1
|
Gautam P, Ciuta I, Teif VB, Sinha SK. Predicting p53-dependent cell transitions from thermodynamic models. J Chem Phys 2024; 161:135101. [PMID: 39356070 DOI: 10.1063/5.0225166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 09/18/2024] [Indexed: 10/03/2024] Open
Abstract
A cell's fate involves transitions among its various states, each defined by a distinct gene expression profile governed by the topology of gene regulatory networks, which are affected by 3D genome organization. Here, we develop thermodynamic models to determine the fate of a malignant cell as governed by the tumor suppressor p53 signaling network, taking into account long-range chromatin interactions in the mean-field approximation. The tumor suppressor p53 responds to stress by selectively triggering one of the potential transcription programs that influence many layers of cell signaling. These range from p53 phosphorylation to modulation of its DNA binding affinity, phase separation phenomena, and internal connectivity among cell fate genes. We use the minimum free energy of the system as a fundamental property of biological networks that influences the connection between the gene network topology and the state of the cell. We constructed models based on network topology and equilibrium thermodynamics. Our modeling shows that the binding of phosphorylated p53 to promoters of target genes can have properties of a first order phase transition. We apply our model to cancer cell lines ranging from breast cancer (MCF-7), colon cancer (HCT116), and leukemia (K562), with each one characterized by a specific network topology that determines the cell fate. Our results clarify the biological relevance of these mechanisms and suggest that they represent flexible network designs for switching between developmental decisions.
Collapse
Affiliation(s)
- Pankaj Gautam
- Theoretical and Computational Biophysical Chemistry Group, Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| | - Isabella Ciuta
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, United Kingdom
| | - Vladimir B Teif
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, United Kingdom
| | - Sudipta Kumar Sinha
- Theoretical and Computational Biophysical Chemistry Group, Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| |
Collapse
|
2
|
Agarwal H, Tal P, Goldfinger N, Chattopadhyay E, Malkin D, Rotter V, Attery A. Mutant p53 reactivation restricts the protumorigenic consequences of wild type p53 loss of heterozygosity in Li-Fraumeni syndrome patient-derived fibroblasts. Cell Death Differ 2024; 31:855-867. [PMID: 38745079 PMCID: PMC11239894 DOI: 10.1038/s41418-024-01307-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 04/13/2024] [Accepted: 04/26/2024] [Indexed: 05/16/2024] Open
Abstract
The p53 tumor suppressor, encoded by the TP53 gene, serves as a major barrier against malignant transformation. Patients with Li-Fraumeni syndrome (LFS) inherit a mutated TP53 allele from one parent and a wild-type TP53 allele from the other. Subsequently, the wild-type allele is lost and only the mutant TP53 allele remains. This process, which is termed loss of heterozygosity (LOH), results in only mutant p53 protein expression. We used primary dermal fibroblasts from LFS patients carrying the hotspot p53 gain-of-function pathogenic variant, R248Q to study the LOH process and characterize alterations in various pathways before and after LOH. We previously described the derivation of mutant p53 reactivating peptides, designated pCAPs (p53 Conformation Activating Peptides). In this study, we tested the effect of lead peptide pCAP-250 on LOH and on its associated cellular changes. We report that treatment of LFS fibroblasts with pCAP-250 prevents the accumulation of mutant p53 protein, inhibits LOH, and alleviates its cellular consequences. Furthermore, prolonged treatment with pCAP-250 significantly reduces DNA damage and restores long-term genomic stability. pCAPs may thus be contemplated as a potential preventive treatment to prevent or delay early onset cancer in carriers of mutant p53.
Collapse
Affiliation(s)
- Himanshi Agarwal
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Perry Tal
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Naomi Goldfinger
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Esita Chattopadhyay
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - David Malkin
- Department of Genetics and Genome Biology and the Division of Hematology/Oncology, The Hospital for Sick Children, Toronto, ON, Canada
- Departments of Medical Biophysics and Pediatrics, University of Toronto, Toronto, ON, Canada
| | - Varda Rotter
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel.
| | - Ayush Attery
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel.
- Department of Tumor Cell Biology, St Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
3
|
Chen J, Laverty DJ, Talele S, Bale A, Carlson BL, Porath KA, Bakken KK, Burgenske DM, Decker PA, Vaubel RA, Eckel-Passow JE, Bhargava R, Lou Z, Hamerlik P, Harley B, Elmquist WF, Nagel ZD, Gupta SK, Sarkaria JN. Aberrant ATM signaling and homology-directed DNA repair as a vulnerability of p53-mutant GBM to AZD1390-mediated radiosensitization. Sci Transl Med 2024; 16:eadj5962. [PMID: 38354228 PMCID: PMC11064970 DOI: 10.1126/scitranslmed.adj5962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 01/19/2024] [Indexed: 02/16/2024]
Abstract
ATM is a key mediator of radiation response, and pharmacological inhibition of ATM is a rational strategy to radiosensitize tumors. AZD1390 is a brain-penetrant ATM inhibitor and a potent radiosensitizer. This study evaluated the spectrum of radiosensitizing effects and the impact of TP53 mutation status in a panel of IDH1 wild-type (WT) glioblastoma (GBM) patient-derived xenografts (PDXs). AZD1390 suppressed radiation-induced ATM signaling, abrogated G0-G1 arrest, and promoted a proapoptotic response specifically in p53-mutant GBM in vitro. In a preclinical trial using 10 orthotopic GBM models, AZD1390/RT afforded benefit in a cohort of TP53-mutant tumors but not in TP53-WT PDXs. In mechanistic studies, increased endogenous DNA damage and constitutive ATM signaling were observed in TP53-mutant, but not in TP53-WT, PDXs. In plasmid-based reporter assays, GBM43 (TP53-mutant) showed elevated DNA repair capacity compared with that in GBM14 (p53-WT), whereas treatment with AZD1390 specifically suppressed homologous recombination (HR) efficiency, in part, by stalling RAD51 unloading. Furthermore, overexpression of a dominant-negative TP53 (p53DD) construct resulted in enhanced basal ATM signaling, HR activity, and AZD1390-mediated radiosensitization in GBM14. Analyzing RNA-seq data from TCGA showed up-regulation of HR pathway genes in TP53-mutant human GBM. Together, our results imply that increased basal ATM signaling and enhanced dependence on HR represent a unique susceptibility of TP53-mutant cells to ATM inhibitor-mediated radiosensitization.
Collapse
Affiliation(s)
- Jiajia Chen
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN 55905, USA
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Daniel J. Laverty
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| | - Surabhi Talele
- Department of Pharmaceutics, University of Minnesota, Minneapolis, MN 55905, USA
| | - Ashwin Bale
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Brett L. Carlson
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Kendra A. Porath
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Katrina K. Bakken
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Paul A. Decker
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | - Rachael A. Vaubel
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Rohit Bhargava
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Zhenkun Lou
- Division of Oncology Research, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Brendan Harley
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - William F. Elmquist
- Department of Pharmaceutics, University of Minnesota, Minneapolis, MN 55905, USA
| | - Zachary D. Nagel
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| | - Shiv K. Gupta
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Jann N. Sarkaria
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
4
|
Dardare J, Witz A, Betz M, Francois A, Meras M, Lamy L, Lambert A, Grandemange S, Husson M, Rouyer M, Demange J, Merlin JL, Harlé A, Gilson P. DDB2 represses epithelial-to-mesenchymal transition and sensitizes pancreatic ductal adenocarcinoma cells to chemotherapy. Front Oncol 2022; 12:1052163. [PMID: 36568213 PMCID: PMC9773984 DOI: 10.3389/fonc.2022.1052163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/14/2022] [Indexed: 12/13/2022] Open
Abstract
Introduction Damage specific DNA binding protein 2 (DDB2) is an UV-indiced DNA damage recognition factor and regulator of cancer development and progression. DDB2 has dual roles in several cancers, either as an oncogene or as a tumor suppressor gene, depending on cancer localization. Here, we investigated the unresolved role of DDB2 in pancreatic ductal adenocarcinoma (PDAC). Methods The expression level of DDB2 in pancreatic cancer tissues and its correlation with patient survival were evaluated using publicly available data. Two PDAC cell models with CRISPR-modified DDB2 expression were developed: DDB2 was repressed in DDB2-high T3M4 cells (T3M4 DDB2-low) while DDB2 was overexpressed in DDB2-low Capan-2 cells (Capan-2 DDB2-high). Immunofluorescence and qPCR assays were used to investigate epithelial-to-mesenchymal transition (EMT) in these models. Migration and invasion properties of the cells were also determined using wound healing and transwell assays. Sensitivity to 5-fluorouracil (5-FU), oxaliplatin, irinotecan and gemcitabine were finally investigated by crystal violet assays. Results DDB2 expression level was reduced in PDAC tissues compared to normal ones and DDB2-low levels were correlated to shorter disease-free survival in PDAC patients. DDB2 overexpression increased expression of E-cadherin epithelial marker, and decreased levels of N-cadherin mesenchymal marker. Conversely, we observed opposite effects in DDB2 repression and enhanced transcription of SNAIL, ZEB1, and TWIST EMT transcription factors (EMT-TFs). Study of migration and invasion revealed that these properties were negatively correlated with DDB2 expression in both cell models. DDB2 overexpression sensitized cells to 5-fluorouracil, oxaliplatin and gemcitabine. Conclusion Our study highlights the potential tumor suppressive effects of DDB2 on PDAC progression. DDB2 could thus represent a promising therapeutic target or biomarker for defining prognosis and predicting chemotherapy response in patients with PDAC.
Collapse
Affiliation(s)
- Julie Dardare
- Université de Lorraine, Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 7039 Centre de Recherche en Automatique de Nancy (CRAN), Nancy, France,Service de Biopathologie, Institut de Cancérologie de Lorraine, Vandoeuvre-les-Nancy, France,*Correspondence: Julie Dardare,
| | - Andréa Witz
- Université de Lorraine, Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 7039 Centre de Recherche en Automatique de Nancy (CRAN), Nancy, France,Service de Biopathologie, Institut de Cancérologie de Lorraine, Vandoeuvre-les-Nancy, France
| | - Margaux Betz
- Université de Lorraine, Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 7039 Centre de Recherche en Automatique de Nancy (CRAN), Nancy, France,Service de Biopathologie, Institut de Cancérologie de Lorraine, Vandoeuvre-les-Nancy, France
| | - Aurélie Francois
- Université de Lorraine, Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 7039 Centre de Recherche en Automatique de Nancy (CRAN), Nancy, France,Service de Biopathologie, Institut de Cancérologie de Lorraine, Vandoeuvre-les-Nancy, France
| | - Morgane Meras
- Service de Biopathologie, Institut de Cancérologie de Lorraine, Vandoeuvre-les-Nancy, France
| | - Laureline Lamy
- Université de Lorraine, Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 7039 Centre de Recherche en Automatique de Nancy (CRAN), Nancy, France,Service de Biopathologie, Institut de Cancérologie de Lorraine, Vandoeuvre-les-Nancy, France
| | - Aurélien Lambert
- Service de Biopathologie, Institut de Cancérologie de Lorraine, Vandoeuvre-les-Nancy, France
| | - Stéphanie Grandemange
- Université de Lorraine, Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 7039 Centre de Recherche en Automatique de Nancy (CRAN), Nancy, France
| | - Marie Husson
- Service de Biopathologie, Institut de Cancérologie de Lorraine, Vandoeuvre-les-Nancy, France
| | - Marie Rouyer
- Service de Biopathologie, Institut de Cancérologie de Lorraine, Vandoeuvre-les-Nancy, France
| | - Jessica Demange
- Service de Biopathologie, Institut de Cancérologie de Lorraine, Vandoeuvre-les-Nancy, France
| | - Jean-Louis Merlin
- Université de Lorraine, Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 7039 Centre de Recherche en Automatique de Nancy (CRAN), Nancy, France,Service de Biopathologie, Institut de Cancérologie de Lorraine, Vandoeuvre-les-Nancy, France
| | - Alexandre Harlé
- Université de Lorraine, Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 7039 Centre de Recherche en Automatique de Nancy (CRAN), Nancy, France,Service de Biopathologie, Institut de Cancérologie de Lorraine, Vandoeuvre-les-Nancy, France
| | - Pauline Gilson
- Université de Lorraine, Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 7039 Centre de Recherche en Automatique de Nancy (CRAN), Nancy, France,Service de Biopathologie, Institut de Cancérologie de Lorraine, Vandoeuvre-les-Nancy, France
| |
Collapse
|
5
|
Thomas AF, Kelly GL, Strasser A. Of the many cellular responses activated by TP53, which ones are critical for tumour suppression? Cell Death Differ 2022; 29:961-971. [PMID: 35396345 PMCID: PMC9090748 DOI: 10.1038/s41418-022-00996-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 03/24/2022] [Accepted: 03/28/2022] [Indexed: 12/12/2022] Open
Abstract
The tumour suppressor TP53 is a master regulator of several cellular processes that collectively suppress tumorigenesis. The TP53 gene is mutated in ~50% of human cancers and these defects usually confer poor responses to therapy. The TP53 protein functions as a homo-tetrameric transcription factor, directly regulating the expression of ~500 target genes, some of them involved in cell death, cell cycling, cell senescence, DNA repair and metabolism. Originally, it was thought that the induction of apoptotic cell death was the principal mechanism by which TP53 prevents the development of tumours. However, gene targeted mice lacking the critical effectors of TP53-induced apoptosis (PUMA and NOXA) do not spontaneously develop tumours. Indeed, even mice lacking the critical mediators for TP53-induced apoptosis, G1/S cell cycle arrest and cell senescence, namely PUMA, NOXA and p21, do not spontaneously develop tumours. This suggests that TP53 must activate additional cellular responses to mediate tumour suppression. In this review, we will discuss the processes by which TP53 regulates cell death, cell cycling/cell senescence, DNA damage repair and metabolic adaptation, and place this in context of current understanding of TP53-mediated tumour suppression.
