1
|
Conte M, Tomaciello M, De Feo MS, Frantellizzi V, Marampon F, De Cristofaro F, De Vincentis G, Filippi L. The Tight Relationship Between the Tumoral Microenvironment and Radium-223. Biomedicines 2025; 13:456. [PMID: 40002869 PMCID: PMC11853176 DOI: 10.3390/biomedicines13020456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 02/04/2025] [Accepted: 02/09/2025] [Indexed: 02/27/2025] Open
Abstract
Radium-223 (223Ra) was the first radioactive isotope approved for treating castration-resistant prostate cancer (CRPC) with symptomatic bone metastases without visceral metastatic disease. To better understand the action of 223Ra, its role in the tumor microenvironment represents a crucial aspect. A literature search was conducted using the PubMed/MEDLINE database and studies regarding the relationship between 223Ra and the tumoral microenvironment were considered. The tumoral microenvironment is a complex setting in which complex interactions between cells and molecules occur. Radium-223, as an alpha-emitter, induces double-stranded DNA breaks; to potentiate this effect, it could be used in patients with genetic instability but also in combination with therapies which inhibit DNA repair, modulate the immune response, or control tumor growth. In conclusion, a few studies have taken into consideration the tumoral microenvironment in association with 223Ra. However, its understanding is a priority to better comprehend how to effectively exploit 223Ra and its action mechanism.
Collapse
Affiliation(s)
- Miriam Conte
- Department of Radiological Sciences, Oncology and Anatomical Pathology, Sapienza, “Sapienza” University of Rome, 00161 Rome, Italy; (M.C.); (M.T.); (M.S.D.F.); (V.F.); (F.M.); (F.D.C.); (G.D.V.)
| | - Miriam Tomaciello
- Department of Radiological Sciences, Oncology and Anatomical Pathology, Sapienza, “Sapienza” University of Rome, 00161 Rome, Italy; (M.C.); (M.T.); (M.S.D.F.); (V.F.); (F.M.); (F.D.C.); (G.D.V.)
| | - Maria Silvia De Feo
- Department of Radiological Sciences, Oncology and Anatomical Pathology, Sapienza, “Sapienza” University of Rome, 00161 Rome, Italy; (M.C.); (M.T.); (M.S.D.F.); (V.F.); (F.M.); (F.D.C.); (G.D.V.)
| | - Viviana Frantellizzi
- Department of Radiological Sciences, Oncology and Anatomical Pathology, Sapienza, “Sapienza” University of Rome, 00161 Rome, Italy; (M.C.); (M.T.); (M.S.D.F.); (V.F.); (F.M.); (F.D.C.); (G.D.V.)
| | - Francesco Marampon
- Department of Radiological Sciences, Oncology and Anatomical Pathology, Sapienza, “Sapienza” University of Rome, 00161 Rome, Italy; (M.C.); (M.T.); (M.S.D.F.); (V.F.); (F.M.); (F.D.C.); (G.D.V.)
| | - Flaminia De Cristofaro
- Department of Radiological Sciences, Oncology and Anatomical Pathology, Sapienza, “Sapienza” University of Rome, 00161 Rome, Italy; (M.C.); (M.T.); (M.S.D.F.); (V.F.); (F.M.); (F.D.C.); (G.D.V.)
| | - Giuseppe De Vincentis
- Department of Radiological Sciences, Oncology and Anatomical Pathology, Sapienza, “Sapienza” University of Rome, 00161 Rome, Italy; (M.C.); (M.T.); (M.S.D.F.); (V.F.); (F.M.); (F.D.C.); (G.D.V.)
| | - Luca Filippi
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy
| |
Collapse
|
2
|
Yang LC, Li TJ, Hu YF, Tsai YS, Wang CS, Lin SW, Chen YL, Chen CC. Heat-inactivated Lactobacillus casei strain GKC1 Mitigates osteoporosis development in vivo via enhanced osteogenesis. Biochem Biophys Res Commun 2025; 748:151317. [PMID: 39823892 DOI: 10.1016/j.bbrc.2025.151317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 01/01/2025] [Accepted: 01/09/2025] [Indexed: 01/20/2025]
Abstract
Osteoporosis, a significant bone disease predominantly affecting elderly and postmenopausal women, leads to increased bone fragility and fracture risk, presenting a major public health concern with substantial socioeconomic implications. This study investigated the therapeutic potential of Lactobacillus strains, known for their immunomodulatory properties, in an ovariectomy-induced osteoporosis mouse model. Among three tested strains Lactobacillus casei GKC1, Lactobacillus rhamnosus GKLC1, and Lactobacillus johnsonii GKJ2, GKC1 demonstrated superior efficacy in promoting osteogenesis-related gene expression, including alkaline phosphatase (ALP), bone morphogenetic protein 2 (BMP2) and runt-related transcription factor 2 (RUNX2). In ovariectomized mice (n = 8/group), both live and heat-inactivated GKC1 (57 mg/kg) and fermented GKC1 (1000 mg/kg) were administered orally for 28 days, with alendronate (2.5 mg/kg) serving as a positive control. The treatment significantly improved bone mineral density and femoral microstructure parameters compared to the ovariectomized control group. For the first time, heat-inactivated GKC1 exhibited superior anti-inflammatory effects through reduction of IL-17A and enhanced bone microstructural integrity, suggesting its potential as a safe and effective therapeutic agent for postmenopausal osteoporosis management. These findings provide compelling evidence for the development of postbiotic-based interventions in osteoporosis treatment, offering a promising alternative to conventional therapeutics.
Collapse
Affiliation(s)
- Li-Chan Yang
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Tsung-Ju Li
- Biotech Research Institute, Grape King Bio Ltd., Taoyuan, Taiwan.
| | - Yu-Fang Hu
- The PhD Program for Health Science and Industry, China Medical University, Taichung, Taiwan
| | - You-Shan Tsai
- Biotech Research Institute, Grape King Bio Ltd., Taoyuan, Taiwan
| | - Ci-Sian Wang
- Biotech Research Institute, Grape King Bio Ltd., Taoyuan, Taiwan
| | - Shih-Wei Lin
- Biotech Research Institute, Grape King Bio Ltd., Taoyuan, Taiwan
| | - Yen-Lien Chen
- Biotech Research Institute, Grape King Bio Ltd., Taoyuan, Taiwan
| | - Chin-Chu Chen
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan; Department of Food Sciences, Nutrition, and Nutraceutical Biotechnology, Shih Chien University, Taipei, Taiwan; Department of Bioscience Technology, Chung Yuan Christian University, Taoyuan, Taiwan
| |
Collapse
|
3
|
Tahoori M, Tafreshi AP, Naghshnejad F, Zeynali B. Transforming Growth Factor-β Signaling Inhibits the Osteogenic Differentiation of Mesenchymal Stem Cells via Activation of Wnt/β-Catenin Pathway. J Bone Metab 2025; 32:11-20. [PMID: 40098425 PMCID: PMC11960301 DOI: 10.11005/jbm.24.761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 12/31/2024] [Accepted: 01/06/2025] [Indexed: 03/19/2025] Open
Abstract
BACKGROUND Due to the contradictory and temporally variable effects of transforming growth factor-β (TGF-β) and the Wnt/β-catenin pathways on osteogenic differentiation in different stem cell types, we sought to examine the activity of these pathways as well as their interaction during the osteogenic differentiation of the osteo-induced adiposederived mesenchymal stem cells (AD-MSCs). METHODS The osteo-induced AD-MSCs were treated with TGF-β1 (1 ng/mL) either alone or together with its antagonist SB- 431542 (10 μM) or that of the Wnt antagonist, inhibitor of Wnt production 2 (IWP2) (3 μM), every 3 days for 21 days. Cells were then analyzed for calcium deposit, bone matrix production, and the osteogenic markers gene expression. RESULTS Our results showed firstly that, either of the pathways is active since the mRNA expressions of their respective target genes, PAI-1 and Cyclin D1 were detectable although the latter was at a very low level. Secondly that, treatment with TGF-β1 decreased levels of calcium deposit, bone matrix production and the osteogenic markers gene expression. Accordingly, osteogenesis was induced in those treated with SB either alone or together with the TGF-β1, pointing to inhibitory effect of TGF-β pathway on osteogenic differentiation. Thirdly that following treatment with IWP2 and TGF-β1, the inhibitory effect of TGF-β1 on bone matrix production was reversed. Fourthly, there was constantly low expression of Wnt3amRNA but progressively increasing that of its endogenous antagonist Dkk-1mRNA throughout. CONCLUSIONS Together these results suggest that TGF-β1 requires the active Wnt/β-catenin signaling pathway to exert its inhibitory effects on osteogenic differentiation of AD-MSCs.
Collapse
Affiliation(s)
- Mahsa Tahoori
- Developmental Biology Laboratory, School of Biology, College of Science, University of Tehran, Tehran,
Iran
| | - Azita Parvaneh Tafreshi
- Developmental Biology Laboratory, School of Biology, College of Science, University of Tehran, Tehran,
Iran
- Department of Molecular Medicine, Faculty of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran,
Iran
| | - Fatemeh Naghshnejad
- Developmental Biology Laboratory, School of Biology, College of Science, University of Tehran, Tehran,
Iran
| | - Bahman Zeynali
- Developmental Biology Laboratory, School of Biology, College of Science, University of Tehran, Tehran,
Iran
| |
Collapse
|
4
|
Khalkhali P, Omidi M, Masson-Meyers DS, Akbari B, Dehghan MM, Aminianfar H, Farzad-Mohajeri S, Mansouri V, Nikpasand A, Tayebi L. Promoting Angiogenesis/Osteogenesis by a New Copper/Magnesium Hydroxide Hybrid Nanoparticle: In Vitro and In Vivo Investigation. J Biomed Mater Res A 2025; 113:e37855. [PMID: 39815692 DOI: 10.1002/jbm.a.37855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 12/05/2024] [Accepted: 12/10/2024] [Indexed: 01/18/2025]
Abstract
In this study, a new hybrid nanoparticle composed of magnesium hydroxide and copper oxide (Mg(OH)2/CuO) with an optimized ratio of magnesium (Mg) to copper (Cu) was designed and incorporated into a 3D-printed scaffold made of polycaprolactone (PCL) and gelatin. These hybrid nanostructures (MCNs) were prepared using a green, solvent-free method. Their topography, surface morphology, and structural properties were characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). The fabricated 3D-printed PCL/Gelatin/MCN scaffolds were investigated in vitro and in vivo. Cell viability tests on murine calvarial preosteoblasts (MC3T3-E1) and human umbilical vein endothelial cells (HUVECs) demonstrated that the scaffolds could induce proper cell proliferation. Additionally, the angiogenic and osteogenic properties of the constructs were evaluated using alkaline phosphatase (ALP) activity, osteogenesis-related, and angiogenesis-related gene expression tests. The in vivo study was conducted using a rat calvarial defect model, which confirmed the superior angiogenic and osteogenic properties of the PCL/gelatin/MCN scaffolds compared to PCL/Gelatin and PCL/Gelatin/Mg(OH)2 scaffolds. Overall, the PCL/Gelatin/MCN scaffolds showed promising potential for bone regeneration, particularly for critical-sized defects where proper angiogenesis is essential for tissue reconstruction.
Collapse
Affiliation(s)
- Parsa Khalkhali
- Department of Life Science Engineering, Faculty of new Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Meisam Omidi
- Marquette University School of Dentistry, Milwaukee, Wisconsin, USA
| | | | - Babak Akbari
- Department of Life Science Engineering, Faculty of new Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Mohammad Mehdi Dehghan
- Department of Surgery & Radiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
- Institute of Biomedical Research, University of Tehran, Tehran, Iran
| | - Hossein Aminianfar
- Institute of Biomedical Research, University of Tehran, Tehran, Iran
- Department of Pathology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Saeed Farzad-Mohajeri
- Department of Surgery & Radiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
- Institute of Biomedical Research, University of Tehran, Tehran, Iran
| | - Vahid Mansouri
- Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Basic Science, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amin Nikpasand
- Department of Veterinary Clinical Sciences, Karaj Branch, Islamic Azad University, Karaj, Iran
| | - Lobat Tayebi
- Marquette University School of Dentistry, Milwaukee, Wisconsin, USA
- Institute for Engineering in Medicine, Health, & Human Performance (EnMed), batten College of Engineering and Technology, Old Dominion University, Norfolk, Virginia, USA
| |
Collapse
|
5
|
Liu S, Ren J, Hu Y, Zhou F, Zhang L. TGFβ family signaling in human stem cell self-renewal and differentiation. CELL REGENERATION (LONDON, ENGLAND) 2024; 13:26. [PMID: 39604763 PMCID: PMC11602941 DOI: 10.1186/s13619-024-00207-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/16/2024] [Accepted: 11/01/2024] [Indexed: 11/29/2024]
Abstract
Human stem cells are undifferentiated cells with the capacity for self-renewal and differentiation into distinct cell lineages, playing important role in the development and maintenance of diverse tissues and organs. The microenvironment of stem cell provides crucial factors and components that exert significant influence over the determination of cell fate. Among these factors, cytokines from the transforming growth factor β (TGFβ) superfamily, including TGFβ, bone morphogenic protein (BMP), Activin and Nodal, have been identified as important regulators governing stem cell maintenance and differentiation. In this review, we present a comprehensive overview of the pivotal roles played by TGFβ superfamily signaling in governing human embryonic stem cells, somatic stem cells, induced pluripotent stem cells, and cancer stem cells. Furthermore, we summarize the latest research and advancements of TGFβ family in various cancer stem cells and stem cell-based therapy, discussing their potential clinical applications in cancer therapy and regeneration medicine.
Collapse
Affiliation(s)
- Sijia Liu
- International Biomed-X Research Center, Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Jiang Ren
- The First Affiliated Hospital, MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, Institute of Biomedical Innovation, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yanmei Hu
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Fangfang Zhou
- The First Affiliated Hospital, the Institutes of Biology and Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, China.
| | - Long Zhang
- International Biomed-X Research Center, Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China.
- The First Affiliated Hospital, MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, Institute of Biomedical Innovation, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China.
- MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
6
|
Kronenberg D, Brand M, Everding J, Wendler L, Kieselhorst E, Timmen M, Hülskamp MD, Stange R. Integrin α2β1 deficiency enhances osteogenesis via BMP-2 signaling for accelerated fracture repair. Bone 2024; 190:117318. [PMID: 39500403 DOI: 10.1016/j.bone.2024.117318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/31/2024] [Accepted: 11/01/2024] [Indexed: 11/11/2024]
Abstract
Previous studies have shown that the absence of the collagen-binding integrin α2β1 confers protection against osteoporosis, primarily by enhancing osteoblast-mediated matrix formation, with a particular increase in collagen type I production. This study aimed to elucidate the mechanism underlying this increased matrix production. Our findings demonstrate that osteoblasts lacking integrin α2 secrete a pro-osteogenic factor that activates both TGF-β and BMP signaling pathways. Among these, BMP-2 was identified as the key signaling protein responsible for this effect, as its expression was significantly upregulated during osteoblast differentiation. Moreover, integrin α2 deficiency led to earlier and elevated BMP-2 secretion at the cell surface during osteogenesis, which promoted accelerated osteoblast differentiation. This phenomenon likely contributes to enhanced matrix production in aging animals, providing a protective effect against osteoporosis. To explore the broader implications of this phenotype, we utilized a fracture healing model. In integrin α2-deficient 12 weeks old female mice, elevated serum levels of BMP-2 were detected during the early stages of fracture repair. This upregulation of BMP signaling within the fracture callus accelerated the healing process, resulting in faster formation and mineralization of the cartilaginous callus. Additionally, the elevated BMP-2 levels facilitated earlier differentiation of chondrocytic cells, evidenced by the premature appearance of collagen type II- and type X-positive cells during endochondral ossification. Despite the accelerated healing, the overall biomechanical integrity of the repaired fractures remained uncompromised. Thus, the modulation of integrin α2β1 presents a promising therapeutic target for enhancing fracture repair by regulating BMP-2 signaling in a physiologically relevant manner.
