1
|
Hallumi E, Shalah R, Lo WL, Corso J, Oz I, Beach D, Wittman S, Isenberg A, Sela M, Urlaub H, Weiss A, Yablonski D. Itk Promotes the Integration of TCR and CD28 Costimulation through Its Direct Substrates SLP-76 and Gads. THE JOURNAL OF IMMUNOLOGY 2021; 206:2322-2337. [PMID: 33931484 DOI: 10.4049/jimmunol.2001053] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 03/15/2021] [Indexed: 11/19/2022]
Abstract
The costimulatory receptor CD28 synergizes with the TCR to promote IL-2 production, cell survival, and proliferation; yet the obligatory interdependence of TCR and CD28 signaling is not well understood. Upon TCR stimulation, Gads, a Grb2-family adaptor, bridges the interaction of two additional adaptors, LAT and SLP-76, to form a TCR-induced effector signaling complex. SLP-76 binds the Tec-family tyrosine kinase, Itk, which phosphorylates SLP-76 Y173 and PLC-γ1 Y783. In this study, we identified TCR-inducible, Itk-mediated phosphorylation of Gads Y45 in a human T cell line and in mouse primary T cells. Y45 is found within the N-terminal SH3 domain of Gads, an evolutionarily conserved domain with no known signaling function. Gads Y45 phosphorylation depended on the interaction of Gads with SLP-76 and on the dimerization-dependent binding of Gads to phospho-LAT. We provide evidence that Itk acts through SLP-76 and Gads to promote the TCR/CD28-induced activation of the RE/AP transcriptional element from the IL-2 promoter. Two Itk-related features of SLP-76, Y173 and a proline-rich Itk SH3 binding motif on SLP-76, were dispensable for activation of NFAT but selectively required for the TCR/CD28-induced increase in cytoplasmic and nuclear c-Rel and consequent RE/AP activation. We provide evidence that unphosphorylated, monomeric Gads mediates an RE/AP-directed inhibitory activity that is mitigated upon Gads dimerization and Y45 phosphorylation. This study illuminates a new, to our knowledge, regulatory module, in which TCR-induced, Itk-mediated phosphorylation sites on SLP-76 and Gads control the transcriptional response to TCR/CD28 costimulation, thus enforcing the obligatory interdependence of the TCR and CD28 signaling pathways.
Collapse
Affiliation(s)
- Enas Hallumi
- Department of Immunology, Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Rose Shalah
- Department of Immunology, Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Wan-Lin Lo
- Rosalind Russell and Ephraim P. Engleman Arthritis Research Center, Division of Rheumatology, Department of Medicine, University of California, San Francisco, San Francisco, CA
| | - Jasmin Corso
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Ilana Oz
- Department of Immunology, Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Dvora Beach
- Department of Immunology, Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Samuel Wittman
- Department of Immunology, Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Amy Isenberg
- Department of Immunology, Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Meirav Sela
- Department of Immunology, Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.,Bioanalytics Research Group, Institute for Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Arthur Weiss
- Rosalind Russell and Ephraim P. Engleman Arthritis Research Center, Division of Rheumatology, Department of Medicine, University of California, San Francisco, San Francisco, CA.,Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA
| | - Deborah Yablonski
- Department of Immunology, Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
2
|
Kong L, Wang B, Yang X, He B, Hao D, Yan L. Integrin-associated molecules and signalling cross talking in osteoclast cytoskeleton regulation. J Cell Mol Med 2020; 24:3271-3281. [PMID: 32045092 PMCID: PMC7131929 DOI: 10.1111/jcmm.15052] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 01/22/2020] [Accepted: 01/27/2020] [Indexed: 12/30/2022] Open
Abstract
In the ageing skeleton, the balance of bone reconstruction could commonly be broken by the increasing of bone resorption and decreasing of bone formation. Consequently, the bone resorption gradually occupies a dominant status. During this imbalance process, osteoclast is unique cell linage act the bone resorptive biological activity, which is a highly differentiated ultimate cell derived from monocyte/macrophage. The erosive function of osteoclasts is that they have to adhere the bone matrix and migrate along it, in which adhesive cytoskeleton recombination of osteoclast is essential. In that, the podosome is a membrane binding microdomain organelle, based on dynamic actin, which forms a cytoskeleton superstructure connected with the plasma membrane. Otherwise, as the main adhesive protein, integrin regulates the formation of podosome and cytoskeleton, which collaborates with the various molecules including: c-Cbl, p130Cas , c-Src and Pyk2, through several signalling cascades cross talking, including: M-CSF and RANKL. In our current study, we discuss the role of integrin and associated molecules in osteoclastogenesis cytoskeletal, especially podosomes, regulation and relevant signalling cascades cross talking.
Collapse
Affiliation(s)
- Lingbo Kong
- Hong-Hui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, China
| | - Biao Wang
- Hong-Hui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, China
| | - Xiaobin Yang
- Hong-Hui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, China
| | - Baorong He
- Hong-Hui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, China
| | - Dingjun Hao
- Hong-Hui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, China
| | - Liang Yan
- Hong-Hui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, China
| |
Collapse
|
3
|
Meester I, Manilla-Muñoz E, León-Cachón RBR, Paniagua-Frausto GA, Carrión-Alvarez D, Ruiz-Rodríguez CO, Rodríguez-Rangel X, García-Martínez JM. SeXY chromosomes and the immune system: reflections after a comparative study. Biol Sex Differ 2020; 11:3. [PMID: 31937374 PMCID: PMC6958619 DOI: 10.1186/s13293-019-0278-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 12/09/2019] [Indexed: 01/27/2023] Open
Abstract
Background Sex bias in immune function has been contributed in part to a preponderance of immune system-related genes (ISRG) on the X-chromosome. We verified whether ISRG are more abundant on the X chromosome as compared to autosomal chromosomes and reflected on the impact of our findings. Methods Consulting freely accessible databases, we performed a comparative study consisting of three complementary strategies. First, among coding X/Y-linked genes, the abundance of ISRG was compared to the abundance of genes dedicated to other systems. Genes were assigned considering three criteria: disease, tissue expression, and function (DEF approach). In addition, we carried out two genome-wide approaches to compare the contribution of sex and autosomal chromosomes to immune genes defined by an elevated expression in lymphatic tissues (LTEEG approach) or annotation to an immune system process, GO:0002376 (GO approach). Results The X chromosome had less immune genes than the median of the autosomal chromosomes. Among X-linked genes, ISRG ranked fourth after the reproductive and nervous systems and genes dedicated to development, proliferation and apoptosis. On the Y chromosome, ISRG ranked second, and at the pseudoautosomal region (PAR) first. According to studies on the expression of X-linked genes in a variety of (mostly non-lymphatic) tissues, almost two-thirds of ISRG are expressed without sex bias, and the remaining ISRG presented female and male bias with similar frequency. Various epigenetic controllers, X-linked MSL3 and Y-linked KDM5D and UTY, were preferentially expressed in leukocytes and deserve further attention for a possible role in sex biased expression or its neutralisation. Conclusions The X chromosome is not enriched for ISRG, though particular X-linked genes may be responsible for sex differences in certain immune responses. So far, there is insufficient information on sex-biased expression of X/Y-linked ISRG in leukocytes to draw general conclusions on the impact of X/Y-linked ISRG in immune function. More research on the regulation of the expression X-linked genes is required with attention to 1) female and male mechanisms that may either augment or diminish sex biased expression and 2) tissue-specific expression studies.
