1
|
Howard GC, Wang J, Rose KL, Jones C, Patel P, Tsui T, Florian AC, Vlach L, Lorey SL, Grieb BC, Smith BN, Slota MJ, Reynolds EM, Goswami S, Savona MR, Mason FM, Lee T, Fesik S, Liu Q, Tansey WP. Ribosome subunit attrition and activation of the p53-MDM4 axis dominate the response of MLL-rearranged cancer cells to WDR5 WIN site inhibition. eLife 2024; 12:RP90683. [PMID: 38682900 PMCID: PMC11057873 DOI: 10.7554/elife.90683] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024] Open
Abstract
The chromatin-associated protein WD Repeat Domain 5 (WDR5) is a promising target for cancer drug discovery, with most efforts blocking an arginine-binding cavity on the protein called the 'WIN' site that tethers WDR5 to chromatin. WIN site inhibitors (WINi) are active against multiple cancer cell types in vitro, the most notable of which are those derived from MLL-rearranged (MLLr) leukemias. Peptidomimetic WINi were originally proposed to inhibit MLLr cells via dysregulation of genes connected to hematopoietic stem cell expansion. Our discovery and interrogation of small-molecule WINi, however, revealed that they act in MLLr cell lines to suppress ribosome protein gene (RPG) transcription, induce nucleolar stress, and activate p53. Because there is no precedent for an anticancer strategy that specifically targets RPG expression, we took an integrated multi-omics approach to further interrogate the mechanism of action of WINi in human MLLr cancer cells. We show that WINi induce depletion of the stock of ribosomes, accompanied by a broad yet modest translational choke and changes in alternative mRNA splicing that inactivate the p53 antagonist MDM4. We also show that WINi are synergistic with agents including venetoclax and BET-bromodomain inhibitors. Together, these studies reinforce the concept that WINi are a novel type of ribosome-directed anticancer therapy and provide a resource to support their clinical implementation in MLLr leukemias and other malignancies.
Collapse
Affiliation(s)
- Gregory Caleb Howard
- Department of Cell and Developmental Biology, Vanderbilt University School of MedicineNashvilleUnited States
| | - Jing Wang
- Department of Biostatistics, Vanderbilt University Medical CenterNashvilleUnited States
- Center for Quantitative Sciences, Vanderbilt University Medical CenterNashvilleUnited States
| | - Kristie L Rose
- Mass Spectrometry Research Center, Vanderbilt University School of MedicineNashvilleUnited States
- Department of Biochemistry, Vanderbilt University School of MedicineNashvilleUnited States
| | - Camden Jones
- Department of Cell and Developmental Biology, Vanderbilt University School of MedicineNashvilleUnited States
| | - Purvi Patel
- Mass Spectrometry Research Center, Vanderbilt University School of MedicineNashvilleUnited States
| | - Tina Tsui
- Mass Spectrometry Research Center, Vanderbilt University School of MedicineNashvilleUnited States
| | - Andrea C Florian
- Department of Cell and Developmental Biology, Vanderbilt University School of MedicineNashvilleUnited States
| | - Logan Vlach
- Department of Medicine, Vanderbilt University Medical CenterNashvilleUnited States
| | - Shelly L Lorey
- Department of Cell and Developmental Biology, Vanderbilt University School of MedicineNashvilleUnited States
| | - Brian C Grieb
- Department of Medicine, Vanderbilt University Medical CenterNashvilleUnited States
| | - Brianna N Smith
- Department of Medicine, Vanderbilt University Medical CenterNashvilleUnited States
| | - Macey J Slota
- Department of Cell and Developmental Biology, Vanderbilt University School of MedicineNashvilleUnited States
| | - Elizabeth M Reynolds
- Department of Cell and Developmental Biology, Vanderbilt University School of MedicineNashvilleUnited States
| | - Soumita Goswami
- Department of Cell and Developmental Biology, Vanderbilt University School of MedicineNashvilleUnited States
| | - Michael R Savona
- Department of Medicine, Vanderbilt University Medical CenterNashvilleUnited States
| | - Frank M Mason
- Department of Medicine, Vanderbilt University Medical CenterNashvilleUnited States
| | - Taekyu Lee
- Department of Biochemistry, Vanderbilt University School of MedicineNashvilleUnited States
| | - Stephen Fesik
- Department of Biochemistry, Vanderbilt University School of MedicineNashvilleUnited States
- Department of Pharmacology, Vanderbilt University School of MedicineNashvilleUnited States
- Department of Chemistry, Vanderbilt UniversityNashvilleUnited States
| | - Qi Liu
- Department of Biostatistics, Vanderbilt University Medical CenterNashvilleUnited States
- Center for Quantitative Sciences, Vanderbilt University Medical CenterNashvilleUnited States
| | - William P Tansey
- Department of Cell and Developmental Biology, Vanderbilt University School of MedicineNashvilleUnited States
- Department of Biochemistry, Vanderbilt University School of MedicineNashvilleUnited States
| |
Collapse
|
2
|
Howard GC, Wang J, Rose KL, Jones C, Patel P, Tsui T, Florian AC, Vlach L, Lorey SL, Grieb BC, Smith BN, Slota MJ, Reynolds EM, Goswami S, Savona MR, Mason FM, Lee T, Fesik SW, Liu Q, Tansey WP. Ribosome subunit attrition and activation of the p53-MDM4 axis dominate the response of MLL-rearranged cancer cells to WDR5 WIN site inhibition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.26.550648. [PMID: 37546802 PMCID: PMC10402127 DOI: 10.1101/2023.07.26.550648] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
The chromatin-associated protein WD Repeat Domain 5 (WDR5) is a promising target for cancer drug discovery, with most efforts blocking an arginine-binding cavity on the protein called the "WIN" site that tethers WDR5 to chromatin. WIN site inhibitors (WINi) are active against multiple cancer cell types in vitro, the most notable of which are those derived from MLL-rearranged (MLLr) leukemias. Peptidomimetic WINi were originally proposed to inhibit MLLr cells via dysregulation of genes connected to hematopoietic stem cell expansion. Our discovery and interrogation of small molecule WIN site inhibitors, however, revealed that they act in MLLr cell lines to suppress ribosome protein gene (RPG) transcription, induce nucleolar stress, and activate p53. Because there is no precedent for an anti-cancer strategy that specifically targets RPG expression, we took an integrated multi-omics approach to further interrogate the mechanism of action of WINi in MLLr cancer cells. We show that WINi induce depletion of the stock of ribosomes, accompanied by a broad yet modest translational choke and changes in alternative mRNA splicing that inactivate the p53 antagonist MDM4. We also show that WINi are synergistic with agents including venetoclax and BET-bromodomain inhibitors. Together, these studies reinforce the concept that WINi are a novel type of ribosome-directed anti-cancer therapy and provide a resource to support their clinical implementation in MLLr leukemias and other malignancies.
Collapse
Affiliation(s)
- Gregory C. Howard
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Jing Wang
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Kristie Lindsey Rose
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Mass Spectrometry Research Center, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Camden Jones
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Purvi Patel
- Mass Spectrometry Research Center, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Tina Tsui
- Mass Spectrometry Research Center, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Andrea C. Florian
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Current address: Department of Biology, Belmont University, Nashville, TN 37212, USA
| | - Logan Vlach
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Shelly L. Lorey
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Brian C. Grieb
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Brianna N. Smith
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Macey J. Slota
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Current address: Department of Urology, University of California San Francisco, San Francisco CA 94143, USA
| | - Elizabeth M. Reynolds
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Soumita Goswami
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Michael R. Savona
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Frank M. Mason
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Taekyu Lee
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Stephen W. Fesik
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Department of Chemistry, Vanderbilt University, Nashville, TN 37232, USA
| | - Qi Liu
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - William P. Tansey
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| |
Collapse
|
3
|
Bogush D, Schramm J, Ding Y, He B, Singh C, Sharma A, Tukaramrao DB, Iyer S, Desai D, Nalesnik G, Hengst J, Bhalodia R, Gowda C, Dovat S. Signaling pathways and regulation of gene expression in hematopoietic cells. Adv Biol Regul 2023; 88:100942. [PMID: 36621151 DOI: 10.1016/j.jbior.2022.100942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/06/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Cellular functions are regulated by signal transduction pathway networks consisting of protein-modifying enzymes that control the activity of many downstream proteins. Protein kinases and phosphatases regulate gene expression by reversible phosphorylation of transcriptional factors, which are their direct substrates. Casein kinase II (CK2) is a serine/threonine kinase that phosphorylates a large number of proteins that have critical roles in cellular proliferation, metabolism and survival. Altered function of CK2 has been associated with malignant transformation, immunological disorders and other types of diseases. Protein phosphatase 1 (PP1) is a serine/threonine phosphatase, which regulates the phosphorylation status of many proteins that are essential for cellular functions. IKAROS is a DNA-binding protein, which functions as a regulator of gene transcription in hematopoietic cells. CK2 directly phosphorylates IKAROS at multiple phosphosites which determines IKAROS activity as a regulator of gene expression. PP1 binds to IKAROS via the PP1-consensus recognition site and dephosphorylates serine/threonine residues that are phosphorylated by CK2. Thus, the interplay between CK2 and PP1 signaling pathways have opposing effects on the phosphorylation status of their mutual substrate - IKAROS. This review summarizes the effects of CK2 and PP1 on IKAROS role in regulation of gene expression and its function as a tumor suppressor in leukemia.
Collapse
Affiliation(s)
- Daniel Bogush
- Pennsylvania State University College of Medicine, Hershey, PA, 1703, USA
| | - Joseph Schramm
- Pennsylvania State University College of Medicine, Hershey, PA, 1703, USA
| | - Yali Ding
- Pennsylvania State University College of Medicine, Hershey, PA, 1703, USA
| | - Bing He
- Pennsylvania State University College of Medicine, Hershey, PA, 1703, USA
| | - Chingakham Singh
- Pennsylvania State University College of Medicine, Hershey, PA, 1703, USA
| | - Arati Sharma
- Pennsylvania State University College of Medicine, Hershey, PA, 1703, USA
| | | | - Soumya Iyer
- University of Chicago, Chicago, IL, 60637, USA
| | - Dhimant Desai
- Pennsylvania State University College of Medicine, Hershey, PA, 1703, USA
| | - Gregory Nalesnik
- Pennsylvania State University College of Medicine, Hershey, PA, 1703, USA
| | - Jeremy Hengst
- Pennsylvania State University College of Medicine, Hershey, PA, 1703, USA
| | - Riya Bhalodia
- Pennsylvania State University College of Medicine, Hershey, PA, 1703, USA
| | - Chandrika Gowda
- Pennsylvania State University College of Medicine, Hershey, PA, 1703, USA.
| | - Sinisa Dovat
- Pennsylvania State University College of Medicine, Hershey, PA, 1703, USA.
| |
Collapse
|
4
|
Pavlenko E, Ruengeler T, Engel P, Poepsel S. Functions and Interactions of Mammalian KDM5 Demethylases. Front Genet 2022; 13:906662. [PMID: 35899196 PMCID: PMC9309374 DOI: 10.3389/fgene.2022.906662] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/06/2022] [Indexed: 12/26/2022] Open
Abstract
Mammalian histone demethylases of the KDM5 family are mediators of gene expression dynamics during developmental, cellular differentiation, and other nuclear processes. They belong to the large group of JmjC domain containing, 2-oxoglutarate (2-OG) dependent oxygenases and target methylated lysine 4 of histone H3 (H3K4me1/2/3), an epigenetic mark associated with active transcription. In recent years, KDM5 demethylases have gained increasing attention due to their misregulation in many cancer entities and are intensively explored as therapeutic targets. Despite these implications, the molecular basis of KDM5 function has so far remained only poorly understood. Little is known about mechanisms of nucleosome recognition, the recruitment to genomic targets, as well as the local regulation of demethylase activity. Experimental evidence suggests close physical and functional interactions with epigenetic regulators such as histone deacetylase (HDAC) containing complexes, as well as the retinoblastoma protein (RB). To understand the regulation of KDM5 proteins in the context of chromatin, these interactions have to be taken into account. Here, we review the current state of knowledge on KDM5 function, with a particular emphasis on molecular interactions and their potential implications. We will discuss and outline open questions that need to be addressed to better understand histone demethylation and potential demethylation-independent functions of KDM5s. Addressing these questions will increase our understanding of histone demethylation and allow us to develop strategies to target individual KDM5 enzymes in specific biological and disease contexts.