Collapse
Affiliation(s)
- Annabella F Thomas
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,The Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - Gemma L Kelly
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,The Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - Andreas Strasser
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia. .,The Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
6
|
Kusakabe M, Kakumu E, Kurihara F, Tsuchida K, Maeda T, Tada H, Kusao K, Kato A, Yasuda T, Matsuda T, Nakao M, Yokoi M, Sakai W, Sugasawa K. Histone deacetylation regulates nucleotide excision repair through an interaction with the XPC protein. iScience 2022; 25:104040. [PMID: 35330687 PMCID: PMC8938288 DOI: 10.1016/j.isci.2022.104040] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 02/07/2022] [Accepted: 03/04/2022] [Indexed: 12/05/2022] Open
Abstract
The XPC protein complex plays a central role in DNA lesion recognition for global genome nucleotide excision repair (GG-NER). Lesion recognition can be accomplished in either a UV-DDB-dependent or -independent manner; however, it is unclear how these sub-pathways are regulated in chromatin. Here, we show that histone deacetylases 1 and 2 facilitate UV-DDB-independent recruitment of XPC to DNA damage by inducing histone deacetylation. XPC localizes to hypoacetylated chromatin domains in a DNA damage-independent manner, mediated by its structurally disordered middle (M) region. The M region interacts directly with the N-terminal tail of histone H3, an interaction compromised by H3 acetylation. Although the M region is dispensable for in vitro NER, it promotes DNA damage removal by GG-NER in vivo, particularly in the absence of UV-DDB. We propose that histone deacetylation around DNA damage facilitates the recruitment of XPC through the M region, contributing to efficient lesion recognition and initiation of GG-NER. Histone deacetylation by HDAC1/2 promotes the DNA lesion recognition by XPC The HDAC1/2 activators, MTA proteins, also promote the recruitment of XPC XPC tends to localize in hypoacetylated chromatin independently of DNA damage Disordered middle region of XPC interacts with histone H3 tail and promotes GG-NER
Collapse
|
7
|
Molecular Mechanisms of Cutaneous Squamous Cell Carcinoma. Int J Mol Sci 2022; 23:ijms23073478. [PMID: 35408839 PMCID: PMC8998533 DOI: 10.3390/ijms23073478] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/18/2022] [Accepted: 03/18/2022] [Indexed: 12/25/2022] Open
Abstract
Non-melanoma skin cancers are cutaneous malignancies representing the most common form of cancer in the United States. They are comprised predominantly of basal cell carcinomas and squamous cell carcinomas (cSCC). The incidence of cSCC is increasing, resulting in substantial morbidity and ever higher treatment costs; currently in excess of one billion dollars, per annum. Here, we review research defining the molecular basis and development of cSCC that aims to provide new insights into pathogenesis and drive the development of novel, cost and morbidity saving therapies.
Collapse
|
8
|
A protein with broad functions: damage-specific DNA-binding protein 2. Mol Biol Rep 2022; 49:12181-12192. [PMID: 36190612 PMCID: PMC9712371 DOI: 10.1007/s11033-022-07963-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/17/2022] [Indexed: 02/01/2023]
Abstract
Damage-specific DNA-binding protein 2 (DDB2) was initially identified as a component of the damage-specific DNA-binding heterodimeric complex, which cooperates with other proteins to repair UV-induced DNA damage. DDB2 is involved in the occurrence and development of cancer by affecting nucleotide excision repair (NER), cell apoptosis, and premature senescence. DDB2 also affects the sensitivity of cancer cells to radiotherapy and chemotherapy. In addition, a recent study found that DDB2 is a pathogenic gene for hepatitis and encephalitis. In recent years, there have been few relevant literature reports on DDB2, so there is still room for further research about it. In this paper, the molecular mechanisms of different biological processes involving DDB2 are reviewed in detail to provide theoretical support for research on drugs that can target DDB2.
Collapse
|
9
|
Vriend J, Nachtigal MW. Ubiquitin Proteasome Pathway Transcriptome in Epithelial Ovarian Cancer. Cancers (Basel) 2021; 13:cancers13112659. [PMID: 34071321 PMCID: PMC8198060 DOI: 10.3390/cancers13112659] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 05/22/2021] [Accepted: 05/24/2021] [Indexed: 12/26/2022] Open
Abstract
In this article, we reviewed the transcription of genes coding for components of the ubiquitin proteasome pathway in publicly available datasets of epithelial ovarian cancer (EOC). KEGG analysis was used to identify the major pathways distinguishing EOC of low malignant potential (LMP) from invasive high-grade serous ovarian carcinomas (HGSOC), and to identify the components of the ubiquitin proteasome system that contributed to these pathways. We identified elevated transcription of several genes encoding ubiquitin conjugases associated with HGSOC. Fifty-eight genes coding for ubiquitin ligases and more than 100 genes encoding ubiquitin ligase adaptors that were differentially expressed between LMP and HGSOC were also identified. Many differentially expressed genes encoding E3 ligase adaptors were Cullin Ring Ligase (CRL) adaptors, and 64 of them belonged to the Cullin 4 DCX/DWD family of CRLs. The data suggest that CRLs play a role in HGSOC and that some of these proteins may be novel therapeutic targets. Differential expression of genes encoding deubiquitinases and proteasome subunits was also noted.
Collapse
Affiliation(s)
- Jerry Vriend
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
- Correspondence: ; Tel.: +1-204-789-3732
| | - Mark W. Nachtigal
- Department of Biochemistry and Medical Genetics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada;
- Department of Obstetrics, Gynecology & Reproductive Sciences, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
- CancerCare Manitoba Research Institute, Winnipeg, MB R3E 0V9, Canada
| |
Collapse
|
10
|
Regulation of ddb2 expression in blind cavefish and zebrafish reveals plasticity in the control of sunlight-induced DNA damage repair. PLoS Genet 2021; 17:e1009356. [PMID: 33544716 PMCID: PMC7891740 DOI: 10.1371/journal.pgen.1009356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 02/18/2021] [Accepted: 01/12/2021] [Indexed: 11/19/2022] Open
Abstract
We have gained considerable insight into the mechanisms which recognize and repair DNA damage, but how they adapt to extreme environmental challenges remains poorly understood. Cavefish have proven to be fascinating models for exploring the evolution of DNA repair in the complete absence of UV-induced DNA damage and light. We have previously revealed that the Somalian cavefish Phreatichthys andruzzii, lacks photoreactivation repair via the loss of light, UV and ROS-induced photolyase gene transcription mediated by D-box enhancer elements. Here, we explore whether other systems repairing UV-induced DNA damage have been similarly affected in this cavefish model. By performing a comparative study using P. andruzzii and the surface-dwelling zebrafish, we provide evidence for a conservation of sunlight-regulated Nucleotide Excision Repair (NER). Specifically, the expression of the ddb2 gene which encodes a key NER recognition factor is robustly induced following exposure to light, UV and oxidative stress in both species. As in the case of the photolyase genes, D-boxes in the ddb2 promoter are sufficient to induce transcription in zebrafish. Interestingly, despite the loss of D-box-regulated photolyase gene expression in P. andruzzii, the D-box is required for ddb2 induction by visible light and oxidative stress in cavefish. However, in the cavefish ddb2 gene this D-box-mediated induction requires cooperation with an adjacent, highly conserved E2F element. Furthermore, while in zebrafish UV-induced ddb2 expression results from transcriptional activation accompanied by stabilization of the ddb2 mRNA, in P. andruzzii UV induces ddb2 expression exclusively via an increase in mRNA stability. Thus, we reveal plasticity in the transcriptional and post transcriptional mechanisms regulating the repair of sunlight-induced DNA damage under long-term environmental challenges.
Collapse
|
11
|
Feroz W, Sheikh AMA. Exploring the multiple roles of guardian of the genome: P53. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2020. [DOI: 10.1186/s43042-020-00089-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
AbstractBackgroundCells have evolved balanced mechanisms to protect themselves by initiating a specific response to a variety of stress. TheTP53gene, encoding P53 protein, is one of the many widely studied genes in human cells owing to its multifaceted functions and complex dynamics. The tumour-suppressing activity of P53 plays a principal role in the cellular response to stress. The majority of the human cancer cells exhibit the inactivation of the P53 pathway. In this review, we discuss the recent advancements in P53 research with particular focus on the role of P53 in DNA damage responses, apoptosis, autophagy, and cellular metabolism. We also discussed important P53-reactivation strategies that can play a crucial role in cancer therapy and the role of P53 in various diseases.Main bodyWe used electronic databases like PubMed and Google Scholar for literature search. In response to a variety of cellular stress such as genotoxic stress, ischemic stress, oncogenic expression, P53 acts as a sensor, and suppresses tumour development by promoting cell death or permanent inhibition of cell proliferation. It controls several genes that play a role in the arrest of the cell cycle, cellular senescence, DNA repair system, and apoptosis. P53 plays a crucial role in supporting DNA repair by arresting the cell cycle to purchase time for the repair system to restore genome stability. Apoptosis is essential for maintaining tissue homeostasis and tumour suppression. P53 can induce apoptosis in a genetically unstable cell by interacting with many pro-apoptotic and anti-apoptotic factors.Furthermore, P53 can activate autophagy, which also plays a role in tumour suppression. P53 also regulates many metabolic pathways of glucose, lipid, and amino acid metabolism. Thus under mild metabolic stress, P53 contributes to the cell’s ability to adapt to and survive the stress.ConclusionThese multiple levels of regulation enable P53 to perform diversified roles in many cell responses. Understanding the complete function of P53 is still a work in progress because of the inherent complexity involved in between P53 and its target proteins. Further research is required to unravel the mystery of this Guardian of the genome “TP53”.
Collapse
|
12
|
Sammons MA, Nguyen TAT, McDade SS, Fischer M. Tumor suppressor p53: from engaging DNA to target gene regulation. Nucleic Acids Res 2020; 48:8848-8869. [PMID: 32797160 PMCID: PMC7498329 DOI: 10.1093/nar/gkaa666] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 07/24/2020] [Accepted: 07/30/2020] [Indexed: 12/13/2022] Open
Abstract
The p53 transcription factor confers its potent tumor suppressor functions primarily through the regulation of a large network of target genes. The recent explosion of next generation sequencing protocols has enabled the study of the p53 gene regulatory network (GRN) and underlying mechanisms at an unprecedented depth and scale, helping us to understand precisely how p53 controls gene regulation. Here, we discuss our current understanding of where and how p53 binds to DNA and chromatin, its pioneer-like role, and how this affects gene regulation. We provide an overview of the p53 GRN and the direct and indirect mechanisms through which p53 affects gene regulation. In particular, we focus on delineating the ubiquitous and cell type-specific network of regulatory elements that p53 engages; reviewing our understanding of how, where, and when p53 binds to DNA and the mechanisms through which these events regulate transcription. Finally, we discuss the evolution of the p53 GRN and how recent work has revealed remarkable differences between vertebrates, which are of particular importance to cancer researchers using mouse models.