Collapse
Affiliation(s)
- Irene Meester
- Ciencias Básicas, Escuela de Medicina, Universidad de Monterrey, Av. Ignacio Morones Prieto 4500 Pte., 66238, San Pedro Garza García, Nuevo León, México.
| | - Edgar Manilla-Muñoz
- Ciencias Básicas, Escuela de Medicina, Universidad de Monterrey, Av. Ignacio Morones Prieto 4500 Pte., 66238, San Pedro Garza García, Nuevo León, México
| | - Rafael B R León-Cachón
- Ciencias Básicas, Escuela de Medicina, Universidad de Monterrey, Av. Ignacio Morones Prieto 4500 Pte., 66238, San Pedro Garza García, Nuevo León, México
| | - Gustavo A Paniagua-Frausto
- Ciencias Básicas, Escuela de Medicina, Universidad de Monterrey, Av. Ignacio Morones Prieto 4500 Pte., 66238, San Pedro Garza García, Nuevo León, México
| | - Diego Carrión-Alvarez
- Ciencias Básicas, Escuela de Medicina, Universidad de Monterrey, Av. Ignacio Morones Prieto 4500 Pte., 66238, San Pedro Garza García, Nuevo León, México
| | - C Orelli Ruiz-Rodríguez
- Ciencias Básicas, Escuela de Medicina, Universidad de Monterrey, Av. Ignacio Morones Prieto 4500 Pte., 66238, San Pedro Garza García, Nuevo León, México
| | - Ximena Rodríguez-Rangel
- Ciencias Básicas, Escuela de Medicina, Universidad de Monterrey, Av. Ignacio Morones Prieto 4500 Pte., 66238, San Pedro Garza García, Nuevo León, México
| | - Joyce M García-Martínez
- Ciencias Básicas, Escuela de Medicina, Universidad de Monterrey, Av. Ignacio Morones Prieto 4500 Pte., 66238, San Pedro Garza García, Nuevo León, México
| |
Collapse
|
4
|
Postu PA, Ion L, Drochioiu G, Petre BA, Glocker MO. Mass spectrometric characterization of the zein protein composition in maize flour extracts upon protein separation by SDS-PAGE and 2D gel electrophoresis. Electrophoresis 2019; 40:2747-2758. [PMID: 31169923 DOI: 10.1002/elps.201900108] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 05/23/2019] [Accepted: 05/27/2019] [Indexed: 12/24/2022]
Abstract
Highly homogenous α zein protein was isolated from maize kernels in an environment-friendly process using 95% ethanol as solvent. Due to the polyploidy and genetic polymorphism of the plant source, the application of high resolution separation methods in conjunction with precise analytical methods, such as MALDI-TOF-MS, is required to accurately estimate homogeneity of products that contain natural zein protein. The α zein protein product revealed two main bands in SDS-PAGE analysis, one at 25 kDa and other at 20 kDa apparent molecular mass. Yet, high resolution 2DE revealed approximately five protein spot groups in each row, the first at ca. 25 kDa and the second at ca. 20 kDa. Peptide mass fingerprinting data of the proteins in the two dominant SDS-PAGE bands matched to 30 amino acid sequence entries out of 102 non-redundant data base entries. MALDI-TOF-MS peptide mapping of the proteins from all spots indicated the presence of only α zein proteins. The most prominent ion signals in the MALDI mass spectra of the protein mixture of the 25 kDa SDS gel band after in-gel digestion were found at m/z 1272.6 and m/z 2009.1, and the most prominent ion signals of the protein mixture of the 20 kDa band after in-gel digestion were recorded at m/z 1083.5 and m/z 1691.8. These ion signals have been found typical for α zein proteins and may serve as marker ion signals which upon chymotryptic digestion reliably indicate the presence of α zein protein in two hybrid corn products.
Collapse
Affiliation(s)
- Paula A Postu
- Department of Biology, Alexandru Ioan Cuza University, Iasi, Romania.,Transcend Research Center - Regional Institute of Oncology, Iasi, Romania
| | - Laura Ion
- Department of Chemistry, Alexandru Ioan Cuza University, Iasi, Romania
| | - Gabi Drochioiu
- Department of Chemistry, Alexandru Ioan Cuza University, Iasi, Romania
| | - Brindusa A Petre
- Transcend Research Center - Regional Institute of Oncology, Iasi, Romania.,Department of Chemistry, Alexandru Ioan Cuza University, Iasi, Romania
| | - Michael O Glocker
- Proteome Center Rostock, Medical Faculty and Natural Science Faculty, University of Rostock, Rostock, Germany
| |
Collapse
|
5
|
Jia P, Li F, Gu W, Zhang W, Cai Y. Gab3 overexpression in human glioma mediates Akt activation and tumor cell proliferation. PLoS One 2017; 12:e0173473. [PMID: 28291820 PMCID: PMC5349442 DOI: 10.1371/journal.pone.0173473] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 02/22/2017] [Indexed: 11/18/2022] Open
Abstract
This current study tested expression and potential biological functions of Gab3 in human glioma. Gab3 mRNA and protein expression was significantly elevated in human glioma tissues and glioma cells. Its level was however low in normal brain tissues and primary human astrocytes. In both established (U251MG cell line) and primary human glioma cells, Gab3 knockdown by shRNA/siRNA significantly inhibited Akt activation and cell proliferation. Reversely, forced Gab3 overexpression in U251MG cells promoted Akt activation and cell proliferation. In vivo, the growth of U251MG tumors in nude mice was inhibited following expressing Gab3 shRNA. Akt activation in cancer tissues was also suppressed by Gab3 shRNA. Together, we conclude that Gab3 overexpression in human glioma mediates Akt activation and cancer cell proliferation.
Collapse
Affiliation(s)
- Pifeng Jia
- Department of Neurosurgery, RuiJin Hospital North, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Feng Li
- Department of Neurosurgery, RuiJin Hospital North, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiting Gu
- Department of Neurosurgery, RuiJin Hospital North, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weifeng Zhang
- Department of Neurosurgery, RuiJin Hospital North, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Cai
- Department of Neurosurgery, RuiJin Hospital North, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- * E-mail:
| |
Collapse
|
6
|
Gab3 is required for human colorectal cancer cell proliferation. Biochem Biophys Res Commun 2017; 484:719-725. [PMID: 28115166 DOI: 10.1016/j.bbrc.2017.01.095] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 01/19/2017] [Indexed: 11/21/2022]
Abstract
Here, we focused on the potential function of Gab3, an uncommon Gab family protein, in human colorectal cancer (CRC) cells. We found that Gab3 was only expressed in human colon cancer tissues as well as in established (HCT-116 and HT-29 lines) and primary human CRC cells. It was however absent in normal human colon cancer tissues and in FHC colon epithelial cells. Knockdown of Gab3 by targeted-shRNAs inhibited proliferation of the CRC cells. Reversely, exogenous over-expression of Gab3 promoted CRC cell proliferation. At the signaling level, Gab3 co-precipitated with p85 and SHP2 in CRC cells, which was required for subsequent Akt and Erk activation. Gab3 shRNA knockdown inhibited Akt and Erk activation, yet Gab3 over-expression augmented it. In vivo, HCT-116 xenograft tumor growth in severe combined immune deficient (SCID) mice was suppressed following expressing Gab3 shRNAs. Meanwhile, Akt and Erk activation in Gab3 shRNA-expressing tumors was also largely inhibited. Together, our results suggest that Gab3 expression in CRC cells is important for Akt-Erk activation and cell proliferation.