Collapse
Affiliation(s)
- Daniel Kronenberg
- Department of Regenerative Musculoskeletal Medicine, Institute for Musculoskeletal Medicine, University of Muenster, Muenster, Germany
| | - Melanie Brand
- Department of Regenerative Musculoskeletal Medicine, Institute for Musculoskeletal Medicine, University of Muenster, Muenster, Germany
| | - Jens Everding
- Department of Trauma-, Hand- and Reconstructive Surgery, University Hospital Muenster, Muenster, Germany
| | - Louisa Wendler
- Department of Regenerative Musculoskeletal Medicine, Institute for Musculoskeletal Medicine, University of Muenster, Muenster, Germany
| | - Eric Kieselhorst
- Department of Regenerative Musculoskeletal Medicine, Institute for Musculoskeletal Medicine, University of Muenster, Muenster, Germany
| | - Melanie Timmen
- Department of Regenerative Musculoskeletal Medicine, Institute for Musculoskeletal Medicine, University of Muenster, Muenster, Germany
| | - Michael D Hülskamp
- Department of Regenerative Musculoskeletal Medicine, Institute for Musculoskeletal Medicine, University of Muenster, Muenster, Germany; Department of Trauma-, Hand- and Reconstructive Surgery, University Hospital Muenster, Muenster, Germany
| | - Richard Stange
- Department of Regenerative Musculoskeletal Medicine, Institute for Musculoskeletal Medicine, University of Muenster, Muenster, Germany.
| |
Collapse
|
7
|
Songkoomkrong S, Nonkhwao S, Duangprom S, Saetan J, Manochantr S, Sobhon P, Kornthong N, Amonruttanapun P. Investigating the potential effect of Holothuria scabra extract on osteogenic differentiation in preosteoblast MC3T3-E1 cells. Sci Rep 2024; 14:26415. [PMID: 39488645 PMCID: PMC11531581 DOI: 10.1038/s41598-024-77850-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 10/25/2024] [Indexed: 11/04/2024] Open
Abstract
The present medical treatments of osteoporosis come with adverse effects. It leads to the exploration of natural products as safer alternative medical prevention and treatment. The sea cucumber, Holothuria scabra, has commercial significance in Asian countries with rising awareness of its properties as a functional food. This study aims to investigate the effects of the inner wall (IW) extract isolated from H. scabra on extracellular matrix maturation, mineralization, and osteogenic signaling pathways on MC3T3-E1 preosteoblasts. The IW showed the expression of several growth factors. Molecular docking revealed that H. scabra BMP2/4 binds specifically to mammal BMP2 type I receptor (BMPR-IA). After osteogenic induction, the viability of cells treated with IW extract was assessed and designated with treatment of 0.1, 0.5, 1, and 5 µg/ml of IW extract for 21 consecutive days. On days 14 and 21, treatments with IW extract at 1 and 5 µg/ml showed increased alkaline phosphatase (ALP) activity and calcium deposit levels in a dose-dependent manner compared to the control group. Moreover, the transcriptomic analysis of total RNA of cells treated with 5 µg/ml of IW extract exhibited upregulation of TGF-β, PI3K/Akt, MAPK, Wnt and PTH signaling pathways at days 14. This study suggests that IW extract from H. scabra exhibits the potential to enhance osteogenic differentiation and mineralization of MC3T3-E1 preosteoblasts through TGF-β, PI3K/Akt, MAPK, Wnt and PTH signaling pathways. Further investigation into the molecular mechanisms underlying the effect of IW extract on osteogenesis is crucial to support its application as a naturally derived supplement for prevention or treatment of osteoporosis.
Collapse
Affiliation(s)
- Sineenart Songkoomkrong
- Chulabhorn International College of Medicine, Thammasat University, Rangsit campus, Pathumthani, 12121, Thailand
- Division of Cell Biology, Department of Preclinical Sciences, Faculty of Medicine, Thammasat University, Pathumthani, 12121, Thailand
| | - Siriporn Nonkhwao
- Chulabhorn International College of Medicine, Thammasat University, Rangsit campus, Pathumthani, 12121, Thailand
| | - Supawadee Duangprom
- Chulabhorn International College of Medicine, Thammasat University, Rangsit campus, Pathumthani, 12121, Thailand
| | - Jirawat Saetan
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand
| | - Sirikul Manochantr
- Division of Cell Biology, Department of Preclinical Sciences, Faculty of Medicine, Thammasat University, Pathumthani, 12121, Thailand
- Center of Excellence in Stem Cell Research and Innovation, Thammasat University, Pathumthani, 12121, Thailand
| | - Prasert Sobhon
- Department of Anatomy, Faculty of Science, Mahidol University, Ratchathewi, Bangkok, 10400, Thailand
| | - Napamanee Kornthong
- Chulabhorn International College of Medicine, Thammasat University, Rangsit campus, Pathumthani, 12121, Thailand
| | - Prateep Amonruttanapun
- Chulabhorn International College of Medicine, Thammasat University, Rangsit campus, Pathumthani, 12121, Thailand.
| |
Collapse
|
8
|
Liu SF, Kucherenko MM, Sang P, Li Q, Yao J, Nambiar Veetil N, Gransar T, Alesutan I, Voelkl J, Salinas G, Grune J, Simmons S, Knosalla C, Kuebler WM. RUNX2 is stabilised by TAZ and drives pulmonary artery calcification and lung vascular remodelling in pulmonary hypertension due to left heart disease. Eur Respir J 2024; 64:2300844. [PMID: 39542509 DOI: 10.1183/13993003.00844-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 07/13/2024] [Indexed: 11/17/2024]
Abstract
BACKGROUND Calcification is common in chronic vascular disease, yet its role in pulmonary hypertension due to left heart disease is unknown. Here, we probed for the role of runt-related transcription factor-2 (RUNX2), a master transcription factor in osteogenesis, and its regulation by the HIPPO pathway transcriptional coactivator with PDZ-binding motif (TAZ) in the osteogenic reprogramming of pulmonary artery smooth muscle cells and vascular calcification in patients with pulmonary hypertension due to left heart disease. We similarly examined its role using an established rat model of pulmonary hypertension due to left heart disease induced by supracoronary aortic banding. METHODS Pulmonary artery samples were collected from patients and rats with pulmonary hypertension due to left heart disease. Genome-wide RNA sequencing was performed, and pulmonary artery calcification assessed. Osteogenic signalling via TAZ and RUNX2 was delineated by protein biochemistry. In vivo, the therapeutic potential of RUNX2 or TAZ inhibition by CADD522 or verteporfin was tested in the rat model. RESULTS Gene ontology term analysis identified significant enrichment in ossification and osteoblast differentiation genes, including RUNX2, in pulmonary arteries of patients and lungs of rats with pulmonary hypertension due to left heart disease. Pulmonary artery calcification was evident in both patients and rats. Both TAZ and RUNX2 were upregulated and activated in pulmonary artery smooth muscle cells of patients and rats. Co-immunoprecipitation revealed a direct interaction of RUNX2 with TAZ in pulmonary artery smooth muscle cells. TAZ inhibition or knockdown decreased RUNX2 abundance due to accelerated RUNX2 protein degradation rather than reduced de novo synthesis. Inhibition of either TAZ or RUNX2 attenuated pulmonary artery calcification, distal lung vascular remodelling and pulmonary hypertension development in the rat model. CONCLUSION Pulmonary hypertension due to left heart disease is associated with pulmonary artery calcification that is driven by TAZ-dependent stabilisation of RUNX2, causing osteogenic reprogramming of pulmonary artery smooth muscle cells. The TAZ-RUNX2 axis may present a therapeutic target in pulmonary hypertension due to left heart disease.
Collapse
Affiliation(s)
- Shao-Fei Liu
- Institute for Physiology, Charité - Universitätsmedizin Berlin, corporate member of the Free University Berlin and the Humboldt University Berlin, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
- These authors contributed equally to the study
| | - Mariya M Kucherenko
- Institute for Physiology, Charité - Universitätsmedizin Berlin, corporate member of the Free University Berlin and the Humboldt University Berlin, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité (DHZC), Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of the Free University Berlin and the Humboldt University Berlin, Berlin, Germany
- These authors contributed equally to the study
| | - Pengchao Sang
- Institute for Physiology, Charité - Universitätsmedizin Berlin, corporate member of the Free University Berlin and the Humboldt University Berlin, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité (DHZC), Berlin, Germany
| | - Qiuhua Li
- Institute for Physiology, Charité - Universitätsmedizin Berlin, corporate member of the Free University Berlin and the Humboldt University Berlin, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - Juquan Yao
- Institute for Physiology, Charité - Universitätsmedizin Berlin, corporate member of the Free University Berlin and the Humboldt University Berlin, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - Netra Nambiar Veetil
- Institute for Physiology, Charité - Universitätsmedizin Berlin, corporate member of the Free University Berlin and the Humboldt University Berlin, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité (DHZC), Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of the Free University Berlin and the Humboldt University Berlin, Berlin, Germany
| | - Tara Gransar
- Institute for Physiology, Charité - Universitätsmedizin Berlin, corporate member of the Free University Berlin and the Humboldt University Berlin, Berlin, Germany
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité (DHZC), Berlin, Germany
| | - Ioana Alesutan
- Institute of Physiology and Pathophysiology, Johannes Kepler University Linz, Linz, Austria
| | - Jakob Voelkl
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
- Institute of Physiology and Pathophysiology, Johannes Kepler University Linz, Linz, Austria
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Gabriela Salinas
- NGS - Integrative Genomics Core Unit (NIG), Institute of Pathology, University Medical Center Göttingen (UMG), Göttingen, Germany
| | - Jana Grune
- Institute for Physiology, Charité - Universitätsmedizin Berlin, corporate member of the Free University Berlin and the Humboldt University Berlin, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - Szandor Simmons
- Institute for Physiology, Charité - Universitätsmedizin Berlin, corporate member of the Free University Berlin and the Humboldt University Berlin, Berlin, Germany
| | - Christoph Knosalla
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité (DHZC), Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of the Free University Berlin and the Humboldt University Berlin, Berlin, Germany
- These authors share the last authorship
| | - Wolfgang M Kuebler
- Institute for Physiology, Charité - Universitätsmedizin Berlin, corporate member of the Free University Berlin and the Humboldt University Berlin, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
- DZL (German Centre for Lung Research), partner site Berlin, Berlin, Germany
- The Keenan Research Centre for Biomedical Science at St. Michael's, Toronto, ON, Canada
- Departements of Surgery and Physiology, University of Toronto, Toronto, ON, Canada
- These authors share the last authorship
| |
Collapse
|
9
|
Azarkina K, Gromova E, Malashicheva A. "A Friend Among Strangers" or the Ambiguous Roles of Runx2. Biomolecules 2024; 14:1392. [PMID: 39595568 PMCID: PMC11591759 DOI: 10.3390/biom14111392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/25/2024] [Accepted: 10/28/2024] [Indexed: 11/28/2024] Open
Abstract
The transcription factor Runx2 plays a crucial role in regulating osteogenic differentiation and skeletal development. This factor not only controls the expression of genes involved in bone formation, but also interacts with signaling pathways such as the Notch pathway, which are essential for body development. However, studies have produced conflicting results regarding the relationship between Runx2 and the Notch pathway. Some studies suggest a synergistic interaction between these molecules, while others suggest an inhibitory one, for example, the interplay between Notch signaling, Runx2, and vitamin D3 in osteogenic differentiation and bone remodeling. The findings suggest a complex relationship between Notch signaling and osteogenic differentiation, with ongoing research needed to clarify the mechanisms involved and resolve existing contradictions regarding role of Notch in this process. Additionally, there is increasing evidence of contradictory roles for Runx2 in various tissues and organs, both under normal conditions and in pathological states. This diversity of roles makes Runx2 a potential therapeutic target, offering new directions for research. In this review, we have discussed the mechanisms of osteogenic differentiation and the important role of Runx2 in this process. We have also examined its relationship with different signaling pathways. However, there are still many uncertainties and inconsistencies in our current understanding of these interactions. Additionally, given that Runx2 is also involved in numerous other events in various tissues, we have tried to comprehensively examine its functions outside the skeletal system.
Collapse
Affiliation(s)
| | | | - Anna Malashicheva
- Laboratory of Regenerative Biomedicine, Institute of Cytology, Russian Academy of Sciences, 194064 Saint-Petersburg, Russia
| |
Collapse
|
10
|
Mao J, Sun Z, Wang S, Bi J, Xue L, Wang L, Wang H, Jiao G, Chen Y. Multifunctional Bionic Periosteum with Ion Sustained-Release for Bone Regeneration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403976. [PMID: 39225563 PMCID: PMC11497021 DOI: 10.1002/advs.202403976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/28/2024] [Indexed: 09/04/2024]
Abstract
In this study, a novel bionic periosteum (BP)-bioactive glass fiber membrane (BGFM) is designed. The introduction of magnesium ion (Mg2+) and zinc ion (Zn2+) change the phase separation during the electrospinning (ES) jet stretching process. The fiber's pore structure transitions from connected to closed pores, resulting in a decrease in the rapid release of metal ions while also improving degradation via reducing filling quality. Additionally, the introduction of magnesium (Mg) and zinc (Zn) lead to the formation of negative charged tetrahedral units (MgO4 2- and ZnO4 2-) in the glass network. These units effectively trap positive charged metal ions, further inhibiting ion release. In vitro experiments reveal that the deigned bionic periosteum regulates the polarization of macrophages toward M2 type, thereby establishing a conducive immune environment for osteogenic differentiation. Bioinformatics analysis indicate that BP enhanced bone repair via the JAK-STAT signaling pathway. The slow release of metal ions from the bionic periosteum can directly enhance osteogenic differentiation and vascularization, thereby accelerating bone regeneration. Finally, the bionic periosteum exhibits remarkable capabilities in angiogenesis and osteogenesis, demonstrating its potential for bone repair in a rat calvarial defect model.
Collapse
Affiliation(s)
- Junjie Mao
- Liquid‐Solid Structural Evolution & Processing of Materials (Ministry of Education)School of Materials Science and EngineeringShandong UniversityJinanShandong250061P. R. China
| | - Zhenqian Sun
- Department of OrthopaedicsQilu Hospital of Shandong UniversityJinanShandong250012P. R. China
- The First Clinical Medical SchoolShandong UniversityJinanShandong250012P. R. China
| | - Shidong Wang
- Musculoskeletal Tumor CenterPeking University People's HospitalBeijing100044P. R. China
| | - Jianqiang Bi
- Liquid‐Solid Structural Evolution & Processing of Materials (Ministry of Education)School of Materials Science and EngineeringShandong UniversityJinanShandong250061P. R. China
| | - Lu Xue
- Shandong Second Medical UniversityWeifangShandong261000P. R. China
- Shanxian Central HospitalHezeShandong274300P. R. China
| | - Lu Wang
- Liquid‐Solid Structural Evolution & Processing of Materials (Ministry of Education)School of Materials Science and EngineeringShandong UniversityJinanShandong250061P. R. China
| | - Hongliang Wang
- Department of OrthopaedicsQilu Hospital of Shandong UniversityJinanShandong250012P. R. China
| | - Guangjun Jiao
- Department of OrthopaedicsQilu Hospital of Shandong UniversityJinanShandong250012P. R. China
| | - Yunzhen Chen
- Department of OrthopaedicsQilu Hospital of Shandong UniversityJinanShandong250012P. R. China
| |
Collapse
|
11
|
Lu Z, Wang L, Huo Z, Li N, Tong N, Chong F, Liu J, Zhang Y, Xu H. l-Carnitine relieves cachexia-related skeletal muscle fibrosis by inducing deltex E3 ubiquitin ligase 3L to negatively regulate the Runx2/COL1A1 axis. J Cachexia Sarcopenia Muscle 2024; 15:1953-1964. [PMID: 39091264 PMCID: PMC11446711 DOI: 10.1002/jcsm.13544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 05/19/2024] [Accepted: 06/26/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Cancer cachexia-induced skeletal muscle fibrosis (SMF) impairs muscle regeneration, alters the muscle structure and function, reduces the efficacy of anticancer drugs, diminishes the patient's quality of life and shortens overall survival. RUNX family transcription factor 2 (Runx2), a transcription factor, and collagen type I alpha 1 chain (COL1A1), the principal constituent of SMF, have been linked previously, with Runx2 shown to directly modulate COL1A1 mRNA levels. l-Carnitine, a marker of cancer cachexia, can alleviate fibrosis in liver and kidney models; however, its role in cancer cachexia-associated fibrosis and the involvement of Runx2 in the process remain unexplored. METHODS Female C57 mice (48 weeks old) were inoculated subcutaneously with MC38 cells to establish a cancer cachexia model. A 5 mg/kg dose of l-carnitine or an equivalent volume of water was administered for 14 days via oral gavage, followed by assessments of muscle function (grip strength) and fibrosis. To elucidate the interplay between the deltex E3 ubiquitin ligase 3L(DTX3L)/Runx2/COL1A1 axis and fibrosis in transforming growth factor beta 1-stimulated NIH/3T3 cells, a suite of molecular techniques, including quantitative real-time PCR, western blot analysis, co-immunoprecipitation, molecular docking, immunofluorescence and Duolink assays, were used. The relevance of the DTX3L/Runx2/COL1A1 axis in the gastrocnemius was also explored in the in vivo model. RESULTS l-Carnitine supplementation reduced cancer cachexia-induced declines in grip strength (>88.2%, P < 0.05) and the collagen fibre area within the gastrocnemius (>57.9%, P < 0.05). At the 5 mg/kg dose, l-carnitine also suppressed COL1A1 and alpha-smooth muscle actin (α-SMA) protein expression, which are markers of SMF and myofibroblasts. Analyses of the TRRUST database indicated that Runx2 regulates both COL1A1 and COL1A2. In vitro, l-carnitine diminished Runx2 protein levels and promoted its ubiquitination. Overexpression of Runx2 abolished the effects of l-carnitine on COL1A1 and α-SMA. Co-immunoprecipitation, molecular docking, immunofluorescence and Duolink assays confirmed an interaction between DTX3L and Runx2, with l-carnitine enhancing this interaction to promote Runx2 ubiquitination. l-Carnitine supplementation restored DTX3L levels to those observed under non-cachectic conditions, both in vitro and in vivo. Knockdown of DTX3L abolished the effects of l-carnitine on Runx2, COL1A1 and α-SMA in vitro. The expression of DTX3L was negatively correlated with the levels of Runx2 and COL1A1 in untreated NIH/3T3 cells. CONCLUSIONS This study revealed a previously unrecognized link between Runx2 and DTX3L in SMF and demonstrated that l-carnitine exerted a significant therapeutic impact on cancer cachexia-associated SMF, potentially through the upregulation of DTX3L.