Collapse
Affiliation(s)
- Morgan A Sammons
- Department of Biological Sciences and The RNA Institute, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, USA
| | - Thuy-Ai T Nguyen
- Genome Integrity & Structural Biology Laboratory and Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences/National Institutes of Health, 111 TW Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Simon S McDade
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7AE, UK
| | - Martin Fischer
- Computational Biology Group, Leibniz Institute on Aging – Fritz Lipmann Institute (FLI), Beutenbergstraße 11, 07745 Jena, Germany
| |
Collapse
|
13
|
Wang YC, Huang JL, Lee KW, Lu HH, Lin YJ, Chen LF, Wang CS, Cheng YC, Zeng ZT, Chu PY, Lin CS. Downregulation of the DNA Repair Gene DDB2 by Arecoline Is through p53's DNA-Binding Domain and Is Correlated with Poor Outcome of Head and Neck Cancer Patients with Betel Quid Consumption. Cancers (Basel) 2020; 12:cancers12082053. [PMID: 32722430 PMCID: PMC7465463 DOI: 10.3390/cancers12082053] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/18/2020] [Accepted: 07/22/2020] [Indexed: 12/19/2022] Open
Abstract
Arecoline is the principal alkaloid in the areca nut, a component of betel quids (BQs), which are carcinogenic to humans. Epidemiological studies indicate that BQ-chewing contributes to the occurrence of head and neck cancer (HNC). Previously, we have reported that arecoline (0.3 mM) is able to inhibit DNA repair in a p53-dependent pathway, but the underlying mechanism is unclear. Here we demonstrated that arecoline suppressed the expression of DDB2, which is transcriptionally regulated by p53 and is required for nucleotide excision repair (NER). Ectopic expression of DDB2 restored NER activity in arecoline-treated cells, suggesting that DDB2 downregulation was critical for arecoline-mediated NER inhibition. Mechanistically, arecoline inhibited p53-induced DDB2 promoter activity through the DNA-binding but not the transactivation domain of p53. Both NER and DDB2 promoter activities declined in the chronic arecoline-exposed cells, which were consistent with the downregulated DDB2 mRNA in BQ-associated HNC specimens, but not in those of The Cancer Genome Atlas (TCGA) cohort (no BQ exposure). Lower DDB2 mRNA expression was correlated with a poor outcome in HNC patients. These data uncover one of mechanisms underlying arecoline-mediated carcinogenicity through inhibiting p53-regulated DDB2 expression and DNA repair.
Collapse
Affiliation(s)
- Yu-Chu Wang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (Y.-C.W.); (H.-H.L.); (Y.-J.L.); (L.-F.C.); (C.-S.W.)
| | - Jau-Ling Huang
- Department of Bioscience Technology, College of Health Science, Chang Jung Christian University, Tainan 711, Taiwan; (J.-L.H.); (Y.-C.C.); (Z.-T.Z.)
| | - Ka-Wo Lee
- Department of Otorhinolaryngology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 801, Taiwan;
| | - Hsing-Han Lu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (Y.-C.W.); (H.-H.L.); (Y.-J.L.); (L.-F.C.); (C.-S.W.)
- Department of Bioscience Technology, College of Health Science, Chang Jung Christian University, Tainan 711, Taiwan; (J.-L.H.); (Y.-C.C.); (Z.-T.Z.)
| | - Yuan-Jen Lin
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (Y.-C.W.); (H.-H.L.); (Y.-J.L.); (L.-F.C.); (C.-S.W.)
| | - Long-Fong Chen
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (Y.-C.W.); (H.-H.L.); (Y.-J.L.); (L.-F.C.); (C.-S.W.)
- Department of Pathology and Medical Research, Show Chwan Memorial Hospital, Changhua 500, Taiwan;
| | - Chung-Sheng Wang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (Y.-C.W.); (H.-H.L.); (Y.-J.L.); (L.-F.C.); (C.-S.W.)
| | - Yun-Chiao Cheng
- Department of Bioscience Technology, College of Health Science, Chang Jung Christian University, Tainan 711, Taiwan; (J.-L.H.); (Y.-C.C.); (Z.-T.Z.)
| | - Zih-Ting Zeng
- Department of Bioscience Technology, College of Health Science, Chang Jung Christian University, Tainan 711, Taiwan; (J.-L.H.); (Y.-C.C.); (Z.-T.Z.)
| | - Pei-Yi Chu
- Department of Pathology and Medical Research, Show Chwan Memorial Hospital, Changhua 500, Taiwan;
| | - Chang-Shen Lin
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (Y.-C.W.); (H.-H.L.); (Y.-J.L.); (L.-F.C.); (C.-S.W.)
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan
- Correspondence: or
| |
Collapse
|
14
|
Beecher M, Kumar N, Jang S, Rapić-Otrin V, Van Houten B. Expanding molecular roles of UV-DDB: Shining light on genome stability and cancer. DNA Repair (Amst) 2020; 94:102860. [PMID: 32739133 DOI: 10.1016/j.dnarep.2020.102860] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/07/2020] [Accepted: 04/09/2020] [Indexed: 01/13/2023]
Abstract
UV-damaged DNA binding protein (UV-DDB) is a heterodimeric complex, composed of DDB1 and DDB2, and is involved in global genome nucleotide excision repair. Mutations in DDB2 are associated with xeroderma pigmentosum complementation group E. UV-DDB forms a ubiquitin E3 ligase complex with cullin-4A and RBX that helps to relax chromatin around UV-induced photoproducts through the ubiquitination of histone H2A. After providing a brief historical perspective on UV-DDB, we review our current knowledge of the structure and function of this intriguing repair protein. Finally, this article discusses emerging data suggesting that UV-DDB may have other non-canonical roles in base excision repair and the etiology of cancer.
Collapse
Affiliation(s)
- Maria Beecher
- Molecular Pharmacology Graduate Program, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Namrata Kumar
- Molecular Genetics and Developmental Biology Graduate Program, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Sunbok Jang
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Vesna Rapić-Otrin
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Bennett Van Houten
- Molecular Pharmacology Graduate Program, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; Molecular Genetics and Developmental Biology Graduate Program, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| |
Collapse
|
15
|
Human HMGN1 and HMGN2 are not required for transcription-coupled DNA repair. Sci Rep 2020; 10:4332. [PMID: 32152397 PMCID: PMC7062826 DOI: 10.1038/s41598-020-61243-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 02/21/2020] [Indexed: 12/30/2022] Open
Abstract
Transcription-coupled repair (TCR) removes DNA lesions from the transcribed strand of active genes. Stalling of RNA polymerase II (RNAPII) at DNA lesions initiates TCR through the recruitment of the CSB and CSA proteins. The full repertoire of proteins required for human TCR – particularly in a chromatin context - remains to be determined. Studies in mice have revealed that the nucleosome-binding protein HMGN1 is required to enhance the repair of UV-induced lesions in transcribed genes. However, whether HMGN1 is required for human TCR remains unaddressed. Here, we show that knockout or knockdown of HMGN1, either alone or in combination with HMGN2, does not render human cells sensitive to UV light or Illudin S-induced transcription-blocking DNA lesions. Moreover, transcription restart after UV irradiation was not impaired in HMGN-deficient cells. In contrast, TCR-deficient cells were highly sensitive to DNA damage and failed to restart transcription. Furthermore, GFP-tagged HMGN1 was not recruited to sites of UV-induced DNA damage under conditions where GFP-CSB readily accumulated. In line with this, HMGN1 did not associate with the TCR complex, nor did TCR proteins require HMGN1 to associate with DNA damage-stalled RNAPII. Together, our findings suggest that HMGN1 and HMGN2 are not required for human TCR.
Collapse
|
16
|
Ho T, Tan BX, Lane D. How the Other Half Lives: What p53 Does When It Is Not Being a Transcription Factor. Int J Mol Sci 2019; 21:ijms21010013. [PMID: 31861395 PMCID: PMC6982169 DOI: 10.3390/ijms21010013] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 12/07/2019] [Accepted: 12/16/2019] [Indexed: 12/31/2022] Open
Abstract
It has been four decades since the discovery of p53, the designated ‘Guardian of the Genome’. P53 is primarily known as a master transcription factor and critical tumor suppressor, with countless studies detailing the mechanisms by which it regulates a host of gene targets and their consequent signaling pathways. However, transcription-independent functions of p53 also strongly define its tumor-suppressive capabilities and recent findings shed light on the molecular mechanisms hinted at by earlier efforts. This review highlights the transcription-independent mechanisms by which p53 influences the cellular response to genomic instability (in the form of replication stress, centrosome homeostasis, and transposition) and cell death. We also pinpoint areas for further investigation in order to better understand the context dependency of p53 transcription-independent functions and how these are perturbed when TP53 is mutated in human cancer.
Collapse
|
17
|
Broustas CG, Hopkins KM, Panigrahi SK, Wang L, Virk RK, Lieberman HB. RAD9A promotes metastatic phenotypes through transcriptional regulation of anterior gradient 2 (AGR2). Carcinogenesis 2019; 40:164-172. [PMID: 30295739 DOI: 10.1093/carcin/bgy131] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 09/17/2018] [Accepted: 10/04/2018] [Indexed: 01/01/2023] Open
Abstract
RAD9A plays an important role in prostate tumorigenesis and metastasis-related phenotypes. The protein classically functions as part of the RAD9A-HUS1-RAD1 complex but can also act independently. RAD9A can selectively transactivate multiple genes, including CDKN1A and NEIL1 by binding p53-consensus sequences in or near promoters. RAD9A is overexpressed in human prostate cancer specimens and cell lines; its expression correlates with tumor progression. Silencing RAD9A in prostate cancer cells impairs their ability to form tumors in vivo and migrate as well as grow anchorage independently in vitro. We demonstrate herein that RAD9A transcriptionally controls AGR2, a gene aberrantly overexpressed in patients with metastatic prostate cancer. Transient or stable knockdown of RAD9A in PC-3 cells caused downregulation of AGR2 protein abundance. Reduced AGR2 protein levels were due to lower abundance of AGR2 mRNA. The AGR2 genomic region upstream of the coding initiation site contains several p53 consensus sequences. RAD9A bound specifically to the 5'-untranslated region of AGR2 in PC-3 cells at a partial p53 consensus sequence at position +3136 downstream from the transcription start site, determined by chromatin immunoprecipitation, followed by PCR amplification. Binding of RAD9A to the p53 consensus sequence was sufficient to drive AGR2 gene transcription, shown by a luciferase reporter assay. In contrast, when the RAD9A-binding sequence on the AGR2 was mutated, no luciferase activity was detected. Knockdown of RAD9A in PC-3 cells impaired cell migration and anchorage-independent growth. However, ectopically expressed AGR2 in RAD9A-depleted PC-3 cells restored these phenotypes. Our results suggest RAD9A drives metastasis by controlling AGR2 abundance.
Collapse
Affiliation(s)
- Constantinos G Broustas
- Center for Radiological Research, Columbia University Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Kevin M Hopkins
- Center for Radiological Research, Columbia University Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Sunil K Panigrahi
- Center for Radiological Research, Columbia University Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Li Wang
- Center for Radiological Research, Columbia University Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Renu K Virk
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Howard B Lieberman
- Center for Radiological Research, Columbia University Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA.,Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|
18
|
Gilson P, Drouot G, Witz A, Merlin JL, Becuwe P, Harlé A. Emerging Roles of DDB2 in Cancer. Int J Mol Sci 2019; 20:ijms20205168. [PMID: 31635251 PMCID: PMC6834144 DOI: 10.3390/ijms20205168] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 10/12/2019] [Accepted: 10/15/2019] [Indexed: 01/10/2023] Open
Abstract
Damage-specific DNA-binding protein 2 (DDB2) was originally identified as a DNA damage recognition factor that facilitates global genomic nucleotide excision repair (GG-NER) in human cells. DDB2 also contributes to other essential biological processes such as chromatin remodeling, gene transcription, cell cycle regulation, and protein decay. Recently, the potential of DDB2 in the development and progression of various cancers has been described. DDB2 activity occurs at several stages of carcinogenesis including cancer cell proliferation, survival, epithelial to mesenchymal transition, migration and invasion, angiogenesis, and cancer stem cell formation. In this review, we focus on the current state of scientific knowledge regarding DDB2 biological effects in tumor development and the underlying molecular mechanisms. We also provide insights into the clinical consequences of DDB2 activity in cancers.
