1
|
Martins RS, Jesus TT, Cardoso L, Soares P, Vinagre J. Personalized Medicine in Medullary Thyroid Carcinoma: A Broad Review of Emerging Treatments. J Pers Med 2023; 13:1132. [PMID: 37511745 PMCID: PMC10381735 DOI: 10.3390/jpm13071132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/08/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Medullary thyroid carcinoma (MTC) arises from parafollicular cells in the thyroid gland, and although rare, it represents an aggressive type of thyroid cancer. MTC is recognized for its low mutational burden, with point mutations in RET or RAS genes being the most common oncogenic events. MTC can be resistant to cytotoxic chemotherapy, and multitarget kinase inhibitors (MKIs) have been considered a treatment option. They act by inhibiting the activities of specific tyrosine kinase receptors involved in tumor growth and angiogenesis. Several tyrosine kinase inhibitors are approved in the treatment of advanced MTC, including vandetanib and cabozantinib. However, due to the significant number of adverse events, debatable efficiency and resistance, there is a need for novel RET-specific TKIs. Newer RET-specific TKIs are expected to overcome previous limitations and improve patient outcomes. Herein, we aim to review MTC signaling pathways, the most recent options for treatment and the applications for personalized medicine.
Collapse
Affiliation(s)
- Rui Sousa Martins
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (Ipatimup), 4200-135 Porto, Portugal
- Faculdade de Ciências da Universidade do Porto (FCUP), 4169-007 Porto, Portugal
| | - Tito Teles Jesus
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (Ipatimup), 4200-135 Porto, Portugal
| | - Luís Cardoso
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (Ipatimup), 4200-135 Porto, Portugal
- Departamento de Endocrinologia, Diabetes e Metabolismo do Centro Hospitalar Universitário de Coimbra, 3000-075 Coimbra, Portugal
| | - Paula Soares
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (Ipatimup), 4200-135 Porto, Portugal
- Faculdade de Medicina da Universidade do Porto (FMUP), 4200-319 Porto, Portugal
| | - João Vinagre
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (Ipatimup), 4200-135 Porto, Portugal
- Faculdade de Medicina da Universidade do Porto (FMUP), 4200-319 Porto, Portugal
| |
Collapse
|
2
|
Pecar G, Liu S, Hooda J, Atkinson JM, Oesterreich S, Lee AV. RET signaling in breast cancer therapeutic resistance and metastasis. Breast Cancer Res 2023; 25:26. [PMID: 36918928 PMCID: PMC10015789 DOI: 10.1186/s13058-023-01622-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 02/16/2023] [Indexed: 03/15/2023] Open
Abstract
RET, a single-pass receptor tyrosine kinase encoded on human chromosome 10, is well known to the field of developmental biology for its role in the ontogenesis of the central and enteric nervous systems and the kidney. In adults, RET alterations have been characterized as drivers of non-small cell lung cancer and multiple neuroendocrine neoplasms. In breast cancer, RET signaling networks have been shown to influence diverse functions including tumor development, metastasis, and therapeutic resistance. While RET is known to drive the development and progression of multiple solid tumors, therapeutic agents selectively targeting RET are relatively new, though multiple multi-kinase inhibitors have shown promise as RET inhibitors in the past; further, RET has been historically neglected as a potential therapeutic co-target in endocrine-refractory breast cancers despite mounting evidence for a key pathologic role and repeated description of a bi-directional relationship with the estrogen receptor, the principal driver of most breast tumors. Additionally, the recent discovery of RET enrichment in breast cancer brain metastases suggests a role for RET inhibition specific to advanced disease. This review assesses the status of research on RET in breast cancer and evaluates the therapeutic potential of RET-selective kinase inhibitors across major breast cancer subtypes.
Collapse
Affiliation(s)
- Geoffrey Pecar
- Women's Cancer Research Center, UPMC Hillman Cancer Center and Magee-Womens Research Institute, Pittsburgh, PA, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, The Assembly, Room 2051, 5051 Centre Avenue, Pittsburgh, PA, 15213, USA
| | - Simeng Liu
- Women's Cancer Research Center, UPMC Hillman Cancer Center and Magee-Womens Research Institute, Pittsburgh, PA, USA
- School of Medicine, Tsinghua University, Beijing, China
- School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jagmohan Hooda
- Women's Cancer Research Center, UPMC Hillman Cancer Center and Magee-Womens Research Institute, Pittsburgh, PA, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, The Assembly, Room 2051, 5051 Centre Avenue, Pittsburgh, PA, 15213, USA
| | - Jennifer M Atkinson
- Women's Cancer Research Center, UPMC Hillman Cancer Center and Magee-Womens Research Institute, Pittsburgh, PA, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, The Assembly, Room 2051, 5051 Centre Avenue, Pittsburgh, PA, 15213, USA
| | - Steffi Oesterreich
- Women's Cancer Research Center, UPMC Hillman Cancer Center and Magee-Womens Research Institute, Pittsburgh, PA, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, The Assembly, Room 2051, 5051 Centre Avenue, Pittsburgh, PA, 15213, USA
| | - Adrian V Lee
- Women's Cancer Research Center, UPMC Hillman Cancer Center and Magee-Womens Research Institute, Pittsburgh, PA, USA.
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, The Assembly, Room 2051, 5051 Centre Avenue, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
3
|
Raman R, Villefranc JA, Ullmann TM, Thiesmeyer J, Anelli V, Yao J, Hurley JR, Pauli C, Bareja R, Wha Eng K, Dorsaint P, Wilkes DC, Beg S, Kudman S, Shaw R, Churchill M, Ahmed A, Keefer L, Misner I, Nichol D, Gumpeni N, Scognamiglio T, Rubin MA, Grandori C, Solomon JP, Song W, Mosquera JM, Dephoure N, Sboner A, Elemento O, Houvras Y. Inhibition of FGF receptor blocks adaptive resistance to RET inhibition in CCDC6-RET-rearranged thyroid cancer. J Exp Med 2022; 219:e20210390. [PMID: 35510953 PMCID: PMC9082625 DOI: 10.1084/jem.20210390] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 11/23/2021] [Accepted: 03/18/2022] [Indexed: 11/18/2022] Open
Abstract
Genetic alterations in RET lead to activation of ERK and AKT signaling and are associated with hereditary and sporadic thyroid cancer and lung cancer. Highly selective RET inhibitors have recently entered clinical use after demonstrating efficacy in treating patients with diverse tumor types harboring RET gene rearrangements or activating mutations. In order to understand resistance mechanisms arising after treatment with RET inhibitors, we performed a comprehensive molecular and genomic analysis of a patient with RET-rearranged thyroid cancer. Using a combination of drug screening and proteomic and biochemical profiling, we identified an adaptive resistance to RET inhibitors that reactivates ERK signaling within hours of drug exposure. We found that activation of FGFR signaling is a mechanism of adaptive resistance to RET inhibitors that activates ERK signaling. Combined inhibition of FGFR and RET prevented the development of adaptive resistance to RET inhibitors, reduced cell viability, and decreased tumor growth in cellular and animal models of CCDC6-RET-rearranged thyroid cancer.