Collapse
|
7
|
Abstract
The CSF-1 receptor (CSF-1R) is activated by the homodimeric growth factors colony-stimulating factor-1 (CSF-1) and interleukin-34 (IL-34). It plays important roles in development and in innate immunity by regulating the development of most tissue macrophages and osteoclasts, of Langerhans cells of the skin, of Paneth cells of the small intestine, and of brain microglia. It also regulates the differentiation of neural progenitor cells and controls functions of oocytes and trophoblastic cells in the female reproductive tract. Owing to this broad tissue expression pattern, it plays a central role in neoplastic, inflammatory, and neurological diseases. In this review we summarize the evolution, structure, and regulation of expression of the CSF-1R gene. We discuss the structures of CSF-1, IL-34, and the CSF-1R and the mechanism of ligand binding to and activation of the receptor. We further describe the pathways regulating macrophage survival, proliferation, differentiation, and chemotaxis downstream from the CSF-1R.
Collapse
Affiliation(s)
- E Richard Stanley
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Violeta Chitu
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York 10461
| |
Collapse
|
8
|
|
9
|
Gab adapter proteins as therapeutic targets for hematologic disease. Adv Hematol 2011; 2012:380635. [PMID: 22216034 PMCID: PMC3246295 DOI: 10.1155/2012/380635] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Revised: 08/30/2011] [Accepted: 09/06/2011] [Indexed: 12/19/2022] Open
Abstract
The Grb-2 associated binder (Gab) family of scaffolding/adaptor/docking proteins is a group of three molecules with significant roles in cytokine receptor signaling. Gabs possess structural motifs for phosphorylation-dependent receptor recruitment, Grb2 binding, and activation of downstream signaling pathways through p85 and SHP-2. In addition, Gabs participate in hematopoiesis and regulation of immune response which can be aberrantly activated in cancer and inflammation. The multifunctionality of Gab adapters might suggest that they would be too difficult to consider as candidates for “targeted” therapy. However, the one drug/one target approach is giving way to the concept of one drug/multiple target approach since few cancers are addicted to a single signaling molecule for survival and combination drug therapies can be problematic. In this paper, we cover recent findings on Gab multi-functionality, binding partners, and their role in hematological malignancy and examine the concept of Gab-targeted therapy.
Collapse
|
10
|
Simister PC, Feller SM. Order and disorder in large multi-site docking proteins of the Gab family--implications for signalling complex formation and inhibitor design strategies. MOLECULAR BIOSYSTEMS 2011; 8:33-46. [PMID: 21935523 DOI: 10.1039/c1mb05272a] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Large multi-site docking (LMD) proteins of the Gab, IRS, FRS, DOK and Cas families consist of one or two folded N-terminal domains, followed by a predominantly disordered C-terminal extension. Their primary function is to provide a docking platform for signalling molecules (including PI3K, PLC, Grb2, Crk, RasGAP, SHP2) in intracellular signal transmission from activated cell-surface receptors, to which they become coupled. A detailed analysis of the structural nature and intrinsic disorder propensity of LMD proteins, with Gab proteins as specific examples, is presented. By primary sequence analysis and literature review the varying levels of disorder and hidden order are predicted, revealing properties and a physical architecture that help to explain their biological function and characteristics, common for network hub proteins. The virulence factor, CagA, from Helicobacter pylori is able to mimic Gab function once injected by this human pathogen into stomach epithelial cells. Its predicted differential structure is compared to Gab1 with respect to its functional mimicry. Lastly, we discuss how LMD proteins, in particular Gab1 and Gab2, and their protein partners, such as SH2 and SH3 domain-containing adaptors like Grb2, might qualify for future anti-cancer strategies in developing protein-protein interaction (PPI) inhibitors towards binary interactors consisting of an intrinsically disordered epitope and a structured domain surface.
Collapse
Affiliation(s)
- Philip C Simister
- Department of Oncology, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK.
| | | |
Collapse
|
11
|
Vaughan TY, Verma S, Bunting KD. Grb2-associated binding (Gab) proteins in hematopoietic and immune cell biology. AMERICAN JOURNAL OF BLOOD RESEARCH 2011; 1:130-134. [PMID: 22163099 PMCID: PMC3232456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 07/25/2011] [Indexed: 05/31/2023]
Abstract
Grb2-associated binding (Gab) scaffolding/adapter proteins are a family of three members including mammalian Gab1, Gab2, and Gab3 that are highly conserved. Since the discovery of these proteins, there has been an extensive amount of work done to better understand Gab functional roles in multiple signaling pathways, typically acting as a downstream effectors of receptor-tyrosine kinase (RTK)-triggered signal transduction. In addition to their participation in hematopoiesis, Gabs play important roles in regulation of immune response and in also in cancer cell signaling. Gabs may play complex roles and thus a complete understanding of their interactions and how they modulate hematopoietic and immune cell biology remains to be determined. This review will cover the most recent findings including the involvement of Gabs in disease development and signaling which will be important for design of future therapeutic interventions.
Collapse
Affiliation(s)
- Tamisha Y Vaughan
- Department of Pediatrics, Aflac Cancer Center of Children's Healthcare of Atlanta and Emory University, School of Medicine, Atlanta, GA, USA
| | | | | |
Collapse
|
12
|
Distinct Binding Modes of Two Epitopes in Gab2 that Interact with the SH3C Domain of Grb2. Structure 2009; 17:809-22. [DOI: 10.1016/j.str.2009.03.017] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2009] [Revised: 03/11/2009] [Accepted: 03/20/2009] [Indexed: 01/11/2023]
|
13
|
Aminin DL, Koy C, Dmitrenok PS, Müller-Hilke B, Koczan D, Arbogast B, Silchenko AA, Kalinin VI, Avilov SA, Stonik VA, Collin PD, Thiesen HJ, Deinzer ML, Glocker MO. Immunomodulatory effects of holothurian triterpene glycosides on mammalian splenocytes determined by mass spectrometric proteome analysis. J Proteomics 2009; 72:886-906. [PMID: 19410666 DOI: 10.1016/j.jprot.2009.04.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2008] [Revised: 03/03/2009] [Accepted: 04/27/2009] [Indexed: 10/20/2022]
Abstract
Spleen is a prime organ in which immuno-stimulation takes place in mammalians. Proteome analysis was used to investigate the elicited effects on mouse splenocytes upon exposure to holothurian triterpene glycosides. Cucumarioside A(2)-2, and Frondoside A, respectively, have been used to in-vitro stimulate primary splenocyte cultures. Differential protein expression was monitored by 2D gel analysis and proteins in spots of interest were identified by MALDI ToF MS and nano LC-ESI Q-ToF MS/MS, respectively. Differential image analysis of gels from control vs. gels from stimulated primary splenocyte cultures showed that approximately thirty protein spots were differentially expressed. Prime examples of differentially expressed proteins are NSFL1 cofactor p47 and hnRNP K (down-regulated), as well as Septin-2, NADH dehydrogenase [ubiquinone] iron-sulfur protein 3, and GRB2-related adaptor protein 2 (up-regulated). Immuno-analytical assays confirmed differential protein expression. Together with results from proliferation and cell adhesion assays, our results show that cellular proliferation is stimulated by holothurian triterpene glycosides. In conclusion, holothurian triterpene glycosides are thought to express their immuno-stimulatory effects by enhancing the natural cellular defense barrier that is necessary to fight pathogens and for which lymphocytes and splenocytes have to be recruited constantly due to limited lifetimes of B-cells and T-cells in the body.