Collapse
Affiliation(s)
- Pauline Gilson
- Institut de Cancérologie de Lorraine, Service de Biopathologie, Université de Lorraine, CNRS UMR 7039 CRAN, 54519 Vandœuvre-lès-Nancy CEDEX, France.
| | - Guillaume Drouot
- Faculté des Sciences et Technologies, Université de Lorraine, CNRS UMR 7039 CRAN, 54506 Vandœuvre-lès-Nancy CEDEX, France.
| | - Andréa Witz
- Institut de Cancérologie de Lorraine, Service de Biopathologie, Université de Lorraine, CNRS UMR 7039 CRAN, 54519 Vandœuvre-lès-Nancy CEDEX, France.
| | - Jean-Louis Merlin
- Institut de Cancérologie de Lorraine, Service de Biopathologie, Université de Lorraine, CNRS UMR 7039 CRAN, 54519 Vandœuvre-lès-Nancy CEDEX, France.
| | - Philippe Becuwe
- Faculté des Sciences et Technologies, Université de Lorraine, CNRS UMR 7039 CRAN, 54506 Vandœuvre-lès-Nancy CEDEX, France.
| | - Alexandre Harlé
- Institut de Cancérologie de Lorraine, Service de Biopathologie, Université de Lorraine, CNRS UMR 7039 CRAN, 54519 Vandœuvre-lès-Nancy CEDEX, France.
| |
Collapse
|
19
|
Sustained DDB-2 and TRX transcriptional response of quercetin-treated lymphocytes exposed to Co-60 radiation. GENE REPORTS 2019. [DOI: 10.1016/j.genrep.2019.100416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
20
|
Signaling Pathways, Chemical and Biological Modulators of Nucleotide Excision Repair: The Faithful Shield against UV Genotoxicity. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:4654206. [PMID: 31485292 PMCID: PMC6702832 DOI: 10.1155/2019/4654206] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 07/10/2019] [Indexed: 12/28/2022]
Abstract
The continuous exposure of the human body's cells to radiation and genotoxic stresses leads to the accumulation of DNA lesions. Fortunately, our body has several effective repair mechanisms, among which is nucleotide excision repair (NER), to counteract these lesions. NER includes both global genome repair (GG-NER) and transcription-coupled repair (TC-NER). Deficiencies in the NER pathway underlie the development of several DNA repair diseases, such as xeroderma pigmentosum (XP), Cockayne syndrome (CS), and trichothiodystrophy (TTD). Deficiencies in GG-NER and TC-NER render individuals to become prone to cancer and neurological disorders, respectively. Therefore, NER regulation is of interest in fine-tuning these risks. Distinct signaling cascades including the NFE2L2 (NRF2), AHR, PI3K/AKT1, MAPK, and CSNK2A1 pathways can modulate NER function. In addition, several chemical and biological compounds have proven success in regulating NER's activity. These modulators, particularly the positive ones, could therefore provide potential treatments for genetic DNA repair-based diseases. Negative modulators, nonetheless, can help sensitize cells to killing by genotoxic chemicals. In this review, we will summarize and discuss the major upstream signaling pathways and molecules that could modulate the NER's activity.
Collapse
|
21
|
Mo X, Preston S, Zaidi MR. Macroenvironment-gene-microenvironment interactions in ultraviolet radiation-induced melanomagenesis. Adv Cancer Res 2019; 144:1-54. [PMID: 31349897 DOI: 10.1016/bs.acr.2019.03.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cutaneous malignant melanoma is one of the few major cancers that continue to exhibit a positive rate of increase in the developed world. A wealth of epidemiological data has undisputedly implicated ultraviolet radiation (UVR) from sunlight and artificial sources as the major risk factor for melanomagenesis. However, the molecular mechanisms of this cause-and-effect relationship remain murky and understudied. Recent efforts on multiple fronts have brought unprecedented expansion of our knowledge base on this subject and it is now clear that melanoma is caused by a complex interaction between genetic predisposition and environmental exposure, primarily to UVR. Here we provide an overview of the effects of the macroenvironment (UVR) on the skin microenvironment and melanocyte-specific intrinsic (mostly genetic) landscape, which conspire to produce one of the deadliest malignancies.
Collapse
Affiliation(s)
- Xuan Mo
- Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Sarah Preston
- Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - M Raza Zaidi
- Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States.
| |
Collapse
|
22
|
Fischer M. Conservation and divergence of the p53 gene regulatory network between mice and humans. Oncogene 2019; 38:4095-4109. [PMID: 30710145 PMCID: PMC6755996 DOI: 10.1038/s41388-019-0706-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 12/29/2018] [Accepted: 01/04/2019] [Indexed: 12/13/2022]
Abstract
Understanding the p53 tumor suppressor pathway remains crucial for the design of anticancer strategies. Studies in human tumors and mouse models help to unravel the molecular mechanisms that underlie the p53 signaling pathway. Yet, the p53 gene regulatory network (GRN) is not the same in mice and humans. The comparison of the regulatory networks of p53 in mice and humans reveals that gene up- and down-regulation by p53 are distinctly affected during evolution. Importantly, gene up-regulation by p53 underwent more rapid evolution and gene down-regulation has been evolutionarily constrained. This difference stems from the two major mechanisms employed by p53 to regulate gene expression: up-regulation through direct p53 target gene binding and indirect down-regulation through the p53-p21-DREAM pathway. More than 1000 genes have been identified to differ in their p53-dependent expression between mice and humans. Analysis of p53 gene expression profiles and p53 binding data reveal that turnover of p53 binding sites is the major mechanism underlying extensive variation in p53-dependent gene up-regulation. Only a core set of high-confidence genes appears to be directly regulated by p53 in both species. In contrast to up-regulation, p53-induced down-regulation is well conserved between mice and humans and controls cell cycle genes. Here a curated data set is provided that extends the previously established web-atlas at www.targetgenereg.org to assess the p53 response of any human gene of interest and its mouse ortholog. Taken together, the analysis reveals a limited translation potential from mouse models to humans for the p53 GRN.
Collapse
Affiliation(s)
- Martin Fischer
- Computational Biology Group, Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), 07745, Jena, Germany. .,Molecular Oncology Group, Medical School, University of Leipzig, 04103, Leipzig, Germany.
| |
Collapse
|
23
|
Sucularli C, Thomas P, Kocak H, White JS, O'Connor BC, Keegan CE. High-throughput gene expression analysis identifies p53-dependent and -independent pathways contributing to the adrenocortical dysplasia (acd) phenotype. Gene 2018; 679:219-231. [PMID: 30189268 PMCID: PMC6186184 DOI: 10.1016/j.gene.2018.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 08/24/2018] [Accepted: 09/03/2018] [Indexed: 11/18/2022]
Abstract
In mammalian cells TPP1, encoded by the Acd gene, is a key component of the shelterin complex, which is required for telomere length maintenance and telomere protection. In mice, a hypomorphic mutation in Acd causes the adrenocortical dysplasia (acd) phenotype, which includes limb and body axis anomalies, and perinatal lethality. p53 deficiency partially rescues limb and body axis anomalies in acd mutant embryos, but not perinatal lethality, implicating p53-independent mechanisms in the acd phenotype. Loss of function of most shelterin proteins results in early embryonic lethality. Thus, study of the hypomorphic acd allele provides a unique opportunity to understand telomere dysfunction at an organismal level. The aim of this study was to identify transcriptome alterations in acd mutant and acd, p53 double mutant embryos to understand the p53-dependent and -independent factors that contribute to the mutant phenotypes in the context of the whole organism. Genes involved in developmental processes, cell cycle, metabolic pathways, tight junctions, axon guidance and signaling pathways were regulated by p53-driven mechanisms in acd mutant embryos, while genes functioning in immune response, and RNA processing were altered independently of p53 in acd, p53 double mutant embryos. To our best of knowledge, this is the first study revealing detailed transcriptomic alterations, reflecting novel p53-dependent and -independent pathways contributing to the acd phenotype. Our data confirm the importance of cell cycle and DNA repair pathways, and suggest novel links between telomere dysfunction and immune system regulation and the splicing machinery. Given the broad applicability of telomere maintenance in growth, development, and genome stability, our data will also provide a rich resource for others studying telomere maintenance and DNA damage responses in mammalian model systems.
Collapse
Affiliation(s)
- Ceren Sucularli
- Department of Bioinformatics, Institute of Health Sciences, Hacettepe University, 06100 Ankara, Turkey
| | - Peedikayil Thomas
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA; Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
| | - Hande Kocak
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA; Department of Medical Biology and Genetics, Istanbul Bilim University, Istanbul, Turkey
| | - James S White
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
| | | | - Catherine E Keegan
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA; Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
24
|
Bommi PV, Ravindran S, Raychaudhuri P, Bagchi S. DDB2 regulates Epithelial-to-Mesenchymal Transition (EMT) in Oral/Head and Neck Squamous Cell Carcinoma. Oncotarget 2018; 9:34708-34718. [PMID: 30410671 PMCID: PMC6205178 DOI: 10.18632/oncotarget.26168] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 09/08/2018] [Indexed: 01/21/2023] Open
Abstract
DDB2 is a sensor of DNA damage and it plays an important role in Global Genomic Repair (GG-NER). Our previous studies show that DDB2 is involved in the regulation of metastasis in colon adenocarcinoma. Squamous Cell Carcinomas in the Oral/Head & Neck region (HNSCC) are particularly aggressive due to high incidence of recurrence and distant metastasis. In this study, we show that DDB2 expression is downregulated in advanced HNSCCs and loss of DDB2 expression coincides with reduced survival. Recent meta-analysis of gene expression data characterized the mesenchymal-type (EMT-type) as one most aggressive cancer cluster in HNSCC. Here, we report that DDB2 constitutively represses mRNA expression of the EMT- regulatory transcription factors SNAIL, ZEB1, and angiogenic factor VEGF in HNSCC cells. As a result, re-expression of DDB2 in metastatic cells reversed EMT with transcriptional upregulation of epithelial marker E-cadherin, and downregulation of mesenchymal markers N-cadherin, Vimentin, and Fibronectin. Interestingly, in a reverse assay, depletion of DDB2 in non-metastatic cells induced expression of the same EMT-regulatory transcription factors. TGFβs are major regulators of Snail and Zeb1, and we observed that DDB2 transcriptionally regulates expression of TGFB2 in HNSCC cells. Re-expression of DDB2 in mouse embryonic fibroblasts (MEFs) isolated from Ddb2 (-/-) knockout-mice resulted in repression of EMT-regulatory factors Zeb1, Snail and Tgfb2. Taken together, these results support the active role of DDB2 as a candidate suppressor of the EMT-process in HNSCC. Early detection leads to significantly higher survival in HNSCC and DDB2 expression in tumors can be a predictor of EMT progression.
Collapse
Affiliation(s)
- Prashant V Bommi
- Department of Oral Biology, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois, USA.,Current Address: Department of Clinical Cancer Prevention, Biological Sciences Research Building (BSRB), University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sriram Ravindran
- Department of Oral Biology, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Pradip Raychaudhuri
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Srilata Bagchi
- Department of Oral Biology, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
25
|
Schoch S, Sen V, Gajewski S, Golubev V, Strauch B, Hartwig A, Köberle B. Activity profile of the cisplatin analogue PN149 in different tumor cell lines. Biochem Pharmacol 2018; 156:109-119. [PMID: 30138622 DOI: 10.1016/j.bcp.2018.08.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 08/17/2018] [Indexed: 12/26/2022]
Abstract
The efficacy of the anticancer drug cisplatin is restricted by tumor cell resistance and occurrence of severe side effects. One strategy to overcome these limitations is the development of new, improved platinum drugs. Previous investigations showed that platinum(IV)-nitroxyl complexes are able to circumvent cisplatin resistance in bladder cancer cells. In the present study the mode of action of the platinum(IV)-nitroxyl complex PN149 was investigated in the bladder cancer cell line RT112 and the renal cell carcinoma cell line A498 on the molecular and cellular level. Gene expression analysis showed that PN149 induced genes related to DNA damage response (RRM2B, GADD45A), cell cycle regulation (CDKN1A, PLK3, PPM1D) as well as those coding for the pro-apoptotic factors PUMA and Noxa. These findings on the transcriptional level were confirmed on the functional level revealing that PN149 treatment increased levels of p53 and resulted in cell cycle arrest and drug-induced cytotoxicity via induction of apoptosis. Regarding the expression of oxidative-stress sensitive genes, PN149 induced FTH1, GCLC, HMOX1 and TXNRD1 but relevant effects were restricted to RT112 cells treated with 50 µM. The pro-inflammatory IL-8 was induced by PN149 in RT112 but not A498 cells indicating a cell-type specific activation. Taken together, PN149 possessed promising activity in different tumor cell lines rendering it an interesting alternative to cisplatin in chemotherapy.
