1
|
Hirano J, Hayashi T, Kitamura K, Nishimura Y, Shimizu H, Okamoto T, Okada K, Uemura K, Yeh MT, Ono C, Taguwa S, Muramatsu M, Matsuura Y. Enterovirus 3A protein disrupts endoplasmic reticulum homeostasis through interaction with GBF1. J Virol 2024; 98:e0081324. [PMID: 38904364 PMCID: PMC11265424 DOI: 10.1128/jvi.00813-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 06/22/2024] Open
Abstract
Enteroviruses are single-stranded, positive-sense RNA viruses causing endoplasmic reticulum (ER) stress to induce or modulate downstream signaling pathways known as the unfolded protein responses (UPR). However, viral and host factors involved in the UPR related to viral pathogenesis remain unclear. In the present study, we aimed to identify the major regulator of enterovirus-induced UPR and elucidate the underlying molecular mechanisms. We showed that host Golgi-specific brefeldin A-resistant guanine nucleotide exchange factor 1 (GBF1), which supports enteroviruses replication, was a major regulator of the UPR caused by infection with enteroviruses. In addition, we found that severe UPR was induced by the expression of 3A proteins encoded in human pathogenic enteroviruses, such as enterovirus A71, coxsackievirus B3, poliovirus, and enterovirus D68. The N-terminal-conserved residues of 3A protein interact with the GBF1 and induce UPR through inhibition of ADP-ribosylation factor 1 (ARF1) activation via GBF1 sequestration. Remodeling and expansion of ER and accumulation of ER-resident proteins were observed in cells infected with enteroviruses. Finally, 3A induced apoptosis in cells infected with enteroviruses via activation of the protein kinase RNA-like endoplasmic reticulum kinase (PERK)/C/EBP homologous protein (CHOP) pathway of UPR. Pharmaceutical inhibition of PERK suppressed the cell death caused by infection with enteroviruses, suggesting the UPR pathway is a therapeutic target for treating diseases caused by infection with enteroviruses.IMPORTANCEInfection caused by several plus-stranded RNA viruses leads to dysregulated ER homeostasis in the host cells. The mechanisms underlying the disruption and impairment of ER homeostasis and its significance in pathogenesis upon enteroviral infection remain unclear. Our findings suggested that the 3A protein encoded in human pathogenic enteroviruses disrupts ER homeostasis by interacting with GBF1, a major regulator of UPR. Enterovirus-mediated infections drive ER into pathogenic conditions, where ER-resident proteins are accumulated. Furthermore, in such scenarios, the PERK/CHOP signaling pathway induced by an unresolved imbalance of ER homeostasis essentially drives apoptosis. Therefore, elucidating the mechanisms underlying the virus-induced disruption of ER homeostasis might be a potential target to mitigate the pathogenesis of enteroviruses.
Collapse
Affiliation(s)
- Junki Hirano
- Laboratory of Virus Control, Center for Infectious Disease Education and Research (CiDER), Osaka, Japan
- Research Institute for Microbial Diseases (RIMD), Osaka University, Osaka, Japan
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tsuyoshi Hayashi
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kouichi Kitamura
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yorihiro Nishimura
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hiroyuki Shimizu
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Toru Okamoto
- Institute for Advanced Co-Creation Studies, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Department of Microbiology, Juntendo University School of Medicine, Tokyo, Japan
| | - Kazuma Okada
- Laboratory of Virus Control, Center for Infectious Disease Education and Research (CiDER), Osaka, Japan
- Research Institute for Microbial Diseases (RIMD), Osaka University, Osaka, Japan
| | - Kentaro Uemura
- Laboratory of Virus Control, Center for Infectious Disease Education and Research (CiDER), Osaka, Japan
- Research Institute for Microbial Diseases (RIMD), Osaka University, Osaka, Japan
| | - Ming Te Yeh
- Research Institute for Microbial Diseases (RIMD), Osaka University, Osaka, Japan
- Center for Advanced Modalities and DDS (CAMaD), Osaka University, Osaka, Japan
| | - Chikako Ono
- Laboratory of Virus Control, Center for Infectious Disease Education and Research (CiDER), Osaka, Japan
- Research Institute for Microbial Diseases (RIMD), Osaka University, Osaka, Japan
| | - Shuhei Taguwa
- Laboratory of Virus Control, Center for Infectious Disease Education and Research (CiDER), Osaka, Japan
- Research Institute for Microbial Diseases (RIMD), Osaka University, Osaka, Japan
- Center for Advanced Modalities and DDS (CAMaD), Osaka University, Osaka, Japan
| | - Masamichi Muramatsu
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
- Department of Infectious Disease Research, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan
| | - Yoshiharu Matsuura
- Laboratory of Virus Control, Center for Infectious Disease Education and Research (CiDER), Osaka, Japan
- Research Institute for Microbial Diseases (RIMD), Osaka University, Osaka, Japan
- Center for Advanced Modalities and DDS (CAMaD), Osaka University, Osaka, Japan
| |
Collapse
|
2
|
Li X, Guo H, Yang J, Liu X, Li H, Yang W, Zhang L, Li Y, Wei W. Enterovirus D68 3C protease antagonizes type I interferon signaling by cleaving signal transducer and activator of transcription 1. J Virol 2024; 98:e0199423. [PMID: 38240591 PMCID: PMC10878094 DOI: 10.1128/jvi.01994-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 12/19/2023] [Indexed: 02/21/2024] Open
Abstract
Following the successful control of poliovirus, the re-emergence of respiratory enterovirus D68 (EV-D68), a prominent non-polio enterovirus, has become a serious public health concern worldwide. Host innate immune responses are the primary defense against EV-D68 invasion; however, the mechanism underlying viral evasion of the antiviral activity of interferons (IFN) remains unclear. In this study, we found that EV-D68 inhibited type I IFN signaling by cleaving signal transducer and activator of transcription 1 (STAT1), a crucial factor in cellular responses to interferons and other cytokines. We observed that the prototype and circulating EV-D68 strains conserved their ability to induce STAT1 cleavage and attenuate IFN signal transduction. Further investigation revealed that EV-D68 3C protease cleaves STAT1 at the 131Q residue. Interestingly, not all enterovirus-encoded 3C proteases exhibited this ability. EV-D68 and poliovirus 3C proteases efficiently induced STAT1 cleavage; whereas, 3C proteases from EV-A71, coxsackievirus A16, and echoviruses did not. STAT1 cleavage also abolished the nuclear translocation capacity of STAT1 in response to IFN stimulation to activate downstream signaling elements. Overall, these results suggest that STAT1, targeted by viral protease 3C, is utilized by EV-D68 to subvert the host's innate immune response.IMPORTANCEEnterovirus D68 (EV-D68) has significantly transformed over the past decade, evolving from a rare pathogen to a potential pandemic pathogen. The interferon (IFN) signaling pathway is an important defense mechanism and therapeutic target for the host to resist viral invasion. Previous studies have reported that the EV-D68 virus blocks or weakens immune recognition and IFN production in host cells through diverse strategies; however, the mechanisms of EV-D68 resistance to IFN signaling have not been fully elucidated. Our study revealed that EV-D68 relies on its own encoded protease, 3C, to directly cleave signal transducer and activator of transcription 1 (STAT1), a pivotal transduction component in the IFN signaling pathway, disrupting the IFN-mediated antiviral response. Previous studies on human enteroviruses have not documented direct cleavage of the STAT1 protein to evade cellular immune defenses. However, not all enteroviral 3C proteins can cleave STAT1. These findings highlight the diverse evolutionary strategies different human enteroviruses employ to evade host immunity.
Collapse
Affiliation(s)
- Xiaohan Li
- Institute of Virology and AIDS Research, First Hospital, Jilin University, Changchun, Jilin, China
| | - Haoran Guo
- Institute of Virology and AIDS Research, First Hospital, Jilin University, Changchun, Jilin, China
| | - Jiaxin Yang
- Institute of Virology and AIDS Research, First Hospital, Jilin University, Changchun, Jilin, China
| | - Xize Liu
- Institute of Virology and AIDS Research, First Hospital, Jilin University, Changchun, Jilin, China
| | - Huili Li
- Institute of Virology and AIDS Research, First Hospital, Jilin University, Changchun, Jilin, China
| | - Wanying Yang
- Institute of Virology and AIDS Research, First Hospital, Jilin University, Changchun, Jilin, China
| | - Lili Zhang
- Institute of Virology and AIDS Research, First Hospital, Jilin University, Changchun, Jilin, China
| | - Yan Li
- Institute of Virology and AIDS Research, First Hospital, Jilin University, Changchun, Jilin, China
| | - Wei Wei
- Institute of Virology and AIDS Research, First Hospital, Jilin University, Changchun, Jilin, China
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Translational Medicine, First Hospital, Jilin University, Changchun, Jilin, China
| |
Collapse
|
3
|
Frost J, Rudy MJ, Leser JS, Tan H, Hu Y, Wang J, Clarke P, Tyler KL. Telaprevir Treatment Reduces Paralysis in a Mouse Model of Enterovirus D68 Acute Flaccid Myelitis. J Virol 2023; 97:e0015623. [PMID: 37154751 PMCID: PMC10231134 DOI: 10.1128/jvi.00156-23] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/09/2023] [Indexed: 05/10/2023] Open
Abstract
In 2014, 2016, and 2018, the United States experienced unprecedented spikes in pediatric cases of acute flaccid myelitis (AFM), which is a poliomyelitis-like paralytic illness. Accumulating clinical, immunological, and epidemiological evidence has identified enterovirus D68 (EV-D68) as a major causative agent of these biennial AFM outbreaks. There are currently no available FDA-approved antivirals that are effective against EV-D68, and the treatment for EV-D68-associated AFM is primarily supportive. Telaprevir is an food and drug administration (FDA)-approved protease inhibitor that irreversibly binds the EV-D68 2A protease and inhibits EV-D68 replication in vitro. Here, we utilize a murine model of EV-D68 associated AFM to show that early telaprevir treatment improves paralysis outcomes in Swiss Webster (SW) mice. Telaprevir reduces both viral titer and apoptotic activity in both muscles and spinal cords at early disease time points, which results in improved AFM outcomes in infected mice. Following intramuscular inoculation in mice, EV-D68 infection results in a stereotypic pattern of weakness that is reflected by the loss of the innervating motor neuron population, in sequential order, of the ipsilateral (injected) hindlimb, the contralateral hindlimb, and then the forelimbs. Telaprevir treatment preserved motor neuron populations and reduced weakness in limbs beyond the injected hindlimb. The effects of telaprevir were not seen when the treatment was delayed, and toxicity limited doses beyond 35 mg/kg. These studies are a proof of principle, provide the first evidence of benefit of an FDA-approved antiviral drug with which to treat AFM, and emphasize both the need to develop better tolerated therapies that remain efficacious when administered after viral infections and the development of clinical symptoms. IMPORTANCE Recent outbreaks of EV-D68 in 2014, 2016, and 2018 have resulted in over 600 cases of a paralytic illness that is known as AFM. AFM is a predominantly pediatric disease with no FDA-approved treatment, and many patients show minimal recovery from limb weakness. Telaprevir is an FDA-approved antiviral that has been shown to inhibit EV-D68 in vitro. Here, we demonstrate that a telaprevir treatment that is given concurrently with an EV-D68 infection improves AFM outcomes in mice by reducing apoptosis and viral titers at early time points. Telaprevir also protected motor neurons and improved paralysis outcomes in limbs beyond the site of viral inoculation. This study improves understanding of EV-D68 pathogenesis in the mouse model of AFM. This study serves as a proof of principle for the first FDA-approved drug that has been shown to improve AFM outcomes and have in vivo efficacy against EV-D68 as well as underlines the importance of the continued development of EV-D68 antivirals.
