1
|
Baig MS, Barmpoutsi S, Bharti S, Weigert A, Hirani N, Atre R, Khabiya R, Sharma R, Sarup S, Savai R. Adaptor molecules mediate negative regulation of macrophage inflammatory pathways: a closer look. Front Immunol 2024; 15:1355012. [PMID: 38482001 PMCID: PMC10933033 DOI: 10.3389/fimmu.2024.1355012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 01/22/2024] [Indexed: 04/13/2024] Open
Abstract
Macrophages play a central role in initiating, maintaining, and terminating inflammation. For that, macrophages respond to various external stimuli in changing environments through signaling pathways that are tightly regulated and interconnected. This process involves, among others, autoregulatory loops that activate and deactivate macrophages through various cytokines, stimulants, and other chemical mediators. Adaptor proteins play an indispensable role in facilitating various inflammatory signals. These proteins are dynamic and flexible modulators of immune cell signaling and act as molecular bridges between cell surface receptors and intracellular effector molecules. They are involved in regulating physiological inflammation and also contribute significantly to the development of chronic inflammatory processes. This is at least partly due to their involvement in the activation and deactivation of macrophages, leading to changes in the macrophages' activation/phenotype. This review provides a comprehensive overview of the 20 adaptor molecules and proteins that act as negative regulators of inflammation in macrophages and effectively suppress inflammatory signaling pathways. We emphasize the functional role of adaptors in signal transduction in macrophages and their influence on the phenotypic transition of macrophages from pro-inflammatory M1-like states to anti-inflammatory M2-like phenotypes. This endeavor mainly aims at highlighting and orchestrating the intricate dynamics of adaptor molecules by elucidating the associated key roles along with respective domains and opening avenues for therapeutic and investigative purposes in clinical practice.
Collapse
Affiliation(s)
- Mirza S. Baig
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, India
| | - Spyridoula Barmpoutsi
- Lung Microenvironmental Niche in Cancerogenesis, Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
| | - Shreya Bharti
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, India
| | - Andreas Weigert
- Institute of Biochemistry I, Faculty of Medicine, Goethe University Frankfurt, Frankfurt, Germany
- Frankfurt Cancer Institute (FCI), Goethe University Frankfurt, Frankfurt, Germany
| | - Nik Hirani
- MRC Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Rajat Atre
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, India
| | - Rakhi Khabiya
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, India
| | - Rahul Sharma
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, India
| | - Shivmuni Sarup
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, India
| | - Rajkumar Savai
- Lung Microenvironmental Niche in Cancerogenesis, Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
- Frankfurt Cancer Institute (FCI), Goethe University Frankfurt, Frankfurt, Germany
| |
Collapse
|
2
|
Fowler NJ, Albalwi MF, Lee S, Hounslow AM, Williamson MP. Improved methodology for protein NMR structure calculation using hydrogen bond restraints and ANSURR validation: The SH2 domain of SH2B1. Structure 2023; 31:975-986.e3. [PMID: 37311460 DOI: 10.1016/j.str.2023.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/02/2023] [Accepted: 05/18/2023] [Indexed: 06/15/2023]
Abstract
Protein structures calculated using NMR data are less accurate and less well-defined than they could be. Here we use the program ANSURR to show that this deficiency is at least in part due to a lack of hydrogen bond restraints. We describe a protocol to introduce hydrogen bond restraints into the structure calculation of the SH2 domain from SH2B1 in a systematic and transparent way and show that the structures generated are more accurate and better defined as a result. We also show that ANSURR can be used as a guide to know when the structure calculation is good enough to stop.
Collapse
Affiliation(s)
- Nicholas J Fowler
- School of Biosciences, University of Sheffield, S10 2TN Sheffield, UK.
| | - Marym F Albalwi
- School of Biosciences, University of Sheffield, S10 2TN Sheffield, UK
| | - Subin Lee
- School of Biosciences, University of Sheffield, S10 2TN Sheffield, UK
| | - Andrea M Hounslow
- School of Biosciences, University of Sheffield, S10 2TN Sheffield, UK
| | - Mike P Williamson
- School of Biosciences, University of Sheffield, S10 2TN Sheffield, UK.
| |
Collapse
|
3
|
Bioinformatics analysis and genetic polymorphisms in genomic region of the bovine SH2B2 gene and their associations with molecular breeding for body size traits in qinchuan beef cattle. Biosci Rep 2021; 40:222267. [PMID: 32110807 PMCID: PMC7069895 DOI: 10.1042/bsr20192113] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 02/21/2020] [Accepted: 02/28/2020] [Indexed: 11/17/2022] Open
Abstract
The Src homology 2 B 2 (SH2B2) gene regulate energy balance and body weight at least partially by enhancing Janus kinase-2 (JAK2)-mediated cytokine signaling, including leptin and/or GH signaling. Leptin is an adipose hormone that controls body weight. The objective of the present study is to evaluate the association between body measurement traits and SH2B2 gene polymorphisms as responsible mutations. For this purpose, we selected four single-nucleotide polymorphisms (SNPs) in SH2B2 gene, including two in intron 5 (g.20545A>G, and g.20570G>A, one synonymous SNP g.20693T>C, in exon 6 and one in intron 8 (g.24070C>A, and genotyped them in Qinchuan cattle. SNPs in sample populations were in medium polymorphism level (0.250<PIC<0.500). Association study indicated that the g.20570G>A, g.20693T>C, and g.24070C>A, significantly (P < 0.05) associated with body length (BL) and chest circumference (CC) in Qinchuan cattle. In addition, H4H3 and H5H5 diplotype had highly significantly (P < 0.01) greater body length (BL), rump length (RL), and chest circumference (CC) than H4H2. Our investigation will not only extend the spectrum of genetic variation of bovine SH2B2 gene, but also provide useful information for the marker assisted selection in beef cattle breeding program.
Collapse
|
4
|
|
5
|
McKercher MA, Guan X, Tan Z, Wuttke DS. Diversity in peptide recognition by the SH2 domain of SH2B1. Proteins 2017; 86:164-176. [PMID: 29127727 DOI: 10.1002/prot.25420] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 10/30/2017] [Accepted: 11/09/2017] [Indexed: 11/07/2022]
Abstract
SH2B1 is a multidomain protein that serves as a key adaptor to regulate numerous cellular events, such as insulin, leptin, and growth hormone signaling pathways. Many of these protein-protein interactions are mediated by the SH2 domain of SH2B1, which recognizes ligands containing a phosphorylated tyrosine (pY), including peptides derived from janus kinase 2, insulin receptor, and insulin receptor substrate-1 and -2. Specificity for the SH2 domain of SH2B1 is conferred in these ligands either by a hydrophobic or an acidic side chain at the +3 position C-terminal to the pY. This specificity for chemically disparate species suggests that SH2B1 relies on distinct thermodynamic or structural mechanisms to bind to peptides. Using binding and structural strategies, we have identified unique thermodynamic signatures for each peptide binding mode, and several SH2B1 residues, including K575 and R578, that play distinct roles in peptide binding. The high-resolution structure of the SH2 domain of SH2B1 further reveals conformationally plastic protein loops that may contribute to the ability of the protein to recognize dissimilar ligands. Together, numerous hydrophobic and electrostatic interactions, in addition to backbone conformational flexibility, permit the recognition of diverse peptides by SH2B1. An understanding of this expanded peptide recognition will allow for the identification of novel physiologically relevant SH2B1/peptide interactions, which can contribute to the design of obesity and diabetes pharmaceuticals to target the ligand-binding interface of SH2B1 with high specificity.
Collapse
Affiliation(s)
- Marissa A McKercher
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado
| | - Xiaoyang Guan
- Department of Chemistry and Biochemistry, BioFrontiers Institute, University of Colorado, Boulder, Colorado
| | - Zhongping Tan
- Department of Chemistry and Biochemistry, BioFrontiers Institute, University of Colorado, Boulder, Colorado
| | - Deborah S Wuttke
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado
| |
Collapse
|
6
|
Recent progress in genetics, epigenetics and metagenomics unveils the pathophysiology of human obesity. Clin Sci (Lond) 2017; 130:943-86. [PMID: 27154742 DOI: 10.1042/cs20160136] [Citation(s) in RCA: 227] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 02/24/2016] [Indexed: 12/19/2022]
Abstract
In high-, middle- and low-income countries, the rising prevalence of obesity is the underlying cause of numerous health complications and increased mortality. Being a complex and heritable disorder, obesity results from the interplay between genetic susceptibility, epigenetics, metagenomics and the environment. Attempts at understanding the genetic basis of obesity have identified numerous genes associated with syndromic monogenic, non-syndromic monogenic, oligogenic and polygenic obesity. The genetics of leanness are also considered relevant as it mirrors some of obesity's aetiologies. In this report, we summarize ten genetically elucidated obesity syndromes, some of which are involved in ciliary functioning. We comprehensively review 11 monogenic obesity genes identified to date and their role in energy maintenance as part of the leptin-melanocortin pathway. With the emergence of genome-wide association studies over the last decade, 227 genetic variants involved in different biological pathways (central nervous system, food sensing and digestion, adipocyte differentiation, insulin signalling, lipid metabolism, muscle and liver biology, gut microbiota) have been associated with polygenic obesity. Advances in obligatory and facilitated epigenetic variation, and gene-environment interaction studies have partly accounted for the missing heritability of obesity and provided additional insight into its aetiology. The role of gut microbiota in obesity pathophysiology, as well as the 12 genes associated with lipodystrophies is discussed. Furthermore, in an attempt to improve future studies and merge the gap between research and clinical practice, we provide suggestions on how high-throughput '-omic' data can be integrated in order to get closer to the new age of personalized medicine.
Collapse
|
7
|
Rui L. SH2B1 regulation of energy balance, body weight, and glucose metabolism. World J Diabetes 2014; 5:511-526. [PMID: 25126397 PMCID: PMC4127586 DOI: 10.4239/wjd.v5.i4.511] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 03/06/2014] [Accepted: 06/03/2014] [Indexed: 02/05/2023] Open
Abstract
The Src homology 2B (SH2B) family members (SH2B1, SH2B2 and SH2B3) are adaptor signaling proteins containing characteristic SH2 and PH domains. SH2B1 (also called SH2-B and PSM) and SH2B2 (also called APS) are able to form homo- or hetero-dimers via their N-terminal dimerization domains. Their C-terminal SH2 domains bind to tyrosyl phosphorylated proteins, including Janus kinase 2 (JAK2), TrkA, insulin receptors, insulin-like growth factor-1 receptors, insulin receptor substrate-1 (IRS1), and IRS2. SH2B1 enhances leptin signaling by both stimulating JAK2 activity and assembling a JAK2/IRS1/2 signaling complex. SH2B1 promotes insulin signaling by both enhancing insulin receptor catalytic activity and protecting against dephosphorylation of IRS proteins. Accordingly, genetic deletion of SH2B1 results in severe leptin resistance, insulin resistance, hyperphagia, obesity, and type 2 diabetes in mice. Neuron-specific overexpression of SH2B1β transgenes protects against diet-induced obesity and insulin resistance. SH2B1 in pancreatic β cells promotes β cell expansion and insulin secretion to counteract insulin resistance in obesity. Moreover, numerous SH2B1 mutations are genetically linked to leptin resistance, insulin resistance, obesity, and type 2 diabetes in humans. Unlike SH2B1, SH2B2 and SH2B3 are not required for the maintenance of normal energy and glucose homeostasis. The metabolic function of the SH2B family is conserved from insects to humans.
