimulated by a chronic inflammatory agent, such as mineral oil, plasma cell tumors are rare in young BALB/c mice. This raises the questions: What do inflammatory tissues provide to promote mutagenesis? And what is the nature of mutagenesis? We determined that mineral oil-induced plasmacytomas produce large amounts of endogenous retroelements--ecotropic and polytropic murine leukemia virus and intracisternal A particles. Therefore, plasmacytoma formation might occur, in part, by de novo insertion of these retroelements, induced or helped by the inflammation. We recovered up to ten de novo insertions in a single plasmacytoma, mostly in genes with common retroviral integration sites. Additional integrations accompany tumor evolution from a solid tumor through several generations in cell culture. The high frequency of de novo integrations into cancer genes suggests that endogenous retroelements are coresponsible for plasmacytoma formation and progression in BALB/c mice.
Collapse
Affiliation(s)
- Gero Knittel
- Department of Microbiology and Immunology, University of California, San Francisco, CA 94143-0414
| | - Mirjam Metzner
- Department of Microbiology and Immunology, University of California, San Francisco, CA 94143-0414
| | - Gabriele Beck-Engeser
- Department of Microbiology and Immunology, University of California, San Francisco, CA 94143-0414
| | - Ada Kan
- Department of Microbiology and Immunology, University of California, San Francisco, CA 94143-0414
| | - Tomasz Ahrends
- Department of Microbiology and Immunology, University of California, San Francisco, CA 94143-0414
| | - Dan Eilat
- Department of Medicine, Hadassah University Hospital and The Hebrew University Faculty of Medicine, Jerusalem 91120, Israel
| | - Konrad Huppi
- National Cancer Institute, Genetics Branch, Gene Silencing Section, Bethesda, MD 20892
| | - Matthias Wabl
- Department of Microbiology and Immunology, University of California, San Francisco, CA 94143-0414
| |
Collapse
|
6
|
De Salvo M, Raimondi L, Vella S, Adesso L, Ciarapica R, Verginelli F, Pannuti A, Citti A, Boldrini R, Milano GM, Cacchione A, Ferrari A, Collini P, Rosolen A, Bisogno G, Alaggio R, Inserra A, Locatelli M, Stifani S, Screpanti I, Miele L, Locatelli F, Rota R. Hyper-activation of Notch3 amplifies the proliferative potential of rhabdomyosarcoma cells. PLoS One 2014; 9:e96238. [PMID: 24797362 PMCID: PMC4010457 DOI: 10.1371/journal.pone.0096238] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 04/04/2014] [Indexed: 11/18/2022] Open
Abstract
Rhabdomyosarcoma (RMS) is a pediatric myogenic-derived soft tissue sarcoma that includes two major histopathological subtypes: embryonal and alveolar. The majority of alveolar RMS expresses PAX3-FOXO1 fusion oncoprotein, associated with the worst prognosis. RMS cells show myogenic markers expression but are unable to terminally differentiate. The Notch signaling pathway is a master player during myogenesis, with Notch1 activation sustaining myoblast expansion and Notch3 activation inhibiting myoblast fusion and differentiation. Accordingly, Notch1 signaling is up-regulated and activated in embryonal RMS samples and supports the proliferation of tumor cells. However, it is unable to control their differentiation properties. We previously reported that Notch3 is activated in RMS cell lines, of both alveolar and embryonal subtype, and acts by inhibiting differentiation. Moreover, Notch3 depletion reduces PAX3-FOXO1 alveolar RMS tumor growth in vivo. However, whether Notch3 activation also sustains the proliferation of RMS cells remained unclear. To address this question, we forced the expression of the activated form of Notch3, Notch3IC, in the RH30 and RH41 PAX3-FOXO1-positive alveolar and in the RD embryonal RMS cell lines and studied the proliferation of these cells. We show that, in all three cell lines tested, Notch3IC over-expression stimulates in vitro cell proliferation and prevents the effects of pharmacological Notch inhibition. Furthermore, Notch3IC further increases RH30 cell growth in vivo. Interestingly, knockdown of Notch canonical ligands JAG1 or DLL1 in RMS cell lines decreases Notch3 activity and reduces cell proliferation. Finally, the expression of Notch3IC and its target gene HES1 correlates with that of the proliferative marker Ki67 in a small cohort of primary PAX-FOXO1 alveolar RMS samples. These results strongly suggest that high levels of Notch3 activation increase the proliferative potential of RMS cells.
Collapse
MESH Headings
- Cell Line, Tumor
- Cell Proliferation
- Gene Expression Regulation, Neoplastic
- Humans
- Ki-67 Antigen/genetics
- Ki-67 Antigen/metabolism
- Oncogene Proteins, Fusion/biosynthesis
- Oncogene Proteins, Fusion/genetics
- Paired Box Transcription Factors/biosynthesis
- Paired Box Transcription Factors/genetics
- Receptor, Notch1/genetics
- Receptor, Notch1/metabolism
- Receptor, Notch3
- Receptors, Notch/genetics
- Receptors, Notch/metabolism
- Rhabdomyosarcoma, Alveolar/genetics
- Rhabdomyosarcoma, Alveolar/metabolism
- Rhabdomyosarcoma, Alveolar/pathology
- Rhabdomyosarcoma, Embryonal/genetics
- Rhabdomyosarcoma, Embryonal/metabolism
- Rhabdomyosarcoma, Embryonal/pathology
- Signal Transduction
Collapse
Affiliation(s)
- Maria De Salvo
- Department of Oncohematology, Ospedale Pediatrico Bambino Gesù, IRCCS, Roma, Italy
| | - Lavinia Raimondi
- Department of Oncohematology, Ospedale Pediatrico Bambino Gesù, IRCCS, Roma, Italy
| | - Serena Vella
- Department of Oncohematology, Ospedale Pediatrico Bambino Gesù, IRCCS, Roma, Italy
| | - Laura Adesso
- Department of Oncohematology, Ospedale Pediatrico Bambino Gesù, IRCCS, Roma, Italy
| | - Roberta Ciarapica
- Department of Oncohematology, Ospedale Pediatrico Bambino Gesù, IRCCS, Roma, Italy
| | - Federica Verginelli
- Department of Oncohematology, Ospedale Pediatrico Bambino Gesù, IRCCS, Roma, Italy
| | - Antonio Pannuti
- Stanley Scott Cancer Center, Louisiana State University Health Sciences Center and Louisiana Cancer Research Consortium, New Orleans, Louisiana, United States of America
| | - Arianna Citti
- Department of Pathology, Ospedale Pediatrico Bambino Gesù, IRCCS, Roma, Italy
| | - Renata Boldrini
- Department of Pathology, Ospedale Pediatrico Bambino Gesù, IRCCS, Roma, Italy
| | - Giuseppe M. Milano
- Department of Oncohematology, Ospedale Pediatrico Bambino Gesù, IRCCS, Roma, Italy
| | - Antonella Cacchione
- Department of Oncohematology, Ospedale Pediatrico Bambino Gesù, IRCCS, Roma, Italy
| | - Andrea Ferrari
- Pediatric Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Paola Collini
- Anatomic Pathology Unit 2, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Angelo Rosolen
- Department of Pediatrics, Oncohematology Unit, University of Padova, Padova, Italy
| | - Gianni Bisogno
- Department of Pediatrics, Oncohematology Unit, University of Padova, Padova, Italy
| | - Rita Alaggio
- Department of Pathology, University of Padova, Padova, Italy
| | - Alessandro Inserra
- Department of Surgery, Ospedale Pediatrico Bambino Gesù, IRCCS, Roma, Italy
| | - Mattia Locatelli
- Department of Scientific Directorate, Ospedale Pediatrico Bambino Gesù, IRCCS, Roma, Italy
| | - Stefano Stifani
- Centre for Neuronal Survival, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | | | - Lucio Miele
- Stanley Scott Cancer Center, Louisiana State University Health Sciences Center and Louisiana Cancer Research Consortium, New Orleans, Louisiana, United States of America
| | - Franco Locatelli
- Department of Oncohematology, Ospedale Pediatrico Bambino Gesù, IRCCS, Roma, Italy
- Dipartimento di Scienze Pediatriche, Università di Pavia, Pavia, Italy
| | - Rossella Rota
- Department of Oncohematology, Ospedale Pediatrico Bambino Gesù, IRCCS, Roma, Italy
- * E-mail:
| |
Collapse
|
7
|
Pinnell NE, Chiang MY. Collaborating Pathways that Functionally Amplify NOTCH1 Signals in T-Cell Acute Lymphoblastic Leukemia. JOURNAL OF HEMATOLOGY & TRANSFUSION 2013; 1:1004. [PMID: 26998506 PMCID: PMC4798248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Affiliation(s)
| | - Mark Y. Chiang
- Mark Y. Chiang. Department of Internal Medicne, Division of Hematology/Oncology, University of Michigan Cancer Center, Toubman Biomedical Science Research Building, 109 Zina Pitcher Place, Ann Arbor, MI 48109-2200, USA, Tel: 734-615-7513;
| |
Collapse
|
8
|
Hirano S, Kakinuma S, Amasaki Y, Nishimura M, Imaoka T, Fujimoto S, Hino O, Shimada Y. Ikaros is a critical target during simultaneous exposure to X-rays and N-ethyl-N-nitrosourea in mouse T-cell lymphomagenesis. Int J Cancer 2013; 132:259-68. [PMID: 22684892 DOI: 10.1002/ijc.27668] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 05/21/2012] [Indexed: 11/09/2022]
Abstract
Cancer risk associated with radiation exposure is considered the result of concurrent exposure to other natural and manmade carcinogens. Available data on the molecular characteristics of cancer after simultaneous exposure to radiation and chemicals are insufficient. In our study, we used a mouse thymic lymphoma (TL) model that was synergistically induced by simultaneous exposure to X-rays and N-ethyl-N-nitrosourea (ENU) at subcarcinogenic doses and analyzed the mutation frequency and spectrum of the TL-associated genes Ikaros, Notch1, p53 and Kras. We found that the point mutation frequency in Ikaros was significantly increased to 47% for simultaneous exposure compared to 13 and 0% for X-ray and ENU exposure alone, respectively. These mutations were mostly G:C > A:T at non-CpG sites and T:A > C:G, both of which are characteristic of ENU mutagenesis. About half of the point mutations were accompanied by loss of heterozygosity (LOH), typical of X-irradiation. The remaining half did not include LOH, which suggests that they were dominant-negative mutations. In Notch1, the frequency of abnormalities was high (>58%) regardless of the treatment, suggesting that Notch1 aberration may be important for T-cell lymphomagenesis. The p53 and Kras mutation frequencies were low for all treatments (<23%). Importantly, the frequency of TLs containing mutations in multiple genes, especially both Ikaros and Notch1, increased after simultaneous exposure. Thus, after simultaneous exposure, Ikaros is a critical target and is inactivated by ENU-induced point mutations and/or X-ray-induced LOH in T-cell lymphomagenesis. Furthermore, concomitant alterations of multiple tumor-associated genes may contribute to enhanced lymphomagenesis after simultaneous exposure.