Collapse
Affiliation(s)
- Sarah Schoch
- Karlsruhe Institute of Technology, Food Chemistry and Toxicology, Adenauerring 20, 76131 Karlsruhe, Germany
| | - Vasily Sen
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Moskow Region 142432, Russian Federation
| | - Sabine Gajewski
- Karlsruhe Institute of Technology, Food Chemistry and Toxicology, Adenauerring 20, 76131 Karlsruhe, Germany
| | - Valery Golubev
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Moskow Region 142432, Russian Federation
| | - Bettina Strauch
- Karlsruhe Institute of Technology, Food Chemistry and Toxicology, Adenauerring 20, 76131 Karlsruhe, Germany
| | - Andrea Hartwig
- Karlsruhe Institute of Technology, Food Chemistry and Toxicology, Adenauerring 20, 76131 Karlsruhe, Germany
| | - Beate Köberle
- Karlsruhe Institute of Technology, Food Chemistry and Toxicology, Adenauerring 20, 76131 Karlsruhe, Germany.
| |
Collapse
|
26
|
Cleaver JE. Transcription coupled repair deficiency protects against human mutagenesis and carcinogenesis. DNA Repair (Amst) 2017; 58:21-28. [DOI: 10.1016/j.dnarep.2017.08.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 08/07/2017] [Indexed: 11/17/2022]
|
27
|
Fischer M. Census and evaluation of p53 target genes. Oncogene 2017; 36:3943-3956. [PMID: 28288132 PMCID: PMC5511239 DOI: 10.1038/onc.2016.502] [Citation(s) in RCA: 615] [Impact Index Per Article: 87.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 11/23/2016] [Accepted: 11/29/2016] [Indexed: 12/17/2022]
Abstract
The tumor suppressor p53 functions primarily as a transcription factor. Mutation of the TP53 gene alters its response pathway, and is central to the development of many cancers. The discovery of a large number of p53 target genes, which confer p53's tumor suppressor function, has led to increasingly complex models of p53 function. Recent meta-analysis approaches, however, are simplifying our understanding of how p53 functions as a transcription factor. In the survey presented here, a total set of 3661 direct p53 target genes is identified that comprise 3509 potential targets from 13 high-throughput studies, and 346 target genes from individual gene analyses. Comparison of the p53 target genes reported in individual studies with those identified in 13 high-throughput studies reveals limited consistency. Here, p53 target genes have been evaluated based on the meta-analysis data, and the results show that high-confidence p53 target genes are involved in multiple cellular responses, including cell cycle arrest, DNA repair, apoptosis, metabolism, autophagy, mRNA translation and feedback mechanisms. However, many p53 target genes are identified only in a small number of studies and have a higher likelihood of being false positives. While numerous mechanisms have been proposed for mediating gene regulation in response to p53, recent advances in our understanding of p53 function show that p53 itself is solely an activator of transcription, and gene downregulation by p53 is indirect and requires p21. Taking into account the function of p53 as an activator of transcription, recent results point to an unsophisticated means of regulation.
Collapse
Affiliation(s)
- M Fischer
- Molecular Oncology, Medical School, University of Leipzig, Leipzig, Germany
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
28
|
Calapre L, Gray ES, Kurdykowski S, David A, Descargues P, Ziman M. SIRT1 activation mediates heat-induced survival of UVB damaged Keratinocytes. BMC DERMATOLOGY 2017; 17:8. [PMID: 28601088 PMCID: PMC5466784 DOI: 10.1186/s12895-017-0060-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 06/02/2017] [Indexed: 11/10/2022]
Abstract
Background Exposure to heat stress after UVB irradiation induces a reduction of apoptosis, resulting in survival of DNA damaged human keratinocytes. This heat-mediated evasion of apoptosis appears to be mediated by activation of SIRT1 and inactivation of p53 signalling. In this study, we assessed the role of SIRT1 in the inactivation of p53 signalling and impairment of DNA damage response in UVB plus heat exposed keratinocytes. Results Activation of SIRT1 after multiple UVB plus heat exposures resulted in increased p53 deacetylation at K382, which is known to affect its binding to specific target genes. Accordingly, we noted decreased apoptosis and down regulation of the p53 targeted pro-apoptotic gene BAX and the DNA repair genes ERCC1 and XPC after UVB plus heat treatments. In addition, UVB plus heat induced increased expression of the cell survival gene Survivin and the proliferation marker Ki67. Notably, keratinocytes exposed to UVB plus heat in the presence of the SIRT1 inhibitor, Ex-527, showed a similar phenotype to those exposed to UV alone; i.e. an increase in p53 acetylation, increased apoptosis and low levels of Survivin. Conclusion This study demonstrate that heat-induced SIRT1 activation mediates survival of DNA damaged keratinocytes through deacetylation of p53 after exposure to UVB plus heat Electronic supplementary material The online version of this article (doi:10.1186/s12895-017-0060-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Leslie Calapre
- School of Medical Science, Edith Cowan University, 270 Joondalup Drive, Joondalup, Perth, WA, 6027, Australia
| | - Elin S Gray
- School of Medical Science, Edith Cowan University, 270 Joondalup Drive, Joondalup, Perth, WA, 6027, Australia
| | | | - Anthony David
- GENOSKIN Centre Pierre Potier, Oncopole, Toulouse, France
| | | | - Mel Ziman
- School of Medical Science, Edith Cowan University, 270 Joondalup Drive, Joondalup, Perth, WA, 6027, Australia. .,School of Pathology and Laboratory Medicine, University of Western Australia, Crawley, WA, Australia.
| |
Collapse
|
29
|
Bellone RR, Liu J, Petersen JL, Mack M, Singer-Berk M, Drögemüller C, Malvick J, Wallner B, Brem G, Penedo MC, Lassaline M. A missense mutation in damage-specific DNA binding protein 2 is a genetic risk factor for limbal squamous cell carcinoma in horses. Int J Cancer 2017; 141:342-353. [PMID: 28425625 DOI: 10.1002/ijc.30744] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 04/04/2017] [Indexed: 01/30/2023]
Abstract
Squamous cell carcinoma (SCC) is the most common cancer of the equine eye, frequently originating at the limbus, with the potential to invade the cornea, cause visual impairment, and result in loss of the eye. Several breeds of horses have a high occurrence of limbal SCC implicating a genetic basis for limbal SCC predisposition. Pedigree analysis in the Haflinger breed supports a simple recessive mode of inheritance and a genome-wide association study (N = 23) identified a 1.5 Mb locus on ECA12 significantly associated with limbal SCC (Pcorrected = 0.04). Sequencing the most physiologically relevant gene from this locus, damage specific DNA binding protein 2 (DDB2), identified a missense mutation (c.1013 C > T p.Thr338Met) that was strongly associated with limbal SCC (P = 3.41 × 10-10 ). Genotyping 42 polymorphisms narrowed the ECA12 candidate interval to 483 kb but did not identify another variant that was more strongly associated. DDB2 binds to ultraviolet light damaged DNA and recruits other proteins to perform global genome nucleotide excision repair. Computational modeling predicts this mutation to be deleterious by altering conformation of the β loop involved in photolesion recognition. This DDB2 variant was also detected in two other closely related breeds with reported cases of ocular SCC, the Belgian and the Percheron, suggesting it may also be a SCC risk factor in these breeds. Furthermore, in humans xeroderma pigmentosum complementation group E, a disease characterized by sun sensitivity and increased risk of cutaneous SCC and melanomas, is explained by mutations in DDB2. Cross-species comparison remains to be further evaluated.
Collapse
Affiliation(s)
- Rebecca R Bellone
- Veterinary Genetics Laboratory, School of Veterinary Medicine, University of California-Davis, Davis, CA.,Department of Population Health and Reproduction, School of Veterinary Medicine, University of California-Davis, Davis, CA
| | - Jiayin Liu
- Veterinary Genetics Laboratory, School of Veterinary Medicine, University of California-Davis, Davis, CA.,Department of Population Health and Reproduction, School of Veterinary Medicine, University of California-Davis, Davis, CA
| | - Jessica L Petersen
- Department of Animal Science, University of Nebraska - Lincoln, Lincoln, NE
| | - Maura Mack
- Veterinary Genetics Laboratory, School of Veterinary Medicine, University of California-Davis, Davis, CA.,Department of Population Health and Reproduction, School of Veterinary Medicine, University of California-Davis, Davis, CA
| | - Moriel Singer-Berk
- Veterinary Genetics Laboratory, School of Veterinary Medicine, University of California-Davis, Davis, CA.,Department of Population Health and Reproduction, School of Veterinary Medicine, University of California-Davis, Davis, CA
| | | | - Julia Malvick
- Veterinary Genetics Laboratory, School of Veterinary Medicine, University of California-Davis, Davis, CA
| | - Barbara Wallner
- Department of Biomedical Sciences, University of Veterinary Medicine Vienna, Institute of Animal Breeding and Genetics, Vienna, Austria
| | - Gottfried Brem
- Department of Biomedical Sciences, University of Veterinary Medicine Vienna, Institute of Animal Breeding and Genetics, Vienna, Austria
| | - M Cecilia Penedo
- Veterinary Genetics Laboratory, School of Veterinary Medicine, University of California-Davis, Davis, CA
| | - Mary Lassaline
- Department of Surgical & Radiological Sciences, School of Veterinary Medicine, University of California-Davis, Davis, CA
| |
Collapse
|
30
|
Lieberman HB, Panigrahi SK, Hopkins KM, Wang L, Broustas CG. p53 and RAD9, the DNA Damage Response, and Regulation of Transcription Networks. Radiat Res 2017; 187:424-432. [PMID: 28140789 DOI: 10.1667/rr003cc.1] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The way cells respond to DNA damage is important since inefficient repair or misrepair of lesions can have deleterious consequences, including mutation, genomic instability, neurodegenerative disorders, premature aging, cancer or death. Whether damage occurs spontaneously as a byproduct of normal metabolic processes, or after exposure to exogenous agents, cells muster a coordinated, complex DNA damage response (DDR) to mitigate potential harmful effects. A variety of activities are involved to promote cell survival, and include DNA repair, DNA damage tolerance, as well as transient cell cycle arrest to provide time for repair before entry into critical cell cycle phases, an event that could be lethal if traversal occurs while damage is present. When such damage is prolonged or not repairable, senescence, apoptosis or autophagy is induced. One major level of DDR regulation occurs via the orchestrated transcriptional control of select sets of genes encoding proteins that mediate the response. p53 is a transcription factor that transactivates specific DDR downstream genes through binding DNA consensus sequences usually in or near target gene promoter regions. The profile of p53-regulated genes activated at any given time varies, and is dependent upon type of DNA damage or stress experienced, exact composition of the consensus DNA binding sequence, presence of other DNA binding proteins, as well as cell context. RAD9 is another protein critical for the response of cells to DNA damage, and can also selectively regulate gene transcription. The limited studies addressing the role of RAD9 in transcription regulation indicate that the protein transactivates at least one of its target genes, p21/waf1/cip1, by binding to DNA sequences demonstrated to be a p53 response element. NEIL1 is also regulated by RAD9 through a similar DNA sequence, though not yet directly verified as a bonafide p53 response element. These findings suggest a novel pathway whereby p53 and RAD9 control the DDR through a shared mechanism involving an overlapping network of downstream target genes. Details and unresolved questions about how these proteins coordinate or compete to execute the DDR through transcriptional reprogramming, as well as biological implications, are discussed.
Collapse
Affiliation(s)
- Howard B Lieberman
- a Center for Radiological Research, Columbia University College of Physicians and Surgeons, New York, New York 10032; and.,b Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York 10032
| | - Sunil K Panigrahi
- a Center for Radiological Research, Columbia University College of Physicians and Surgeons, New York, New York 10032; and
| | - Kevin M Hopkins
- a Center for Radiological Research, Columbia University College of Physicians and Surgeons, New York, New York 10032; and
| | - Li Wang
- a Center for Radiological Research, Columbia University College of Physicians and Surgeons, New York, New York 10032; and
| | - Constantinos G Broustas
- a Center for Radiological Research, Columbia University College of Physicians and Surgeons, New York, New York 10032; and
| |
Collapse
|
31
|
Franklin DA, He Y, Leslie PL, Tikunov AP, Fenger N, Macdonald JM, Zhang Y. p53 coordinates DNA repair with nucleotide synthesis by suppressing PFKFB3 expression and promoting the pentose phosphate pathway. Sci Rep 2016; 6:38067. [PMID: 27901115 PMCID: PMC5128917 DOI: 10.1038/srep38067] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 11/04/2016] [Indexed: 01/24/2023] Open
Abstract
Activation of p53 in response to DNA damage is essential for tumor suppression. Although previous studies have emphasized the importance of p53-dependent cell cycle arrest and apoptosis for tumor suppression, recent studies have suggested that other areas of p53 regulation, such as metabolism and DNA damage repair (DDR), are also essential for p53-dependent tumor suppression. However, the intrinsic connections between p53-mediated DDR and metabolic regulation remain incompletely understood. Here, we present data suggesting that p53 promotes nucleotide biosynthesis in response to DNA damage by repressing the expression of the phosphofructokinase-2 (PFK2) isoform 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3), a rate-limiting enzyme that promotes glycolysis. PFKFB3 suppression increases the flux of glucose through the pentose phosphate pathway (PPP) to increase nucleotide production, which results in more efficient DNA damage repair and increased cell survival. Interestingly, although p53-mediated suppression of PFKFB3 could increase the two major PPP products, NADPH and nucleotides, only nucleotide production was essential to promote DDR. By identifying the novel p53 target PFKFB3, we report an important mechanistic connection between p53-regulated metabolism and DDR, both of which play crucial roles in tumor suppression.