Collapse
Affiliation(s)
- Renuka Raman
- Department of Surgery, Weill Cornell Medical College, New York, NY
| | | | | | | | - Viviana Anelli
- Department of Surgery, Weill Cornell Medical College, New York, NY
| | - Jun Yao
- Department of Surgery, Weill Cornell Medical College, New York, NY
| | - James R. Hurley
- Department of Medicine, Weill Cornell Medical College, New York, NY
| | - Chantal Pauli
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Rohan Bareja
- The Caryl and Israel Englander Institute for Precision Medicine and the Institute for Computational Biomedicine, Weill Cornell Medical College, New York, NY
| | - Kenneth Wha Eng
- The Caryl and Israel Englander Institute for Precision Medicine and the Institute for Computational Biomedicine, Weill Cornell Medical College, New York, NY
| | - Princesca Dorsaint
- The Caryl and Israel Englander Institute for Precision Medicine and the Institute for Computational Biomedicine, Weill Cornell Medical College, New York, NY
| | - David C. Wilkes
- The Caryl and Israel Englander Institute for Precision Medicine and the Institute for Computational Biomedicine, Weill Cornell Medical College, New York, NY
| | - Shaham Beg
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY
| | - Sarah Kudman
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY
| | - Reid Shaw
- SEngine Precision Medicine, Seattle, WA
| | | | - Adnan Ahmed
- Department of Biochemistry, Weill Cornell Medical College, New York, NY
| | | | - Ian Misner
- Personal Genome Diagnostics, Inc., Baltimore, MD
| | - Donna Nichol
- Personal Genome Diagnostics, Inc., Baltimore, MD
| | - Naveen Gumpeni
- Department of Radiology, Weill Cornell Medical College, New York, NY
| | - Theresa Scognamiglio
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY
| | - Mark A. Rubin
- Bern Center for Precision Medicine, University of Bern, Bern, Switzerland
| | | | - James Patrick Solomon
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY
| | - Wei Song
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY
| | - Juan Miguel Mosquera
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY
| | - Noah Dephoure
- Department of Biochemistry, Weill Cornell Medical College, New York, NY
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medical College, New York, NY
| | - Andrea Sboner
- The Caryl and Israel Englander Institute for Precision Medicine and the Institute for Computational Biomedicine, Weill Cornell Medical College, New York, NY
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medical College, New York, NY
| | - Olivier Elemento
- The Caryl and Israel Englander Institute for Precision Medicine and the Institute for Computational Biomedicine, Weill Cornell Medical College, New York, NY
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medical College, New York, NY
| | - Yariv Houvras
- Department of Surgery, Weill Cornell Medical College, New York, NY
- Department of Medicine, Weill Cornell Medical College, New York, NY
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medical College, New York, NY
| |
Collapse
|
4
|
PTPRA Phosphatase Regulates GDNF-Dependent RET Signaling and Inhibits the RET Mutant MEN2A Oncogenic Potential. iScience 2020; 23:100871. [PMID: 32062451 PMCID: PMC7021549 DOI: 10.1016/j.isci.2020.100871] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 01/15/2020] [Accepted: 01/26/2020] [Indexed: 12/17/2022] Open
Abstract
The RET proto-oncogene encodes receptor tyrosine kinase, expressed primarily in tissues of neural crest origin. De-regulation of RET signaling is implicated in several human cancers. Recent phosphatome interactome analysis identified PTPRA interacting with the neurotrophic factor (GDNF)-dependent RET-Ras-MAPK signaling-axis. Here, by identifying comprehensive interactomes of PTPRA and RET, we reveal their close physical and functional association. The PTPRA directly interacts with RET, and using the phosphoproteomic approach, we identify RET as a direct dephosphorylation substrate of PTPRA both in vivo and in vitro. The protein phosphatase domain-1 is indispensable for the PTPRA inhibitory role on RET activity and downstream Ras-MAPK signaling, whereas domain-2 has only minor effect. Furthermore, PTPRA also regulates the RET oncogenic mutant variant MEN2A activity and invasion capacity, whereas the MEN2B is insensitive to PTPRA. In sum, we discern PTPRA as a novel regulator of RET signaling in both health and cancer. PTPRA inhibits ligand (GDNF-GFRα1)-mediated RET activity on Ras-MAPK signaling axis PTPRA dephosphorylate RET on key functional phosphotyrosine sites PTPRA catalytic (PTPase) domain 1 regulates RET-driven signaling PTPRA suppresses RET oncogenic mutant MEN2A in both Ras-MAPK and cell invasion models
Collapse
|
5
|
Shakiba E, Movahedi M, Majd A, Hedayati M. Investigating the expression and promoter methylation of RET gene in patients with medullary thyroid cancer with unmutated RET. J Cell Physiol 2019; 234:16304-16311. [PMID: 30873628 DOI: 10.1002/jcp.28295] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 12/02/2018] [Accepted: 12/07/2018] [Indexed: 01/24/2023]
Abstract
OBJECTIVE Thyroid cancer is one of the most common endocrine malignancies. Mutations in the rearranged during transfection (RET) gene, especially in exon 10, 11, and 16, as well as epigenetic modifications, constitute the major underlying molecular events leading to medullary thyroid cancer (MTC). There are few studies on the mutations and epigenetic changes of RET gene in Iranian patients with MTC. In the present study, we aimed to address this question and explore the clinical relevance of such genetic alternations in an Iranian population. METHODS Thirty-three patients with confirmed MTC who underwent thyroidectomy surgery in Imam Khomeini Hospital (Tehran, Iran) were enrolled. DNA extracted from cancerous tissues was amplified by polymerase chain reaction (PCR) and then was sequenced for identification of RET mutations. In patients with no identified mutations, the methylation status of RET promoter and its expression were further investigated using methylation-specific PCR and real-time PCR methods, respectively. RESULTS In MTC patients with no RET mutations, the promoter of the proto-oncogene was hypomethylated. Furthermore, RET gene expression was elevated in patients who revealed no mutations in neither of exon 10, 11, or 16 of the RET gene. CONCLUSION Hypomethylation of RET promoter may contribute to MTC pathogenesis. The methylation status of RET promoter could be a new potential prognostic, diagnostic and therapeutic marker in MTC.
Collapse
Affiliation(s)
- Elham Shakiba
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Monireh Movahedi
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Ahmad Majd
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Mehdi Hedayati
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Sugiyama MG, Fairn GD, Antonescu CN. Akt-ing Up Just About Everywhere: Compartment-Specific Akt Activation and Function in Receptor Tyrosine Kinase Signaling. Front Cell Dev Biol 2019; 7:70. [PMID: 31131274 PMCID: PMC6509475 DOI: 10.3389/fcell.2019.00070] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 04/09/2019] [Indexed: 12/12/2022] Open
Abstract
The serine/threonine kinase Akt is a master regulator of many diverse cellular functions, including survival, growth, metabolism, migration, and differentiation. Receptor tyrosine kinases are critical regulators of Akt, as a result of activation of phosphatidylinositol-3-kinase (PI3K) signaling leading to Akt activation upon receptor stimulation. The signaling axis formed by receptor tyrosine kinases, PI3K and Akt, as well as the vast range of downstream substrates is thus central to control of cell physiology in many different contexts and tissues. This axis must be tightly regulated, as disruption of PI3K-Akt signaling underlies the pathology of many diseases such as cancer and diabetes. This sophisticated regulation of PI3K-Akt signaling is due in part to the spatial and temporal compartmentalization of Akt activation and function, including in specific nanoscale domains of the plasma membrane as well as in specific intracellular membrane compartments. Here, we review the evidence for localized activation of PI3K-Akt signaling by receptor tyrosine kinases in various specific cellular compartments, as well as that of compartment-specific functions of Akt leading to control of several fundamental cellular processes. This spatial and temporal control of Akt activation and function occurs by a large number of parallel molecular mechanisms that are central to regulation of cell physiology.
Collapse
Affiliation(s)
- Michael G. Sugiyama
- Department of Chemistry and Biology, Ryerson University, Toronto, ON, Canada
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON, Canada
| | - Gregory D. Fairn
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON, Canada
- Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Costin N. Antonescu
- Department of Chemistry and Biology, Ryerson University, Toronto, ON, Canada
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON, Canada
| |
Collapse
|
7
|
Torra A, Parent A, Cuadros T, Rodríguez-Galván B, Ruiz-Bronchal E, Ballabio A, Bortolozzi A, Vila M, Bové J. Overexpression of TFEB Drives a Pleiotropic Neurotrophic Effect and Prevents Parkinson's Disease-Related Neurodegeneration. Mol Ther 2018; 26:1552-1567. [PMID: 29628303 DOI: 10.1016/j.ymthe.2018.02.022] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 02/16/2018] [Accepted: 02/21/2018] [Indexed: 12/21/2022] Open
Abstract
The possible implication of transcription factor EB (TFEB) as a therapeutic target in Parkinson's disease has gained momentum since it was discovered that TFEB controls lysosomal biogenesis and autophagy and that its activation might counteract lysosomal impairment and protein aggregation. However, the majority of putative direct targets of TFEB described to date is linked to a range of biological processes that are not related to the lysosomal-autophagic system. Here, we assessed the effect of overexpressing TFEB with an adeno-associated viral vector in mouse substantia nigra dopaminergic neurons. We demonstrate that TFEB overexpression drives a previously unknown bona fide neurotrophic effect, giving rise to cell growth, higher tyrosine hydroxylase levels, and increased dopamine release in the striatum. TFEB overexpression induces the activation of the mitogen-activated protein kinase 1/3 (MAPK1/3) and AKT pro-survival pathways, phosphorylation of mTORC1 effectors 4E-binding protein 1 (4E-BP1) and S6 kinase B1 (S6K1), and increased protein synthesis. We show that TFEB overexpression prevents dopaminergic cell loss and counteracts atrophy and the associated protein synthesis decline in the MPTP mouse model of Parkinson's disease. Our results suggest that increasing TFEB activity might prevent neuronal death and restore neuronal function in Parkinson's disease and other neurodegenerative diseases through different mechanisms.
Collapse
Affiliation(s)
- Albert Torra
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute, Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Barcelona, Catalonia, Spain
| | - Annabelle Parent
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute, Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Barcelona, Catalonia, Spain
| | - Thais Cuadros
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute, Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Barcelona, Catalonia, Spain
| | - Beatriz Rodríguez-Galván
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute, Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Barcelona, Catalonia, Spain
| | - Esther Ruiz-Bronchal
- Department of Neurochemistry and Neuropharmacology, IIBB-CSIC, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Center for Networked Biomedical Research on Mental Health (CIBERSAM), Barcelona, Catalonia, Spain
| | - Andrea Ballabio
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
| | - Analía Bortolozzi
- Department of Neurochemistry and Neuropharmacology, IIBB-CSIC, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Center for Networked Biomedical Research on Mental Health (CIBERSAM), Barcelona, Catalonia, Spain
| | - Miquel Vila
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute, Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Barcelona, Catalonia, Spain; Department of Biochemistry and Molecular Biology, Autonomous University of Barcelona, Barcelona, Catalonia, Spain; Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Catalonia, Spain.
| | - Jordi Bové
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute, Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Barcelona, Catalonia, Spain.
| |
Collapse
|
8
|
Targeting RET-driven cancers: lessons from evolving preclinical and clinical landscapes. Nat Rev Clin Oncol 2017; 15:151-167. [PMID: 29134959 DOI: 10.1038/nrclinonc.2017.175] [Citation(s) in RCA: 219] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The gene encoding the receptor-tyrosine kinase RET was first discovered more than three decades ago, and activating RET rearrangements and mutations have since been identified as actionable drivers of oncogenesis. Several multikinase inhibitors with activity against RET have been explored in the clinic, and confirmed responses to targeted therapy with these agents have been observed in patients with RET-rearranged lung cancers or RET-mutant thyroid cancers. Nevertheless, response rates to RET-directed therapy are modest compared with those achieved using targeted therapies matched to other oncogenic drivers of solid tumours, such as sensitizing EGFR or BRAFV600E mutations, or ALK or ROS1 rearrangements. To date, no RET-directed targeted therapeutic has received regulatory approval for the treatment of molecularly defined populations of patients with RET-mutant or RET-rearranged solid tumours. In this Review, we discuss how emerging data have informed the debate over whether the limited success of multikinase inhibitors with activity against RET can be attributed to the tractability of RET as a drug target or to the lack, until 2017, of highly specific inhibitors of this oncoprotein in the clinic. We emphasize that novel approaches to targeting RET-dependent tumours are necessary to improve the clinical efficacy of single-agent multikinase inhibition and, thus, hasten approvals of RET-directed targeted therapies.