Collapse
|
8
|
Yang M, Fu J, Lan X, Sun Y, Lei C, Zhang C, Chen H. Effect of genetic variations within the SH2B2 gene on the growth of Chinese cattle. Gene 2013; 528:314-9. [PMID: 23860327 DOI: 10.1016/j.gene.2013.06.086] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 05/16/2013] [Accepted: 06/04/2013] [Indexed: 01/08/2023]
Abstract
As an adaptor protein, apart from potentiating Janus kinase 2 (JAK2) activation and promoting the insulin signaling pathway, Src homology 2 B 2 (SH2B2) indirectly takes part in the regulation of glucose uptake through the c-Cb1/CAP/TC10 pathway, which can in turn affect growth. In this study, we identified a 4bp indel mutation and three single nucleotide polymorphisms (SNPs) within the SH2B2 gene in 959 individuals from five Chinese cattle breeds by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and sequencing. Based on the four variations, 12 haplotypes were identified. Additionally, there was a tendency that in every population pair-wise linkages increased progressively from V1-V2 to V3-V4. By association analysis, positive effects of genotypes CC and CT (snp1220 locus), DI (4bp indel locus), and CC (snp21049 locus) on growth traits were obtained. Furthermore, when combined, individuals with the combination CCDITTCC showed the best performance at an early age. These results were suggestive of an association of snp1220, 4bp indel and snp12049 with growth performance in Nanyang cattle, indicating possibly the candidate role of the SH2B2 gene in marker assisted selection in a beef cattle breeding program.
Collapse
Affiliation(s)
- Mingjuan Yang
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100, PR China
| | | | | | | | | | | | | |
Collapse
|
9
|
Velazquez L. The Lnk adaptor protein: a key regulator of normal and pathological hematopoiesis. Arch Immunol Ther Exp (Warsz) 2012; 60:415-29. [PMID: 22990499 DOI: 10.1007/s00005-012-0194-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 08/06/2012] [Indexed: 01/24/2023]
Abstract
The development and function of blood cells are regulated by specific growth factors/cytokines and their receptors' signaling pathways. In this way, these factors influence cell survival, proliferation and differentiation of hematopoietic cells. Central to this positive and/or negative control are the adaptor proteins. Since their identification 10 years ago, members of the Lnk adaptor protein family have proved to be important activators and/or inhibitors in the hematopoietic, immune and vascular system. In particular, the generation of animal and cellular models for the Lnk and APS proteins has helped establish the physiological role of these molecules through the identification of their specific signaling pathways and the characterization of their binding partners. Moreover, the recent identification of mutations in the LNK gene in myeloproliferative disorders, as well as the correlation of a single nucleotide polymorphism on LNK with hematological, immune and vascular diseases have suggested its involvement in the pathophysiology of these malignancies. The latter findings have thus raised the possibility of addressing Lnk signaling for the treatment of certain human diseases. This review therefore describes the pathophysiological role of this adaptor protein in hematological malignancies and the potential benefits of Lnk therapeutic targeting.
Collapse
Affiliation(s)
- Laura Velazquez
- UMR U978 Inserm/Université Paris 13, UFR SMBH, Bobigny, France.
| |
Collapse
|
10
|
Javadi M, Hofstätter E, Stickle N, Beattie BK, Jaster R, Carter-Su C, Barber DL. The SH2B1 adaptor protein associates with a proximal region of the erythropoietin receptor. J Biol Chem 2012; 287:26223-34. [PMID: 22669948 DOI: 10.1074/jbc.m112.382721] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Gene targeting experiments have shown that the cytokine erythropoietin (EPO), its cognate erythropoietin receptor (EPO-R), and associated Janus tyrosine kinase, JAK2, are all essential for erythropoiesis. Structural-functional and murine knock-in experiments have suggested that EPO-R Tyr-343 is important in EPO-mediated mitogenesis. Although Stat5 binds to EPO-R phosphotyrosine 343, the initial Stat5-deficient mice did not have profound erythroid abnormalities suggesting that additional Src homology 2 (SH2) domain-containing effectors may bind to EPO-R Tyr-343 and couple to downstream signaling pathways. We have utilized cloning of ligand target (COLT) screening to demonstrate that EPO-R Tyr(P)-343 and Tyr(P)-401 bind to the SH2 domain-containing adaptor protein SH2B1β. Immunoprecipitation and in vitro mixing experiments reveal that EPO-R binds to SH2B1 in an SH2 domain-dependent manner and that the sequence that confers SH2B1 binding to the EPO-R is pYXXL. Previous studies have shown that SH2B1 binds directly to JAK2, but we show that in hematopoietic cells, SH2B1β preferentially associates with the EPO-R. SH2B1 is capable of constitutive association with EPO-R, which is necessary for its optimal SH2-dependent recruitment to EPO-R-Tyr(P)-343/Tyr(P)-401. We also demonstrate that SH2B1 is responsive to EPO stimulation and becomes phosphorylated, most likely on serines/threonines, in an EPO dose- and time-dependent manner. In the absence of SH2B1, we observe enhanced activation of signaling pathways downstream of the EPO-R, indicating that SH2B1 is a negative regulator of EPO signaling.
Collapse
Affiliation(s)
- Mojib Javadi
- Ontario Cancer Institute, Campbell Family Cancer Research Institute, Toronto, Ontario M5G 2M9, Canada
| | | | | | | | | | | | | |
Collapse
|
11
|
Expression level and differential JAK2-V617F–binding of the adaptor protein Lnk regulates JAK2-mediated signals in myeloproliferative neoplasms. Blood 2010; 116:5961-71. [DOI: 10.1182/blood-2009-12-256768] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Abstract
Activating mutations in signaling molecules, such as JAK2-V617F, have been associated with myeloproliferative neoplasms (MPNs). Mice lacking the inhibitory adaptor protein Lnk display deregulation of thrombopoietin/thrombopoietin receptor signaling pathways and exhibit similar myeloproliferative characteristics to those found in MPN patients, suggesting a role for Lnk in the molecular pathogenesis of these diseases. Here, we showed that LNK levels are up-regulated and correlate with an increase in the JAK2-V617F mutant allele burden in MPN patients. Using megakaryocytic cells, we demonstrated that Lnk expression is regulated by the TPO-signaling pathway, thus indicating an important negative control loop in these cells. Analysis of platelets derived from MPN patients and megakaryocytic cell lines showed that Lnk can interact with JAK2-WT and V617F through its SH2 domain, but also through an unrevealed JAK2-binding site within its N-terminal region. In addition, the presence of the V617F mutation causes a tighter association with Lnk. Finally, we found that the expression level of the Lnk protein can modulate JAK2-V617F–dependent cell proliferation and that its different domains contribute to the inhibition of multilineage and megakaryocytic progenitor cell growth in vitro. Together, our results indicate that changes in Lnk expression and JAK2-V617F–binding regulate JAK2-mediated signals in MPNs.
Collapse
|
12
|
Morris DL, Cho KW, Rui L. Critical role of the Src homology 2 (SH2) domain of neuronal SH2B1 in the regulation of body weight and glucose homeostasis in mice. Endocrinology 2010; 151:3643-51. [PMID: 20484460 PMCID: PMC2940518 DOI: 10.1210/en.2010-0254] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
SH2B1 is an SH2 domain-containing adaptor protein that plays a key role in the regulation of energy and glucose metabolism in both rodents and humans. Genetic deletion of SH2B1 in mice results in obesity and type 2 diabetes. Single-nucleotide polymorphisms in the SH2B1 loci and chromosomal deletions of the SH2B1 loci associate with obesity and insulin resistance in humans. In cultured cells, SH2B1 promotes leptin and insulin signaling by binding via its SH2 domain to phosphorylated tyrosines in Janus kinase 2 and the insulin receptor, respectively. Here we generated three lines of mice to analyze the role of the SH2 domain of SH2B1 in the central nervous system. Transgenic mice expressing wild-type, SH2 domain-defective (R555E), or SH2 domain-alone (DeltaN503) forms of SH2B1 specifically in neurons were crossed with SH2B1 knockout mice to generate KO/SH2B1, KO/R555E, or KO/DeltaN503 compound mutant mice. R555E had a replacement of Arg(555) with Glu within the SH2 domain. DeltaN503 contained an intact SH2 domain but lacked amino acids 1-503. Neuron-specific expression of recombinant SH2B1, but not R555E or DeltaN503, corrected hyperphagia, obesity, glucose intolerance, and insulin resistance in SH2B1 null mice. Neuron-specific expression of R555E in wild-type mice promoted obesity and insulin resistance. These results indicate that in addition to the SH2 domain, N-terminal regions of neuronal SH2B1 are also required for the maintenance of normal body weight and glucose metabolism. Additionally, mutations in the SH2 domain of SH2B1 may increase the susceptibility to obesity and type 2 diabetes in a dominant-negative manner.
Collapse
Affiliation(s)
- David L Morris
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan 48109-0622, USA
| | | | | |
Collapse
|
13
|
Slack C, Werz C, Wieser D, Alic N, Foley A, Stocker H, Withers DJ, Thornton JM, Hafen E, Partridge L. Regulation of lifespan, metabolism, and stress responses by the Drosophila SH2B protein, Lnk. PLoS Genet 2010; 6:e1000881. [PMID: 20333234 PMCID: PMC2841611 DOI: 10.1371/journal.pgen.1000881] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2009] [Accepted: 02/12/2010] [Indexed: 12/19/2022] Open
Abstract
Drosophila Lnk is the single ancestral orthologue of a highly conserved family of structurally-related intracellular adaptor proteins, the SH2B proteins. As adaptors, they lack catalytic activity but contain several protein–protein interaction domains, thus playing a critical role in signal transduction from receptor tyrosine kinases to form protein networks. Physiological studies of SH2B function in mammals have produced conflicting data. However, a recent study in Drosophila has shown that Lnk is an important regulator of the insulin/insulin-like growth factor (IGF)-1 signaling (IIS) pathway during growth, functioning in parallel to the insulin receptor substrate, Chico. As this pathway also has an evolutionary conserved role in the determination of organism lifespan, we investigated whether Lnk is required for normal lifespan in Drosophila. Phenotypic analysis of mutants for Lnk revealed that loss of Lnk function results in increased lifespan and improved survival under conditions of oxidative stress and starvation. Starvation resistance was found to be associated with increased metabolic stores of carbohydrates and lipids indicative of impaired metabolism. Biochemical and genetic data suggest that Lnk functions in both the IIS and Ras/Mitogen activated protein Kinase (MapK) signaling pathways. Microarray studies support this model, showing transcriptional feedback onto genes in both pathways as well as indicating global changes in both lipid and carbohydrate metabolism. Finally, our data also suggest that Lnk itself may be a direct target of the IIS responsive transcription factor, dFoxo, and that dFoxo may repress Lnk expression. We therefore describe novel functions for a member of the SH2B protein family and provide the first evidence for potential mechanisms of SH2B regulation. Our findings suggest that IIS signaling in Drosophila may require the activity of a second intracellular adaptor, thereby yielding fundamental new insights into the functioning and role of the IIS pathway in ageing and metabolism. Many human populations are experiencing increased life expectancy, and as populations age the incidence of age-related diseases becomes more prevalent. The identification of single gene mutations that extend lifespan in invertebrate model organisms has revealed that several cellular signaling pathways, including the insulin/insulin-like growth factor (IGF)-1 signaling (IIS) pathway, play a crucial role in modulating the ageing process across multiple species. Thus, studies carried out in yeast, worms, and flies have revealed evolutionarily conserved mechanisms of ageing, which are likely to be relevant to mammals, including humans. A recent study in Drosophila identified the SH2B family adaptor protein, Lnk, as an important regulator of the IIS pathway during organismal growth. In this study, we show that Lnk is also required to determine normal lifespan in Drosophila, as mutations that disrupt Lnk activity result in increased lifespan. In addition, these mutants show improved survival under conditions of stress and metabolic disregulation. Furthermore, we show that the expression of Lnk is regulated by the IIS responsive transcription factor, dFoxo. Our data therefore provide new mechanistic insights into the role of the IIS pathway in ageing.