Collapse
Affiliation(s)
- Zongliang Lu
- Department of Clinical NutritionDaping Hospital, Army Medical University (Third Military Medical University)ChongqingChina
- Chongqing Municipal Health Commission Key Laboratory of Intelligent Clinical Nutrition and TransformationDaping Hospital, Army Medical University (Third Military Medical University)ChongqingChina
| | - Li Wang
- Department of Clinical NutritionDaping Hospital, Army Medical University (Third Military Medical University)ChongqingChina
- Chongqing Municipal Health Commission Key Laboratory of Intelligent Clinical Nutrition and TransformationDaping Hospital, Army Medical University (Third Military Medical University)ChongqingChina
| | - Zhenyu Huo
- Department of Clinical NutritionDaping Hospital, Army Medical University (Third Military Medical University)ChongqingChina
- Chongqing Municipal Health Commission Key Laboratory of Intelligent Clinical Nutrition and TransformationDaping Hospital, Army Medical University (Third Military Medical University)ChongqingChina
| | - Na Li
- Department of Clinical NutritionDaping Hospital, Army Medical University (Third Military Medical University)ChongqingChina
- Chongqing Municipal Health Commission Key Laboratory of Intelligent Clinical Nutrition and TransformationDaping Hospital, Army Medical University (Third Military Medical University)ChongqingChina
| | - Ning Tong
- Department of Clinical NutritionDaping Hospital, Army Medical University (Third Military Medical University)ChongqingChina
- Chongqing Municipal Health Commission Key Laboratory of Intelligent Clinical Nutrition and TransformationDaping Hospital, Army Medical University (Third Military Medical University)ChongqingChina
| | - Feifei Chong
- Department of Clinical NutritionDaping Hospital, Army Medical University (Third Military Medical University)ChongqingChina
- Chongqing Municipal Health Commission Key Laboratory of Intelligent Clinical Nutrition and TransformationDaping Hospital, Army Medical University (Third Military Medical University)ChongqingChina
| | - Jie Liu
- Department of Clinical NutritionDaping Hospital, Army Medical University (Third Military Medical University)ChongqingChina
- Chongqing Municipal Health Commission Key Laboratory of Intelligent Clinical Nutrition and TransformationDaping Hospital, Army Medical University (Third Military Medical University)ChongqingChina
| | - Yaowen Zhang
- Department of Clinical NutritionDaping Hospital, Army Medical University (Third Military Medical University)ChongqingChina
- Department of Medical EngineeringThe 32280 Troops of China People's Liberation ArmyLeshanChina
| | - Hongxia Xu
- Department of Clinical NutritionDaping Hospital, Army Medical University (Third Military Medical University)ChongqingChina
- Chongqing Municipal Health Commission Key Laboratory of Intelligent Clinical Nutrition and TransformationDaping Hospital, Army Medical University (Third Military Medical University)ChongqingChina
| |
Collapse
|
12
|
Sun H, Yin X, Yang C, Kuang H, Luo W. Advances in autogenous dentin matrix graft as a promising biomaterial for guided bone regeneration in maxillofacial region: A review. Medicine (Baltimore) 2024; 103:e39422. [PMID: 39183415 PMCID: PMC11346879 DOI: 10.1097/md.0000000000039422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 08/27/2024] Open
Abstract
Autogenous dentin matrix (ADM), derived from a patient's extracted tooth, can be repurposed as an autologous grafting material in reconstructive dentistry. Extracted teeth provide a source for ADM, which distinguishes itself with its low rejection rate, osteoinductive capabilities and ease of preparation. Consequently, it presents a viable alternative to autogenous bone. Animal studies have substantiated its effective osteoinductive properties, while its clinical applications encompass post-extraction site preservation, maxillary sinus floor augmentation, and guided bone tissue regeneration. Nevertheless, the long-term efficacy of ADM applied in bone regeneration remains underexplored and there is a lack of standardization in the preparation processes. This paper comprehensively explores the composition, mechanisms underlying osteoinductivity, preparation methods, and clinical applications of ADM with the aim of establishing a fundamental reference for future studies on this subject.
Collapse
Affiliation(s)
- Honglan Sun
- Key Laboratory of Emergency and Trauma of Ministry of Education, Department of Stomatology, Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan Province, China
- School of Stomatology, Hainan Medical University, Haikou, Hainan Province, China
| | - Xiaoyunqing Yin
- Key Laboratory of Emergency and Trauma of Ministry of Education, Department of Stomatology, Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan Province, China
- School of Stomatology, Hainan Medical University, Haikou, Hainan Province, China
| | - Chao Yang
- Department of Stomatology, The People’s Hospital of Longhua, Shenzhen, Guangdong Province, China
- Research and Development Department, Shenzhen Uni-medica Technology Co., Ltd, Shenzhen, Guangdong Province, China
| | - Huifang Kuang
- Key Laboratory of Emergency and Trauma of Ministry of Education, Department of Stomatology, Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan Province, China
- School of Stomatology, Hainan Medical University, Haikou, Hainan Province, China
| | - Wen Luo
- Key Laboratory of Emergency and Trauma of Ministry of Education, Department of Stomatology, Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan Province, China
- School of Stomatology, Hainan Medical University, Haikou, Hainan Province, China
| |
Collapse
|
13
|
Tian K, He X, Lin X, Chen X, Su Y, Lu Z, Chen Z, Zhang L, Li P, Ma L, Lan Z, Zhao X, Fen G, Hai Q, Xue D, Jin Q. Unveiling the Role of Sik1 in Osteoblast Differentiation: Implications for Osteoarthritis. Mol Cell Biol 2024; 44:411-428. [PMID: 39169784 PMCID: PMC11485870 DOI: 10.1080/10985549.2024.2385633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/19/2024] [Accepted: 07/23/2024] [Indexed: 08/23/2024] Open
Abstract
Osteoarthritis (OA) is a chronic degenerative disease characterized by subchondral osteosclerosis, mainly due to osteoblast activity. This research investigates the function of Sik1, a member of the AMP-activated protein kinase family, in OA. Proteomic analysis was conducted on clinical samples from 30 OA patients, revealing a negative correlation between Sik1 expression and OA. In vitro experiments utilized BMSCs to examine the effect of Sik1 on osteogenic differentiation. BMSCs were cultured and induced toward osteogenesis with specific media. Sik1 overexpression was achieved through lentiviral transfection, followed by analysis of osteogenesis-associated proteins using Western blotting, RT-qPCR, and alkaline phosphate staining. In vivo experiments involved destabilizing the medial meniscus in mice to establish an OA model, assessing the therapeutic potential of Sik1. The CT scans and histological staining were used to analyze subchondral bone alterations and cartilage damage. The findings show that Sik1 downregulation correlates with advanced OA and heightened osteogenic differentiation in BMSCs. Sik1 overexpression inhibits osteogenesis-related markers in vitro and reduces cartilage damage and subchondral osteosclerosis in vivo. Mechanistically, Sik1 modulates osteogenesis and subchondral bone changes through Runx2 activity regulation. The research emphasizes Sik1 as a promising target for treating OA, suggesting its involvement in controlling bone formation and changes in the subchondral osteosclerosis.
Collapse
Affiliation(s)
- Kuanmin Tian
- The Third Ward of Orthopaedic Department, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Xiaoxin He
- The Third Ward of Orthopaedic Department, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Xue Lin
- Institute of Osteoarthropathy, Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Xiaolei Chen
- The Third Ward of Orthopaedic Department, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Yajing Su
- Institute of Osteoarthropathy, Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Zhidong Lu
- First Clinical Medical School, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, P.R. China
| | - Zhirong Chen
- First Clinical Medical School, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, P.R. China
| | - Liang Zhang
- First Clinical Medical School, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, P.R. China
| | - Peng Li
- First Clinical Medical School, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, P.R. China
| | - Long Ma
- First Clinical Medical School, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, P.R. China
| | - Zhibin Lan
- The Third Ward of Orthopaedic Department, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Xin Zhao
- First Clinical Medical School, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, P.R. China
| | - Gangning Fen
- Institute of Osteoarthropathy, Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Qinqin Hai
- The Third Ward of Orthopaedic Department, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Di Xue
- Institute of Osteoarthropathy, Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Qunhua Jin
- Institute of Osteoarthropathy, Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
- First Clinical Medical School, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, P.R. China
| |
Collapse
|
14
|
Zhu S, Chen W, Masson A, Li YP. Cell signaling and transcriptional regulation of osteoblast lineage commitment, differentiation, bone formation, and homeostasis. Cell Discov 2024; 10:71. [PMID: 38956429 PMCID: PMC11219878 DOI: 10.1038/s41421-024-00689-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 05/04/2024] [Indexed: 07/04/2024] Open
Abstract
The initiation of osteogenesis primarily occurs as mesenchymal stem cells undergo differentiation into osteoblasts. This differentiation process plays a crucial role in bone formation and homeostasis and is regulated by two intricate processes: cell signal transduction and transcriptional gene expression. Various essential cell signaling pathways, including Wnt, BMP, TGF-β, Hedgehog, PTH, FGF, Ephrin, Notch, Hippo, and Piezo1/2, play a critical role in facilitating osteoblast differentiation, bone formation, and bone homeostasis. Key transcriptional factors in this differentiation process include Runx2, Cbfβ, Runx1, Osterix, ATF4, SATB2, and TAZ/YAP. Furthermore, a diverse array of epigenetic factors also plays critical roles in osteoblast differentiation, bone formation, and homeostasis at the transcriptional level. This review provides an overview of the latest developments and current comprehension concerning the pathways of cell signaling, regulation of hormones, and transcriptional regulation of genes involved in the commitment and differentiation of osteoblast lineage, as well as in bone formation and maintenance of homeostasis. The paper also reviews epigenetic regulation of osteoblast differentiation via mechanisms, such as histone and DNA modifications. Additionally, we summarize the latest developments in osteoblast biology spurred by recent advancements in various modern technologies and bioinformatics. By synthesizing these insights into a comprehensive understanding of osteoblast differentiation, this review provides further clarification of the mechanisms underlying osteoblast lineage commitment, differentiation, and bone formation, and highlights potential new therapeutic applications for the treatment of bone diseases.
Collapse
Affiliation(s)
- Siyu Zhu
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, USA
| | - Wei Chen
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, USA.
| | - Alasdair Masson
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, USA
| | - Yi-Ping Li
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, USA.
| |
Collapse
|
15
|
Hu R, Dun X, Singh L, Banton MC. Runx2 regulates peripheral nerve regeneration to promote Schwann cell migration and re-myelination. Neural Regen Res 2024; 19:1575-1583. [PMID: 38051902 PMCID: PMC10883509 DOI: 10.4103/1673-5374.387977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 09/16/2023] [Indexed: 12/07/2023] Open
Abstract
Abstract
JOURNAL/nrgr/04.03/01300535-202407000-00038/figure1/v/2023-11-20T171125Z/r/image-tiff
Runx2 is a major regulator of osteoblast differentiation and function; however, the role of Runx2 in peripheral nerve repair is unclear. Here, we analyzed Runx2 expression following injury and found that it was specifically up-regulated in Schwann cells. Furthermore, using Schwann cell-specific Runx2 knockout mice, we studied peripheral nerve development and regeneration and found that multiple steps in the regeneration process following sciatic nerve injury were Runx2-dependent. Changes observed in Runx2 knockout mice include increased proliferation of Schwann cells, impaired Schwann cell migration and axonal regrowth, reduced re-myelination of axons, and a block in macrophage clearance in the late stage of regeneration. Taken together, our findings indicate that Runx2 is a key regulator of Schwann cell plasticity, and therefore peripheral nerve repair. Thus, our study shows that Runx2 plays a major role in Schwann cell migration, re-myelination, and peripheral nerve functional recovery following injury.
Collapse
Affiliation(s)
- Rong Hu
- School of Traditional Chinese Medicine, Department of Traditional Chinese Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Xinpeng Dun
- The Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Lolita Singh
- Faculty of Health, University of Plymouth, Plymouth, UK
| | | |
Collapse
|
16
|
Atarbashi-Moghadam F, Azadi A, Nokhbatolfoghahaei H, Taghipour N. Effect of simultaneous and sequential use of TGF-β1 and TGF-β3 with FGF-2 on teno/ligamentogenic differentiation of periodontal ligament stem cells. Arch Oral Biol 2024; 162:105956. [PMID: 38522213 DOI: 10.1016/j.archoralbio.2024.105956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/06/2024] [Accepted: 03/08/2024] [Indexed: 03/26/2024]
Abstract
OBJECTIVE The periodontal ligament is a crucial part of the periodontium, and its regeneration is challenging. This study compares the effect of simultaneous and sequential use of FGF-2 and TGF-β1 with FGF-2 and TGF-β3 on the periodontal ligament stem cells (PDLSCs) teno/ligamentogenic differentiation. DESIGN This study comprises ten different groups. A control group with only PDLSCs; FGF-2 group containing PDLSCs with a medium culture supplemented with FGF-2 (50 ng/mL). In other experimental groups, different concentrations (5 ng/mL or 10 ng/mL) of TGF-β1&-β3 simultaneously or sequentially were combined with FGF-2 on the cultured PDLSCs. TGF-β was added to the medium after day 3 in the sequential groups. Methyl Thiazolyl Tetrazolium (MTT) assay on days 3, 5, and 7 and Quantitative Real-time Polymerase Chain Reaction (RT-qPCR) analysis after day 7 were conducted to investigate PLAP1, SCX, and COL3A1, RUNX2 genes. All experiments were conducted in a triplicate. The One-way and Two-way ANOVA with Tukey post hoc were utilized to analyze the results of the MTT and RT-qPCR tests, respectively. A p-value less than 0.05 is considered significant. RESULTS The proliferation of cells on days 3, 5, and 7 was not significantly different among different experimental groups (P > 0.05). A higher expression of the PLAP1, SCX, and COL3A1 have been seen in groups with sequential use of growth factors; among these groups, the group using 5 ng/mL of TGF-β3 led other groups with the most amount of significant upregulation in PLAP1(17.69 ± 1.11 fold; P < 0.0001), SCX (5.71 ± 0.38 fold; P < 0.0001), and COL1A3 (6.35 ± 0.39 fold; P < 0.0001) expression, compared to the control group. The expression of the RUNX2 decreased in all groups compared to the control group; this reduction was more in groups with sequential use of growth factors. CONCLUSION The sequential use of growth factors can be more effective than simultaneous use in teno/ligamentogenic differentiation of PDLSCs. Moreover, treatment with 5 ng/mL TGF-β3 after FGF-2 was more effective than TGF-β1.
Collapse
Affiliation(s)
- Fazele Atarbashi-Moghadam
- Department of Periodontics, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Dental Research Center, Research Institute for Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Azadi
- DDS, Research Fellow, Dentofacial Deformities Research Center, Research Institute for Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hanieh Nokhbatolfoghahaei
- Dental Research Center, Research Institute for Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Niloofar Taghipour
- Dental Research Center, Research Institute for Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
17
|
Wei E, Hu M, Wu L, Pan X, Zhu Q, Liu H, Liu Y. TGF-β signaling regulates differentiation of MSCs in bone metabolism: disputes among viewpoints. Stem Cell Res Ther 2024; 15:156. [PMID: 38816830 PMCID: PMC11140988 DOI: 10.1186/s13287-024-03761-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 05/14/2024] [Indexed: 06/01/2024] Open
Abstract
Mesenchymal stem cells (MSCs) are multipotent cells that can differentiate into cells of different lineages to form mesenchymal tissues, which are promising in regard to treatment for bone diseases. Their osteogenic differentiation is under the tight regulation of intrinsic and extrinsic factors. Transforming growth factor β (TGF-β) is an essential growth factor in bone metabolism, which regulates the differentiation of MSCs. However, published studies differ in their views on whether TGF-β signaling regulates the osteogenic differentiation of MSCs positively or negatively. The controversial results have not been summarized systematically and the related explanations are required. Therefore, we reviewed the basics of TGF-β signaling and summarized how each of three isoforms regulates osteogenic differentiation. Three isoforms of TGF-β (TGF-β1/β2/β3) play distinct roles in regulating osteogenic differentiation of MSCs. Additionally, other possible sources of conflicts are summarized here. Further understanding of TGF-β signaling regulation in MSCs may lead to new applications to promote bone regeneration and improve therapies for bone diseases.