Collapse
Affiliation(s)
- Shinobu Hirano
- Radiobiology for Children's Health Program, Research Center for Radiation Protection, National Institute of Radiological Sciences, Inage-Ku, Chiba, Japan
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Corrigan-Curay J, Cohen-Haguenauer O, O'Reilly M, Ross SR, Fan H, Rosenberg N, Somia N, King N, Friedmann T, Dunbar C, Aiuti A, Naldini L, Baum C, von Kalle C, Kiem HP, Montini E, Bushman F, Sorrentino BP, Carrondo M, Malech H, Gahrton G, Shapiro R, Wolff L, Rosenthal E, Jambou R, Zaia J, Kohn DB. Challenges in vector and trial design using retroviral vectors for long-term gene correction in hematopoietic stem cell gene therapy. Mol Ther 2012; 20:1084-94. [PMID: 22652996 DOI: 10.1038/mt.2012.93] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
10
|
Blacking TM, Wilson H, Argyle DJ. Is cancer a stem cell disease? Theory, evidence and implications. Vet Comp Oncol 2012; 5:76-89. [PMID: 19754791 DOI: 10.1111/j.1476-5829.2007.00127.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- T M Blacking
- Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Hospital for Small Animals, Easter Bush Veterinary Centre, Midlothian, UK
| | | | | |
Collapse
|
11
|
Guo D, Teng Q, Ji C. NOTCH and phosphatidylinositide 3-kinase/phosphatase and tensin homolog deleted on chromosome ten/AKT/mammalian target of rapamycin (mTOR) signaling in T-cell development and T-cell acute lymphoblastic leukemia. Leuk Lymphoma 2011; 52:1200-10. [PMID: 21463127 DOI: 10.3109/10428194.2011.564696] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Activating mutations in NOTCH1 consitute the most prominent genetic abnormality in T-cell acute lymphoblastic leukemia (T-ALL). However, most T-ALL cell lines with NOTCH1 mutations are resistant to treatment with γ-secretase inhibitors (GSIs). The spotlight is now shifting to the phosphatidylinositide 3-kinase (PI3K)/phosphatase and tensin homolog deleted on chromosome ten (PTEN)/AKT/mammalian target of rapamycin (mTOR) pathway as another key potential target. These two signaling routes are deregulated in many types of cancer. In this review we discuss these two pathways with respect to their signaling mechanisms, functions during T-cell development, and their mutual roles in the development of T-ALL.
Collapse
Affiliation(s)
- Dongmei Guo
- Department of Hematology, The Central Hospital of Taian, Taian, Shandong, P R China.
| | | | | |
Collapse
|
12
|
Abstract
Early genetics in flies revealed that Notch is a complex pleiotropic locus. We now know that Notch is a receptor that plays prominent roles during development and functions locally in many tissues to instruct cell fate decisions. Drosophila has been an excellent model to identify genetically the elements that contribute to the canonical Notch signaling transduction machinery defined as DSL-Notch-CSL-MAML axis. This core pathway is required in many biological events in all animals. Though the canonical Notch pathway is relatively simple, and as the steps of the events are now more deeply understood, an increasing number of reports in the last decade show that many other molecules can influence Notch signaling, some by competing with a given element of the cascade. This may occur at any step bringing more diversity and plasticity to the Notch pathway. Most of these regulatory molecules act in a context-specific manner and/or are themselves key regulators in other pathways, providing increasing examples of how connections among distinct pathway modulate each other ("cross talk"). The noncanonical signals discussed in this chapter are broadly defined and correspond to the following: DSL-independent activations, interactions with non-DSL ligands, CSL-independent signaling, signal transduction without cleavage, differential posttranslational modifications, competition/protection for a cofactor, and cross talk with other signaling pathways [Wnt, bone morphogenic protein (BMP), NF-kappaB, etc.]. Though some deemed controversial, these events may impact human diseases. Understanding the molecular nature of these events will allow avoidance of adverse effects during possible clinical treatments. In this review, we will focus on some noncanonical Notch activities and their in vivo significance during developmental and pathological processes.
Collapse
Affiliation(s)
- Pascal Heitzler
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
| |
Collapse
|
13
|
Rad R, Rad L, Wang W, Cadinanos J, Vassiliou G, Rice S, Campos LS, Yusa K, Banerjee R, Li MA, de la Rosa J, Strong A, Lu D, Ellis P, Conte N, Yang FT, Liu P, Bradley A. PiggyBac transposon mutagenesis: a tool for cancer gene discovery in mice. Science 2010; 330:1104-7. [PMID: 20947725 PMCID: PMC3719098 DOI: 10.1126/science.1193004] [Citation(s) in RCA: 192] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Transposons are mobile DNA segments that can disrupt gene function by inserting in or near genes. Here, we show that insertional mutagenesis by the PiggyBac transposon can be used for cancer gene discovery in mice. PiggyBac transposition in genetically engineered transposon-transposase mice induced cancers whose type (hematopoietic versus solid) and latency were dependent on the regulatory elements introduced into transposons. Analysis of 63 hematopoietic tumors revealed that PiggyBac is capable of genome-wide mutagenesis. The PiggyBac screen uncovered many cancer genes not identified in previous retroviral or Sleeping Beauty transposon screens, including Spic, which encodes a PU.1-related transcription factor, and Hdac7, a histone deacetylase gene. PiggyBac and Sleeping Beauty have different integration preferences. To maximize the utility of the tool, we engineered 21 mouse lines to be compatible with both transposon systems in constitutive, tissue- or temporal-specific mutagenesis. Mice with different transposon types, copy numbers, and chromosomal locations support wide applicability.