Collapse
Affiliation(s)
- Cathy Slack
- Institute of Healthy Ageing, Department of Genes, Evolution, and Environment, University College London, London, United Kingdom
| | - Christian Werz
- ETH Zurich, Institute of Molecular Systems Biology, Zurich, Switzerland
| | - Daniela Wieser
- European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Nazif Alic
- Institute of Healthy Ageing, Department of Genes, Evolution, and Environment, University College London, London, United Kingdom
| | - Andrea Foley
- Institute of Healthy Ageing, Department of Genes, Evolution, and Environment, University College London, London, United Kingdom
| | - Hugo Stocker
- ETH Zurich, Institute of Molecular Systems Biology, Zurich, Switzerland
| | - Dominic J. Withers
- Centre for Diabetes and Endocrinology, Rayne Institute, University College London, London, United Kingdom
| | - Janet M. Thornton
- European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Ernst Hafen
- ETH Zurich, Institute of Molecular Systems Biology, Zurich, Switzerland
| | - Linda Partridge
- Institute of Healthy Ageing, Department of Genes, Evolution, and Environment, University College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
14
|
Liu Y, Zhang B, Zhang S, Qi J, Zhang Z, Liu L, Fang X. Nerve growth factor mediated SH2-Bbeta/Akt signal pathway activated in allergic airway challenge in mice. Respirology 2009; 15:80-7. [PMID: 19947990 DOI: 10.1111/j.1440-1843.2009.01648.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND AND OBJECTIVE Nerve growth factor (NGF) contributes to airway inflammation and bronchoconstriction in allergic asthma. The Src homology 2beta/serine/threonine kinase (SH2-Bbeta/Akt) pathway is one of the avenues through which NGF regulates the biological activity of pheochromocytoma (PC)12 cells. It has also been reported that NGF upregulates the expression of SH2-Bbeta in the lung tissue of asthmatic mice. The present study investigated the effects of NGF and SH2-Bbeta on Akt activation during allergic airway challenge. METHODS BALB/c mice were sensitized and challenged with ovalbumin. The effects of NGF and SH2-Bbeta on Akt in allergic airway challenge were assessed by intravenously administering anti-NGF antibody or a mutant of SH2-Bbeta (R555E) to these mice. Pulmonary histological changes were then assessed and the inflammatory cells in the BAL fluid (BALF) were counted. Additionally, phosphorylated Akt (p-Akt) expression was determined by fluorescence microscopy, western blotting and quantitative RT-PCR. Airway resistance was also measured using closed-type body plethysmography. RESULTS We observed p-Akt overexpression in the lungs after allergen challenge by fluorescence microscopy, Western blotting and RT-PCR, as compared with the control. However, after treatment with anti-NGF or R555E, p-Akt levels and allergen-induced airway inflammation were reduced in comparison with those of allergen-challenged mice. Anti-NGF and R555E also decreased airway hyperresponsiveness caused by allergen challenge in response to methacholine (MCH). CONCLUSIONS These results suggest that SH2-Bbeta regulation of Akt partly participates in the NGF-mediated development of allergic airway challenge.
Collapse
Affiliation(s)
- Yuli Liu
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shengyang, Liaoning Province 110001, China
| | | | | | | | | | | | | |
Collapse
|
15
|
Barua D, Faeder JR, Haugh JM. A bipolar clamp mechanism for activation of Jak-family protein tyrosine kinases. PLoS Comput Biol 2009; 5:e1000364. [PMID: 19381268 PMCID: PMC2667146 DOI: 10.1371/journal.pcbi.1000364] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2008] [Accepted: 03/17/2009] [Indexed: 01/08/2023] Open
Abstract
Most cell surface receptors for growth factors and cytokines dimerize in order to mediate signal transduction. For many such receptors, the Janus kinase (Jak) family of non-receptor protein tyrosine kinases are recruited in pairs and juxtaposed by dimerized receptor complexes in order to activate one another by trans-phosphorylation. An alternative mechanism for Jak trans-phosphorylation has been proposed in which the phosphorylated kinase interacts with the Src homology 2 (SH2) domain of SH2-B, a unique adaptor protein with the capacity to homo-dimerize. Building on a rule-based kinetic modeling approach that considers the concerted nature and combinatorial complexity of modular protein domain interactions, we examine these mechanisms in detail, focusing on the growth hormone (GH) receptor/Jak2/SH2-Bβ system. The modeling results suggest that, whereas Jak2-(SH2-Bβ)2-Jak2 heterotetramers are scarcely expected to affect Jak2 phosphorylation, SH2-Bβ and dimerized receptors synergistically promote Jak2 trans-activation in the context of intracellular signaling. Analysis of the results revealed a unique mechanism whereby SH2-B and receptor dimers constitute a bipolar ‘clamp’ that stabilizes the active configuration of two Jak2 molecules in the same macro-complex. Janus kinases (Jaks) interact with and activate receptors on the cell surface that mediate changes in gene expression. How these interactions are promoted and regulated is of central interest in fields such as cellular endocrinology and immunology. Here, detailed computational models of Jak activation are offered at the level of protein modification states and interaction domains, wherein the specification of only a handful of binding/reaction rules can produce networks comprised of thousands of differential equations. Specifically, we investigated the role of an adaptor protein, SH2-B, revealing a novel mechanism whereby it cooperates with receptors to form a stable complex that juxtaposes two Jak molecules for efficient activation. We refer to this mode of molecular assembly as the bipolar clamp mechanism.
Collapse
Affiliation(s)
- Dipak Barua
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, United States of America
| | - James R. Faeder
- Department of Computational Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Jason M. Haugh
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
16
|
Rider L, Tao J, Snyder S, Brinley B, Lu J, Diakonova M. Adapter protein SH2B1beta cross-links actin filaments and regulates actin cytoskeleton. Mol Endocrinol 2009; 23:1065-76. [PMID: 19342444 DOI: 10.1210/me.2008-0428] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The Src homology 2 (SH2) domain-containing adapter protein SH2B1beta plays a role in severe obesity, leptin and insulin resistance, and infertility. SH2B1beta was initially identified as a Janus tyrosine kinase 2 (JAK2) substrate, and it has been implicated in cell motility and regulation of the actin rearrangement in response to GH and platelet-derived growth factor. SH2B1beta is also required for maximal actin-based motility of Listeria. Here we have used a low-speed pelleting assay and electron microscopy to demonstrate that SH2B1beta has two actin-binding sites and that it cross-links actin filaments in vitro. Wild-type SH2B1beta localized to cell ruffles and along filopodia, but deletion of amino acids 150-200 (the first actin-binding site) led to mislocalization of the protein to filopodia tip complexes where it colocalized with vasodilator-stimulated phosphoprotein (VASP). Based on studies performed in VASP-deficient MVD7(-/-) cells, with or without green fluorescent protein-VASP reconstitution, we concluded that the proper intracellular localization of native SH2B1beta required the presence of the first SH2B1beta actin-binding site and VASP. Finally, we found that both SH2B1beta actin-binding domains were required for maximal GH- and prolactin-induced cell ruffling. Together, these results suggest that SH2B1beta functions as an adapter protein that cross-links actin filaments, leading to modulation of cellular responses in response to JAK2 activation.
Collapse
Affiliation(s)
- Leah Rider
- Department of Biological Sciences, University of Toledo, Toledo, Ohio 43606-3390, USA
| | | | | | | | | | | |
Collapse
|
17
|
Gery S, Cao Q, Gueller S, Xing H, Tefferi A, Koeffler HP. Lnk inhibits myeloproliferative disorder-associated JAK2 mutant, JAK2V617F. J Leukoc Biol 2009; 85:957-65. [PMID: 19293402 DOI: 10.1189/jlb.0908575] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The JAK2 mutation JAK2V617F is found frequently in patients with myeloproliferative disorders (MPD) and transforms hematopoietic cells to cytokine-independent proliferation when expressed with specific cytokine receptors. The Src homology 2 (SH2) and pleckstrin homology (PH) domain-containing adaptor protein Lnk (SH2B3) is a negative regulator of hematopoietic cytokine signaling. Here, we show that Lnk is a potent inhibitor of JAK2V617F constitutive activity. Lnk down-regulates JAK2V617F-mediated signaling and transformation in hematopoietic Ba/F3-erythropoietin receptor cells. Furthermore, in CFU assays, Lnk-deficient murine bone marrow cells are significantly more sensitive to transformation by JAK2V617F than wild-type (WT) cells. Lnk, through its SH2 and PH domains, interacts with WT and mutant JAK2 and is phosphorylated by constitutively activated JAK2V617F. Finally, we found that Lnk levels are high in CD34(+) hematopoietic progenitors from MPD patients and that Lnk expression is induced following JAK2 activation. Our data suggest that JAK2V617F is susceptible to endogenous negative-feedback regulation, providing new insights into the molecular pathogenesis of MPD.