Collapse
Affiliation(s)
- Erfan Wei
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices& Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, Central Laboratory, Peking University School and Hospital of Stomatology , No.22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, PR China
| | - Menglong Hu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices& Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, Central Laboratory, Peking University School and Hospital of Stomatology , No.22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, PR China
| | - Likun Wu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices& Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, Central Laboratory, Peking University School and Hospital of Stomatology , No.22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, PR China
| | - Xingtong Pan
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices& Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, Central Laboratory, Peking University School and Hospital of Stomatology , No.22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, PR China
| | - Qiyue Zhu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices& Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, Central Laboratory, Peking University School and Hospital of Stomatology , No.22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, PR China
| | - Hao Liu
- Central Laboratory, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices& Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials , Peking University School and Hospital of Stomatology, No.22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, PR China.
| | - Yunsong Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices& Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, Central Laboratory, Peking University School and Hospital of Stomatology , No.22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, PR China.
| |
Collapse
|
18
|
Vakayil M, Madani AY, Agha MV, Majeed Y, Hayat S, Yonuskunju S, Mohamoud YA, Malek J, Suhre K, Mazloum NA. The E3 ubiquitin-protein ligase UHRF1 promotes adipogenesis and limits fibrosis by suppressing GPNMB-mediated TGF-β signaling. Sci Rep 2024; 14:11886. [PMID: 38789534 PMCID: PMC11126700 DOI: 10.1038/s41598-024-62508-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 05/17/2024] [Indexed: 05/26/2024] Open
Abstract
The E3 ubiquitin-ligase UHRF1 is an epigenetic regulator coordinating DNA methylation and histone modifications. However, little is known about how it regulates adipogenesis or metabolism. In this study, we discovered that UHRF1 is a key regulatory factor for adipogenesis, and we identified the altered molecular pathways that UHRF1 targets. Using CRISPR/Cas9-based knockout strategies, we discovered the whole transcriptomic changes upon UHRF1 deletion. Bioinformatics analyses revealed that key adipogenesis regulators such PPAR-γ and C/EBP-α were suppressed, whereas TGF-β signaling and fibrosis markers were upregulated in UHRF1-depleted differentiating adipocytes. Furthermore, UHRF1-depleted cells showed upregulated expression and secretion of TGF-β1, as well as the glycoprotein GPNMB. Treating differentiating preadipocytes with recombinant GPNMB led to an increase in TGF-β protein and secretion levels, which was accompanied by an increase in secretion of fibrosis markers such as MMP13 and a reduction in adipogenic conversion potential. Conversely, UHRF1 overexpression studies in human cells demonstrated downregulated levels of GPNMB and TGF-β, and enhanced adipogenic potential. In conclusion, our data show that UHRF1 positively regulates 3T3-L1 adipogenesis and limits fibrosis by suppressing GPNMB and TGF-β signaling cascade, highlighting the potential relevance of UHRF1 and its targets to the clinical management of obesity and linked metabolic disorders.
Collapse
Affiliation(s)
- Muneera Vakayil
- College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, PO Box 34110, Doha, Qatar
- Department of Microbiology and Immunology, Weill Cornell Medicine-Qatar (WCM-Q), Qatar Foundation, PO Box 24144, Doha, Qatar
| | - Aisha Y Madani
- Department of Microbiology and Immunology, Weill Cornell Medicine-Qatar (WCM-Q), Qatar Foundation, PO Box 24144, Doha, Qatar
| | - Maha V Agha
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, PO Box 3050, Doha, Qatar
| | - Yasser Majeed
- Department of Microbiology and Immunology, Weill Cornell Medicine-Qatar (WCM-Q), Qatar Foundation, PO Box 24144, Doha, Qatar
| | - Shahina Hayat
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar (WCM-Q), Qatar Foundation, PO Box 24144, Doha, Qatar
| | - Shameem Yonuskunju
- Department of Genetic Medicine, Weill Cornell Medicine-Qatar (WCM-Q), Qatar Foundation, PO Box 24144, Doha, Qatar
| | - Yasmin Ali Mohamoud
- Department of Genetic Medicine, Weill Cornell Medicine-Qatar (WCM-Q), Qatar Foundation, PO Box 24144, Doha, Qatar
| | - Joel Malek
- Department of Genetic Medicine, Weill Cornell Medicine-Qatar (WCM-Q), Qatar Foundation, PO Box 24144, Doha, Qatar
| | - Karsten Suhre
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar (WCM-Q), Qatar Foundation, PO Box 24144, Doha, Qatar
| | - Nayef A Mazloum
- Department of Microbiology and Immunology, Weill Cornell Medicine-Qatar (WCM-Q), Qatar Foundation, PO Box 24144, Doha, Qatar.
| |
Collapse
|
19
|
Elli FM, Mattinzoli D, Ikehata M, Bagnaresi F, Maffini MA, Del Sindaco G, Pagnano A, Lucca C, Messa P, Arosio M, Castellano G, Alfieri CM, Mantovani G. Targeted silencing of GNAS in a human model of osteoprogenitor cells results in the deregulation of the osteogenic differentiation program. Front Endocrinol (Lausanne) 2024; 15:1296886. [PMID: 38828417 PMCID: PMC11140044 DOI: 10.3389/fendo.2024.1296886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 04/22/2024] [Indexed: 06/05/2024] Open
Abstract
Introduction The dysregulation of cell fate toward osteoprecursor cells associated with most GNAS-based disorders may lead to episodic de novo extraskeletal or ectopic bone formation in subcutaneous tissues. The bony lesion distribution suggests the involvement of abnormal differentiation of mesenchymal stem cells (MSCs) and/or more committed precursor cells. Data from transgenic mice support the concept that GNAS is a crucial factor in regulating lineage switching between osteoblasts (OBs) and adipocyte fates. The mosaic nature of heterotopic bone lesions suggests that GNAS genetic defects provide a sensitized background for ectopic osteodifferentiation, but the underlying molecular mechanism remains largely unknown. Methods The effect of GNAS silencing in the presence and/or absence of osteoblastic stimuli was evaluated in the human L88/5 MSC line during osteodifferentiation. A comparison of the data obtained with data coming from a bony lesion from a GNAS-mutated patient was also provided. Results Our study adds some dowels to the current fragmented notions about the role of GNAS during osteoblastic differentiation, such as the premature transition of immature OBs into osteocytes and the characterization of the differences in the deposed bone matrix. Conclusion We demonstrated that our cell model partially replicates the in vivo behavior results, resulting in an applicable human model to elucidate the pathophysiology of ectopic bone formation in GNAS-based disorders.
Collapse
Affiliation(s)
- Francesca Marta Elli
- Endocrinology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Deborah Mattinzoli
- Department of Nephrology, Dialysis and Renal Transplantation, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Masami Ikehata
- Department of Nephrology, Dialysis and Renal Transplantation, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Francesca Bagnaresi
- Endocrinology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Maria A. Maffini
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Giulia Del Sindaco
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Angela Pagnano
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Camilla Lucca
- Endocrinology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Piergiorgio Messa
- Department of Nephrology, Dialysis and Renal Transplantation, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Maura Arosio
- Endocrinology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Giuseppe Castellano
- Department of Nephrology, Dialysis and Renal Transplantation, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Carlo M. Alfieri
- Department of Nephrology, Dialysis and Renal Transplantation, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Giovanna Mantovani
- Endocrinology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| |
Collapse
|
20
|
Upadhyay V, Singh AK, Sharma S, Sethi A, Srivastava S, Chowdhury S, Siddiqui S, Chattopadhyay N, Trivedi AK. RING finger E3 ligase, RNF138 inhibits osteoblast differentiation by negatively regulating Runx2 protein turnover. J Cell Physiol 2024; 239:e31217. [PMID: 38327035 DOI: 10.1002/jcp.31217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 01/23/2024] [Accepted: 01/27/2024] [Indexed: 02/09/2024]
Abstract
A few ubiquitin ligases have been shown to target Runx2, the key osteogenic transcription factor and thereby regulate bone formation. The regulation of Runx2 expression and function are controlled both at the transcriptional and posttranslational levels. Really interesting new gene (RING) finger ubiquitin ligases of which RNF138 is a member are important players in the ubiquitin-proteasome system, contributing to the regulation of protein turnover and cellular processes. Here, we demonstrated that RNF138 negatively correlated with Runx2 protein levels in osteopenic ovariectomized rats which implied its role in bone loss. Accordingly, RNF138 overexpression potently inhibited osteoblast differentiation of mesenchyme-like C3H10T1/2 as well primary rat calvarial osteoblast (RCO) cells in vitro, whereas overexpression of catalytically inactive mutant RNF138Δ18-58 (lacks RING finger domain) had mild to no effect. Contrarily, RNF138 depletion copiously enhanced endogenous Runx2 levels and augmented osteogenic differentiation of C3H10T1/2 as well as RCOs. Mechanistically, RNF138 physically associates within multiple regions of Runx2 and ubiquitinates it leading to its reduced protein stability in a proteasome-dependent manner. Moreover, catalytically active RNF138 destabilized Runx2 which resulted in inhibition of its transactivation potential and physiological function of promoting osteoblast differentiation leading to bone loss. These findings underscore the functional involvement of RNF138 in bone formation which is primarily achieved through its modulation of Runx2 by stimulating ubiquitin-mediated proteasomal degradation. Thus, our findings indicate that RNF138 could be a promising novel target for therapeutic intervention in postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Vishal Upadhyay
- Division of Cancer Biology, CSIR-Central Drug Research Institute, Lucknow, Utter Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Anil Kumar Singh
- Division of Cancer Biology, CSIR-Central Drug Research Institute, Lucknow, Utter Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Shivani Sharma
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, Utter Pradesh, India
| | - Arppita Sethi
- Division of Cancer Biology, CSIR-Central Drug Research Institute, Lucknow, Utter Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Swati Srivastava
- Division of Cancer Biology, CSIR-Central Drug Research Institute, Lucknow, Utter Pradesh, India
| | - Sangita Chowdhury
- Division of Cancer Biology, CSIR-Central Drug Research Institute, Lucknow, Utter Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Shumaila Siddiqui
- Division of Cancer Biology, CSIR-Central Drug Research Institute, Lucknow, Utter Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Naibedya Chattopadhyay
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, Utter Pradesh, India
| | - Arun Kumar Trivedi
- Division of Cancer Biology, CSIR-Central Drug Research Institute, Lucknow, Utter Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
21
|
Li F, Xie X, Xu X, Zou X. Water-soluble biopolymers calcium polymalate derived from fermentation broth of Aureobasidium pullulans markedly alleviates osteoporosis and fatigue. Int J Biol Macromol 2024; 268:132013. [PMID: 38697412 DOI: 10.1016/j.ijbiomac.2024.132013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/02/2024] [Accepted: 04/29/2024] [Indexed: 05/05/2024]
Abstract
Osteoporosis is a prevalent condition characterized by bone loss and decreased skeletal strength, resulting in an elevated risk of fractures. Calcium plays a crucial role in preventing and managing osteoporosis. However, traditional calcium supplements have limited bioavailability, poor solubility, and adverse effects. In this study, we isolated a natural soluble biopolymer, calcium polymalate (PMACa), from the fermentation broth of the fungus Aureobasidium pullulans, to investigate its potential as an anti-osteoporosis therapeutic agent. Characterization revealed that linear PMA-Ca chains juxtaposed to form a porous, rod-like state, in the presence of Ca2+. In vivo mouse models demonstrated that PMA-Ca significantly promoted the conversion of serum calcium into bone calcium, and stimulated bone growth and osteogenesis. Additionally, PMA-Ca alleviated exercise fatigue in mice by facilitating the removal of essential metabolites, such as serum lactate (BLA) and blood urea nitrogen (BUN), from their bloodstream. In vitro studies further showed that PMA-Ca strengthened osteoblast cell activity, proliferation, and mineralization. And PMA-Ca upregulated the expression of some genes involved in osteoblast differentiation, indicating a potential correlation between bone formation and PMACa. These findings indicate that soluble PMA-Ca has the potential to be a novel biopolymer-based calcium supplement with sustainable production sourced from the fermentation industry.
Collapse
Affiliation(s)
- Fulin Li
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Xin Xie
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Xingran Xu
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China.
| | - Xiang Zou
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China; Dongguan Juwei Biotechnology Co., Dongguan 523808, China.
| |
Collapse
|
22
|
Anitua E, Zalduendo M, Tierno R, Alkhraisat MH. Plasma Rich in Growth Factors in Bone Regeneration: The Proximity to the Clot as a Differential Factor in Osteoblast Cell Behaviour. Dent J (Basel) 2024; 12:122. [PMID: 38786520 PMCID: PMC11119057 DOI: 10.3390/dj12050122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/12/2024] [Accepted: 04/19/2024] [Indexed: 05/25/2024] Open
Abstract
The osteogenic differentiation process, by which bone marrow mesenchymal stem cells and osteoprogenitors transform into osteoblasts, is regulated by several growth factors, cytokines, and hormones. Plasma Rich in Growth Factors (PRGF) is a blood-derived preparation consisting of a plethora of bioactive molecules, also susceptible to containing epigenetic factors such as ncRNAs and EVs, that stimulates tissue regeneration. The aim of this study was to investigate the effect of the PRGF clot formulation on osteogenic differentiation. Firstly, osteoblast cells were isolated and characterised. The proliferation of bone cells cultured onto PRGF clots or treated with PRGF supernatant was determined. Moreover, the gene expression of Runx2 (ID: 860), SP7 (ID: 121340), and ALPL (ID: 249) was analysed by one-step real-time quantitative polymerase chain reaction (RT-qPCR). Additionally, alkaline phosphatase (ALPL) activity determination was performed. The highest proliferative effect was achieved by the PRGF supernatant in all the study periods analysed. Concerning gene expression, the logRGE of Runx2 increased significantly in osteoblasts cultured with PRGF formulations compared with the control group, while that of SP7 increased significantly in osteoblasts grown on the PRGF clots. On the other hand, despite the fact that the PRGF supernatant induced ALPL up-regulation, significantly higher enzyme activity was detected for the PRGF clots in comparison with the supernatant formulation. According to our results, contact with the PRGF clot could promote a more advanced phase in the osteogenic process, associated to higher levels of ALPL activity. Furthermore, the PRGF clot releasate stimulated a higher proliferation rate in addition to reduced SP7 expression in the cells located at a distant ubication, leading to a less mature osteoblast stage. Thus, the spatial relationship between the PRGF clot and the osteoprogenitors cells could be a factor that influences regenerative outcomes.
Collapse
Affiliation(s)
- Eduardo Anitua
- BTI-Biotechnology Institute, 01007 Vitoria, Spain; (M.Z.); (R.T.); (M.H.A.)
- University Institute for Regenerative Medicine & Oral Implantology, UIRMI (UPV/EHU-Fundación Eduardo Anitua), 01007 Vitoria, Spain
| | - Mar Zalduendo
- BTI-Biotechnology Institute, 01007 Vitoria, Spain; (M.Z.); (R.T.); (M.H.A.)
- University Institute for Regenerative Medicine & Oral Implantology, UIRMI (UPV/EHU-Fundación Eduardo Anitua), 01007 Vitoria, Spain
| | - Roberto Tierno
- BTI-Biotechnology Institute, 01007 Vitoria, Spain; (M.Z.); (R.T.); (M.H.A.)
- University Institute for Regenerative Medicine & Oral Implantology, UIRMI (UPV/EHU-Fundación Eduardo Anitua), 01007 Vitoria, Spain
| | - Mohammad Hamdan Alkhraisat
- BTI-Biotechnology Institute, 01007 Vitoria, Spain; (M.Z.); (R.T.); (M.H.A.)
