1
|
Luo Y, Jiang N, May HI, Luo X, Ferdous A, Schiattarella GG, Chen G, Li Q, Li C, Rothermel BA, Jiang D, Lavandero S, Gillette TG, Hill JA. Cooperative Binding of ETS2 and NFAT Links Erk1/2 and Calcineurin Signaling in the Pathogenesis of Cardiac Hypertrophy. Circulation 2021; 144:34-51. [PMID: 33821668 PMCID: PMC8247545 DOI: 10.1161/circulationaha.120.052384] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 03/10/2021] [Indexed: 11/16/2022]
Abstract
BACKGROUND Cardiac hypertrophy is an independent risk factor for heart failure, a leading cause of morbidity and mortality globally. The calcineurin/NFAT (nuclear factor of activated T cells) pathway and the MAPK (mitogen-activated protein kinase)/Erk (extracellular signal-regulated kinase) pathway contribute to the pathogenesis of cardiac hypertrophy as an interdependent network of signaling cascades. How these pathways interact remains unclear and few direct targets responsible for the prohypertrophic role of NFAT have been described. METHODS By engineering cardiomyocyte-specific ETS2 (a member of the E26 transformation-specific sequence [ETS] domain family) knockout mice, we investigated the role of ETS2 in cardiac hypertrophy. Primary cardiomyocytes were used to evaluate ETS2 function in cell growth. RESULTS ETS2 is phosphorylated and activated by Erk1/2 on hypertrophic stimulation in both mouse (n=3) and human heart samples (n=8 to 19). Conditional deletion of ETS2 in mouse cardiomyocytes protects against pressure overload-induced cardiac hypertrophy (n=6 to 11). Silencing of ETS2 in the hearts of calcineurin transgenic mice significantly attenuates hypertrophic growth and contractile dysfunction (n=8). As a transcription factor, ETS2 is capable of binding to the promoters of hypertrophic marker genes, such as ANP, BNP, and Rcan1.4 (n=4). We report that ETS2 forms a complex with NFAT to stimulate transcriptional activity through increased NFAT binding to the promoters of at least 2 hypertrophy-stimulated genes: Rcan1.4 and microRNA-223 (=n4 to 6). Suppression of microRNA-223 in cardiomyocytes inhibits calcineurin-mediated cardiac hypertrophy (n=6), revealing microRNA-223 as a novel prohypertrophic target of the calcineurin/NFAT and Erk1/2-ETS2 pathways. CONCLUSIONS Our findings point to a critical role for ETS2 in calcineurin/NFAT pathway-driven cardiac hypertrophy and unveil a previously unknown molecular connection between the Erk1/2 activation of ETS2 and expression of NFAT/ETS2 target genes.
Collapse
Affiliation(s)
- Yuxuan Luo
- Departments of Internal Medicine, Cardiology Division (Y.L., N.J., H.I.M., X.L., A.F., G.G.S., G.C., Q.L., C.L., B.A.R., S.L., T.G.G., J.A.H.), University of Texas Southwestern Medical Center, Dallas
| | - Nan Jiang
- Departments of Internal Medicine, Cardiology Division (Y.L., N.J., H.I.M., X.L., A.F., G.G.S., G.C., Q.L., C.L., B.A.R., S.L., T.G.G., J.A.H.), University of Texas Southwestern Medical Center, Dallas
| | - Herman I. May
- Departments of Internal Medicine, Cardiology Division (Y.L., N.J., H.I.M., X.L., A.F., G.G.S., G.C., Q.L., C.L., B.A.R., S.L., T.G.G., J.A.H.), University of Texas Southwestern Medical Center, Dallas
| | - Xiang Luo
- Departments of Internal Medicine, Cardiology Division (Y.L., N.J., H.I.M., X.L., A.F., G.G.S., G.C., Q.L., C.L., B.A.R., S.L., T.G.G., J.A.H.), University of Texas Southwestern Medical Center, Dallas
- Molecular Biology (J.A.H.), University of Texas Southwestern Medical Center, Dallas
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (D.J.)
- Advanced Center for Chronic Diseases, Faculty of Chemical & Pharmaceutical Sciences and Faculty of Medicine, University of Chile, Santiago, Chile (S.L.)