Collapse
Affiliation(s)
- Roland Rad
- The Wellcome Trust Sanger Institute Genome Campus Hinxton/Cambridge CB10 1SA United Kingdom
| | - Lena Rad
- The Wellcome Trust Sanger Institute Genome Campus Hinxton/Cambridge CB10 1SA United Kingdom
| | - Wei Wang
- The Wellcome Trust Sanger Institute Genome Campus Hinxton/Cambridge CB10 1SA United Kingdom
| | - Juan Cadinanos
- The Wellcome Trust Sanger Institute Genome Campus Hinxton/Cambridge CB10 1SA United Kingdom
- Instituto de Medicina Oncológica y Molecular de Asturias (IMOMA) Avda. Richard Grandío s/n Oviedo, 33193 Spain
| | - George Vassiliou
- The Wellcome Trust Sanger Institute Genome Campus Hinxton/Cambridge CB10 1SA United Kingdom
| | - Stephen Rice
- The Wellcome Trust Sanger Institute Genome Campus Hinxton/Cambridge CB10 1SA United Kingdom
| | - Lia S. Campos
- The Wellcome Trust Sanger Institute Genome Campus Hinxton/Cambridge CB10 1SA United Kingdom
| | - Kosuke Yusa
- The Wellcome Trust Sanger Institute Genome Campus Hinxton/Cambridge CB10 1SA United Kingdom
| | - Ruby Banerjee
- The Wellcome Trust Sanger Institute Genome Campus Hinxton/Cambridge CB10 1SA United Kingdom
| | - Meng Amy Li
- The Wellcome Trust Sanger Institute Genome Campus Hinxton/Cambridge CB10 1SA United Kingdom
| | - Jorge de la Rosa
- Instituto de Medicina Oncológica y Molecular de Asturias (IMOMA) Avda. Richard Grandío s/n Oviedo, 33193 Spain
| | - Alexander Strong
- The Wellcome Trust Sanger Institute Genome Campus Hinxton/Cambridge CB10 1SA United Kingdom
| | - Dong Lu
- The Wellcome Trust Sanger Institute Genome Campus Hinxton/Cambridge CB10 1SA United Kingdom
| | - Peter Ellis
- The Wellcome Trust Sanger Institute Genome Campus Hinxton/Cambridge CB10 1SA United Kingdom
| | - Nathalie Conte
- The Wellcome Trust Sanger Institute Genome Campus Hinxton/Cambridge CB10 1SA United Kingdom
| | - Fang Tang Yang
- The Wellcome Trust Sanger Institute Genome Campus Hinxton/Cambridge CB10 1SA United Kingdom
| | - Pentao Liu
- The Wellcome Trust Sanger Institute Genome Campus Hinxton/Cambridge CB10 1SA United Kingdom
| | - Allan Bradley
- The Wellcome Trust Sanger Institute Genome Campus Hinxton/Cambridge CB10 1SA United Kingdom
| |
Collapse
|
14
|
Aster JC, Blacklow SC, Pear WS. Notch signalling in T-cell lymphoblastic leukaemia/lymphoma and other haematological malignancies. J Pathol 2010; 223:262-73. [PMID: 20967796 DOI: 10.1002/path.2789] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Revised: 09/10/2010] [Accepted: 09/16/2010] [Indexed: 12/21/2022]
Abstract
Notch receptors participate in a highly conserved signalling pathway that regulates normal development and tissue homeostasis in a context- and dose-dependent manner. Deregulated Notch signalling has been implicated in many diseases, but the clearest example of a pathogenic role is found in T-cell lymphoblastic leukaemia/lymphoma (T-LL), in which the majority of human and murine tumours have acquired mutations that lead to aberrant increases in Notch1 signalling. Remarkably, it appears that the selective pressure for Notch mutations is virtually unique among cancers to T-LL, presumably reflecting a special context-dependent role for Notch in normal T-cell progenitors. Nevertheless, there are some recent reports suggesting that Notch signalling has subtle, yet important roles in other forms of haematological malignancy as well. Here, we review the role of Notch signalling in various blood cancers, focusing on T-LL with an eye towards targeted therapeutics.
Collapse
Affiliation(s)
- Jon C Aster
- Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115, USA.
| | | | | |
Collapse
|
15
|
Deletion-based mechanisms of Notch1 activation in T-ALL: key roles for RAG recombinase and a conserved internal translational start site in Notch1. Blood 2010; 116:5455-64. [PMID: 20852131 DOI: 10.1182/blood-2010-05-286328] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Point mutations that trigger ligand-independent proteolysis of the Notch1 ectodomain occur frequently in human T-cell acute lymphoblastic leukemia (T-ALL) but are rare in murine T-ALL, suggesting that other mechanisms account for Notch1 activation in murine tumors. Here we show that most murine T-ALLs harbor Notch1 deletions that fall into 2 types, both leading to ligand-independent Notch1 activation. Type 1 deletions remove exon 1 and the proximal promoter, appear to be RAG-mediated, and are associated with mRNA transcripts that initiate from 3' regions of Notch1. In line with the RAG dependency of these rearrangements, RAG2 binds to the 5' end of Notch1 in normal thymocytes near the deletion breakpoints. Type 2 deletions remove sequences between exon 1 and exons 26 to 28 of Notch1, appear to be RAG-independent, and are associated with transcripts in which exon 1 is spliced out of frame to 3' Notch1 exons. Translation of both types of transcripts initiates at a conserved methionine residue, M1727, which lies within the Notch1 transmembrane domain. Polypeptides initiating at M1727 insert into membranes and are subject to constitutive cleavage by γ-secretase. Thus, like human T-ALL, murine T-ALL is often associated with acquired mutations that cause ligand-independent Notch1 activation.
Collapse
|
16
|
Oncogenic activation of the Notch1 gene by deletion of its promoter in Ikaros-deficient T-ALL. Blood 2010; 116:5443-54. [PMID: 20829372 DOI: 10.1182/blood-2010-05-286658] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The Notch pathway is frequently activated in T-cell acute lymphoblastic leukemias (T-ALLs). Of the Notch receptors, Notch1 is a recurrent target of gain-of-function mutations and Notch3 is expressed in all T-ALLs, but it is currently unclear how these receptors contribute to T-cell transformation in vivo. We investigated the role of Notch1 and Notch3 in T-ALL progression by a genetic approach, in mice bearing a knockdown mutation in the Ikaros gene that spontaneously develop Notch-dependent T-ALL. While deletion of Notch3 has little effect, T cell-specific deletion of floxed Notch1 promoter/exon 1 sequences significantly accelerates leukemogenesis. Notch1-deleted tumors lack surface Notch1 but express γ-secretase-cleaved intracellular Notch1 proteins. In addition, these tumors accumulate high levels of truncated Notch1 transcripts that are caused by aberrant transcription from cryptic initiation sites in the 3' part of the gene. Deletion of the floxed sequences directly reprograms the Notch1 locus to begin transcription from these 3' promoters and is accompanied by an epigenetic reorganization of the Notch1 locus that is consistent with transcriptional activation. Further, spontaneous deletion of 5' Notch1 sequences occurs in approximately 75% of Ikaros-deficient T-ALLs. These results reveal a novel mechanism for the oncogenic activation of the Notch1 gene after deletion of its main promoter.
Collapse
|
17
|
Cancer gene discovery in mouse and man. Biochim Biophys Acta Rev Cancer 2009; 1796:140-61. [PMID: 19285540 PMCID: PMC2756404 DOI: 10.1016/j.bbcan.2009.03.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2009] [Revised: 03/03/2009] [Accepted: 03/05/2009] [Indexed: 12/31/2022]
Abstract
The elucidation of the human and mouse genome sequence and developments in high-throughput genome analysis, and in computational tools, have made it possible to profile entire cancer genomes. In parallel with these advances mouse models of cancer have evolved into a powerful tool for cancer gene discovery. Here we discuss the approaches that may be used for cancer gene identification in both human and mouse and discuss how a cross-species 'oncogenomics' approach to cancer gene discovery represents a powerful strategy for finding genes that drive tumourigenesis.
Collapse
|
18
|
Teitell MA, Pandolfi PP. Molecular Genetics of Acute Lymphoblastic Leukemia. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2009; 4:175-98. [DOI: 10.1146/annurev.pathol.4.110807.092227] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Michael A. Teitell
- Departments of Pathology and Pediatrics, Jonsson Comprehensive Cancer Center, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, and California NanoSystems Institute, David Geffen School of Medicine, University of California, Los Angeles, California 90095-1732;
| | - Pier Paolo Pandolfi
- Departments of Medicine and Pathology, Harvard Medical School, Boston, Massachusetts 02115
- Division of Cancer Genetics and Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215;
| |
Collapse
|
19
|
Uren AG, Kool J, Matentzoglu K, de Ridder J, Mattison J, van Uitert M, Lagcher W, Sie D, Tanger E, Cox T, Reinders M, Hubbard TJ, Rogers J, Jonkers J, Wessels L, Adams DJ, van Lohuizen M, Berns A. Large-scale mutagenesis in p19(ARF)- and p53-deficient mice identifies cancer genes and their collaborative networks. Cell 2008; 133:727-41. [PMID: 18485879 PMCID: PMC2405818 DOI: 10.1016/j.cell.2008.03.021] [Citation(s) in RCA: 158] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2007] [Revised: 01/21/2008] [Accepted: 03/10/2008] [Indexed: 01/25/2023]
Abstract
p53 and p19(ARF) are tumor suppressors frequently mutated in human tumors. In a high-throughput screen in mice for mutations collaborating with either p53 or p19(ARF) deficiency, we identified 10,806 retroviral insertion sites, implicating over 300 loci in tumorigenesis. This dataset reveals 20 genes that are specifically mutated in either p19(ARF)-deficient, p53-deficient or wild-type mice (including Flt3, mmu-mir-106a-363, Smg6, and Ccnd3), as well as networks of significant collaborative and mutually exclusive interactions between cancer genes. Furthermore, we found candidate tumor suppressor genes, as well as distinct clusters of insertions within genes like Flt3 and Notch1 that induce mutants with different spectra of genetic interactions. Cross species comparative analysis with aCGH data of human cancer cell lines revealed known and candidate oncogenes (Mmp13, Slamf6, and Rreb1) and tumor suppressors (Wwox and Arfrp2). This dataset should prove to be a rich resource for the study of genetic interactions that underlie tumorigenesis.
Collapse
Affiliation(s)
- Anthony G Uren
- Division of Molecular Genetics and Cancer Genomics Centre, Netherlands Cancer Institute, Plesmanlaan 121, 1066CX, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Aster JC, Pear WS, Blacklow SC. Notch signaling in leukemia. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2008; 3:587-613. [PMID: 18039126 DOI: 10.1146/annurev.pathmechdis.3.121806.154300] [Citation(s) in RCA: 207] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Recent discoveries indicate that gain-of-function mutations in the Notch1 receptor are very common in human T cell acute lymphoblastic leukemia/lymphoma. This review discusses what these mutations have taught us about normal and pathophysiologic Notch1 signaling, and how these insights may lead to new targeted therapies for patients with this aggressive form of cancer.