Collapse
Affiliation(s)
- Joshua Frost
- Department of Immunology & Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Michael J. Rudy
- Department of Neurology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - J. Smith Leser
- Department of Neurology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Haozhou Tan
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, New Jersey, USA
| | - Yanmei Hu
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, New Jersey, USA
| | - Jun Wang
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, New Jersey, USA
| | - Penny Clarke
- Department of Neurology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Kenneth L. Tyler
- Department of Immunology & Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
- Department of Neurology, University of Colorado School of Medicine, Aurora, Colorado, USA
- Division of Infectious Disease, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA
- Neurology Service, Rocky Mountain VA Medical Center, Aurora, Colorado, USA
| |
Collapse
|
4
|
Zhang L, Yang J, Li H, Zhang Z, Ji Z, Zhao L, Wei W. Enterovirus D68 Infection Induces TDP-43 Cleavage, Aggregation, and Neurotoxicity. J Virol 2023; 97:e0042523. [PMID: 37039659 PMCID: PMC10134869 DOI: 10.1128/jvi.00425-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 03/25/2023] [Indexed: 04/12/2023] Open
Abstract
Enterovirus D68 (EV-D68), which causes severe respiratory diseases and irreversible central nervous system damage, has become a serious public health problem worldwide. However, the mechanisms by which EV-D68 exerts neurotoxicity remain unclear. Thus, we aimed to analyze the effects of EV-D68 infection on the cleavage, subcellular translocation, and pathogenic aggregation of TAR DNA-binding protein 43 kDa (TDP-43) in respiratory or neural cells. The results showed that EV-D68-encoded proteases 2A and 3C induced TDP-43 translocation and cleavage, respectively. Specifically, 3C cleaved residue 327Q of TDP-43. The 3C-mediated cleaved TDP-43 fragments had substantially decreased protein solubility compared with the wild-type TDP-43. Hence, 3C activity promoted TDP-43 aggregation, which exerted cytotoxicity to diverse human cells, including glioblastoma T98G cells. The effects of commercially available antiviral drugs on 3C-mediated TDP-43 cleavage were screened, and the results revealed lopinavir as a potent inhibitor of EV-D68 3C protease. Overall, these results suggested TDP-43 as a conserved host target of EV-D68 3C. This study is the first to provide evidence on the involvement of TDP-43 dysregulation in EV-D68 pathogenesis. IMPORTANCE Over the past decade, the incidence of enterovirus D68 (EV-D68) infection has increased worldwide. EV-D68 infection can cause different respiratory symptoms and severe neurological complications, including acute flaccid myelitis. Thus, elucidating the mechanisms underlying EV-D68 toxicity is important to develop novel methods to prevent EV-D68 infection-associated diseases. This study shows that EV-D68 infection triggers the translocalization, cleavage, and aggregation of TDP-43, an intracellular protein closely related to degenerative neurological disorders. The viral protease 3C decreased TDP-43 solubility, thereby exerting cytotoxicity to host cells, including human glioblastoma cells. Thus, counteracting 3C activity is an effective strategy to relieve EV-D68-triggered cell death. Cytoplasmic aggregation of TDP-43 is a hallmark of degenerative diseases, contributing to neural cell damage and central nervous system (CNS) disorders. The findings of this study on EV-D68-induced TDP-43 formation extend our understanding of virus-mediated cytotoxicity and the potential risks of TDP-43 dysfunction-related cognitive impairment and neurological symptoms in infected patients.
Collapse
Affiliation(s)
- Lili Zhang
- Department of Ultrasound Diagnosis, Institute of Translational Medicine, First Hospital, Jilin University, Changchun, Jilin, China
- Institute of Virology and AIDS Research, First Hospital, Jilin University, Changchun, Jilin, China
| | - Jiaxin Yang
- Institute of Virology and AIDS Research, First Hospital, Jilin University, Changchun, Jilin, China
| | - Huili Li
- Institute of Virology and AIDS Research, First Hospital, Jilin University, Changchun, Jilin, China
| | - Zhe Zhang
- Institute of Virology and AIDS Research, First Hospital, Jilin University, Changchun, Jilin, China
| | - Zhilin Ji
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Translational Medicine, First Hospital, Jilin University, Changchun, Jilin, China
| | - Lirong Zhao
- Department of Ultrasound Diagnosis, Institute of Translational Medicine, First Hospital, Jilin University, Changchun, Jilin, China
| | - Wei Wei
- Institute of Virology and AIDS Research, First Hospital, Jilin University, Changchun, Jilin, China
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Translational Medicine, First Hospital, Jilin University, Changchun, Jilin, China
| |
Collapse
|
5
|
Muacevic A, Adler JR, Bisen YT, Iratwar S, Kesharwani A, Vardhan S, Singh A. Emerging Recombinant Oncolytic Poliovirus Therapies Against Malignant Glioma: A Review. Cureus 2023; 15:e34028. [PMID: 36814733 PMCID: PMC9939956 DOI: 10.7759/cureus.34028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 01/21/2023] [Indexed: 01/22/2023] Open
Abstract
Glioblastoma multiforme (GBM) is a fourth-grade malignant glioma that continues to be the main contributor to primary malignant brain tumour-related death in humans. The most prevalent primary brain tumours are gliomas. The most dangerous of these neoplasms, GBM, has been shown to be one of the most lethal and refractory tumours. For those who have been diagnosed with GBM, the median time to progression, as determined by magnetic resonance imaging, is roughly six months, and the median survival is approximately one year. GBM is challenging to manage with old treatments like chemotherapy, tumour debulking, and radiation therapy. Treatment outcomes are poor, and due to this effect, the treatment is not up to the mark. GBM also shows diagnostic complexity due to limitations in the use of specific targeted therapies. The treatment protocol followed currently has an entire focus on safe resection and radiotherapy. Protein synthesis is not tightly regulated physiologically in malignant cells, which promotes unchecked growth and proliferation. An innovative, experimental technique for treating cancer uses polioviruses that have been genetically altered to target a fascinating aberration of translation regulation in cancer. This approach enables precise and effective cancer cell targeting based on the convergence of numerous variables. Oncolytic viruses have revolutionised cancer treatment. However, their effectiveness in glioblastoma remains restricted, necessitating more improvement. Oncolytic poliovirus has shown great potential in the treatment of GBM. Factors like the blood-brain barrier, immunosuppressive tumour microenvironment (TME), and tumour heterogeneity make treatment for malignant gliomas ineffective. In this review, we have focused on oncolytic viruses, specifically oncolytic poliovirus, and we explore malignant glioma treatments. We have also discussed currently available conventional treatment options for malignant glioma and other brain tumours.
Collapse
|
6
|
Mou C, Wang Y, Pan S, Shi K, Chen Z. Porcine sapelovirus 2A protein induces mitochondrial-dependent apoptosis. Front Immunol 2022; 13:1050354. [PMID: 36505441 PMCID: PMC9732094 DOI: 10.3389/fimmu.2022.1050354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/11/2022] [Indexed: 11/27/2022] Open
Abstract
Porcine sapelovirus (PSV) is an emerging pathogen associated with symptoms of enteritis, pneumonia, polioencephalomyelitis and reproductive disorders in swine, resulting in significant economic losses. Although PSV is reported to trigger cell apoptosis, its specific molecular mechanism is unclear. In this research, the cell apoptosis induced by PSV infection and its underlying mechanisms were investigated. The morphologic features of apoptosis include nuclear condensation and fragmentation, were observed after PSV infection. The cell apoptosis was confirmed by analyzing the apoptotic rates, caspase activation, and PARP1 cleavage. Caspase inhibitors inhibited the PSV-induced intrinsic apoptosis pathway and reduced viral replication. Among the proteins encoded by PSV, 2A is an important factor in inducing the mitochondrial apoptotic pathway. The conserved residues H48, D91, and C164 related to protease activity in PSV 2A were crucial for 2A-induced apoptosis. In conclusion, our results provide insights into how PSV induces host cell apoptosis.
Collapse
Affiliation(s)
- Chunxiao Mou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China,Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yuxi Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Shuonan Pan
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Kaichuang Shi
- Guangxi Center for Animal Disease Control and Prevention, Nanning, Guangxi, China
| | - Zhenhai Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China,Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China,*Correspondence: Zhenhai Chen,
| |
Collapse
|
7
|
Serganov AA, Udi Y, Stein ME, Patel V, Fridy PC, Rice CM, Saeed M, Jacobs EY, Chait BT, Rout MP. Proteomic elucidation of the targets and primary functions of the picornavirus 2A protease. J Biol Chem 2022; 298:101882. [PMID: 35367208 PMCID: PMC9168619 DOI: 10.1016/j.jbc.2022.101882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 03/04/2022] [Accepted: 03/06/2022] [Indexed: 11/19/2022] Open
Abstract
Picornaviruses are small RNA viruses that hijack host cell machinery to promote their replication. During infection, these viruses express two proteases, 2Apro and 3Cpro, which process viral proteins. They also subvert a number of host functions, including innate immune responses, host protein synthesis, and intracellular transport, by utilizing poorly understood mechanisms for rapidly and specifically targeting critical host proteins. Here, we used proteomic tools to characterize 2Apro interacting partners, functions, and targeting mechanisms. Our data indicate that, initially, 2Apro primarily targets just two cellular proteins: eukaryotic translation initiation factor eIF4G (a critical component of the protein synthesis machinery) and Nup98 (an essential component of the nuclear pore complex, responsible for nucleocytoplasmic transport). The protease appears to employ two different cleavage mechanisms; it likely interacts with eIF3L, utilizing the eIF3 complex to proteolytically access the eIF4G protein but also directly binds and degrades Nup98. This Nup98 cleavage results in only a marginal effect on nuclear import of proteins, while nuclear export of proteins and mRNAs were more strongly affected. Collectively, our data indicate that 2Apro selectively inhibits protein translation, key nuclear export pathways, and cellular mRNA localization early in infection to benefit viral replication at the expense of particular cell functions.
Collapse
Affiliation(s)
- Artem A Serganov
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, New York, USA
| | - Yael Udi
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, New York, USA.
| | - Milana E Stein
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, New York, USA
| | - Valay Patel
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, New York, USA
| | - Peter C Fridy
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, New York, USA
| | - Charles M Rice
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, USA
| | - Mohsan Saeed
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, USA; Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, USA; National Emerging Infectious Diseases Laboratories, Boston University School of Medicine, Boston University, Massachusetts, USA.
| | - Erica Y Jacobs
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, New York, USA; Chemistry Department, St John's University, Queens, New York, USA.
| | - Brian T Chait
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, New York, USA.
| | - Michael P Rout
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, New York, USA.
| |
Collapse
|
8
|
Sénéchal P, Robert F, Cencic R, Yanagiya A, Chu J, Sonenberg N, Paquet M, Pelletier J. Assessing eukaryotic initiation factor 4F subunit essentiality by CRISPR-induced gene ablation in the mouse. Cell Mol Life Sci 2021; 78:6709-6719. [PMID: 34559254 PMCID: PMC11073133 DOI: 10.1007/s00018-021-03940-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/31/2021] [Accepted: 09/10/2021] [Indexed: 01/16/2023]
Abstract
Eukaryotic initiation factor (eIF) 4F plays a central role in the ribosome recruitment phase of cap-dependent translation. This heterotrimeric complex consists of a cap binding subunit (eIF4E), a DEAD-box RNA helicase (eIF4A), and a large bridging protein (eIF4G). In mammalian cells, there are two genes encoding eIF4A (eIF4A1 and eIF4A2) and eIF4G (eIF4G1 and eIF4G3) paralogs that can assemble into eIF4F complexes. To query the essential nature of the eIF4F subunits in normal development, we used CRISPR/Cas9 to generate mouse strains with targeted ablation of each gene encoding the different eIF4F subunits. We find that Eif4e, Eif4g1, and Eif4a1 are essential for viability in the mouse, whereas Eif4g3 and Eif4a2 are not. However, Eif4g3 and Eif4a2 do play essential roles in spermatogenesis. Crossing of these strains to the lymphoma-prone Eμ-Myc mouse model revealed that heterozygosity at the Eif4e or Eif4a1 loci significantly delayed tumor onset. Lastly, tumors derived from Eif4e∆38 fs/+/Eμ-Myc or Eif4a1∆5 fs/+/Eμ-Myc mice show increased sensitivity to the chemotherapeutic agent doxorubicin, in vivo. Our study reveals that eIF4A2 and eIF4G3 play non-essential roles in gene expression regulation during embryogenesis; whereas reductions in eIF4E or eIF4A1 levels are protective against tumor development in a murine Myc-driven lymphoma setting.