- Corporacion Centro de Estudios Científicos de las Enfermedades Cronicas (CECEC), Santiago, Chile (S.L.)
| | - Anwarul Ferdous
- Departments of Internal Medicine, Cardiology Division (Y.L., N.J., H.I.M., X.L., A.F., G.G.S., G.C., Q.L., C.L., B.A.R., S.L., T.G.G., J.A.H.), University of Texas Southwestern Medical Center, Dallas
| | - Gabriele G. Schiattarella
- Departments of Internal Medicine, Cardiology Division (Y.L., N.J., H.I.M., X.L., A.F., G.G.S., G.C., Q.L., C.L., B.A.R., S.L., T.G.G., J.A.H.), University of Texas Southwestern Medical Center, Dallas
| | - Guihao Chen
- Departments of Internal Medicine, Cardiology Division (Y.L., N.J., H.I.M., X.L., A.F., G.G.S., G.C., Q.L., C.L., B.A.R., S.L., T.G.G., J.A.H.), University of Texas Southwestern Medical Center, Dallas
| | - Qinfeng Li
- Departments of Internal Medicine, Cardiology Division (Y.L., N.J., H.I.M., X.L., A.F., G.G.S., G.C., Q.L., C.L., B.A.R., S.L., T.G.G., J.A.H.), University of Texas Southwestern Medical Center, Dallas
| | - Chao Li
- Departments of Internal Medicine, Cardiology Division (Y.L., N.J., H.I.M., X.L., A.F., G.G.S., G.C., Q.L., C.L., B.A.R., S.L., T.G.G., J.A.H.), University of Texas Southwestern Medical Center, Dallas
| | - Beverly A. Rothermel
- Departments of Internal Medicine, Cardiology Division (Y.L., N.J., H.I.M., X.L., A.F., G.G.S., G.C., Q.L., C.L., B.A.R., S.L., T.G.G., J.A.H.), University of Texas Southwestern Medical Center, Dallas
| | - Dingsheng Jiang
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (D.J.)
| | - Sergio Lavandero
- Departments of Internal Medicine, Cardiology Division (Y.L., N.J., H.I.M., X.L., A.F., G.G.S., G.C., Q.L., C.L., B.A.R., S.L., T.G.G., J.A.H.), University of Texas Southwestern Medical Center, Dallas
- Advanced Center for Chronic Diseases, Faculty of Chemical & Pharmaceutical Sciences and Faculty of Medicine, University of Chile, Santiago, Chile (S.L.)
- Corporacion Centro de Estudios Científicos de las Enfermedades Cronicas (CECEC), Santiago, Chile (S.L.)
| | - Thomas G. Gillette
- Departments of Internal Medicine, Cardiology Division (Y.L., N.J., H.I.M., X.L., A.F., G.G.S., G.C., Q.L., C.L., B.A.R., S.L., T.G.G., J.A.H.), University of Texas Southwestern Medical Center, Dallas
| | - Joseph A. Hill
- Departments of Internal Medicine, Cardiology Division (Y.L., N.J., H.I.M., X.L., A.F., G.G.S., G.C., Q.L., C.L., B.A.R., S.L., T.G.G., J.A.H.), University of Texas Southwestern Medical Center, Dallas
- Molecular Biology (J.A.H.), University of Texas Southwestern Medical Center, Dallas
| |
Collapse
|
2
|
A novel tissue specific alternative splicing variant mitigates phenotypes in Ets2 frame-shift mutant models. Sci Rep 2021; 11:8297. [PMID: 33859300 PMCID: PMC8050053 DOI: 10.1038/s41598-021-87751-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 04/05/2021] [Indexed: 11/08/2022] Open
Abstract
E26 avian leukemia oncogene 2, 3′ domain (Ets2) has been implicated in various biological processes. An Ets2 mutant model (Ets2db1/db1), which lacks the DNA-binding domain, was previously reported to exhibit embryonic lethality caused by a trophoblast abnormality. This phenotype could be rescued by tetraploid complementation, resulting in pups with wavy hair and curly whiskers. Here, we generated new Ets2 mutant models with a frame-shift mutation in exon 8 using the CRISPR/Cas9 method. Homozygous mutants could not be obtained by natural mating as embryonic development stopped before E8.5, as previously reported. When we rescued them by tetraploid complementation, these mice did not exhibit wavy hair or curly whisker phenotypes. Our newly generated mice exhibited exon 8 skipping, which led to in-frame mutant mRNA expression in the skin and thymus but not in E7.5 Ets2em1/em1 embryos. This exon 8-skipped Ets2 mRNA was translated into protein, suggesting that this Ets2 mutant protein complemented the Ets2 function in the skin. Our data implies that novel splicing variants incidentally generated after genome editing may complicate the phenotypic analysis but may also give insight into the new mechanisms related to biological gene functions.