Collapse
Affiliation(s)
- Jon C Aster
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | | | | |
Collapse
|
21
|
Cardoso BA, Gírio A, Henriques C, Martins LR, Santos C, Silva A, Barata JT. Aberrant signaling in T-cell acute lymphoblastic leukemia: biological and therapeutic implications. ACTA ACUST UNITED AC 2008; 41:344-50. [PMID: 18488097 DOI: 10.1590/s0100-879x2008005000016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2007] [Accepted: 03/31/2008] [Indexed: 02/14/2023]
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is a biologically heterogeneous disease with respect to phenotype, gene expression profile and activation of particular intracellular signaling pathways. Despite very significant improvements, current therapeutic regimens still fail to cure a portion of the patients and frequently implicate the use of aggressive protocols with long-term side effects. In this review, we focused on how deregulation of critical signaling pathways, in particular Notch, PI3K/Akt, MAPK, Jak/STAT and TGF-beta, may contribute to T-ALL. Identifying the alterations that affect intracellular pathways that regulate cell cycle and apoptosis is essential to understanding the biology of this malignancy, to define more effective markers for the correct stratification of patients into appropriate therapeutic regimens and to identify novel targets for the development of specific, less detrimental therapies for T-ALL.
Collapse
Affiliation(s)
- B A Cardoso
- Unidade de Biologia do Cancro, Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
Acute lymphoblastic leukaemia, a malignant disorder of lymphoid progenitor cells, affects both children and adults, with peak prevalence between the ages of 2 and 5 years. Steady progress in development of effective treatments has led to a cure rate of more than 80% in children, creating opportunities for innovative approaches that would preserve past gains in leukaemia-free survival while reducing the toxic side-effects of current intensive regimens. Advances in our understanding of the pathobiology of acute lymphoblastic leukaemia, fuelled by emerging molecular technologies, suggest that drugs specifically targeting the genetic defects of leukaemic cells could revolutionise management of this disease. Meanwhile, studies are underway to ascertain the precise events that take place in the genesis of acute lymphoblastic leukaemia, to enhance the clinical application of known risk factors and antileukaemic agents, and to identify treatment regimens that might boost the generally low cure rates in adults and subgroups of children with high-risk leukaemia.
Collapse
Affiliation(s)
- Ching-Hon Pui
- Department of Oncology, St Jude Children's Research Hospital and University of Tennessee Health Science Center, Memphis, TN 38105, USA.
| | | | | |
Collapse
|
23
|
Beck-Engeser GB, Lum AM, Huppi K, Caplen NJ, Wang BB, Wabl M. Pvt1-encoded microRNAs in oncogenesis. Retrovirology 2008; 5:4. [PMID: 18194563 PMCID: PMC2257975 DOI: 10.1186/1742-4690-5-4] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2007] [Accepted: 01/14/2008] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The functional significance of the Pvt1 locus in the oncogenesis of Burkitt's lymphoma and plasmacytomas has remained a puzzle. In these tumors, Pvt1 is the site of reciprocal translocations to immunoglobulin loci. Although the locus encodes a number of alternative transcripts, no protein or regulatory RNA products were found. The recent identification of non-coding microRNAs encoded within the PVT1 region has suggested a regulatory role for this locus. RESULTS The mouse Pvt1 locus encodes several microRNAs. In mouse T cell lymphomas induced by retroviral insertions into the locus, the Pvt1 transcripts, and at least one of their microRNA products, mmu-miR-1204 are overexpressed. Whereas up to seven co-mutations can be found in a single tumor, in over 2,000 tumors none had insertions into both the Myc and Pvt1 loci. CONCLUSION Judging from the large number of integrations into the Pvt1 locus - more than in the nearby Myc locus - Pvt1 and the microRNAs encoded by it are as important as Myc in T lymphomagenesis, and, presumably, in T cell activation. An analysis of the co-mutations in the lymphomas likely place Pvt1 and Myc into the same pathway.
Collapse
Affiliation(s)
- Gabriele B Beck-Engeser
- Department of Microbiology and Immunology, University of California, San Francisco, CA 94143-0414, USA.
| | | | | | | | | | | |
Collapse
|
24
|
Ohi H, Mishima Y, Kamimura K, Maruyama M, Sasai K, Kominami R. Multi-step lymphomagenesis deduced from DNA changes in thymic lymphomas and atrophic thymuses at various times after gamma-irradiation. Oncogene 2007; 26:5280-5289. [PMID: 17325664 DOI: 10.1038/sj.onc.1210325] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2006] [Revised: 11/07/2006] [Accepted: 12/12/2006] [Indexed: 12/15/2022]
Abstract
Whole-body gamma-irradiation to mice causes thymic atrophy where a population of precancerous cells with mutation can be found. Thus, clonal growth and DNA changes at Bcl11b, Ikaros, Pten, Notch1 and Myc were examined in not only thymic lymphomas but also in atrophic thymuses at various times after irradiation. Clonal expansion was detected from the distinct patterns of rearrangements at the TCRbeta receptor locus in a fraction of atrophic thymuses at as early as 30 days after irradiation. This expansion may be in part owing to the rearranged TCRbeta signaling because the transfer of bone marrow cells with the rearrangement and the wild-type locus into severe-combined immunodeficiency mice showed preferential growth of the rearranged thymocytes in atrophic thymus. Loss of heterozygosity (LOH) at Bcl11b and trisomy of Myc were found at high frequencies in both lymphomas and atrophic thymuses, and in contrast, LOH at Ikaros and Pten were rare in atrophic thymuses but prevalent in lymphomas. Notch1 activation was detected in lymphomas and in atrophic thymuses only at a late stage. Similar patterns of DNA changes were found in atrophic thymuses induced in Bcl11b(+/-) mice. These results suggest the order of genetic changes during lymphomagenesis, Bcl11b and Myc being at the early stage; whereas Ikaros, Pten and Notch1 at the late stage.
Collapse
Affiliation(s)
- H Ohi
- Department of Molecular Genetics, Graduate School of Medical and Dental Sciences, Niigata University, Asahimachi, Niigata, Japan
| | | | | | | | | | | |
Collapse
|
25
|
Howard G, Eiges R, Gaudet F, Jaenisch R, Eden A. Activation and transposition of endogenous retroviral elements in hypomethylation induced tumors in mice. Oncogene 2007; 27:404-8. [PMID: 17621273 DOI: 10.1038/sj.onc.1210631] [Citation(s) in RCA: 227] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Genomewide DNA hypomethylation is a consistent finding in human tumors, but the importance of this change for human tumorigenesis remains an open question. We have previously reported that mice carrying a hypomorphic allele for the maintenance DNA methyltransferase (Dnmt1(chip/-)) are hypomethylated and develop thymic lymphomas, demonstrating that genomewide DNA hypomethylation can induce tumors. Hypomethylated cells exhibit inherent chromosomal instability, which is revealed in the lymphomas as a consistent trisomy of chromosome 15. We now report another aspect of the molecular basis for tumor development upon DNA hypomethylation. Seven out of 16 hypomethylation-induced lymphomas were found to contain an intracisternal A particle (IAP) somatic insertion in the middle of the Notch1 genomic locus, leading to generation of an oncogenic form of Notch1 in the tumors. This finding suggests that the molecular basis for hypomethylation-induced tumors in this model involves chromosomal instability events accompanied by activation of endogenous retroviral elements. Our findings validate the proposed role of DNA methylation in suppression of transposable elements in mammalian cells and demonstrate the importance of DNA methylation for normal cell function as well as the potential consequences of spontaneously occurring or chemically induced DNA hypomethylation.
Collapse
Affiliation(s)
- G Howard
- Department of Animal and Cell Biology, Institute of Life Sciences, The Hebrew University, Jerusalem, Israel
| | | | | | | | | |
Collapse
|
26
|
Fasseu M, Aplan PD, Chopin M, Boissel N, Bories JC, Soulier J, von Boehmer H, Sigaux F, Regnault A. p16INK4A tumor suppressor gene expression and CD3epsilon deficiency but not pre-TCR deficiency inhibit TAL1-linked T-lineage leukemogenesis. Blood 2007; 110:2610-9. [PMID: 17507663 PMCID: PMC1988920 DOI: 10.1182/blood-2007-01-066209] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Inactivation of the CDKN2 genes that encode the p16(INK4A) and p14(ARF) proteins occurs in the majority of human T-cell acute lymphoblastic leukemias (T-ALLs). Ectopic expression of TAL1 and LMO1 genes is linked to the development of T-ALL in humans. In TAL1xLMO1 mice, leukemia develops in 100% of mice at 5 months. To identify the molecular events crucial to leukemic transformation, we produced several mouse models. We report here that expression of P16(INK4A) in developing TAL1xLMO1 thymocytes blocks leukemogenesis in the majority of the mice, and the leukemias that eventually develop show P16(INK4A) loss of expression. Events related to the T-cell receptor beta selection process are thought to be important for leukemic transformation. We show here that the absence of the pTalpha chain only slightly delays the appearance of TAL1xLMO1-induced T-ALL, which indicates a minor role of the pTalpha chain. We also show that the CD3epsilon-mediated signal transduction pathway is essential for this transformation process, since the TAL1xLMO1xCD3epsilon-deficient mice do not develop T-ALL for up to 1 year.