Collapse
Affiliation(s)
- Egor Pavlenko
- University of Cologne, Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital, Cologne, Germany
| | - Till Ruengeler
- University of Cologne, Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital, Cologne, Germany
| | - Paulina Engel
- University of Cologne, Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital, Cologne, Germany
| | - Simon Poepsel
- University of Cologne, Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital, Cologne, Germany
- Cologne Excellence Cluster for Cellular Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- *Correspondence: Simon Poepsel,
| |
Collapse
|
5
|
Ren D, Wei X, Lin L, Yuan F, Bi Y, Guo Z, Liu L, Ji L, Yang X, Han K, Yang F, Wu X, Li X, Yi Z, Xu Y, Cai C, Wang P, Li W, He L, Zhou D, Yu T, Shi Y, Lu Q, He G. A novel heterozygous missense variant of the ARID4A gene identified in Han Chinese families with schizophrenia-diagnosed siblings that interferes with DNA-binding activity. Mol Psychiatry 2022; 27:2777-2786. [PMID: 35365808 DOI: 10.1038/s41380-022-01530-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 03/10/2022] [Accepted: 03/16/2022] [Indexed: 11/08/2022]
Abstract
ARID4A plays an important role in regulating gene expression and cell proliferation. ARID4A belongs to the AT-rich interaction domain (ARID)-containing family, and a PWWP domain immediately precedes its ARID region. The molecular mechanism and structural basis of ARID4A are largely unknown. Whole-exome sequencing (WES) revealed that a novel heterozygous missense variant, ARID4A c.1231 C > G (p.His411Asp), was associated with schizophrenia (SCZ) in this study. We determined the crystal structure of the PWWP-ARID tandem at 2.05 Å, revealing an unexpected mode in which ARID4A assembles with its PWWP and ARID from a structural and functional supramodule. Our results further showed that compared with the wild type, the p.His411Asp ARID mutant protein adopts a less compact conformation and exhibits a weaker dsDNA-binding ability. The p.His411Asp mutation decreased the number of cells that were arrested in the G0-G1 phase and caused more cells to progress to the G2-M phase. In addition, the missense mutation promoted the proliferation of HEK293T cells. In conclusion, our data provide evidence that ARID4A p.His411Asp could cause a conformational change in the ARID4A ARID domain, influence the DNA binding function, and subsequently disturb the cell cycle arrest in the G1 phase. ARID4A is likely a susceptibility gene for SCZ; thus, these findings provide new insight into the role of ARID4A in psychiatric disorders.
Collapse
Affiliation(s)
- Decheng Ren
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, Shanghai, China
- The Collaborative Innovation Center for Brain Science, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoxi Wei
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, Shanghai, China
- The Collaborative Innovation Center for Brain Science, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lin Lin
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, Shanghai, China
- The Collaborative Innovation Center for Brain Science, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fan Yuan
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, Shanghai, China
- The Collaborative Innovation Center for Brain Science, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Bi
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, Shanghai, China
- The Collaborative Innovation Center for Brain Science, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhenming Guo
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, Shanghai, China
- The Collaborative Innovation Center for Brain Science, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liangjie Liu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, Shanghai, China
- The Collaborative Innovation Center for Brain Science, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lei Ji
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, Shanghai, China
- The Collaborative Innovation Center for Brain Science, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao Yang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, Shanghai, China
- The Collaborative Innovation Center for Brain Science, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ke Han
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, Shanghai, China
- The Collaborative Innovation Center for Brain Science, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fengping Yang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, Shanghai, China
- The Collaborative Innovation Center for Brain Science, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xi Wu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, Shanghai, China
- The Collaborative Innovation Center for Brain Science, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xingwang Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, Shanghai, China
- The Collaborative Innovation Center for Brain Science, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhenghui Yi
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yifeng Xu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Changqun Cai
- Wuhu Fourth People's Hospital, Wuhu, Anhui, China
| | - Peng Wang
- Wuhu Fourth People's Hospital, Wuhu, Anhui, China
| | - Weidong Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, Shanghai, China
- The Collaborative Innovation Center for Brain Science, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lin He
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, Shanghai, China
- The Collaborative Innovation Center for Brain Science, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Daizhan Zhou
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, Shanghai, China
- The Collaborative Innovation Center for Brain Science, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tao Yu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, Shanghai, China
- The Collaborative Innovation Center for Brain Science, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Shi
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, Shanghai, China
- The Collaborative Innovation Center for Brain Science, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qing Lu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, Shanghai, China.
- The Collaborative Innovation Center for Brain Science, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China.
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Guang He
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, Shanghai, China.
- The Collaborative Innovation Center for Brain Science, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China.
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
6
|
Deák G, Cook AG. Missense Variants Reveal Functional Insights Into the Human ARID Family of Gene Regulators. J Mol Biol 2022; 434:167529. [PMID: 35257783 PMCID: PMC9077328 DOI: 10.1016/j.jmb.2022.167529] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/10/2022] [Accepted: 03/01/2022] [Indexed: 11/16/2022]
Abstract
Missense variants are alterations to protein coding sequences that result in amino acid substitutions. They can be deleterious if the amino acid is required for maintaining structure or/and function, but are likely to be tolerated at other sites. Consequently, missense variation within a healthy population can mirror the effects of negative selection on protein structure and function, such that functional sites on proteins are often depleted of missense variants. Advances in high-throughput sequencing have dramatically increased the sample size of available human variation data, allowing for population-wide analysis of selective pressures. In this study, we developed a convenient set of tools, called 1D-to-3D, for visualizing the positions of missense variants on protein sequences and structures. We used these tools to characterize human homologues of the ARID family of gene regulators. ARID family members are implicated in multiple cancer types, developmental disorders, and immunological diseases but current understanding of their mechanistic roles is incomplete. Combined with phylogenetic and structural analyses, our approach allowed us to characterise sites important for protein-protein interactions, histone modification recognition, and DNA binding by the ARID proteins. We find that comparing missense depletion patterns among paralogs can reveal sub-functionalization at the level of domains. We propose that visualizing missense variants and their depletion on structures can serve as a valuable tool for complementing evolutionary and experimental findings.
Collapse
Affiliation(s)
- Gauri Deák
- Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, United Kingdom. https://twitter.com/GauriDeak
| | - Atlanta G Cook
- Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, United Kingdom.
| |
Collapse
|
7
|
Korn SM, Schlundt A. Structures and nucleic acid-binding preferences of the eukaryotic ARID domain. Biol Chem 2022; 403:731-747. [PMID: 35119801 DOI: 10.1515/hsz-2021-0404] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/17/2022] [Indexed: 12/28/2022]
Abstract
The DNA-binding AT-rich interactive domain (ARID) exists in a wide range of proteins throughout eukaryotic kingdoms. ARID domain-containing proteins are involved in manifold biological processes, such as transcriptional regulation, cell cycle control and chromatin remodeling. Their individual domain composition allows for a sub-classification within higher mammals. ARID is categorized as binder of double-stranded AT-rich DNA, while recent work has suggested ARIDs as capable of binding other DNA motifs and also recognizing RNA. Despite a broad variability on the primary sequence level, ARIDs show a highly conserved fold, which consists of six α-helices and two loop regions. Interestingly, this minimal core domain is often found extended by helices at the N- and/or C-terminus with potential roles in target specificity and, subsequently function. While high-resolution structural information from various types of ARIDs has accumulated over two decades now, there is limited access to ARID-DNA complex structures. We thus find ourselves left at the beginning of understanding ARID domain target specificities and the role of accompanying domains. Here, we systematically summarize ARID domain conservation and compare the various types with a focus on their structural differences and DNA-binding preferences, including the context of multiple other motifs within ARID domain containing proteins.
Collapse
Affiliation(s)
- Sophie Marianne Korn
- Institute for Molecular Biosciences and Center for Biomolecular Magnetic Resonance (BMRZ), Goethe-University Frankfurt, Max-von-Laue-Str. 9, D-60438 Frankfurt, Germany
| | - Andreas Schlundt
- Institute for Molecular Biosciences and Center for Biomolecular Magnetic Resonance (BMRZ), Goethe-University Frankfurt, Max-von-Laue-Str. 9, D-60438 Frankfurt, Germany
| |
Collapse
|
8
|
Zimmermann RC, Sardiu ME, Manton CA, Miah MS, Banks CAS, Adams MK, Koestler DC, Hurst DR, Edmonds MD, Washburn MP, Welch DR. Perturbation of BRMS1 interactome reveals pathways that impact metastasis. PLoS One 2021; 16:e0259128. [PMID: 34788285 PMCID: PMC8598058 DOI: 10.1371/journal.pone.0259128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/12/2021] [Indexed: 11/25/2022] Open
Abstract
Breast Cancer Metastasis Suppressor 1 (BRMS1) expression is associated with longer patient survival in multiple cancer types. Understanding BRMS1 functionality will provide insights into both mechanism of action and will enhance potential therapeutic development. In this study, we confirmed that the C-terminus of BRMS1 is critical for metastasis suppression and hypothesized that critical protein interactions in this region would explain its function. Phosphorylation status at S237 regulates BRMS1 protein interactions related to a variety of biological processes, phenotypes [cell cycle (e.g., CDKN2A), DNA repair (e.g., BRCA1)], and metastasis [(e.g., TCF2 and POLE2)]. Presence of S237 also directly decreased MDA-MB-231 breast carcinoma migration in vitro and metastases in vivo. The results add significantly to our understanding of how BRMS1 interactions with Sin3/HDAC complexes regulate metastasis and expand insights into BRMS1's molecular role, as they demonstrate BRMS1 C-terminus involvement in distinct protein-protein interactions.
Collapse
Affiliation(s)
- Rosalyn C. Zimmermann
- Department of Cancer Biology, The Kansas University Medical Center, Kansas City, KS, United States of America
| | - Mihaela E. Sardiu
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
- Department of Biostatistics and Data Science, The Kansas University Medical Center, Kansas City, KS, United States of America
- The University of Kansas Cancer Center, Kansas City, KS, United States of America
| | - Christa A. Manton
- Department of Cancer Biology, The Kansas University Medical Center, Kansas City, KS, United States of America
- Pathology Department, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Department of Biology, Baker University, Baldwin City, KS, United States of America
| | - Md. Sayem Miah
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
- Department of Biochemistry and Molecular Biology, University of Arkansas for Health Sciences, Little Rock, AR, United States of America
| | - Charles A. S. Banks
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Mark K. Adams
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Devin C. Koestler
- Department of Biostatistics and Data Science, The Kansas University Medical Center, Kansas City, KS, United States of America
- The University of Kansas Cancer Center, Kansas City, KS, United States of America
| | - Douglas R. Hurst
- Pathology Department, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Mick D. Edmonds
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Michael P. Washburn
- Department of Cancer Biology, The Kansas University Medical Center, Kansas City, KS, United States of America
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
- The University of Kansas Cancer Center, Kansas City, KS, United States of America
| | - Danny R. Welch
- Department of Cancer Biology, The Kansas University Medical Center, Kansas City, KS, United States of America
- The University of Kansas Cancer Center, Kansas City, KS, United States of America
| |
Collapse
|
9
|
Structural Insight into Chromatin Recognition by Multiple Domains of the Tumor Suppressor RBBP1. J Mol Biol 2021; 433:167224. [PMID: 34506790 DOI: 10.1016/j.jmb.2021.167224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/22/2021] [Accepted: 08/27/2021] [Indexed: 01/04/2023]
Abstract
Retinoblastoma-binding protein 1 (RBBP1) is involved in gene regulation, epigenetic regulation, and disease processes. RBBP1 contains five domains with DNA-binding or histone-binding activities, but how RBBP1 specifically recognizes chromatin is still unknown. An AT-rich interaction domain (ARID) in RBBP1 was proposed to be the key region for DNA-binding and gene suppression. Here, we first determined the solution structure of a tandem PWWP-ARID domain mutant of RBBP1 after deletion of a long flexible acidic loop L12 in the ARID domain. NMR titration results indicated that the ARID domain interacts with DNA with no GC- or AT-rich preference. Surprisingly, we found that the loop L12 binds to the DNA-binding region of the ARID domain as a DNA mimic and inhibits DNA binding. The loop L12 can also bind weakly to the Tudor and chromobarrel domains of RBBP1, but binds more strongly to the DNA-binding region of the histone H2A-H2B heterodimer. Furthermore, both the loop L12 and DNA can enhance the binding of the chromobarrel domain to H3K4me3 and H4K20me3. Based on these results, we propose a model of chromatin recognition by RBBP1, which highlights the unexpected multiple key roles of the disordered acidic loop L12 in the specific binding of RBBP1 to chromatin.
Collapse
|
10
|
Arabidopsis RPD3-like histone deacetylases form multiple complexes involved in stress response. J Genet Genomics 2021; 48:369-383. [PMID: 34144927 DOI: 10.1016/j.jgg.2021.04.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/31/2021] [Accepted: 04/15/2021] [Indexed: 12/13/2022]
Abstract
The Arabidopsis thaliana RPD3-type histone deacetylases have been known to form conserved SIN3-type histone deacetylase complexes, but whether they form other types of complexes is unknown. Here, we perform affinity purification followed by mass spectrometry and demonstrate that the Arabidopsis RPD3-type histone deacetylases HDA6 and HDA19 interact with several previously uncharacterized proteins, thereby forming three types of plant-specific histone deacetylase complexes, which we named SANT, ESANT, and ARID. RNA-seq indicates that the newly identified components function together with HDA6 and HDA19 and coregulate the expression of a number of genes. HDA6 and HDA19 were previously thought to repress gene transcription by histone deacetylation. We find that the histone deacetylase complexes can repress gene expression via both histone deacetylation-dependent and -independent mechanisms. In the mutants of histone deacetylase complexes, the expression of a number of stress-induced genes is up-regulated, and several mutants of the histone deacetylase complexes show severe retardation in growth. Considering that growth retardation is thought to be a trade-off for an increase in stress tolerance, we infer that the histone deacetylase complexes identified in this study prevent overexpression of stress-induced genes and thereby ensure normal growth of plants under nonstress conditions.