Collapse
Affiliation(s)
- Patrick Sénéchal
- Department of Biochemistry, McGill University, Montreal, QC, H3G 1Y6, Canada
| | - Francis Robert
- Department of Biochemistry, McGill University, Montreal, QC, H3G 1Y6, Canada
| | - Regina Cencic
- Department of Biochemistry, McGill University, Montreal, QC, H3G 1Y6, Canada
| | - Akiko Yanagiya
- Department of Biochemistry, McGill University, Montreal, QC, H3G 1Y6, Canada
- Cell Signal Unit, Okinawa Institute of Science and Technology, Okinawa, 904-0495, Japan
| | - Jennifer Chu
- Department of Biochemistry, McGill University, Montreal, QC, H3G 1Y6, Canada
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02138, USA
| | - Nahum Sonenberg
- Department of Biochemistry, McGill University, Montreal, QC, H3G 1Y6, Canada
- Rosalind and Morris Goodman Cancer Research Center, McGill University, Montreal, QC, H3A 1A3, Canada
| | - Marilène Paquet
- Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - Jerry Pelletier
- Department of Biochemistry, McGill University, Montreal, QC, H3G 1Y6, Canada.
- Department of Oncology, McGill University, Montreal, QC, H3A 1G5, Canada.
- Rosalind and Morris Goodman Cancer Research Center, McGill University, Montreal, QC, H3A 1A3, Canada.
| |
Collapse
|
9
|
Gioti K, Kottaridi C, Voyiatzaki C, Chaniotis D, Rampias T, Beloukas A. Animal Coronaviruses Induced Apoptosis. Life (Basel) 2021; 11:185. [PMID: 33652685 PMCID: PMC7996831 DOI: 10.3390/life11030185] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/21/2021] [Accepted: 02/22/2021] [Indexed: 02/06/2023] Open
Abstract
Apoptosis is a form of programmed death that has also been observed in cells infected by several viruses. It is considered one of the most critical innate immune mechanisms that limits pathogen proliferation and propagation before the initiation of the adaptive immune response. Recent studies investigating the cellular responses to SARS-CoV and SARS-CoV-2 infection have revealed that coronaviruses can alter cellular homeostasis and promote cell death, providing evidence that the modulation of apoptotic pathways is important for viral replication and propagation. Despite the genetic diversity among different coronavirus clades and the infection of different cell types and several hosts, research studies in animal coronaviruses indicate that apoptosis in host cells is induced by common molecular mechanisms and apoptotic pathways. We summarize and critically review current knowledge on the molecular aspects of cell-death regulation during animal coronaviruses infection and the viral-host interactions to this process. Future research is expected to lead to a better understanding of the regulation of cell death during coronavirus infection. Moreover, investigating the role of viral proteins in this process will help us to identify novel antiviral targets related to apoptotic signaling pathways.
Collapse
Affiliation(s)
- Katerina Gioti
- Department of Biomedical Sciences, University of West Attica, 12243 Athens, Greece; (K.G.); (C.K.); (C.V.); (D.C.)
| | - Christine Kottaridi
- Department of Biomedical Sciences, University of West Attica, 12243 Athens, Greece; (K.G.); (C.K.); (C.V.); (D.C.)
- Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Chrysa Voyiatzaki
- Department of Biomedical Sciences, University of West Attica, 12243 Athens, Greece; (K.G.); (C.K.); (C.V.); (D.C.)
| | - Dimitrios Chaniotis
- Department of Biomedical Sciences, University of West Attica, 12243 Athens, Greece; (K.G.); (C.K.); (C.V.); (D.C.)
| | - Theodoros Rampias
- Biomedical Research Foundation of the Academy of Athens, Basic Research Center, 11527 Athens, Greece
| | - Apostolos Beloukas
- Department of Biomedical Sciences, University of West Attica, 12243 Athens, Greece; (K.G.); (C.K.); (C.V.); (D.C.)
- Institute of Infection & Global Health, University of Liverpool, Liverpool L69 7BE, UK
| |
Collapse
|
10
|
Lai Y, Wang M, Cheng A, Mao S, Ou X, Yang Q, Wu Y, Jia R, Liu M, Zhu D, Chen S, Zhang S, Zhao XX, Huang J, Gao Q, Wang Y, Xu Z, Chen Z, Zhu L, Luo Q, Liu Y, Yu Y, Zhang L, Tian B, Pan L, Rehman MU, Chen X. Regulation of Apoptosis by Enteroviruses. Front Microbiol 2020; 11:1145. [PMID: 32582091 PMCID: PMC7283464 DOI: 10.3389/fmicb.2020.01145] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 05/05/2020] [Indexed: 01/14/2023] Open
Abstract
Enterovirus infection can cause a variety of diseases and severely impair the health of humans, animals, poultry, and other organisms. To resist viral infection, host organisms clear infected cells and viruses via apoptosis. However, throughout their long-term competition with host cells, enteroviruses have evolved a series of mechanisms to regulate the balance of apoptosis in order to replicate and proliferate. In the early stage of infection, enteroviruses mainly inhibit apoptosis by regulating the PI3K/Akt pathway and the autophagy pathway and by impairing cell sensors, thereby delaying viral replication. In the late stage of infection, enteroviruses mainly regulate apoptotic pathways and the host translation process via various viral proteins, ultimately inducing apoptosis. This paper discusses the means by which these two phenomena are balanced in enteroviruses to produce virus-favoring conditions – in a temporal sequence or through competition with each other. This information is important for further elucidation of the relevant mechanisms of acute infection by enteroviruses and other members of the picornavirus family.
Collapse
Affiliation(s)
- Yalan Lai
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Sai Mao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xumin Ou
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Dekang Zhu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shaqiu Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xin-Xin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Juan Huang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qun Gao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yin Wang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Zhiwen Xu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Zhengli Chen
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Ling Zhu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Qihui Luo
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yunya Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yanling Yu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ling Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Bin Tian
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Leichang Pan
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mujeeb Ur Rehman
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xiaoyue Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
11
|
Flather D, Nguyen JHC, Semler BL, Gershon PD. Exploitation of nuclear functions by human rhinovirus, a cytoplasmic RNA virus. PLoS Pathog 2018; 14:e1007277. [PMID: 30142213 PMCID: PMC6126879 DOI: 10.1371/journal.ppat.1007277] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 09/06/2018] [Accepted: 08/11/2018] [Indexed: 12/17/2022] Open
Abstract
Protein production, genomic RNA replication, and virion assembly during infection by picornaviruses like human rhinovirus and poliovirus take place in the cytoplasm of infected human cells, making them the quintessential cytoplasmic pathogens. However, a growing body of evidence suggests that picornavirus replication is promoted by a number of host proteins localized normally within the host cell nucleus. To systematically identify such nuclear proteins, we focused on those that appear to re-equilibrate from the nucleus to the cytoplasm during infection of HeLa cells with human rhinovirus via quantitative protein mass spectrometry. Our analysis revealed a highly selective re-equilibration of proteins with known mRNA splicing and transport-related functions over nuclear proteins of all other functional classes. The multifunctional splicing factor proline and glutamine rich (SFPQ) was identified as one such protein. We found that SFPQ is targeted for proteolysis within the nucleus by viral proteinase 3CD/3C, and a fragment of SFPQ was shown to migrate to the cytoplasm at mid-to-late times of infection. Cells knocked down for SFPQ expression showed significantly reduced rhinovirus titers, viral protein production, and viral RNA accumulation, consistent with SFPQ being a pro-viral factor. The SFPQ fragment that moved into the cytoplasm was able to bind rhinovirus RNA either directly or indirectly. We propose that the truncated form of SFPQ promotes viral RNA stability or replication, or virion morphogenesis. More broadly, our findings reveal dramatic changes in protein compartmentalization during human rhinovirus infection, allowing the virus to systematically hijack the functions of proteins not normally found at its cytoplasmic site of replication. We explored the dynamics of host cell protein relocalization from the nucleus to the cytoplasm during an infection by human rhinovirus using quantitative mass spectrometry, confocal imaging, and Western blot analysis. We discovered a highly selective re-equilibration of proteins with known mRNA splicing and transport-related functions, including splicing factor proline and glutamine rich (SFPQ). Using RNAi experiments and viral replication assays, we demonstrated that SFPQ is a pro-viral factor required for rhinovirus growth. Our studies provide new insights into how this cytoplasmic RNA virus is able to alter and hijack the functions of host proteins that normally reside in the nucleus.
Collapse
Affiliation(s)
- Dylan Flather
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, California, United States of America
- Center for Virus Research, University of California, Irvine, California, United States of America
| | - Joseph H. C. Nguyen
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, California, United States of America
- Center for Virus Research, University of California, Irvine, California, United States of America
| | - Bert L. Semler
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, California, United States of America
- Center for Virus Research, University of California, Irvine, California, United States of America
- * E-mail: (BLS); (PDG)
| | - Paul D. Gershon
- Center for Virus Research, University of California, Irvine, California, United States of America
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California, United States of America
- * E-mail: (BLS); (PDG)
| |
Collapse
|
12
|
Dunn-Pirio AM, Vlahovic G. Immunotherapy approaches in the treatment of malignant brain tumors. Cancer 2016; 123:734-750. [PMID: 27875627 DOI: 10.1002/cncr.30371] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 07/16/2016] [Accepted: 09/01/2016] [Indexed: 12/28/2022]
Abstract
Glioblastoma is the most common malignant primary brain tumor. Despite standard-of-care treatment, consisting of maximal surgical resection followed by chemoradiation, both morbidity and mortality associated with this disease remain very poor. Therefore, there is an urgent need for more efficacious and well tolerated therapies. Advancing knowledge of the intricate interplay between malignant gliomas and the immune system, coupled with the recent launch of immunotherapy research for other cancers, has led to a veritable increase in immunotherapy investigation for glioblastoma and other malignant gliomas. This clinical review highlights the recent breakthroughs in cancer immunotherapy and the complex correlation of the immune system with primary brain tumors, with special attention to multiple immunotherapy modalities currently being investigated for malignant glioma, including peptide vaccines, dendritic cell vaccines, oncolytic viruses, chimeric T-cell receptors, and checkpoint inhibitors. Cancer 2017;123:734-50. © 2016 American Cancer Society.
Collapse
Affiliation(s)
- Anastasie M Dunn-Pirio
- The Preston Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina
| | - Gordana Vlahovic
- The Preston Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
13
|
Abstract
Cell death is a common outcome of virus infection. In some cases, cell death curbs virus replication. In others, cell death enhances virus dissemination and contributes to tissue injury, exacerbating viral disease. Three forms of cell death are observed following virus infection-apoptosis, necroptosis, and pyroptosis. In this review, I describe the core machinery needed for each of these forms of cell death. Using representative viruses, I highlight how distinct stages of virus replication initiate signaling pathways that elicit these forms of cell death. I also discuss viral strategies to overcome the deleterious effects of cell death on virus propagation and the consequences of cell death for host physiology.