- University Institute for Regenerative Medicine & Oral Implantology, UIRMI (UPV/EHU-Fundación Eduardo Anitua), 01007 Vitoria, Spain
| |
Collapse
|
23
|
Huang XY, Zhou XX, Yang H, Xu T, Dao JW, Bian L, Wei DX. Directed osteogenic differentiation of human bone marrow mesenchymal stem cells via sustained release of BMP4 from PBVHx-based nanoparticles. Int J Biol Macromol 2024; 265:130649. [PMID: 38453121 DOI: 10.1016/j.ijbiomac.2024.130649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/29/2024] [Accepted: 03/04/2024] [Indexed: 03/09/2024]
Abstract
Bone Morphogenetic Protein 4 (BMP4) is crucial for bone and cartilage tissue regeneration, essential in medical tissue engineering, cosmetology, and aerospace. However, its cost and degradation susceptibility pose significant clinical challenges. To enhance its osteogenic activity while reducing dosage and administration frequency, we developed a novel long-acting BMP4 delivery system using poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-3-hydroxyhexanoate) (PBVHx) nanoparticles with soybean lecithin-modified BMP4 (sBP-NPs). These nanoparticles promote directed osteogenic differentiation of human bone marrow mesenchymal stem cells (hBMSCs) through sustained BMP4 release. sBP-NPs exhibited uniform size (100-200 nm) and surface charges, with higher BMP4 entrapment efficiency (82.63 %) compared to controls. After an initial burst release within 24 h, sBP-NPs achieved 80 % cumulative BMP4 release within 20 days, maintaining levels better than control BP-NPs with unmodified BMP4. Co-incubation and nanoparticle uptake experiments confirmed excellent biocompatibility of sBP-NPs, promoting hBMSC differentiation towards osteogenic lineage with increased expression of type I collagen, calcium deposition, and ALP activity (> 20,000 U/g protein) compared to controls. Moreover, hBMSCs treated with sBP-NPs exhibited heightened expression of osteogenic genetic markers, surpassing control groups. Hence, this innovative strategy of sustained BMP4 release from sBP-NPs holds potential to revolutionize bone regeneration in minimally invasive surgery, medical cosmetology or space environments.
Collapse
Affiliation(s)
- Xiao-Yun Huang
- School of Clinical Medicine, Qujing Medical College, Qujing 655000, China; Department of Pathology, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| | - Xiao-Xiang Zhou
- School of Clinical Medicine, Qujing Medical College, Qujing 655000, China
| | - Hui Yang
- School of Clinical Medicine, Qujing Medical College, Qujing 655000, China
| | - Tao Xu
- School of Clinical Medicine, Qujing Medical College, Qujing 655000, China
| | - Jin-Wei Dao
- Zigong Affiliated Hospital of Southwest Medical University, Zigong Psychiatric Research Center, Zigong Institute of Brain Science, Zigong 643002, China
| | - Li Bian
- Department of Pathology, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| | - Dai-Xu Wei
- School of Clinical Medicine, Qujing Medical College, Qujing 655000, China; School of Clinical Medicine, Chengdu University, Chengdu, China; Zigong Affiliated Hospital of Southwest Medical University, Zigong Psychiatric Research Center, Zigong Institute of Brain Science, Zigong 643002, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an 710069, China.
| |
Collapse
|
24
|
Saranya I, Akshaya R, Gomathi K, Mohanapriya R, He Z, Partridge N, Selvamurugan N. Circ_ST6GAL1-mediated competing endogenous RNA network regulates TGF-β1-stimulated matrix Metalloproteinase-13 expression via Runx2 acetylation in osteoblasts. Noncoding RNA Res 2024; 9:153-164. [PMID: 38035043 PMCID: PMC10686813 DOI: 10.1016/j.ncrna.2023.11.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/31/2023] [Accepted: 11/07/2023] [Indexed: 12/02/2023] Open
Abstract
Transforming growth factor-beta1 (TGF-β1) stimulates matrix metalloproteinase-13 (MMP-13, a bone-remodeling gene) expression, and this effect requires p300-mediated Runx2 (Runt-related transcription factor 2) acetylation in osteoblasts. p300 and Runx2 are transcriptional coactivator and bone transcription factor, respectively, which play key roles in the regulation of bone-remodeling genes. Non-coding ribonucleic acids (ncRNAs), such as long ncRNAs (lncRNAs) and microRNAs (miRNAs), have been linked to both physiological and pathological bone states. In this study, we proposed that TGF-β1-mediated stimulation of MMP-13 expression is due to the downregulation of p300 targeting miRNAs in osteoblasts. We identified miR-130b-5p as one of the miRNAs downregulated by TGF-β1 in osteoblasts. Forced expression of miR-130b-5p decreased p300 expression, Runx2 acetylation, and MMP-13 expression in these cells. Furthermore, TGF-β1 upregulated circ_ST6GAL1, (a circular lncRNA) in osteoblasts; circRNA directly targeted miR-130b-5p. Antisense-mediated knockdown of circ_ST6GAL1 restored the function of miR-130b-5p, resulting in downregulation of p300, Runx2, and MMP-13 in these cells. Hence, our results suggest that TGF-β1 influences circ_ST6GAL1 to sponge and degrade miR-130b-5p, thereby promoting p300-mediated Runx2 acetylation for MMP-13 expression in osteoblasts. Thus, the circ_ST6GAL1/miR-130b-5p/p300 axis has potential significance in the treatment of bone and bone-related disorders.
Collapse
Affiliation(s)
- I. Saranya
- Biotechnology, School of Bioengineering, SRMIST, Kattankulathur, India
| | - R.L. Akshaya
- Biotechnology, School of Bioengineering, SRMIST, Kattankulathur, India
| | - K. Gomathi
- Biotechnology, School of Bioengineering, SRMIST, Kattankulathur, India
| | - R. Mohanapriya
- Biotechnology, School of Bioengineering, SRMIST, Kattankulathur, India
| | - Z. He
- Molecular Pathobiology, New York University College of Dentistry, New York, USA
| | - N.C. Partridge
- Molecular Pathobiology, New York University College of Dentistry, New York, USA
| | - N. Selvamurugan
- Biotechnology, School of Bioengineering, SRMIST, Kattankulathur, India
| |
Collapse
|
25
|
Kaur G, Wu B, Murali S, Lanigan T, Coleman RM. A synthetic, closed-looped gene circuit for the autonomous regulation of RUNX2 activity during chondrogenesis. FASEB J 2024; 38:e23484. [PMID: 38407380 PMCID: PMC10981937 DOI: 10.1096/fj.202300348rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 01/23/2024] [Accepted: 01/30/2024] [Indexed: 02/27/2024]
Abstract
The transcription factor RUNX2 is a key regulator of chondrocyte phenotype during development, making it an ideal target for prevention of undesirable chondrocyte maturation in cartilage tissue-engineering strategies. Here, we engineered an autoregulatory gene circuit (cisCXp-shRunx2) that negatively controls RUNX2 activity in chondrogenic cells via RNA interference initiated by a tunable synthetic Col10a1-like promoter (cisCXp). The cisCXp-shRunx2 gene circuit is designed based on the observation that induced RUNX2 silencing after early chondrogenesis enhances the accumulation of cartilaginous matrix in ATDC5 cells. We show that the cisCXp-shRunx2 initiates RNAi of RUNX2 in maturing chondrocytes in response to the increasing intracellular RUNX2 activity without interfering with early chondrogenesis. The induced loss of RUNX2 activity in turn negatively regulates the gene circuit itself. Moreover, the efficacy of RUNX2 suppression from cisCXp-shRunx2 can be controlled by modifying the sensitivity of cisCXp promoter. Finally, we show the efficacy of inhibiting RUNX2 in preventing matrix loss in human mesenchymal stem cell-derived (hMSC-derived) cartilage under conditions that induce chondrocyte hypertrophic differentiation, including inflammation. Overall, our results demonstrated that the negative modulation of RUNX2 activity with our autoregulatory gene circuit enhanced matrix synthesis and resisted ECM degradation by reprogrammed MSC-derived chondrocytes in response to the microenvironment of the degenerative joint.
Collapse
Affiliation(s)
- Gurcharan Kaur
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Biming Wu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Sunjana Murali
- Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI, USA
| | - Thomas Lanigan
- Biomedical Research Vector Core, University of Michigan, Ann Arbor, MI, USA
| | - Rhima M. Coleman
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
26
|
Sasso CV, Lhamyani S, Hevilla F, Padial M, Blanca M, Barril G, Jiménez-Salcedo T, Martínez ES, Nogueira Á, Lago-Sampedro AM, Olveira G. Modulation of miR-29a and miR-29b Expression and Their Target Genes Related to Inflammation and Renal Fibrosis by an Oral Nutritional Supplement with Probiotics in Malnourished Hemodialysis Patients. Int J Mol Sci 2024; 25:1132. [PMID: 38256206 PMCID: PMC10816158 DOI: 10.3390/ijms25021132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/12/2024] [Accepted: 01/14/2024] [Indexed: 01/24/2024] Open
Abstract
Malnutrition is prevalent in patients with chronic kidney disease (CKD), especially those on hemodialysis. Recently, our group described that a new oral nutritional supplement (ONS), specifically designed for malnourished (or at risk) hemodialysis patients with a "similar to the Mediterranean diet" pattern, improved caloric-protein intake, nutritional status and biomarkers of inflammation and oxidation. Our aim in this study was to evaluate whether the new ONS, associated with probiotics or not, may produce changes in miRNA's expression and its target genes in malnourished hemodialysis patients, compared to individualized diet recommendations. We performed a randomized, multicenter, parallel-group trial in malnourished hemodialysis patients with three groups (1: control (C) individualized diet (n = 11); 2: oral nutritional supplement (ONS) + placebo (ONS-PL) (n = 10); and 3: ONS + probiotics (ONS-PR) (n = 10)); the trial was open regarding the intake of ONS or individualized diet recommendations but double-blinded for the intake of probiotics. MiRNAs and gene expression levels were analyzed by RT-qPCR at baseline and after 3 and 6 months. We observed that the expression of miR-29a and miR-29b increased significantly in patients with ONS-PR at 3 months in comparison with baseline, stabilizing at the sixth month. Moreover, we observed differences between studied groups, where miR-29b expression levels were elevated in patients receiving ONS-PR compared to the control group in the third month. Regarding the gene expression levels, we observed a decrease in the ONS-PR group compared to the control group in the third month for RUNX2 and TNFα. TGFB1 expression was decreased in the ONS-PR group compared to baseline in the third month. PTEN gene expression was significantly elevated in the ONS-PR group at 3 months in comparison with baseline. LEPTIN expression was significantly increased in the ONS-PL group at the 3-month intervention compared to baseline. The new oral nutritional supplement associated with probiotics increases the expression levels of miR-29a and miR-29b after 3 months of intervention, modifying the expression of target genes with anti-inflammatory and anti-fibrotic actions. This study highlights the potential benefit of this oral nutritional supplement, especially associated with probiotics, in malnourished patients with chronic renal disease on hemodialysis.
Collapse
Affiliation(s)
- Corina Verónica Sasso
- Servicio de Endocrinología y Nutrición, Hospital Regional Universitario de Málaga, 29009 Málaga, Spain; (C.V.S.); (S.L.); (F.H.); (M.P.)
- Instituto de Investigación Biomédica de Málaga IBIMA-Plataforma BIONAND, 29009 Málaga, Spain
- Departamento de Medicina y Dermatología, Universidad de Málaga, 29010 Málaga, Spain
| | - Said Lhamyani
- Servicio de Endocrinología y Nutrición, Hospital Regional Universitario de Málaga, 29009 Málaga, Spain; (C.V.S.); (S.L.); (F.H.); (M.P.)
- Instituto de Investigación Biomédica de Málaga IBIMA-Plataforma BIONAND, 29009 Málaga, Spain
- CIBER de la Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 29010 Málaga, Spain
| | - Francisco Hevilla
- Servicio de Endocrinología y Nutrición, Hospital Regional Universitario de Málaga, 29009 Málaga, Spain; (C.V.S.); (S.L.); (F.H.); (M.P.)
- Instituto de Investigación Biomédica de Málaga IBIMA-Plataforma BIONAND, 29009 Málaga, Spain
- Departamento de Medicina y Dermatología, Universidad de Málaga, 29010 Málaga, Spain
| | - Marina Padial
- Servicio de Endocrinología y Nutrición, Hospital Regional Universitario de Málaga, 29009 Málaga, Spain; (C.V.S.); (S.L.); (F.H.); (M.P.)
- Instituto de Investigación Biomédica de Málaga IBIMA-Plataforma BIONAND, 29009 Málaga, Spain
- Departamento de Medicina y Dermatología, Universidad de Málaga, 29010 Málaga, Spain
| | - María Blanca
- Servicio de Endocrinología y Nutrición, Hospital Universitario Rey Juan Carlos, 28933 Madrid, Spain; (M.B.); (E.S.M.)
| | - Guillermina Barril
- Servicio de Nefrología, Hospital de la Princesa, 28006 Madrid, Spain; (G.B.); (Á.N.)
| | | | - Enrique Sanz Martínez
- Servicio de Endocrinología y Nutrición, Hospital Universitario Rey Juan Carlos, 28933 Madrid, Spain; (M.B.); (E.S.M.)
| | - Ángel Nogueira
- Servicio de Nefrología, Hospital de la Princesa, 28006 Madrid, Spain; (G.B.); (Á.N.)
| | - Ana María Lago-Sampedro
- Servicio de Endocrinología y Nutrición, Hospital Regional Universitario de Málaga, 29009 Málaga, Spain; (C.V.S.); (S.L.); (F.H.); (M.P.)
- Instituto de Investigación Biomédica de Málaga IBIMA-Plataforma BIONAND, 29009 Málaga, Spain
- Departamento de Medicina y Dermatología, Universidad de Málaga, 29010 Málaga, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, 29010 Málaga, Spain
| | - Gabriel Olveira
- Servicio de Endocrinología y Nutrición, Hospital Regional Universitario de Málaga, 29009 Málaga, Spain; (C.V.S.); (S.L.); (F.H.); (M.P.)
- Instituto de Investigación Biomédica de Málaga IBIMA-Plataforma BIONAND, 29009 Málaga, Spain
- Departamento de Medicina y Dermatología, Universidad de Málaga, 29010 Málaga, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, 29010 Málaga, Spain
| |
Collapse
|
27
|
Katkat E, Demirci Y, Heger G, Karagulle D, Papatheodorou I, Brazma A, Ozhan G. Canonical Wnt and TGF-β/BMP signaling enhance melanocyte regeneration but suppress invasiveness, migration, and proliferation of melanoma cells. Front Cell Dev Biol 2023; 11:1297910. [PMID: 38020918 PMCID: PMC10679360 DOI: 10.3389/fcell.2023.1297910] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023] Open
Abstract
Melanoma is the deadliest form of skin cancer and develops from the melanocytes that are responsible for the pigmentation of the skin. The skin is also a highly regenerative organ, harboring a pool of undifferentiated melanocyte stem cells that proliferate and differentiate into mature melanocytes during regenerative processes in the adult. Melanoma and melanocyte regeneration share remarkable cellular features, including activation of cell proliferation and migration. Yet, melanoma considerably differs from the regenerating melanocytes with respect to abnormal proliferation, invasive growth, and metastasis. Thus, it is likely that at the cellular level, melanoma resembles early stages of melanocyte regeneration with increased proliferation but separates from the later melanocyte regeneration stages due to reduced proliferation and enhanced differentiation. Here, by exploiting the zebrafish melanocytes that can efficiently regenerate and be induced to undergo malignant melanoma, we unravel the transcriptome profiles of the regenerating melanocytes during early and late regeneration and the melanocytic nevi and malignant melanoma. Our global comparison of the gene expression profiles of melanocyte regeneration and nevi/melanoma uncovers the opposite regulation of a substantial number of genes related to Wnt signaling and transforming growth factor beta (TGF-β)/(bone morphogenetic protein) BMP signaling pathways between regeneration and cancer. Functional activation of canonical Wnt or TGF-β/BMP pathways during melanocyte regeneration promoted melanocyte regeneration but potently suppressed the invasiveness, migration, and proliferation of human melanoma cells in vitro and in vivo. Therefore, the opposite regulation of signaling mechanisms between melanocyte regeneration and melanoma can be exploited to stop tumor growth and develop new anti-cancer therapies.