Collapse
|
11
|
Terzi Cizmecioglu N, Huang J, Keskin EG, Wang X, Esen I, Chen F, Orkin SH. ARID4B is critical for mouse embryonic stem cell differentiation towards mesoderm and endoderm, linking epigenetics to pluripotency exit. J Biol Chem 2021; 295:17738-17751. [PMID: 33454011 DOI: 10.1074/jbc.ra120.015534] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/13/2020] [Indexed: 11/06/2022] Open
Abstract
Distinct cell types emerge from embryonic stem cells through a precise and coordinated execution of gene expression programs during lineage commitment. This is established by the action of lineage specific transcription factors along with chromatin complexes. Numerous studies have focused on epigenetic factors that affect embryonic stem cells (ESC) self-renewal and pluripotency. However, the contribution of chromatin to lineage decisions at the exit from pluripotency has not been as extensively studied. Using a pooled epigenetic shRNA screen strategy, we identified chromatin-related factors critical for differentiation toward mesodermal and endodermal lineages. Here we reveal a critical role for the chromatin protein, ARID4B. Arid4b-deficient mESCs are similar to WT mESCs in the expression of pluripotency factors and their self-renewal. However, ARID4B loss results in defects in up-regulation of the meso/endodermal gene expression program. It was previously shown that Arid4b resides in a complex with SIN3A and HDACS 1 and 2. We identified a physical and functional interaction of ARID4B with HDAC1 rather than HDAC2, suggesting functionally distinct Sin3a subcomplexes might regulate cell fate decisions Finally, we observed that ARID4B deficiency leads to increased H3K27me3 and a reduced H3K27Ac level in key developmental gene loci, whereas a subset of genomic regions gain H3K27Ac marks. Our results demonstrate that epigenetic control through ARID4B plays a key role in the execution of lineage-specific gene expression programs at pluripotency exit.
Collapse
Affiliation(s)
- Nihal Terzi Cizmecioglu
- Department of Biological Sciences, Faculty of Arts and Sciences, Middle East Technical University, Ankara, Turkey.
| | - Jialiang Huang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian China
| | - Ezgi G Keskin
- Department of Biological Sciences, Faculty of Arts and Sciences, Middle East Technical University, Ankara, Turkey
| | - Xiaofeng Wang
- Geisel School of Medicine, Dartmouth University, Hanover, New Hampshire USA
| | - Idil Esen
- Howard Hughes Medical Institute, Dana Farber/Boston Children's Cancer and Blood Disorders Center, Dept. of Pediatrics, Harvard Medical School, Boston, Massachusetts USA
| | - Fei Chen
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian China
| | - Stuart H Orkin
- Howard Hughes Medical Institute, Dana Farber/Boston Children's Cancer and Blood Disorders Center, Dept. of Pediatrics, Harvard Medical School, Boston, Massachusetts USA.
| |
Collapse
|
12
|
Ren J, Yao H, Hu W, Perrett S, Gong W, Feng Y. Structural basis for the DNA-binding activity of human ARID4B Tudor domain. J Biol Chem 2021; 296:100506. [PMID: 33675746 PMCID: PMC8038949 DOI: 10.1016/j.jbc.2021.100506] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 02/26/2021] [Accepted: 03/02/2021] [Indexed: 11/24/2022] Open
Abstract
Human ARID4A and ARID4B are homologous proteins that are important in controlling gene expression and epigenetic regulation but have distinct functions. Previous studies have shown that the N-terminal domain of ARID4A is an unusual interdigitated double Tudor domain with DNA-binding activity. However, how the Tudor domain of ARID4B differs from that of ARID4A remains unknown. Here, we found that the ARID4B Tudor domain has significantly weaker DNA affinity than the ARID4A Tudor domain despite sharing more than 80% sequence identity. Structure determination and DNA titration analysis indicated that the ARID4B Tudor domain is also an interdigitated double Tudor domain with a DNA-binding surface similar to ARID4A. We identified a residue close to the DNA-binding site of the Tudor domain that differs between ARID4A and ARID4B. The Leu50 in ARID4A is Glu50 in ARID4B, and the latter forms salt bridges with two lysine residues at the DNA-binding surface. This causes a decrease in the strength of positive charge, thus reducing DNA-binding affinity while significantly increasing protein stability. We also found that a C-terminal extension region enhances the DNA-binding affinity of the ARID4B Tudor domain. This C-terminal extension is disordered and contains a positively charged RGR motif, providing an additional DNA-binding site. Finally, sequence and phylogenetic analyses indicated that the residue differences and the presence of the RGR extension region are conserved. These results provide new insight into the functional differences between ARID4A and ARID4B proteins, as well as elucidating the function of the disordered regions in these proteins.
Collapse
Affiliation(s)
- Jie Ren
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Hongwei Yao
- Institute of Molecular Enzymology, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Wanhui Hu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Sarah Perrett
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Weibin Gong
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
| | - Yingang Feng
- University of Chinese Academy of Sciences, Beijing, China; CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China; Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China.
| |
Collapse
|
13
|
Retinoblastoma Tumor Suppressor Protein Roles in Epigenetic Regulation. Cancers (Basel) 2020; 12:cancers12102807. [PMID: 33003565 PMCID: PMC7600434 DOI: 10.3390/cancers12102807] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/19/2020] [Accepted: 09/27/2020] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Loss of function of the retinoblastoma gene (RB1) is the rate-limiting step in the initiation of both the hereditary and sporadic forms of retinoblastoma tumor. Furthermore, loss of function of the retinoblastoma tumor suppressor protein (pRB) is frequently found in most human cancers. In retinoblastoma, tumor progression is driven by epigenetic changes following pRB loss. This review focuses on the diverse functions of pRB in epigenetic regulation. Abstract Mutations that result in the loss of function of pRB were first identified in retinoblastoma and since then have been associated with the propagation of various forms of cancer. pRB is best known for its key role as a transcriptional regulator during cell cycle exit. Beyond the ability of pRB to regulate transcription of cell cycle progression genes, pRB can remodel chromatin to exert several of its other biological roles. In this review, we discuss the diverse functions of pRB in epigenetic regulation including nucleosome mobilization, histone modifications, DNA methylation and non-coding RNAs.
Collapse
|
14
|
Histone Deacetylases (HDACs): Evolution, Specificity, Role in Transcriptional Complexes, and Pharmacological Actionability. Genes (Basel) 2020; 11:genes11050556. [PMID: 32429325 PMCID: PMC7288346 DOI: 10.3390/genes11050556] [Citation(s) in RCA: 225] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/08/2020] [Accepted: 05/11/2020] [Indexed: 02/06/2023] Open
Abstract
Histone deacetylases (HDACs) are evolutionary conserved enzymes which operate by removing acetyl groups from histones and other protein regulatory factors, with functional consequences on chromatin remodeling and gene expression profiles. We provide here a review on the recent knowledge accrued on the zinc-dependent HDAC protein family across different species, tissues, and human pathologies, specifically focusing on the role of HDAC inhibitors as anti-cancer agents. We will investigate the chemical specificity of different HDACs and discuss their role in the human interactome as members of chromatin-binding and regulatory complexes.
Collapse
|
15
|
Zhang B, Lyu J, Yang EJ, Liu Y, Wu C, Pardeshi L, Tan K, Chen Q, Xu X, Deng CX, Shim JS. Class I histone deacetylase inhibition is synthetic lethal with BRCA1 deficiency in breast cancer cells. Acta Pharm Sin B 2020; 10:615-627. [PMID: 32322466 PMCID: PMC7161709 DOI: 10.1016/j.apsb.2019.08.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/25/2019] [Accepted: 07/27/2019] [Indexed: 02/05/2023] Open
Abstract
Breast cancer susceptibility gene 1 (BRCA1) is a tumor suppressor gene, which is frequently mutated in breast and ovarian cancers. BRCA1 plays a key role in the homologous recombination directed DNA repair, allowing its deficiency to act as a therapeutic target of DNA damaging agents. In this study, we found that inhibition of the class I histone deacetylases (HDAC) exhibited synthetic lethality with BRCA1 deficiency in breast cancer cells. Transcriptome profiling and validation study showed that HDAC inhibition enhanced the expression of thioredoxin interaction protein (TXNIP), causing reactive oxygen species (ROS)-mediated DNA damage. This effect induced preferential apoptosis in BRCA1 -/- breast cancer cells where DNA repair system is compromised. Two animal experiments and gene expression-associated patients' survival analysis further confirmed in vivo synthetic lethality between BRCA1 and HDAC. Finally, the combination of inhibitors of HDAC and bromodomain and extra-terminal motif (BET), another BRCA1 synthetic lethality target that also works through oxidative stress-mediated DNA damage, showed a strong anticancer effect in BRCA1 -/- breast cancer cells. Together, this study provides a new therapeutic strategy for BRCA1-deficient breast cancer by targeting two epigenetic machineries, HDAC and BET.
Collapse
Affiliation(s)
- Baoyuan Zhang
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Junfang Lyu
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Eun Ju Yang
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Yifan Liu
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Changjie Wu
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Lakhansing Pardeshi
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Kaeling Tan
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Qiang Chen
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR, China
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Xiaoling Xu
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR, China
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Chu-Xia Deng
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR, China
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Joong Sup Shim
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR, China
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR, China
| |
Collapse
|
16
|
Epigenetic factor siRNA screen during primary KSHV infection identifies novel host restriction factors for the lytic cycle of KSHV. PLoS Pathog 2020; 16:e1008268. [PMID: 31923286 PMCID: PMC6977772 DOI: 10.1371/journal.ppat.1008268] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 01/23/2020] [Accepted: 12/09/2019] [Indexed: 12/12/2022] Open
Abstract
Establishment of viral latency is not only essential for lifelong Kaposi’s sarcoma-associated herpesvirus (KSHV) infection, but it is also a prerequisite of viral tumorigenesis. The latent viral DNA has a complex chromatin structure, which is established in a stepwise manner regulated by host epigenetic factors during de novo infection. However, despite the importance of viral latency in KSHV pathogenesis, we still have limited information about the repertoire of epigenetic factors that are critical for the establishment and maintenance of KSHV latency. Therefore, the goal of this study was to identify host epigenetic factors that suppress lytic KSHV genes during primary viral infection, which would indicate their role in latency establishment. We performed an siRNA screen targeting 392 host epigenetic factors during primary infection and analyzed which ones affect the expression of the viral replication and transcription activator (RTA) and/or the latency-associated nuclear antigen (LANA), which are viral genes essential for lytic replication and latency, respectively. As a result, we identified the Nucleosome Remodeling and Deacetylase (NuRD) complex, Tip60 and Tip60-associated co-repressors, and the histone demethylase KDM2B as repressors of KSHV lytic genes during both de novo infection and the maintenance of viral latency. Furthermore, we showed that KDM2B rapidly binds to the incoming viral DNA as early as 8 hpi, and can limit the enrichment of activating histone marks on the RTA promoter favoring the downregulation of RTA expression even prior to the polycomb proteins-regulated heterochromatin establishment on the viral genome. Strikingly, KDM2B can also suppress viral gene expression and replication during lytic infection of primary gingival epithelial cells, revealing that KDM2B can act as a host restriction factor of the lytic cycle of KSHV during both latent and lytic infections in multiple different cell types. Latent viral infection of cancer cells in KSHV-associated tumors is critical for the growth and survival of the cancer. Thus, revealing how lytic viral genes get suppressed through epigenetic regulation following de novo KSHV infection, resulting in the establishment of latency, is central to understanding the pathogenesis of KSHV infection. Importantly, the epigenetic factors that we identified as suppressors of KSHV lytic genes are not only crucial for the establishment and maintenance of KSHV latency in different cell types, but also several of them can block lytic KSHV infection in oral epithelial cells. Since herpesviruses often rely on similar sets of host epigenetic factors, the characterization of these newly identified epigenetic factors in KSHV infection may help to better understand fundamental epigenetic mechanisms that may also be utilized by other herpesviruses to establish latency following primary infection.
Collapse
|
17
|
Gong W, Yao X, Liang Q, Tong Y, Perrett S, Feng Y. Resonance assignments for the tandem PWWP-ARID domains of human RBBP1. BIOMOLECULAR NMR ASSIGNMENTS 2019; 13:177-181. [PMID: 30666492 DOI: 10.1007/s12104-019-09873-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 01/16/2019] [Indexed: 06/09/2023]
Abstract
Retinoblastoma-binding protein 1 (RBBP1), also known as AT-rich interaction domain 4A (ARID4A), is a tumour suppressor involved in the regulation of the epigenetic programming in leukemia and Prader-Willi/Angelman syndromes. The ARID domain of RBBP1 binds to DNA non-specifically and has gene suppression activity. However, no structural data has been obtained for the human RBBP1 ARID domain so far. Here we report the near-complete 1H, 13C, 15N backbone and side-chain NMR assignment of a 27 kDa tandem PWWP-ARID domain construct that spans residues 171-414 with the removal of a short disordered region between the two domains. The predicted secondary structure based on the assigned chemical shifts is consistent with the structures of the isolated PWWP domain of human RBBP1 previously solved and the homologous ARID domains of other proteins.
Collapse
Affiliation(s)
- Weibin Gong
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xingzhe Yao
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- University of the Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Qihui Liang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of the Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Yufeng Tong
- Department of Chemistry & Biochemistry, University of Windsor, Windsor, ON, N9B 3P4, Canada
| | - Sarah Perrett
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
- University of the Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing, 100049, China.
| | - Yingang Feng
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China.
- CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China.
| |
Collapse
|
18
|
Oser MG, Fonseca R, Chakraborty AA, Brough R, Spektor A, Jennings RB, Flaifel A, Novak JS, Gulati A, Buss E, Younger ST, McBrayer SK, Cowley GS, Bonal DM, Nguyen QD, Brulle-Soumare L, Taylor P, Cairo S, Ryan CJ, Pease EJ, Maratea K, Travers J, Root DE, Signoretti S, Pellman D, Ashton S, Lord CJ, Barry ST, Kaelin WG. Cells Lacking the RB1 Tumor Suppressor Gene Are Hyperdependent on Aurora B Kinase for Survival. Cancer Discov 2019; 9:230-247. [PMID: 30373918 PMCID: PMC6368871 DOI: 10.1158/2159-8290.cd-18-0389] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 08/22/2018] [Accepted: 10/05/2018] [Indexed: 12/26/2022]
Abstract
Small cell lung cancer (SCLC) accounts for 15% of lung cancers and is almost always linked to inactivating RB1 and TP53 mutations. SCLC frequently responds, albeit briefly, to chemotherapy. The canonical function of the RB1 gene product RB1 is to repress the E2F transcription factor family. RB1 also plays both E2F-dependent and E2F-independent mitotic roles. We performed a synthetic lethal CRISPR/Cas9 screen in an RB1 -/- SCLC cell line that conditionally expresses RB1 to identify dependencies that are caused by RB1 loss and discovered that RB1 -/- SCLC cell lines are hyperdependent on multiple proteins linked to chromosomal segregation, including Aurora B kinase. Moreover, we show that an Aurora B kinase inhibitor is efficacious in multiple preclinical SCLC models at concentrations that are well tolerated in mice. These results suggest that RB1 loss is a predictive biomarker for sensitivity to Aurora B kinase inhibitors in SCLC and perhaps other RB1 -/- cancers. SIGNIFICANCE: SCLC is rarely associated with actionable protooncogene mutations. We did a CRISPR/Cas9-based screen that showed that RB1 -/- SCLC are hyperdependent on AURKB, likely because both genes control mitotic fidelity, and confirmed that Aurora B kinase inhibitors are efficacious against RB1 -/- SCLC tumors in mice at nontoxic doses.See related commentary by Dick and Li, p. 169.This article is highlighted in the In This Issue feature, p. 151.
Collapse
Affiliation(s)
- Matthew G Oser
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Raquel Fonseca
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Abhishek A Chakraborty
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Rachel Brough
- The CRUK Gene Function Laboratory, The Institute of Cancer Research, London, United Kingdom
- Breast Cancer Now Toby Robins Breast Cancer Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Alexander Spektor
- Howard Hughes Medical Institute, Chevy Chase, Maryland
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts; Department of Cell Biology, Harvard Medical School, Boston, Massachusetts
- Department of Radiation Oncology, Brigham and Women's Hospital, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Rebecca B Jennings
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Abdallah Flaifel
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jesse S Novak
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Aditi Gulati
- The CRUK Gene Function Laboratory, The Institute of Cancer Research, London, United Kingdom
- Breast Cancer Now Toby Robins Breast Cancer Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Elizabeth Buss
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
- Howard Hughes Medical Institute, Chevy Chase, Maryland
| | - Scott T Younger
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Samuel K McBrayer
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Glenn S Cowley
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Dennis M Bonal
- Lurie Family Imaging Center, Center for Biomedical Imaging in Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Quang-De Nguyen
- Lurie Family Imaging Center, Center for Biomedical Imaging in Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | | | - Paula Taylor
- IMED Oncology, AstraZeneca, Cheshire, United Kingdom
| | | | - Colm J Ryan
- Systems Biology Ireland, University College Dublin, Dublin, Republic of Ireland
| | | | - Kim Maratea
- IMED Drug Safety and Metabolism, AstraZeneca, Boston, Massachusetts
| | - Jon Travers
- IMED Oncology, AstraZeneca, Cheshire, United Kingdom
| | - David E Root
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Sabina Signoretti
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - David Pellman
- Howard Hughes Medical Institute, Chevy Chase, Maryland
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts; Department of Cell Biology, Harvard Medical School, Boston, Massachusetts
| | - Susan Ashton
- IMED Oncology, AstraZeneca, Cheshire, United Kingdom
| | - Christopher J Lord
- The CRUK Gene Function Laboratory, The Institute of Cancer Research, London, United Kingdom
- Breast Cancer Now Toby Robins Breast Cancer Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Simon T Barry
- IMED Oncology, AstraZeneca, Cambridge, United Kingdom
| | - William G Kaelin
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
- Howard Hughes Medical Institute, Chevy Chase, Maryland
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| |
Collapse
|
19
|
Singh A, Paul MS, Dutta D, Mutsuddi M, Mukherjee A. Regulation of notch signaling by a chromatin modeling protein Hat-trick. Development 2019; 146:dev.170837. [DOI: 10.1242/dev.170837] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Accepted: 05/16/2019] [Indexed: 01/08/2023]
Abstract
Notch signaling plays pleiotropic role in astounding variety of cellular processes including cell fate determination, differentiation, proliferation and apoptosis. The increasingly complex regulatory mechanisms of Notch signaling account for the multitude of functions exhibited by Notch during development. We identified Hat-trick (Htk), a DNA binding protein, as an interacting partner of Notch-ICD in a yeast two-hybrid screen and their physical interaction was further validated by co-immunoprecipitation experiments. htk genetically interacts with Notch pathway components in trans-heterozygous combinations. Loss of htk function in htk mutant somatic clones showed down-regulation of Notch targets, whereas over-expression of htk caused ectopic expression of Notch target, without affecting the level of Notch protein. Immunocytochemical analysis has demonstrated that Htk co-localizes with over-expressed Notch-ICD in the same nuclear compartment. We have shown here that Htk cooperates with Notch-ICD and Suppressor of Hairless to form activation complex and binds to the regulatory sequences of Notch downstream targets, Enhancer of Split complex genes to direct their expression. Taken together, our results suggest a novel mode of regulation of Notch signaling by a chromatin modeling protein Htk.
Collapse
Affiliation(s)
- Ankita Singh
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi-221005, Uttar Pradesh, India
| | - Maimuna S. Paul
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi-221005, Uttar Pradesh, India
| | - Debdeep Dutta
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi-221005, Uttar Pradesh, India
| | - Mousumi Mutsuddi
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi-221005, Uttar Pradesh, India
| | - Ashim Mukherjee
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi-221005, Uttar Pradesh, India
| |
Collapse
|
20
|
Co-repressor, co-activator and general transcription factor: the many faces of the Sin3 histone deacetylase (HDAC) complex. Biochem J 2018; 475:3921-3932. [PMID: 30552170 PMCID: PMC6295471 DOI: 10.1042/bcj20170314] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 11/15/2018] [Accepted: 11/19/2018] [Indexed: 12/21/2022]
Abstract
At face value, the Sin3 histone deacetylase (HDAC) complex appears to be a prototypical co-repressor complex, that is, a multi-protein complex recruited to chromatin by DNA bound repressor proteins to facilitate local histone deacetylation and transcriptional repression. While this is almost certainly part of its role, Sin3 stubbornly refuses to be pigeon-holed in quite this way. Genome-wide mapping studies have found that Sin3 localises predominantly to the promoters of actively transcribed genes. While Sin3 knockout studies in various species result in a combination of both up- and down-regulated genes. Furthermore, genes such as the stem cell factor, Nanog, are dependent on the direct association of Sin3 for active transcription to occur. Sin3 appears to have properties of a co-repressor, co-activator and general transcription factor, and has thus been termed a co-regulator complex. Through a series of unique domains, Sin3 is able to assemble HDAC1/2, chromatin adaptors and transcription factors in a series of functionally and compositionally distinct complexes to modify chromatin at both gene-specific and global levels. Unsurprisingly, therefore, Sin3/HDAC1 have been implicated in the regulation of numerous cellular processes, including mammalian development, maintenance of pluripotency, cell cycle regulation and diseases such as cancer.
Collapse
|
21
|
Bainor AJ, Saini S, Calderon A, Casado-Polanco R, Giner-Ramirez B, Moncada C, Cantor DJ, Ernlund A, Litovchick L, David G. The HDAC-Associated Sin3B Protein Represses DREAM Complex Targets and Cooperates with APC/C to Promote Quiescence. Cell Rep 2018; 25:2797-2807.e8. [PMID: 30517867 PMCID: PMC6324198 DOI: 10.1016/j.celrep.2018.11.024] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 09/12/2018] [Accepted: 11/02/2018] [Indexed: 12/17/2022] Open
Abstract
The mammalian DREAM complex is responsible for the transcriptional repression of hundreds of cell-cycle-related genes in quiescence. How the DREAM complex recruits chromatin-modifying entities to aid in its repression remains unknown. Using unbiased proteomics analysis, we have uncovered a robust association between the chromatin-associated Sin3B protein and the DREAM complex. We have determined that genetic inactivation of Sin3B results in the de-repression of DREAM target genes during quiescence but is insufficient to allow quiescent cells to resume proliferation. However, inactivation of APC/CCDH1 was sufficient for Sin3B-/- cells, but not parental cells, to re-enter the cell cycle. These studies identify Sin3B as a transcriptional corepressor associated with the DREAM complex in quiescence and reveals a functional cooperation between E2F target repression and APC/CCDH1 in the negative regulation of cell-cycle progression.
Collapse
Affiliation(s)
- Anthony J Bainor
- Department of Biochemistry and Molecular Pharmacology, NYU Langone Medical Center, New York, NY 10016, USA
| | - Siddharth Saini
- Department of Internal Medicine and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Alexander Calderon
- Department of Biochemistry and Molecular Pharmacology, NYU Langone Medical Center, New York, NY 10016, USA
| | - Raquel Casado-Polanco
- Department of Biochemistry and Molecular Pharmacology, NYU Langone Medical Center, New York, NY 10016, USA
| | - Belén Giner-Ramirez
- Department of Biochemistry and Molecular Pharmacology, NYU Langone Medical Center, New York, NY 10016, USA
| | - Claudia Moncada
- Department of Biochemistry and Molecular Pharmacology, NYU Langone Medical Center, New York, NY 10016, USA
| | - David J Cantor
- Department of Biochemistry and Molecular Pharmacology, NYU Langone Medical Center, New York, NY 10016, USA
| | - Amanda Ernlund
- Department of Microbiology, NYU Langone Medical Center, New York, NY 10016, USA
| | - Larisa Litovchick
- Department of Internal Medicine and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Gregory David
- Department of Biochemistry and Molecular Pharmacology, NYU Langone Medical Center, New York, NY 10016, USA; Department of Urology, NYU Langone Medical Center, New York, NY 10016, USA; NYU Cancer Institute, NYU Langone Medical Center, New York, NY 10016, USA.
| |
Collapse
|
22
|
Nabeshima R, Nishimura O, Maeda T, Shimizu N, Ide T, Yashiro K, Sakai Y, Meno C, Kadota M, Shiratori H, Kuraku S, Hamada H. Loss of Fam60a, a Sin3a subunit, results in embryonic lethality and is associated with aberrant methylation at a subset of gene promoters. eLife 2018; 7:36435. [PMID: 30070635 PMCID: PMC6072441 DOI: 10.7554/elife.36435] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 07/10/2018] [Indexed: 01/28/2023] Open
Abstract
We have examined the role of Fam60a, a gene highly expressed in embryonic stem cells, in mouse development. Fam60a interacts with components of the Sin3a-Hdac transcriptional corepressor complex, and most Fam60a-/- embryos manifest hypoplasia of visceral organs and die in utero. Fam60a is recruited to the promoter regions of a subset of genes, with the expression of these genes being either up- or down-regulated in Fam60a-/- embryos. The DNA methylation level of the Fam60a target gene Adhfe1 is maintained at embryonic day (E) 7.5 but markedly reduced at E9.5 in Fam60a-/- embryos, suggesting that DNA demethylation is enhanced in the mutant. Examination of genome-wide DNA methylation identified several differentially methylated regions, which were preferentially hypomethylated, in Fam60a-/- embryos. Our data suggest that Fam60a is required for proper embryogenesis, at least in part as a result of its regulation of DNA methylation at specific gene promoters.