Collapse
Affiliation(s)
- Pranav Danthi
- Department of Biology, Indiana University, Bloomington, Indiana 47405;
| |
Collapse
|
14
|
Laitinen OH, Svedin E, Kapell S, Nurminen A, Hytönen VP, Flodström-Tullberg M. Enteroviral proteases: structure, host interactions and pathogenicity. Rev Med Virol 2016; 26:251-67. [PMID: 27145174 PMCID: PMC7169145 DOI: 10.1002/rmv.1883] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 03/22/2016] [Accepted: 03/23/2016] [Indexed: 12/22/2022]
Abstract
Enteroviruses are common human pathogens, and infections are particularly frequent in children. Severe infections can lead to a variety of diseases, including poliomyelitis, aseptic meningitis, myocarditis and neonatal sepsis. Enterovirus infections have also been implicated in asthmatic exacerbations and type 1 diabetes. The large disease spectrum of the closely related enteroviruses may be partially, but not fully, explained by differences in tissue tropism. The molecular mechanisms by which enteroviruses cause disease are poorly understood, but there is increasing evidence that the two enteroviral proteases, 2Apro and 3Cpro, are important mediators of pathology. These proteases perform the post‐translational proteolytic processing of the viral polyprotein, but they also cleave several host‐cell proteins in order to promote the production of new virus particles, as well as to evade the cellular antiviral immune responses. Enterovirus‐associated processing of cellular proteins may also contribute to pathology, as elegantly demonstrated by the 2Apro‐mediated cleavage of dystrophin in cardiomyocytes contributing to Coxsackievirus‐induced cardiomyopathy. It is likely that improved tools to identify targets for these proteases will reveal additional host protein substrates that can be linked to specific enterovirus‐associated diseases. Here, we discuss the function of the enteroviral proteases in the virus replication cycle and review the current knowledge regarding how these proteases modulate the infected cell in order to favour virus replication, including ways to avoid detection by the immune system. We also highlight new possibilities for the identification of protease‐specific cellular targets and thereby a way to discover novel mechanisms contributing to disease. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Olli H Laitinen
- BioMediTech, Finland and Fimlab Laboratories, University of Tampere, Tampere, Finland
| | - Emma Svedin
- The Center for Infectious Medicine, Department of Medicine HS, Karolinska Institutet, Stockholm, Sweden
| | - Sebastian Kapell
- The Center for Infectious Medicine, Department of Medicine HS, Karolinska Institutet, Stockholm, Sweden
| | - Anssi Nurminen
- BioMediTech, Finland and Fimlab Laboratories, University of Tampere, Tampere, Finland
| | - Vesa P Hytönen
- BioMediTech, Finland and Fimlab Laboratories, University of Tampere, Tampere, Finland
| | - Malin Flodström-Tullberg
- BioMediTech, Finland and Fimlab Laboratories, University of Tampere, Tampere, Finland.,The Center for Infectious Medicine, Department of Medicine HS, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
15
|
Ho BC, Yang PC, Yu SL. MicroRNA and Pathogenesis of Enterovirus Infection. Viruses 2016; 8:v8010011. [PMID: 26751468 PMCID: PMC4728571 DOI: 10.3390/v8010011] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 12/04/2015] [Accepted: 12/18/2015] [Indexed: 12/15/2022] Open
Abstract
There are no currently available specific antiviral therapies for non-polio Enterovirus infections. Although several vaccines have entered clinical trials, the efficacy requires further evaluation, particularly for cross-strain protective activity. Curing patients with viral infections is a public health problem due to antigen alterations and drug resistance caused by the high genomic mutation rate. To conquer these limits in the development of anti-Enterovirus treatments, a comprehensive understanding of the interactions between Enterovirus and host cells is urgently needed. MicroRNA (miRNA) constitutes the biggest family of gene regulators in mammalian cells and regulates almost a half of all human genes. The roles of miRNAs in Enterovirus pathogenesis have recently begun to be noted. In this review, we shed light on recent advances in the understanding of Enterovirus infection-modulated miRNAs. The impacts of altered host miRNAs on cellular processes, including immune escape, apoptosis, signal transduction, shutdown of host protein synthesis and viral replication, are discussed. Finally, miRNA-based medication provides a promising strategy for the development of antiviral therapy.
Collapse
Affiliation(s)
- Bing-Ching Ho
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, No. 1 Chang-Te Street, Taipei 10048, Taiwan.
- Center of Genomic Medicine, National Taiwan University, Taipei 10048, Taiwan.
| | - Pan-Chyr Yang
- Center of Genomic Medicine, National Taiwan University, Taipei 10048, Taiwan.
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 10048, Taiwan.
- Institute of Biomedical Sciences, Academia Sinica, Taipei 10048, Taiwan.
| | - Sung-Liang Yu
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, No. 1 Chang-Te Street, Taipei 10048, Taiwan.
- Center of Genomic Medicine, National Taiwan University, Taipei 10048, Taiwan.
- Center for Optoelectronic Biomedicine, College of Medicine, National Taiwan University, Taipei 10048, Taiwan.
- Graduate Institute of Pathology, College of Medicine, National Taiwan University, Taipei 10048, Taiwan.
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei 10048, Taiwan.
| |
Collapse
|
16
|
Engineering Enhanced Vaccine Cell Lines To Eradicate Vaccine-Preventable Diseases: the Polio End Game. J Virol 2015; 90:1694-704. [PMID: 26581994 DOI: 10.1128/jvi.01464-15] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 11/13/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Vaccine manufacturing costs prevent a significant portion of the world's population from accessing protection from vaccine-preventable diseases. To enhance vaccine production at reduced costs, a genome-wide RNA interference (RNAi) screen was performed to identify gene knockdown events that enhanced poliovirus replication. Primary screen hits were validated in a Vero vaccine manufacturing cell line using attenuated and wild-type poliovirus strains. Multiple single and dual gene silencing events increased poliovirus titers >20-fold and >50-fold, respectively. Host gene knockdown events did not affect virus antigenicity, and clustered regularly interspaced short palindromic repeat (CRISPR)-Cas9-mediated knockout of the top candidates dramatically improved viral vaccine strain production. Interestingly, silencing of several genes that enhanced poliovirus replication also enhanced replication of enterovirus 71, a clinically relevant virus to which vaccines are being targeted. The discovery that host gene modulation can markedly increase virus vaccine production dramatically alters mammalian cell-based vaccine manufacturing possibilities and should facilitate polio eradication using the inactivated poliovirus vaccine. IMPORTANCE Using a genome-wide RNAi screen, a collection of host virus resistance genes was identified that, upon silencing, increased poliovirus and enterovirus 71 production by from 10-fold to >50-fold in a Vero vaccine manufacturing cell line. This report provides novel insights into enterovirus-host interactions and describes an approach to developing the next generation of vaccine manufacturing through engineered vaccine cell lines. The results show that specific gene silencing and knockout events can enhance viral titers of both attenuated (Sabin strain) and wild-type polioviruses, a finding that should greatly facilitate global implementation of inactivated polio vaccine as well as further reduce costs for live-attenuated oral polio vaccines. This work describes a platform-enabling technology applicable to most vaccine-preventable diseases.
Collapse
|
17
|
Flather D, Semler BL. Picornaviruses and nuclear functions: targeting a cellular compartment distinct from the replication site of a positive-strand RNA virus. Front Microbiol 2015; 6:594. [PMID: 26150805 PMCID: PMC4471892 DOI: 10.3389/fmicb.2015.00594] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 05/29/2015] [Indexed: 11/13/2022] Open
Abstract
The compartmentalization of DNA replication and gene transcription in the nucleus and protein production in the cytoplasm is a defining feature of eukaryotic cells. The nucleus functions to maintain the integrity of the nuclear genome of the cell and to control gene expression based on intracellular and environmental signals received through the cytoplasm. The spatial separation of the major processes that lead to the expression of protein-coding genes establishes the necessity of a transport network to allow biomolecules to translocate between these two regions of the cell. The nucleocytoplasmic transport network is therefore essential for regulating normal cellular functioning. The Picornaviridae virus family is one of many viral families that disrupt the nucleocytoplasmic trafficking of cells to promote viral replication. Picornaviruses contain positive-sense, single-stranded RNA genomes and replicate in the cytoplasm of infected cells. As a result of the limited coding capacity of these viruses, cellular proteins are required by these intracellular parasites for both translation and genomic RNA replication. Being of messenger RNA polarity, a picornavirus genome can immediately be translated upon entering the cell cytoplasm. However, the replication of viral RNA requires the activity of RNA-binding proteins, many of which function in host gene expression, and are consequently localized to the nucleus. As a result, picornaviruses disrupt nucleocytoplasmic trafficking to exploit protein functions normally localized to a different cellular compartment from which they translate their genome to facilitate efficient replication. Furthermore, picornavirus proteins are also known to enter the nucleus of infected cells to limit host-cell transcription and down-regulate innate antiviral responses. The interactions of picornavirus proteins and host-cell nuclei are extensive, required for a productive infection, and are the focus of this review.
Collapse
Affiliation(s)
- Dylan Flather
- Department of Microbiology and Molecular Genetics, Center for Virus Research, School of Medicine, University of California, Irvine Irvine, CA, USA
| | - Bert L Semler
- Department of Microbiology and Molecular Genetics, Center for Virus Research, School of Medicine, University of California, Irvine Irvine, CA, USA
| |
Collapse
|
18
|
How do viruses control mitochondria-mediated apoptosis? Virus Res 2015; 209:45-55. [PMID: 25736565 PMCID: PMC7114537 DOI: 10.1016/j.virusres.2015.02.026] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 02/20/2015] [Accepted: 02/23/2015] [Indexed: 12/16/2022]
Abstract
There is no doubt that viruses require cells to successfully reproduce and effectively infect the next host. The question is what is the fate of the infected cells? All eukaryotic cells can "sense" viral infections and exhibit defence strategies to oppose viral replication and spread. This often leads to the elimination of the infected cells by programmed cell death or apoptosis. This "sacrifice" of infected cells represents the most primordial response of multicellular organisms to viruses. Subverting host cell apoptosis, at least for some time, is therefore a crucial strategy of viruses to ensure their replication, the production of essential viral proteins, virus assembly and the spreading to new hosts. For that reason many viruses harbor apoptosis inhibitory genes, which once inside infected cells are expressed to circumvent apoptosis induction during the virus reproduction phase. On the other hand, viruses can take advantage of stimulating apoptosis to (i) facilitate shedding and hence dissemination, (ii) to prevent infected cells from presenting viral antigens to the immune system or (iii) to kill non-infected bystander and immune cells which would limit viral propagation. Hence the decision whether an infected host cell undergoes apoptosis or not depends on virus type and pathogenicity, its capacity to oppose antiviral responses of the infected cells and/or to evade any attack from immune cells. Viral genomes have therefore been adapted throughout evolution to satisfy the need of a particular virus to induce or inhibit apoptosis during its life cycle. Here we review the different strategies used by viruses to interfere with the two major apoptosis as well as with the innate immune signaling pathways in mammalian cells. We will focus on the intrinsic mitochondrial pathway and discuss new ideas about how particular viruses could activately engage mitochondria to induce apoptosis of their host.
Collapse
|
19
|
Shubin AV, Lunina NA, Shedova EN, Roshina MP, Demidyuk IV, Vinogradova TV, Kopantsev EP, Chernov IP, Kostrov SV. Evaluation of the toxic effects evoked by the transient expression of protease genes from human pathogens in HEK293 cells. APPL BIOCHEM MICRO+ 2013. [DOI: 10.1134/s0003683813090044] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
20
|
Li X, Liu Y, Hou X, Peng H, Zhang L, Jiang Q, Shi M, Ji Y, Wang Y, Shi W. Chlorogenic acid inhibits the replication and viability of enterovirus 71 in vitro. PLoS One 2013; 8:e76007. [PMID: 24098754 PMCID: PMC3786884 DOI: 10.1371/journal.pone.0076007] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 08/16/2013] [Indexed: 12/17/2022] Open
Abstract
Enterovirus 71 (EV71) is an etiology for a number of diseases in humans. Traditional Chinese herbs have been reported to be effective for treating EV71 infection. However, there is no report about the antiviral effects of CHA against EV71. In this study, plaque reduction assay demonstrated that the inhibitory concentration 50% (IC50) of CHA on EV71 replication is 6.3 µg/ml. When both CHA (20 µg/ml) and EV71 were added, or added post-infection at different time points, CHA was able to effectively inhibit EV71 replication between 0 and 10 h. In addition, CHA inhibited EV71 2A transcription and translation in EV71-infected RD cells, but did not affect VP1, 3C, and 3D expression. Furthermore, CHA inhibited secretions of IL-6, TNF-α, IFN-γ and MCP-1 in EV71-infected RD cells. Altogether, these results revealed that CHA may have antiviral properties for treating EV71 infection.