Collapse
Affiliation(s)
- Dmitri L Aminin
- Pacific Institute of Bioorganic Chemistry, Far East Division of the Russian Academy of Sciences, Vladivostock, 690022 Russia
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Src-family kinases play an essential role in differentiation signaling downstream of macrophage colony-stimulating factor receptors mediating persistent phosphorylation of phospholipase C-gamma2 and MAP kinases ERK1 and ERK2. Leukemia 2007; 22:161-9. [PMID: 17972959 DOI: 10.1038/sj.leu.2404986] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Macrophage colony-stimulating factor (M-CSF) has been found to be involved in multiple developmental processes, especially production of cells belonging to the mononuclear phagocyte system. The decision of myeloid progenitor cells to commit to differentiation depends on activation levels of the mitogen-activated protein kinases (MAPK), ERK1 and ERK2. Using the murine myeloid progenitor cell line FD-Fms, we show here that persistent activity of Src-family kinases (SFK) is necessary for FD-Fms cell differentiation to macrophages in response to M-CSF. Chemical inhibition of SFK blocked FD-Fms cell differentiation while it caused strong inhibition of the late phosphorylation of phospholipase C (PLC)-gamma2 and MAPK. The PLC inhibitor U73122, previously shown to block M-CSF-induced differentiation, strongly decreased long-term MAPK phosphorylation. Interestingly, inhibiting SFK with SU6656 or the MAPK kinases MEK with U0126 significantly impaired development of mononuclear phagocytes in cultures of mouse bone marrow cells stimulated with M-CSF. Collectively, results support a model in which SFK are required for sustained PLC activity and MAPK activation above threshold required for commitment of myeloid progenitors to macrophage differentiation.
Collapse
|
15
|
Arnold R, Frey CR, Müller W, Brenner D, Krammer PH, Kiefer F. Sustained JNK signaling by proteolytically processed HPK1 mediates IL-3 independent survival during monocytic differentiation. Cell Death Differ 2006; 14:568-75. [PMID: 17024227 DOI: 10.1038/sj.cdd.4402042] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
We studied monocytic differentiation of primary mouse progenitor cells to understand molecular mechanisms of differentiation. We found a tightly controlled non-apoptotic activation of caspase-3 that correlated with differentiation. Although caspase activity was already detected during monocytic differentiation, a caspase-3 target has not been identified yet. We show that hematopoietic progenitor kinase 1 (HPK1) is processed towards its N- and C-terminal fragments during monocytic differentiation. While HPK1 is an immunoreceptor-proximal kinase in T and B cells, its role in myeloid cells is elusive. Here, we show that the N-terminal cleavage product, HPK1-N, comprising the kinase domain, confers progenitor cell survival independent of the growth factor IL-3. Furthermore, HPK1-N causes differentiation of progenitor cells towards the monocytic lineage. In contrast to full-length kinase, HPK1-N is constitutively active causing sustained JNK activation, Bad phosphorylation and survival. Blocking of caspase activity during differentiation of primary mouse progenitor cells leads to reduced HPK1-N levels, suppressed JNK activity and attenuated monocytic differentiation. Our work explains growth factor-independent survival during monocytic differentiation by caspase-mediated processing of HPK1 towards HPK1-N.
Collapse
Affiliation(s)
- R Arnold
- Max-Planck-Institute for Physiological and Clinical Research, WG Kerckhoff-Institute, Parkstrasse 1, D-61231 Bad Nauheim, Germany.
| | | | | | | | | | | |
Collapse
|
16
|
Simoncic PD, Bourdeau A, Lee-Loy A, Rohrschneider LR, Tremblay ML, Stanley ER, McGlade CJ. T-cell protein tyrosine phosphatase (Tcptp) is a negative regulator of colony-stimulating factor 1 signaling and macrophage differentiation. Mol Cell Biol 2006; 26:4149-60. [PMID: 16705167 PMCID: PMC1489091 DOI: 10.1128/mcb.01932-05] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Mice null for the T-cell protein tyrosine phosphatase (Tcptp-/-) die shortly after birth due to complications arising from the development of a systemic inflammatory disease. It was originally reported that Tcptp-/- mice have increased numbers of macrophages in the spleen; however, the mechanism underlying the aberrant growth and differentiation of macrophages in Tcptp-/- mice is not known. We have identified Tcptp as an important regulator of colony-stimulating factor 1 (CSF-1) signaling and mononuclear phagocyte development. The number of CSF-1-dependent CFU is increased in Tcptp-/- bone marrow. Tcptp-/- mice also have increased numbers of granulocyte-macrophage precursors (GMP), and these Tcptp-/- GMP yield more macrophage colonies in response to CSF-1 relative to wild-type cells. Furthermore, we have identified the CSF-1 receptor (CSF-1R) as a physiological target of Tcptp through substrate-trapping experiments and its hyperphosphorylation in Tcptp-/- macrophages. Tcptp-/- macrophages also have increased tyrosine phosphorylation and recruitment of a Grb2/Gab2/Shp2 complex to the CSF-1R and enhanced activation of Erk after CSF-1 stimulation, which are important molecular events in CSF-1-induced differentiation. These data implicate Tcptp as a critical regulator of CSF-1 signaling and mononuclear phagocyte development in hematopoiesis.
Collapse
Affiliation(s)
- Paul D Simoncic
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Department of Medical Biophysics, University of Toronto, 555 University Avenue, Toronto, Ontario M5G 1X8, Canada
| | | | | | | | | | | | | |
Collapse
|
17
|
Slevin M, Elasbali AB, Miguel Turu M, Krupinski J, Badimon L, Gaffney J. Identification of differential protein expression associated with development of unstable human carotid plaques. THE AMERICAN JOURNAL OF PATHOLOGY 2006; 168:1004-21. [PMID: 16507914 PMCID: PMC1606543 DOI: 10.2353/ajpath.2006.050471] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Rupture-prone unstable arterial plaques develop concomitantly with the appearance of intraplaque hemorrhage and tissue ulceration, in association with deregulation of smooth muscle cell mitogenesis and leakage of newly formed blood vessels. Using microarray technology, we have identified novel protein deregulation associated with unstable carotid plaque regions. Overexpression of proapoptotic proteins caspase-9 and TRAF4 was seen in endothelial cells and smooth muscle cells from unstable hemorrhagic and ulcerated plaque regions. Topoisomerase-II-alpha (TOPO-II-alpha), which is associated with DNA repair mechanisms, was also overexpressed by these cells. Cell signaling molecules c-src, G-protein-coupled receptor kinase-interacting protein (GIT1), and c-jun N-terminal kinase (JNK) were up-regulated in endothelial cells from the same areas, whereas an increase in expression of junctional adhesion molecule-1 (JAM-1) in blood vessels and infiltrating macrophages from inflammatory regions might form part of a leukocyte rolling response, increasing the plaque volume. Grb2-like adaptor protein (Gads), responsible for differentiation of monocytes into macrophages, was expressed by macrophages from unstable plaques, suggesting a potential mechanism through which increased scavenging could occur in rupture-prone areas. We conclude that modulation of novel cell signaling intermediates, such as those described here, could be useful in the therapy of angiogenesis and apoptosis, designed to reduce unstable plaque formation.