Collapse
Affiliation(s)
- Sigal Gery
- Davis Bldg. 5066, 8700 Beverly Blvd., Los Angeles, CA 90048, USA.
| | | | | | | | | | | |
Collapse
|
18
|
Zhang M, Deng Y, Riedel H. PSM/SH2B1 splice variants: critical role in src catalytic activation and the resulting STAT3s-mediated mitogenic response. J Cell Biochem 2008; 104:105-18. [PMID: 18247337 DOI: 10.1002/jcb.21606] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A role of PSM/SH2B1 had been shown in mitogenesis and extending to phenotypic cell transformation, however, the underlying molecular mechanism remained to be established. Here, four alternative PSM splice variants and individual functional protein domains were compared for their role in the regulation of Src activity. We found that elevated cellular levels of PSM variants resulted in phenotypic cell transformation and potentiated cell proliferation and survival in response to serum withdrawal. PSM variant activity presented a consistent signature pattern for any tested response of highest activity observed for gamma, followed by delta, alpha, and beta with decreasing activity. PSM-potentiated cell proliferation was sensitive to Src inhibitor herbimycin and PSM and Src were found in the same immune complex. PSM variants were substrates of the Src Tyr kinase and potentiated Src catalytic activity by increasing the V(max) and decreasing the K(m) for ATP with the signature pattern of variant activity. Dominant-negative PSM peptide mimetics including the SH2 or PH domains inhibited Src catalytic activity as well as Src-mediated phenotypic cell transformation. Activation of major Src substrate STAT3 was similarly potentiated by the PSM variants in a Src-dependent fashion or inhibited by PSM domain-specific peptide mimetics. Expression of a dominant-negative STAT3 mutant blocked PSM variant-mediated phenotypic cell transformation. Our results implicate an essential role of the PSM variants in the activation of the Src kinase and the resulting mitogenic response--extending to phenotypic cell transformation and involving the established Src substrate STAT3.
Collapse
Affiliation(s)
- Manchao Zhang
- Department of Biochemistry, West Virginia University, School of Medicine, Morgantown, West Virginia 26506-9142, USA
| | | | | |
Collapse
|
19
|
Zhang M, Deng Y, Tandon R, Bai C, Riedel H. Essential role of PSM/SH2-B variants in insulin receptor catalytic activation and the resulting cellular responses. J Cell Biochem 2008; 103:162-81. [PMID: 17615553 DOI: 10.1002/jcb.21397] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The positive regulatory role of PSM/SH2-B downstream of various mitogenic receptor tyrosine kinases or gene disruption experiments in mice support a role of PSM in the regulation of insulin action. Here, four alternative PSM splice variants and individual functional domains were compared for their role in the regulation of specific metabolic insulin responses. We found that individual PSM variants in 3T3-L1 adipocytes potentiated insulin-mediated glucose and amino acid transport, glycogenesis, lipogenesis, and key components in the metabolic insulin response including p70 S6 kinase, glycogen synthase, glycogen synthase kinase 3 (GSK3), Akt, Cbl, and IRS-1. Highest activity was consistently observed for PSM alpha, followed by beta, delta, and gamma with decreasing activity. In contrast, dominant-negative peptide mimetics of the PSM Pro-rich, pleckstrin homology (PH), or src homology 2 (SH2) domains inhibited any tested insulin response. Potentiation of the insulin response originated at the insulin receptor (IR) kinase level by PSM variant-specific regulation of the Km (ATP) whereas the Vmax remained unaffected. IR catalytic activation was inhibited by peptide mimetics of the PSM SH2 or dimerization domain (DD). Either peptide should disrupt the complex of a PSM dimer linked to IR via SH2 domains as proposed for PSM activation of tyrosine kinase JAK2. Either peptide abolished downstream insulin responses indistinguishable from PSM siRNA knockdown. Our results implicate an essential role of the PSM variants in the activation of the IR kinase and the resulting metabolic insulin response. PSM variants act as internal IR ligands that in addition to potentiating the insulin response stimulate IR catalytic activation even in the absence of insulin.
Collapse
Affiliation(s)
- Manchao Zhang
- Department of Biochemistry, West Virginia University, School of Medicine, Morgantown, WV 26506-9142, USA
| | | | | | | | | |
Collapse
|
20
|
Rider L, Shatrova A, Feener EP, Webb L, Diakonova M. JAK2 Tyrosine Kinase Phosphorylates PAK1 and Regulates PAK1 Activity and Functions. J Biol Chem 2007; 282:30985-96. [PMID: 17726028 DOI: 10.1074/jbc.m701794200] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The serine-threonine kinase PAK1 is activated by small GTPase-dependent and -independent mechanisms and promotes cell survival. However, the role of tyrosyl phosphorylation in the regulation of PAK1 function is poorly understood. In this study, we have shown that the prolactin-activated tyrosine kinase JAK2 phosphorylates PAK1 in vivo. Wild type, but not kinase-dead, JAK2 directly phosphorylates PAK1 in cells and in an in vitro kinase assay. PAK1 tyrosines 153, 201, and 285 were identified as sites of JAK2 tyrosyl phosphorylation by mass spectrometry and two-dimensional peptide mapping. Mutation of PAK1 tyrosines 153, 201, and 285 to phenylalanines individually or in combination implicated these PAK1 tyrosines in the regulation of PAK1 kinase activity. Tyrosyl phosphorylation by JAK2 significantly increases PAK1 kinase activity, whereas similar phosphorylation of the PAK1 Y153F,Y201F,Y285F mutant has no effect on PAK1 activity. Tyrosyl phosphorylation of wild type PAK1 decreases apoptosis induced by serum deprivation and staurosporine treatment and increases cell motility. In contrast, these parameters are unaltered in the PAK1 Y153F,Y201F,Y285F mutant. Our findings indicate that JAK2 phosphorylates PAK1 at these specific tyrosines and that this phosphorylation plays an important role in cell survival and motility.
Collapse
Affiliation(s)
- Leah Rider
- Department of Biological Sciences, University of Toledo, Toledo, Ohio 43606-3390, USA
| | | | | | | | | |
Collapse
|
21
|
Li Z, Zhou Y, Carter-Su C, Myers MG, Rui L. SH2B1 enhances leptin signaling by both Janus kinase 2 Tyr813 phosphorylation-dependent and -independent mechanisms. Mol Endocrinol 2007; 21:2270-81. [PMID: 17565041 DOI: 10.1210/me.2007-0111] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Leptin controls body weight by activating its long form receptor (LEPRb). LEPRb binds to Janus kinase 2 (JAK2), a cytoplasmic tyrosine kinase that mediates leptin signaling. We previously reported that genetic deletion of SH2B1 (previously known as SH2-B), a JAK2-binding protein, results in severe leptin-resistant and obese phenotypes, indicating that SH2B1 is a key endogenous positive regulator of leptin sensitivity. Here we show that SH2B1 regulates leptin signaling by multiple mechanisms. In the absence of leptin, SH2B1 constitutively bound, via its non-SH2 domain region(s), to non-tyrosyl-phosphorylated JAK2, and inhibited JAK2. Leptin stimulated JAK2 phosphorylation on Tyr(813), which subsequently bound to the SH2 domain of SH2B1. Binding of the SH2 domain of SH2B1 to phospho-Tyr(813) in JAK2 enhanced leptin induction of JAK2 activity. JAK2 was required for leptin-stimulated phosphorylation of insulin receptor substrate 1 (IRS1), an upstream activator of the phosphatidylinositol 3-kinase pathway. Overexpression of SH2B1 enhanced both JAK2- and JAK2(Y813F)-mediated tyrosine phosphorylation of IRS1 in response to leptin, even though SH2B1 did not enhance JAK2(Y813F) activation. Leptin promoted the interaction of SH2B1 with IRS1. These data suggest that constitutive SH2B1-JAK2 interaction, mediated by the non-SH2 domain region(s) of SH2B1 and the non-Tyr(813) region(s) in JAK2, increases the local concentration of SH2B1 close to JAK2 and inhibits JAK2 activity. Leptin-stimulated SH2B1-JAK2 interaction, mediated by the SH2 domain of SH2B1 and phospho-Tyr(813) in JAK2, promotes JAK2 activation, thus globally enhancing leptin signaling. SH2B1-IRS1 interaction facilitates IRS1 phosphorylation by recruiting IRS1 to JAK2 and/or by protecting IRS1 from dephosphorylation, thus specifically enhancing leptin stimulation of the phosphatidylinositol 3-kinase pathway.
Collapse
Affiliation(s)
- Zhiqin Li
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan 48109-0622, USA
| | | | | | | | | |
Collapse
|
22
|
Donatello S, Fiorino A, Degl'Innocenti D, Alberti L, Miranda C, Gorla L, Bongarzone I, Rizzetti MG, Pierotti MA, Borrello MG. SH2B1beta adaptor is a key enhancer of RET tyrosine kinase signaling. Oncogene 2007; 26:6546-59. [PMID: 17471236 DOI: 10.1038/sj.onc.1210480] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The RET gene encodes two main isoforms of a receptor tyrosine kinase (RTK) implicated in various human diseases. Activating germ-line point mutations are responsible for multiple endocrine neoplasia type 2-associated medullary thyroid carcinomas, inactivating germ-line mutations for Hirschsprung's disease, while somatic rearrangements (RET/PTCs) are specific to papillary thyroid carcinomas. SH2B1beta, a member of the SH2B adaptors family, and binding partner for several RTKs, has been recently described to interact with proto-RET. Here, we show that both RET isoforms and its oncogenic derivatives bind to SH2B1beta through the SRC homology 2 (SH2) domain and a kinase activity-dependent mechanism. As a result, RET phosphorylates SH2B1beta, which in turn enhances its autophosphorylation, kinase activity, and downstream signaling. RET tyrosine residues 905 and 981 are important determinants for functional binding of the adaptor, as removal of both autophosphorylation sites displaces its recruitment. Binding of SH2B1beta appears to protect RET from dephosphorylation by protein tyrosine phosphatases, and might represent a likely mechanism contributing to its upregulation. Thus, overexpression of SH2B1beta, by enhancing phosphorylation/activation of RET transducers, potentiates the cellular differentiation and the neoplastic transformation thereby induced, and counteracts the action of RET inhibitors. Overall, our results identify SH2B1beta as a key enhancer of RET physiologic and pathologic activities.
Collapse
Affiliation(s)
- S Donatello
- Department of Experimental Oncology, Research Unit no. 3, Milan, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Diakonova M, Helfer E, Seveau S, Swanson JA, Kocks C, Rui L, Carlier MF, Carter-Su C. Adapter protein SH2-Bbeta stimulates actin-based motility of Listeria monocytogenes in a vasodilator-stimulated phosphoprotein (VASP)-dependent fashion. Infect Immun 2007; 75:3581-93. [PMID: 17452473 PMCID: PMC1932951 DOI: 10.1128/iai.00214-07] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
SH2-Bbeta (Src homology 2 Bbeta) is an adapter protein that is required for maximal growth hormone-dependent actin reorganization in membrane ruffling and cell motility. Here we show that SH2-Bbeta is also required for maximal actin-based motility of Listeria monocytogenes. SH2-Bbeta localizes to Listeria-induced actin tails and increases the rate of bacterial propulsion in infected cells and in cell extracts. Furthermore, Listeria motility is decreased in mouse embryo fibroblasts from SH2-B(-/-) mice. Both recruitment of SH2-Bbeta to Listeria and SH2-Bbeta stimulation of actin-based propulsion require the vasodilator-stimulated phosphoprotein (VASP), which binds ActA at the surfaces of Listeria cells and enhances bacterial actin-based motility. SH2-Bbeta enhances actin-based movement of ActA-coated beads in a biomimetic actin-based motility assay, provided that VASP is present. In vitro binding assays show that SH2-Bbeta binds ActA but not VASP; however, binding to ActA is greater in the presence of VASP. Because VASP also plays an essential regulatory role in actin-based processes in eukaryotic cells, the present results provide mechanistic insight into the functions of both SH2-Bbeta and VASP in motility and also increase our understanding of the fundamental mechanism by which Listeria spreads.