Collapse
Affiliation(s)
- Ryo Nabeshima
- Developmental Genetics Group, Graduate School of Frontier Biosciences, Osaka University, Suita, Japan.,Laboratory for Organismal Patterning, RIKEN Center for Developmental Biology, Kobe, Japan
| | - Osamu Nishimura
- Phyloinformatics Unit, RIKEN Center for Life Science Technologies, Kobe, Japan.,Laboratory for Phyloinformatics, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Takako Maeda
- Developmental Genetics Group, Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Natsumi Shimizu
- Laboratory for Organismal Patterning, RIKEN Center for Developmental Biology, Kobe, Japan
| | - Takahiro Ide
- Laboratory for Organismal Patterning, RIKEN Center for Developmental Biology, Kobe, Japan
| | - Kenta Yashiro
- Developmental Genetics Group, Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Yasuo Sakai
- Developmental Genetics Group, Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Chikara Meno
- Developmental Genetics Group, Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Mitsutaka Kadota
- Phyloinformatics Unit, RIKEN Center for Life Science Technologies, Kobe, Japan.,Laboratory for Phyloinformatics, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Hidetaka Shiratori
- Developmental Genetics Group, Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Shigehiro Kuraku
- Phyloinformatics Unit, RIKEN Center for Life Science Technologies, Kobe, Japan.,Laboratory for Phyloinformatics, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Hiroshi Hamada
- Developmental Genetics Group, Graduate School of Frontier Biosciences, Osaka University, Suita, Japan.,Laboratory for Organismal Patterning, RIKEN Center for Developmental Biology, Kobe, Japan
| |
Collapse
|
23
|
Snezhkina AV, Nyushko KM, Zaretsky AR, Shagin DA, Sadritdinova AF, Fedorova MS, Guvatova ZG, Abramov IS, Pudova EA, Alekseev BY, Dmitriev AA, Kudryavtseva AV. Transcription Factor SAP30 Is Involved in the Activation of NETO2 Gene Expression in Clear Cell Renal Cell Carcinoma. Mol Biol 2018. [DOI: 10.1134/s0026893318020152] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Liang YK, Han ZD, Lu JM, Liu ZZ, Zhuo YJ, Zhu XJ, Chen JX, Ye JH, Liang YX, He HC, Zhong WD. Downregulation of ARID4A and ARID4B promote tumor progression and directly regulated by microRNA-30d in patient with prostate cancer. J Cell Biochem 2018; 119:7245-7255. [PMID: 29797600 DOI: 10.1002/jcb.26913] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Accepted: 04/04/2018] [Indexed: 12/15/2022]
Abstract
AT-rich interaction domain 4A (ARID4A) and AT-rich interaction domain 4B (ARID4B), which are both the AT-rich interaction domain (ARID) family, have been reported to be oncogene or tumor suppressor gene in various human malignances, but there is no involvement about their functions in prostate cancer (PCa). Our previous study has reported that microRNA-30d (miR-30d) expression can predicted poor clinical prognosis in PCa, however, the underlying mechanisms of miR-30d have not been fully described. The aim of our study is to investigate the expression relevance between miR-30d and ARID4A or ARID4B, and examine the clinical significance and biological function of ARID4A and AIRD4B in PCa. In this study, both ARID4A and ARID4B were identified as the target genes of miR-30d. In addition, the mRNA expression of miR-30d in PCa tissues were significantly negative correlated with ARID4A (Pearson correlation coefficient = -0.313, P = 0.001) and ARID4B (Pearson correlation coefficient = -0.349, P < 0.001), while there was a positive correlation between ARID4A and ARID4B (Pearson correlation coefficient = 0.865, P < 0.001). Moreover, both ARID4A and ARID4B were significantly downregulated in PCa tissues with high Gleason scores (P = 0.005, P = 0.033), PSA failure (P = 0.012, P = 0.05) and short biochemical recurrent-free survival (P = 0.033, P = 0.031). Furthermore, the knockout expression of ARID4A and ARID4B promoted PCa cell proliferation, migration and invasion in vitro. In conclusion, our results indicated that ARID4A and ARID4B may serve as tumor suppressor in PCa progression, suggesting that they might be the potential therapeutic targets in prostate cancer.
Collapse
Affiliation(s)
- Ying-Ke Liang
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Zhao-Dong Han
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China.,Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, The Second Affiliated Hospital of South China University of Technology, Guangzhou, China
| | - Jian-Ming Lu
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Ze-Zhen Liu
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yang-Jia Zhuo
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Xue-Jin Zhu
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jun-Xu Chen
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jian-Heng Ye
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yu-Xiang Liang
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Hui-Chan He
- Urology Key Laboratory of Guangdong Province, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Wei-De Zhong
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China.,Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, The Second Affiliated Hospital of South China University of Technology, Guangzhou, China.,Department of Urology, Huadu District People's Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
25
|
Pleiotropic Functions of the Chromodomain-Containing Protein Hat-trick During Oogenesis in Drosophila melanogaster. G3-GENES GENOMES GENETICS 2018; 8:1067-1077. [PMID: 29367451 PMCID: PMC5844294 DOI: 10.1534/g3.117.300526] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Chromatin-remodeling proteins have a profound role in the transcriptional regulation of gene expression during development. Here, we have shown that the chromodomain-containing protein Hat-trick is predominantly expressed within the oocyte nucleus, specifically within the heterochromatinized karyosome, and that a mild expression is observed in follicle cells. Colocalization of Hat-trick with Heterochromatin Protein 1 and synaptonemal complex component C(3)G along with the diffused karyosome after hat-trick downregulation shows the role of this protein in heterochromatin clustering and karyosome maintenance. Germline mosaic analysis reveals that hat-trick is required for maintaining the dorso-ventral patterning of eggs by regulating the expression of Gurken. The increased incidence of double-strand breaks (DSBs), delayed DSB repair, defects in karyosome formation, altered Vasa mobility, and, consequently, misexpression and altered localization of Gurken in hat-trick mutant egg chambers clearly suggest a putative involvement of Hat-trick in the early stages of oogenesis. In addition, based on phenotypic observations in hat-trick mutant egg chambers, we speculate a substantial role of hat-trick in cystoblast proliferation, oocyte determination, nurse cell endoreplication, germ cell positioning, cyst encapsulation, and nurse cell migration. Our results demonstrate that hat-trick has profound pleiotropic functions during oogenesis in Drosophila melanogaster.
Collapse
|
26
|
Lei M, Feng Y, Zhou M, Yang Y, Loppnau P, Li Y, Yang Y, Liu Y. Crystal structure of chromo barrel domain of RBBP1. Biochem Biophys Res Commun 2018; 496:1344-1348. [DOI: 10.1016/j.bbrc.2018.02.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 02/02/2018] [Indexed: 01/28/2023]
|
27
|
Tiana M, Acosta-Iborra B, Puente-Santamaría L, Hernansanz-Agustin P, Worsley-Hunt R, Masson N, García-Rio F, Mole D, Ratcliffe P, Wasserman WW, Jimenez B, del Peso L. The SIN3A histone deacetylase complex is required for a complete transcriptional response to hypoxia. Nucleic Acids Res 2018; 46:120-133. [PMID: 29059365 PMCID: PMC5758878 DOI: 10.1093/nar/gkx951] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 10/02/2017] [Accepted: 10/06/2017] [Indexed: 01/02/2023] Open
Abstract
Cells adapt to environmental changes, including fluctuations in oxygen levels, through the induction of specific gene expression programs. To identify genes regulated by hypoxia at the transcriptional level, we pulse-labeled HUVEC cells with 4-thiouridine and sequenced nascent transcripts. Then, we searched genome-wide binding profiles from the ENCODE project for factors that correlated with changes in transcription and identified binding of several components of the Sin3A co-repressor complex, including SIN3A, SAP30 and HDAC1/2, proximal to genes repressed by hypoxia. SIN3A interference revealed that it participates in the downregulation of 75% of the hypoxia-repressed genes in endothelial cells. Unexpectedly, it also blunted the induction of 47% of the upregulated genes, suggesting a role for this corepressor in gene induction. In agreement, ChIP-seq experiments showed that SIN3A preferentially localizes to the promoter region of actively transcribed genes and that SIN3A signal was enriched in hypoxia-repressed genes, prior exposure to the stimulus. Importantly, SINA3 occupancy was not altered by hypoxia in spite of changes in H3K27ac signal. In summary, our results reveal a prominent role for SIN3A in the transcriptional response to hypoxia and suggest a model where modulation of the associated histone deacetylase activity, rather than its recruitment, determines the transcriptional output.
Collapse
Affiliation(s)
- Maria Tiana
- Departamento de Bioquímica, Universidad Autónoma de Madrid (UAM) and Instituto de Investigaciones Biomédicas ‘Alberto Sols’ (CSIC-UAM), 28029 Madrid, Spain
- IdiPaz, Instituto de Investigación Sanitaria del Hospital Universitario La Paz, 28029 Madrid, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Barbara Acosta-Iborra
- Departamento de Bioquímica, Universidad Autónoma de Madrid (UAM) and Instituto de Investigaciones Biomédicas ‘Alberto Sols’ (CSIC-UAM), 28029 Madrid, Spain
| | - Laura Puente-Santamaría
- Departamento de Bioquímica, Universidad Autónoma de Madrid (UAM) and Instituto de Investigaciones Biomédicas ‘Alberto Sols’ (CSIC-UAM), 28029 Madrid, Spain
| | - Pablo Hernansanz-Agustin
- Departamento de Bioquímica, Universidad Autónoma de Madrid (UAM) and Instituto de Investigaciones Biomédicas ‘Alberto Sols’ (CSIC-UAM), 28029 Madrid, Spain
- Servicio Inmunología, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria del hospital de La Princesa, 28006 Madrid, Spain
| | - Rebecca Worsley-Hunt
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Department of Medical Genetics, University of British Columbia Vancouver, British Columbia V5Z 4H4, Canada
| | - Norma Masson
- Target Discovery Institute, University of Oxford, Oxford OX3 7FZ, UK
| | - Francisco García-Rio
- IdiPaz, Instituto de Investigación Sanitaria del Hospital Universitario La Paz, 28029 Madrid, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Servicio de Neumología, Hospital Universitario La Paz, Instituto de Investigación Sanitaria del hospital de La Paz, 28029 Madrid, Spain
| | - David Mole
- Henry Wellcome Building for Molecular Physiology, University of Oxford, Oxford OX3 7BN, UK
| | - Peter Ratcliffe
- Target Discovery Institute, University of Oxford, Oxford OX3 7FZ, UK
| | - Wyeth W Wasserman
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Department of Medical Genetics, University of British Columbia Vancouver, British Columbia V5Z 4H4, Canada
| | - Benilde Jimenez
- Departamento de Bioquímica, Universidad Autónoma de Madrid (UAM) and Instituto de Investigaciones Biomédicas ‘Alberto Sols’ (CSIC-UAM), 28029 Madrid, Spain
- IdiPaz, Instituto de Investigación Sanitaria del Hospital Universitario La Paz, 28029 Madrid, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Luis del Peso
- Departamento de Bioquímica, Universidad Autónoma de Madrid (UAM) and Instituto de Investigaciones Biomédicas ‘Alberto Sols’ (CSIC-UAM), 28029 Madrid, Spain
- IdiPaz, Instituto de Investigación Sanitaria del Hospital Universitario La Paz, 28029 Madrid, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
28
|
Cantor DJ, David G. The potential of targeting Sin3B and its associated complexes for cancer therapy. Expert Opin Ther Targets 2017; 21:1051-1061. [PMID: 28956957 DOI: 10.1080/14728222.2017.1386655] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
INTRODUCTION Sin3B serves as a scaffold for chromatin-modifying complexes that repress gene transcription to regulate distinct biological processes. Sin3B-containing complexes are critical for cell cycle withdrawal, and abrogation of Sin3B-dependent cell cycle exit impacts tumor progression. Areas covered: In this review, we discuss the biochemical characteristics of Sin3B-containing complexes and explore how these complexes regulate gene transcription. We focus on how Sin3B-containing complexes, through the association of the Rb family of proteins, repress the expression of E2F target genes during quiescence, differentiation, and senescence. Finally, we speculate on the potential benefits of the inhibition of Sin3B-containing complexes for the treatment of cancer. Expert opinion: Further identification and characterization of specific Sin3B-containing complexes provide a unique opportunity to prevent the pro-tumorigenic effects of the senescence-associated secretory phenotype, and to abrogate cancer stem cell quiescence and the associated resistance to therapy.
Collapse
Affiliation(s)
- David J Cantor
- a Department of Biochemistry and Molecular Pharmacology , New York University School of Medicine , New York , NY , USA
| | - Gregory David
- a Department of Biochemistry and Molecular Pharmacology , New York University School of Medicine , New York , NY , USA.,b Department of Urology.,c NYU Cancer Institute , New York University School of Medicine , New York , NY , USA
| |
Collapse
|
29
|
Moravec CE, Yousef H, Kinney BA, Salerno-Eichenholz R, Monestime CM, Martin BL, Sirotkin HI. Zebrafish sin3b mutants are viable but have size, skeletal, and locomotor defects. Dev Dyn 2017; 246:946-955. [PMID: 28850761 DOI: 10.1002/dvdy.24581] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 07/12/2017] [Accepted: 08/01/2017] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The transcriptional co-repressor Sin3 is highly conserved from yeast to vertebrates and has multiple roles controlling cell fate, cell cycle progression, and senescence programming. Sin3 proteins recruit histone deacetylases and other chromatin modifying factors to specific loci through interactions with transcription factors including Myc, Rest, p53 and E2F. Most vertebrates have two Sin3 family members (sin3a and sin3b), but zebrafish have a second sin3a paralogue. In mice, sin3a and sin3b are essential for embryonic development. Sin3b knockout mice show defects in growth as well as bone and blood differentiation. RESULTS To study the requirement for Sin3b during development, we disrupted zebrafish sin3b using CRISPR-Cas9, and studied the effects on early development and locomotor behavior. CONCLUSIONS Surprisingly, Sin3b is not essential in zebrafish. sin3b mutants show a decrease in fitness, small size, changes to locomotor behavior, and delayed bone development. We did not detect a role for Sin3b in cell proliferation. Our analysis of the sin3b mutant revealed a more nuanced requirement for zebrafish Sin3b than would be predicted from analysis of mutants in other species. Developmental Dynamics 246:946-955, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Cara E Moravec
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, New York.,Genetics Gradate Program Stony Brook University, Stony Brook, New York
| | - Hakeem Yousef
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, New York
| | - Brian A Kinney
- Genetics Gradate Program Stony Brook University, Stony Brook, New York.,Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York
| | - Ryan Salerno-Eichenholz
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, New York.,Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York
| | - Camillia M Monestime
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, New York
| | - Benjamin L Martin
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York
| | - Howard I Sirotkin
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, New York.,Genetics Gradate Program Stony Brook University, Stony Brook, New York
| |
Collapse
|
30
|
Yao C, Carraro G, Konda B, Guan X, Mizuno T, Chiba N, Kostelny M, Kurkciyan A, David G, McQualter JL, Stripp BR. Sin3a regulates epithelial progenitor cell fate during lung development. Development 2017; 144:2618-2628. [PMID: 28619823 DOI: 10.1242/dev.149708] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 06/06/2017] [Indexed: 01/18/2023]
Abstract
Mechanisms that regulate tissue-specific progenitors for maintenance and differentiation during development are poorly understood. Here, we demonstrate that the co-repressor protein Sin3a is crucial for lung endoderm development. Loss of Sin3a in mouse early foregut endoderm led to a specific and profound defect in lung development with lung buds failing to undergo branching morphogenesis and progressive atrophy of the proximal lung endoderm with complete epithelial loss at later stages of development. Consequently, neonatal pups died at birth due to respiratory insufficiency. Further analysis revealed that loss of Sin3a resulted in embryonic lung epithelial progenitor cells adopting a senescence-like state with permanent cell cycle arrest in G1 phase. This was mediated at least partially through upregulation of the cell cycle inhibitors Cdkn1a and Cdkn2c. At the same time, loss of endodermal Sin3a also disrupted cell differentiation of the mesoderm, suggesting aberrant epithelial-mesenchymal signaling. Together, these findings reveal that Sin3a is an essential regulator for early lung endoderm specification and differentiation.