Collapse
Affiliation(s)
- Derek A Franklin
- Department of Radiation Oncology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Yizhou He
- Department of Radiation Oncology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,Curriculum in Genetics and Molecular Biology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Patrick L Leslie
- Department of Radiation Oncology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,Curriculum in Genetics and Molecular Biology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Andrey P Tikunov
- UNC Metabolomics Laboratory, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Nick Fenger
- UNC Metabolomics Laboratory, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Jeffrey M Macdonald
- UNC Metabolomics Laboratory, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Yanping Zhang
- Department of Radiation Oncology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA.,Curriculum in Genetics and Molecular Biology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA.,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical College, Xuzhou, Jiangsu 221002, China
| |
Collapse
|
32
|
Transcriptional and Posttranslational Regulation of Nucleotide Excision Repair: The Guardian of the Genome against Ultraviolet Radiation. Int J Mol Sci 2016; 17:ijms17111840. [PMID: 27827925 PMCID: PMC5133840 DOI: 10.3390/ijms17111840] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 10/31/2016] [Accepted: 11/01/2016] [Indexed: 11/24/2022] Open
Abstract
Ultraviolet (UV) radiation from sunlight represents a constant threat to genome stability by generating modified DNA bases such as cyclobutane pyrimidine dimers (CPD) and pyrimidine-pyrimidone (6-4) photoproducts (6-4PP). If unrepaired, these lesions can have deleterious effects, including skin cancer. Mammalian cells are able to neutralize UV-induced photolesions through nucleotide excision repair (NER). The NER pathway has multiple components including seven xeroderma pigmentosum (XP) proteins (XPA to XPG) and numerous auxiliary factors, including ataxia telangiectasia and Rad3-related (ATR) protein kinase and RCC1 like domain (RLD) and homologous to the E6-AP carboxyl terminus (HECT) domain containing E3 ubiquitin protein ligase 2 (HERC2). In this review we highlight recent data on the transcriptional and posttranslational regulation of NER activity.
Collapse
|
33
|
Perucca P, Sommatis S, Mocchi R, Prosperi E, Stivala LA, Cazzalini O. A DDB2 mutant protein unable to interact with PCNA promotes cell cycle progression of human transformed embryonic kidney cells. Cell Cycle 2016; 14:3920-8. [PMID: 26697842 DOI: 10.1080/15384101.2015.1120921] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
DNA damage binding protein 2 (DDB2) is a protein involved in the early step of DNA damage recognition of the nucleotide excision repair (NER) process. Recently, it has been suggested that DDB2 may play a role in DNA replication, based on its ability to promote cell proliferation. We have previously shown that DDB2 binds PCNA during NER, but also in the absence of DNA damage; however, whether and how this interaction influences cell proliferation is not known. In this study, we have addressed this question by using HEK293 cell clones stably expressing DDB2(Wt) protein, or a mutant form (DDB2(Mut)) unable to interact with PCNA. We report that overexpression of the DDB2(Mut) protein provides a proliferative advantage over the wild type form, by influencing cell cycle progression. In particular, an increase in the number of S-phase cells, together with a reduction in p21(CDKN1A) protein level, and a shorter cell cycle length, has been observed in the DDB2(Mut) cells. These results suggest that DDB2 influences cell cycle progression thanks to its interaction with PCNA.
Collapse
Affiliation(s)
- Paola Perucca
- a Dipartimento di Medicina Molecolare ; Unità di Immunologia e Patologia generale; Università di Pavia ; Pavia , Italy
| | - Sabrina Sommatis
- a Dipartimento di Medicina Molecolare ; Unità di Immunologia e Patologia generale; Università di Pavia ; Pavia , Italy
| | - Roberto Mocchi
- a Dipartimento di Medicina Molecolare ; Unità di Immunologia e Patologia generale; Università di Pavia ; Pavia , Italy
| | - Ennio Prosperi
- b Istituto di Genetica Molecolare (IGM) del CNR ; Pavia , Italy
| | - Lucia Anna Stivala
- a Dipartimento di Medicina Molecolare ; Unità di Immunologia e Patologia generale; Università di Pavia ; Pavia , Italy
| | - Ornella Cazzalini
- a Dipartimento di Medicina Molecolare ; Unità di Immunologia e Patologia generale; Università di Pavia ; Pavia , Italy
| |
Collapse
|
34
|
Guillermo-Lagae R, Deep G, Ting H, Agarwal C, Agarwal R. Silibinin enhances the repair of ultraviolet B-induced DNA damage by activating p53-dependent nucleotide excision repair mechanism in human dermal fibroblasts. Oncotarget 2016; 6:39594-606. [PMID: 26447614 PMCID: PMC4741848 DOI: 10.18632/oncotarget.5519] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 09/21/2015] [Indexed: 12/18/2022] Open
Abstract
Ultraviolet radiation B (UVB) is the main cause of DNA damage in epidermal cells; and if not repaired, this DNA damage leads to skin cancer. In earlier studies, we have reported that natural flavonolignan silibinin exerts strong chemopreventive efficacy against UVB-induced skin damage and carcinogenesis; however mechanistic studies are still being actively pursued. Here, we investigated the role of nucleotide excision repair (NER) pathway in silibinin's efficacy to repair UVB-induced DNA damage. Normal human dermal fibroblasts (NHDFs) were exposed to UVB (1 mJ/cm2) with pre- or post- silibinin (100 μM) treatment, and cyclobutane pyrimidine dimers (CPDs) formation/repair was measured. Results showed that post-UVB silibinin treatment accelerates DNA repair via activating the NER pathway including the expression of XPA (xeroderma pigmentosum complementation group A), XPB, XPC, and XPG. In UVB exposed fibroblasts, silibinin treatment also increased p53 and GADD45α expression; the key regulators of the NER pathway and DNA repair. Consistently, post-UVB silibinin treatment increased the mRNA transcripts of XPA and GADD45α. Importantly, silibinin showed no effect on UVB-induced DNA damage repair in XPA- and XPB-deficient human dermal fibroblasts suggesting their key role in silibinin-mediated DNA damage repair. Moreover, in the presence of pifithrin-α, an inhibitor of p53, the DNA repair efficacy of silibinin was compromised associated with a reduction in XPA and GADD45α transcripts. Together, these findings suggest that silibinin's efficacy against UVB-induced photodamage is primarily by inhibiting NER and p53; and these findings further support silibinin's usage as a potential inexpensive, effective, and non-toxic agent for skin cancer chemoprevention.
Collapse
Affiliation(s)
- Ruth Guillermo-Lagae
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, Colorado, USA
| | - Gagan Deep
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, Colorado, USA.,University of Colorado Cancer Center, University of Colorado Denver, Aurora, Colorado, USA
| | - Harold Ting
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, Colorado, USA
| | - Chapla Agarwal
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, Colorado, USA.,University of Colorado Cancer Center, University of Colorado Denver, Aurora, Colorado, USA
| | - Rajesh Agarwal
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, Colorado, USA.,University of Colorado Cancer Center, University of Colorado Denver, Aurora, Colorado, USA
| |
Collapse
|
35
|
Brennan-Minnella AM, Arron ST, Chou KM, Cunningham E, Cleaver JE. Sources and consequences of oxidative damage from mitochondria and neurotransmitter signaling. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2016; 57:322-330. [PMID: 27311994 DOI: 10.1002/em.21995] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 12/13/2015] [Accepted: 12/14/2015] [Indexed: 06/06/2023]
Abstract
Cancer and neurodegeneration represent the extreme responses of growing and terminally differentiated cells to cellular and genomic damage. The damage recognition mechanisms of nucleotide excision repair, epitomized by xeroderma pigmentosum (XP), and Cockayne syndrome (CS), lie at these extremes. Patients with mutations in the DDB2 and XPC damage recognition steps of global genome repair exhibit almost exclusively actinic skin cancer. Patients with mutations in the RNA pol II cofactors CSA and CSB, that regulate transcription coupled repair, exhibit developmental and neurological symptoms, but not cancer. The absence of skin cancer despite increased photosensitivity in CS implies that the DNA repair deficiency is not associated with increased ultraviolet (UV)-induced mutagenesis, unlike DNA repair deficiency in XP that leads to high levels of UV-induced mutagenesis. One attempt to explain the pathology of CS is to attribute genomic damage to endogenously generated reactive oxygen species (ROS). We show that inhibition of complex I of the mitochondria generates increased ROS, above an already elevated level in CSB cells, but without nuclear DNA damage. CSB, but not CSA, quenches ROS liberated from complex I by rotenone. Extracellular signaling by N-methyl-D-aspartic acid in neurons, however, generates ROS enzymatically through oxidase that does lead to oxidative damage to nuclear DNA. The pathology of CS may therefore be caused by impaired oxidative phosphorylation or nuclear damage from neurotransmitters, but without damage-specific mutagenesis. Environ. Mol. Mutagen. 57:322-330, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Angela M Brennan-Minnella
- Department of Neurology, University of California, San Francisco and Veterans Affairs Medical Center, San Francisco, California
| | - Sarah T Arron
- Department of Dermatology, University of California San Francisco, 2340 Sutter Street, San Francisco, California
| | - Kai-Ming Chou
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, 635 Barnhill Drive, Room MS 552, Indianapolis, Indiana
| | - Eric Cunningham
- Torrey Pines High School, 3710 Del Mar Heights Road, San Diego, California, 92130
| | - James E Cleaver
- Department of Dermatology, University of California San Francisco, 2340 Sutter Street, San Francisco, California
| |
Collapse
|
36
|
Abstract
The predominant function of the tumor suppressor p53 is transcriptional regulation. It is generally accepted that p53-dependent transcriptional activation occurs by binding to a specific recognition site in promoters of target genes. Additionally, several models for p53-dependent transcriptional repression have been postulated. Here, we evaluate these models based on a computational meta-analysis of genome-wide data. Surprisingly, several major models of p53-dependent gene regulation are implausible. Meta-analysis of large-scale data is unable to confirm reports on directly repressed p53 target genes and falsifies models of direct repression. This notion is supported by experimental re-analysis of representative genes reported as directly repressed by p53. Therefore, p53 is not a direct repressor of transcription, but solely activates its target genes. Moreover, models based on interference of p53 with activating transcription factors as well as models based on the function of ncRNAs are also not supported by the meta-analysis. As an alternative to models of direct repression, the meta-analysis leads to the conclusion that p53 represses transcription indirectly by activation of the p53-p21-DREAM/RB pathway.
Collapse
Key Words
- CDE, cell cycle-dependent element
- CDKN1A
- CHR, cell cycle genes homology region
- ChIP, chromatin immunoprecipitation
- DREAM complex
- DREAM, DP, RB-like, E2F4, and MuvB complex
- E2F/RB complex
- HPV, human papilloma virus
- NF-Y, Nuclear factor Y
- cdk, cyclin-dependent kinase
- genome-wide meta-analysis
- p53
Collapse
Affiliation(s)
- Martin Fischer
- a Molecular Oncology; Medical School ; University of Leipzig ; Leipzig , Germany
| | | | | |
Collapse
|
37
|
Phelps DA, Bondra K, Seum S, Chronowski C, Leasure J, Kurmasheva RT, Middleton S, Wang D, Mo X, Houghton PJ. Inhibition of MDM2 by RG7388 confers hypersensitivity to X-radiation in xenograft models of childhood sarcoma. Pediatr Blood Cancer 2015; 62:1345-52. [PMID: 25832557 PMCID: PMC4563820 DOI: 10.1002/pbc.25465] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 01/19/2015] [Indexed: 11/05/2022]
Abstract
BACKGROUND Curative therapy for childhood sarcoma presents challenges when complete resection is not possible. Ionizing radiation (XRT) is used as a standard modality at diagnosis or recurrence for childhood sarcoma; however, local recurrence is still problematic. Most childhood sarcomas are TP53 wild type at diagnosis, although approximately 5-10% have MDM2 amplification or overexpression. PROCEDURES The MDM2 inhibitor, RG7388, was examined alone or in combination with XRT (20Gy given in 2 Gy daily fractions) to immune-deficient mice bearing Rh18 (embryonal) or a total of 30 Gy in 2 Gy fractions to mice bearing Rh30 (alveolar) rhabdomyosarcoma xenografts. RG7388 was administered by oral gavage using two schedules (daily ×5; schedule 1 or once weekly; schedule 2). TP53-responsive gene products (p21, PUMA, DDB2, and MIC1) as well as markers of apoptosis were analyzed. RESULTS RG7388 showed no significant single agent antitumor activity. Twenty Grays XRT induced complete regressions (CR) of Rh18 with 100 percent tumor regrowth by week 7, but no tumor regrowth at 20 weeks when combined with RG7388. RG7388 enhanced time to recurrence combined with XRT in Rh30 xenografts compared to 30 Gy XRT alone. RG7388 did not enhance XRT-induced local skin toxicity. Combination treatments induced TP53 responsive genes more rapidly and to a greater magnitude than single agent treatments. CONCLUSIONS RG7388 enhanced the activity of XRT in both rhabdomyosarcoma models without increasing local XRT-induced skin toxicity. Changes in TP53-responsive genes were consistent with the synergistic activity of RG7388 and XRT in the Rh18 model.