Collapse
Affiliation(s)
- Maria Diakonova
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Deng Y, Xu H, Riedel H. PSM/SH2-B distributes selected mitogenic receptor signals to distinct components in the PI3-kinase and MAP kinase signaling pathways. J Cell Biochem 2007; 100:557-73. [PMID: 16960871 DOI: 10.1002/jcb.21030] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The Pro-rich, PH, and SH2 domain containing mitogenic signaling adapter PSM/SH2-B has been implicated as a cellular partner of various mitogenic receptor tyrosine kinases and related signaling mechanisms. Here, we report in a direct comparison of three peptide hormones, that PSM participates in the assembly of distinct mitogenic signaling complexes in response to insulin or IGF-I when compared to PDGF in cultured normal fibroblasts. The complex formed in response to insulin or IGF-I involves the respective peptide hormone receptor and presumably the established components leading to MAP kinase activation. However, our data suggest an alternative link from the PDGF receptor via PSM directly to MEK1/2 and consequently also to p44/42 activation, possibly through a scaffold protein. At least two PSM domains participate, the SH2 domain anticipated to link PSM to the respective receptor and the Pro-rich region in an association with an unidentified downstream component resulting in direct MEK1/2 and p44/42 regulation. The PDGF receptor signaling complex formed in response to PDGF involves PI 3-kinase in addition to the same components and interactions as described for insulin or IGF-I. PSM associates with PI 3-kinase via p85 and in addition the PSM PH domain participates in the regulation of PI 3-kinase activity, presumably through membrane interaction. In contrast, the PSM Pro-rich region appears to participate only in the MAP kinase signal. Both pathways contribute to the mitogenic response as shown by cell proliferation, survival, and focus formation. PSM regulates p38 MAP kinase activity in a pathway unrelated to the mitogenic response.
Collapse
Affiliation(s)
- Youping Deng
- Department of Biological Sciences, The University of Southern Mississippi, Hattiesburg, MS 39406, USA
| | | | | |
Collapse
|
25
|
Maures TJ, Kurzer JH, Carter-Su C. SH2B1 (SH2-B) and JAK2: a multifunctional adaptor protein and kinase made for each other. Trends Endocrinol Metab 2007; 18:38-45. [PMID: 17140804 DOI: 10.1016/j.tem.2006.11.007] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2006] [Revised: 11/13/2006] [Accepted: 11/20/2006] [Indexed: 12/28/2022]
Abstract
Src homology 2 (SH2) B adaptor protein 1 (SH2B1; originally named SH2-B) is a member of a family of adaptor proteins that influences a variety of signaling pathways mediated by Janus kinase (JAK) and receptor tyrosine kinases. Although SH2B1 performs classical adaptor functions, such as recruitment of specific proteins to activated receptors, it also demonstrates a unique ability to enhance the kinase activity of the cytokine receptor-associated tyrosine kinase JAK2, as well as that of several receptor tyrosine kinases. SH2B1 is also among a small number of adaptor proteins shown to undergo nucleocytoplasmic shuttling, although its exact role within the nucleus is not yet clear. Deletion of the SH2B1 gene results in severe obesity and both leptin and insulin resistance, as well as infertility, which might be a consequence of resistance to insulin-like growth factor I. Thus, knockout mice support a role for SH2B1 as a positive regulator of JAK2 signaling pathways initiated by leptin, as well as of pathways initiated by insulin and, potentially, by insulin-like growth factor I.
Collapse
Affiliation(s)
- Travis J Maures
- Graduate Program in Cellular and Molecular Biology, University of Michigan Medical School, Ann Arbor, MI 48109-0662, USA
| | | | | |
Collapse
|
26
|
Kurzer JH, Saharinen P, Silvennoinen O, Carter-Su C. Binding of SH2-B family members within a potential negative regulatory region maintains JAK2 in an active state. Mol Cell Biol 2006; 26:6381-94. [PMID: 16914724 PMCID: PMC1592834 DOI: 10.1128/mcb.00570-06] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The tyrosine kinase Janus kinase 2 (JAK2) transduces signaling for the majority of known cytokine receptor family members and is constitutively activated in some cancers. Here we examine the mechanisms by which the adapter proteins SH2-Bbeta and APS regulate the activity of JAK2. We show that like SH2-Bbeta, APS binds JAK2 at multiple sites and that binding to phosphotyrosine 813 is essential for APS to increase active JAK2 and to be phosphorylated by JAK2. Binding of APS to a phosphotyrosine 813-independent site inhibits JAK2. Both APS and SH2-Bbeta increase JAK2 activity independent of their N-terminal dimerization domains. SH2-Bbeta-induced increases in JAK2 dimerization require only the SH2 domain and only one SH2-Bbeta to be bound to a JAK2 dimer. JAK2 mutations and truncations revealed that amino acids 809 to 811 in JAK2 are a critical component of a larger regulatory region within JAK2, most likely including amino acids within the JAK homology 1 (JH1) and JH2 domains and possibly the FERM domain. Together, our data suggest that SH2-Bbeta and APS do not activate JAK2 as a consequence of their own dimerization, recruitment of an activator of JAK2, or direct competition with a JAK2 inhibitor for binding to JAK2. Rather, they most likely induce or stabilize an active conformation of JAK2.
Collapse
Affiliation(s)
- Jason H Kurzer
- Department of Molecular and Integrative Physiology, The University of Michigan Medical School, Ann Arbor, MI 48109-0622, USA
| | | | | | | |
Collapse
|
27
|
Lee S, Duhé RJ. Kinase activity and subcellular distribution of a chimeric green fluorescent protein-tagged Janus kinase 2. J Biomed Sci 2006; 13:773-86. [PMID: 16972141 DOI: 10.1007/s11373-006-9111-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2006] [Accepted: 08/09/2006] [Indexed: 11/24/2022] Open
Abstract
Janus kinase 2 (JAK2) is an essential intracellular signal transducer for numerous cytokines and hormones. To examine how JAK2 structural modifications can affect cellular physiology, we created expression vectors for chimeric proteins containing an enhanced green fluorescent protein (EGFP) fused to rat JAK2 (EGFP/rJAK2), and a kinase-inactive variant, EGFP/rJAK2(K882E). The properties of EGFP/rJAK2 were examined following transient transfection of COS-7 cells. EGFP/rJAK2 was expressed throughout the cell, and was found in subcellular membrane, cytosolic and nuclear fractions. Interestingly, EGFP/rJAK2 phosphorylated other proteins in situ without additional cytokine stimulation. Furthermore, despite a much higher level of tyrosine phosphorylation arising from in situ autophosphorylation, the in vitro radiolabelling autokinase activity of EGFP/rJAK2 was significantly less than that of the endogenous JAK2. These results reveal a technical limitation of the application of the "conventional" in vitro radiolabelling autokinase assay to hyperphosphorylated forms of the enzyme and illustrate the potential weaknesses in individual assays commonly used to determine JAK2's enzymatic activity and subcellular distribution. We also suggest that the EGFP/rJAK2 model can be very useful in studying JAK2-related cancers, because its ubiquitous distribution and abnormal constitutive hyperphosphorylation may distinguish it from the cytokine-regulated, membrane-proximal form of JAK2 associated with normal physiology.
Collapse
Affiliation(s)
- Sheeyong Lee
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, 2500 North State St, Jackson, MS 39216, USA
| | | |
Collapse
|
28
|
Hu J, Hubbard SR. Structural basis for phosphotyrosine recognition by the Src homology-2 domains of the adapter proteins SH2-B and APS. J Mol Biol 2006; 361:69-79. [PMID: 16824542 DOI: 10.1016/j.jmb.2006.05.070] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2006] [Revised: 05/30/2006] [Accepted: 05/31/2006] [Indexed: 11/25/2022]
Abstract
SH2-B, APS, and Lnk constitute a family of adapter proteins that modulate signaling by protein tyrosine kinases. These adapters contain an N-terminal dimerization region, a pleckstrin homology domain, and a C-terminal Src homology-2 (SH2) domain. SH2-B is recruited via its SH2 domain to various protein tyrosine kinases, including Janus kinase-2 (Jak2) and the insulin receptor. Here, we present the crystal structure at 2.35 A resolution of the SH2 domain of SH2-B in complex with a phosphopeptide representing the SH2-B recruitment site in Jak2 (pTyr813). The structure reveals a canonical SH2 domain-phosphopeptide binding mode, but with specific recognition of a glutamate at the +1 position relative to phosphotyrosine, in addition to recognition of a hydrophobic residue at the +3 position. Biochemical studies of SH2-B and APS demonstrate that, although the SH2 domains of these two adapter proteins share 79% sequence identity, the SH2-B SH2 domain binds preferentially to Jak2, whereas the APS SH2 domain has higher affinity for the insulin receptor. This differential specificity is attributable to the difference in the oligomeric states of the two SH2 domains: monomeric for SH2-B and dimeric for APS.
Collapse
Affiliation(s)
- Junjie Hu
- Structural Biology Program, Skirball Institute of Biomolecular Medicine, and Department of Pharmacology, New York University School of Medicine, NY 10016, USA.
| | | |
Collapse
|
29
|
Frenzel K, Wallace TA, McDoom I, Xiao HD, Capecchi MR, Bernstein KE, Sayeski PP. A functional Jak2 tyrosine kinase domain is essential for mouse development. Exp Cell Res 2006; 312:2735-44. [PMID: 16887119 DOI: 10.1016/j.yexcr.2006.05.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2005] [Revised: 05/02/2006] [Accepted: 05/02/2006] [Indexed: 12/19/2022]
Abstract
Jak2 is a member of the Janus family of tyrosine kinases and is involved in cytokine signaling. As a part of a study to determine biological functions of Jak2, we used molecular modeling to identify W1038 as a residue that is critical for tyrosine kinase function. Mutation of W1038, in tandem with E1046, generates a dominant-negative form of the Jak2 protein. Mice that were engineered to express two copies of this dominant-negative Jak2 protein died in utero. Additionally, heterozygous mice expressing Jak2 with kinase activity that is moderately reduced when compared to wild-type activity appear phenotypically normal. Collectively, these data suggest that Jak2 kinase activity is essential for normal mammalian development.