Collapse
|
9
|
Kumarasamy VM, Sun D. Demonstration of a potent RET transcriptional inhibitor for the treatment of medullary thyroid carcinoma based on an ellipticine derivative. Int J Oncol 2017; 51:145-157. [PMID: 28498409 PMCID: PMC5467785 DOI: 10.3892/ijo.2017.3994] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 04/28/2017] [Indexed: 01/24/2023] Open
Abstract
Dominant-activating mutations in the RET (rearranged during transfection) proto-oncogene, which encodes a receptor tyrosine kinase, is often associated with the development of medullary thyroid carcinoma (MTC). The proximal promoter region of the RET gene consists of a guanine-rich sequence containing five runs of three consecutive guanine residues that serve as the binding site for transcriptional factors. As we have recently shown, this stretch of nucleotides in the promoter region is highly dynamic in nature and tend to form non-B DNA secondary structures called G-quadruplexes, which suppress the transcription of the RET gene. In the present study, ellipticine and its derivatives were identified as excellent RET G-quadruplex stabilizing agents. Circular dichroism (CD) spectroscopic studies revealed that the incorporation of a piperidine ring in an ellipticine derivative, NSC311153 improves its binding with the G-quadruplex structure and the stability induced by this compound is more potent than ellipticine. Furthermore, this compound also interfered with the transcriptional mechanism of the RET gene in an MTC derived cell line, TT cells and significantly decreased the endogenous RET protein expression. We demonstrated the specificity of NSC311153 by using papillary thyroid carcinoma (PTC) cells, the TPC1 cell line which lacks the G-quadruplex forming sequence in the promoter region due to chromosomal rearrangement. The RET downregulation selectively suppresses cell proliferation by inhibiting the intracellular Raf/MEK/ERK and PI3K/Akt/mTOR signaling pathways in the TT cells. In the present study, we also showed that the systemic administration of a water soluble NSC311153 analog in a mouse MTC xenograft model inhibited the tumor growth through RET downregulation.
Collapse
Affiliation(s)
| | - Daekyu Sun
- College of Pharmacy, University of Arizona, Tucson, AZ 85719, USA
| |
Collapse
|
10
|
Olanow CW, Bartus RT, Volpicelli-Daley LA, Kordower JH. Trophic factors for Parkinson's disease: To live or let die. Mov Disord 2016; 30:1715-24. [PMID: 26769457 DOI: 10.1002/mds.26426] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 08/06/2015] [Accepted: 08/19/2015] [Indexed: 12/23/2022] Open
Abstract
Trophic factors show great promise in laboratory studies as potential therapies for PD. However, multiple double-blind, clinical trials have failed to show benefits in comparison to a placebo control. This article will review the scientific rationale for testing trophic factors in PD, the results of the different clinical trials that have been performed to date, and the possible explanations for these failed outcomes. We will also consider future directions and the likelihood that trophic factors will become a viable therapy for patients with PD.
Collapse
Affiliation(s)
- C Warren Olanow
- Department of Neurology, Mount Sinai School of Medicine, New York, New York, USA
| | | | | | | |
Collapse
|
11
|
Gabreski NA, Vaghasia JK, Novakova SS, McDonald NQ, Pierchala BA. Exon Skipping in the RET Gene Encodes Novel Isoforms That Differentially Regulate RET Protein Signal Transduction. J Biol Chem 2016; 291:16249-62. [PMID: 27226544 PMCID: PMC4965573 DOI: 10.1074/jbc.m115.709675] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 05/09/2016] [Indexed: 01/15/2023] Open
Abstract
Rearranged during transfection (RET), a receptor tyrosine kinase that is activated by the glial cell line-derived neurotrophic factor family ligands (GFLs), plays a crucial role in the development and function of the nervous system and additionally is required for kidney development and spermatogenesis. RET encodes a transmembrane receptor that is 20 exons long and produces two known protein isoforms differing in C-terminal amino acid composition, referred to as RET9 and RET51. Studies of human pheochromocytomas identified two additional novel transcripts involving the skipping of exon 3 or exons 3, 4, and 5 and are referred to as RET(Δ) (E3) and RET(Δ) (E345), respectively. Here we report the presence of Ret(Δ) (E3) and Ret(Δ) (E345) in zebrafish, mice, and rats and show that these transcripts are dynamically expressed throughout development of the CNS, peripheral nervous system, and kidneys. We further explore the biochemical properties of these isoforms, demonstrating that, like full-length RET, RET(ΔE3) and RET(ΔE345) are trafficked to the cell surface, interact with all four GFRα co-receptors, and have the ability to heterodimerize with full-length RET. Signaling experiments indicate that RET(ΔE3) is phosphorylated in a similar manner to full-length RET. RET(ΔE345), in contrast, displays higher baseline autophosphorylation, specifically on the catalytic tyrosine, Tyr(905), and also on one of the most important signaling residues, Tyr(1062) These data provide the first evidence for a physiologic role of these isoforms in RET pathway function.
Collapse
Affiliation(s)
- Nicole A Gabreski
- From the Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, Michigan 48109, the Program in Cellular and Molecular Biology, University of Michigan School of Medicine, Ann Arbor, Michigan 48109
| | - Janki K Vaghasia
- From the Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, Michigan 48109
| | - Silvia S Novakova
- From the Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, Michigan 48109
| | - Neil Q McDonald
- the Structural Biology Laboratory, Francis Crick Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, United Kingdom, and the Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck College, Malet Street, London WC1E 7HX, United Kingdom
| | - Brian A Pierchala
- From the Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, Michigan 48109, the Program in Cellular and Molecular Biology, University of Michigan School of Medicine, Ann Arbor, Michigan 48109,
| |
Collapse
|
12
|
Abstract
The fibroblast growth factor (Fgf) family of ligands and receptor tyrosine kinases is required throughout embryonic and postnatal development and also regulates multiple homeostatic functions in the adult. Aberrant Fgf signaling causes many congenital disorders and underlies multiple forms of cancer. Understanding the mechanisms that govern Fgf signaling is therefore important to appreciate many aspects of Fgf biology and disease. Here we review the mechanisms of Fgf signaling by focusing on genetic strategies that enable in vivo analysis. These studies support an important role for Erk1/2 as a mediator of Fgf signaling in many biological processes but have also provided strong evidence for additional signaling pathways in transmitting Fgf signaling in vivo.
Collapse
Affiliation(s)
- J Richard Brewer
- Department of Developmental and Regenerative Biology, Tisch Cancer Institute, Icahn School of Medicine at Mt. Sinai, New York, New York 10029, USA
| | - Pierre Mazot
- Department of Developmental and Regenerative Biology, Tisch Cancer Institute, Icahn School of Medicine at Mt. Sinai, New York, New York 10029, USA
| | - Philippe Soriano
- Department of Developmental and Regenerative Biology, Tisch Cancer Institute, Icahn School of Medicine at Mt. Sinai, New York, New York 10029, USA
| |
Collapse
|
13
|
Kumarasamy VM, Shin YJ, White J, Sun D. Selective repression of RET proto-oncogene in medullary thyroid carcinoma by a natural alkaloid berberine. BMC Cancer 2015; 15:599. [PMID: 26307103 PMCID: PMC4549123 DOI: 10.1186/s12885-015-1610-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 08/18/2015] [Indexed: 11/21/2022] Open
Abstract
Background The gain-of-function mutation of the RET proto-oncogene, which encodes a receptor tyrosine kinase, is strongly associated with the development of several medullary thyroid carcinomas (MTCs). Thus, the RET protein has been explored as an excellent target for progressive and advanced MTC. In this study we have demonstrated a therapeutic strategy for MTC by suppressing the transcription of RET proto-oncogene though the stabilization of G-quadruplex structure formed on the promoter region of this gene using a natural product berberine. Methods Medullary thyroid carcinoma (MTC) TT cell line has been used to evaluate the effects of berberine on RET expression and its downstream signaling pathways. The specificity of berberine was demonstrated by using the papillary thyroid carcinoma TPC1 cell line, which lacks the G-quadruplex forming sequence on the RET promoter region due to chromosomal rearrangement. Results Berberine suppressed the RET expression by more than 90 % in MTC TT cells at a concentration of 2.5 μg/ml with minimal effect on the TPC1 cells. Canadine, which is a structural analogue of berberine, showed little interaction with RET G-quadruplex and also had no effect on RET expression in MTC TT cells. The down-regulation of RET with berberine further inhibited the cell proliferation through cell cycle arrest and activation of apoptosis in TT cells, which was confirmed by a 2-fold increase in the caspase-3 activity and the down-regulation of cell-cycle regulatory proteins. Conclusion Our data strongly suggest that the G-quadruplex forming region and the stabilization of this structure play a critical role in mediating the repressive effect of berberine on RET transcription.
Collapse
Affiliation(s)
| | - Yoon-Joo Shin
- College of Pharmacy, University of Arizona, Tucson, Arizona, 85721.
| | - John White
- College of Pharmacy, University of Arizona, Tucson, Arizona, 85721.
| | - Daekyu Sun
- College of Pharmacy, University of Arizona, Tucson, Arizona, 85721. .,BIO5 Institute, 1657 E. Helen Street, Tucson, Arizona, 85721. .,Arizona Cancer Center, 1515 N. Campbell Avenue, Tucson, Arizona, 85724.
| |
Collapse
|
14
|
Prescott JD, Zeiger MA. TheREToncogene in papillary thyroid carcinoma. Cancer 2015; 121:2137-46. [DOI: 10.1002/cncr.29044] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 08/21/2014] [Accepted: 08/26/2014] [Indexed: 01/19/2023]
Affiliation(s)
- Jason D. Prescott
- Endocrine Surgery, Department of Surgery; The Johns Hopkins University School of Medicine; Baltimore Maryland
| | - Martha A. Zeiger
- Endocrine Surgery, Department of Surgery; The Johns Hopkins University School of Medicine; Baltimore Maryland
| |
Collapse
|
15
|
Plaza-Menacho I, Mologni L, McDonald NQ. Mechanisms of RET signaling in cancer: current and future implications for targeted therapy. Cell Signal 2014; 26:1743-52. [PMID: 24705026 DOI: 10.1016/j.cellsig.2014.03.032] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Accepted: 03/30/2014] [Indexed: 11/15/2022]
Abstract
De-regulation of RET signaling by oncogenic mutation, gene rearrangement, overexpression or transcriptional up-regulation is implicated in several human cancers of neuroendocrine and epithelial origin (thyroid, breast, lung). Understanding how RET signaling mechanisms associated with these oncogenic events are deregulated, and their impact in the biological processes driving tumor formation and progression, as well as response to treatment, will be crucial to find and develop better targeted therapeutic strategies. In this review we emphasie the distinct mechanisms of RET signaling in cancer and summarise current knowledge on small molecule inhibitors targeting the tyrosine kinase domain of RET as therapeutic drugs in RET-positive cancers.