Collapse
Affiliation(s)
- Doris A. Phelps
- Center for Childhood Cancer & Blood Diseases, Nationwide Children’s Hospital, Columbus, OH 43205
| | - Kathryn Bondra
- Wexner Medical Center at The Ohio State University, Arthur G. James Comprehensive Cancer Center and Richard L. Solove Research Institute
| | - Star Seum
- Wexner Medical Center at The Ohio State University, Arthur G. James Comprehensive Cancer Center and Richard L. Solove Research Institute
| | - Christopher Chronowski
- Wexner Medical Center at The Ohio State University, Arthur G. James Comprehensive Cancer Center and Richard L. Solove Research Institute
| | - Justin Leasure
- Wexner Medical Center at The Ohio State University, Arthur G. James Comprehensive Cancer Center and Richard L. Solove Research Institute
| | - Raushan T. Kurmasheva
- Center for Childhood Cancer & Blood Diseases, Nationwide Children’s Hospital, Columbus, OH 43205
| | | | - Dian Wang
- Department of Radiation Oncology, Rush University Medical Center Chicago, IL
| | - Xiaokui Mo
- Center for Biostatistics, The Ohio State University
| | - Peter J. Houghton
- Center for Childhood Cancer & Blood Diseases, Nationwide Children’s Hospital, Columbus, OH 43205
| |
Collapse
|
38
|
Dai W, Ma W, Li Q, Tao Y, Ding P, Zhu R, Jin J. The 5'-UTR of DDB2 harbors an IRES element and upregulates translation during stress conditions. Gene 2015; 573:57-63. [PMID: 26187069 DOI: 10.1016/j.gene.2015.07.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 07/08/2015] [Accepted: 07/09/2015] [Indexed: 11/15/2022]
Abstract
DDB2 is a tumor-inhibiting factor not only involved a major DNA repair mechanism in the Nucleotide Excision Repair (NER), but also correlated with cell apoptosis in the DNA damage response pathway. During serum-starvation, we noted that the translation levels of DDB2 were increased. To evaluate whether the 5'-UTR of DDB2 harbors an IRES element, we used a bicistronic luciferase plasmid with the 5'-UTR of DDB2 inserted between two cistron coding regions. We found that DDB2 5'-UTR could initiate the downstream reporter, demonstrating that the 5'-UTR of DDB2 contained an IRES. The 5'-UTR of DDB2 was predicted into a relatively stable secondary structure by the Mfold program. We deleted the stem-loops in turn to analyze the core part of IRES and found that full length of the 5'-UTR was significant for the IRES activity. Furthermore, our data demonstrated that the DDB2 IRES activity was promoted during stress conditions. These results reveal a novel mechanism contributing to DDB2 expression.
Collapse
Affiliation(s)
- Wenyan Dai
- School of Pharmaceutical Science, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu Province 214122, PR China
| | - Wennan Ma
- School of Pharmaceutical Science, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu Province 214122, PR China
| | - Qi Li
- School of Pharmaceutical Science, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu Province 214122, PR China
| | - Yifen Tao
- School of Pharmaceutical Science, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu Province 214122, PR China
| | - Pengpeng Ding
- School of Pharmaceutical Science, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu Province 214122, PR China
| | - Ruiyu Zhu
- School of Pharmaceutical Science, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu Province 214122, PR China.
| | - Jian Jin
- School of Pharmaceutical Science, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu Province 214122, PR China.
| |
Collapse
|
39
|
Jeay S, Gaulis S, Ferretti S, Bitter H, Ito M, Valat T, Murakami M, Ruetz S, Guthy DA, Rynn C, Jensen MR, Wiesmann M, Kallen J, Furet P, Gessier F, Holzer P, Masuya K, Würthner J, Halilovic E, Hofmann F, Sellers WR, Graus Porta D. A distinct p53 target gene set predicts for response to the selective p53-HDM2 inhibitor NVP-CGM097. eLife 2015; 4. [PMID: 25965177 PMCID: PMC4468608 DOI: 10.7554/elife.06498] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 05/11/2015] [Indexed: 11/13/2022] Open
Abstract
Biomarkers for patient selection are essential for the successful and rapid development of emerging targeted anti-cancer therapeutics. In this study, we report the discovery of a novel patient selection strategy for the p53-HDM2 inhibitor NVP-CGM097, currently under evaluation in clinical trials. By intersecting high-throughput cell line sensitivity data with genomic data, we have identified a gene expression signature consisting of 13 up-regulated genes that predicts for sensitivity to NVP-CGM097 in both cell lines and in patient-derived tumor xenograft models. Interestingly, these 13 genes are known p53 downstream target genes, suggesting that the identified gene signature reflects the presence of at least a partially activated p53 pathway in NVP-CGM097-sensitive tumors. Together, our findings provide evidence for the use of this newly identified predictive gene signature to refine the selection of patients with wild-type p53 tumors and increase the likelihood of response to treatment with p53-HDM2 inhibitors, such as NVP-CGM097.
Collapse
Affiliation(s)
- Sébastien Jeay
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Swann Gaulis
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Stéphane Ferretti
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Hans Bitter
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Cambridge, United States
| | - Moriko Ito
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Thérèse Valat
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Masato Murakami
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Stephan Ruetz
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Daniel A Guthy
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Caroline Rynn
- Metabolism and Pharmacokinetics, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Michael R Jensen
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Marion Wiesmann
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Joerg Kallen
- Center of Proteomic Chemistry, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Pascal Furet
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - François Gessier
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Philipp Holzer
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Keiichi Masuya
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Jens Würthner
- Translational Clinical Oncology, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Ensar Halilovic
- Translational Clinical Oncology, Novartis Institutes for BioMedical Research, Cambridge, United States
| | - Francesco Hofmann
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - William R Sellers
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Cambridge, United States
| | - Diana Graus Porta
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Basel, Switzerland
| |
Collapse
|
40
|
Shah P, He YY. Molecular regulation of UV-induced DNA repair. Photochem Photobiol 2015; 91:254-64. [PMID: 25534312 DOI: 10.1111/php.12406] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 12/09/2014] [Indexed: 12/21/2022]
Abstract
Ultraviolet (UV) radiation from sunlight is a major etiologic factor for skin cancer, the most prevalent cancer in the United States, as well as premature skin aging. In particular, UVB radiation causes formation of specific DNA damage photoproducts between pyrimidine bases. These DNA damage photoproducts are repaired by a process called nucleotide excision repair, also known as UV-induced DNA repair. When left unrepaired, UVB-induced DNA damage leads to accumulation of mutations, predisposing people to carcinogenesis as well as to premature aging. Genetic loss of nucleotide excision repair leads to severe disorders, namely, xeroderma pigmentosum (XP), trichothiodystrophy (TTD) and Cockayne syndrome (CS), which are associated with predisposition to skin carcinogenesis at a young age as well as developmental and neurological conditions. Regulation of nucleotide excision repair is an attractive avenue to preventing or reversing these detrimental consequences of impaired nucleotide excision repair. Here, we review recent studies on molecular mechanisms regulating nucleotide excision repair by extracellular cues and intracellular signaling pathways, with a special focus on the molecular regulation of individual repair factors.
Collapse
Affiliation(s)
- Palak Shah
- Department of Medicine, Section of Dermatology, University of Chicago, Chicago, IL
| | | |
Collapse
|
41
|
The circadian clock controls sunburn apoptosis and erythema in mouse skin. J Invest Dermatol 2014; 135:1119-1127. [PMID: 25431853 PMCID: PMC4366313 DOI: 10.1038/jid.2014.508] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 11/11/2014] [Accepted: 11/20/2014] [Indexed: 11/11/2022]
Abstract
Epidemiological studies of humans and experimental studies with mouse models suggest that sunburn resulting from exposure to excessive UV light and damage to DNA confers an increased risk for melanoma and non-melanoma skin cancer. Previous reports have shown that both nucleotide excision repair, which is the sole pathway in humans for removing UV photoproducts, and DNA replication, are regulated by the circadian clock in mouse skin. Furthermore, the timing of UV exposure during the circadian cycle has been shown to affect skin carcinogenesis in mice. Because sunburn and skin cancer are causally related, we investigated UV-induced sunburn apoptosis and erythema in mouse skin as a function of circadian time. Interestingly, we observed that sunburn apoptosis, inflammatory cytokine induction, and erythema were maximal following an acute early morning exposure to UV and minimal following an afternoon exposure. Early morning exposure to UV also produced maximal activation of Atr-mediated DNA damage checkpoint signaling including activation of the tumor suppressor p53, which is known to control the process of sunburn apoptosis. To our knowledge these data provide the first evidence that the circadian clock plays an important role in the erythemal response in UV-irradiated skin. The early morning is when DNA repair is at a minimum, thus the acute responses likely are associated with unrepaired DNA damage. The prior report that mice are more susceptible to skin cancer induction following chronic irradiation in the AM, when p53 levels are maximally induced, is discussed in terms of the mutational inactivation of p53 during chronic irradiation.
Collapse
|
42
|
Latimer JJ, Majekwana VJ, Pabón-Padín YR, Pimpley MR, Grant SG. Regulation and disregulation of mammalian nucleotide excision repair: a pathway to nongermline breast carcinogenesis. Photochem Photobiol 2014; 91:493-500. [PMID: 25393451 DOI: 10.1111/php.12387] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 10/27/2014] [Indexed: 12/13/2022]
Abstract
Nucleotide excision repair (NER) is an important modulator of disease, especially in constitutive deficiencies such as the cancer predisposition syndrome Xeroderma pigmentosum. We have found profound variation in NER capacity among normal individuals, between cell-types and during carcinogenesis. NER is a repair system for many types of DNA damage, and therefore many types of genotoxic carcinogenic exposures, including ultraviolet light, products of organic combustion, metals and oxidative stress. Because NER is intimately related to cellular metabolism, requiring components of both the DNA replicative and transcription machinery, it has a narrow range of functional viability. Thus, genes in the NER pathway are expressed at the low levels manifested by, for example, nuclear transcription factors. As NER activity and gene expression vary by cell-type, it is inherently epigenetically regulated. Furthermore, this epigenetic modulation is disregulated during sporadic breast carcinogenesis. Loss of NER is one basis of genomic instability, a required element in cellular transformation, and one that potentially influences response to therapy. In this study, we demonstrate differences in NER capacity in eight adult mouse tissues, and place this result into the context of our previous work on mouse extraembryonic tissues, normal human tissues and sporadic early stage human breast cancer.
Collapse
Affiliation(s)
- Jean J Latimer
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL
| | | | | | | | | |
Collapse
|
43
|
McDade SS, Patel D, Moran M, Campbell J, Fenwick K, Kozarewa I, Orr NJ, Lord CJ, Ashworth AA, McCance DJ. Genome-wide characterization reveals complex interplay between TP53 and TP63 in response to genotoxic stress. Nucleic Acids Res 2014; 42:6270-85. [PMID: 24823795 PMCID: PMC4041465 DOI: 10.1093/nar/gku299] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 02/18/2014] [Accepted: 03/29/2014] [Indexed: 01/07/2023] Open
Abstract
In response to genotoxic stress the TP53 tumour suppressor activates target gene expression to induce cell cycle arrest or apoptosis depending on the extent of DNA damage. These canonical activities can be repressed by TP63 in normal stratifying epithelia to maintain proliferative capacity or drive proliferation of squamous cell carcinomas, where TP63 is frequently overexpressed/amplified. Here we use ChIP-sequencing, integrated with microarray analysis, to define the genome-wide interplay between TP53 and TP63 in response to genotoxic stress in normal cells. We reveal that TP53 and TP63 bind to overlapping, but distinct cistromes of sites through utilization of distinctive consensus motifs and that TP53 is constitutively bound to a number of sites. We demonstrate that cisplatin and adriamycin elicit distinct effects on TP53 and TP63 binding events, through which TP53 can induce or repress transcription of an extensive network of genes by direct binding and/or modulation of TP63 activity. Collectively, this results in a global TP53-dependent repression of cell cycle progression, mitosis and DNA damage repair concomitant with activation of anti-proliferative and pro-apoptotic canonical target genes. Further analyses reveal that in the absence of genotoxic stress TP63 plays an important role in maintaining expression of DNA repair genes, loss of which results in defective repair.