Collapse
Affiliation(s)
- Kristen Frenzel
- Department of Pathology, Emory University, Atlanta, GA 30322, USA.
| | | | | | | | | | | | | |
Collapse
|
30
|
Affiliation(s)
- Ralph Arlinghaus
- Department of Molecular Pathology, The University of Texas M.D. Anderson Cancer Center, Houston, USA
| | | |
Collapse
|
31
|
Miquet JG, Sotelo AI, Bartke A, Turyn D. Desensitization of the JAK2/STAT5 GH signaling pathway associated with increased CIS protein content in liver of pregnant mice. Am J Physiol Endocrinol Metab 2005; 289:E600-7. [PMID: 15899943 DOI: 10.1152/ajpendo.00085.2005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Chronic exposure to growth hormone (GH) was related to the desensitization of the JAK2/STAT5 signaling pathway in liver, as demonstrated in cells, female rats, and transgenic mice overexpressing GH. The cytokine-induced suppressor (CIS) is considered a major mediator of this desensitization. Pregnancy is accompanied by an increment in GH circulating levels, which were reported to be associated with hepatic GH resistance, although the molecular mechanisms involved in this resistance are not clearly elucidated. We thus evaluated the JAK2/STAT5b signaling pathway and its regulation by the suppressors of cytokine signaling (SOCS)/CIS family and the JAK2-interacting protein SH2-Bbeta in pregnant mouse liver, a model with physiological prolonged exposure to high GH levels. Basal tyrosyl phosphorylation levels of JAK2 and STAT5b in pregnant mice were similar to values obtained for virgin animals, in spite of the important increment of GH they exhibit. Moreover, these signaling mediators were not phosphorylated upon GH stimulation in pregnant mice. A 3.3-fold increase of CIS protein content was found for pregnant mice, whereas the abundance of the other SOCS proteins analyzed and SH2-Bbeta did not significantly change compared with virgin animals. The desensitization of the JAK2/STAT5b GH signaling pathway observed in pregnant mice would then be mainly related to increased CIS levels rather than to the other regulatory proteins examined.
Collapse
Affiliation(s)
- Johanna G Miquet
- Instituto de Química y Fisicoquímica Biológicas, University of Buenos Aires-Consejo Nacional de Investigaciones Cientificar y Techicas (CONICET), Buenos Aires, Argentina
| | | | | | | |
Collapse
|
32
|
Nishi M, Werner ED, Oh BC, Frantz JD, Dhe-Paganon S, Hansen L, Lee J, Shoelson SE. Kinase activation through dimerization by human SH2-B. Mol Cell Biol 2005; 25:2607-21. [PMID: 15767667 PMCID: PMC1061652 DOI: 10.1128/mcb.25.7.2607-2621.2005] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The isoforms of SH2-B, APS, and Lnk form a family of signaling proteins that have been described as activators, mediators, or inhibitors of cytokine and growth factor signaling. We now show that the three alternatively spliced isoforms of human SH2-B readily homodimerize in yeast two-hybrid and cellular transfections assays, and this is mediated specifically by a unique domain in its amino terminus. Consistent with previous reports, we further show that the SH2 domains of SH2-B and APS bind JAK2 at Tyr813. These findings suggested a model in which two molecules of SH2-B or APS homodimerize with their SH2 domains bound to two JAK2 molecules, creating heterotetrameric JAK2-(SH2-B)2-JAK2 or JAK2-(APS)2-JAK2 complexes. We further show that APS and SH2-B isoforms heterodimerize. At lower levels of SH2-B or APS expression, dimerization approximates two JAK2 molecules to induce transactivation. At higher relative concentrations of SH2-B or APS, kinase activation is blocked. SH2-B or APS homodimerization and SH2-B/APS heterodimerization thus provide direct mechanisms for activating and inhibiting JAK2 and other kinases from the inside of the cell and for potentiating or attenuating cytokine and growth factor receptor signaling when ligands are present.
Collapse
Affiliation(s)
- Masahiro Nishi
- Joslin Diabetes Center, One Joslin Place, Boston, MA 02215, USA
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Dunn SL, Björnholm M, Bates SH, Chen Z, Seifert M, Myers MG. Feedback inhibition of leptin receptor/Jak2 signaling via Tyr1138 of the leptin receptor and suppressor of cytokine signaling 3. Mol Endocrinol 2004; 19:925-38. [PMID: 15604114 DOI: 10.1210/me.2004-0353] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Leptin is an adipocyte-derived hormone that communicates the status of body energy stores to the brain to regulate feeding and energy balance. The inability of elevated leptin levels to adequately suppress feeding in obesity suggests attenuation of leptin action under these conditions; the activation of feedback circuits due to high leptin levels could contribute to this leptin resistance. Using cultured cells exogenously expressing the long form of the leptin receptor (LRb) or an erythropoietin receptor/LRb chimera, we show that chronic stimulation results in the attenuation of LRb signaling and the establishment of a state in which the receptor is refractory to reactivation. Mutation of LRb Tyr1138 (the site that recruits signal transducer and activator of transcription 3) alleviated this feedback inhibition, suggesting that signal transducer and activator of transcription 3 mediates the induction of a feedback inhibitor, such as suppressor of cytokine signaling 3 (SOCS3), during chronic LRb stimulation. Indeed, manipulation of the expression or activity of the LRb-binding tyrosine phosphatase, SH2-domain containing phosphatase-2, by overexpression of wild-type and dominant negative isoforms or RNA interference-mediated knockdown did not alter the attenuation of LRb signals. In contrast, SOCS3 overexpression repressed LRb signaling, whereas RNA interference-mediated knockdown of SOCS3 resulted in increased LRb signaling that was not attenuated during chronic ligand stimulation. These data suggest that Tyr1138 of LRb and SOCS3 represent major effector pathways for the feedback inhibition of LRb signaling. Furthermore, we show that mice expressing an LRb isoform mutant for Tyr1138 display increased activity of the leptin-dependent growth and immune axes, suggesting that Tyr1138-mediated feedback inhibition may regulate leptin sensitivity in vivo.
Collapse
Affiliation(s)
- Sarah L Dunn
- Division of Metabolism, Endocrinology and Diabetes, Department of Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109-0638, USA
| | | | | | | | | | | |
Collapse
|
34
|
Abstract
GH plays a pivotal role in regulating body growth and development, which is modulated by sex steroids. A close interplay between estrogen and GH leads to attainment of gender-specific body composition during puberty. The physiological basis of the interaction is not well understood. Most previous studies have focused on the effects of estrogen on GH secretion. There is also strong evidence that estrogen modulates GH action independent of secretion. Oral but not transdermal administration of estrogen impairs the metabolic action of GH in the liver, causing a fall in IGF-I production and fat oxidation. This results in a loss of lean tissue and a gain of body fat in postmenopausal women and an impairment of GH effect in hypopituitary women on GH replacement. The negative metabolic sequelae are potentially important because of the widespread use of oral estrogen and estrogen-related compounds. Estrogen affects GH action at the level of receptor expression and signaling. More recently, estrogen has been shown to inhibit Janus kinase/signal transducer and activator of transcription signaling by GH via the induction of suppressor of cytokine signaling-2, a protein inhibitor for cytokine signaling. This represents a novel paradigm of steroid regulation of cytokine receptors and is likely to have significance for a diverse range of cytokine function.
Collapse
Affiliation(s)
- Kin-Chuen Leung
- Pituitary Research Unit, Garvan Institute of Medical Research, St. Vincent's Hospital, Sydney, New South Wales 2010, Australia
| | | | | | | |
Collapse
|
35
|
Duan C, Li M, Rui L. SH2-B promotes insulin receptor substrate 1 (IRS1)- and IRS2-mediated activation of the phosphatidylinositol 3-kinase pathway in response to leptin. J Biol Chem 2004; 279:43684-91. [PMID: 15316008 PMCID: PMC3874232 DOI: 10.1074/jbc.m408495200] [Citation(s) in RCA: 134] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Leptin regulates energy homeostasis primarily by binding and activating its long form receptor (LRb). Deficiency of either leptin or LRb causes morbid obesity. Leptin stimulates LRb-associated JAK2, thus initiating multiple pathways including the Stat3 and phosphatidylinositol (PI) 3-kinase pathways that mediate leptin biological actions. Here we report that SH2-B, a JAK2-interacting protein, promotes activation of the PI 3-kinase pathway by recruiting insulin receptor substrate 1 (IRS1) and IRS2 in response to leptin. SH2-B directly bound, via its PH and SH2 domain, to both IRS1 and IRS2 both in vitro and in intact cells and mediated formation of a JAK2/SH2-B/IRS1 or IRS2 tertiary complex. Consequently, SH2-B dramatically enhanced leptin-stimulated tyrosine phosphorylation of IRS1 and IRS2 in HEK293 cells stably expressing LRb, thus promoting association of IRS1 and IRS2 with the p85 regulatory subunit of PI 3-kinase and phosphorylation and activation of Akt. SH2-B mutants with lower affinity for IRS1 and IRS2 exhibited reduced ability to promote association of JAK2 with IRS1, tyrosine phosphorylation of IRS1, and association of IRS1 with p85 in response to leptin. Moreover, deletion of the SH2-B gene impaired leptin-stimulated tyrosine phosphorylation of endogenous IRS1 in mouse embryonic fibroblasts (MEF), which was reversed by reintroduction of SH2-B. Similarly, SH2-B promoted growth hormone-stimulated tyrosine phosphorylation of IRS1 in both HEK293 and MEF cells. Our data suggest that SH2-B is a novel mediator of the PI 3-kinase pathway in response to leptin or other hormones and cytokines that activate JAK2.
Collapse
Affiliation(s)
| | | | - Liangyou Rui
- To whom correspondence should be addressed. Tel.: 734-615-7544; Fax: 734-647-9523;
| |
Collapse
|
36
|
Kurzer JH, Argetsinger LS, Zhou YJ, Kouadio JLK, O'Shea JJ, Carter-Su C. Tyrosine 813 is a site of JAK2 autophosphorylation critical for activation of JAK2 by SH2-B beta. Mol Cell Biol 2004; 24:4557-70. [PMID: 15121872 PMCID: PMC400461 DOI: 10.1128/mcb.24.10.4557-4570.2004] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The tyrosine kinase Janus kinase 2 (JAK2) binds to the majority of the known members of the cytokine family of receptors. Ligand-receptor binding leads to activation of the associated JAK2 molecules, resulting in rapid autophosphorylation of multiple tyrosines within JAK2. Phosphotyrosines can then serve as docking sites for downstream JAK2 signaling molecules. Despite the importance of these phosphotyrosines in JAK2 function, only a few sites and binding partners have been identified. Using two-dimensional phosphopeptide mapping and a phosphospecific antibody, we identified tyrosine 813 as a site of JAK2 autophosphorylation of overexpressed JAK2 and endogenous JAK2 activated by growth hormone. Tyrosine 813 is contained within a YXXL sequence motif associated with several other identified JAK2 phosphorylation sites. We show that phosphorylation of tyrosine 813 is required for the SH2 domain-containing adapter protein SH2-B beta to bind JAK2 and to enhance the activity of JAK2 and STAT5B. The homologous tyrosine in JAK3, tyrosine 785, is autophosphorylated in response to interleukin-2 stimulation and is required for SH2-B beta to bind JAK3. Taken together these data strongly suggest that tyrosine 813 is a site of autophosphorylation in JAK2 and is the SH2-B beta-binding site within JAK2 that is required for SH2-B beta to enhance activation of JAK2.