Collapse
Affiliation(s)
- Xiang Li
- Department of Clinical Laboratory, The Third Affiliated Hospital of Suzhou University, Changzhou, Jiangsu, China
| | - Yuanyuan Liu
- Department of Endocrinology, The the Huai-an First Affliated Hospital of Nanjing Medical University, Huaian, Jiangsu, China
| | - Xueling Hou
- Department of Clinical Laboratory, The Third Affiliated Hospital of Suzhou University, Changzhou, Jiangsu, China
| | - Hongjun Peng
- Department of Clinical Laboratory, The Third Affiliated Hospital of Suzhou University, Changzhou, Jiangsu, China
| | - Li Zhang
- Department of Clinical Laboratory, The Third Affiliated Hospital of Suzhou University, Changzhou, Jiangsu, China
| | - Qingbo Jiang
- Department of Clinical Laboratory, The Third Affiliated Hospital of Suzhou University, Changzhou, Jiangsu, China
| | - Mei Shi
- Department of Clinical Laboratory, The Third Affiliated Hospital of Suzhou University, Changzhou, Jiangsu, China
| | - Yun Ji
- Department of Clinical Laboratory, The Third Affiliated Hospital of Suzhou University, Changzhou, Jiangsu, China
| | - Yuyue Wang
- Department of Clinical Laboratory, The Third Affiliated Hospital of Suzhou University, Changzhou, Jiangsu, China
| | - Weifeng Shi
- Department of Clinical Laboratory, The Third Affiliated Hospital of Suzhou University, Changzhou, Jiangsu, China
- * E-mail:
| |
Collapse
|
21
|
Buskiewicz IA, Koenig A, Huber SA, Budd RC. Caspase-8 and FLIP regulate RIG-I/MDA5-induced innate immune host responses to picornaviruses. Future Virol 2012; 7:1221-1236. [PMID: 23503762 DOI: 10.2217/fvl.12.115] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Picornaviruses are small, nonenveloped, positive-stranded RNA viruses, which cause a wide range of animal and human diseases, based on their distinct tissue and cell type tropisms. Myocarditis, poliomyelitis, hepatitis and the common cold are the most significant human illnesses caused by picornaviruses. The host response to picornaviruses is complex, and the damage to tissues occurs not only from direct viral replication within infected cells. Picornaviruses exhibit an exceptional ability to evade the early innate immune response, resulting in chronic infection and autoimmunity. This review discusses the detailed aspects of the early innate host response to picornaviruses infection mediated by RIG-I-like helicases, their adaptor, mitochondrial ant iviral signaling protein, innate immune-induced apoptosis, and the role of caspase-8 and its regulatory paralog, FLIP, in these processes.
Collapse
Affiliation(s)
- Iwona A Buskiewicz
- Department of Pathology, Vermont Center for Immunology & Infectious Diseases, University of Vermont, Burlington, VT 05405, USA
| | | | | | | |
Collapse
|
22
|
Dotzauer A, Kraemer L. Innate and adaptive immune responses against picornaviruses and their counteractions: An overview. World J Virol 2012; 1:91-107. [PMID: 24175214 PMCID: PMC3782268 DOI: 10.5501/wjv.v1.i3.91] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Revised: 02/22/2012] [Accepted: 05/20/2012] [Indexed: 02/05/2023] Open
Abstract
Picornaviruses, small positive-stranded RNA viruses, cause a wide range of diseases which is based on their differential tissue and cell type tropisms. This diversity is reflected by the immune responses, both innate and adaptive, induced after infection, and the subsequent interactions of the viruses with the immune system. The defense mechanisms of the host and the countermeasures of the virus significantly contribute to the pathogenesis of the infections. Important human pathogens are poliovirus, coxsackievirus, human rhinovirus and hepatitis A virus. These viruses are the best-studied members of the family, and in this review we want to present the major aspects of the reciprocal effects between the immune system and these viruses.
Collapse
Affiliation(s)
- Andreas Dotzauer
- Andreas Dotzauer, Leena Kraemer, Department of Virology, University of Bremen, 28359 Bremen, Germany
| | | |
Collapse
|
23
|
Jiang H, Schwertz H, Schmid DI, Jones BB, Kriesel J, Martinez ML, Weyrich AS, Zimmerman GA, Kraiss LW. Different mechanisms preserve translation of programmed cell death 8 and JunB in virus-infected endothelial cells. Arterioscler Thromb Vasc Biol 2012; 32:997-1004. [PMID: 22328780 DOI: 10.1161/atvbaha.112.245324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
OBJECTIVE Translation initiation of eukaryotic mRNAs typically occurs by cap-dependent ribosome scanning mechanism. However, certain mRNAs are translated by ribosome assembly at internal ribosome entry sites (IRESs). Whether IRES-mediated translation occurs in stressed primary human endothelial cells (ECs) is unknown. METHODS AND RESULTS We performed microarray analysis of polyribosomal mRNA from ECs to identify IRES-containing mRNAs. Cap-dependent translation was disabled by poliovirus (PV) infection and confirmed by loss of polysome peaks, detection of eukaryotic initiation factor (eIF) 4G cleavage, and decreased protein synthesis. We found that 87.4% of mRNAs were dissociated from polysomes in virus-infected ECs. Twelve percent of mRNAs remained associated with polysomes, and 0.6% were enriched ≥2-fold in polysome fractions from infected ECs. Quantitative reverse transcription-polymerase chain reaction confirmed the microarray findings for 31 selected mRNAs. We found that enriched polysome associations of programmed cell death 8 (PDCD8) and JunB mRNA resulted in increased protein expression in PV-infected ECs. The presence of IRESs in the 5' untranslated region of PDCD8 mRNA, but not of JunB mRNA, was confirmed by dicistronic analysis. CONCLUSIONS We show that microarray profiling of polyribosomal mRNA transcripts from PV-infected ECs successfully identifies mRNAs whose translation is preserved in the face of stress-induced, near complete cessation of cap-dependent initiation. Nevertheless, internal ribosome entry is not the only mechanism responsible for this privileged translation.
Collapse
Affiliation(s)
- Huimiao Jiang
- Division of Vascular Surgery, University of Utah, Salt Lake City, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Yun SH, Lee WG, Kim YC, Ju ES, Lim BK, Choi JO, Kim DK, Jeon ES. Antiviral activity of coxsackievirus B3 3C protease inhibitor in experimental murine myocarditis. J Infect Dis 2012; 205:491-7. [PMID: 22207647 DOI: 10.1093/infdis/jir745] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
BACKGROUND We investigated the efficacy of a 3C protease inhibitor (3CPI) in a murine coxsackievirus B3 (CVB3) myocarditis model. CVB3 is a primary cause of viral myocarditis. The CVB3 genome encodes a single polyprotein that undergoes a series of proteolytic events to produce several viral proteins. Most of this proteolysis is catalyzed by the 3C protease (3CP). METHODS AND RESULTS By way of a micro-osmotic pump, each mouse received 50 mM 3CPI in 100 μL of 100% dimethyl sulfoxide (DMSO) during a 72-hour period. On the day of pump implantation, mice (n = 40) were infected intraperitoneally with 10(6) plaque-forming units of CVB3. For the infected controls (n = 50), the pump was filled with 100% DMSO without 3CPI. The 3-week survival rate of 3CPI-treated mice was significantly higher than that of controls (90% vs 22%; P < .01). Myocardial inflammation, viral titers, and viral RNA levels were also reduced significantly in the 3CPI-treated group compared with these measures in the controls. CONCLUSIONS The protein-based drug 3CPI inhibited the activity of 3CP of CVB3, significantly inhibited viral proliferation, and attenuated myocardial inflammations, subsequent fibrosis, and CVB3-induced mortality in vivo. Thus, this CVB3 3CPI has the potential to be a novel therapeutic agent for the treatment of acute viral myocarditis during the viremic phase.
Collapse
Affiliation(s)
- Soo-Hyeon Yun
- Division of Cardiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Goetz C, Dobrikova E, Shveygert M, Dobrikov M, Gromeier M. Oncolytic poliovirus against malignant glioma. Future Virol 2011; 6:1045-1058. [PMID: 21984883 DOI: 10.2217/fvl.11.76] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In cancerous cells, physiologically tight regulation of protein synthesis is lost, contributing to uncontrolled growth and proliferation. We describe a novel experimental cancer therapy approach based on genetically recombinant poliovirus that targets an intriguing aberration of translation control in malignancy. This strategy is based on the confluence of several factors enabling specific and efficacious cancer cell targeting. Poliovirus naturally targets the vast majority of ectodermal/neuroectodermal cancers expressing its cellular receptor. Evidence from glioblastoma patients suggests that the poliovirus receptor is ectopically upregulated on tumor cells and may be associated with stem cell-like cancer cell populations and proliferating tumor vasculature. We exploit poliovirus' reliance on an unorthodox mechanism of protein synthesis initiation to selectively drive viral translation, propagation and cytotoxicity in glioblastoma. PVSRIPO, a prototype nonpathogenic poliovirus recombinant, is scheduled to enter clinical investigation against glioblastoma.
Collapse
Affiliation(s)
- Christian Goetz
- Division of Neurosurgery, Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | |
Collapse
|
26
|
Ho BC, Yu SL, Chen JJW, Chang SY, Yan BS, Hong QS, Singh S, Kao CL, Chen HY, Su KY, Li KC, Cheng CL, Cheng HW, Lee JY, Lee CN, Yang PC. Enterovirus-induced miR-141 contributes to shutoff of host protein translation by targeting the translation initiation factor eIF4E. Cell Host Microbe 2011; 9:58-69. [PMID: 21238947 DOI: 10.1016/j.chom.2010.12.001] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Revised: 10/11/2010] [Accepted: 11/22/2010] [Indexed: 01/06/2023]
Abstract
Viruses rely on the host translation machinery to complete their life cycles. Picornaviruses use an internal ribosome entry site to initiate cap-independent protein translation and in parallel host cap-dependent translation is shut off. This process is thought to occur primarily via cleavage of host translation initiation factors eIF4GI and eIF4GII by viral proteases. Here we describe another mechanism whereby miR-141 induced upon enterovirus infection targets the cap-dependent translation initiation factor, eIF4E, for shutoff of host protein synthesis. Knockdown of miR-141 reduces viral propagation, and silencing of eIF4E can completely reverse the inhibitory effect of the miR-141 antagomiR on viral propagation. Ectopic expression of miR-141 promotes the switch from cap-dependent to cap-independent translation. Moreover, we identified a transcription factor, EGR1, which is partly responsible for miR-141 induction in response to enterovirus infection. Our results suggest that upregulation of miR-141 upon enterovirus infection can facilitate viral propagation by expediting the translational switch.
Collapse
Affiliation(s)
- Bing-Ching Ho
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
The multifaceted poliovirus 2A protease: regulation of gene expression by picornavirus proteases. J Biomed Biotechnol 2011; 2011:369648. [PMID: 21541224 PMCID: PMC3085340 DOI: 10.1155/2011/369648] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Revised: 01/18/2011] [Accepted: 02/17/2011] [Indexed: 11/17/2022] Open
Abstract
After entry into animal cells, most viruses hijack essential components involved in gene expression. This is the case of poliovirus, which abrogates cellular translation soon after virus internalization. Abrogation is achieved by cleavage of both eIF4GI and eIF4GII by the viral protease 2A. Apart from the interference of poliovirus with cellular protein synthesis, other gene expression steps such as RNA and protein trafficking between nucleus and cytoplasm are also altered. Poliovirus 2Apro is capable of hydrolyzing components of the nuclear pore, thus preventing an efficient antiviral response by the host cell. Here, we compare in detail poliovirus 2Apro with other viral proteins (from picornaviruses and unrelated families) as regard to their activity on key host factors that control gene expression. It is possible that future analyses to determine the cellular proteins targeted by 2Apro will uncover other cellular functions ablated by poliovirus infection. Further understanding of the cellular proteins hydrolyzed by 2Apro will add further insight into the molecular mechanism by which poliovirus and other viruses interact with the host cell.
Collapse
|
28
|
Enter the kill zone: initiation of death signaling during virus entry. Virology 2011; 411:316-24. [PMID: 21262519 PMCID: PMC7126532 DOI: 10.1016/j.virol.2010.12.043] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Revised: 12/14/2010] [Accepted: 12/22/2010] [Indexed: 12/28/2022]
Abstract
Infection of host cells by a variety of viruses results in programmed cell death or apoptosis. In many cases, early events in virus replication that occur prior to synthesis of viral proteins and replication of viral genomes directly or indirectly activate signaling pathways that culminate in cell death. Using examples of viruses for which prodeath signaling is better defined, this review will describe how cell entry steps including virus attachment to receptors, virus uncoating in endosomes, and events that occur following membrane penetration lead to apoptosis. The relevance and physiologic consequences of early induction of prodeath signaling to viral pathogenesis also will be discussed.