Collapse
Affiliation(s)
- Esra Katkat
- Izmir Biomedicine and Genome Center (IBG), Dokuz Eylul University Health Campus, Izmir, Türkiye
- Izmir International Biomedicine and Genome Institute (IBG-Izmir), Dokuz Eylul University, Izmir, Türkiye
| | - Yeliz Demirci
- Izmir Biomedicine and Genome Center (IBG), Dokuz Eylul University Health Campus, Izmir, Türkiye
- Izmir International Biomedicine and Genome Institute (IBG-Izmir), Dokuz Eylul University, Izmir, Türkiye
| | | | - Doga Karagulle
- Izmir Biomedicine and Genome Center (IBG), Dokuz Eylul University Health Campus, Izmir, Türkiye
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, Izmir, Türkiye
| | - Irene Papatheodorou
- European Molecular Biology Laboratory—European Bioinformatics Institute (EMBL-EBI), Cambridge, United Kingdom
| | - Alvis Brazma
- European Molecular Biology Laboratory—European Bioinformatics Institute (EMBL-EBI), Cambridge, United Kingdom
| | - Gunes Ozhan
- Izmir Biomedicine and Genome Center (IBG), Dokuz Eylul University Health Campus, Izmir, Türkiye
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, Izmir, Türkiye
| |
Collapse
|
28
|
Van Wynsberghe J, Vanakker OM. Significance of Premature Vertebral Mineralization in Zebrafish Models in Mechanistic and Pharmaceutical Research on Hereditary Multisystem Diseases. Biomolecules 2023; 13:1621. [PMID: 38002303 PMCID: PMC10669475 DOI: 10.3390/biom13111621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023] Open
Abstract
Zebrafish are increasingly becoming an important model organism for studying the pathophysiological mechanisms of human diseases and investigating how these mechanisms can be effectively targeted using compounds that may open avenues to novel treatments for patients. The zebrafish skeleton has been particularly instrumental in modeling bone diseases as-contrary to other model organisms-the lower load on the skeleton of an aquatic animal enables mutants to survive to early adulthood. In this respect, the axial skeletons of zebrafish have been a good read-out for congenital spinal deformities such as scoliosis and degenerative disorders such as osteoporosis and osteoarthritis, in which aberrant mineralization in humans is reflected in the respective zebrafish models. Interestingly, there have been several reports of hereditary multisystemic diseases that do not affect the vertebral column in human patients, while the corresponding zebrafish models systematically show anomalies in mineralization and morphology of the spine as their leading or, in some cases, only phenotype. In this review, we describe such examples, highlighting the underlying mechanisms, the already-used or potential power of these models to help us understand and amend the mineralization process, and the outstanding questions on how and why this specific axial type of aberrant mineralization occurs in these disease models.
Collapse
Affiliation(s)
- Judith Van Wynsberghe
- Center for Medical Genetics, Ghent University Hospital, 9000 Ghent, Belgium;
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
- Ectopic Mineralization Research Group, 9000 Ghent, Belgium
| | - Olivier M. Vanakker
- Center for Medical Genetics, Ghent University Hospital, 9000 Ghent, Belgium;
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
- Ectopic Mineralization Research Group, 9000 Ghent, Belgium
| |
Collapse
|
29
|
Yin B, Zhang Q, Yan J, Huang Y, Li C, Chen J, Wen C, Wong SHD, Yang M. Nanomanipulation of Ligand Nanogeometry Modulates Integrin/Clathrin-Mediated Adhesion and Endocytosis of Stem Cells. NANO LETTERS 2023; 23:9160-9169. [PMID: 37494286 DOI: 10.1021/acs.nanolett.3c01757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Nanosubstrate engineering can be a biomechanical approach for modulating stem cell differentiation in tissue engineering. However, the study of the effect of clathrin-mediated processes on manipulating this behavior is unexplored. Herein, we develop integrin-binding nanosubstrates with confined nanogeometries that regulate clathrin-mediated adhesion- or endocytosis-active signaling pathways for modulating stem fates. Isotropically presenting ligands on the nanoscale enhances the expression of clathrin in cells, thereby facilitating uptake of dexamethasone-loaded nanoparticles (NPs) to boost osteogenesis of stem cells. In contrast, anisotropic ligand nanogeometry suppresses this clathrin-mediated NP entry by strengthening the association between clathrin and adhesion spots to reinforce mechanotransduced signaling, which can be abrogated by the pharmacological inhibition of clathrin. Meanwhile, inhibiting focal adhesion formation hinders cell spreading and enables a higher endocytosis efficiency. Our findings reveal the crucial roles of clathrin in both endocytosis and mechanotransduction of stem cells and provide the parameter of ligand nanogeometry for the rational design of biomaterials for tissue engineering.
Collapse
Affiliation(s)
- Bohan Yin
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
| | - Qin Zhang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
| | - Jiaxiang Yan
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
| | - Yingying Huang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
| | - Chuanqi Li
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
| | - Jiareng Chen
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
| | - Chunyi Wen
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
| | - Siu Hong Dexter Wong
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
- Research Institute for Sports Science and Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
| | - Mo Yang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
- Research Institute for Sports Science and Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
| |
Collapse
|
30
|
Weber J, Martins RS, Muslim Z, Baig MZ, Poulikidis K, Al Shetawi AH, Bhora FY. Anastomotic stenosis of bioengineered trachea grafts is driven by transforming growth factor β1-induced signaling, proinflammatory macrophages, and delayed epithelialization. JTCVS OPEN 2023; 15:489-496. [PMID: 37808012 PMCID: PMC10556948 DOI: 10.1016/j.xjon.2023.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/30/2023] [Accepted: 07/13/2023] [Indexed: 10/10/2023]
Abstract
Objective Anastomotic stenosis caused by hypertrophic granulation tissue often develops in response to orthotopically implanted bioengineered tracheal grafts. To determine mechanisms responsible for the development and persistence of this granulation tissue, we looked for changes in gene expression from tissue specimens from the graft-native interface. Methods RNA was isolated from paraffin-embedded tissue samples of the anastomotic sites of orthotopically implanted bioengineered tracheal grafts of 9 animals. Tissue samples were binned into 3 groups based on degree of stenosis: no stenosis (<5%), mild stenosis (25%-50%), and moderate and severe stenosis (≥75%). Sections of healthy trachea tissue were used as control. The expression levels of ∼200 genes related to wound healing, plus several endogenous controls, were measured with a pathway-focused predesigned primer array. Results Expression of ARG2, IL4, RPL13 A, TGFBR3, and EGFR decreased, whereas expression of RUNX2 was increased in stenotic wounds compared with nonstenotic tissue. Based on the cell types present in the trachea and wound healing, this expression profile indicates a lack of M2 anti-inflammatory macrophages, absent epithelial cells, and transforming growth factor β1-induced signaling. Conclusions These findings represent a significant step for tracheal tissue engineering by identifying several key mechanisms present in stenotic granulation tissue. Further research must be conducted to determine what modifications of the graft substrate and which coadministered therapeutics can be used to prevent the development of hypertrophic granulation tissue.
Collapse
Affiliation(s)
- Joanna Weber
- Division of Thoracic Surgery, Department of Surgery, Hackensack Meridian School of Medicine, Hackensack Meridian Health Network, Edison, NJ
| | - Russell Seth Martins
- Division of Thoracic Surgery, Department of Surgery, Hackensack Meridian School of Medicine, Hackensack Meridian Health Network, Edison, NJ
| | - Zaid Muslim
- Department of Surgery, Cleveland Clinic, Cleveland, Ohio
| | | | - Kostantinos Poulikidis
- Division of Thoracic Surgery, Department of Surgery, Hackensack Meridian School of Medicine, Hackensack Meridian Health Network, Edison, NJ
| | - Al Haitham Al Shetawi
- Divisions of Surgical Oncology and Oral & Maxillofacial Surgery, Department of Surgery, Vassar Brothers Medical Center, Nuvance Health, Dyson Center for Cancer Care, Poughkeepsie, NY
| | - Faiz Y. Bhora
- Division of Thoracic Surgery, Department of Surgery, Hackensack Meridian School of Medicine, Hackensack Meridian Health Network, Edison, NJ
| |
Collapse
|
31
|
Song X, Bai Y, Yuan R, Zhu H, Lan X, Qu L. InDel and CNV within the AKAP13 Gene Revealing Strong Associations with Growth Traits in Goat. Animals (Basel) 2023; 13:2746. [PMID: 37685010 PMCID: PMC10487263 DOI: 10.3390/ani13172746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
A-kinase-anchoring protein 13 (AKAP13) is a member of the AKAP protein family that has been found to be associated with bone formation. Thus, we investigated the AKAP13 gene as a potential candidate gene for molecular-marker-assisted selection (MAS) in breeding. Our aim was to explore genetic variations (InDel and CNV) within the AKAP13 gene of Shaanbei white cashmere (SBWC) goats and analyze their relationship with growth traits. Ultimately, we identified three InDel loci (16-bp deletion, 15-bp insertion, and 25-bp deletion) and three CNVs, and the 16-bp and 15-bp loci were significantly associated with goat body length (p < 0.05). Both the 16-bp deletion variant and the 15-bp insertion variant facilitated an increase in body length in goats. In addition to this, there was a certain superposition effect between 16-bp and 15-bp loci, although there was no linkage. Additionally, the CNV1 locus was significantly correlated with body height and body length of goats (p < 0.05), and CNV2 was significantly correlated with chest depth, chest circumference, and cannon circumference of goats (p < 0.05). Individuals with gain type showed excellent growth performance. In conclusion, the InDel and CNV loci that we have identified could possibly serve as effective molecular markers in goat breeding, which is very essential for improving efficiency and success of breeding. Moreover, our findings provide a new avenue for further research into the function of the AKAP13 gene.
Collapse
Affiliation(s)
- Xiaoyue Song
- Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats, Yulin University, Yulin 719000, China; (X.S.); (Y.B.); (R.Y.); (H.Z.)
- College of Life Sciences, Yulin University, Yulin 719000, China
| | - Yangyang Bai
- Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats, Yulin University, Yulin 719000, China; (X.S.); (Y.B.); (R.Y.); (H.Z.)
- College of Life Sciences, Yulin University, Yulin 719000, China
- College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China
| | - Rongrong Yuan
- Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats, Yulin University, Yulin 719000, China; (X.S.); (Y.B.); (R.Y.); (H.Z.)
- College of Life Sciences, Yulin University, Yulin 719000, China
| | - Haijing Zhu
- Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats, Yulin University, Yulin 719000, China; (X.S.); (Y.B.); (R.Y.); (H.Z.)
- College of Life Sciences, Yulin University, Yulin 719000, China
| | - Xianyong Lan
- College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China
| | - Lei Qu
- Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats, Yulin University, Yulin 719000, China; (X.S.); (Y.B.); (R.Y.); (H.Z.)
- College of Life Sciences, Yulin University, Yulin 719000, China
| |
Collapse
|
32
|
Krasnova O, Neganova I. Assembling the Puzzle Pieces. Insights for in Vitro Bone Remodeling. Stem Cell Rev Rep 2023; 19:1635-1658. [PMID: 37204634 DOI: 10.1007/s12015-023-10558-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2023] [Indexed: 05/20/2023]
Abstract
As a highly dynamic organ, bone changes during throughout a person's life. This process is referred to as 'bone remodeling' and it involves two stages - a well-balanced osteoclastic bone resorption and an osteoblastic bone formation. Under normal physiological conditions bone remodeling is highly regulated that ensures tight coupling between bone formation and resorption, and its disruption results in a bone metabolic disorder, most commonly osteoporosis. Though osteoporosis is one of the most prevalent skeletal ailments that affect women and men aged over 40 of all races and ethnicities, currently there are few, if any safe and effective therapeutic interventions available. Developing state-of-the-art cellular systems for bone remodeling and osteoporosis can provide important insights into the cellular and molecular mechanisms involved in skeletal homeostasis and advise better therapies for patients. This review describes osteoblastogenesis and osteoclastogenesis as two vital processes for producing mature, active bone cells in the context of interactions between cells and the bone matrix. In addition, it considers current approaches in bone tissue engineering, pointing out cell sources, core factors and matrices used in scientific practice for modeling bone diseases and testing drugs. Finally, it focuses on the challenges that bone regenerative medicine is currently facing.
Collapse
Affiliation(s)
- O Krasnova
- Institute of Cytology, Russian Academy of Sciences, Saint-Petersburg, Russia
| | - I Neganova
- Institute of Cytology, Russian Academy of Sciences, Saint-Petersburg, Russia.
| |
Collapse
|
33
|
Bevill SM, Casaní-Galdón S, El Farran CA, Cytrynbaum EG, Macias KA, Oldeman SE, Oliveira KJ, Moore MM, Hegazi E, Adriaens C, Najm FJ, Demetri GD, Cohen S, Mullen JT, Riggi N, Johnstone SE, Bernstein BE. Impact of supraphysiologic MDM2 expression on chromatin networks and therapeutic responses in sarcoma. CELL GENOMICS 2023; 3:100321. [PMID: 37492096 PMCID: PMC10363746 DOI: 10.1016/j.xgen.2023.100321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 03/09/2023] [Accepted: 04/14/2023] [Indexed: 07/27/2023]
Abstract
Amplification of MDM2 on supernumerary chromosomes is a common mechanism of P53 inactivation across tumors. Here, we investigated the impact of MDM2 overexpression on chromatin, gene expression, and cellular phenotypes in liposarcoma. Three independent regulatory circuits predominate in aggressive, dedifferentiated tumors. RUNX and AP-1 family transcription factors bind mesenchymal gene enhancers. P53 and MDM2 co-occupy enhancers and promoters associated with P53 signaling. When highly expressed, MDM2 also binds thousands of P53-independent growth and stress response genes, whose promoters engage in multi-way topological interactions. Overexpressed MDM2 concentrates within nuclear foci that co-localize with PML and YY1 and could also contribute to P53-independent phenotypes associated with supraphysiologic MDM2. Importantly, we observe striking cell-to-cell variability in MDM2 copy number and expression in tumors and models. Whereas liposarcoma cells are generally sensitive to MDM2 inhibitors and their combination with pro-apoptotic drugs, MDM2-high cells tolerate them and may underlie the poor clinical efficacy of these agents.
Collapse
Affiliation(s)
- Samantha M. Bevill
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Departments of Cell Biology and Pathology, Harvard Medical School, Boston, MA 02115, USA
| | - Salvador Casaní-Galdón
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Departments of Cell Biology and Pathology, Harvard Medical School, Boston, MA 02115, USA
| | - Chadi A. El Farran
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Departments of Cell Biology and Pathology, Harvard Medical School, Boston, MA 02115, USA
| | - Eli G. Cytrynbaum
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Departments of Cell Biology and Pathology, Harvard Medical School, Boston, MA 02115, USA
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Kevin A. Macias
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Departments of Cell Biology and Pathology, Harvard Medical School, Boston, MA 02115, USA
| | - Sylvie E. Oldeman
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Departments of Cell Biology and Pathology, Harvard Medical School, Boston, MA 02115, USA
| | - Kayla J. Oliveira
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Pathology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Molly M. Moore
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Esmat Hegazi
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Departments of Cell Biology and Pathology, Harvard Medical School, Boston, MA 02115, USA
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Carmen Adriaens
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Departments of Cell Biology and Pathology, Harvard Medical School, Boston, MA 02115, USA
| | - Fadi J. Najm
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - George D. Demetri
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
- Ludwig Center at Harvard, Harvard Medical School, Boston, MA 02115, USA
| | - Sonia Cohen
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Departments of Cell Biology and Pathology, Harvard Medical School, Boston, MA 02115, USA
- Department of Surgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - John T. Mullen
- Department of Surgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Nicolò Riggi
- Department of Cell and Tissue Genomics (CTG), Genentech Inc, South San Francisco, CA 94080, USA
| | - Sarah E. Johnstone
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Pathology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Bradley E. Bernstein
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Departments of Cell Biology and Pathology, Harvard Medical School, Boston, MA 02115, USA
- Ludwig Center at Harvard, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
34
|
Gao X, Wang S, Shen S, Wang S, Xie M, Storey KB, Yu C, Lefai E, Song W, Chang H, Yang C. Differential bone remodeling mechanism in hindlimb unloaded and hibernating Daurian ground squirrels: a comparison between artificial and natural disuse within the same species. J Comp Physiol B 2023; 193:329-350. [PMID: 36988658 DOI: 10.1007/s00360-023-01482-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 02/06/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023]
Abstract
Loss of bone mass can occur in mammals after prolonged disuse but the situation for hibernators that are in a state of torpor for many months of the year is not yet fully understood. The present study assesses the bone remodeling mechanisms present in Daurian ground squirrels (Spermophilus dauricus) during hibernation as compared with a model of hindlimb disuse. Differences in microstructure, mechanical properties, bone remodeling-related proteins (Runx2, OCN, ALP, RANKL, CTK and MMP-9) and key proteins of Wnt/β-catenin signaling pathway (GSK-3β and phospho-β-catenin) were evaluated in ground squirrels under 3 conditions: summer active (SA) vs. hibernation (HIB) vs. hindlimb unloaded (HLU). The results indicated that the body weight in HLU ground squirrels was lower than the SA group, and the middle tibia diameter in the HLU group was lower than that in SA and HIB groups. The thickness of cortical and trabecular bone in femurs from HLU ground squirrels was lower than in SA and HIB groups. Most parameters of the tibia in the HLU group were lower than those in SA and HIB groups, which indicated cortical bone loss in ground squirrels. Moreover, our data showed that the changes in microscopic parameters in the femur were more obvious than those in the tibia in HLU and HIB ground squirrels. The levels of Runx2 and ALP were lower in HLU ground squirrels than SA and HIB groups. The protein levels of OCN were unchanged in the three groups, but the protein levels of ALP were lower in the HLU group than in SA and HIB groups. RANKL, CTK and MMP-9 protein levels were significantly decreased in tibia of HLU ground squirrels as compared with SA and HIB groups. In addition, the protein expression levels of RANKL, CTK and MMP-9 showed no statistical difference between SA and HIB ground squirrels. Thus, the mechanisms involved in the balance between bone formation and resorption in hibernating and hindlimb unloading ground squirrels may be different. The present study showed that in femur, the Wnt signaling pathway was inhibited, the protein level of GSK-3β was increased, and the protein expression of phospho-β-catenin was decreased in the HIB group as compared with the SA group, which indicates that the Wnt signaling pathway has a great influence on the femur of the HIB group. In conclusion, the natural anti-osteoporosis properties of Daurian ground squirrels are seasonal. The squirrels do not experience bone loss when they are inactive for a long time during hibernation, but the mechanisms of anti-osteoporosis did not work in HLU summer active squirrels.