Collapse
Affiliation(s)
- Mark Slevin
- Department of Biological Sciences, Manchester Metropolitan University, Manchester, United Kingdom.
| | | | | | | | | | | |
Collapse
|
18
|
Meng S, Chen Z, Munoz-Antonia T, Wu J. Participation of both Gab1 and Gab2 in the activation of the ERK/MAPK pathway by epidermal growth factor. Biochem J 2006; 391:143-51. [PMID: 15952937 PMCID: PMC1237148 DOI: 10.1042/bj20050229] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Three members of Gab family docking proteins, Gab1, Gab2 and Gab3, have been identified in humans. Previous studies have found that the hepatocyte growth factor preferentially utilizes Gab1 for signalling, whereas Bcr-Abl selectively signals through Gab2. Gab1-SHP2 interaction has been shown to mediate ERK (extracellular-signal-regulated kinase) activation by EGF (epidermal growth factor). However, it was unclear whether EGF selectively utilizes Gab1 for signalling to ERK and whether Gab2 is dispensable in cells where Gab1 and Gab2 are co-expressed. Using T47D and MCF-7 human breast carcinoma cells that express endogenous Gab1 and Gab2, we examined the role of these docking proteins in EGF-induced ERK activation. It was found that EGF induced a similar amount of SHP2-Gab1 and SHP2-Gab2 complexes. Expression of either SHP2-binding defective Gab1 or Gab2 mutant blocked EGF-induced ERK activation. Down-regulation of either Gab1 or Gab2 by siRNAs (small interfering RNAs) effectively inhibited the EGF-stimulated ERK activation pathway and cell migration. Interestingly, the inhibitory effect of Gab1 siRNA could be rescued not only by expression of an exogenous mouse Gab1 but also by an exogenous human Gab2 and vice versa, but not by IRS1 (insulin receptor substrate 1). These results reveal that Gab2 plays a pivotal role in the EGF-induced ERK activation pathway and that it can complement the function of Gab1 in the EGF signalling pathway. Furthermore, Gab1 and Gab2 are critical signalling threshold proteins for ERK activation by EGF.
Collapse
Affiliation(s)
- Songshu Meng
- *Molecular Oncology Program, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, U.S.A
- †Department of Interdisciplinary Oncology, University of South Florida College of Medicine, Tampa, FL 33612, U.S.A
| | - Zhengming Chen
- *Molecular Oncology Program, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, U.S.A
- †Department of Interdisciplinary Oncology, University of South Florida College of Medicine, Tampa, FL 33612, U.S.A
| | - Teresita Munoz-Antonia
- *Molecular Oncology Program, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, U.S.A
- †Department of Interdisciplinary Oncology, University of South Florida College of Medicine, Tampa, FL 33612, U.S.A
| | - Jie Wu
- *Molecular Oncology Program, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, U.S.A
- †Department of Interdisciplinary Oncology, University of South Florida College of Medicine, Tampa, FL 33612, U.S.A
- ‡Department of Medical Microbiology and Immunology, University of South Florida College of Medicine, Tampa, FL 33612, U.S.A
- To whom correspondence should be addressed, at Molecular Oncology Program, SRB-3, H. Lee Moffitt Cancer Center and Research Institute (email )
| |
Collapse
|
19
|
Dauffy J, Mouchiroud G, Bourette RP. The interferon-inducible gene, Ifi204, is transcriptionally activated in response to M-CSF, and its expression favors macrophage differentiation in myeloid progenitor cells. J Leukoc Biol 2005; 79:173-83. [PMID: 16244109 DOI: 10.1189/jlb.0205083] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The interferon-inducible (Ifi)204 gene was isolated as a macrophage-colony stimulating factor (M-CSF)-responsive gene using a gene trap approach in the myeloid interleukin-3 (IL-3)-dependent FD-Fms cell line, which differentiates in macrophages in response to M-CSF. Here, we show that Ifi204 was transcriptionally activated in response to M-CSF, and FD-Fms cells decreased their growth and committed toward a macrophage morphology; this induction was abrogated when the differentiation signal of the M-CSF receptor was blocked; the Ifi204 gene was also induced during macrophage differentiation controlled by leukemia inhibitory factor; and the Ifi204 gene is expressed in different mature monocyte/macrophage cells. Finally, we showed that enforced expression of Ifi204 strongly decreased IL-3- and M-CSF-dependent proliferation and conversely, favored macrophage differentiation of FD-Fms cells in response to M-CSF. Altogether, these results demonstrate that the Ifi204 gene is activated during macrophage development and suggest that the Ifi204 protein may act as a regulator of the balance between proliferation and differentiation. Moreover, this study suggests that other members of the Ifi family might act as regulators of hematopoiesis under the control of hemopoietic cytokines.
Collapse
Affiliation(s)
- Jérémy Dauffy
- Centre de Génétique Moléculaire et Cellulaire, UMR CNRS 5534, Villeurbanne Cedex, France
| | | | | |
Collapse
|
20
|
Gobert Gosse S, Bourgin C, Liu WQ, Garbay C, Mouchiroud G. M-CSF stimulated differentiation requires persistent MEK activity and MAPK phosphorylation independent of Grb2-Sos association and phosphatidylinositol 3-kinase activity. Cell Signal 2005; 17:1352-62. [PMID: 16125055 DOI: 10.1016/j.cellsig.2005.02.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2005] [Accepted: 02/09/2005] [Indexed: 11/24/2022]
Abstract
Macrophage colony-stimulating factor (M-CSF) is a physiological regulator of monocyte-macrophage lineage. Ectopic expression of the M-CSF receptor (M-CSFR, or Fms) in murine myeloid cell line FDC-P1 (FD/Fms cells) results in M-CSF-dependent macrophage differentiation. Previously, we observed that M-CSF induces two temporally distinct phases of mitogen-activated protein kinase (MAPK) phosphorylation. Here we show that levels of phosphorylated MAPK kinase MEK1 follow the same kinetics as MAPK phosphorylation, characterized by an early and transient phase (the first 30 min of M-CSF stimulation) and a late and persistent phase from 4 h of stimulation. The MEK inhibitor U0126 strongly inhibited both phases of MAPK phosphorylation as well as FD/Fms cell differentiation, indicating that MAPK may relay M-CSF differentiation signaling downstream of M-CSFR. Treatment of FD/Fms cells with U0126 during the first hour of M-CSF stimulation reversibly blocked the early phase of MAPK phosphorylation but did not affect differentiation. In contrast, U0126 still inhibited FD/Fms cell differentiation when its addition was delayed by 24 h. This demonstrated that late and persistent MEK activity is specifically required for macrophage differentiation to occur. Furthermore, disrupting Grb2-Sos complexes with a specific blocking peptide did not prevent FD/Fms cells differentiation in response to M-CSF, nor did it abolish MAPK phosphorylation. The role of phosphatidylinositol 3-kinase (PI 3-kinase), another potential regulator of the MAPK pathway, was examined using the specific inhibitor LY294002. This compound could not impede FD/Fms cell commitment to macrophage differentiation and did not significantly affect MAPK phosphorylation in response to M-CSF. Therefore, M-CSF differentiation signaling in myeloid progenitor cells is mediated through persistent MEK activity but it is not strictly dependent upon Grb2-Sos interaction or PI 3-kinase activity.
Collapse
Affiliation(s)
- Stéphanie Gobert Gosse
- Centre de Génétique Moléculaire et Cellulaire, UMR CNRS 5534, Bâtiment Gregor Mendel, Université Lyon1, 69622 Villeurbanne , France
| | | | | | | | | |
Collapse
|
21
|
Bourette RP, Thérier J, Mouchiroud G. Macrophage colony-stimulating factor receptor induces tyrosine phosphorylation of SKAP55R adaptor and its association with actin. Cell Signal 2005; 17:941-9. [PMID: 15894167 DOI: 10.1016/j.cellsig.2004.11.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2004] [Revised: 11/11/2004] [Accepted: 11/12/2004] [Indexed: 11/25/2022]
Abstract
The production, survival, and function of monocytes and macrophages are regulated by the macrophage colony-stimulating factor (M-CSF or CSF-1) through its tyrosine kinase receptor. M-CSF receptor activates multiple cytoplasmic pathways in which adaptor and scaffolding proteins play a central role. In this study, we showed that SKAP55-related (SKAP55R) adaptor protein is expressed in myeloid cells and macrophages and is rapidly and transiently tyrosine-phosphorylated in response to M-CSF. M-CSF induced SKAP55R association with other tyrosine-phosphorylated proteins and with actin. When overexpressed in myeloid cells, SKAP55R decreased M-CSF-dependent proliferation without affecting differentiation. Altogether, these results demonstrate that SKAP55R adaptor is implicated in the M-CSF signaling pathway and suggest its role as a negative regulator of growth. Moreover, specific association between SKAP55R and actin support the idea that SKAP55R is implicated in the regulation of actin dynamics under the control of M-CSF.