Collapse
|
29
|
Tian W, Cui Z, Zhang Z, Wei H, Zhang X. Poliovirus 2A(pro) induces the nucleic translocation of poliovirus 3CD and 3C' proteins. Acta Biochim Biophys Sin (Shanghai) 2011; 43:38-44. [PMID: 21173057 DOI: 10.1093/abbs/gmq112] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Poliovirus genomic RNA replication, protein translation, and virion assembly are performed in the cytoplasm of host cells. However, this does not mean that there is no relationship between poliovirus infection and the cellular nucleus. In this study, recombinant fluorescence-tagged poliovirus 3CD and 3C' proteins were shown to be expressed mainly in the cytoplasm of Vero cells in the absence of other viral proteins. However, upon poliovirus infection, many of these proteins redistributed to the nucleus, as well as to the cytoplasm. A series of transfection experiments revealed that the poliovirus 2A(pro) was responsible for the same redistribution of 3CD and 3C' proteins to the nucleus. Furthermore, a mutant 2A(pro) protein lacking protease activity abrogated this effect. The poliovirus 2A(pro) protein was also found to co-localize with the Nup153 protein, a component of the nuclear pore complexes on the nuclear envelope. These data provide further evidence that there are intrinsic interactions between poliovirus proteins and the cell nucleus, despite that many processes in the poliovirus replication cycle occur in the cytoplasm.
Collapse
Affiliation(s)
- Wenwu Tian
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, China
| | | | | | | | | |
Collapse
|
30
|
Abstract
Viral reproduction involves not only replication but also interactions with host defences. Although various viral proteins can take part in counteracting innate and adaptive immunity, many viruses possess a subset of proteins that are specifically dedicated to counter-defensive activities. These proteins are sometimes referred to as 'virulence factors', but here we argue that the term 'security proteins' is preferable, for several reasons. The concept of security proteins of RNA-containing viruses can be considered using the leader (L and L*) and 2A proteins of picornaviruses as examples. The picornaviruses are a large group of human and animal viruses that include important pathogens such as poliovirus, hepatitis A virus and foot-and-mouth disease virus. The genomes of different picornaviruses have a similar organization, in which the genes for L and 2A occupy fixed positions upstream and downstream of the capsid genes, respectively. Both L and 2A are extremely heterogeneous with respect to size, sequence and biochemical properties. The similarly named proteins can be completely unrelated to each other in different viral genera, and the variation can be striking even among members of the same genus. A subset of picornaviruses lacks L altogether. The properties and functions of L and 2A of many picornaviruses are unknown, but in those viruses that have been investigated sufficiently it has been found that these proteins can switch off various aspects of host macromolecular synthesis and specifically suppress mechanisms involved in innate immunity. Thus, notwithstanding their unrelatedness, the security proteins carry out similar biological functions. It is proposed that other picornavirus L and 2A proteins that have not yet been investigated should also be primarily involved in security activities. The L, L* and 2A proteins are dispensable for viral reproduction, but their elimination or inactivation usually renders the viruses less pathogenic. The phenotypic changes associated with inactivation of security proteins are much less pronounced in cells or organisms that have innate immunity deficiencies. In several examples, the decreased fitness of a virus in which a security protein has been inactivated could be rescued by the experimental introduction of an unrelated security protein. It can be argued that L and 2A were acquired by different picornaviruses independently, and possibly by exploiting different mechanisms, late in the evolution of this viral family. It is proposed that the concept of security proteins is of general relevance and can be applied to viruses other than picornaviruses. The hallmarks of security proteins are: structural and biochemical unrelatedness in related viruses or even absence in some of them; dispensability of the entire protein or its functional domains for viral viability; and, for mutated versions of the proteins, fewer detrimental effects on viral reproduction in immune-compromised hosts than in immune-competent hosts.
Viral security proteins are structurally and biochemically unrelated proteins that function to counteract host defences. Here, Agol and Gmyl consider the impact of the picornavirus security proteins on viral reproduction, pathogenicity and evolution. Interactions with host defences are key aspects of viral infection. Various viral proteins perform counter-defensive functions, but a distinct class, called security proteins, is dedicated specifically to counteracting host defences. Here, the properties of the picornavirus security proteins L and 2A are discussed. These proteins have well-defined positions in the viral polyprotein, flanking the capsid precursor, but they are structurally and biochemically unrelated. Here, we consider the impact of these two proteins, as well as that of a third security protein, L*, on viral reproduction, pathogenicity and evolution. The concept of security proteins could serve as a paradigm for the dedicated counter-defensive proteins of other viruses.
Collapse
Affiliation(s)
- Vadim I Agol
- M. P. Chumakov Institute of Poliomyelitis and Viral Encephalitides, Russian Academy of Medical Sciences, Moscow 142782, Russia.
| | | |
Collapse
|
31
|
Yang CH, Li HC, Jiang JG, Hsu CF, Wang YJ, Lai MJ, Juang YL, Lo SY. Enterovirus type 71 2A protease functions as a transcriptional activator in yeast. J Biomed Sci 2010; 17:65. [PMID: 20682079 PMCID: PMC2923119 DOI: 10.1186/1423-0127-17-65] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Accepted: 08/04/2010] [Indexed: 12/01/2022] Open
Abstract
Enterovirus type 71 (EV71) 2A protease exhibited strong transcriptional activity in yeast cells. The transcriptional activity of 2A protease was independent of its protease activity. EV71 2A protease retained its transcriptional activity after truncation of 40 amino acids at the N-terminus but lost this activity after truncation of 60 amino acids at the N-terminus or deletion of 20 amino acids at the C-terminus. Thus, the acidic domain at the C-terminus of this protein is essential for its transcriptional activity. Indeed, deletion of amino acids from 146 to 149 (EAME) in this acidic domain lost the transcriptional activity of EV71 2A protein though still retained its protease activity. EV71 2A protease was detected both in the cytoplasm and nucleus using confocal microscopy analysis. Coxsackie virus B3 2A protease also exhibited transcriptional activity in yeast cells. As expected, an acidic domain in the C-terminus of Coxsackie virus B3 2A protease was also identified. Truncation of this acidic domain resulted in the loss of transcriptional activity. Interestingly, this acidic region of poliovirus 2A protease is critical for viral RNA replication. The transcriptional activity of the EV71 or Coxsackie virus B3 2A protease should play a role in viral replication and/or pathogenesis.
Collapse
Affiliation(s)
- Chee-Hing Yang
- Department of Laboratory Medicine and Biotechnology, Tzu Chi University, Hualien, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
32
|
A single coxsackievirus B2 capsid residue controls cytolysis and apoptosis in rhabdomyosarcoma cells. J Virol 2010; 84:5868-79. [PMID: 20375176 DOI: 10.1128/jvi.02383-09] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Coxsackievirus B2 (CVB2), one of six human pathogens of the group B coxsackieviruses within the enterovirus genus of Picornaviridae, causes a wide spectrum of human diseases ranging from mild upper respiratory illnesses to myocarditis and meningitis. The CVB2 prototype strain Ohio-1 (CVB2O) was originally isolated from a patient with summer grippe in the 1950s. Later on, CVB2O was adapted to cytolytic replication in rhabdomyosarcoma (RD) cells. Here, we present analyses of the correlation between the adaptive mutations of this RD variant and the cytolytic infection in RD cells. Using reverse genetics, we identified a single amino acid change within the exposed region of the VP1 protein (glutamine to lysine at position 164) as the determinant for the acquired cytolytic trait. Moreover, this cytolytic virus induced apoptosis, including caspase activation and DNA degradation, in RD cells. These findings contribute to our understanding of the host cell adaptation process of CVB2O and provide a valuable tool for further studies of virus-host interactions.
Collapse
|
33
|
Targeting enteroviral 2A protease by a 16-mer synthetic peptide: Inhibition of 2Apro-induced apoptosis in a stable Tet-on HeLa cell line. Virology 2010; 399:39-45. [DOI: 10.1016/j.virol.2009.12.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2009] [Revised: 10/16/2009] [Accepted: 12/15/2009] [Indexed: 11/24/2022]
|
34
|
Hsu YY, Liu YN, Lu WW, Kung SH. Visualizing and quantifying the differential cleavages of the eukaryotic translation initiation factors eIF4GI and eIF4GII in the enterovirus-infected cell. Biotechnol Bioeng 2009; 104:1142-52. [PMID: 19655339 DOI: 10.1002/bit.22495] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Enterovirus (EV) infection has been shown to cause a marked shutoff of host protein synthesis, an event mainly achieved through the cleavages of eukaryotic translation initiation factors eIF4GI and eIF4GII that are mediated by viral 2A protease (2A(pro)). Using fluorescence resonance energy transfer (FRET), we developed genetically encoded and FRET-based biosensors to visualize and quantify the specific proteolytic process in intact cells. This was accomplished by stable expression of a fusion substrate construct composed of the green fluorescent protein 2 (GFP(2)) and red fluorescent protein 2 (DsRed2), with a cleavage motif on eIF4GI or eIF4GII connected in between. The FRET biosensor showed a real-time and quantifiable impairment of FRET upon EV infection. Levels of the reduced FRET closely correlated with the cleavage kinetics of the endogenous eIF4Gs isoforms. The FRET impairments were solely attributed to 2A(pro) catalytic activity, irrespective of other viral-encoded protease, the activated caspases or general inhibition of protein synthesis in the EV-infected cells. The FRET biosensors appeared to be a universal platform for several related EVs. The spatiotemporal and quantitative imaging enabled by FRET can shed light on the protease-substrate behaviors in their normal milieu, permitting investigation into the molecular mechanism underlying virus-induced host translation inhibition.
Collapse
Affiliation(s)
- Yueh-Ying Hsu
- Department of Biotechnology, National Yang-Ming University, Taipei, Taiwan, R.O.C
| | | | | | | |
Collapse
|
35
|
Bypass suppression of small-plaque phenotypes by a mutation in poliovirus 2A that enhances apoptosis. J Virol 2009; 83:10129-39. [PMID: 19625405 DOI: 10.1128/jvi.00642-09] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The rate of protein secretion in host cells is inhibited during infection with several different picornaviruses, with consequences likely to have significant effects on viral growth, spread, and pathogenesis. This Sin(+) (secretion inhibition) phenotype has been documented for poliovirus, foot-and-mouth disease virus, and coxsackievirus B3 and can lead to reduced cell surface expression of major histocompatibility complex class I and tumor necrosis factor receptor as well as reduced extracellular secretion of induced cytokines such as interleukin-6 (IL-6), IL-8, and beta interferon. The inhibition of protein secretion is global, affecting the movement of all tested cargo proteins through the cellular secretion apparatus. To test the physiological significance of the Sin(-) and Sin(+) phenotypes in animal models, Sin(-) mutant viruses are needed that fail to inhibit host protein secretion and also exhibit robust growth properties. To identify such Sin(-) mutant polioviruses, we devised a fluorescence-activated cell sorter-based screen to select virus-infected cells that nevertheless expressed newly synthesized surface proteins. After multiple rounds of selection, candidate Sin(-) mutant viruses were screened for genetic stability, increased secretion of cargo molecules and wild-type translation and growth properties. A newly identified Sin(-) mutant poliovirus that contained coding changes in nonstructural proteins 2A (N32D) and 2C (E253G) was characterized. In this virus, the 2C mutation is responsible for the Sin(-) phenotype and the 2A mutation suppresses a resulting growth defect by increasing the rate of cell death and therefore the rate of viral spread. The 2A-N32D suppressor mutation was not allele specific and, by increasing the rate of cellular apoptosis, affected a completely different pathway than the 2C-E253G Sin(-) mutation. Therefore, the 2A mutation suppresses the 2C-E253G mutant phenotype by a bypass suppression mechanism.