Collapse
Affiliation(s)
- I Plaza-Menacho
- Structural Biology Laboratory, London Research Institute, Cancer Research UK, London, UK.
| | - L Mologni
- Dept. of Health Sciences, University of Milano-Bicocca, Italy
| | - N Q McDonald
- Structural Biology Laboratory, London Research Institute, Cancer Research UK, London, UK
| |
Collapse
|
16
|
Flotillins in receptor tyrosine kinase signaling and cancer. Cells 2014; 3:129-49. [PMID: 24709906 PMCID: PMC3980747 DOI: 10.3390/cells3010129] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 02/11/2014] [Accepted: 02/12/2014] [Indexed: 01/23/2023] Open
Abstract
Flotillins are highly conserved proteins that localize into specific cholesterol rich microdomains in cellular membranes. They have been shown to be associated with, for example, various signaling pathways, cell adhesion, membrane trafficking and axonal growth. Recent findings have revealed that flotillins are frequently overexpressed in various types of human cancers. We here review the suggested functions of flotillins during receptor tyrosine kinase signaling and in cancer. Although flotillins have been implicated as putative cancer therapy targets, we here show that great caution is required since flotillin ablation may result in effects that increase instead of decrease the activity of specific signaling pathways. On the other hand, as flotillin overexpression appears to be related with metastasis formation in certain cancers, we also discuss the implications of these findings for future therapy aspects.
Collapse
|
17
|
Santoro M, Carlomagno F. Central role of RET in thyroid cancer. Cold Spring Harb Perspect Biol 2013; 5:a009233. [PMID: 24296167 DOI: 10.1101/cshperspect.a009233] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
RET (rearranged during transfection) is a receptor tyrosine kinase involved in the development of neural crest derived cell lineages, kidney, and male germ cells. Different human cancers, including papillary and medullary thyroid carcinomas, lung adenocarcinomas, and myeloproliferative disorders display gain-of-function mutations in RET. Accordingly, RET protein has become a promising molecular target for cancer treatment.
Collapse
Affiliation(s)
- Massimo Santoro
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Universita' degli Studi di Napoli Federico II, 80131 Napoli, Italy
| | | |
Collapse
|
18
|
Meister M, Tomasovic A, Banning A, Tikkanen R. Mitogen-Activated Protein (MAP) Kinase Scaffolding Proteins: A Recount. Int J Mol Sci 2013; 14:4854-84. [PMID: 23455463 PMCID: PMC3634400 DOI: 10.3390/ijms14034854] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 02/17/2013] [Accepted: 02/21/2013] [Indexed: 12/20/2022] Open
Abstract
The mitogen-activated protein kinase (MAPK) pathway is the canonical signaling pathway for many receptor tyrosine kinases, such as the Epidermal Growth Factor Receptor. Downstream of the receptors, this pathway involves the activation of a kinase cascade that culminates in a transcriptional response and affects processes, such as cell migration and adhesion. In addition, the strength and duration of the upstream signal also influence the mode of the cellular response that is switched on. Thus, the same components can in principle coordinate opposite responses, such as proliferation and differentiation. In recent years, it has become evident that MAPK signaling is regulated and fine-tuned by proteins that can bind to several MAPK signaling proteins simultaneously and, thereby, affect their function. These so-called MAPK scaffolding proteins are, thus, important coordinators of the signaling response in cells. In this review, we summarize the recent advances in the research on MAPK/extracellular signal-regulated kinase (ERK) pathway scaffolders. We will not only review the well-known members of the family, such as kinase suppressor of Ras (KSR), but also put a special focus on the function of the recently identified or less studied scaffolders, such as fibroblast growth factor receptor substrate 2, flotillin-1 and mitogen-activated protein kinase organizer 1.
Collapse
Affiliation(s)
- Melanie Meister
- Institute of Biochemistry, Medical Faculty, University of Giessen, Friedrichstrasse 24, 35392 Giessen, Germany; E-Mails: (M.M.); (A.B.)
| | - Ana Tomasovic
- Department of Molecular Hematology, University of Frankfurt, Medical School, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; E-Mail:
| | - Antje Banning
- Institute of Biochemistry, Medical Faculty, University of Giessen, Friedrichstrasse 24, 35392 Giessen, Germany; E-Mails: (M.M.); (A.B.)
| | - Ritva Tikkanen
- Institute of Biochemistry, Medical Faculty, University of Giessen, Friedrichstrasse 24, 35392 Giessen, Germany; E-Mails: (M.M.); (A.B.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +49-641-9947-420; Fax: +49-641-9947-429
| |
Collapse
|
19
|
Ibáñez CF. Structure and physiology of the RET receptor tyrosine kinase. Cold Spring Harb Perspect Biol 2013; 5:5/2/a009134. [PMID: 23378586 DOI: 10.1101/cshperspect.a009134] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The identification of the ret oncogene by Masahide Takahashi and Geoffrey Cooper in 1985 was both serendipitous and paradigmatic ( Takahashi et al. 1985). By transfecting total DNA from a human lymphoma into mouse NIH3T3 cells, they obtained one clone, which in secondary transformants yielded more than 100-fold improvement in transformation efficiency. Subsequent investigations revealed that the ret oncogene was not present as such in the primary lymphoma, but was derived by DNA rearrangement during transfection from normal human sequences of the ret locus. At the time, activation by DNA rearrangement had not been previously described for a transforming gene with the NIH3T3 transfection assay. The discovery of ret opened a field of study that has had a profound impact in cancer research, developmental biology, and neuroscience, and that continues to yield surprises and important insights to this day.
Collapse
Affiliation(s)
- Carlos F Ibáñez
- Department of Neuroscience, Karolinska Institute, S-17177 Stockholm, Sweden.
| |
Collapse
|
20
|
Activation of the mTOR Pathway in Primary Medullary Thyroid Carcinoma and Lymph Node Metastases. Clin Cancer Res 2012; 18:3532-40. [DOI: 10.1158/1078-0432.ccr-11-2700] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
21
|
Abstract
Specific thyroid cancer histotypes, such as papillary and medullary thyroid carcinoma, display genetic rearrangements or point mutations of the RET gene, resulting in its oncogenic conversion. The molecular mechanisms mediating RET rearrangement with other genes and the role of partner genes in tumorigenesis have been described. In addition, the RET protein has become a molecular target for medullary thyroid carcinoma treatment.
Collapse
Affiliation(s)
- Francesca Carlomagno
- *Francesca Carlomagno, Dipartimento di Biologia e Patologia Cellulare e Molecolare L. Califano, Università degli Studi di Napoli Federico II, Via Sergio Pansini 5, IT–80123 Napoli (Italy), Tel. +39 081 746 3603, E-Mail
| |
Collapse
|
22
|
Amaddii M, Meister M, Banning A, Tomasovic A, Mooz J, Rajalingam K, Tikkanen R. Flotillin-1/reggie-2 protein plays dual role in activation of receptor-tyrosine kinase/mitogen-activated protein kinase signaling. J Biol Chem 2012; 287:7265-78. [PMID: 22232557 DOI: 10.1074/jbc.m111.287599] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Our previous work has shown that the membrane microdomain-associated flotillin proteins are potentially involved in epidermal growth factor (EGF) receptor signaling. Here we show that knockdown of flotillin-1/reggie-2 results in reduced EGF-induced phosphorylation of specific tyrosines in the EGF receptor (EGFR) and in inefficient activation of the downstream mitogen-activated protein (MAP) kinase and Akt signaling. Although flotillin-1 has been implicated in endocytosis, its depletion affects neither the endocytosis nor the ubiquitination of the EGFR. However, EGF-induced clustering of EGFR at the cell surface is altered in cells lacking flotillin-1. Furthermore, we show that flotillins form molecular complexes with EGFR in an EGF/EGFR kinase-independent manner. However, knockdown of flotillin-1 appears to affect the activation of the downstream MAP kinase signaling more directly. We here show that flotillin-1 forms a complex with CRAF, MEK1, ERK, and KSR1 (kinase suppressor of RAS) and that flotillin-1 knockdown leads to a direct inactivation of ERK1/2. Thus, flotillin-1 plays a direct role during both the early phase (activation of the receptor) and late (activation of MAP kinases) phase of growth factor signaling. Our results here unveil a novel role for flotillin-1 as a scaffolding factor in the regulation of classical MAP kinase signaling. Furthermore, our results imply that other receptor-tyrosine kinases may also rely on flotillin-1 upon activation, thus suggesting a general role for flotillin-1 as a novel factor in receptor-tyrosine kinase/MAP kinase signaling.
Collapse
Affiliation(s)
- Monia Amaddii
- From the Institute of Biochemistry, University of Giessen, Friedrichstrasse 24, 35392 Giessen, Germany
| | | | | | | | | | | | | |
Collapse
|
23
|
Tomasovic A, Traub S, Tikkanen R. Molecular networks in FGF signaling: flotillin-1 and cbl-associated protein compete for the binding to fibroblast growth factor receptor substrate 2. PLoS One 2012; 7:e29739. [PMID: 22235335 PMCID: PMC3250484 DOI: 10.1371/journal.pone.0029739] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Accepted: 12/04/2011] [Indexed: 11/18/2022] Open
Abstract
Fibroblast growth factor receptor substrate 2 (FRS2α) is a signaling adaptor protein that regulates downstream signaling of many receptor tyrosine kinases. During signal transduction, FRS2 can be both tyrosine and threonine phosphorylated and forms signaling complexes with other adaptor proteins and tyrosine phosphatases. We have here identified flotillin-1 and the cbl-associated protein/ponsin (CAP) as novel interaction partners of FRS2. Flotillin-1 binds to the phosphotyrosine binding domain (PTB) of FRS2 and competes for the binding with the fibroblast growth factor receptor. Flotillin-1 knockdown results in increased Tyr phosphorylation of FRS2, in line with the inhibition of ERK activity in the absence of flotillin-1. CAP directly interacts with FRS2 by means of its sorbin homology (SoHo) domain, which has previously been shown to interact with flotillin-1. In addition, the third SH3 domain in CAP binds to FRS2. Due to the overlapping binding domains, CAP and flotillin-1 appear to compete for the binding to FRS2. Thus, our results reveal a novel signaling network containing FRS2, CAP and flotillin-1, whose successive interactions are most likely required to regulate receptor tyrosine kinase signaling, especially the mitogen activated protein kinase pathway.