Collapse
Affiliation(s)
- Jason H Kurzer
- Graduate Program in Cellular and Molecular Biology, University of Michigan Medical School, Ann Arbor, Michigan 48109-0662, USA
| | | | | | | | | | | |
Collapse
|
37
|
Chen L, Carter-Su C. Adapter protein SH2-B beta undergoes nucleocytoplasmic shuttling: implications for nerve growth factor induction of neuronal differentiation. Mol Cell Biol 2004; 24:3633-47. [PMID: 15082760 PMCID: PMC387738 DOI: 10.1128/mcb.24.9.3633-3647.2004] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The adapter protein SH2-B has been shown to bind to activated nerve growth factor (NGF) receptor TrkA and has been implicated in NGF-induced neuronal differentiation and the survival of sympathetic neurons. However, the mechanism by which SH2-B enhances and maintains neurite outgrowth is unclear. We examined the ability of truncation mutants to regulate neuronal differentiation and observed that certain truncation mutants localized in the nucleus rather than in the cytoplasm or at the plasma membrane as reported for wild-type SH2-B beta. Addition of the nuclear export inhibitor leptomycin B caused both overexpressed wild-type and endogenous SH2-B beta to accumulate in the nucleus of both PC12 cells and COS-7 cells as did deletion of a putative nuclear export sequence (amino acids 224 to 233) or mutation of two critical lysines in that sequence. Deleting or mutating the nuclear export signal caused SH2-B beta to lose its ability to enhance NGF-induced differentiation of PC12 cells. Neither the NGF-induced phosphorylation of ERKs 1 and 2 nor their subcellular distribution was altered in PC12 cells stably expressing the nuclear export-defective SH2-B beta(L231A, L233A). These data provide strong evidence that SH2-B beta shuttles constitutively between the nucleus and cytoplasm. However, SH2-B beta needs continuous access to the cytoplasm and/or plasma membrane to participate in NGF-induced neurite outgrowth. These data also suggest that the stimulatory effect of SH2-B beta on NGF-induced neurite outgrowth of PC12 cells is either downstream of ERKs or via some other pathway yet to be identified.
Collapse
Affiliation(s)
- Linyi Chen
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan 48109-0622, USA
| | | |
Collapse
|
38
|
Ling L, Lobie PE. RhoA/ROCK activation by growth hormone abrogates p300/histone deacetylase 6 repression of Stat5-mediated transcription. J Biol Chem 2004; 279:32737-50. [PMID: 15102857 DOI: 10.1074/jbc.m400601200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We demonstrate here that growth hormone (GH) stimulates the activation of RhoA and its substrate Rho kinase (ROCK) in NIH-3T3 cells. GH-stimulated formation of GTP-bound RhoA requires JAK2-dependent dissociation of RhoA from its negative regulator p190 RhoGAP. Inactivation of RhoA does not affect GH-stimulated JAK2 tyrosine phosphorylation nor p44/42 MAPK activity. However, RhoA and ROCK activities are required for GH-stimulated, Stat5-mediated transcription. RhoA-dependent enhancement of GH-stimulated, Stat5-mediated transcription is due to repression of histone deacetylase 6 activity recruited by transcription cofactor p300 that negatively regulates GH-stimulated, Stat5-mediated transcription. We also demonstrate that RhoA is the pivot for cAMP-dependent protein kinase inhibition of GH-stimulated, Stat5-mediated transcription as a consequence of cAMP-dependent protein kinase inactivation of RhoA through serine residue 188 of RhoA. We have therefore provided a novel mechanism by which a Ras-like small GTPase, RhoA, can regulate Stat5-mediated transcription.
Collapse
Affiliation(s)
- Ling Ling
- Institute of Molecular and Cell Biology, 30 Medical Drive, Singapore 117609, Republic of Singapore
| | | |
Collapse
|
39
|
Ling L, Zhu T, Lobie PE. Src-CrkII-C3G-dependent activation of Rap1 switches growth hormone-stimulated p44/42 MAP kinase and JNK/SAPK activities. J Biol Chem 2003; 278:27301-11. [PMID: 12734187 DOI: 10.1074/jbc.m302516200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We demonstrate here that growth hormone (GH) stimulates the activation of Rap1 and Rap2 in NIH-3T3 cells. Full activation of Rap1 and Rap2 by GH necessitated the combined activity of both JAK2 and c-Src kinases, although c-Src was predominantly required. GH-stimulated Rap1 and Rap2 activity was also demonstrated to be CrkII-C3G-dependent. GH stimulated the tyrosine phosphorylation of C3G, which again required the combined activity of JAK2 and c-Src. C3G tyrosine residue 504 was required for GH-stimulated Rap activation. Activated Rap1 inhibited GH-stimulated activation of RalA and subsequent GH-stimulated p44/42 MAP kinase activity and Elk-1-mediated transcription. In addition, we demonstrated that C3G-Rap1 mediated CrkII enhancement of GH-stimulated JNK/SAPK activity. We have therefore identified a linear JAK2-independent pathway switching GH-stimulated p44/42 MAP kinase and JNK/SAPK activities.
Collapse
Affiliation(s)
- Ling Ling
- Institute of Molecular and Cell Biology, 30 Medical Drive, Singapore 117609
| | | | | |
Collapse
|
40
|
O'Brien KB, Argetsinger LS, Diakonova M, Carter-Su C. YXXL motifs in SH2-Bbeta are phosphorylated by JAK2, JAK1, and platelet-derived growth factor receptor and are required for membrane ruffling. J Biol Chem 2003; 278:11970-8. [PMID: 12551917 DOI: 10.1074/jbc.m210765200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
SH2-Bbeta binds to the activated form of JAK2 and various receptor tyrosine kinases. It is a potent stimulator of JAK2, is required for growth hormone (GH)-induced membrane ruffling, and increases mitogenesis stimulated by platelet-derived growth factor (PDGF) and insulin-like growth factor I. Its domain structure suggests that SH2-Bbeta may act as an adapter protein to recruit downstream signaling proteins to kinase.SH2-Bbeta complexes. SH2-Bbeta is tyrosyl-phosphorylated in response to GH and interferon-gamma, stimulators of JAK2, as well as in response to PDGF and nerve growth factor. To begin to elucidate the role of tyrosyl phosphorylation in the function of SH2-Bbeta, we used phosphopeptide mapping, mutagenesis, and a phosphotyrosine-specific antibody to identify Tyr-439 and Tyr-494 in SH2-Bbeta as targets of JAK2 both in vitro and in intact cells. SH2-Bbeta lacking Tyr-439 and Tyr-494 inhibits GH-induced membrane ruffling but still activates JAK2. We provide evidence that JAK1, like JAK2, phosphorylates Tyr-439 and Tyr-494 in SH2-Bbeta and that PDGF receptor phosphorylates SH2-Bbeta on Tyr-439. Therefore, phosphorylated Tyr-439 and/or Tyr-494 in SH2-Bbeta may provide a binding site for one or more proteins linking cytokine receptor.JAK2 complexes and/or receptor tyrosine kinases to the actin cytoskeleton.
Collapse
Affiliation(s)
- Karen B O'Brien
- Department of Physiology, University of Michigan Medical School, Ann Arbor, Michigan 49109-0622, USA
| | | | | | | |
Collapse
|
41
|
Carpino N, Kobayashi R, Zang H, Takahashi Y, Jou ST, Feng J, Nakajima H, Ihle JN. Identification, cDNA cloning, and targeted deletion of p70, a novel, ubiquitously expressed SH3 domain-containing protein. Mol Cell Biol 2002; 22:7491-500. [PMID: 12370296 PMCID: PMC135669 DOI: 10.1128/mcb.22.21.7491-7500.2002] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
In a screen for proteins that interact with Jak2, we identified a previously uncharacterized 70-kDa protein and cloned the corresponding cDNA. The predicated sequence indicates that p70 contains an SH3 domain and a C-terminal domain with similarities to the catalytic motif of phosphoglycerate mutase. p70 transcripts were found in all tissues examined. Similarly, when an antibody raised against a C-terminal peptide to analyze p70 protein expression was used, all murine tissues examined were found to express p70. To investigate the in vivo role of p70, we generated a p70-deficient mouse strain. Mice lacking p70 are viable, develop normally, and do not display any obvious abnormalities. No differences were detected in various hematological parameters, including bone marrow colony-forming ability, in response to cytokines that utilize Jak2. In addition, no impairment in B- and T-cell development and proliferative ability was detected.
Collapse
Affiliation(s)
- Nick Carpino
- Department of Biochemistry, St. Jude Children's Research Hospital, and University of Tennessee Health Science Center, Memphis, Tennessee 38105, USA
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Xie S, Lin H, Sun T, Arlinghaus RB. Jak2 is involved in c-Myc induction by Bcr-Abl. Oncogene 2002; 21:7137-46. [PMID: 12370803 DOI: 10.1038/sj.onc.1205942] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2002] [Revised: 07/31/2002] [Accepted: 08/07/2002] [Indexed: 11/09/2022]
Abstract
We have previously shown that the Jak2 tyrosine kinase is activated in Bcr-Abl positive cell lines and blood cells from CML blast crisis patients by tyrosine phosphorylation. We are searching for downstream targets of Jak2 in Bcr-Abl positive cells. It is known that c-Myc expression is required for the oncogenic effects of Bcr-Abl, and that over-expression of c-Myc complements the transformation defect of the Bcr-Abl SH2 deletion mutant. Moreover, the Bcr-Abl SH2 deletion mutant and an Abl C-terminal deletion mutant are deficient in activating c-Myc expression. Since the Jak2 binds to the C-terminal domain of Bcr-Abl and optimal Jak2 activation requires the SH2 domain, we tested whether Jak2 was involved in c-Myc protein induction by Bcr-Abl. We treated the 32Dp210 Bcr-Abl cells with the Jak2 specific tyrosine kinase inhibitor, AG490, and found that this drug, like the Abl tyrosine kinase inhibitor STI-571, inhibited c-Myc protein induction by Bcr-Abl. Treatment of 32Dp210 Bcr-Abl cells with AG490 also inhibited c-MYC RNA expression. It is also known that c-Myc protein is a labile protein that is increased in amounts in response to various growth factors by a mechanism not involving new Myc protein formation. Treatment of 32Dp210 Bcr-Abl cells with both the proteasome inhibitor MG132 and AG490 blocked the reduction of the c-Myc protein observed by AG490 alone. An adaptor protein SH2-Bbeta is involved in the enhancement of the tyrosine kinase activity of Jak2 following ligand/receptor interaction. In this regard we showed that the Jak2/Bcr-Abl complex contains SH2-Bbeta. Expression of the SH2-Bbeta R555E mutant in 32Dp210 Bcr-Abl cells reduced c-Myc expression about 40% compared to a vector control. Interestingly, we found the reduction of the c-Myc protein in several clones of dominant-negative (DN) Jak2 expressing K562 cells correlated very well with the reduction of tumor growth of these cells in nude mice as compared to vector transfected K562 cells. Both STI-571 and AG490 also induced apoptosis in 32Dp210 cells. Of interest, IL-3 containing medium reversed the STI-571 induced apoptosis of 32Dp210 cells but did not reverse the induction of apoptosis by AG490, which strongly supports the specificity of the inhibitory effects of AG490 on the Jak2 tyrosine kinase. In summary, our findings indicate that Jak2 mediates the increase in c-Myc expression that is induced by Bcr-Abl. Our results indicate that activated Jak2 not only mediates an increase of c-MYC RNA expression but also interferes with proteasome-dependent degradation of c-Myc protein.