Collapse
Affiliation(s)
- Xuli Gao
- Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Sciences, Northwest University, Ministry of Education, 229# North Taibai Road, Xi'an, 710069, People's Republic of China
| | - Siqi Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Sciences, Northwest University, Ministry of Education, 229# North Taibai Road, Xi'an, 710069, People's Republic of China
| | - Siqi Shen
- Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Sciences, Northwest University, Ministry of Education, 229# North Taibai Road, Xi'an, 710069, People's Republic of China
| | - Shuyao Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Sciences, Northwest University, Ministry of Education, 229# North Taibai Road, Xi'an, 710069, People's Republic of China
| | - Manjiang Xie
- Department of Aerospace Physiology, Key Laboratory of Aerospace Medicine of Ministry of Education, Air Force Medical University, Xi'an, 710032, China
| | - Kenneth B Storey
- Department of Biology, Carleton University, Ottawa, ON, K1S 5B6, Canada
| | - Caiyong Yu
- Military Medical Innovation Center, Air Force Medical University, Xi'an, 710032, Shaanxi, China
| | - Etienne Lefai
- INRAE, Unité de Nutrition Humaine, UMR 1019, Université Clermont Auvergne, 63000, Clermont-Ferrand, France
| | - Wenqian Song
- Northwest University Hospital, Xi'an, 710069, People's Republic of China
| | - Hui Chang
- Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Sciences, Northwest University, Ministry of Education, 229# North Taibai Road, Xi'an, 710069, People's Republic of China.
| | - Changbin Yang
- Military Medical Innovation Center, Air Force Medical University, Xi'an, 710032, Shaanxi, China.
| |
Collapse
|
35
|
Zhou S, Zhang G, Wang K, Yang Z, Tan Y. miR-141-3p Targeted SIRT1 to Inhibit Osteogenic Differentiation of Bone Marrow Mesenchymal Stem Cells. Stem Cells Int 2023; 2023:9094092. [PMID: 36777717 PMCID: PMC9918357 DOI: 10.1155/2023/9094092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/18/2022] [Accepted: 11/24/2022] [Indexed: 02/05/2023] Open
Abstract
Purpose To explore the expression of miR-141-3p during the osteogenic differentiation of human bone marrow mesenchymal stem cells (BMSCs) and its regulatory effect. Methods Differentiation of BMSCs was induced by dexamethasone. The mRNA expression of miR-141-3p, ALP, RUNX2, and OCN was measured using RT-qPCR. The protein expression was detected via western blot. The target of miR-141-3p was predicted through the TargetScan website and confirmed using luciferase reporter assay. Results miR-141-3p expression declined during osteogenic differentiation. The relative ALP activities and the mRNA expression of ALP, RUNX2, and OCN were markedly reduced in the miR-141-3p mimic group while increased in the inhibitor group. Cell viability was suppressed in the miR-141-3p mimic group and promoted in the inhibitor group. SIRT1 was predicted to be a downstream gene of miR-141-3p, and this prediction was confirmed via the luciferase reporter assay. The results of the western blot assay demonstrated that SIRT1 expression was decreased in the miR-141-3p mimic group. SIRT1 reversed the inhibitory influence of miR-141-3p on the osteogenic differentiation ability of BMSCs. Conclusion miR-141-3p targeted SIRT1 to inhibit osteogenic differentiation of BMSCs via the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Shuzuo Zhou
- Department of Stomatology, Second Affiliated Hospital of Army Military Medical University (Xin Qiao Hospital), Chongqing City 400038, China
| | - Gang Zhang
- Department of Stomatology, Second Affiliated Hospital of Army Military Medical University (Xin Qiao Hospital), Chongqing City 400038, China
| | - Kun Wang
- Department of Stomatology, Second Affiliated Hospital of Army Military Medical University (Xin Qiao Hospital), Chongqing City 400038, China
| | - Zhong Yang
- Department of Stomatology, Second Affiliated Hospital of Army Military Medical University (Xin Qiao Hospital), Chongqing City 400038, China
| | - Yinghui Tan
- Department of Stomatology, Second Affiliated Hospital of Army Military Medical University (Xin Qiao Hospital), Chongqing City 400038, China
| |
Collapse
|
36
|
KAP1 modulates osteogenic differentiation via the ERK/Runx2 cascade in vascular smooth muscle cells. Mol Biol Rep 2023; 50:3217-3228. [PMID: 36705791 DOI: 10.1007/s11033-022-08225-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 12/20/2022] [Indexed: 01/28/2023]
Abstract
BACKGROUND Osteoblast phenotypic transition in vascular smooth muscle cells (VSMCs) has been unveiled as a common cause of vascular calcification (VC). Krüppel-Associated Box (KRAB)-Associated Protein 1(KAP1) is a transcriptional corepressor that modulates various intracellular pathological processes from gene expression to DNA repair to signal transduction. However, the function and mechanism of KAP1 on the osteoblastic differentiation of VSMCs have not been evaluated yet. METHODS AND RESULTS We demonstrate that the expression of KAP1 in VSMCs is significantly enhanced in vivo and in vitro calcification models. Downregulating the expression of KAP1 suppresses the osteoblast phenotypic transition of VSMCs, which is indicated by a decrease in the expression of osteoblast marker collagenase type I (COL I) and an increase in the expression of VSMC marker α-smooth muscle actin (α-SMA). Conversely, exogenous overexpression of KAP1 could promote osteoblast phenotypic transition of VSMCs. Moreover, KAP1 upregulated the expression of RUNX family transcription factor 2 (Runx2), an inducer of osteoblast that positively regulates many osteoblast-related genes, such as COL I. Evaluation of the potential mechanism demonstrated that KAP1 promoted osteoblast phenotypic transition of VSMCs by activating the extracellular regulated protein kinases (ERK) signaling pathway, which could activate Runx2. In support of this finding, KAP1-induced cell osteoblast phenotypic transition is abolished by treatment with PD0325901, a specific ERK inhibitor. CONCLUSIONS The present study suggested that KAP1 participated in the osteoblast differentiation of VSMCs via the ERK/Runx2 cascade and served as a potential diagnostics and therapeutics target for vascular calcification.
Collapse
|
37
|
Krishnan RH, Sadu L, Akshaya RL, Gomathi K, Saranya I, Das UR, Satishkumar S, Selvamurugan N. Circ_CUX1/miR-130b-5p/p300 axis for parathyroid hormone-stimulation of Runx2 activity in rat osteoblasts: A combined bioinformatic and experimental approach. Int J Biol Macromol 2023; 225:1152-1163. [PMID: 36427609 DOI: 10.1016/j.ijbiomac.2022.11.176] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 10/31/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022]
Abstract
Parathyroid hormone (PTH) regulates the expression of bone remodeling genes by enhancing the activity of Runx2 in osteoblasts. p300, a histone acetyltransferase, acetylated Runx2 to activate the expression of its target genes. PTH stimulated the expression of p300 in rat osteoblastic cells. Increasing studies suggested the potential of non-coding RNAs (ncRNAs), such as microRNAs (miRNAs) and circular RNAs (circRNAs), in regulating gene expression under both physiological and pathological conditions. In this study, we hypothesized that PTH regulates Runx2 activity via ncRNAs-mediated p300 expression in rat osteoblastic cells. Bioinformatics and experimental approaches identified PTH-upregulation of miR-130b-5p and circ_CUX1 that putatively target p300 and miR-130b-5p, respectively. An antisense-mediated knockdown of circ_CUX1 was performed to determine the sponging activity of circ_CUX1. Knockdown of circ_CUX1 promoted miR-130b-5p activity and reduced p300 expression, resulting in decreased Runx2 acetylation in rat osteoblastic cells. Further, bioinformatics analysis identified the possible signaling pathways that regulate Runx2 activity and osteoblast differentiation via circ_CUX1/miR-130b-5p/p300 axis. The predicted circ_CUX1/miR-130b-5p/p300 axis might pave the way for better diagnostic and therapeutic approaches for bone-related diseases.
Collapse
Affiliation(s)
- R Hari Krishnan
- Department of Biotechnology, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Lakshana Sadu
- Department of Biotechnology, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - R L Akshaya
- Department of Biotechnology, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - K Gomathi
- Department of Biotechnology, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - I Saranya
- Department of Biotechnology, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Udipt Ranjan Das
- Department of Biotechnology, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Sneha Satishkumar
- Department of Biotechnology, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - N Selvamurugan
- Department of Biotechnology, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India.
| |
Collapse
|
38
|
Shabaldin NA, Sinitskaya AV, Shabaldin AV, Mukhamadiyarov RA. Expression Dynamics of Bone Homeostasis Genes in the Development of Aseptic Femoral Head Necrosis in Rats. J EVOL BIOCHEM PHYS+ 2023. [DOI: 10.1134/s0022093023010155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
39
|
Sim Y, Seo HJ, Kim DH, Lee SH, Kwon J, Kwun IS, Jung C, Kim JI, Lim JH, Kim DK, Baek MC, Cho YE. The Effect of Apple-Derived Nanovesicles on the Osteoblastogenesis of Osteoblastic MC3T3-E1 Cells. J Med Food 2023; 26:49-58. [PMID: 36594993 DOI: 10.1089/jmf.2022.k.0094] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Osteoporosis is characterized by low bone mass and elevated structural deterioration of the bone tissue, resulting in bone weakness with an increased risk of fracture. Considering biological activities of various phytochemicals extracted from apples, we herein demonstrated the potential antiosteoporotic effects of apple-derived nanovesicles (apple NVs) using osteoblastic MC3T3-E1 cells. Apple NVs significantly stimulated the growth of MC3T3-E1 cells. The cellular alkaline phosphatase (ALP) activity was significantly upregulated in the 5 μg/mL apple NVs-treated group. In addition, the concentrarion of mineralized nodules was significantly increased in the apple NVs-treated groups. Furthermore, apple NVs increased the expression of the genes and proteins associated with osteoblast growth and differentiation, such as Runx2, ALP, OPN, and BMP2/4, which further activated ERK- and JNK-related mitogen-activated protein kinase signaling. These results demonstrate that apple NVs have a potential to prevent osteoporosis by promoting osteoblastogenesis in osteoblastic MC3T3-E1 cells through regulating the BMP2/Smad1 pathways.
Collapse
Affiliation(s)
- Yejin Sim
- Department of Food and Nutrition, Andong National University, Andong, South Korea
| | - Hyun-Ju Seo
- Department of Food and Nutrition, Andong National University, Andong, South Korea
- Department of Molecular Medicine, CMRI, School of Medicine, Kyungpook National University, Daegu, South Korea
- Agriculture Science and Technology Research Institute, Andong National University, Andong, South Korea
| | - Dong-Ha Kim
- Department of Molecular Medicine, CMRI, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Sang-Hoon Lee
- Department of Food and Nutrition, Andong National University, Andong, South Korea
| | - JaeHee Kwon
- Department of Food and Nutrition, Andong National University, Andong, South Korea
| | - In-Sook Kwun
- Department of Food and Nutrition, Andong National University, Andong, South Korea
| | - Chuleui Jung
- Agriculture Science and Technology Research Institute, Andong National University, Andong, South Korea
- Department of Plant Medicals, Andong National University, Andong, South Korea
| | - Jee-In Kim
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Jae-Hwan Lim
- Department of Biological Science, Andong National University, Andong, South Korea
- Institute of Vaccine Biotechnology, Andong National University, Andong, South Korea
| | - Do-Kyun Kim
- Korea Zoonosis Research Institute, Jeonbuk National University, Iksan, Jeonbuk, South Korea
| | - Moon-Chang Baek
- Department of Molecular Medicine, CMRI, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Young-Eun Cho
- Department of Food and Nutrition, Andong National University, Andong, South Korea
- Institute of Vaccine Biotechnology, Andong National University, Andong, South Korea
| |
Collapse
|
40
|
Rudiansyah M, El-Sehrawy AA, Ahmad I, Terefe EM, Abdelbasset WK, Bokov DO, Salazar A, Rizaev JA, Muthanna FMS, Shalaby MN. Osteoporosis treatment by mesenchymal stromal/stem cells and their exosomes: Emphasis on signaling pathways and mechanisms. Life Sci 2022; 306:120717. [PMID: 35792178 DOI: 10.1016/j.lfs.2022.120717] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/30/2022] [Accepted: 06/09/2022] [Indexed: 02/07/2023]
Abstract
Osteoporosis is the loss of bone density, which is one of the main problems in developed and developing countries and is more common in the elderly. Because this disease is often not diagnosed until a bone fracture, it can become a life-threatening disease and cause hospitalization. With the increase of older people in a population, this disease's personal and social costs increase year by year and affect different communities. Most current treatments focus on pain relief and usually do not lead to bone tissue recovery and regeneration. But today, the use of stem cell therapy is recommended to treat and improve this disease recovery, which helps restore bone tissue by improving the imbalance in the osteoblast-osteoclast axis. Due to mesenchymal stromal/stem cells (MSCs) characteristics and their exosomes, these cells and vesicles are excellent sources for treating and preventing the progression and improvement of osteoporosis. Due to the ability of MSCs to differentiate into different cells and migrate to the site of injury, these cells are used in tissue regenerative medicine. Also, due to their contents, the exosomes of these cells help regenerate and treat various tissue injuries by affecting the injury site's cells. In this article, we attempted to review new studies in which MSCs and their exosomes were used to treat osteoporosis.
Collapse
Affiliation(s)
- Mohammad Rudiansyah
- Division of Nephrology & Hypertension, Department of Internal Medicine, Faculty of Medicine, Universitas Lambung Mangkurat/Ulin Hospital, Banjarmasin, Indonesia
| | - Amr A El-Sehrawy
- Department of Internal Medicine, Mansoura Specialized Medical Hospital, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Ermias Mergia Terefe
- School of pharmacy and Health science, United States International University, Nairobi, Kenya
| | - Walid Kamal Abdelbasset
- Department of Health and Rehabilitation Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al Kharj, Saudi Arabia; Department of Physical Therapy, Kasr Al-Aini Hospital, Cairo University, Giza, Egypt
| | - Dmitry Olegovich Bokov
- Institute of Pharmacy, Sechenov First Moscow State Medical University, 8 Trubetskaya St., bldg. 2, Moscow 119991, Russian Federation; Laboratory of Food Chemistry, Federal Research Center of Nutrition, Biotechnology and Food Safety, 2/14 Ustyinsky pr., Moscow 109240, Russian Federation
| | - Aleli Salazar
- Neuroimmunology Department, National Institute of Neurology and Neurosurgery "Manuel Velasco Suárez", Mexico City, Mexico
| | - Jasur Alimdjanovich Rizaev
- Department of Public Health and Healthcare Management, Rector of Samarkand State Medical Institute, Samarkand, Uzbekistan
| | | | - Mohammed Nader Shalaby
- Biological Sciences and Sports Health Department, Faculty of Physical Education, Suez Canal University, Egypt
| |
Collapse
|
41
|
Lu M, Li M, Luo T, Li Y, Wang M, Xue H, Zhang M, Chen Q. Beta-naphthoflavone increases the differentiation of osteoblasts and suppresses adipogenesis in human adipose derived stem cells involving STAT3 pathway. Mol Cell Toxicol 2022. [DOI: 10.1007/s13273-022-00283-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
42
|
The Kinesin Gene KIF26B Modulates the Severity of Post-Traumatic Heterotopic Ossification. Int J Mol Sci 2022; 23:ijms23169203. [PMID: 36012474 PMCID: PMC9409126 DOI: 10.3390/ijms23169203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/12/2022] [Accepted: 08/14/2022] [Indexed: 11/17/2022] Open
Abstract
The formation of pathological bone deposits within soft tissues, termed heterotopic ossification (HO), is common after trauma. However, the severity of HO formation varies substantially between individuals, from relatively isolated small bone islands through to extensive soft tissue replacement by bone giving rise to debilitating symptoms. The aim of this study was to identify novel candidate therapeutic molecular targets for severe HO. We conducted a genome-wide scan in men and women with HO of varying severity following hip replacement for osteoarthritis. HO severity was dichotomized as mild or severe, and association analysis was performed with adjustment for age and sex. We next confirmed expression of the gene encoded by the lead signal in human bone and in primary human mesenchymal stem cells. We then examined the effect of gene knockout in a murine model of osseous trans-differentiation, and finally we explored transcription factor phosphorylation in key pathways perturbed by the gene. Ten independent signals were suggestively associated with HO severity, with KIF26B as the lead. We subsequently confirmed KIF26B expression in human bone and upregulation upon BMP2-induced osteogenic differentiation in primary human mesenchymal stem cells, and also in a rat tendo-Achilles model of post-traumatic HO. CRISPR-Cas9 mediated knockout of Kif26b inhibited BMP2-induced Runx2, Sp7/Osterix, Col1A1, Alp, and Bglap/Osteocalcin expression and mineralized nodule formation in a murine myocyte model of osteogenic trans-differentiation. Finally, KIF26B deficiency inhibited ERK MAP kinase activation during osteogenesis, whilst augmenting p38 and SMAD 1/5/8 phosphorylation. Taken together, these data suggest a role for KIF26B in modulating the severity of post-traumatic HO and provide a potential novel avenue for therapeutic translation.