Collapse
Affiliation(s)
- Changfu Yao
- Lung and Regenerative Medicine Institutes, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Gianni Carraro
- Lung and Regenerative Medicine Institutes, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Bindu Konda
- Lung and Regenerative Medicine Institutes, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Xiangrong Guan
- Lung and Regenerative Medicine Institutes, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Takako Mizuno
- Lung and Regenerative Medicine Institutes, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Norika Chiba
- Lung and Regenerative Medicine Institutes, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Matthew Kostelny
- Lung and Regenerative Medicine Institutes, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Adrianne Kurkciyan
- Lung and Regenerative Medicine Institutes, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Gregory David
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | - Jonathan L McQualter
- Lung and Regenerative Medicine Institutes, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Barry R Stripp
- Lung and Regenerative Medicine Institutes, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| |
Collapse
|
31
|
Streubel G, Fitzpatrick DJ, Oliviero G, Scelfo A, Moran B, Das S, Munawar N, Watson A, Wynne K, Negri GL, Dillon ET, Jammula S, Hokamp K, O'Connor DP, Pasini D, Cagney G, Bracken AP. Fam60a defines a variant Sin3a‐Hdac complex in embryonic stem cells required for self‐renewal. EMBO J 2017. [DOI: https://doi.org/10.15252/embj.201696307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Gundula Streubel
- Smurfit Institute of Genetics Trinity College Dublin Dublin 2 Ireland
| | | | - Giorgio Oliviero
- School of Biomolecular and Biomedical Science University College Dublin Dublin 4 Ireland
| | - Andrea Scelfo
- Department of Experimental Oncology European Institute of Oncology Milan Italy
| | - Bruce Moran
- School of Biomolecular and Biomedical Science University College Dublin Dublin 4 Ireland
| | - Sudipto Das
- Department of Molecular and Cellular Therapeutics Royal College of Surgeons in Ireland Dublin 2 Ireland
| | - Nayla Munawar
- School of Biomolecular and Biomedical Science University College Dublin Dublin 4 Ireland
| | - Ariane Watson
- School of Biomolecular and Biomedical Science University College Dublin Dublin 4 Ireland
| | - Kieran Wynne
- School of Biomolecular and Biomedical Science University College Dublin Dublin 4 Ireland
| | - Gian Luca Negri
- Department of Molecular Oncology British Columbia Cancer Research Center Vancouver BC Canada
| | - Eugene T Dillon
- School of Biomolecular and Biomedical Science University College Dublin Dublin 4 Ireland
| | - SriGanesh Jammula
- Department of Experimental Oncology European Institute of Oncology Milan Italy
| | - Karsten Hokamp
- Smurfit Institute of Genetics Trinity College Dublin Dublin 2 Ireland
| | - Darran P O'Connor
- Department of Molecular and Cellular Therapeutics Royal College of Surgeons in Ireland Dublin 2 Ireland
| | - Diego Pasini
- Department of Experimental Oncology European Institute of Oncology Milan Italy
| | - Gerard Cagney
- School of Biomolecular and Biomedical Science University College Dublin Dublin 4 Ireland
| | - Adrian P Bracken
- Smurfit Institute of Genetics Trinity College Dublin Dublin 2 Ireland
| |
Collapse
|
32
|
Streubel G, Fitzpatrick DJ, Oliviero G, Scelfo A, Moran B, Das S, Munawar N, Watson A, Wynne K, Negri GL, Dillon ET, Jammula S, Hokamp K, O'Connor DP, Pasini D, Cagney G, Bracken AP. Fam60a defines a variant Sin3a-Hdac complex in embryonic stem cells required for self-renewal. EMBO J 2017; 36:2216-2232. [PMID: 28554894 DOI: 10.15252/embj.201696307] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 04/18/2017] [Accepted: 04/22/2017] [Indexed: 12/15/2022] Open
Abstract
Sin3a is the central scaffold protein of the prototypical Hdac1/2 chromatin repressor complex, crucially required during early embryonic development for the growth of pluripotent cells of the inner cell mass. Here, we compare the composition of the Sin3a-Hdac complex between pluripotent embryonic stem (ES) and differentiated cells by establishing a method that couples two independent endogenous immunoprecipitations with quantitative mass spectrometry. We define the precise composition of the Sin3a complex in multiple cell types and identify the Fam60a subunit as a key defining feature of a variant Sin3a complex present in ES cells, which also contains Ogt and Tet1. Fam60a binds on H3K4me3-positive promoters in ES cells, together with Ogt, Tet1 and Sin3a, and is essential to maintain the complex on chromatin. Finally, we show that depletion of Fam60a phenocopies the loss of Sin3a, leading to reduced proliferation, an extended G1-phase and the deregulation of lineage genes. Taken together, Fam60a is an essential core subunit of a variant Sin3a complex in ES cells that is required to promote rapid proliferation and prevent unscheduled differentiation.
Collapse
Affiliation(s)
- Gundula Streubel
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | | | - Giorgio Oliviero
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin 4, Ireland
| | - Andrea Scelfo
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | - Bruce Moran
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin 4, Ireland
| | - Sudipto Das
- Department of Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Nayla Munawar
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin 4, Ireland
| | - Ariane Watson
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin 4, Ireland
| | - Kieran Wynne
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin 4, Ireland
| | - Gian Luca Negri
- Department of Molecular Oncology, British Columbia Cancer Research Center, Vancouver, BC, Canada
| | - Eugene T Dillon
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin 4, Ireland
| | - SriGanesh Jammula
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | - Karsten Hokamp
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - Darran P O'Connor
- Department of Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Diego Pasini
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | - Gerard Cagney
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin 4, Ireland
| | - Adrian P Bracken
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
33
|
Emerson SE, St Clair RM, Waldron AL, Bruno SR, Duong A, Driscoll HE, Ballif BA, McFarlane S, Ebert AM. Identification of target genes downstream of semaphorin6A/PlexinA2 signaling in zebrafish. Dev Dyn 2017; 246:539-549. [PMID: 28440030 DOI: 10.1002/dvdy.24512] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 03/10/2017] [Accepted: 04/08/2017] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Semaphorin (Sema)/Plexin (Plxn) signaling is important for many aspects of neuronal development, however, the transcriptional regulation imposed by this signaling pathway is unknown. Previously, we identified an essential role for Sema6A/PlxnA2 signaling in regulating proliferation and cohesion of retinal precursor cells (RPCs) during early eye development. This study used RNA isolated from control, Sema6A-deficient and PlxnA2-deficient zebrafish embryos in a microarray analysis to identify genes that were differentially expressed when this signaling pathway was disrupted. RESULTS We uncovered a set of 58 transcripts, and all but 1 were up-regulated in both sema6A and plxnA2 morphants. We validated gene expression changes in subset of candidates that are suggested to be involved in proliferation, migration or neuronal positioning. We further functionally evaluated one gene, rasl11b, as contributing to disrupted proliferation in sema6A and plxna2 morphants. Our results suggest rasl11b negatively regulates proliferation of RPCs in the developing zebrafish eye. CONCLUSIONS Microarray analysis has generated a resource of target genes downstream of Sema6A/PlxnA2 signaling, which can be further investigated to elucidate the downstream effects of this well-studied neuronal and vascular guidance signaling pathway. Developmental Dynamics 246:539-549, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Sarah E Emerson
- Department of Biology, University of Vermont, Burlington, Vermont
| | - Riley M St Clair
- Department of Biology, University of Vermont, Burlington, Vermont
| | - Ashley L Waldron
- Department of Biology, University of Vermont, Burlington, Vermont
| | - Sierra R Bruno
- Department of Biology, University of Vermont, Burlington, Vermont
| | - Anna Duong
- Department of Biology, University of Vermont, Burlington, Vermont
| | - Heather E Driscoll
- Vermont Genetics Network Bioinformatics Core and Department of Biology, Norwich University, Northfield, Vermont
| | - Bryan A Ballif
- Department of Biology, University of Vermont, Burlington, Vermont
| | - Sarah McFarlane
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Alicia M Ebert
- Department of Biology, University of Vermont, Burlington, Vermont
| |
Collapse
|
34
|
Roles of pRB in the Regulation of Nucleosome and Chromatin Structures. BIOMED RESEARCH INTERNATIONAL 2016; 2016:5959721. [PMID: 28101510 PMCID: PMC5215604 DOI: 10.1155/2016/5959721] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 11/08/2016] [Indexed: 01/31/2023]
Abstract
Retinoblastoma protein (pRB) interacts with E2F and other protein factors to play a pivotal role in regulating the expression of target genes that induce cell cycle arrest, apoptosis, and differentiation. pRB controls the local promoter activity and has the ability to change the structure of nucleosomes and/or chromosomes via histone modification, epigenetic changes, chromatin remodeling, and chromosome organization. Functional inactivation of pRB perturbs these cellular events and causes dysregulated cell growth and chromosome instability, which are hallmarks of cancer cells. The role of pRB in regulation of nucleosome/chromatin structures has been shown to link to tumor suppression. This review focuses on the ability of pRB to control nucleosome/chromatin structures via physical interactions with histone modifiers and chromatin factors and describes cancer therapies based on targeting these protein factors.
Collapse
|
35
|
The chromatin-associated Sin3B protein is required for hematopoietic stem cell functions in mice. Blood 2016; 129:60-70. [PMID: 27806947 DOI: 10.1182/blood-2016-06-721746] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 10/25/2016] [Indexed: 12/12/2022] Open
Abstract
Hematopoietic stem cells (HSCs) reside at the top of the hematopoietic hierarchy and are the origin of all blood cells produced throughout an individual's life. The balance between HSC self-renewal and differentiation is maintained by various intrinsic and extrinsic mechanisms. Among these, the molecular pathways that restrict cell cycle progression are critical to the maintenance of functional HSCs. Alterations in the regulation of cell cycle progression in HSCs invariably lead to the development of hematologic malignancies or bone marrow failure syndromes. Here we report that hematopoietic-specific genetic inactivation of Sin3B, an essential component of the mammalian Sin3-histone deacetylase corepressor complex, severely impairs the competitive repopulation capacity of HSCs. Sin3B-deleted HSCs accumulate and fail to properly differentiate following transplantation. Moreover, Sin3B inactivation impairs HSC quiescence and sensitizes mice to myelosuppressive therapy. Together, these results identify Sin3B as a novel and critical regulator of HSC functions.
Collapse
|
36
|
Roesley SNA, Suryadinata R, Morrish E, Tan AR, Issa SMA, Oakhill JS, Bernard O, Welch DR, Šarčević B. Cyclin-dependent kinase-mediated phosphorylation of breast cancer metastasis suppressor 1 (BRMS1) affects cell migration. Cell Cycle 2016; 15:137-51. [PMID: 26771717 DOI: 10.1080/15384101.2015.1121328] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Expression of Breast Cancer Metastasis Suppressor 1 (BRMS1) reduces the incidence of metastasis in many human cancers, without affecting tumorigenesis. BRMS1 carries out this function through several mechanisms, including regulation of gene expression by binding to the mSin3/histone deacetylase (HDAC) transcriptional repressor complex. In the present study, we show that BRMS1 is a novel substrate of Cyclin-Dependent Kinase 2 (CDK2) that is phosphorylated on serine 237 (S237). Although CDKs are known to regulate cell cycle progression, the mutation of BRMS1 on serine 237 did not affect cell cycle progression and proliferation of MDA-MB-231 breast cancer cells; however, their migration was affected. Phosphorylation of BRMS1 does not affect its association with the mSin3/HDAC transcriptional repressor complex or its transcriptional repressor activity. The serine 237 phosphorylation site is immediately proximal to a C-terminal nuclear localization sequence that plays an important role in BRMS1-mediated metastasis suppression but phosphorylation does not control BRMS1 subcellular localization. Our studies demonstrate that CDK-mediated phosphorylation of BRMS1 regulates the migration of tumor cells.