Collapse
Affiliation(s)
- Roland P Bourette
- Centre de Génétique Moléculaire et Cellulaire, UMR CNRS 5534, Villeurbanne, France.
| | | | | |
Collapse
|
22
|
Sly LM, Rauh MJ, Kalesnikoff J, Song CH, Krystal G. LPS-induced upregulation of SHIP is essential for endotoxin tolerance. Immunity 2004; 21:227-39. [PMID: 15308103 DOI: 10.1016/j.immuni.2004.07.010] [Citation(s) in RCA: 243] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2003] [Revised: 06/14/2004] [Accepted: 06/16/2004] [Indexed: 12/16/2022]
Abstract
An initial exposure to lipopolysaccharide (LPS) induces a transient state of hyporesponsiveness to a subsequent challenge with LPS. The mechanism underlying this phenomenon, termed endotoxin tolerance, remains poorly understood despite a recent resurgence of interest in this area. We demonstrate herein that SHIP(-/-) bone marrow-derived macrophages (BMmphis) and mast cells (BMMCs) do not display endotoxin tolerance. Moreover, an initial LPS treatment of wild-type BMmphis or BMMCs increases the level of SHIP, but not SHIP2 or PTEN, and this increase is critical for the hyporesponsiveness to subsequent LPS stimulation. Interestingly, this increase in SHIP protein is mediated by the LPS-induced production of autocrine-acting TGFbeta and neutralizing antibodies to TGFbeta block LPS-induced endotoxin tolerance. In vivo studies with SHIP(+/+) and SHIP(-/-) mice confirm these in vitro findings and show a correlation between the duration of endotoxin tolerance and elevated SHIP levels.
Collapse
Affiliation(s)
- Laura M Sly
- The Terry Fox Laboratory, BC Cancer Agency, 601 West 10th Avenue, Vancouver, British Columbia, V5Z 1L3, Canada
| | | | | | | | | |
Collapse
|
23
|
Arnaud M, Crouin C, Deon C, Loyaux D, Bertoglio J. Phosphorylation of Grb2-Associated Binder 2 on Serine 623 by ERK MAPK Regulates Its Association with the Phosphatase SHP-2 and Decreases STAT5 Activation. THE JOURNAL OF IMMUNOLOGY 2004; 173:3962-71. [PMID: 15356145 DOI: 10.4049/jimmunol.173.6.3962] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
IL-2 stimulation of T lymphocytes induces the tyrosine phosphorylation and adaptor function of the insulin receptor substrate/Grb2-associated binder (Gab) family member, Gab2. In addition, Gab2 undergoes a marked decrease in its mobility in SDS-PAGE, characteristic of migration shifts induced by serine/threonine phosphorylations in many proteins. This migration shift was strongly diminished by treating cells with the MEK inhibitor U0126, indicating a possible role for ERK in Gab2 phosphorylation. Indeed, ERK phosphorylated Gab2 on a consensus phosphorylation site at serine 623, a residue located between tyrosine 614 and tyrosine 643 that are responsible for Gab2/Src homology 2 domain-containing tyrosine phosphatase (SHP)-2 interaction. We report that pretreatment of Kit 225 cells with U0126 increased Gab2/SHP-2 association and tyrosine phosphorylation of SHP-2 in response to IL-2, suggesting that ERK phosphorylation of serine 623 regulates the interaction between Gab2 and SHP-2, and consequently the activity of SHP-2. This hypothesis was confirmed by biochemical analysis of cells expressing Gab2 WT, Gab2 serine 623A or Gab2 tyrosine 614F, a mutant that cannot interact with SHP-2 in response to IL-2. Activation of the ERK pathway was indeed blocked by Gab2 tyrosine 614F and slightly increased by Gab2 serine 623A. In contrast, STAT5 activation was strongly enhanced by Gab2 tyrosine 614F, slightly reduced by Gab2 WT and strongly inhibited by Gab2 serine 623A. Analysis of the rate of proliferation of cells expressing these mutants of Gab2 demonstrated that tyrosine 614F mutation enhanced proliferation whereas serine 623A diminished it. These results demonstrate that ERK-mediated phosphorylation of Gab2 serine 623 is involved in fine tuning the proliferative response of T lymphocytes to IL-2.
Collapse
Affiliation(s)
- Mary Arnaud
- Institut National de la Santé et de la Recherche Médicale Unité 461, Faculté de Pharmacie Paris-XI, Chatenay-Malabry, France
| | | | | | | | | |
Collapse
|
24
|
Zhao C, Ma H, Bossy-Wetzel E, Lipton SA, Zhang Z, Feng GS. GC-GAP, a Rho family GTPase-activating protein that interacts with signaling adapters Gab1 and Gab2. J Biol Chem 2003; 278:34641-53. [PMID: 12819203 DOI: 10.1074/jbc.m304594200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Gab1 and Gab2 are scaffolding proteins acting downstream of cell surface receptors and interact with a variety of cytoplasmic signaling proteins such as Grb2, Shp-2, phosphatidylinositol 3-kinase, Shc, and Crk. To identify new binding partners for GAB proteins and better understand their functions, we performed a yeast two-hybrid screening with hGab2-(120-587) as bait. This work led to identification of a novel GTPase-activating protein (GAP) for Rho family GTPases. The GAP domain shows high similarity to the recently cloned CdGAP and displays activity toward RhoA, Rac1, and Cdc42 in vitro. The protein was named GC-GAP for its ability to interact with GAB proteins and its activity toward Rac and Cdc42. GC-GAP is predominantly expressed in the brain with low levels detected in other tissues. Antibodies directed against GC-GAP recognized a protein of approximately 200 kDa. Expression of GC-GAP in 293T cells led to a reduction in active Rac1 and Cdc42 levels but not RhoA. Suppression of GC-GAP expression by siRNA inhibited proliferation of C6 astroglioma cells. In addition, GC-GAP contains several classic proline-rich motifs, and it interacts with the first SH3 domain of Crk and full-length Nck in vitro. We propose that Gab1 and Gab2 in cooperation with other adapter molecules might regulate the cellular localization of GC-GAP under specific stimuli, acting to regulate precisely Rac and Cdc42 activities. Given that GC-GAP is specifically expressed in the nervous system and that it is localized to the dendritic processes of cultured neurons, GC-GAP may play a role in dendritic morphogenesis and also possibly in neural/glial cell proliferation.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Amino Acid Motifs
- Amino Acid Sequence
- Animals
- Blotting, Northern
- Blotting, Western
- Brain/metabolism
- Cell Differentiation
- Cell Division
- Cell Line
- DNA/metabolism
- DNA, Complementary/metabolism
- Dendrites/metabolism
- GTPase-Activating Proteins/chemistry
- GTPase-Activating Proteins/metabolism
- GTPase-Activating Proteins/physiology
- HeLa Cells
- Humans
- In Situ Hybridization
- Microscopy, Fluorescence
- Models, Genetic
- Molecular Sequence Data
- Phosphoproteins/metabolism
- Precipitin Tests
- Proline/chemistry
- Protein Binding
- Protein Structure, Tertiary
- RNA, Small Interfering/metabolism
- Sequence Homology, Amino Acid
- Signal Transduction
- Transfection
- Tumor Cells, Cultured
- Two-Hybrid System Techniques
- rac1 GTP-Binding Protein/metabolism
- rhoA GTP-Binding Protein/metabolism
- src Homology Domains
Collapse
Affiliation(s)
- Chunmei Zhao
- Burnham Institute, La Jolla, California 92037, USA
| | | | | | | | | | | |
Collapse
|
25
|
Harkiolaki M, Lewitzky M, Gilbert RJC, Jones EY, Bourette RP, Mouchiroud G, Sondermann H, Moarefi I, Feller SM. Structural basis for SH3 domain-mediated high-affinity binding between Mona/Gads and SLP-76. EMBO J 2003; 22:2571-82. [PMID: 12773374 PMCID: PMC156755 DOI: 10.1093/emboj/cdg258] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
SH3 domains are protein recognition modules within many adaptors and enzymes. With more than 500 SH3 domains in the human genome, binding selectivity is a key issue in understanding the molecular basis of SH3 domain interactions. The Grb2-like adaptor protein Mona/Gads associates stably with the T-cell receptor signal transducer SLP-76. The crystal structure of a complex between the C-terminal SH3 domain (SH3C) of Mona/Gads and a SLP-76 peptide has now been solved to 1.7 A. The peptide lacks the canonical SH3 domain binding motif P-x-x-P and does not form a frequently observed poly-proline type II helix. Instead, it adopts a clamp-like shape around the circumfence of the SH3C beta-barrel. The central R-x-x-K motif of the peptide forms a 3(10) helix and inserts into a negatively charged double pocket on the SH3C while several other residues complement binding through hydrophobic interactions, creating a short linear SH3C binding epitope of uniquely high affinity. Interestingly, the SH3C displays ion-dependent dimerization in the crystal and in solution, suggesting a novel mechanism for the regulation of SH3 domain functions.