Collapse
Affiliation(s)
- Ana Tomasovic
- Institute of Biochemistry, University of Giessen, Giessen, Germany
- Institute of Biochemistry II, University Clinic of Frankfurt, Frankfurt am Main, Germany
| | - Stephanie Traub
- Institute of Biochemistry II, University Clinic of Frankfurt, Frankfurt am Main, Germany
| | - Ritva Tikkanen
- Institute of Biochemistry, University of Giessen, Giessen, Germany
- Institute of Biochemistry II, University Clinic of Frankfurt, Frankfurt am Main, Germany
- * E-mail:
| |
Collapse
|
24
|
Valencia T, Joseph A, Kachroo N, Darby S, Meakin S, Gnanapragasam VJ. Role and expression of FRS2 and FRS3 in prostate cancer. BMC Cancer 2011; 11:484. [PMID: 22078327 PMCID: PMC3231952 DOI: 10.1186/1471-2407-11-484] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Accepted: 11/11/2011] [Indexed: 12/25/2022] Open
Abstract
Background FGF receptor substrates (FRS2 and FRS3) are key adaptor proteins that mediate FGF-FGFR signalling in benign as well as malignant tissue. Here we investigated FRS2 and FRS3 as a means of disrupting global FGF signalling in prostate cancer. Methods FRS2 and FRS3 manipulation was investigated in vitro using over-expression, knockdown and functional assays. FRS2 and FRS3 expression was profiled in cell lines and clinical tumors of different grades. Results In a panel of cell lines we observed ubiquitous FRS2 and FRS3 transcript and protein expression in both benign and malignant cells. We next tested functional redundancy of FRS2 and FRS3 in prostate cancer cells. In DU145 cells, specific FRS2 suppression inhibited FGF induced signalling. This effect was not apparent in cells stably over-expressing FRS3. Indeed FRS3 over-expression resulted in enhanced proliferation (p = 0.005) compared to control cells. Given this functional redundancy, we tested the therapeutic principle of dual targeting of FRS2 and FRS3 in prostate cancer. Co-suppression of FRS2 and FRS3 significantly inhibited ERK activation with a concomitant reduction in cell proliferation (p < 0.05), migration and invasion (p < 0.05). Synchronous knockdown of FRS2 and FRS3 with exposure to cytotoxic irradiation resulted in a significant reduction in prostate cancer cell survival compared to irradiation alone (p < 0.05). Importantly, this synergistic effect was not observed in benign cells. Finally, we investigated expression of FRS2 and FRS3 transcript in a cohort of micro-dissected tumors of different grades as well as by immunohistochemistry in clinical biopsies. Here, we did not observe any difference in expression between benign and malignant biopsies. Conclusions These results suggest functional overlap of FRS2 and FRS3 in mediating mitogenic FGF signalling in the prostate. FRS2 and FRS3 are not over-expressed in tumours but targeted dual inhibition may selectively adversely affect malignant but not benign prostate cells.
Collapse
Affiliation(s)
- Tania Valencia
- Translational Prostate Cancer Group, Department of Oncology, Hutchison/MRC research centre, University of Cambridge, Cambridge, UK
| | | | | | | | | | | |
Collapse
|
25
|
Yosypiv IV. Renin-angiotensin system in ureteric bud branching morphogenesis: insights into the mechanisms. Pediatr Nephrol 2011; 26:1499-512. [PMID: 21359618 DOI: 10.1007/s00467-011-1820-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Revised: 01/24/2011] [Accepted: 02/01/2011] [Indexed: 12/31/2022]
Abstract
Branching morphogenesis of the ureteric bud (UB) is a key developmental process that controls organogenesis of the entire metanephros. Notably, aberrant UB branching may result in a spectrum of congenital anomalies of the kidney and urinary tract (CAKUT). Genetic, biochemical and physiological studies have demonstrated that the renin-angiotensin system (RAS), a key regulator of the blood pressure and fluid/electrolyte homeostasis, also plays a critical role in kidney development. All the components of the RAS are expressed in the metanephros. Moreover, mutations in the genes encoding components of the RAS in mice or humans cause diverse types of CAKUT which include renal papillary hypoplasia, hydronephrosis, duplicated collecting system, renal tubular dysgenesis, renal vascular abnormalities, abnormal glomerulogenesis and urinary concentrating defect. Despite widely accepted role of the RAS in metanephric kidney and renal collecting system (ureter, pelvis, calyces and collecting ducts) development, the mechanisms by which an intact RAS exerts its morphogenetic actions are incompletely defined. Emerging evidence indicates that defects in UB branching morphogenesis may be causally linked to the pathogenesis of renal collecting system anomalies observed under conditions of aberrant RAS signaling. This review describes the role of the RAS in UB branching morphogenesis and highlights emerging insights into the cellular and molecular mechanisms whereby RAS regulates this critical morphogenetic process.
Collapse
Affiliation(s)
- Ihor V Yosypiv
- Section of Pediatric Nephrology, Department of Pediatrics, SL-37 Hypertension and Renal Center of Excellence, Tulane University Health Sciences Center, 1430 Tulane Avenue, New Orleans, LA 70112, USA.
| |
Collapse
|
26
|
|
27
|
Wang X, Asmann YW, Erickson-Johnson MR, Oliveira JL, Zhang H, Moura RD, Lazar AJ, Lev D, Bill K, Lloyd RV, Yaszemski MJ, Maran A, Oliveira AM. High-resolution genomic mapping reveals consistent amplification of the fibroblast growth factor receptor substrate 2 gene in well-differentiated and dedifferentiated liposarcoma. Genes Chromosomes Cancer 2011; 50:849-58. [DOI: 10.1002/gcc.20906] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Revised: 06/17/2011] [Accepted: 06/20/2011] [Indexed: 02/01/2023] Open
|
28
|
Sapio MR, Guerra A, Marotta V, Campanile E, Formisano R, Deandrea M, Motta M, Limone PP, Fenzi G, Rossi G, Vitale M. High growth rate of benign thyroid nodules bearing RET/PTC rearrangements. J Clin Endocrinol Metab 2011; 96:E916-9. [PMID: 21411555 DOI: 10.1210/jc.2010-1599] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT Benign thyroid nodules display a broad range of behaviors from a stationary size to a progressive growth. The RET/PTC oncogene has been documented in a fraction of benign thyroid nodules, besides papillary thyroid carcinomas, and it might therefore influence their growth. OBJECTIVE The aim of the present work was to evaluate whether RET/PTC in benign thyroid nodules associates with a different nodular growth rate. STUDY DESIGN In this prospective multicentric study, 125 subjects with benign nodules were included. RET rearrangements were analyzed in cytology samples; clinical and ultrasonographic nodule characteristics were assessed at the start and at the end of the study. RESULTS RET/PTC was present in 19 nodules. The difference between the mean baseline nodular volume of the RET/PTC- and RET/PTC+ nodules was not significant. After 36 months of follow-up, the RET/PTC+ group (n = 16) reached a volume higher than the RET/PTC- group (n = 90) (5.04 ± 2.67 vs. 3.04 ± 2.26 ml; P = 0.0028). We calculated the monthly change of nodule volumes as a percentage of baseline. After a mean follow-up of 36.6 months, the monthly volume increase of nodules bearing a RET rearrangement was 4.3-fold that of nodules with wild-type RET (1.83 ± 1.2 vs. 0.43 ± 1.0% of baseline volume; P < 0.0001). CONCLUSIONS Benign thyroid nodules bearing RET rearrangements grow more rapidly than those with wild-type RET. Searching for RET rearrangements in benign thyroid nodules might be useful to the clinician in choosing the more appropriate and timely therapeutic option.
Collapse
Affiliation(s)
- Maria Rosaria Sapio
- Department of Endocrinologia ed Oncologia Molecolare e Clinica, Università di Napoli Federico II, Via S. Pansini, 5, 80131 Naples, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Sawada T, Jing X, Zhang Y, Shimada E, Yokote H, Miyajima M, Sakaguchi K. Ternary complex formation of EphA4, FGFR and FRS2α plays an important role in the proliferation of embryonic neural stem/progenitor cells. Genes Cells 2010; 15:297-311. [DOI: 10.1111/j.1365-2443.2010.01391.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
30
|
|
31
|
Sims-Lucas S, Cullen-McEwen L, Eswarakumar VP, Hains D, Kish K, Becknell B, Zhang J, Bertram JF, Wang F, Bates CM. Deletion of Frs2alpha from the ureteric epithelium causes renal hypoplasia. Am J Physiol Renal Physiol 2009; 297:F1208-19. [PMID: 19741018 DOI: 10.1152/ajprenal.00262.2009] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Fibroblast growth factor receptor 2 (Fgfr2) signaling is critical in maintaining ureteric branching architecture and mesenchymal stromal morphogenesis in the kidney. Fibroblast growth factor receptor substrate 2alpha (Frs2alpha) is a major docking protein for Fgfr2 with downstream targets including Ets variant (Etv) 4 and Etv5 in other systems. Furthermore, global deletion of Frs2alpha causes early embryonic lethality. The purpose of the study was to determine the role of Frs2alpha in mediating Fgfr2 signaling in the ureteric epithelium. To that end, we generated mice with conditional deletion of Frs2alpha in the ureteric epithelium (Frs2alpha(UB-/-)) and mice with point mutations in the Frs2alpha binding site of Fgfr2 (Fgfr2(LR/LR)). Frs2alpha(UB-/-) mice developed mild renal hypoplasia characterized by decreased ureteric branching morphogenesis but maintained normal overall branching architecture and had normal mesenchymal stromal development. Reduced nephron endowment in postnatal mutant mice was observed, corresponding with the reduction in branching morphogenesis. Furthermore, there were no apparent renal abnormalities in Fgfr2(LR/LR) mice. Interestingly, Etv4 and Etv5 expression was unaltered in Frs2alpha(UB-/-) mice, as was Sprouty1, an antagonist of Frs2alpha signaling. However, Ret and Wnt11 (molecules critical for ureteric branching morphogenesis) mRNA levels were lower in mutants vs. controls. Taken together, these findings suggest that Fgfr2 signals through adapter molecules other than Frs2alpha in the ureteric epithelium. Furthermore, Frs2alpha may transmit signals through other receptor kinases present in ureteric epithelium. Finally, the renal hypoplasia observed in Frs2alpha(UB-/-) mice is likely secondary to decreased Ret and Wnt11 expression.