Collapse
Affiliation(s)
- Siti Nur Ain Roesley
- a Cell Cycle and Cancer Unit , St Vincent's Institute of Medical Research , Victoria , Australia.,b Department of Medicine , University of Melbourne , Victoria , Australia
| | | | - Emma Morrish
- a Cell Cycle and Cancer Unit , St Vincent's Institute of Medical Research , Victoria , Australia
| | | | - Samah M A Issa
- e Metabolic Signalling Laboratory, St Vincent's Institute of Medical Research , Victoria , Australia
| | - Jonathan S Oakhill
- e Metabolic Signalling Laboratory, St Vincent's Institute of Medical Research , Victoria , Australia
| | - Ora Bernard
- b Department of Medicine , University of Melbourne , Victoria , Australia
| | - Danny R Welch
- f Department of Cancer Biology and The University of Kansas Cancer Center , University of Kansas Medical Center , Kansas City , KS , USA
| | - Boris Šarčević
- a Cell Cycle and Cancer Unit , St Vincent's Institute of Medical Research , Victoria , Australia.,b Department of Medicine , University of Melbourne , Victoria , Australia
| |
Collapse
|
37
|
Liaw GJ. Pits, a protein interacting with Ttk69 and Sin3A, has links to histone deacetylation. Sci Rep 2016; 6:33388. [PMID: 27622813 PMCID: PMC5020733 DOI: 10.1038/srep33388] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 08/25/2016] [Indexed: 01/09/2023] Open
Abstract
Histone deacetylation plays an important role in transcriptional repression. Previous results showed that the genetic interaction between ttk and rpd3, which encodes a class I histone deacetylase, is required for tll repression. This study investigated the molecular mechanism by which Ttk69 recruits Rpd3. Using yeast two-hybrid screening and datamining, one novel protein was found that weakly interacts with Ttk69 and Sin3A, designated as Protein interacting with Ttk69 and Sin3A (Pits). Pits protein expressed in the early stages of embryos and bound to the region of the tor response element in vivo. Expanded tll expression patterns were observed in embryos lacking maternal pits activity and the expansion was not widened by reducing either maternal ttk or sin3A activity. However, in embryos with simultaneously reduced maternal pits and sin3A activities or maternal pits, sin3A and ttk activities, the proportions of the embryos with expanded tll expression were significantly increased. These results indicate that all three gene activities are involved in tll repression. Level of histone H3 acetylation in the tll proximal region was found to be elevated in embryo with reduced these three gene activities. In conclusion, Ttk69 causes the histone deacetylation-mediated repression of tll via the interaction of Pits and Sin3A.
Collapse
Affiliation(s)
- Gwo-Jen Liaw
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, 112-22, Taiwan, Republic of China
| |
Collapse
|
38
|
Abstract
Reversible histone acetylation and deacetylation at the N-terminus of histone tails play a crucial role in regulation of gene activity. Hyperacetylation of histones relaxes chromatin structure and is associated with transcriptional activation, whereas hypoacetylation of histones induces chromatin compaction and gene repression. Histone acetylation and deacetylation are catalyzed by histone acetyltransferases (HATs) and histone deacetylases (HDACs), respectively. Emerging evidences revealed that plant HATs and HDACs play essential roles in regulation of gene expression in plant development and plant responses to environmental stresses. Furthermore, HATs and HDACs were shown to interact with various chromatin-remodeling factors and transcription factors involved in transcriptional regulation of multiple developmental processes.
Collapse
Affiliation(s)
- X Liu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - S Yang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - C-W Yu
- Institute of Plant Biology, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - C-Y Chen
- Institute of Plant Biology, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - K Wu
- Institute of Plant Biology, College of Life Science, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
39
|
Bing F, Zhao Y. Screening of biomarkers for prediction of response to and prognosis after chemotherapy for breast cancers. Onco Targets Ther 2016; 9:2593-600. [PMID: 27217777 PMCID: PMC4861001 DOI: 10.2147/ott.s92350] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
OBJECTIVE To screen the biomarkers having the ability to predict prognosis after chemotherapy for breast cancers. METHODS Three microarray data of breast cancer patients undergoing chemotherapy were collected from Gene Expression Omnibus database. After preprocessing, data in GSE41112 were analyzed using significance analysis of microarrays to screen the differentially expressed genes (DEGs). The DEGs were further analyzed by Differentially Coexpressed Genes and Links to construct a function module, the prognosis efficacy of which was verified by the other two datasets (GSE22226 and GSE58644) using Kaplan-Meier plots. The involved genes in function module were subjected to a univariate Cox regression analysis to confirm whether the expression of each prognostic gene was associated with survival. RESULTS A total of 511 DEGs between breast cancer patients who received chemotherapy or not were obtained, consisting of 421 upregulated and 90 downregulated genes. Using the Differentially Coexpressed Genes and Links package, 1,244 differentially coexpressed genes (DCGs) were identified, among which 36 DCGs were regulated by the transcription factor complex NFY (NFYA, NFYB, NFYC). These 39 genes constructed a gene module to classify the samples in GSE22226 and GSE58644 into three subtypes and these subtypes exhibited significantly different survival rates. Furthermore, several genes of the 39 DCGs were shown to be significantly associated with good (such as CDC20) and poor (such as ARID4A) prognoses following chemotherapy. CONCLUSION Our present study provided a serial of biomarkers for predicting the prognosis of chemotherapy or targets for development of alternative treatment (ie, CDC20 and ARID4A) in breast cancer patients.
Collapse
Affiliation(s)
- Feng Bing
- Department of Vascular Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Yu Zhao
- Department of Vascular Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| |
Collapse
|
40
|
Bansal N, David G, Farias E, Waxman S. Emerging Roles of Epigenetic Regulator Sin3 in Cancer. Adv Cancer Res 2016; 130:113-35. [PMID: 27037752 DOI: 10.1016/bs.acr.2016.01.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Revolutionizing treatment strategies is an urgent clinical need in the fight against cancer. Recently the scientific community has recognized chromatin-associated proteins as promising therapeutic candidates. However, there is a need to develop more targeted epigenetic inhibitors with less toxicity. Sin3 family is one such target which consists of evolutionary conserved proteins with two paralogues Sin3A and Sin3B. Sin3A/B are global transcription regulators that provide a versatile platform for diverse chromatin-modifying activities. Sin3 proteins regulate key cellular functions that include cell cycle, proliferation, and differentiation, and have recently been implicated in cancer pathogenesis. In this chapter, we summarize the key concepts of Sin3 biology and elaborate the recent advancements in the role of Sin3 proteins in cancer with specific examples in multiple endocrine neoplasia type 2, pancreatic ductal adenocarcinoma, and triple negative breast cancer. Finally, a program to create an integrative approach for screening antitumor agents that target chromatin-associated factors like Sin3 is presented.
Collapse
Affiliation(s)
- N Bansal
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - G David
- New York University School of Medicine, New York, NY, United States
| | - E Farias
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - S Waxman
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States.
| |
Collapse
|
41
|
Montoya-Durango DE, Ramos KA, Bojang P, Ruiz L, Ramos IN, Ramos KS. LINE-1 silencing by retinoblastoma proteins is effected through the nucleosomal and remodeling deacetylase multiprotein complex. BMC Cancer 2016; 16:38. [PMID: 26810492 PMCID: PMC4727354 DOI: 10.1186/s12885-016-2068-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 01/17/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Long Interspersed Nuclear Element-1 (L1) is an oncogenic mammalian retroelement silenced early in development via tightly controlled epigenetic mechanisms. We have previously shown that the regulatory region of human and murine L1s interact with retinoblastoma (RB) proteins to effect retroelement silencing. The present studies were conducted to identify the corepressor complex responsible for RB-mediated silencing of L1. METHODS Chromatin immunoprecipitation and silencing RNA technology were used to identify the repressor complex that silences L1 in human and murine cells. RESULTS Components of the Nucleosomal and Remodeling Deacetylase (NuRD) multiprotein complex specifically enriched the L1 5'-untranslated DNA sequence in human and murine cells. Genetic ablation of RB proteins in murine cells destabilized interactions within the NuRD macromolecular complex and mediated nuclear rearrangement of Mi2-β, an ATP-dependent helicase subunit with nucleosome remodeling activity. Depletion of Mi2-β, RbAP46 and HDAC2 reduced the repressor activity of the NuRD complex and reactivated a synthetic L1 reporter in human cells. Epigenetic reactivation of L1 in RB-null cells by DNA damage was markedly enhanced compared to wild type cells. CONCLUSIONS RB proteins stabilize interactions of the NuRD corepressor complex within the L1 promoter to effect L1 silencing. L1 retroelements may serve as a scaffold on which RB builds heterochromatic regions that regulate chromatin function.
Collapse
Affiliation(s)
- Diego E Montoya-Durango
- Department of Biochemistry and Molecular Biology, University of Louisville School of Medicine, Louisville, KY, 40202, USA.
| | - Kenneth A Ramos
- Department of Biochemistry and Molecular Biology, University of Louisville School of Medicine, Louisville, KY, 40202, USA.
| | - Pasano Bojang
- Department of Medicine, University of Arizona College of Medicine, Tucson, AZ, 85721, USA.
| | - Lorell Ruiz
- Department of Biochemistry and Molecular Biology, University of Louisville School of Medicine, Louisville, KY, 40202, USA.
| | - Irma N Ramos
- Department of Health Promotion Sciences, University of Arizona College of Public Health, Tucson, AZ, 85721, USA.
| | - Kenneth S Ramos
- Department of Medicine, University of Arizona College of Medicine, Tucson, AZ, 85721, USA.
| |
Collapse
|
42
|
The Human Adenovirus Type 5 E4orf6/E1B55K E3 Ubiquitin Ligase Complex Can Mimic E1A Effects on E2F. mSphere 2015; 1:mSphere00014-15. [PMID: 27303679 PMCID: PMC4863625 DOI: 10.1128/msphere.00014-15] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 09/29/2015] [Indexed: 01/16/2023] Open
Abstract
During the course of work on the adenovirus E3 ubiquitin ligase formed by the viral E4orf6 and E1B55K proteins, we found, very surprisingly, that expression of these species was sufficient to permit low levels of replication of an adenovirus vector lacking E1A, the central regulator of infection. E1A products uncouple E2F transcription factors from Rb repression complexes, thus stimulating viral gene expression and cell and viral DNA synthesis. We found that the E4orf6/E1B55K ligase mimics these functions. This finding is of significance because it represents an entirely new function for the ligase in regulating adenovirus replication. The human adenovirus E4orf6/E1B55K E3 ubiquitin ligase is well known to promote viral replication by degrading an increasing number of cellular proteins that inhibit the efficient production of viral progeny. We report here a new function of the adenovirus 5 (Ad5) viral ligase complex that, although at lower levels, mimics effects of E1A products on E2F transcription factors. When expressed in the absence of E1A, the E4orf6 protein in complex with E1B55K binds E2F, disrupts E2F/retinoblastoma protein (Rb) complexes, and induces hyperphosphorylation of Rb, leading to induction of viral and cellular DNA synthesis as well as stimulation of early and late viral gene expression and production of viral progeny of E1/E3-defective adenovirus vectors. These new and previously undescribed functions of the E4orf6/E1B55K E3 ubiquitin ligase could play an important role in promoting the replication of wild-type viruses. IMPORTANCE During the course of work on the adenovirus E3 ubiquitin ligase formed by the viral E4orf6 and E1B55K proteins, we found, very surprisingly, that expression of these species was sufficient to permit low levels of replication of an adenovirus vector lacking E1A, the central regulator of infection. E1A products uncouple E2F transcription factors from Rb repression complexes, thus stimulating viral gene expression and cell and viral DNA synthesis. We found that the E4orf6/E1B55K ligase mimics these functions. This finding is of significance because it represents an entirely new function for the ligase in regulating adenovirus replication.
Collapse
|
43
|
Jiang XH, Bukhari I, Zheng W, Yin S, Wang Z, Cooke HJ, Shi QH. Blood-testis barrier and spermatogenesis: lessons from genetically-modified mice. Asian J Androl 2015; 16:572-80. [PMID: 24713828 PMCID: PMC4104086 DOI: 10.4103/1008-682x.125401] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The blood-testis barrier (BTB) is found between adjacent Sertoli cells in the testis where it creates a unique microenvironment for the development and maturation of meiotic and postmeiotic germ cells in seminiferous tubes. It is a compound proteinous structure, composed of several types of cell junctions including tight junctions (TJs), adhesion junctions and gap junctions (GJs). Some of the junctional proteins function as structural proteins of BTB and some have regulatory roles. The deletion or functional silencing of genes encoding these proteins may disrupt the BTB, which may cause immunological or other damages to meiotic and postmeiotic cells and ultimately lead to spermatogenic arrest and infertility. In this review, we will summarize the findings on the BTB structure and function from genetically-modified mouse models and discuss the future perspectives.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Qing-Hua Shi
- Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, University of Science and Technology of China; Institute of Physics, Chinese Academy of Sciences, Hefei, China,
| |
Collapse
|
44
|
Wu RC, Zeng Y, Pan IW, Wu MY. Androgen Receptor Coactivator ARID4B Is Required for the Function of Sertoli Cells in Spermatogenesis. Mol Endocrinol 2015; 29:1334-46. [PMID: 26258622 DOI: 10.1210/me.2015-1089] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Defects in spermatogenesis, a process that produces spermatozoa inside seminiferous tubules of the testis, result in male infertility. Spermatogenic progression is highly dependent on a microenvironment provided by Sertoli cells, the only somatic cells and epithelium of seminiferous tubules. However, genes that regulate such an important activity of Sertoli cells are poorly understood. Here, we found that AT-rich interactive domain 4B (ARID4B), is essential for the function of Sertoli cells to regulate spermatogenesis. Specifically, we generated Sertoli cell-specific Arid4b knockout (Arid4bSCKO) mice, and showed that the Arid4bSCKO male mice were completely infertile with impaired testis development and significantly reduced testis size. Importantly, severe structural defects accompanied by loss of germ cells and Sertoli cell-only phenotype were found in many seminiferous tubules of the Arid4bSCKO testes. In addition, maturation of Sertoli cells was significantly delayed in the Arid4bSCKO mice, associated with delayed onset of spermatogenesis. Spermatogenic progression was also defective, showing an arrest at the round spermatid stage in the Arid4bSCKO testes. Interestingly, we showed that ARID4B functions as a "coactivator" of androgen receptor and is required for optimal transcriptional activation of reproductive homeobox 5, an androgen receptor target gene specifically expressed in Sertoli cells and critical for spermatogenesis. Together, our study identified ARID4B to be a key regulator of Sertoli cell function important for male germ cell development.