Collapse
|
36
|
Identification of amino acid residues of Ljungan virus VP0 and VP1 associated with cytolytic replication in cultured cells. Arch Virol 2009; 154:1271-84. [DOI: 10.1007/s00705-009-0417-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2008] [Accepted: 05/29/2009] [Indexed: 12/18/2022]
|
37
|
Antiapoptotic activity of the cardiovirus leader protein, a viral "security" protein. J Virol 2009; 83:7273-84. [PMID: 19420082 DOI: 10.1128/jvi.00467-09] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Apoptosis is a common antiviral defensive mechanism that potentially limits viral reproduction and spread. Many viruses possess apoptosis-suppressing tools. Here, we show that the productive infection of HeLa cells with encephalomyocarditis virus (a cardiovirus) was not accompanied by full-fledged apoptosis (although the activation of caspases was detected late in infection) but rather elicited a strong antiapoptotic state, as evidenced by the resistance of infected cells to viral and nonviral apoptosis inducers. The development of the antiapoptotic state appeared to depend on a function(s) of the viral leader (L) protein, since its mutational inactivation resulted in the efflux of cytochrome c from mitochondria, the early activation of caspases, and the appearance of morphological and biochemical signs of apoptosis in a significant proportion of infected cells. Infection with both wild-type and L-deficient viruses induced the fragmentation of mitochondria, which in the former case was not accompanied with cytochrome c efflux. Although the exact nature of the antiapoptotic function(s) of cardioviruses remains obscure, our results suggested that it includes previously undescribed mechanisms operating upstream and possibly downstream of the mitochondrial level, and that L is involved in the control of these mechanisms. We propose that cardiovirus L belongs to a class of viral proteins, dubbed here security proteins, whose roles consist solely, or largely, in counteracting host antidefenses. Unrelated L proteins of other picornaviruses as well as their highly variable 2A proteins also may be security proteins. These proteins appear to be independent acquisitions in the evolution of picornaviruses, implying multiple cases of functional (though not structural) convergence.
Collapse
|
38
|
Theiler's murine encephalomyelitis virus leader protein is the only nonstructural protein tested that induces apoptosis when transfected into mammalian cells. J Virol 2009; 83:6546-53. [PMID: 19403676 DOI: 10.1128/jvi.00353-09] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Theiler's murine encephalomyelitis virus (TMEV) induces two distinct cell death programs, necrosis and apoptosis. The apoptotic pathway is of particular interest because TMEV persists in the central nervous system of mice, largely in infiltrating macrophages, which undergo apoptosis. Infection of murine macrophages in culture induces apoptosis that is Bax dependent through the intrinsic or mitochondrial pathway, restricting infectious-virus yields and raising the possibility that apoptosis represents a mechanism to attenuate TMEV yet promote macrophage-to-macrophage spread during persistent infection. To help define the cellular stressors and upstream signaling events leading to apoptosis during TMEV infection, we screened baby hamster kidney (BHK-21) cells transfected to express individual nonstructural genes (except 3B) of the low-neurovirulence BeAn virus strain for cell death. Only expression of the leader protein led to apoptosis, as assessed by fluorescence-activated cell sorting analysis of propidium iodide- and annexin V-stained transfected cells, immunoblot analysis of poly(ADP-ribose) polymerase and caspase cleavages, electron microscopy, and inhibition of apoptosis by the pancaspase inhibitor qVD-OPh. After transfection, Bak and not Bax expression increased, suggesting that the apical pathway leading to activation of these Bcl-2 multi-BH-domain proapoptotic proteins differs in BeAn virus infection versus L transfection. Mutation to remove the CHCC Zn finger motif from L, a motif required by L to mediate inhibition of nucleocytoplasmic trafficking, significantly reduced L-protein-induced apoptosis in both BHK-21 and M1-D macrophages.
Collapse
|
39
|
The Polycomb protein and E3 ubiquitin ligase Ring1B harbors an IRES in its highly conserved 5' UTR. PLoS One 2008; 3:e2322. [PMID: 18523580 PMCID: PMC2386971 DOI: 10.1371/journal.pone.0002322] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2007] [Accepted: 04/17/2008] [Indexed: 11/25/2022] Open
Abstract
Ring1B is an essential member of the highly conserved Polycomb group proteins, which orchestrate developmental processes, cell growth and stem cell fate by modifying local chromatin structure. Ring1B was found to be the E3 ligase that monoubiquitinates histone H2A, which adds a new level of chromatin modification to Polycomb group proteins. Here we report that Ring1B belongs to the exclusive group of proteins that for their translation depend on a stable 5′ UTR sequence in their mRNA known as an Internal Ribosome Entry Site (IRES). In cell transfection assays the Ring1B IRES confers significantly higher expression levels of Ring1B than a Ring1B cDNA without the IRES. Also, dual luciferase assays show strong activity of the Ring1B IRES. Although our findings indicate Ring1B can be translated under conditions where cap-dependent translation is impaired, we found the Ring1B IRES to be cap-dependent. This raises the possibility that translational control of Ring1B is a multi-layered process and that translation of Ring1B needs to be maintained under varying conditions, which is in line with its essential role as an E3 ligase for monoubiquitination of histone H2A in the PRC1 Polycomb protein complex.
Collapse
|
40
|
Early phosphatidylinositol 3-kinase/Akt pathway activation limits poliovirus-induced JNK-mediated cell death. J Virol 2008; 82:3796-802. [PMID: 18216097 DOI: 10.1128/jvi.02020-07] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Poliovirus (PV)-induced apoptosis seems to play a major role in tissue injury in the central nervous system (CNS). We have previously shown that this process involves PV-induced Bax-dependent mitochondrial dysfunction mediated by early JNK activation in IMR5 neuroblastoma cells. We showed here that PV simultaneously activates the phosphatidylinositol 3-kinase (PI3K)/Akt survival signaling pathway in these cells, limiting the extent of JNK activation and thereby cell death. JNK inhibition is associated with PI3K-dependent negative regulation of the apoptosis signal-regulating kinase 1, which acts upstream from JNK in PV-infected IMR5 cells. In poliomyelitis, this survival pathway may limit the spread of PV-induced damage in the CNS.
Collapse
|
41
|
Nishimura K, Sakuma A, Yamashita T, Hirokawa G, Imataka H, Kashiwagi K, Igarashi K. Minor contribution of an internal ribosome entry site in the 5'-UTR of ornithine decarboxylase mRNA on its translation. Biochem Biophys Res Commun 2007; 364:124-30. [PMID: 17927956 DOI: 10.1016/j.bbrc.2007.09.112] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2007] [Accepted: 09/26/2007] [Indexed: 10/22/2022]
Abstract
The mechanism of synthesis of ornithine decarboxylase (ODC) at the level of translation was studied using cell culture and cell-free systems. Synthesis of firefly luciferase (Fluc) from the second open reading frame (ORF) in a bicistronic construct transfected into FM3A and HeLa cells was enhanced by the presence of the 5'-untranslated region (5'-UTR) of ODC mRNA between the two ORFs. However, cotransfection of the gene encoding 2A protease inhibited the synthesis of Fluc. Synthesis of Fluc from the second cistron in the bicistronic mRNA in a cell-free system was not affected significantly by the 5'-UTR of ODC mRNA. Synthesis of ODC from ODC mRNA in a cell-free system was inhibited by 2A protease and cap analogue (m7GpppG). Rapamycin inhibited ODC synthesis by 40-50% at both the G1/S boundary and the G2/M phase. These results indicate that an IRES in the 5'-UTR of ODC mRNA does not function effectively.
Collapse
Affiliation(s)
- Kazuhiro Nishimura
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | | | | | | | | | | | | |
Collapse
|
42
|
Yin J, Liu Y, Wimmer E, Paul AV. Complete protein linkage map between the P2 and P3 non-structural proteins of poliovirus. J Gen Virol 2007; 88:2259-2267. [PMID: 17622630 DOI: 10.1099/vir.0.82795-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
All of the non-structural proteins of poliovirus, including their processing precursors, are involved in the replication of the viral RNA genome. These proteins assemble into a replication complex, which also contains the viral RNA and cellular factors. An understanding of how these viral proteins interact with each other would enhance our understanding of the molecular events occurring during poliovirus infection of the cell. Previously, we have employed the yeast two-hybrid system to construct two separate linkage maps for the polioviral P2 and P3 proteins, respectively. In the present study, we have searched for interacting pairs between the P2 and P3 proteins in a similar inducible yeast two-hybrid system. Although, the primary functions of the proteolytic products of the P2 and P3 domains of the polyprotein in the viral life cycle are different, we observed significant interactions between 2C(ATPase) and 3AB; 2A(pro) and 3A, 3C(pro) or 3D(pol); 2B and 3A or 3AB. All of the interactions were measured in the yeast two-hybrid system by exchanging the interacting pairs on the transcription-activation and DNA-binding constructs. In vitro GST pull-down assay suggested that the 2C(ATPase)/3AB interaction involves both ionic and hydrophobic contacts between the two proteins. The possible biological implication of the interactions observed in the yeast two-hybrid system will be discussed.
Collapse
Affiliation(s)
- Jiang Yin
- Department of Molecular Genetics and Microbiology, School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | - Ying Liu
- Department of Molecular Genetics and Microbiology, School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | - Eckard Wimmer
- Department of Molecular Genetics and Microbiology, School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | - Aniko V Paul
- Department of Molecular Genetics and Microbiology, School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
43
|
Autret A, Martin-Latil S, Mousson L, Wirotius A, Petit F, Arnoult D, Colbère-Garapin F, Estaquier J, Blondel B. Poliovirus induces Bax-dependent cell death mediated by c-Jun NH2-terminal kinase. J Virol 2007; 81:7504-16. [PMID: 17494073 PMCID: PMC1933371 DOI: 10.1128/jvi.02690-06] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Poliovirus (PV) is the causal agent of paralytic poliomyelitis, a disease that involves the destruction of motor neurons associated with PV replication. In PV-infected mice, motor neurons die through an apoptotic process. However, mechanisms by which PV induces cell death in neuronal cells remain unclear. Here, we demonstrate that PV infection of neuronal IMR5 cells induces cytochrome c release from mitochondria and loss of mitochondrial transmembrane potential, both of which are evidence of mitochondrial outer membrane permeabilization. PV infection also activates Bax, a proapoptotic member of the Bcl-2 family; this activation involves its conformational change and its redistribution from the cytosol to mitochondria. Neutralization of Bax by vMIA protein expression prevents cytochrome c release, consistent with a contribution of PV-induced Bax activation to mitochondrial outer membrane permeabilization. Interestingly, we also found that c-Jun NH(2)-terminal kinase (JNK) is activated soon after PV infection and that the PV-cell receptor interaction alone is sufficient to induce JNK activation. Moreover, the pharmacological inhibition of JNK by SP600125 inhibits Bax activation and cytochrome c release. This is, to our knowledge, the first demonstration of JNK-mediated Bax-dependent apoptosis in PV-infected cells. Our findings contribute to our understanding of poliomyelitis pathogenesis at the cellular level.
Collapse
Affiliation(s)
- Arnaud Autret
- Biologie des Virus Entériques, Institut Pasteur, 28 rue du Docteur Roux, 75724 Paris cedex 15, France
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Barral PM, Morrison JM, Drahos J, Gupta P, Sarkar D, Fisher PB, Racaniello VR. MDA-5 is cleaved in poliovirus-infected cells. J Virol 2007; 81:3677-84. [PMID: 17267501 PMCID: PMC1866155 DOI: 10.1128/jvi.01360-06] [Citation(s) in RCA: 149] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2006] [Accepted: 01/18/2007] [Indexed: 12/17/2022] Open
Abstract
Infections with RNA viruses are sensed by the innate immune system through membrane-bound Toll-like receptors or the cytoplasmic RNA helicases RIG-I and MDA-5. It is believed that MDA-5 is crucial for sensing infections by picornaviruses, but there have been no studies on the role of this protein during infection with poliovirus, the prototypic picornavirus. Beginning at 4 h postinfection, MDA-5 protein is degraded in poliovirus-infected cells. Levels of MDA-5 declined beginning at 6 h after infection with rhinovirus type 1a or encephalomyocarditis virus, but the protein was stable in cells infected with rhinovirus type 16 or echovirus type 1. Cleavage of MDA-5 is not carried out by either poliovirus proteinase 2Apro or 3Cpro. Instead, degradation of MDA-5 in poliovirus-infected cells occurs in a proteasome- and caspase-dependent manner. Degradation of MDA-5 during poliovirus infection correlates with cleavage of poly(ADP) ribose polymerase (PARP), a hallmark of apoptosis. Induction of apoptosis by puromycin leads to cleavage of both PARP and MDA-5. The MDA-5 cleavage product observed in cells treated with puromycin is approximately 90 kDa, similar in size to the putative cleavage product observed in poliovirus-infected cells. Poliovirus-induced cleavage of MDA-5 may be a mechanism to antagonize production of type I interferon in response to viral infection.