Collapse
Affiliation(s)
- Maria Harkiolaki
- Cancer Research UK Cell Signalling Group and Weatherall Institute of Molecular Medicine, Oxford, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Seiffert M, Custodio JM, Wolf I, Harkey M, Liu Y, Blattman JN, Greenberg PD, Rohrschneider LR. Gab3-deficient mice exhibit normal development and hematopoiesis and are immunocompetent. Mol Cell Biol 2003; 23:2415-24. [PMID: 12640125 PMCID: PMC150735 DOI: 10.1128/mcb.23.7.2415-2424.2003] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Gab proteins are intracellular scaffolding and docking molecules involved in signaling pathways mediated by various growth factor, cytokine, or antigen receptors. Gab3 has been shown to act downstream of the macrophage colony-stimulating factor receptor, c-Fms, and to be important for macrophage differentiation. To analyze the physiological role of Gab3, we used homologous recombination to generate mice deficient in Gab3. Gab3(-/-) mice develop normally, are visually indistinguishable from their wild-type littermates, and are healthy and fertile. To obtain a detailed expression pattern of Gab3, we generated Gab3-specific monoclonal antibodies. Immunoblotting revealed a predominant expression of Gab3 in lymphocytes and bone marrow-derived macrophages. However, detailed analysis demonstrated that hematopoiesis in mice lacking Gab3 is not impaired and that macrophages develop in normal numbers and exhibit normal function. The lack of Gab3 expression during macrophage differentiation is not compensated for by increased levels of Gab1 or Gab2 mRNA. Furthermore, Gab3-deficient mice have no major immune deficiency in T- and B-lymphocyte responses to protein antigens or during viral infection. In addition, allergic responses in Gab3-deficient mice appeared to be normal. Together, these data demonstrate that loss of Gab3 does not result in detectable defects in normal mouse development, hematopoiesis, or immune system function.
Collapse
Affiliation(s)
- Martina Seiffert
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109-1024, USA
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Saito T, Yamasaki S. Negative feedback of T cell activation through inhibitory adapters and costimulatory receptors. Immunol Rev 2003; 192:143-60. [PMID: 12670402 DOI: 10.1034/j.1600-065x.2003.00022.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Antigen recognition by the T cell receptor (TCR) complex induces the formation of a TCR signalosome by recruiting various signaling molecules, generating the recognition signals for T cell activation. The activation status and functional outcome are positively and negatively regulated by dynamic organization of the signalosome and by costimulation signals. We have studied the negative regulation of T cell activation, particularly through inhibitory adapters and costimulation receptors that are little expressed in resting cells but are induced upon T cell activation. We described Grb-associated binder 2 (Gab2) and cytotoxic T lymphocyte antigen-4 (CTLA-4) as a representative inhibitory adapter and a negative costimulation receptor, respectively, both of which exhibit negative feedback. Gab2 functions as a signal branch for activation vs. inhibition, as phosphorylation of either Src homology 2 (SH2) domain-containing leukocyte phosphoprotein of 76 kDa (SLP-76) or Gab2 by zeta-associated protein of 70 kDa (ZAP-70) determines the fate of the response. As a professional inhibitory receptor, CTLA-4 inhibits T cell response by competition of ligand binding with positive costimulator receptor CD28, and also induces inhibitory signaling. The trafficking and the cell surface expression of CTLA-4 are dynamically regulated and induced. CTLA-4 is accumulated in lysosomes and secreted to the T cell-APC contact site upon TCR stimulation. As T cell activation proceeds, these inhibitory adapters and costimulation receptors are induced and suppress/regulate the responses as negative feedback.
Collapse
Affiliation(s)
- Takashi Saito
- Department of Molecular Genetics, Graduate School of Medicine, Chiba University, Chiba, Japan.
| | | |
Collapse
|
28
|
Yamasaki S, Nishida K, Sakuma M, Berry D, McGlade CJ, Hirano T, Saito T. Gads/Grb2-mediated association with LAT is critical for the inhibitory function of Gab2 in T cells. Mol Cell Biol 2003; 23:2515-29. [PMID: 12640133 PMCID: PMC150736 DOI: 10.1128/mcb.23.7.2515-2529.2003] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A docking protein, Gab2, is recruited to the vicinity of the TCR complex and inhibits downstream signaling by interaction with negative regulators. However, the molecular mechanisms of this recruitment remain unclear. We have found that Gab2 associates with LAT upon TCR stimulation and that LAT is essential for Gab2 phosphorylation. By analysis of several Gab2 mutants, the c-Met binding domain (MBD) of Gab2 was found to be both necessary and sufficient for stimulation-induced LAT binding. Within the MBD domain, a novel Grb2 SH3 binding motif, PXXXR, is critical for constitutive association with Gads/Grb2. Through this association, Gab2 is recruited to the lipid raft after TCR ligation and exerts inhibitory function. The in vivo significance of this association is illustrated by the fact that T-cell responses are impaired in transgenic mice expressing wild-type Gab2 but not in mice expressing mutant Gab2 lacking the motif. Furthermore, T cells from Gab2-deficient mice showed enhanced proliferative responses upon TCR stimulation. These results indicate that Gads/Grb2-mediated LAT association is critical for the inhibitory function of Gab2, implying that Gab2 induced in stimulated T cells may exert an efficient negative feedback loop by recruiting inhibitory molecules to the lipid raft and competing with SLP-76 through Gads binding.