Collapse
Affiliation(s)
- Ray-Chang Wu
- Department of Biochemistry and Molecular Medicine (R.-C.W., Y.Z., M.-Y.W.), The George Washington University, Washington, DC 20037; and Department of Neurosurgery (I-W.P.), Texas Children's Hospital and Baylor College of Medicine, Houston, Texas 77030
| | - Yang Zeng
- Department of Biochemistry and Molecular Medicine (R.-C.W., Y.Z., M.-Y.W.), The George Washington University, Washington, DC 20037; and Department of Neurosurgery (I-W.P.), Texas Children's Hospital and Baylor College of Medicine, Houston, Texas 77030
| | - I-Wen Pan
- Department of Biochemistry and Molecular Medicine (R.-C.W., Y.Z., M.-Y.W.), The George Washington University, Washington, DC 20037; and Department of Neurosurgery (I-W.P.), Texas Children's Hospital and Baylor College of Medicine, Houston, Texas 77030
| | - Mei-Yi Wu
- Department of Biochemistry and Molecular Medicine (R.-C.W., Y.Z., M.-Y.W.), The George Washington University, Washington, DC 20037; and Department of Neurosurgery (I-W.P.), Texas Children's Hospital and Baylor College of Medicine, Houston, Texas 77030
| |
Collapse
|
45
|
Kadamb R, Mittal S, Bansal N, Saluja D. Stress-mediated Sin3B activation leads to negative regulation of subset of p53 target genes. Biosci Rep 2015; 35:e00234. [PMID: 26181367 PMCID: PMC4613689 DOI: 10.1042/bsr20150122] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 06/03/2015] [Accepted: 06/19/2015] [Indexed: 11/28/2022] Open
Abstract
The multiprotein SWI-independent 3 (Sin3)-HDAC (histone deacetylase) corepressor complex mediates gene repression through its interaction with DNA-binding factors and recruitment of chromatin-modifying proteins on to the promoters of target gene. Previously, an increased expression of Sin3B and tumour suppressor protein, p53 has been established upon adriamycin treatment. We, now provide evidence that Sin3B expression is significantly up-regulated under variety of stress conditions and this response is not stress-type specific. We observed that Sin3B expression is significantly up-regulated both at transcript and at protein level upon DNA damage induced by bleomycin drug, a radiomimetic agent. This increase in Sin3B expression upon stress is found to be p53-dependent and is associated with enhanced interaction of Sin3B with Ser(15) phosphorylated p53. Binding of Sin3-HDAC repressor complex on to the promoters of p53 target genes influences gene regulation by altering histone modifications (H3K9me3 and H3K27me3) at target genes. Furthermore, knockdown of Sin3B by shRNA severely compromises p53-mediated gene repression under stress conditions. Taken together, these results suggest that stress-induced Sin3B activation is p53-dependent and is essential for p53-mediated repression of its selective target genes. The present study has an implication in understanding the transrepression mechanism of p53 under DNA damaging conditions.
Collapse
Affiliation(s)
- Rama Kadamb
- Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi-110007, India
| | - Shilpi Mittal
- Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi-110007, India
| | - Nidhi Bansal
- Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi-110007, India
| | - Daman Saluja
- Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi-110007, India
| |
Collapse
|
46
|
Zheng B, He H, Zheng Y, Wu W, McCormick S. An ARID domain-containing protein within nuclear bodies is required for sperm cell formation in Arabidopsis thaliana. PLoS Genet 2014; 10:e1004421. [PMID: 25057814 PMCID: PMC4109846 DOI: 10.1371/journal.pgen.1004421] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 04/20/2014] [Indexed: 12/17/2022] Open
Abstract
In plants, each male meiotic product undergoes mitosis, and then one of the resulting cells divides again, yielding a three-celled pollen grain comprised of a vegetative cell and two sperm cells. Several genes have been found to act in this process, and DUO1 (DUO POLLEN 1), a transcription factor, plays a key role in sperm cell formation by activating expression of several germline genes. But how DUO1 itself is activated and how sperm cell formation is initiated remain unknown. To expand our understanding of sperm cell formation, we characterized an ARID (AT-Rich Interacting Domain)-containing protein, ARID1, that is specifically required for sperm cell formation in Arabidopsis. ARID1 localizes within nuclear bodies that are transiently present in the generative cell from which sperm cells arise, coincident with the timing of DUO1 activation. An arid1 mutant and antisense arid1 plants had an increased incidence of pollen with only a single sperm-like cell and exhibited reduced fertility as well as reduced expression of DUO1. In vitro and in vivo evidence showed that ARID1 binds to the DUO1 promoter. Lastly, we found that ARID1 physically associates with histone deacetylase 8 and that histone acetylation, which in wild type is evident only in sperm, expanded to the vegetative cell nucleus in the arid1 mutant. This study identifies a novel component required for sperm cell formation in plants and uncovers a direct positive regulatory role of ARID1 on DUO1 through association with histone acetylation. For all eukaryotes, gamete formation is an essential aspect of sexual reproduction. Unlike in animals, where meiotic products directly become gametes, the germline in plants is established by two consecutive mitotic divisions after meiosis is completed. The first mitosis is asymmetric, forming a larger vegetative cell and a smaller generative cell. The smaller generative cell then divides to produce two sperm cells. Current knowledge indicates DUO1 (DUO POLLEN 1), a transcription factor, plays a key role in this process by controlling expression of other germline genes. But how DUO1 is activated in the generative cell is unknown. To better understand the mechanisms that govern sperm cell formation and activate DUO1 expression, we characterized, ARID1, encoding an ARID (AT-Rich Interacting Domain)-containing protein. We show that ARID1 is required for DUO1 activation and sperm cell formation in Arabidopsis. Furthermore, ARID1 physically associates with a histone deacetylase, facilitating the maintenance of histone acetylation between the vegetative nucleus and sperm nuclei. Thus, our study shows that a pollen-specific ARID protein plays an important role during sperm cell formation in a dual manner: as a transcription factor to activate DUO1 and as a potential component of the histone modification machinery to maintain epigenetic status in pollen.
Collapse
Affiliation(s)
- Binglian Zheng
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China
- Plant Gene Expression Center, USDA/ARS and Dept. of Plant and Microbial Biology, UC-Berkeley, Albany, California, United States of America
| | - Hui He
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Yanhua Zheng
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Wenye Wu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Sheila McCormick
- Plant Gene Expression Center, USDA/ARS and Dept. of Plant and Microbial Biology, UC-Berkeley, Albany, California, United States of America
- * E-mail:
| |
Collapse
|
47
|
A TRIP230-retinoblastoma protein complex regulates hypoxia-inducible factor-1α-mediated transcription and cancer cell invasion. PLoS One 2014; 9:e99214. [PMID: 24919196 PMCID: PMC4053355 DOI: 10.1371/journal.pone.0099214] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 05/12/2014] [Indexed: 12/15/2022] Open
Abstract
Localized hypoxia in solid tumors activates transcriptional programs that promote the metastatic transformation of cells. Like hypoxia-inducible hyper-vascularization, loss of the retinoblastoma protein (Rb) is a trait common to advanced stages of tumor progression in many metastatic cancers. However, no link between the role of Rb and hypoxia-driven metastatic processes has been established. We demonstrated that Rb is a key mediator of the hypoxic response mediated by HIF1α/β, the master regulator of the hypoxia response, and its essential co-activator, the thyroid hormone receptor/retinoblastoma-interacting protein (TRIP230). Furthermore, loss of Rb unmasks the full co-activation potential of TRIP230. Using small inhibitory RNA approaches in vivo, we established that Rb attenuates the normal physiological response to hypoxia by HIF1α. Notably, loss of Rb results in hypoxia-dependent biochemical changes that promote acquisition of an invasive phenotype in MCF7 breast cancer cells. In addition, Rb is present in HIF1α-ARNT/HIF1β transcriptional complexes associated with TRIP230 as determined by co-immuno-precipitation, GST-pull-down and ChIP assays. These results demonstrate that Rb is a negative modulator of hypoxia-regulated transcription by virtue of its direct effects on the HIF1 complex. This work represents the first link between the functional ablation of Rb in tumor cells and HIF1α-dependent transcriptional activation and invasion.
Collapse
|
48
|
Keep-ING balance: tumor suppression by epigenetic regulation. FEBS Lett 2014; 588:2728-42. [PMID: 24632289 DOI: 10.1016/j.febslet.2014.03.011] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 03/06/2014] [Indexed: 12/26/2022]
Abstract
Cancer cells accumulate genetic and epigenetic changes that alter gene expression to drive tumorigenesis. Epigenetic silencing of tumor suppressor, cell cycle, differentiation and DNA repair genes contributes to neoplastic transformation. The ING (inhibitor of growth) proteins (ING1-ING5) have emerged as a versatile family of growth regulators, phospholipid effectors, histone mark sensors and core components of HDAC1/2 - and several HAT chromatin-modifying complexes. This review will describe the characteristic pathways by which ING family proteins differentially affect the Hallmarks of Cancer and highlight the various epigenetic mechanisms by which they regulate gene expression. Finally, we will discuss their potentials as biomarkers and therapeutic targets in epigenetic treatment strategies.
Collapse
|
49
|
Lin C, Song W, Bi X, Zhao J, Huang Z, Li Z, Zhou J, Cai J, Zhao H. Recent advances in the ARID family: focusing on roles in human cancer. Onco Targets Ther 2014; 7:315-24. [PMID: 24570593 PMCID: PMC3933769 DOI: 10.2147/ott.s57023] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The human AT-rich interaction domain (ARID) family contains seven subfamilies and 15 members characterized by having an ARID. Members of the ARID family have the ability to regulate transcription and are involved in cell differentiation and proliferation. Accumulating evidence suggests that ARID family members are involved in cancer-related signaling pathways, highly mutated or differentially expressed in tumor tissues, and act as predictive factors for cancer prognosis or therapeutic outcome. Here we review the molecular biology and clinical studies concerned with the role played by the ARID family in cancer. This may contribute to our understanding of the initiation and progression of cancer from a novel point of view, as well as providing potential targets for cancer therapy.
Collapse
Affiliation(s)
- Chen Lin
- Department of Abdominal Surgical Oncology, Cancer Hospital, Beijing, People's Republic of China
| | - Wei Song
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Xinyu Bi
- Department of Abdominal Surgical Oncology, Cancer Hospital, Beijing, People's Republic of China
| | - Jianjun Zhao
- Department of Abdominal Surgical Oncology, Cancer Hospital, Beijing, People's Republic of China
| | - Zhen Huang
- Department of Abdominal Surgical Oncology, Cancer Hospital, Beijing, People's Republic of China
| | - Zhiyu Li
- Department of Abdominal Surgical Oncology, Cancer Hospital, Beijing, People's Republic of China
| | - Jianguo Zhou
- Department of Abdominal Surgical Oncology, Cancer Hospital, Beijing, People's Republic of China
| | - Jianqiang Cai
- Department of Abdominal Surgical Oncology, Cancer Hospital, Beijing, People's Republic of China
| | - Hong Zhao
- Department of Abdominal Surgical Oncology, Cancer Hospital, Beijing, People's Republic of China
| |
Collapse
|
50
|
Nonogaki H. Seed dormancy and germination-emerging mechanisms and new hypotheses. FRONTIERS IN PLANT SCIENCE 2014; 5:233. [PMID: 24904627 PMCID: PMC4036127 DOI: 10.3389/fpls.2014.00233] [Citation(s) in RCA: 169] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 05/10/2014] [Indexed: 05/18/2023]
Abstract
Seed dormancy has played a significant role in adaptation and evolution of seed plants. While its biological significance is clear, molecular mechanisms underlying seed dormancy induction, maintenance and alleviation still remain elusive. Intensive efforts have been made to investigate gibberellin and abscisic acid metabolism in seeds, which greatly contributed to the current understanding of seed dormancy mechanisms. Other mechanisms, which might be independent of hormones, or specific to the seed dormancy pathway, are also emerging from genetic analysis of "seed dormancy mutants." These studies suggest that chromatin remodeling through histone ubiquitination, methylation and acetylation, which could lead to transcription elongation or gene silencing, may play a significant role in seed dormancy regulation. Small interfering RNA and/or long non-coding RNA might be a trigger of epigenetic changes at the seed dormancy or germination loci, such as DELAY OF GERMINATION1. While new mechanisms are emerging from genetic studies of seed dormancy, novel hypotheses are also generated from seed germination studies with high throughput gene expression analysis. Recent studies on tissue-specific gene expression in tomato and Arabidopsis seeds, which suggested possible "mechanosensing" in the regulatory mechanisms, advanced our understanding of embryo-endosperm interaction and have potential to re-draw the traditional hypotheses or integrate them into a comprehensive scheme. The progress in basic seed science will enable knowledge translation, another frontier of research to be expanded for food and fuel production.
Collapse
Affiliation(s)
- Hiroyuki Nonogaki
- *Correspondence: Hiroyuki Nonogaki, Department of Horticulture, Oregon State University, 4017 ALS Bldg., Corvallis OR 97331, USA e-mail:
| |
Collapse
|