Collapse
Affiliation(s)
- Sunder Sims-Lucas
- Rangos Research Center, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA 15201, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Sato T, Gotoh N. The FRS2 family of docking/scaffolding adaptor proteins as therapeutic targets of cancer treatment. Expert Opin Ther Targets 2009; 13:689-700. [PMID: 19456272 DOI: 10.1517/14728220902942330] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND There are two members--FRS2alpha and FRS2beta--in the fibroblast growth factor receptor substrate 2 (FRS2) family of docking/scaffolding adaptor proteins. These proteins function downstream of certain kinds of receptor tyrosine kinases (RTKs) that are important for tumorigenesis. FRS2alpha acts as a control centre for fibroblast growth factor receptor signalling and encourages tumorigenesis, while FRS2beta regulates EGFR signalling negatively, and might have a tumour suppressive role. Therefore, both proteins could be good therapeutic targets for the treatment of cancer. OBJECTIVE To examine the physiological and pathological roles of FRS2, especially in cancer, and describe their potential value as therapeutic targets. METHODS A review of relevant literature. RESULTS/CONCLUSIONS Although it is still difficult to develop small compounds to modify functions of FRS2 adaptor proteins, such compounds may be useful as the next generation of molecular targeting drugs. Combination therapy with RTK-targeting drugs and FRS2-targeting drugs may be useful for cancer treatment in the near future.
Collapse
Affiliation(s)
- Takuya Sato
- The University of Tokyo, Institute of Medical Science, Division of Systems Biomedical Technology, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.
| | | |
Collapse
|
33
|
FGF-receptor substrate 2 functions as a molecular sensor integrating external regulatory signals into the FGF pathway. Cell Res 2009; 19:1165-77. [PMID: 19652666 DOI: 10.1038/cr.2009.95] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Fibroblast growth factor (FGF) receptor substrate 2alpha (FRS2alpha) is the main mediator of signaling in the FGF pathway. Recent studies have shown that mitogen-activated protein kinase (MAPK) phosphorylates serine and threonine residues in FRS2, negatively affecting FGF-induced tyrosine phosphorylation (PY) of FRS2. Several kinds of stimuli can induce serine/threonine phosphorylation (PS/T) of FRS2, indicating that FRS2 may be useful for studying crosstalk between growth factor signaling pathways. Here, we report that FGF-induced PY of FRS2 can be attenuated by EGF co-stimulation in PC12 cells; this inhibitory effect could be completely reversed by U0126, an inhibitor of MEK. We further identified the ERK1/2-binding motif in FRS2 and generated FRS2-3KL, a mutant lacking MAPK binding and PT upon FGF and/or EGF stimulation. Unlike wild-type (WT) FRS2, FGF-induced PY of FRS2-3KL could not be inhibited by EGF co-stimulation, and FRS2-3KL-expressing PC12 cells exhibited more differentiating potential than FRS2-WT-expressing cells in response to FGF treatment. These results suggest that PS/T of FRS2 mediated by the FRS2-MAPK negative regulatory loop may function as a molecular switch integrating negative regulatory signals from other pathways into FGFR-generated signal transduction.
Collapse
|
34
|
Castellone MD, De Falco V, Rao DM, Bellelli R, Muthu M, Basolo F, Fusco A, Gutkind JS, Santoro M. The beta-catenin axis integrates multiple signals downstream from RET/papillary thyroid carcinoma leading to cell proliferation. Cancer Res 2009; 69:1867-76. [PMID: 19223551 DOI: 10.1158/0008-5472.can-08-1982] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RET/papillary thyroid carcinoma (RET/PTC) oncoproteins result from the in-frame fusion of the RET receptor tyrosine kinase domain with protein dimerization motifs encoded by heterologous genes. Here, we show that RET/PTC stimulates the beta-catenin pathway. By stimulating PI3K/AKT and Ras/extracellular signal-regulated kinase (ERK), RET/PTC promotes glycogen synthase kinase 3beta (GSK3beta) phosphorylation, thereby reducing GSK3beta-mediated NH(2)-terminal beta-catenin (Ser33/Ser37/Thr41) phosphorylation. In addition, RET/PTC physically interacts with beta-catenin and increases its phosphotyrosine content. The increased free pool of S/T(nonphospho)/Y(phospho)beta-catenin is stabilized as a result of the reduced binding affinity for the Axin/GSK3beta complex and activates the transcription factor T-cell factor/lymphoid enhancer factor. Moreover, through the ERK pathway, RET/PTC stimulates cyclic AMP-responsive element binding protein (CREB) phosphorylation and promotes the formation of a beta-catenin-CREB-CREB-binding protein/p300 transcriptional complex. Transcriptional complexes containing beta-catenin are recruited to the cyclin D1 promoter and a cyclin D1 gene promoter reporter is active in RET/PTC-expressing cells. Silencing of beta-catenin by small interfering RNA inhibits proliferation of RET/PTC-transformed PC Cl3 thyrocytes, whereas a constitutively active form of beta-catenin stimulates autonomous proliferation of thyroid cells. Thus, multiple signaling events downstream from RET/PTC converge on beta-catenin to stimulate cell proliferation.
Collapse
Affiliation(s)
- Maria Domenica Castellone
- Istituto di Endocrinologia ed Oncologia Sperimentale G. Salvatore, Consiglio Nazionale delle Ricerche, c/o Dipartimento di Biologia e Patologia Cellulare e Molecolare L. Califano, Universita Federico II, Naples, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Lundgren TK, Stenqvist A, Scott RP, Pawson T, Ernfors P. Cell migration by a FRS2-adaptor dependent membrane relocation of ret receptors. J Cell Biochem 2008; 104:879-94. [PMID: 18189271 DOI: 10.1002/jcb.21671] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
During development neural progenitor cells migrate with extraordinary precision to inhabit tissues and organs far from their initial position. Little is known about the cellular basis for directional guidance by tyrosine kinase receptors (RTKs). RET is a RTK with important functions in guiding the migration of neuronal cells, and RET dysregulation leads to clinical disease such as agangliosis of the colon. We show here that RET migration in neuroepitheliomal and non-neuronal cells is elicited by the activation of specific signaling pathways initiated by the competitive recruitment of the FRS2 adaptor molecule to tyrosine 1062 (Y1062) in RET. FRS2 selectively recruited RET to focal complexes and led to activation of SRC family kinases and focal adhesion kinase (FAK). Activation of SRC depended on its direct interaction with RET at a different intracellular tyrosine (Y981) and activation of molecular signaling from these two separate sites in concert regulated migration. Our data suggest that an important function for FRS2 is to concentrate RET in membrane foci, leading to an engagement of specific signaling complexes localized in these membrane domains.
Collapse
Affiliation(s)
- T Kalle Lundgren
- Unit of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, 171 77 Stockholm, Sweden
| | | | | | | | | |
Collapse
|
36
|
Gotoh N. Regulation of growth factor signaling by FRS2 family docking/scaffold adaptor proteins. Cancer Sci 2008; 99:1319-25. [PMID: 18452557 PMCID: PMC11159094 DOI: 10.1111/j.1349-7006.2008.00840.x] [Citation(s) in RCA: 195] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2008] [Accepted: 03/27/2008] [Indexed: 12/26/2022] Open
Abstract
The FRS2 family of adaptor/scaffold proteins has two members, FRS2alpha and FRS2beta. Both proteins contain N-terminal myristylation sites for localization on the plasma membrane and a PTB domain for binding to limited species of receptor tyrosine kinases (RTKs), including the FGF receptor, the neurotophin receptor, RET, and ALK. Activation of these RTKs allows FRS2 proteins to become phosphorylated of tyrosine residues and then bind to Grb2 and Shp2, a SH2 domain-containing adaptor and a tyrosine phosphatase, respectively. Subsequently, Shp2 activates a Ras/ERK pathway and Grb2 activates a Ras/ERK, phosphatidyl inositol (PI)-3 kinase and ubiquitination/degradation pathways by binding to SOS, Gab1, and Cbl via the SH3 domains of Grb2. FRS2alpha acts as 'a conning center' in FGF signaling mainly because it induces sustained levels of activation of ERK via Shp2-binding sites and Grb2-binding sites, though the contribution of the former is greater. Indeed, FRS2alpha knockout mice and mice with mutated Shp2-binding sites exhibit a variety of phenotypes due to defects in FGF signaling in vivo. Although FRS2beta binds to the EGF receptor, it does not induce tyrosine phosphorylation on the receptor. Instead, it inhibits EGF signaling, resulting in inhibition of EGF-induced cell proliferation and cell transformation. Based on these findings, the involvement of FRS2 proteins in tumorigenesis should be studied extensively to be validated as candidate biomarkers for the effectiveness of treatments targeting RTKs such as the FGF receptor and EGF receptor.