Collapse
MESH Headings
- Animals
- Basic Helix-Loop-Helix Transcription Factors/genetics
- Basic Helix-Loop-Helix Transcription Factors/metabolism
- CD3 Complex/genetics
- CD3 Complex/metabolism
- Cell Differentiation
- Cell Lineage
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/pathology
- Cyclin D3
- Cyclin-Dependent Kinase Inhibitor p16/genetics
- Cyclin-Dependent Kinase Inhibitor p16/metabolism
- Cyclins/metabolism
- Gene Expression Regulation, Neoplastic
- Humans
- LIM Domain Proteins
- Leukemia/genetics
- Leukemia/metabolism
- Leukemia/pathology
- Mice
- Mice, Transgenic
- Mutation/genetics
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/metabolism
- RNA, Messenger/genetics
- Receptor, Notch1/genetics
- Receptor, Notch1/metabolism
- Receptors, Antigen, T-Cell/deficiency
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
- Survival Rate
- T-Cell Acute Lymphocytic Leukemia Protein 1
- Thymus Gland/cytology
- Thymus Gland/metabolism
- Transcription Factors/genetics
- Transcription Factors/metabolism
Collapse
Affiliation(s)
- Magali Fasseu
- Institut National de la Santé et de la Recherche Médicale (INSERM) U462, Institut Universitaire d'Hématologie, Hôpital Saint-Louis, Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Li X, Calvo E, Cool M, Chrobak P, Kay DG, Jolicoeur P. Overexpression of Notch1 ectodomain in myeloid cells induces vascular malformations through a paracrine pathway. THE AMERICAN JOURNAL OF PATHOLOGY 2007; 170:399-415. [PMID: 17200211 PMCID: PMC1762695 DOI: 10.2353/ajpath.2007.060351] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
We previously reported that truncation of Notch1 (N1) by provirus insertion leads to overexpression of both the intracellular (N1(IC)) and the extracellular (N1(EC)) domains. We produced transgenic (Tg) mice expressing N1(EC) in T cells and in cells of the myeloid lineage under the regulation of the CD4 gene. These CD4C/N1(EC) Tg mice developed vascular disease, predominantly in the liver: superficial distorted vessels, cavernae, lower branching of parenchymal vessels, capillarized sinusoids, and aberrant smooth muscle/endothelial cell topography. The disease developed in lethally irradiated normal mice transplanted with Tg bone marrow or fetal liver cells as well as in Rag-/- Tg mice. In nude mice transplanted with fetal liver cells from (ROSA26 x CD4C/N1(EC)) F1 Tg mice, abnormal vessels were of recipient origin. Transplantation of Tg peritoneal macrophages into normal recipients also induced abnormal vessels. These Tg macrophages showed impaired functions, and their conditioned medium inhibited the proliferation of liver sinusoid endothelial cells in vitro. The Egr-1 gene and some of its targets (Jag1, FIII, FXIII-A, MCP-1, and MCP-5), previously implicated in hemangioma or vascular malformations, were overexpressed in Tg macrophages. These results show that myeloid cells can be reprogrammed by N1(EC) to induce vascular malformations through a paracrine pathway.
Collapse
Affiliation(s)
- Xiujie Li
- Laboratory of Molecular Biology, Clinical Research Institute of Montreal, Montreal, Quebec, Canada
| | | | | | | | | | | |
Collapse
|
28
|
Guentchev M, McKay RDG. Notch controls proliferation and differentiation of stem cells in a dose-dependent manner. Eur J Neurosci 2006; 23:2289-96. [PMID: 16706837 DOI: 10.1111/j.1460-9568.2006.04766.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Self-renewal and differentiation of CNS stem cells are regulated by still poorly understood cell-cell interactions. Notch is a well-known cell surface protein that can promote both cell cycle progression and mitotic arrest but the molecular mechanism controlling these opposite effects is unknown. Here we demonstrate that, in CNS stem cells, the level of active Notch1 determines the cellular response. Specifically, low levels of the active form of Notch1 promote proliferation whereas high levels lead to growth arrest. Here we provide the first evidence that Notch effects on proliferation and differentiation are a function of dose, and propose a hypothesis on how oncogenes may also act as tumor suppressors.
Collapse
Affiliation(s)
- Marin Guentchev
- Laboratory of Molecular Biology, NINDS Porter Neuroscience Research Center, Bethesda, MD, USA.
| | | |
Collapse
|
29
|
Priceputu E, Bouallaga I, Zhang Y, Li X, Chrobak P, Hanna ZS, Poudrier J, Kay DG, Jolicoeur P. Structurally distinct ligand-binding or ligand-independent Notch1 mutants are leukemogenic but affect thymocyte development, apoptosis, and metastasis differently. THE JOURNAL OF IMMUNOLOGY 2006; 177:2153-66. [PMID: 16887975 DOI: 10.4049/jimmunol.177.4.2153] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We previously found that provirus insertion in T cell tumors of mouse mammary tumor virus/c-myc transgenic (Tg) mice induced two forms of Notch1 mutations. Type I mutations generated two truncated molecules, one intracellular (IC) (Notch1(IC)) and one extracellular (Notch1(EC)), while in type II mutations Notch1 was deleted of its C terminus (Notch1(DeltaCT)). We expressed these mutants in Tg mice using the CD4 promoter. Both Notch1(IC) and Notch1(DeltaCT), but not Notch1(EC), Tg mice developed double-positive (DP) thymomas. These disseminated more frequently in Notch1(DeltaCT) Tg mice. Double (Notch1(IC) x myc) or (Notch1(DeltaCT) x myc) Tg mice developed thymoma with a much shorter latency than single Tg mice, providing genetic evidence of a collaboration between these two oncogenes. FACS analysis of preleukemic thymocytes did not reveal major T cell differentiation anomalies, except for a higher number of DP cells and an accumulation of TCR(high)CD2(high)CD25(high) DP cells in Notch1(IC), and less so in Notch1(DeltaCT) Tg mice. This was associated with enhanced in vivo thymocyte proliferation. However, Notch1(IC), but not Notch1(DeltaCT), DP thymocytes were protected against apoptosis induced in vivo by dexamethasone and anti-CD3 and in vitro by anti-CD3/CD28 Abs. This indicates that the C terminus of Notch1 and/or the conserved regulation by its ligands have a significant impact on the induced T cell phenotype. Therefore, Notch1(IC) and Notch1(DeltaCT) behave as oncogenes for T cells. Because these two Notch1 mutations are very similar to those described in some forms of human T cell leukemia, these Tg mice may represent relevant models of these human leukemias.
Collapse
MESH Headings
- Animals
- Apoptosis/genetics
- Apoptosis/immunology
- Cell Differentiation/genetics
- Cell Differentiation/immunology
- Disease Models, Animal
- Gene Deletion
- Leukemia-Lymphoma, Adult T-Cell/genetics
- Leukemia-Lymphoma, Adult T-Cell/immunology
- Leukemia-Lymphoma, Adult T-Cell/pathology
- Ligands
- Lymphatic Metastasis
- Mice
- Mice, Inbred C3H
- Mice, Inbred C57BL
- Mice, Nude
- Mice, Transgenic
- Preleukemia/genetics
- Preleukemia/immunology
- Preleukemia/pathology
- Protein Binding/immunology
- Proto-Oncogene Proteins c-myc/biosynthesis
- Proto-Oncogene Proteins c-myc/genetics
- Receptor, Notch1/biosynthesis
- Receptor, Notch1/chemistry
- Receptor, Notch1/genetics
- Receptor, Notch1/metabolism
- Thymoma/genetics
- Thymoma/immunology
- Thymoma/pathology
- Thymoma/secondary
- Thymus Gland/immunology
- Thymus Gland/pathology
- Thymus Neoplasms/genetics
- Thymus Neoplasms/immunology
- Thymus Neoplasms/pathology
- Thymus Neoplasms/secondary
Collapse
Affiliation(s)
- Elena Priceputu
- Laboratory of Molecular Biology, Clinical Research Institute of Montreal, 110 Pine Avenue West, Montréal, Québec, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Chiang MY, Xu ML, Histen G, Shestova O, Roy M, Nam Y, Blacklow SC, Sacks DB, Pear WS, Aster JC. Identification of a conserved negative regulatory sequence that influences the leukemogenic activity of NOTCH1. Mol Cell Biol 2006; 26:6261-71. [PMID: 16880534 PMCID: PMC1592797 DOI: 10.1128/mcb.02478-05] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
NOTCH1 is a large type I transmembrane receptor that regulates normal T-cell development via a signaling pathway that relies on regulated proteolysis. Ligand binding induces proteolytic cleavages in NOTCH1 that release its intracellular domain (ICN1), which translocates to the nucleus and activates target genes by forming a short-lived nuclear complex with two other proteins, the DNA-binding factor CSL and a Mastermind-like (MAML) coactivator. Recent work has shown that human T-ALL is frequently associated with C-terminal NOTCH1 truncations, which uniformly remove sequences lying between residues 2524 and 2556. This region includes the highly conserved sequence WSSSSP (S4), which based on its amino acid content appeared to be a likely site for regulatory serine phosphorylation events. We show here that the mutation of the S4 sequence leads to hypophosphorylation of ICN1; increased NOTCH1 signaling; and the stabilization of complexes containing ICN1, CSL, and MAML1. Consistent with these in vitro studies, mutation of the WSSSSP sequence converts nonleukemogenic weak gain-of-function NOTCH1 alleles into alleles that cause aggressive T-ALLs in a murine bone marrow transplant model. These studies indicate that S4 is an important negative regulatory sequence and that the deletion of S4 likely contributes to the development of human T-ALL.