Collapse
Affiliation(s)
- Simon S McDade
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast BT9 7BL, UK
| | - Daksha Patel
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast BT9 7BL, UK
| | - Michael Moran
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast BT9 7BL, UK
| | - James Campbell
- The Breakthrough Breast Cancer Research Centre, Institute for Cancer Research, Chelsea, London SW3 6JB, UK
| | - Kerry Fenwick
- The Breakthrough Breast Cancer Research Centre, Institute for Cancer Research, Chelsea, London SW3 6JB, UK
| | - Iwanka Kozarewa
- The Breakthrough Breast Cancer Research Centre, Institute for Cancer Research, Chelsea, London SW3 6JB, UK
| | - Nicholas J Orr
- The Breakthrough Breast Cancer Research Centre, Institute for Cancer Research, Chelsea, London SW3 6JB, UK
| | - Christopher J Lord
- The Breakthrough Breast Cancer Research Centre, Institute for Cancer Research, Chelsea, London SW3 6JB, UK
| | - Alan A Ashworth
- The Breakthrough Breast Cancer Research Centre, Institute for Cancer Research, Chelsea, London SW3 6JB, UK
| | - Dennis J McCance
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast BT9 7BL, UK
| |
Collapse
|
44
|
Abstract
SIGNIFICANCE Production of proteins requires the synthesis, maturation, and export of mRNAs before their translation in the cytoplasm. Endogenous and exogenous sources of DNA damage pose a challenge to the co-ordinated regulation of gene expression, because the integrity of the DNA template can be compromised by DNA lesions. Cells recognize and respond to this DNA damage through a variety of DNA damage responses (DDRs). Failure to deal with DNA damage appropriately can lead to genomic instability and cancer. RECENT ADVANCES The p53 tumor suppressor plays a dominant role in DDR-dependent changes in gene expression, but this transcription factor is not solely responsible for all changes. Recent evidence indicates that RNA metabolism is integral to DDRs as well. In particular, post-transcriptional processes are emerging as important contributors to these complex responses. CRITICAL ISSUES Transcriptional, post-transcriptional, and translational regulation of gene expression is subject to changes in response to DNA damage. How these processes are intertwined in the unfolding of DDR is not fully understood. FUTURE DIRECTIONS Many complex regulatory responses combine to determine cell fate after DNA damage. Understanding how transcriptional, post-transcriptional, and translational processes interdigitate to create a web of regulatory interactions will be one of the key challenges to fully understand DDRs.
Collapse
Affiliation(s)
- Bruce C McKay
- Department of Biology, Institute of Biochemistry, Carleton University , Ottawa, Canada
| |
Collapse
|
45
|
Coordination between p21 and DDB2 in the cellular response to UV radiation. PLoS One 2013; 8:e80111. [PMID: 24260342 PMCID: PMC3832521 DOI: 10.1371/journal.pone.0080111] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Accepted: 10/07/2013] [Indexed: 12/26/2022] Open
Abstract
The tumor suppressor p53 guides the cellular response to DNA damage mainly by regulating expression of target genes. The cyclin-dependent kinase inhibitor p21, which is induced by p53, can both arrest the cell cycle and inhibit apoptosis. Interestingly, p53-inducible DDB2 (damaged-DNA binding protein 2) promotes apoptosis by mediating p21 degradation after ultraviolet (UV)-induced DNA damage. Here, we developed an integrated model of the p53 network to explore how the UV-irradiated cell makes a decision between survival and death and how the activities of p21 and DDB2 are modulated. By numerical simulations, we found that p53 is activated progressively and the promoter selectivity of p53 depends on its concentration. For minor DNA damage, p53 settles at an intermediate level. p21 is induced by p53 to arrest the cell cycle via inhibiting E2F1 activity, allowing for DNA repair. The proapoptotic genes are expressed at low levels. For severe DNA damage, p53 undergoes a two-phase behavior and accumulates to high levels in the second phase. Consequently, those proapoptotic proteins accumulate remarkably. Bax activates the release of cytochrome c, while DDB2 promotes the degradation of p21, which leads to activation of E2F1 and induction of Apaf-1. Finally, the caspase cascade is activated to trigger apoptosis. We revealed that the downregulation of p21 is necessary for apoptosis induction and PTEN promotes apoptosis by amplifying p53 activation. This work demonstrates that how the dynamics of the p53 network can be finely regulated through feed-forward and feedback loops within the network and emphasizes the importance of p21 regulation in the DNA damage response.
Collapse
|
46
|
Mesa R, Bassnett S. UV-B-induced DNA damage and repair in the mouse lens. Invest Ophthalmol Vis Sci 2013; 54:6789-97. [PMID: 24022010 DOI: 10.1167/iovs.13-12644] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
PURPOSE Epidemiologic studies have linked UV-B exposure to development of cortical cataracts, but the underlying molecular mechanism(s) is unresolved. Here, we used a mouse model to examine the nature and distribution of DNA photolesions produced by ocular UV-B irradiation. METHODS Anesthetized mice, eye globes, or isolated lenses were exposed to UV-B. Antibodies specific for 6-4 photoproducts (6-4 PPs) or cyclobutane pyrimidine dimers (CPDs) were used to visualize DNA adducts. RESULTS Illumination of intact globes with UV-B-induced 6-4 PP and CPD formation in cells of the cornea, anterior iris, and central lens epithelium. Photolesions were not detected in retina or lens cells situated in the shadow of the iris. Photolesions in lens epithelial cells were produced with radiant exposures significantly below the minimal erythemal dose. Lens epithelial cells rapidly repaired 6-4 PPs, but CPD levels did not markedly diminish, even over extended postirradiation recovery periods in vitro or in vivo. The repair of 6-4 PPs did not depend on the proliferative activity of the epithelial cells, since the repair rate in the mitotically-active germinative zone (GZ) was indistinguishable from that of quiescent cells in the central epithelium. CONCLUSIONS Even relatively modest exposures to UV-B produced 6-4 PP and CPD photolesions in lens epithelial cells. Cyclobutane pyrimidine dimer lesions were particularly prevalent and were repaired slowly if at all. Studies on sun-exposed skin have established a causal connection between photolesions and so-called UV-signature mutations. If similar mechanisms apply in the lens, it suggests that somatic mutations in lens epithelial cells may contribute to the development of cortical cataracts.
Collapse
Affiliation(s)
- Rosana Mesa
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, Saint Louis, Missouri
| | | |
Collapse
|
47
|
Christmann M, Kaina B. Transcriptional regulation of human DNA repair genes following genotoxic stress: trigger mechanisms, inducible responses and genotoxic adaptation. Nucleic Acids Res 2013; 41:8403-20. [PMID: 23892398 PMCID: PMC3794595 DOI: 10.1093/nar/gkt635] [Citation(s) in RCA: 172] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
DNA repair is the first barrier in the defense against genotoxic stress. In recent years, mechanisms that recognize DNA damage and activate DNA repair functions through transcriptional upregulation and post-translational modification were the focus of intensive research. Most DNA repair pathways are complex, involving many proteins working in discrete consecutive steps. Therefore, their balanced expression is important for avoiding erroneous repair that might result from excessive base removal and DNA cleavage. Amelioration of DNA repair requires both a fine-tuned system of lesion recognition and transcription factors that regulate repair genes in a balanced way. Transcriptional upregulation of DNA repair genes by genotoxic stress is counteracted by DNA damage that blocks transcription. Therefore, induction of DNA repair resulting in an adaptive response is only visible through a narrow window of dose. Here, we review transcriptional regulation of DNA repair genes in normal and cancer cells and describe mechanisms of promoter activation following genotoxic exposures through environmental carcinogens and anticancer drugs. The data available to date indicate that 25 DNA repair genes are subject to regulation following genotoxic stress in rodent and human cells, but for only a few of them, the data are solid as to the mechanism, homeostatic regulation and involvement in an adaptive response to genotoxic stress.
Collapse
Affiliation(s)
- Markus Christmann
- Department of Toxicology, University Medical Center, Obere Zahlbacher Str. 67, D-55131 Mainz, Germany
| | | |
Collapse
|
48
|
Leach DM, Zacal NJ, Rainbow AJ. Host cell reactivation of gene expression for an adenovirus-encoded reporter gene reflects the repair of UVC-induced cyclobutane pyrimidine dimers and methylene blue plus visible light-induced 8-oxoguanine. Mutagenesis 2013; 28:507-13. [PMID: 23793457 DOI: 10.1093/mutage/get027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Previously, we have reported the use of a recombinant adenovirus (Ad)-based host cell reactivation (HCR) assay to examine nucleotide excision repair (NER) of UVC-induced DNA lesions in several mammalian cell types. The recombinant non-replicating Ad expresses the Escherichia coli β-galactosidase (β-gal) reporter gene under control of the cytomegalovirus immediate-early enhancer region. We have also used methylene blue plus visible light (MB + VL) to induce the major oxidative lesion 7,8-dihydro-8-oxoguanine (8-oxoG) in the recombinant Ad-encoded reporter gene in order to study base excision repair (BER). The reported variability regarding 8-oxoG's potential to block transcription by RNA polymerase II and data demonstrating that a number of factors play a role in transcriptional bypass of the lesion led us to examine the repair of 8-oxoG in the Ad reporter and its relationship to HCR for expression of the reporter gene. We have used Southern blotting to examine removal of UVC- and MB + VL-induced DNA damage by loss of endonuclease-sensitive sites from the Ad-encoded β-gal reporter gene in human and rodent cells. We show that repair of MB + VL-induced 8-oxoG via BER and UVC-induced cyclobutane pyrimidine dimers (CPDs) via NER is substantially greater in human SV40-transformed GM637F skin fibroblasts compared to hamster CHO-AA8 cells. We also show that HCR for expression of the MB + VL-damaged and the UVC-damaged reporter gene is substantially greater in human SV40-transformed GM637F skin fibroblasts compared to hamster CHO-AA8 cells. The difference between the human and rodent cells in the removal of both 8-oxoG and CPDs from the damaged reporter gene was comparable to the difference in HCR for expression of the damaged reporter gene. These results suggest that the major factor for HCR of the MB + VL-treated reporter gene in mammalian cells is DNA repair in the Ad rather than lesion bypass.
Collapse
Affiliation(s)
- Derrik M Leach
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| | | | | |
Collapse
|
49
|
Roy N, Bommi PV, Bhat UG, Bhattacharjee S, Elangovan I, Li J, Patra KC, Kopanja D, Blunier A, Benya R, Bagchi S, Raychaudhuri P. DDB2 suppresses epithelial-to-mesenchymal transition in colon cancer. Cancer Res 2013; 73:3771-82. [PMID: 23610444 DOI: 10.1158/0008-5472.can-12-4069] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Colon cancer is one of the deadliest cancers worldwide because of its metastasis to other essential organs. Metastasis of colon cancer involves a complex set of events, including epithelial-to-mesenchymal transition (EMT) that increases invasiveness of the tumor cells. Here, we show that the xeroderma pigmentosum group E (XPE) gene product, damaged DNA-binding protein (DDB)-2, is downregulated in high-grade colon cancers, and it plays a dominant role in the suppression of EMT of the colon cancer cells. Depletion of DDB2 promotes mesenchymal phenotype, whereas expression of DDB2 promotes epithelial phenotype. DDB2 constitutively represses genes that are the key activators of EMT, indicating that DDB2 is a master regulator of EMT of the colon cancer cells. Moreover, we observed evidence that DDB2 functions as a barrier for EMT induced by hypoxia and TGF-β. Also, we provide evidence that DDB2 inhibits metastasis of colon cancer. The results presented here identify a transcriptional regulatory pathway of DDB2 that is directly linked to the mechanisms that suppress metastasis of colon cancer.
Collapse
Affiliation(s)
- Nilotpal Roy
- Department of Biochemistry and Molecular Genetics; Center of Molecular Biology of Oral Diseases College of Dentistry, Cancer Center; and Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Li T, Wang Z, Zhao Y, He W, An L, Liu S, Liu Y, Wang H, Hang H. Checkpoint protein Rad9 plays an important role in nucleotide excision repair. DNA Repair (Amst) 2013; 12:284-92. [PMID: 23433811 DOI: 10.1016/j.dnarep.2013.01.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 01/11/2013] [Accepted: 01/17/2013] [Indexed: 11/27/2022]
Abstract
Rad9, an evolutionarily conserved checkpoint gene with multiple functions for preserving genomic integrity, has been shown to play important roles in homologous recombination repair, base excision repair and mismatch repair. However, whether Rad9 has an impact on nucleotide excision repair remains unknown. Here we demonstrated that Rad9 was involved in nucleotide excision repair and loss of Rad9 led to defective removal of the UV-derived photoproduct 6-4PP (6,4 pyrimidine-pyrimidone) and the BPDE (anti-benzo(a)pyrene-trans-7,8-dihydrodiol-9,10-epoxide)-DNA adducts in mammalian cells. We also demonstrated that Rad9 could co-localize with XPC in response to local UV irradiation. However, our data showed that Rad9 was not required for the photoproducts recognition step of nucleotide excision repair. Further investigation revealed that reduction of Rad9 reduced the UV-induced transcription of the genes of the nucleotide excision repair factors DDB2, XPC, DDB1 and XPB and DDB2 protein levels in human cells. Interestingly, knockdown of one subunit of DNA damage recognition complex, hHR23B impaired Rad9-loading onto UV-damaged chromatin. Based on these results, we suggest that Rad9 plays an important role in nucleotide excision repair through mechanisms including maintaining DDB2 protein level in human cells.
Collapse
Affiliation(s)
- Tiepeng Li
- Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | | | | | | | |
Collapse
|