Collapse
Affiliation(s)
- Noriko Gotoh
- Division of Systems Biomedical Technology, Institute of Medical Science, University of Tokyo.
| |
Collapse
|
37
|
Encinas M, Rozen EJ, Dolcet X, Jain S, Comella JX, Milbrandt J, Johnson EM. Analysis of Ret knockin mice reveals a critical role for IKKs, but not PI 3-K, in neurotrophic factor-induced survival of sympathetic neurons. Cell Death Differ 2008; 15:1510-21. [PMID: 18497757 DOI: 10.1038/cdd.2008.76] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
We analyzed the survival responses and downstream signaling elicited by GDNF on sympathetic neurons from different Ret knockin mice. Lack of tyrosine 1062, a multidocking site in Ret, completely prevented GDNF-mediated survival. Importantly, lack of tyrosine 981, although abrogating Akt phosphorylation, had no effect on neuronal survival, indicating that the PI 3-K/Akt pathway is not necessary for survival of sympathetic neurons. In contrast, silencing of B-Raf completely prevented not only GDNF-mediated but also NGF-mediated cell survival, independently of MEK-1/2. We identified IKKs as the main effectors of the protective effects of B-Raf. First, B-Raf interacted with and activated IKKs. Second, knockdown of IKKs reversed the protection afforded by a constitutively active form of B-Raf. Third, knockdown of IKKs prevented both NGF- and GDNF-mediated survival. In conclusion, our data delineate a novel survival pathway for sympathetic neurons linking B-Raf to IKKs, independently of both PI 3-K and MEK-1/2 pathways.
Collapse
Affiliation(s)
- M Encinas
- Cell Signaling and Apoptosis Group, Departament de Medicina Experimental, Lleida 25198, Spain.
| | | | | | | | | | | | | |
Collapse
|
38
|
Stenqvist A, Lundgren TK, Smith MJ, Hermanson O, Castelo-Branco G, Pawson T, Ernfors P. Subcellular receptor redistribution and enhanced microspike formation by a Ret receptor preferentially recruiting Dok. Neurosci Lett 2008; 435:11-6. [DOI: 10.1016/j.neulet.2008.01.084] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2007] [Revised: 01/28/2008] [Accepted: 01/29/2008] [Indexed: 02/04/2023]
|
39
|
Lundgren TK, Luebke M, Stenqvist A, Ernfors P. Differential membrane compartmentalization of Ret by PTB-adaptor engagement. FEBS J 2008; 275:2055-66. [DOI: 10.1111/j.1742-4658.2008.06360.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
40
|
Cytosolic Phospholipase A2 Regulates Cell Growth in RET/PTC-Transformed Thyroid Cells. Cancer Res 2007; 67:11769-78. [DOI: 10.1158/0008-5472.can-07-1997] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
41
|
Minopoli G, Passaro F, Aloia L, Carlomagno F, Melillo RM, Santoro M, Forzati F, Zambrano N, Russo T. Receptor- and non-receptor tyrosine kinases induce processing of the amyloid precursor protein: role of the low-density lipoprotein receptor-related protein. NEURODEGENER DIS 2007; 4:94-100. [PMID: 17596703 DOI: 10.1159/000101833] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The Alzheimer's beta-amyloid peptides derive from the proteolytic processing of the beta-amyloid precursor protein, APP, by beta- and gamma-secretases. The regulation of this processing is not fully understood. Experimental evidence suggests that the activation of pathways involving protein tyrosine kinases, such as PDGFR and Src, could induce the cleavage of APP and in turn the generation of amyloid peptides. In this paper we addressed the effect of receptor and nonreceptor protein tyrosine kinases on the cleavage of APP and the mechanisms of their action. To this aim, we developed an in vitro system based on the APP-Gal4 fusion protein stably transfected in SHSY5Y neuroblastoma cell line. The cleavage of this molecule, induced by various stimuli, results in the activation of the transcription of the luciferase gene under the control of Gal4 cis-elements. By using this experimental system we demonstrated that, similarly to Src, three tyrosine kinases, TrkA, Ret and EGFR, induced the cleavage of APP-Gal4. We excluded that this effect was mediated by the activation of Ras-MAPK, PI3K-Akt and PLC-gamma pathways. Furthermore, the direct phosphorylation of the APP cytosolic domain does not affect Abeta peptide generation. On the contrary, experiments in cells lacking the LDL-receptor related protein LRP support the hypothesis that the interaction of APP with LRP is required for the induction of APP cleavage by tyrosine kinases.
Collapse
Affiliation(s)
- Giuseppina Minopoli
- CEINGE Biotecnologie Avanzate, Dipartimento di Biochimica e Biotecnologie Mediche, Università di Napoli Federico II, Napoli, Italia
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Gustin JA, Yang M, Johnson EM, Milbrandt J. Deciphering adaptor specificity in GFL-dependent RET-mediated proliferation and neurite outgrowth. J Neurochem 2007; 102:1184-94. [PMID: 17663753 DOI: 10.1111/j.1471-4159.2007.04624.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Glial cell derived neurotrophic factor (GDNF)-dependent receptor tyrosine kinase RET activity is required for proper development of the nervous system and genitourinary tract. Loss-of-function mutations in RET are associated with enteric nervous system abnormalities (Hirschsprung disease) and renal deficits (Potter's syndrome), whereas activating mutations lead to hereditary cancer syndromes (multiple endocrine neoplasia type 2A and type 2B). RET activation is crucial for the proper regulation of a variety of cellular processes including cell migration, proliferation and neurite outgrowth. By analyzing a series of RET mutants we found that Y1062 was critical for stimulating GDNF-mediated proliferation as well as proliferation stimulated by GDNF-independent oncogenic forms of RET. Studies using small interfering RNA driven by lentivirus to knock-down expression of particular adaptor proteins that interact with RET phospho-Y1062, demonstrated that only Src-homology 2 and growth factor receptor binding protein 2 were necessary for RET-mediated proliferation by wild type and oncogenic forms of RET. Interestingly, we discovered that Y1062 was also required for GDNF-stimulated neurite outgrowth. However, small interfering RNAs to either Src-homology 2 or growth factor receptor binding protein 2 or a panel of other adaptor proteins known to interact with RET Y1062 were incapable of blocking GDNF-stimulated neurite formation, indicating that differential use of intracellular adaptors is responsible for regulating alternative RET-stimulated cellular events such as proliferation versus a differentiation response like neurite outgrowth.
Collapse
Affiliation(s)
- Jason A Gustin
- Department of Pathology, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | | | | | | |
Collapse
|
43
|
Kondo T, Zheng L, Liu W, Kurebayashi J, Asa SL, Ezzat S. Epigenetically controlled fibroblast growth factor receptor 2 signaling imposes on the RAS/BRAF/mitogen-activated protein kinase pathway to modulate thyroid cancer progression. Cancer Res 2007; 67:5461-70. [PMID: 17545628 DOI: 10.1158/0008-5472.can-06-4477] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Fibroblast growth factor (FGF) signals play fundamental roles in development and tumorigenesis. Thyroid cancer is an example of a tumor with nonoverlapping genetic mutations that up-regulate mitogen-activated protein kinase (MAPK). Here, we show that FGF receptor 1 (FGFR1), which is expressed mainly in neoplastic thyroid cells, propagates MAPK activation and promotes tumor progression. In contrast, FGFR2 is down-regulated in neoplastic thyroid cells through DNA promoter methylation. Reexpression of FGFR2 competes with FGFR1 for the immediate substrate FGFR substrate 2 to impede signaling upstream of the BRAF/MAPK pathway. These data unmask an epigenetically controlled FGFR2 signal that imposes precisely on the intragenically modified BRAF/MAPK pathway to modulate thyroid cancer behavior.
Collapse
MESH Headings
- Cell Growth Processes/physiology
- Cell Line, Tumor
- DNA Methylation
- Disease Progression
- Down-Regulation
- Epigenesis, Genetic
- Humans
- MAP Kinase Signaling System/genetics
- Neoplasm Invasiveness
- Proto-Oncogene Proteins B-raf/genetics
- Proto-Oncogene Proteins B-raf/metabolism
- RNA, Small Interfering/genetics
- Receptor, Fibroblast Growth Factor, Type 1/biosynthesis
- Receptor, Fibroblast Growth Factor, Type 1/genetics
- Receptor, Fibroblast Growth Factor, Type 1/metabolism
- Receptor, Fibroblast Growth Factor, Type 2/biosynthesis
- Receptor, Fibroblast Growth Factor, Type 2/genetics
- Receptor, Fibroblast Growth Factor, Type 2/metabolism
- Thyroid Neoplasms/enzymology
- Thyroid Neoplasms/genetics
- Thyroid Neoplasms/metabolism
- Thyroid Neoplasms/pathology
- Transfection
- ras Proteins/genetics
- ras Proteins/metabolism
Collapse
Affiliation(s)
- Tetsuo Kondo
- Department of Pathology, Princess Margaret Hospital, University Health Network, Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
44
|
Degoutin J, Vigny M, Gouzi JY. ALK activation induces Shc and FRS2 recruitment: Signaling and phenotypic outcomes in PC12 cells differentiation. FEBS Lett 2007; 581:727-34. [PMID: 17274988 DOI: 10.1016/j.febslet.2007.01.039] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2006] [Revised: 12/27/2006] [Accepted: 01/16/2007] [Indexed: 10/23/2022]
Abstract
Activation of the neuronal receptor tyrosine kinase ALK (anaplastic lymphoma kinase) promoted the neuron-like differentiation of PC12 cells through specific activation of the ERK MAP-kinase pathway. However, the nature of primary signaling events initiated is still poorly documented. Here, we established that Shc and FRS2 adaptors were recruited and phosphorylated following antibody-based ALK activation. We further demonstrated that Shc was recruited to the consensus phosphotyrosine site NPTpY(1507) and FRS2 was likely recruited to a novel non-orthodox phosphotyrosine site within ALK. Finally, we characterized a functional role for Shc and likely FRS2 in ALK-dependant MAP-kinase activation and neuronal differentiation of PC12 cells. These findings hence open attractive perspectives concerning specific characteristics of ALK in the control of the mechanisms driving neuronal differentiation.