Collapse
Affiliation(s)
- Sho Yamasaki
- Department of Molecular Genetics, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba 260-8670, Japan
| | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
Tyrosine phosphorylation plays an important role in controlling cellular growth, differentiation and function. Abnormal regulation of tyrosine phosphorylation can result in human diseases such as cancer. A major challenge of signal transduction research is to determine how the initial activation of protein-tyrosine kinases (PTKs) by extracellular stimuli triggers multiple downstream signaling cascades, which ultimately elicit diverse cellular responses. Recent studies reveal that members of the Gab/Dos subfamily of scaffolding adaptor proteins (hereafter, "Gab proteins") play a crucial role in transmitting key signals that control cell growth, differentiation and function from multiple receptors. Here, we review the structure, mechanism of action and function of these interesting molecules in normal biology and disease.
Collapse
Affiliation(s)
- Haihua Gu
- Cancer Biology Program, Division of Hematology-Oncology, Dept of Medicine, Beth Israel-Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave, Boston, MA 02215, USA.
| | | |
Collapse
|
30
|
Feller SM, Tuchscherer G, Voss J. High affinity molecules disrupting GRB2 protein complexes as a therapeutic strategy for chronic myelogenous leukaemia. Leuk Lymphoma 2003; 44:411-27. [PMID: 12688310 DOI: 10.1080/1042819021000037930] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Chronic myelogenous leukaemia (CML) is one of the most intensively studied human malignancies. It has been the focus of major efforts to develop potent drugs for several decades, but until recently cure rates remained low. A breakthrough in CML therapy was very likely accomplished with the clinical introduction of STI-571 [imatinib mesylate; Gleevec (USA); Glivec (other countries)] in 2000/2001. Despite the hope that STI-571 has generated for many CML patients, development of resistance to this drug is already apparent in some cases, especially if the CML is diagnosed in its later stages. Therefore, novel drugs which can be used alone or in combination with STI-571 are highly desirable. This review briefly summarises the current understanding and therapy of CML and then discusses in more detail basic laboratory research that attempts to target Grb2, an adaptor protein known to directly interact with the Bcr portion of the Bcr-Abl fusion protein. Blocking the binding of Grb2 to the GDP-releasing protein SoS is well known to abrogate the activation of the GTPase Ras, a major driving force of the central mitogenic (MAP kinase) pathway. Additional Grb2 effector proteins may also contribute to the proliferation-inhibiting effects observed upon uncoupling Grb2 from its downstream signalling system. Since Grb2 is a known signal transducer for several major human oncogenes, this approach may have applications for a wider range of human cancers.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Animals
- Antineoplastic Agents/chemistry
- Antineoplastic Agents/pharmacology
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Benzamides
- Drug Design
- Enzyme Inhibitors/administration & dosage
- Enzyme Inhibitors/therapeutic use
- Fatty Acids, Unsaturated/pharmacology
- Forecasting
- Fusion Proteins, bcr-abl/antagonists & inhibitors
- Fusion Proteins, bcr-abl/metabolism
- GRB2 Adaptor Protein
- Humans
- Imatinib Mesylate
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Macromolecular Substances
- Mice
- Neoplasm Proteins/antagonists & inhibitors
- Neoplasm Proteins/metabolism
- Peptide Fragments/metabolism
- Phosphatidylinositol 3-Kinases/physiology
- Piperazines/administration & dosage
- Piperazines/therapeutic use
- Protein Binding/drug effects
- Proteins/antagonists & inhibitors
- Proteins/chemistry
- Proteins/metabolism
- Pyrimidines/administration & dosage
- Pyrimidines/therapeutic use
- Signal Transduction/drug effects
- Son of Sevenless Proteins/physiology
- Structure-Activity Relationship
- Transcription Factors/physiology
- ras Proteins/antagonists & inhibitors
- src Homology Domains
Collapse
Affiliation(s)
- Stephan M Feller
- Cell Signalling Group, Molecular Oncology Laboratory, Cancer Research UK, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK. stephan.feller@.cancer.org.uk
| | | | | |
Collapse
|
31
|
Guyot B, Mouchiroud G. Characterization of promoter elements directing Mona/Gads molecular adapter expression in T and myelomonocytic cells: involvement of the AML-1 transcription factor. J Leukoc Biol 2003; 73:263-72. [PMID: 12554803 DOI: 10.1189/jlb.0502244] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Monocytic adaptor (Mona, also called Gads) is a molecular adaptor implicated in T cell activation and macrophage differentiation. The objective of this study was to identify elements regulating specific expression of Mona/Gads in human T cell and myelomonocytic cell lines. We first confirmed that the -2000 to +150 genomic region relative to the Mona gene transcription start site is sufficient to direct specific reporter gene expression in T cell lines, Jurkat, and MOLT-4 and in the immature myeloid cell lines, KG1a and RC2A. Deletion analysis and electrophoresis mobility shift assay identified several cis regulatory elements: overlapping initiator sequences, one interferon response factor-2 (IRF-2)-binding site at position -154, one GC box recognized by Sp1 and Sp3 at position -52, and two acute myeloid leukemia (AML)-1 binding sites at positions -70 and -13. Site-directed mutagenesis experiments indicated a key role of AML-1 for driving Mona expression in T cells and myeloid cells, and involvement of Sp1/Sp3 and IRF-2 transcription factors to modulate Mona expression in a cell-specific manner.
Collapse
Affiliation(s)
- B Guyot
- Centre de Génétique Moléculaire et Cellulaire, UMR CNRS 5534, Université Claude Bernard Lyon-1, Bâtiment Gregor Mendel, 16 rue Raphael Dubois, 69622 Villeurbanne Cedex, France
| | | |
Collapse
|
32
|
Valderrama-Carvajal H, Cocolakis E, Lacerte A, Lee EH, Krystal G, Ali S, Lebrun JJ. Activin/TGF-beta induce apoptosis through Smad-dependent expression of the lipid phosphatase SHIP. Nat Cell Biol 2002; 4:963-9. [PMID: 12447389 DOI: 10.1038/ncb885] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2002] [Revised: 07/27/2002] [Accepted: 09/20/2002] [Indexed: 11/08/2022]
Abstract
Members of the transforming growth factor beta (TGF-beta) family regulate fundamental physiological processes, such as cell growth, differentiation and apoptosis, in almost all cell types. As a result, defects in TGF-beta signalling pathways have been linked to uncontrolled cellular proliferation and carcinogenesis. Here, we explored the signal transduction mechanisms downstream of the activin/TGF-beta receptors that result in cell growth arrest and apoptosis. We show that in haematopoietic cells, TGF-beta family members regulate apoptosis through expression of the inositol phosphatase SHIP (Src homology 2 (SH2) domain-containing 5' inositol phosphatase), a central regulator of phospholipid metabolism. We also demonstrated that the Smad pathway is required in the transcriptional regulation of the SHIP gene. Activin/TGF-beta-induced expression of SHIP results in intracellular changes in the pool of phospholipids, as well as in inhibition of both Akt/PKB (protein kinase B) phosphorylation and cell survival. Our results link phospholipid metabolism to activin/TGF-beta-mediated apoptosis and define TGF-beta family members as potent inducers of SHIP expression.
Collapse
Affiliation(s)
- Hector Valderrama-Carvajal
- Molecular Endocrinology Laboratory, McGill University, Department of Medicine, Royal Victoria Hospital, 687 Pine Avenue West, H3A 1A1, Montreal, Canada
| | | | | | | | | | | | | |
Collapse
|