Collapse
Affiliation(s)
- Mark Y Chiang
- Department of Hematology/Oncology, Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Fujii Y, Yada M, Nishiyama M, Kamura T, Takahashi H, Tsunematsu R, Susaki E, Nakagawa T, Matsumoto A, Nakayama KI. Fbxw7 contributes to tumor suppression by targeting multiple proteins for ubiquitin-dependent degradation. Cancer Sci 2006; 97:729-36. [PMID: 16863506 PMCID: PMC11159495 DOI: 10.1111/j.1349-7006.2006.00239.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Fbxw7 (also known as Sel-10, hCdc4 or hAgo) is the F-box protein component of a Skp1-Cul1-F-box protein (SCF) ubiquitin ligase. Fbxw7 contributes to the ubiquitin-mediated degradation of cyclin E, c-Myc, Aurora-A, Notch and c-Jun, all of which appear to function as cell-cycle promoters and oncogenic proteins. Loss of Fbxw7 results in elevated expression of its substrates, which may lead to oncogenesis. However, it remains largely unclear which accumulating substrate is most related to cancer development in Fbxw7-mutant cancer cells. In the present study, we examined the abundance of cyclin E, c-Myc and Aurora-A in seven cancer cell lines, which harbor wild-type (three lines) or mutant (four lines) Fbxw7. Although these three substrates accumulated in the Fbxw7-mutant cells, the extent of increase in the expression of these proteins varied in each line. Forced expression of Fbxw7 reduced the levels of cyclin E, c-Myc and Aurora-A in the Fbxw7-mutant cells. In contrast, a decrease in the expression of cyclin E, c-Myc or Aurora-A by RNA interference significantly suppressed the rate of proliferation and anchorage-independent growth of the Fbxw7-mutant cells. These findings thus suggest that the loss of Fbxw7 results in accumulation of cyclin E, c-Myc and Aurora-A, all of which appear to be required for growth promotion of cancer cells. Fbxw7 seems to regulate the levels of multiple targets to suppress cancer development.
Collapse
Affiliation(s)
- Yo Fujii
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Weng AP, Millholland JM, Yashiro-Ohtani Y, Arcangeli ML, Lau A, Wai C, Del Bianco C, Rodriguez CG, Sai H, Tobias J, Li Y, Wolfe MS, Shachaf C, Felsher D, Blacklow SC, Pear WS, Aster JC. c-Myc is an important direct target of Notch1 in T-cell acute lymphoblastic leukemia/lymphoma. Genes Dev 2006; 20:2096-109. [PMID: 16847353 PMCID: PMC1536060 DOI: 10.1101/gad.1450406] [Citation(s) in RCA: 684] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2006] [Accepted: 06/06/2006] [Indexed: 02/06/2023]
Abstract
Human acute T-cell lymphoblastic leukemias and lymphomas (T-ALL) are commonly associated with gain-of-function mutations in Notch1 that contribute to T-ALL induction and maintenance. Starting from an expression-profiling screen, we identified c-myc as a direct target of Notch1 in Notch-dependent T-ALL cell lines, in which Notch accounts for the majority of c-myc expression. In functional assays, inhibitors of c-myc interfere with the progrowth effects of activated Notch1, and enforced expression of c-myc rescues multiple Notch1-dependent T-ALL cell lines from Notch withdrawal. The existence of a Notch1-c-myc signaling axis was bolstered further by experiments using c-myc-dependent murine T-ALL cells, which are rescued from withdrawal of c-myc by retroviral transduction of activated Notch1. This Notch1-mediated rescue is associated with the up-regulation of endogenous murine c-myc and its downstream transcriptional targets, and the acquisition of sensitivity to Notch pathway inhibitors. Additionally, we show that primary murine thymocytes at the DN3 stage of development depend on ligand-induced Notch signaling to maintain c-myc expression. Together, these data implicate c-myc as a developmentally regulated direct downstream target of Notch1 that contributes to the growth of T-ALL cells.
Collapse
Affiliation(s)
- Andrew P Weng
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Zhu YM, Zhao WL, Fu JF, Shi JY, Pan Q, Hu J, Gao XD, Chen B, Li JM, Xiong SM, Gu LJ, Tang JY, Liang H, Jiang H, Xue YQ, Shen ZX, Chen Z, Chen SJ. NOTCH1 mutations in T-cell acute lymphoblastic leukemia: prognostic significance and implication in multifactorial leukemogenesis. Clin Cancer Res 2006; 12:3043-9. [PMID: 16707600 DOI: 10.1158/1078-0432.ccr-05-2832] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE NOTCH signaling pathway is essential in T-cell development and NOTCH1 mutations are frequently present in T-cell acute lymphoblastic leukemia (T-ALL). To gain insight into its clinical significance, NOTCH1 mutation was investigated in 77 patients with T-ALL. EXPERIMENTAL DESIGN Detection of NOTCH1 mutation was done using reverse transcription-PCR amplification and direct sequencing, and thereby compared according to the clinical/biological data of the patients. RESULTS Thirty-two mutations were identified in 29 patients (with dual mutations in 3 cases), involving not only the heterodimerization and proline/glutamic acid/serine/threonine domains as previously reported but also the transcription activation and ankyrin repeat domains revealed for the first time. These mutations were significantly associated with elevated WBC count at diagnosis and independently linked to short survival time. Interestingly, the statistically significant difference of survival according to NOTCH1 mutations was only observed in adult patients (>18 years) but not in pediatric patients (< or = 18 years), possibly due to the relatively good overall response of childhood T-ALL to the current chemotherapy. NOTCH1 mutations could coexist with HOX11, HOX11L2, or SIL-TAL1 expression. The negative effect of NOTCH1 mutation on prognosis was potentiated by HOX11L2 but was attenuated by HOX11. CONCLUSION NOTCH1 mutation is an important prognostic marker in T-ALL and its predictive value could be even further increased if coevaluated with other T-cell-related regulatory genes. NOTCH pathway thus acts combinatorially with oncogenic transcriptional factors on T-ALL pathogenesis.
Collapse
Affiliation(s)
- Yong-Mei Zhu
- State Key Laboratory for Medical Genomics, Shanghai Institute of Hematology, Shanghai Rui Jin Hospital, Medical School of Shanghai Jiao Tong University, Shanghai, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is a form of pediatric leukemia that is thought to be caused by approximately 12 distinct chromosomal translocations that lead to aberrant expression of as many different cellular genes. Development of novel, rational therapies against such a diverse set of mechanistic targets has thus been a formidable challenge. Recent studies, however, have identified a large fraction of T-ALL cases carrying mutations in one of these genes, Notch1, suggesting for the first time that many cases may share a common pathogenic etiology, and perhaps may allow the development of targeted therapies that benefit the majority of patients with this disease.
Collapse
Affiliation(s)
- Andrew P Weng
- British Columbia Cancer Agency, Department of Pathology, British Columbia Cancer Research Centre, Terry Fox Laboratory, 675 West 10th Avenue, Vancouver, BC V5Z 1L3, Canada.
| | | |
Collapse
|
35
|
Abstract
A driving force of the cell cycle is the activation of cyclin-dependent kinases (CDKs), the activities of which are controlled by the ubiquitin-mediated proteolysis of key regulators such as cyclins and CDK inhibitors. Two ubiquitin ligases, the SKP1-CUL1-F-box-protein (SCF) complex and the anaphase-promoting complex/cyclosome (APC/C), are responsible for the specific ubiquitylation of many of these regulators. Deregulation of the proteolytic system might result in uncontrolled proliferation, genomic instability and cancer. Cumulative clinical evidence shows alterations in the ubiquitylation of cell-cycle regulators in the aetiology of many human malignancies. A better understanding of the ubiquitylation machinery will provide new insights into the regulatory biology of cell-cycle transitions and the development of anti-cancer drugs.
Collapse
Affiliation(s)
- Keiichi I Nakayama
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Fukuoka 812-8582, Japan.
| | | |
Collapse
|
36
|
Grabher C, von Boehmer H, Look AT. Notch 1 activation in the molecular pathogenesis of T-cell acute lymphoblastic leukaemia. Nat Rev Cancer 2006; 6:347-59. [PMID: 16612405 DOI: 10.1038/nrc1880] [Citation(s) in RCA: 307] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The chromosomal translocation t(7;9) in human T-cell acute lymphoblastic leukaemia (T-ALL) results in deregulated expression of a truncated, activated form of Notch 1 (TAN1) under the control of the T-cell receptor-beta (TCRB) locus. Although TAN1 efficiently induces T-ALL in mouse models, t(7;9) is present in less than 1% of human T-ALL cases. The recent discovery of novel activating mutations in NOTCH1 in more than 50% of human T-ALL samples has made it clear that Notch 1 is far more important in human T-ALL pathogenesis than previously suspected.