Collapse
Affiliation(s)
- Joffrey Degoutin
- INSERM, U706/UPMC, Institut du Fer à Moulin, 17 rue du Fer à Moulin, 4 Place Jussieu, F-75005 Paris, France
| | | | | |
Collapse
|
45
|
Lundgren TK, Scott RP, Smith M, Pawson T, Ernfors P. Engineering the Recruitment of Phosphotyrosine Binding Domain-containing Adaptor Proteins Reveals Distinct Roles for RET Receptor-mediated Cell Survival. J Biol Chem 2006; 281:29886-96. [PMID: 16847065 DOI: 10.1074/jbc.m600473200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The RET receptor tyrosine kinase is important for several different biological functions during development. The recruitment at the phosphorylated Tyr(1062) site in RET of a number of different phosphotyrosine binding (PTB) domain-containing adaptor proteins, including Shc and Frs2, plays a dominant role for the multiple different biological functions of the RET receptor during development, including stimulation of cell survival. Here, we demonstrate that a competitive recruitment of Shc as opposed to Frs2 mediates the survival signaling arising from RET activation. Based on results from a peptide array, we have genetically engineered the PTB domain binding site of RET to rewire its recruitment of the PTB proteins Shc and Frs2. An engineered RET that has a competitive interaction with Shc at the expense of Frs2, but not a RET receptor that only recruits Frs2, activates cell survival signaling pathways and is protective from cell death in neuronal SK-N-MC cells. Thus, cell type-specific functions involve a competitive recruitment of different PTB adaptor molecules by RET that activate selective signaling pathways.
Collapse
Affiliation(s)
- T Kalle Lundgren
- Unit of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, 17177 Stockholm, Sweden
| | | | | | | | | |
Collapse
|
46
|
de Groot JWB, Links TP, Plukker JTM, Lips CJM, Hofstra RMW. RET as a diagnostic and therapeutic target in sporadic and hereditary endocrine tumors. Endocr Rev 2006; 27:535-60. [PMID: 16849421 DOI: 10.1210/er.2006-0017] [Citation(s) in RCA: 228] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The RET gene encodes a receptor tyrosine kinase that is expressed in neural crest-derived cell lineages. The RET receptor plays a crucial role in regulating cell proliferation, migration, differentiation, and survival through embryogenesis. Activating mutations in RET lead to the development of several inherited and noninherited diseases. Germline point mutations are found in the cancer syndromes multiple endocrine neoplasia (MEN) type 2, including MEN 2A and 2B, and familial medullary thyroid carcinoma. These syndromes are autosomal dominantly inherited. The identification of mutations associated with these syndromes has led to genetic testing to identify patients at risk for MEN 2 and familial medullary thyroid carcinoma and subsequent implementation of prophylactic thyroidectomy in mutation carriers. In addition, more than 10 somatic rearrangements of RET have been identified from papillary thyroid carcinomas. These mutations, as those found in MEN 2, induce oncogenic activation of the RET tyrosine kinase domain via different mechanisms, making RET an excellent candidate for the design of molecular targeted therapy. Recently, various kinds of therapeutic approaches, such as tyrosine kinase inhibition, gene therapy with dominant negative RET mutants, monoclonal antibodies against oncogene products, and nuclease-resistant aptamers that recognize and inhibit RET have been developed. The use of these strategies in preclinical models has provided evidence that RET is indeed a potential target for selective cancer therapy. However, a clinically useful therapeutic option for treating patients with RET-associated cancer is still not available.
Collapse
Affiliation(s)
- Jan Willem B de Groot
- Department of Endocrinology, University Medical Center Groningen, University of Groningen, The Netherlands
| | | | | | | | | |
Collapse
|
47
|
Csiszár A. Structural and functional diversity of adaptor proteins involved in tyrosine kinase signalling. Bioessays 2006; 28:465-79. [PMID: 16615089 DOI: 10.1002/bies.20411] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Adaptors are proteins of multi-modular structure without enzymatic activity. Their capacity to organise large, temporary protein complexes by linking proteins together in a regulated and selective fashion makes them of outstanding importance in the establishment and maintenance of specificity and efficiency in all known signal transduction pathways. This review focuses on the structural and functional characterisation of adaptors involved in tyrosine kinase (TK) signalling. TK-linked adaptors can be distinguished by their domain composition and binding specificities. However, such structural classifications have proven inadequate as indicators of functional roles. A better way to understand the logic of signalling networks might be to look at functional aspects of adaptor proteins such as signalling specificity, negative versus positive contribution to signal propagation, or their position in the signalling hierarchy. All of these functions are dynamic, suggesting that adaptors have important regulatory roles rather than acting only as stable linkers in signal transduction.
Collapse
|
48
|
Lee RHK, Wong WL, Chan CH, Chan SY. Differential effects of glial cell line-derived neurotrophic factor and neurturin in RET/GFRalpha1-expressing cells. J Neurosci Res 2006; 83:80-90. [PMID: 16294336 DOI: 10.1002/jnr.20701] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The c-ret protooncogene, RET, encodes a receptor tyrosine kinase. RET is activated by members of the glial cell line-derived neurotrophic factor (GDNF) family of ligands, which include GDNF, neurturin, artemin, and persephin. The ligands bind RET through GDNF family receptor alpha, termed GFRalpha1-4. Despite the importance of RET signaling in the development of the enteric nervous system and the kidney, the differential signaling mechanisms between RET ligands are poorly established. It has been suggested that signal specificity is achieved through binding of the ligand to its preferred GFRalpha. To compare the signaling profiles of GDNF and neurturin, we have identified a cell line, NG108-15, which endogenously expresses RET and GFRalpha1 but not GFRalpha2-4. Immunoblot data showed that GDNF caused a transient activation, whereas neurturin caused a sustained activation, of both p44/p42 MAP kinases and PLCgamma. Under serum starvation, NG108-15 cells differentiate and form neurites. Neurturin but not GDNF stimulated neurite outgrowth, which could be blocked by the selective PLC inhibitor U73122. On the other hand, GDNF but not neurturin promoted cell survival, and this could be blocked by the p44/p42 MAP kinase inhibitor PD98059. Our findings not only show the differential signaling of GDNF and neurturin but also suggest that this can be achieved through binding to the same GFRalpha subtype, leading to distinct biological responses.
Collapse
Affiliation(s)
- Rebecca Hui Kwan Lee
- Department of Paediatrics and Adolescent Medicine, the University of Hong Kong, Pokfulam, Hong Kong SAR, People's Republic of China
| | | | | | | |
Collapse
|
49
|
Zhang Y, Zhu W, Wang YG, Liu XJ, Jiao L, Liu X, Zhang ZH, Lu CL, He C. Interaction of SH2-Bbeta with RET is involved in signaling of GDNF-induced neurite outgrowth. J Cell Sci 2006; 119:1666-76. [PMID: 16569669 DOI: 10.1242/jcs.02845] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
RET receptor signalling is essential for glial-cell-line-derived neurotrophic factor (GDNF)-induced survival and differentiation of various neurons such as mesencephalic neurons. To identify proteins that mediate RET-dependent signaling, yeast two-hybrid screening was performed with the intracellular domain of RET as bait. We identified a new interaction between RET and the adapter protein SH2-Bbeta. Upon GDNF stimulation of PC12-GFRalpha1-RET cells (that stably overexpress GDNF receptor alpha1 and RET), wild-type SH2-Bbeta co-immunoprecipitated with RET, whereas the dominant-negative SH2-Bbeta mutant R555E did not. RET interacted with endogenous SH2-Bbeta both in PC12-GFRalpha1-RET cells and in rat tissues. Mutagenesis analysis revealed that Tyr981 within the intracellular domain of RET was crucial for the interaction with SH2-Bbeta. Morphological evidence showed that SH2-Bbeta and RET colocalized in mesencephalic neurons. Furthermore, functional analysis indicated that overexpression of SH2-Bbeta facilitated GDNF-induced neurite outgrowth in both PC12-GFRalpha1-RET cells and cultured mesencephalic neurons, whereas the mutant R555E inhibited the effect. Moreover, inhibition of SH2-Bbeta expression by RNA interference caused a significant decrease of GDNF-induced neuronal differentiation in PC12-GFRalpha1-RET cells. Taken together, our results suggest that SH2-Bbeta is a new signaling molecule involved in GDNF-induced neurite outgrowth.
Collapse
Affiliation(s)
- Yong Zhang
- Department of Neurobiology, Second Military Medical University, Shanghai, 200433, PR of China
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Iavarone C, Acunzo M, Carlomagno F, Catania A, Melillo RM, Carlomagno SM, Santoro M, Chiariello M. Activation of the Erk8 mitogen-activated protein (MAP) kinase by RET/PTC3, a constitutively active form of the RET proto-oncogene. J Biol Chem 2006; 281:10567-76. [PMID: 16484222 DOI: 10.1074/jbc.m513397200] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mitogen-activated protein (MAP) kinases have a central role in several biological functions, including cell adhesion and spreading, chemotaxis, cell cycle progression, differentiation, and apoptosis. Extracellular signal-regulated kinase 8 (Erk8) is a large MAP kinase whose activity is controlled by serum and the c-Src non-receptor tyrosine kinase. Here, we show that RET/PTC3, an activated form of the RET proto-oncogene, was able to activate Erk8, and we demonstrate that such MAP kinase participated in RET/PTC3-dependent stimulation of the c-jun promoter. By using RET/PTC3 molecules mutated in specific tyrosine autophosphorylation sites, we characterized Tyr(981), a known binding site for c-Src, as a major determinant of RET/PTC3-induced Erk8 activation, although, surprisingly, the underlying mechanism did not strictly depend on the activity of Src. In contrast, we present evidence that RET/PTC3 acts on Erk8 through Tyr(981)-mediated activation of c-Abl. Furthermore, we localized the region responsible for the modulation of Erk8 activity by the RET/PTC3 and Abl oncogenes in the Erk8 C-terminal domain. Altogether, these results support a role for Erk8 as a novel effector of RET/PTC3 and, therefore, RET biological functions.
Collapse
Affiliation(s)
- Carlo Iavarone
- Dipartimento di Biologia e Patologia Cellulare e Molecolare, Università degli Studi di Napoli Federico II, Via Pansini 5, 80131 Naples, Italy
| | | | | | | | | | | | | | | |
Collapse
|