Collapse
|
43
|
Luo J, Yang L, Chueng STD, Conley B, Rathnam C, Lee KB. Advanced Drug Delivery Modulation via Hybrid Nanofibers Enhances Stem Cell Differentiation. ACS APPLIED MATERIALS & INTERFACES 2022; 14:34488-34501. [PMID: 35862271 PMCID: PMC9357201 DOI: 10.1021/acsami.2c10288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Seamlessly integrating soluble factors onto biomedical scaffolds with a precisely manufactured topography for efficient cell control remains elusive since many scaffold fabrication techniques degrade payloads. Surface adsorption of payloads onto synthesized nanoscaffolds retains bioactivity by removing exposure to harsh processing conditions at the expense of inefficient drug loading and uncontrolled release. Herein, we present a nanomaterial composite scaffold paradigm to improve physicochemical surface adsorption pharmacokinetics. As a proof of concept, we integrated graphene oxide (GO) and manganese dioxide (MnO2) nanosheets onto nanofibers to increase loading capacity and tune drug release. Non-degradable GO enhances payload retention, while biodegradable MnO2 enables cell-responsive drug release. To demonstrate the utility of this hybrid nanomaterial scaffold paradigm for tissue engineering, we adsorbed payloads ranging from small molecules to proteins onto the scaffold to induce myogenesis and osteogenesis for multiple stem cell lines. Scaffolds with adsorbed payloads enabled more efficient differentiation than media supplementation using equivalent quantities of differentiation factors. We attribute this increased efficacy to a reverse uptake mechanism whereby payloads are localized around seeded cells, increasing delivery efficiency for guiding differentiation. Additionally, we demonstrate spatial control over cells since differentiation factors are delivered locally through the scaffold. When co-culturing scaffolds with and without adsorbed payloads, only cells seeded on payload-adsorbed scaffolds underwent differentiation. With this modular technology being capable of enhancing multiple differentiation fates for specific cell lines, this technology provides a promising alternative for current tissue engineering scaffolds.
Collapse
Affiliation(s)
- Jeffrey Luo
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Letao Yang
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Sy-Tsong Dean Chueng
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Brian Conley
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Christopher Rathnam
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Ki-Bum Lee
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| |
Collapse
|
44
|
Jing Z, Liang Z, Yang L, Du W, Yu T, Tang H, Li C, Wei W. Bone formation and bone repair: The roles and crosstalk of osteoinductive signaling pathways. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.04.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
45
|
Gomez-Picos P, Ovens K, Eames BF. Limb Mesoderm and Head Ectomesenchyme Both Express a Core Transcriptional Program During Chondrocyte Differentiation. Front Cell Dev Biol 2022; 10:876825. [PMID: 35784462 PMCID: PMC9247276 DOI: 10.3389/fcell.2022.876825] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/26/2022] [Indexed: 11/13/2022] Open
Abstract
To explain how cartilage appeared in different parts of the vertebrate body at discrete times during evolution, we hypothesize that different embryonic populations co-opted expression of a core gene regulatory network (GRN) driving chondrocyte differentiation. To test this hypothesis, laser-capture microdissection coupled with RNA-seq was used to reveal chondrocyte transcriptomes in the developing chick humerus and ceratobranchial, which are mesoderm- and neural crest-derived, respectively. During endochondral ossification, two general types of chondrocytes differentiate. Immature chondrocytes (IMM) represent the early stages of cartilage differentiation, while mature chondrocytes (MAT) undergo additional stages of differentiation, including hypertrophy and stimulating matrix mineralization and degradation. Venn diagram analyses generally revealed a high degree of conservation between chondrocyte transcriptomes of the limb and head, including SOX9, COL2A1, and ACAN expression. Typical maturation genes, such as COL10A1, IBSP, and SPP1, were upregulated in MAT compared to IMM in both limb and head chondrocytes. Gene co-expression network (GCN) analyses of limb and head chondrocyte transcriptomes estimated the core GRN governing cartilage differentiation. Two discrete portions of the GCN contained genes that were differentially expressed in limb or head chondrocytes, but these genes were enriched for biological processes related to limb/forelimb morphogenesis or neural crest-dependent processes, respectively, perhaps simply reflecting the embryonic origin of the cells. A core GRN driving cartilage differentiation in limb and head was revealed that included typical chondrocyte differentiation and maturation markers, as well as putative novel "chondrocyte" genes. Conservation of a core transcriptional program during chondrocyte differentiation in both the limb and head suggest that the same core GRN was co-opted when cartilage appeared in different regions of the skeleton during vertebrate evolution.
Collapse
Affiliation(s)
- Patsy Gomez-Picos
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Katie Ovens
- Department of Computer Science, University of Calgary, Calgary, AB, Canada
| | - B. Frank Eames
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
46
|
Smith SS, Chu D, Qu T, Aggleton JA, Schneider RA. Species-specific sensitivity to TGFβ signaling and changes to the Mmp13 promoter underlie avian jaw development and evolution. eLife 2022; 11:e66005. [PMID: 35666955 PMCID: PMC9246370 DOI: 10.7554/elife.66005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 06/03/2022] [Indexed: 12/02/2022] Open
Abstract
Precise developmental control of jaw length is critical for survival, but underlying molecular mechanisms remain poorly understood. The jaw skeleton arises from neural crest mesenchyme (NCM), and we previously demonstrated that these progenitor cells express more bone-resorbing enzymes including Matrix metalloproteinase 13 (Mmp13) when they generate shorter jaws in quail embryos versus longer jaws in duck. Moreover, if we inhibit bone resorption or Mmp13, we can increase jaw length. In the current study, we uncover mechanisms establishing species-specific levels of Mmp13 and bone resorption. Quail show greater activation of and sensitivity to transforming growth factor beta (TGFβ) signaling than duck; where intracellular mediators like SMADs and targets like Runt-related transcription factor 2 (Runx2), which bind Mmp13, become elevated. Inhibiting TGFβ signaling decreases bone resorption, and overexpressing Mmp13 in NCM shortens the duck lower jaw. To elucidate the basis for this differential regulation, we examine the Mmp13 promoter. We discover a SMAD-binding element and single nucleotide polymorphisms (SNPs) near a RUNX2-binding element that distinguish quail from duck. Altering the SMAD site and switching the SNPs abolish TGFβ sensitivity in the quail Mmp13 promoter but make the duck promoter responsive. Thus, differential regulation of TGFβ signaling and Mmp13 promoter structure underlie avian jaw development and evolution.
Collapse
Affiliation(s)
- Spenser S Smith
- Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, United States
| | - Daniel Chu
- Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, United States
| | - Tiange Qu
- Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, United States
| | - Jessye A Aggleton
- Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, United States
| | - Richard A Schneider
- Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, United States
| |
Collapse
|
47
|
Liu D, Zhang C, Liu Y, Li J, Wang Y, Zheng S. RUNX2 Regulates Osteoblast Differentiation via the BMP4 Signaling Pathway. J Dent Res 2022; 101:1227-1237. [PMID: 35619284 DOI: 10.1177/00220345221093518] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
RUNX2 is a master osteogenic transcription factor, and mutations in RUNX2 cause the inherited skeletal disorder cleidocranial dysplasia (CCD). Studies have revealed that RUNX2 is not only a downstream target of the bone morphogenetic protein (BMP) pathway but can also regulate the expression of BMPs. However, the underlying mechanism of the regulation of BMPs by RUNX2 remains unknown. In this project, we diagnosed a CCD patient with a 7.86-Mb heterozygous deletion on chromosome 6 containing all exons of RUNX2 by multiplex ligation-dependent probe amplification (MLPA) and whole-genome sequencing (WGS). Bone marrow mesenchymal stem cells (BMSCs) were further extracted from patient alveolar bone fragments (CCD-BMSCs), an excellent natural model to explore the possible mechanism. The osteogenic differentiation ability of CCD-BMSCs was severely affected by RUNX2 heterozygous deletion. Also, BMP4 decreased most in BMP ligands, and CHRDL1, a BMP antagonist, was abnormally elevated in CCD-BMSCs. Furthermore, BMP4 treatment essentially rescued the osteogenic capacity of CCD-BMSCs, and RUNX2 overexpression reversed the abnormal expression of BMP4 and CHRDL1. Notably, we constructed CRISPR/Cas9 Runx2+/m MC3T3-E1 cells, which simulated a variant in CCD-BMSCs, to exclude the interference of other gene deletions and the heterogeneity of the genetic background of primary cells, and verified all findings from the CCD-BMSCs. Moreover, the luciferase reporter experiment showed that RUNX2 could inhibit the transcription of CHRDL1. Through immunofluorescence, the inhibitory effect of CHRDL1 on BMP4/Smad signaling was confirmed in MC3T3-E1 cells. These results revealed that RUNX2 regulated the BMP4 pathway by inhibiting CHRDL1 transcription. We collectively identified a novel RUNX2/CHRDL1/BMP4 axis to regulate osteogenic differentiation and noted that BMP4 might be a valuable therapeutic option for treating bone diseases.
Collapse
Affiliation(s)
- D Liu
- Department of Preventive Dentistry, Peking University School and Hospital of Stomatology, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, PR China
| | - C Zhang
- Department of Preventive Dentistry, Peking University School and Hospital of Stomatology, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, PR China
| | - Y Liu
- Department of Preventive Dentistry, Peking University School and Hospital of Stomatology, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, PR China
| | - J Li
- Department of Preventive Dentistry, Peking University School and Hospital of Stomatology, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, PR China
| | - Y Wang
- Central Laboratory, Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, PR China
| | - S Zheng
- Department of Preventive Dentistry, Peking University School and Hospital of Stomatology, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, PR China
| |
Collapse
|
48
|
Two Modulators of Skeletal Development: BMPs and Proteoglycans. J Dev Biol 2022; 10:jdb10020015. [PMID: 35466193 PMCID: PMC9036252 DOI: 10.3390/jdb10020015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/21/2022] [Accepted: 03/23/2022] [Indexed: 12/27/2022] Open
Abstract
During embryogenesis, skeletal development is tightly regulated by locally secreted growth factors that interact with proteoglycans (PGs) in the extracellular matrix (ECM). Bone morphogenetic proteins (BMPs) are multifunctional growth factors that play critical roles in cartilage maturation and bone formation. BMP signals are transduced from plasma membrane receptors to the nucleus through both canonical Smad and noncanonical p38 mitogen-activated protein kinase (MAPK) pathways. BMP signalling is modulated by a variety of endogenous and exogenous molecular mechanisms at different spatiotemporal levels and in both positive and negative manners. As an endogenous example, BMPs undergo extracellular regulation by PGs, which generally regulate the efficiency of ligand-receptor binding. BMP signalling can also be exogenously perturbed by a group of small molecule antagonists, such as dorsomorphin and its derivatives, that selectively bind to and inhibit the intracellular kinase domain of BMP type I receptors. In this review, we present a current understanding of BMPs and PGs functions in cartilage maturation and osteoblast differentiation, highlighting BMP–PG interactions. We also discuss the identification of highly selective small-molecule BMP receptor type I inhibitors. This review aims to shed light on the importance of BMP signalling and PGs in cartilage maturation and bone formation.
Collapse
|
49
|
El Fersioui Y, Pinton G, Allaman-Pillet N, Schorderet DF. Premature Vertebral Mineralization in hmx1-Mutant Zebrafish. Cells 2022; 11:cells11071088. [PMID: 35406651 PMCID: PMC8997757 DOI: 10.3390/cells11071088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/11/2022] [Accepted: 03/21/2022] [Indexed: 11/16/2022] Open
Abstract
H6 family homeobox 1 (HMX1) regulates multiple aspects of craniofacial development, and mutations in HMX1 are linked to an ocular defect termed oculoauricular syndrome of Schorderet–Munier–Franceschetti (OAS) (MIM #612109). Recently, additional altered orofacial features have been reported, including short mandibular rami, asymmetry of the jaws, and altered premaxilla. We found that in two mutant zebrafish lines termed hmx1mut10 and hmx1mut150, precocious mineralization of the proximal vertebrae occurred. Zebrafish hmx1mut10 and hmx1mut150 report mutations in the SD1 and HD domains, which are essential for dimerization and activity of hmx1. In hmx1mut10, the bone morphogenetic protein (BMP) antagonists chordin and noggin1 were downregulated, while bmp2b and bmp4 were highly expressed and specifically localized to the dorsal region prior to the initiation of the osteogenic process. The osteogenic promoters runx2b and spp1 were also upregulated. Supplementation with DMH1—an inhibitor of the BMP signaling pathway—at the specific stage in which bmp2b and bmp4 are highly expressed resulted in reduced vertebral mineralization, resembling the wildtype mineralization progress of the axial skeleton. These results point to a possible role of hmx1 as part of a complex gene network that inhibits bmp2b and bmp4 in the dorsal region, thus regulating early axial skeleton development.
Collapse
Affiliation(s)
- Younes El Fersioui
- IRO—Institute for Research in Ophthalmology, 1950 Sion, Switzerland; (G.P.); (N.A.-P.); (D.F.S.)
- Jules-Gonin Eye Hospital, Unit of Gene Therapy and Stem Cell Biology, 1004 Lausanne, Switzerland
- Correspondence:
| | - Gaëtan Pinton
- IRO—Institute for Research in Ophthalmology, 1950 Sion, Switzerland; (G.P.); (N.A.-P.); (D.F.S.)
| | - Nathalie Allaman-Pillet
- IRO—Institute for Research in Ophthalmology, 1950 Sion, Switzerland; (G.P.); (N.A.-P.); (D.F.S.)
| | - Daniel F. Schorderet
- IRO—Institute for Research in Ophthalmology, 1950 Sion, Switzerland; (G.P.); (N.A.-P.); (D.F.S.)
- Faculty of Life Sciences, Swiss Federal Institute of Technology (EPFL), 1015 Lausanne, Switzerland
- Faculty of Biology and Medicine, University of Lausanne, 1011 Lausanne, Switzerland
| |
Collapse
|
50
|
BMP-2 Long-Term Stimulation of Human Pre-Osteoblasts Induces Osteogenic Differentiation and Promotes Transdifferentiation and Bone Remodeling Processes. Int J Mol Sci 2022; 23:ijms23063077. [PMID: 35328498 PMCID: PMC8949995 DOI: 10.3390/ijms23063077] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/07/2022] [Accepted: 03/10/2022] [Indexed: 02/01/2023] Open
Abstract
Bone morphogenic protein (BMP-) 2 plays an important role in the regeneration of bone defects by promoting osteogenic differentiation. However, several animal studies have reported adverse side effects of BMP-2, including osteoclast activation, induction of peroxisome proliferator- activated receptor gamma (PPARG)expression, and inflammation. High BMP-2 concentrations are thought to be responsible for these side effects. For this reason, primary pre-osteoblasts were exposed to lower BMP-2 concentrations (1 and 2 µg/mL). Long-term exposure (up to 28 days) was performed to investigate whether this stimulation protocol may promote osteogenic differentiation without causing the side effects mentioned above. The results showed that BMP-2 treatment for 14 or 28 days resulted in increased osteogenesis, through an increase in runt-related transcription factor 2, osterix, alkaline phosphatase, and integrin-binding sialoprotein expression. However, an increase in tumor necrosis factor alpha and receptor activator of nuclear factor kappa-Β ligand protein levels was observed after BMP-2 exposure, indicating also an increased potential for osteoclast activation by osteoblasts. Additionally, morphological changes like intracellular, filled vacuoles could be detected. Enhanced PPARG and perilipin 1 mRNA transcripts and lipid droplets indicated an induced adipogenic differentiation. Overall, the data demonstrate that long-term BMP-2 exposure promotes not only osteogenic differentiation but also adipogenesis and regulates mediators involved in osteoclast activation in vitro.
Collapse
|