Collapse
Affiliation(s)
- Clemens Grabher
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
37
|
Hu C, Diévart A, Lupien M, Calvo E, Tremblay G, Jolicoeur P. Overexpression of activated murine Notch1 and Notch3 in transgenic mice blocks mammary gland development and induces mammary tumors. THE AMERICAN JOURNAL OF PATHOLOGY 2006; 168:973-90. [PMID: 16507912 PMCID: PMC1606519 DOI: 10.2353/ajpath.2006.050416] [Citation(s) in RCA: 148] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The mouse mammary tumor virus (MMTV) provirus was found to target the Notch1 gene, producing insertional mutations in mammary tumors of MMTV/neu transgenic (Tg) mice. In these mammary tumors, the Notch1 gene is truncated upstream of the transmembrane domain, and the resulting Notch1 intracellular domain (Notch1(intra)), deleted of most extracellular sequences, is overexpressed. Although Notch1(intra) transforms mammary epithelial cells in vitro, its role in mammary gland tumor formation in vivo was not studied. Therefore, we generated MMTV/Notch1(intra) Tg mice that overexpress murine Notch1(intra) in the mammary glands. We observed that MMTV/Notch1(intra) Tg females were unable to feed their pups because of impaired ductal and lobulo-alveolar mammary gland development. This was associated with decreased proliferation of ductal and alveolar epithelial cells during rapid expansion at puberty and in early pregnancy, as well as decreased production of beta-casein. Notch1(intra) repressed expression of the beta-casein gene promoter, as assessed in vitro with a beta-casein/luciferase reporter construct. The MMTV/Notch1(intra) Tg females developed mammary gland tumors, confirming the oncogenic potential of Notch1(intra) in vivo. Furthermore, MMTV/Notch3(intra) Tg mice exhibited a very similar phenotype. Thus, these Tg mice represent novel models for studying the role of Notch1 or Notch3 in the development and transformation of the mammary gland.
Collapse
MESH Headings
- Aging
- Animals
- Apoptosis
- Caseins/genetics
- Cell Proliferation
- Epithelial Cells/metabolism
- Epithelial Cells/pathology
- Evolution, Molecular
- Female
- Gene Expression Regulation, Developmental
- Gene Expression Regulation, Neoplastic
- Mammary Glands, Animal/abnormalities
- Mammary Glands, Animal/growth & development
- Mammary Glands, Animal/pathology
- Mammary Neoplasms, Animal/etiology
- Mammary Neoplasms, Animal/genetics
- Mammary Neoplasms, Animal/pathology
- Mammary Tumor Virus, Mouse/genetics
- Mice
- Mice, Transgenic
- Oncogenes/genetics
- Pregnancy
- Promoter Regions, Genetic/genetics
- Receptor, Notch1/genetics
- Receptor, Notch1/metabolism
- Receptor, Notch3
- Receptors, Notch/genetics
- Receptors, Notch/metabolism
- Transcription, Genetic
- Transcriptional Activation
Collapse
Affiliation(s)
- Chunyan Hu
- Laboratory of Molecular Biology, Clinical Research Institute of Montréal, QC, Canada
| | | | | | | | | | | |
Collapse
|
38
|
Dumortier A, Jeannet R, Kirstetter P, Kleinmann E, Sellars M, dos Santos NR, Thibault C, Barths J, Ghysdael J, Punt JA, Kastner P, Chan S. Notch activation is an early and critical event during T-Cell leukemogenesis in Ikaros-deficient mice. Mol Cell Biol 2006; 26:209-20. [PMID: 16354692 PMCID: PMC1317628 DOI: 10.1128/mcb.26.1.209-220.2006] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Ikaros transcription factor is both a key regulator of lymphocyte differentiation and a tumor suppressor in T lymphocytes. Mice carrying a hypomorphic mutation (Ik(L/L)) in the Ikaros gene all develop thymic lymphomas. Ik(L/L) tumors always exhibit strong activation of the Notch pathway, which is required for tumor cell proliferation in vitro. Notch activation occurs early in tumorigenesis and may precede transformation, as ectopic expression of the Notch targets Hes-1 and Deltex-1 is detected in thymocytes from young Ik(L/L) mice with no overt signs of transformation. Notch activation is further amplified by secondary mutations that lead to C-terminal truncations of Notch 1. Strikingly, restoration of Ikaros activity in tumor cells leads to a rapid and specific downregulation of Notch target gene expression and proliferation arrest. Furthermore, Ikaros binds to the Notch-responsive element in the Hes-1 promoter and represses Notch-dependent transcription from this promoter. Thus, Ikaros-mediated repression of Notch target gene expression may play a critical role in defining the tumor suppressor function of this factor.
Collapse
Affiliation(s)
- Alexis Dumortier
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS-INSERM-ULP, BP 10142, 67404 Illkirch, CU Strasbourg, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Aster JC. Deregulated NOTCH signaling in acute T-cell lymphoblastic leukemia/lymphoma: new insights, questions, and opportunities. Int J Hematol 2006; 82:295-301. [PMID: 16298817 DOI: 10.1532/ijh97.05096] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Recent work has shown that the majority of human acute T-cell lymphoblastic leukemias and lymphomas (T-ALL) have gain-of-function mutations in NOTCH1, a type I transmembrane receptor that normally signals through a gamma-secretase-dependent mechanism that relies on ligand-induced regulated intramembranous proteolysis. Cleavage by gamma-secretase releases the intracellular domain of NOTCH1 (ICN1), permitting it to translocate to the nucleus and form a short-lived transcriptional activation complex that is essential for normal T-cell development. Two types of mutations are prevalent in human T-ALL: extracellular domain mutations that increase ICN1 production and C-terminal mutations that sustain ICN1 action. Inhibitors of ICN1 production and activity abrogate the growth of established T-ALL cell lines, and a clinical trial of a NOTCH pathway inhibitor in patients with refractory T-ALL has opened recently. These insights raise a number of new questions relevant to T-ALL pathogenesis and offer exciting opportunities for rational targeted therapy.
Collapse
Affiliation(s)
- Jon C Aster
- Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115, USA.
| |
Collapse
|
40
|
Uren AG, Kool J, Berns A, van Lohuizen M. Retroviral insertional mutagenesis: past, present and future. Oncogene 2005; 24:7656-72. [PMID: 16299527 DOI: 10.1038/sj.onc.1209043] [Citation(s) in RCA: 205] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Retroviral insertion mutagenesis screens in mice are powerful tools for efficient identification of oncogenic mutations in an in vivo setting. Many oncogenes identified in these screens have also been shown to play a causal role in the development of human cancers. Sequencing and annotation of the mouse genome, along with recent improvements in insertion site cloning has greatly facilitated identification of oncogenic events in retrovirus-induced tumours. In this review, we discuss the features of retroviral insertion mutagenesis screens, covering the mechanisms by which retroviral insertions mutate cellular genes, the practical aspects of insertion site cloning, the identification and analysis of common insertion sites, and finally we address the potential for use of somatic insertional mutagens in the study of nonhaematopoietic and nonmammary tumour types.
Collapse
Affiliation(s)
- A G Uren
- Division of Molecular Genetics, Netherlands Cancer Institute, Amsterdam
| | | | | | | |
Collapse
|
41
|
Abstract
From its beginnings two decades ago with the analysis of chromosomal translocation breakpoints, research into the molecular pathogenesis of acute lymphoblastic leukemia (ALL) has now progressed to the large-scale resequencing of candidate oncogenes and tumor suppressor genes in the genomes of ALL cases blocked at various developmental stages within the B- and T-cell lineages. In this review, we summarize the findings of these investigations and highlight how this information is being integrated into multistep mutagenesis cascades that impact specific signal transduction pathways and synergistically lead to leukemic transformation. Because of these advances, fueled by improved technology for mutational analysis and the development of small-molecule drugs and monoclonal antibodies, the future is bright for a new generation of targeted therapies. Best illustrated by the successful introduction of imatinib mesylate, these new treatments will interfere with disordered molecular pathways specific for the leukemic cells, and thus should exhibit much less toxicity and fewer long-term adverse effects than currently available therapeutic modalities.
Collapse
Affiliation(s)
- Scott A Armstrong
- Children's Hospital, Karp Research Labs, Rm 08211, 1 Blackfan Circle, Boston, MA 02115, USA.
| | | |
Collapse
|
42
|
Landais S, Quantin R, Rassart E. Radiation leukemia virus common integration at the Kis2 locus: simultaneous overexpression of a novel noncoding RNA and of the proximal Phf6 gene. J Virol 2005; 79:11443-56. [PMID: 16103195 PMCID: PMC1193593 DOI: 10.1128/jvi.79.17.11443-11456.2005] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Retroviral tagging has been used extensively and successfully to identify genes implicated in cancer pathways. In order to find oncogenes implicated in T-cell leukemia, we used the highly leukemogenic radiation leukemia retrovirus VL3 (RadLV/VL3). We applied the inverted PCR technique to isolate and analyze sequences flanking proviral integrations in RadLV/VL3-induced T lymphomas. We found retroviral integrations in c-myc and Pim1 as already reported but we also identified for the first time Notch1 as a RadLV common integration site. More interestingly, we found a new RadLV common integration site that is situated on mouse chromosome X (XA4 region, bp 45091000). This site has also been reported as an SL3-3 and Moloney murine leukemia virus integration site, which strengthens its implication in murine leukemia virus-induced T lymphomas. This locus, named Kis2 (Kaplan Integration Site 2), was found rearranged in 11% of the tumors analyzed. In this article, we report not only the alteration of the Kis2 gene located nearby in response to RadLV integration but also the induction of the expression of Phf6, situated about 250 kbp from the integration site. The Kis2 gene encodes five different alternatively spliced noncoding RNAs and the Phf6 gene codes for a 365-amino-acid protein which contains two plant homology domain fingers, recently implicated in the Börjeson-Forssman-Lehmann syndrome in humans. With the recent release of the mouse genome sequence, high-throughput retroviral tagging emerges as a powerful tool in the quest for oncogenes. It also allows the analysis of large DNA regions surrounding the integration locus.