Collapse
Affiliation(s)
- Shanhai Xie
- Department of Molecular Pathology, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Blvd, Houston, Texas, TX 77030, USA
| | | | | | | |
Collapse
|
43
|
Kong M, Wang CS, Donoghue DJ. Interaction of fibroblast growth factor receptor 3 and the adapter protein SH2-B. A role in STAT5 activation. J Biol Chem 2002; 277:15962-70. [PMID: 11827956 DOI: 10.1074/jbc.m102777200] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Fibroblast growth factor receptor 3 (FGFR3) influences a diverse array of biological processes, including cell growth, differentiation, and migration. Activating mutations in FGFR3 are associated with multiple myeloma, cervical carcinoma, and bladder cancer. To identify proteins that interact with FGFR3 and which may mediate FGFR3-dependent signaling, a yeast two-hybrid screen was employed using the cytoplasmic kinase domain of FGFR3 as bait. We identified the adapter protein SH2-B as an FGFR3-interacting protein. Coimmunoprecipitation experiments demonstrate binding of the SH2-B beta isoform to FGFR3 in 293T cells. Tyrosine phosphorylation of SH2-B beta was observed when coexpressed with activated FGFR3 mutants such as the weakly activated mutant N540K or the strongly activated mutant K650E, both associated with human developmental syndromes. The extent of tyrosine phosphorylation of SH2-B beta correlates with receptor activation, suggesting that FGFR3 activation mediates tyrosine phosphorylation of SH2-B beta. Furthermore, two tyrosine phosphorylation sites of FGFR3, Tyr-724 and Tyr-760, are required for optimal binding of the Src homology-2 (SH2) domain of SH2-B beta. We also demonstrate the phosphorylation and nuclear translocation of Stat5 by activated FGFR3, which increases in response to overexpression of SH2-B beta. Taken together, our results identify SH2-B beta as a novel FGFR3 binding partner that mediates signal transduction.
Collapse
Affiliation(s)
- Monica Kong
- Department of Chemistry and Biochemistry, Center for Molecular Genetics, University of California San Diego, La Jolla, California 92093-0367, USA
| | | | | |
Collapse
|
44
|
Ohtsuka S, Takaki S, Iseki M, Miyoshi K, Nakagata N, Kataoka Y, Yoshida N, Takatsu K, Yoshimura A. SH2-B is required for both male and female reproduction. Mol Cell Biol 2002; 22:3066-77. [PMID: 11940664 PMCID: PMC133757 DOI: 10.1128/mcb.22.9.3066-3077.2002] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Many growth factors and hormones modulate the reproductive status in mammals. Among these, insulin and insulin-like growth factor I (IGF-I) regulate the development of gonadal tissues. SH2-B has been shown to interact with insulin and IGF-I receptors, although the role of SH2-B in these signals has not been clarified. To investigate the role of SH2-B, we generated mice with a targeted disruption of the SH2-B gene. Both male and female SH2-B(-/-) mice showed slight retardation in growth and impaired fertility. Female knockout mice possess small, anovulatory ovaries with reduced numbers of follicles and male SH2-B(-/-) mice have small testes with a reduced number of sperm. SH2-B(-/-) cumulus cells do not respond to either follicle-stimulating hormone or IGF-I. These data suggest that SH2-B plays a critical role in the IGF-I-mediated reproductive pathway in mice.
Collapse
Affiliation(s)
- Satoshi Ohtsuka
- Division of Molecular Genetics, Institute of Life Science, Kurume University, Kurume 839-0861, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Diakonova M, Gunter DR, Herrington J, Carter-Su C. SH2-Bbeta is a Rac-binding protein that regulates cell motility. J Biol Chem 2002; 277:10669-77. [PMID: 11786545 DOI: 10.1074/jbc.m111138200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The Src homology 2 (SH2) domain-containing protein SH2-Bbeta binds to and is a substrate of the growth hormone (GH) and cytokine receptor-associated tyrosine kinase JAK2. SH2-Bbeta also binds, via its SH2 domain, to multiple activated growth factor receptor tyrosine kinases. We have previously implicated SH2-Bbeta in GH and platelet-derived growth factor regulation of the actin cytoskeleton. We extend these findings by establishing a potentiating effect of SH2-Bbeta on GH-dependent cell motility and defining regions of SH2-Bbeta required for this potentiation. Time-lapse video microscopy, phagokinetic, and/or wounding assays demonstrate reduced movement of cells overexpressing SH2-Bbeta lacking an intact SH2 domain because of a point mutation or a C-terminal truncation. An N-terminal proline-rich domain (amino acids 85-106) of SH2-Bbeta is required for inhibition of cellular motility by SH2 domain-deficient mutants. Co-immunoprecipitation experiments indicate that Rac binds to this domain. GH is shown to activate endogenous Rac, and dominant negative mutants of SH2-Bbeta are shown to inhibit membrane ruffling induced by constitutively active Rac. These findings suggest that SH2-Bbeta is an adapter protein that facilitates actin rearrangement and cellular motility by recruiting Rac and potentially Rac-regulating, Rac effector, or other actin-regulating proteins to activated cytokine (e.g. GH) and growth factor receptors.
Collapse
Affiliation(s)
- Maria Diakonova
- Department of Physiology, University of Michigan Medical School, Ann Arbor, Michigan 48109-0622, USA
| | | | | | | |
Collapse
|
46
|
O'Brien KB, O'Shea JJ, Carter-Su C. SH2-B family members differentially regulate JAK family tyrosine kinases. J Biol Chem 2002; 277:8673-81. [PMID: 11751854 DOI: 10.1074/jbc.m109165200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Activation of JAK tyrosine kinases is an essential step in cell signaling by multiple hormones, cytokines, and growth factors, including growth hormone (GH) and interferon-gamma. Previously, we identified SH2-B beta as a potent activator of JAK2 (Rui, L., and Carter-Su, C. (1999) Proc. Natl. Acad. Sci. U.S.A. 96, 7172-7177). Here, we investigated whether the activation of JAK2 by SH2-B beta is specific to JAK2 and SH2-B beta or extends to other JAKs or other members of the SH2-B beta family. When SH2-B beta was overexpressed with JAK1 or JAK3, SH2-B beta failed to increase their activity. However, SH2-B beta bound to both and was tyrosyl-phosphorylated by JAK1. In contrast to SH2-B beta, APS decreased tyrosyl phosphorylation of GH-stimulated JAK2 as well as Stat5B, a substrate of JAK2. APS also decreased tyrosyl phosphorylation of JAK1, but did not affect the activity or tyrosyl phosphorylation of JAK3. Overexpressed APS bound to and was tyrosyl-phosphorylated by all three JAKs. Consistent with these data, in 3T3-F442A adipocytes, endogenous APS was tyrosyl-phosphorylated in response to GH and interferon-gamma. These results suggest that 1) SH2-B beta specifically activates JAK2, 2) APS negatively regulates both JAK2 and JAK1, and 3) both SH2-B beta and APS may serve as adapter proteins for all three JAKs independent of any role they have in JAK activity.
Collapse
Affiliation(s)
- Karen B O'Brien
- Department of Physiology, University of Michigan Medical School, Ann Arbor, Michigan 48109-0622, USA
| | | | | |
Collapse
|
47
|
Yousaf N, Deng Y, Kang Y, Riedel H. Four PSM/SH2-B alternative splice variants and their differential roles in mitogenesis. J Biol Chem 2001; 276:40940-8. [PMID: 11502739 DOI: 10.1074/jbc.m104191200] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
An SH2 domain originally termed SH2-B had been identified as a direct cellular binding target of a number of mostly mitogenic receptors. The complete cellular protein, termed PSM, and respective sequence variants share additional Pro-rich and PH regions, as well as similarities with APS and Lnk. A role of these mediators has been implicated in signaling pathways found downstream of growth hormone receptor and receptor tyrosine kinases, including the insulin, insulin-like growth factor-I (IGF-I), platelet-derived growth factor (PDGF), nerve growth factor, hepatocyte growth factor, and fibroblast growth factor receptors. As a result of this report a total of four PSM/SH2-B sequence variants termed alpha, beta, gamma, and delta have now been identified in the mouse and have been compared with the available rat and human sequences. Variant differences are based on alternative splicing and define distinct last exons 7, 8, and 9 that result in reading frameshifts and unique carboxyl-terminal amino acid sequences. Variant sequences have been identified from cDNA libraries and directly by reverse transcription-polymerase chain reaction. Sequence analysis predicts four distinctly sized protein products that have been demonstrated after cDNA expression. All were found phosphorylated on tyrosine specifically in response to IGF-I and PDGF stimulation. cDNA expression of the four variants caused variant-dependent levels of stimulation of IGF-I- and PDGF-induced mitogenesis. The most pronounced increase in mitogenesis was consistently observed for the gamma variant followed by delta, alpha, and beta with decreasing responses. In contrast, the mitogenic response to epidermal growth factor consistently remained unaffected. The variants are expressed in most mouse tissues, typically, most strongly in pairs of alpha and delta or beta and gamma. Our findings implicate differential roles of the PSM/SH2-B splice variants in specific mitogenic signaling pathways.
Collapse
Affiliation(s)
- N Yousaf
- Department of Biological Sciences, Wayne State University, Detroit, Michigan 48202, USA
| | | | | | | |
Collapse
|
48
|
Abstract
Rapid progress has been made recently in the definition of growth hormone (GH) receptor signal transduction pathways. It is now apparent that many cytokines, including GH, share identical or similar signalling components to exert their cellular effects. This review provides a brief discourse on the signal transduction pathways, which have been demonstrated to be utilized by GH. The identification of such pathways provides a basis for understanding the pleiotropic actions of GH. The mechanisms by which the specific cellular effects of GH are achieved remain to be elucidated.
Collapse
Affiliation(s)
- T Zhu
- Institute of Molecular and Cell Biology, 30 Medical Drive, Singapore 117609, Singapore
| | | | | | | | | |
Collapse
|
49
|
Rudd CE. Lnk adaptor: novel negative regulator of B cell lymphopoiesis. SCIENCE'S STKE : SIGNAL TRANSDUCTION KNOWLEDGE ENVIRONMENT 2001; 2001:pe1. [PMID: 11752654 DOI: 10.1126/stke.2001.85.pe1] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Originally thought to have the functions now ascribed to the linker for activation of T cells protein (LAT), Lnk is coming into its own as an adaptor protein that mediates signaling through several receptor pathways. An essential role for Lnk in B cell development and maturation was recently uncovered by Perlmutter and colleagues. Rudd discusses the role of Lnk in B cells and hypothesizes a mechanism whereby Lnk, and its closely related protein family members, the adaptor molecules containing pleckstrin homology (PH) and Src-homology 2 (SH2) domains (APS), and Src-homology 2-B protein (SH2-B), may mediate signal promotion or attenuation.
Collapse
Affiliation(s)
- C E Rudd
- Department of Pathology, Harvard Medical School, Boston MA 02115, USA.
| |
Collapse
|
50
|
Affiliation(s)
- J J Kopchick
- Edison Biotechnology Institute, Ohio University, Athens, Ohio 45701, USA
| | | |
Collapse
|