Collapse
Affiliation(s)
- Paola M Barral
- Department of Urology, and Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, College of Physicians & Surgeons, 701 W. 168th St., New York, NY 10032, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
Chau DHW, Yuan J, Zhang H, Cheung P, Lim T, Liu Z, Sall A, Yang D. Coxsackievirus B3 proteases 2A and 3C induce apoptotic cell death through mitochondrial injury and cleavage of eIF4GI but not DAP5/p97/NAT1. Apoptosis 2007; 12:513-24. [PMID: 17195095 DOI: 10.1007/s10495-006-0013-0] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2006] [Accepted: 11/09/2006] [Indexed: 02/08/2023]
Abstract
By transfection of Coxsackievirus B3 (CVB3) individual protease gene into HeLa cells, we demonstrated that 2A(pro) and 3C(pro) induced apoptosis through multiple converging pathways. Firstly, both 2A(pro) and 3C(pro) induced caspase-8-mediated activation of caspase-3 and dramatically reduced cell viability. Secondly, they both activated the intrinsic mitochondria-mediated apoptosis pathway leading to cytochrome c release from mitochondria and activation of caspase-9. However, 3C(pro) induced these events via both up-regulation of Bax and cleavage of Bid, and 2A(pro) induced these events via cleavage of Bid only. Nevertheless, neither altered Bcl-2 expression. Thirdly, both proteases induced cell death through cleavage or down regulation of cellular factors for translation and transcription: both 2A(pro) and 3C(pro) cleaved eukaryotic translation initiation factor 4GI but their cleavage products are different, indicating different cleavage sites; further, both 2A(pro) and 3C(pro) down-regulated cyclic AMP responsive element binding protein, a transcription factor, with 2A(pro) exhibiting a stronger effect than 3C(pro). Surprisingly, neither could cleave DAP5/p97/NAT1, a translation regulator, although this cleavage was observed during CVB3 infection and could not be blocked by caspase inhibitor z-VAD-fmk. Taken together, these data suggest that 2A(pro) and 3C(pro) induce apoptosis through both activation of proapoptotic mediators and suppression of translation and transcription.
Collapse
Affiliation(s)
- David H W Chau
- Department of Pathology and Laboratory Medicine, The James Hogg iCAPTURE Centre, University of British Columbia, St. Paul's Hospital, Room 166, 1081 Burrard Street, Vancouver, BC, Canada
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Ghukasyan V, Hsu YY, Kung SH, Kao FJ. Application of fluorescence resonance energy transfer resolved by fluorescence lifetime imaging microscopy for the detection of enterovirus 71 infection in cells. JOURNAL OF BIOMEDICAL OPTICS 2007; 12:024016. [PMID: 17477731 DOI: 10.1117/1.2718582] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Timely and effective virus infection detection is critical for the clinical management and prevention of the disease spread in communities during an outbreak. A range of methods have been developed for this purpose, of which classical serological and viral nucleic acids detection are the most popular. We describe an alternative, imaging-based approach that utilizes fluorescence resonance energy transfer (FRET) resolved by fluorescence lifetime imaging microscopy (FLIM) and demonstrate it on the example of enterovirus 71 (EV71) infection detection. A plasmid construct is developed with the sequence for GFP2 and DsRed2 fluorescent proteins, linked by a 12-amino-acid-long cleavage recognition site for the 2A protease (2A(pro)), encoded by the EV71 genome and specific for the members of Picornaviridae family. In the construct expressed in HeLa cells, the linker binds the fluorophores within the Forster distance and creates a condition for FRET to occur, thus resulting in shortening of the GFP2 fluorescence lifetime. On cells infection with EV71, viral 2A(pro) released to the cytoplasm cleaves the recognition site, causing disruption of FRET through separation of the fluorophores. Thus, increased GFP2 lifetime to the native values, manifested by the time-correlated single-photon counting, serves as an efficient and specific indicator of the EV71 virus infection.
Collapse
Affiliation(s)
- Vladimir Ghukasyan
- National Yang-Ming University, Institute of Biophotonics Engineering, 155, Li-Nong St., Sec. 2, Taipei 112, Taiwan
| | | | | | | |
Collapse
|
47
|
Hsu YY, Liu YN, Wang W, Kao FJ, Kung SH. In vivo dynamics of enterovirus protease revealed by fluorescence resonance emission transfer (FRET) based on a novel FRET pair. Biochem Biophys Res Commun 2007; 353:939-45. [PMID: 17207462 DOI: 10.1016/j.bbrc.2006.12.145] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2006] [Accepted: 12/13/2006] [Indexed: 10/23/2022]
Abstract
An in vivo protease assay suitable for analysis by fluorescence resonance energy transfer (FRET) was developed on the basis of a novel FRET pair. The specifically designed fusion substrate consists of green fluorescent protein 2 (GFP2)-peptide-red fluorescent protein 2 (DsRed2), with a cleavage motif for the enterovirus 2A protease (2Apro) embedded within the peptide region. FRET can be readily visualized in real-time from cells expressing the fusion substrate until a proteolytic cleavage by 2Apro from the input virus. The level of FRET decay is a function of the amount and infection duration of the inoculated virus as measured by a fluorometer assay. The FRET biosensor also responded well to other related enteroviruses but not to a phylogenetically distant virus. Western blot analysis confirmed the physical cleavage of the fusion substrate upon the infections. The study provides proof of principle for applying the FRET technology to diagnostics, screening procedures, and cell biological research.
Collapse
Affiliation(s)
- Yueh-Ying Hsu
- Faculty of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei, Taiwan, ROC
| | | | | | | | | |
Collapse
|
48
|
Zaragoza C, Saura M, Padalko EY, Lopez-Rivera E, Lizarbe TR, Lamas S, Lowenstein CJ. Viral protease cleavage of inhibitor of kappaBalpha triggers host cell apoptosis. Proc Natl Acad Sci U S A 2006; 103:19051-6. [PMID: 17138672 PMCID: PMC1748175 DOI: 10.1073/pnas.0606019103] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2006] [Indexed: 01/05/2023] Open
Abstract
Apoptosis is an innate immune response to viral infection that limits viral replication. However, the mechanisms by which cells detect viral infection and activate apoptosis are not completely understood. We now show that during Coxsackievirus infection, the viral protease 3C(pro) cleaves inhibitor of kappaBalpha (IkappaBalpha). A proteolytic fragment of IkappaBalpha then forms a stable complex with NF-kappaB, translocates to the nucleus, and inhibits NF-kappaB transactivation, increasing apoptosis and decreasing viral replication. In contrast, cells with reduced IkappaBalpha expression are more susceptible to viral infection, with less apoptosis and more viral replication. IkappaBalpha thus acts as a sensor of viral infection. Cleavage of host proteins by pathogen proteases is a novel mechanism by which the host recognizes and responds to viral infection.
Collapse
Affiliation(s)
- Carlos Zaragoza
- *Fundación Centro Nacional de Investigaciones Cardiovasculares, Melchor Fernandez Almagro 3, 28029 Madrid, Spain
| | - Marta Saura
- Departamento de Fisiologia, Facultad de Medicina, Universidad de Alcala, Carretera Barcelona Km 33, 28017 Alcala de Henares, Spain
| | - Elizaveta Y. Padalko
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross 950, Baltimore, MD 21205; and
| | - Ester Lopez-Rivera
- *Fundación Centro Nacional de Investigaciones Cardiovasculares, Melchor Fernandez Almagro 3, 28029 Madrid, Spain
| | - Tania R. Lizarbe
- *Fundación Centro Nacional de Investigaciones Cardiovasculares, Melchor Fernandez Almagro 3, 28029 Madrid, Spain
| | - Santiago Lamas
- *Fundación Centro Nacional de Investigaciones Cardiovasculares, Melchor Fernandez Almagro 3, 28029 Madrid, Spain
- Centro de Investigaciones Biologicas, Instituto Reina Sofia de Investigaciones Nefrologicas, 28006 Madrid, Spain
| | - Charles J. Lowenstein
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross 950, Baltimore, MD 21205; and
| |
Collapse
|
49
|
Moffat K, Knox C, Howell G, Clark SJ, Yang H, Belsham GJ, Ryan M, Wileman T. Inhibition of the secretory pathway by foot-and-mouth disease virus 2BC protein is reproduced by coexpression of 2B with 2C, and the site of inhibition is determined by the subcellular location of 2C. J Virol 2006; 81:1129-39. [PMID: 17121791 PMCID: PMC1797538 DOI: 10.1128/jvi.00393-06] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Infection of cells with picornaviruses can lead to a block in protein secretion. For poliovirus this is achieved by the 3A protein, and the consequent reduction in secretion of proinflammatory cytokines and surface expression of major histocompatibility complex class I proteins may inhibit host immune responses in vivo. Foot-and-mouth disease virus (FMDV), another picornavirus, can cause persistent infection of ruminants, suggesting it too may inhibit immune responses. Endoplasmic reticulum (ER)-to-Golgi apparatus transport of proteins is blocked by the FMDV 2BC protein. The observation that 2BC is processed to 2B and 2C during infection and that individual 2B and 2C proteins are unable to block secretion stimulated us to study the effects of 2BC processing on the secretory pathway. Even though 2BC was processed rapidly to 2B and 2C, protein transport to the plasma membrane was still blocked in FMDV-infected cells. The block could be reconstituted by coexpression of 2B and 2C, showing that processing of 2BC did not compromise the ability of FMDV to slow secretion. Under these conditions, 2C was located to the Golgi apparatus, and the block in transport also occurred in the Golgi apparatus. Interestingly, the block in transport could be redirected to the ER when 2B was coexpressed with a 2C protein fused to an ER retention element. Thus, for FMDV a block in secretion is dependent on both 2B and 2C, with the latter determining the site of the block.
Collapse
Affiliation(s)
- Katy Moffat
- Institute for Animal Health, Pirbright Laboratory, Ash Road, Pirbright, Surrey GU24 0NF, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Smith AD, Dawson H. Glutathione is required for efficient production of infectious picornavirus virions. Virology 2006; 353:258-67. [PMID: 16860836 DOI: 10.1016/j.virol.2006.06.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2005] [Revised: 01/31/2006] [Accepted: 06/08/2006] [Indexed: 11/27/2022]
Abstract
Glutathione is an intracellular reducing agent that helps maintain the redox potential of the cell and is important for immune function. The drug L-buthionine sulfoximine (BSO) selectively inhibits glutathione synthesis. Glutathione has been reported to block replication of HIV, HSV-1, and influenza virus, whereas cells treated with BSO exhibit increased replication of Sendai virus. Pre-treatment of HeLa cell monolayers with BSO inhibited replication of CVB3, CVB4, and HRV14 with viral titers reduced by approximately 6, 5, and 3 log10, respectively. The addition of glutathione ethyl ester, but not dithiothreitol or 2-mercaptoethanol, to the culture medium reversed the inhibitory effect of BSO. Viral RNA and protein synthesis were not inhibited by BSO treatment. Fractionation of lysates from CVB3-infected BSO-treated cells on cesium chloride and sucrose gradients revealed that empty capsids but not mature virions were being produced. The levels of the 5S and 14S assembly intermediates, however, were not affected by BSO treatment. These results demonstrate that glutathione is important for production of mature infectious picornavirus virions.
Collapse
Affiliation(s)
- Allen D Smith
- Nutrient Requirements and Functions Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD 20705, USA.
| | | |
Collapse
|