Collapse
Affiliation(s)
- Séverine Landais
- Département des Sciences Biologiques, Université du Québec à Montréal, Canada
| | | | | |
Collapse
|
43
|
O'Neil J, Calvo J, McKenna K, Krishnamoorthy V, Aster JC, Bassing CH, Alt FW, Kelliher M, Look AT. Activating Notch1 mutations in mouse models of T-ALL. Blood 2005; 107:781-5. [PMID: 16166587 PMCID: PMC1895623 DOI: 10.1182/blood-2005-06-2553] [Citation(s) in RCA: 183] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Recent studies have demonstrated that most patients with T-cell acute lymphocytic leukemia (T-ALL) have activating mutations in NOTCH1. We sought to determine whether these mutations are also acquired in mouse models of T-ALL. We sequenced the heterodimerization domain and the PEST domain of Notch1 in our mouse model of TAL1-induced leukemia and found that 74% of the tumors harbor activating mutations in Notch1. Cell lines derived from these tumors undergo G(0)/G(1) arrest and apoptosis when treated with a gamma-secretase inhibitor. In addition, we found activating Notch1 mutations in 31% of thymic lymphomas that occur in mice deficient for various combinations of the H2AX, Tp53, and Rag2 genes. Thus, Notch1 mutations are often acquired as a part of the molecular pathogenesis of T-ALLs that develop in mice with known predisposing genetic alterations.
Collapse
Affiliation(s)
- Jennifer O'Neil
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Kawagoe H, Grosveld GC. MN1-TEL myeloid oncoprotein expressed in multipotent progenitors perturbs both myeloid and lymphoid growth and causes T-lymphoid tumors in mice. Blood 2005; 106:4278-86. [PMID: 16081688 PMCID: PMC1895241 DOI: 10.1182/blood-2005-04-1674] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The MN1-TEL (meningioma 1-translocation-ETS-leukemia) fusion oncoprotein is the product of the t(12;22)(p13;q11) in human myeloid leukemia consisting of N-terminal MN1 sequences, a transcriptional coactivator, fused to C-terminal TEL sequences, an E26-transformation-specific (ETS) transcription factor. To analyze the role of MN1-TEL in leukemogenesis, we created a site-directed transgenic (knock-in) mouse model carrying a conditional MN1-TEL transgene under the control of the Aml1 regulatory sequences. After induction, MN1-TEL expression was detected in both myeloid and lymphoid cells. Activation of MN1-TEL expression enhanced the repopulation ability of myeloid progenitors in vitro as well as partially inhibited their differentiation in vivo. MN1-TEL also promoted the proliferation of thymocytes while it blocked their differentiation from CD4-/CD8- to CD4+/CD8+ in vivo. After long latency, 30% of the MN1-TEL-positive mice developed T-lymphoid tumors. This process was accelerated by N-ethyl-N-nitrosourea-induced mutations. MN1-TEL-positive T-lymphoid tumors showed elevated expression of the Notch-1, Hes-1, c-Myc, and Lmo-2 genes while their Ink4a/pRB and Arf/p53 pathways were impaired, suggesting that these alterations cooperatively transform T progenitors. We conclude that MN1-TEL exerts its nonlineage-specific leukemogenic effects by promoting the growth of primitive progenitors and blocking their differentiation, but cooperative mutations are necessary to fully induce leukemic transformation.
Collapse
Affiliation(s)
- Hiroyuki Kawagoe
- Department of Genetics and Tumor Cell Biology, St Jude Children's Research Hospital, 332 North Lauderdale, Memphis, TN 38105, USA
| | | |
Collapse
|
45
|
Abstract
Many cancers seem to depend on a small population of 'cancer stem cells' for their continued growth and propagation. The leukaemia stem cell (LSC) was the first such cell to be described. The origins of these cells are controversial, and their biology - like that of their normal-tissue counterpart, the haematopoietic stem cell (HSC) - is still not fully elucidated. However, the LSC is likely to be the most crucial target in the treatment of leukaemias, and a thorough understanding of its biology - particularly of how the LSC differs from the HSC - might allow it to be selectively targeted, improving therapeutic outcome.
Collapse
Affiliation(s)
- Brian J P Huntly
- Brian J. P. Huntly is at the Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA.
| | | |
Collapse
|
46
|
Pear WS, Aster JC. T cell acute lymphoblastic leukemia/lymphoma: a human cancer commonly associated with aberrant NOTCH1 signaling. Curr Opin Hematol 2005; 11:426-33. [PMID: 15548998 DOI: 10.1097/01.moh.0000143965.90813.70] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
PURPOSE OF REVIEW Although constitutively activated forms of the NOTCH1 receptor are potent inducers of T cell acute lymphoblastic leukemia/lymphoma when expressed in the bone marrow stem cells of mice, the known involvement of NOTCH1 in human T cell acute lymphoblastic leukemia/lymphoma has been restricted to very rare tumors associated with a (7;9) chromosomal translocation involving the NOTCH1 gene. This picture has changed dramatically in the past year with the discovery of frequent mutations involving NOTCH1 in human T cell acute lymphoblastic leukemia/lymphoma. RECENT FINDINGS NOTCH1 point mutations, insertions, and deletions producing aberrant increases in NOTCH1 signaling are frequently present in both childhood and adult T cell acute lymphoblastic leukemia/lymphoma and are detected in tumors from all major molecular subtypes. These observations are particularly important in the light of experiments using human and murine T cell acute lymphoblastic leukemia/lymphoma cell lines indicating that NOTCH1 signals are required for sustained growth and, in a subset of lines, survival. This inference is based in part on experiments conducted with small molecule inhibitors of gamma-secretase, a protease required for normal NOTCH signal transduction and the activity of the mutated forms of NOTCH1 found commonly in human T cell acute lymphoblastic leukemia/lymphoma. SUMMARY These findings support a central role for aberrant NOTCH signaling in the pathogenesis of human T cell acute lymphoblastic leukemia/lymphoma, and they provide a rationale for trials of NOTCH inhibitors, such as gamma-secretase antagonists, in this aggressive human malignancy.
Collapse
Affiliation(s)
- Warren S Pear
- Abramson Center Cancer Research Institute, Institute for Medicine & Engineering and Department of Pathology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | |
Collapse
|
47
|
Chiang MY, Pear WS. Cancer genetics: activated notch takes center stage in T-cell leukemogenesis. Eur J Hum Genet 2005; 13:393-5. [PMID: 15702128 DOI: 10.1038/sj.ejhg.5201380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Mark Y Chiang
- Division of Hematology and Oncology, Department of Medicine, University of Pennsylvania Medical Center, 611 BRB 2/3, 421 Curie Blvd, Philadelphia, PA 19104, USA
| | | |
Collapse
|
48
|
Weng AP, Ferrando AA, Lee W, Morris JP, Silverman LB, Sanchez-Irizarry C, Blacklow SC, Look AT, Aster JC. Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science 2004; 306:269-71. [PMID: 15472075 DOI: 10.1126/science.1102160] [Citation(s) in RCA: 2114] [Impact Index Per Article: 100.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Very rare cases of human T cell acute lymphoblastic leukemia (T-ALL) harbor chromosomal translocations that involve NOTCH1, a gene encoding a transmembrane receptor that regulates normal T cell development. Here, we report that more than 50% of human T-ALLs, including tumors from all major molecular oncogenic subtypes, have activating mutations that involve the extracellular heterodimerization domain and/or the C-terminal PEST domain of NOTCH1. These findings greatly expand the role of activated NOTCH1 in the molecular pathogenesis of human T-ALL and provide a strong rationale for targeted therapies that interfere with NOTCH signaling.
Collapse
Affiliation(s)
- Andrew P Weng
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
Notch signaling is required for normal T cell development. However, Notch expression must be precisely regulated as constitutive Notch signaling leads to T cell lymphomas. Recent evidence has provided insights into potential mechanisms of Notch-mediated lymphomagenesis and its relationship to T cell development. The evidence suggests that Notch likely interacts with several important cellular pathways and can cooperate with other oncogenes during lymphomagenesis. In particular, Notch appears to modulate pre-TCR signaling, inhibit the E2A pathway, and in murine leukemia models, frequently cooperates with Myc, E2A-PBX and dominant negative Ikaros dysregulation. This review will present current knowledge in these areas and explore theories on Notch-mediated T cell lymphomagenesis.
Collapse
|
50
|
Affiliation(s)
- Alexandra Stolzing
- Centre for biomaterials and Tissue Engineering, University of Sheffield, UK.
| | | |
Collapse
|