Collapse
|
3
|
Singh S, Chakrabarti R. Consequences of EMT-Driven Changes in the Immune Microenvironment of Breast Cancer and Therapeutic Response of Cancer Cells. J Clin Med 2019; 8:jcm8050642. [PMID: 31075939 PMCID: PMC6572359 DOI: 10.3390/jcm8050642] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 04/30/2019] [Accepted: 05/04/2019] [Indexed: 02/06/2023] Open
Abstract
Epithelial-to-mesenchymal transition (EMT) is a process through which epithelial cells lose their epithelial characteristics and cell–cell contact, thus increasing their invasive potential. In addition to its well-known roles in embryonic development, wound healing, and regeneration, EMT plays an important role in tumor progression and metastatic invasion. In breast cancer, EMT both increases the migratory capacity and invasive potential of tumor cells, and initiates protumorigenic alterations in the tumor microenvironment (TME). In particular, recent evidence has linked increased expression of EMT markers such as TWIST1 and MMPs in breast tumors with increased immune infiltration in the TME. These immune cells then provide cues that promote immune evasion by tumor cells, which is associated with enhanced tumor progression and metastasis. In the current review, we will summarize the current knowledge of the role of EMT in the biology of different subtypes of breast cancer. We will further explore the correlation between genetic switches leading to EMT and EMT-induced alterations within the TME that drive tumor growth and metastasis, as well as their possible effect on therapeutic response in breast cancer.
Collapse
Affiliation(s)
- Snahlata Singh
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Rumela Chakrabarti
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
4
|
Plotnik JP, Hollenhorst PC. Interaction with ZMYND11 mediates opposing roles of Ras-responsive transcription factors ETS1 and ETS2. Nucleic Acids Res 2017; 45:4452-4462. [PMID: 28119415 PMCID: PMC5416753 DOI: 10.1093/nar/gkx039] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 01/22/2017] [Indexed: 12/13/2022] Open
Abstract
Aberrant activation of RAS/MAPK signaling is a driver of over one third of all human carcinomas. The homologous transcription factors ETS1 and ETS2 mediate activation of gene expression programs downstream of RAS/MAPK signaling. ETS1 is important for oncogenesis in many tumor types. However, ETS2 can act as an oncogene in some cellular backgrounds, and as a tumor suppressor in others, and the molecular mechanism responsible for this cell-type specific function remains unknown. Here, we show that ETS1 and ETS2 can regulate a cell migration gene expression program in opposite directions, and provide the first comparison of the ETS1 and ETS2 cistromes. This genomic data and an ETS1 deletion line reveal that the opposite function of ETS2 is a result of binding site competition and transcriptional attenuation due to weaker transcriptional activation by ETS2 compared to ETS1. This weaker activation was mapped to the ETS2 N-terminus and a specific interaction with the co-repressor ZMYND11 (BS69). Furthermore, ZMYND11 expression levels in patient tumors correlated with oncogenic versus tumor suppressive roles of ETS2. Therefore, these data indicate a novel and specific mechanism allowing ETS2 to switch between oncogenic and tumor suppressive functions in a cell-type specific manner.
Collapse
Affiliation(s)
- Joshua P Plotnik
- Biology Department, Indiana University, Bloomington, IN 47405, USA
| | - Peter C Hollenhorst
- Medical Sciences, Indiana University School of Medicine, Bloomington, IN 47405, USA
| |
Collapse
|
5
|
Pitarresi JR, Liu X, Sharma SM, Cuitiño MC, Kladney RD, Mace TA, Donohue S, Nayak SG, Qu C, Lee J, Woelke SA, Trela S, LaPak K, Yu L, McElroy J, Rosol TJ, Shakya R, Ludwig T, Lesinski GB, Fernandez SA, Konieczny SF, Leone G, Wu J, Ostrowski MC. Stromal ETS2 Regulates Chemokine Production and Immune Cell Recruitment during Acinar-to-Ductal Metaplasia. Neoplasia 2017; 18:541-52. [PMID: 27659014 PMCID: PMC5031867 DOI: 10.1016/j.neo.2016.07.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 07/22/2016] [Accepted: 07/25/2016] [Indexed: 12/30/2022] Open
Abstract
Preclinical studies have suggested that the pancreatic tumor microenvironment both inhibits and promotes tumor development and growth. Here we establish the role of stromal fibroblasts during acinar-to-ductal metaplasia (ADM), an initiating event in pancreatic cancer formation. The transcription factor V-Ets avian erythroblastosis virus E26 oncogene homolog 2 (ETS2) was elevated in smooth muscle actin–positive fibroblasts in the stroma of pancreatic ductal adenocarcinoma (PDAC) patient tissue samples relative to normal pancreatic controls. LSL-KrasG12D/+; LSL-Trp53R172H/+; Pdx-1-Cre (KPC) mice showed that ETS2 expression initially increased in fibroblasts during ADM and remained elevated through progression to PDAC. Conditional ablation of Ets-2 in pancreatic fibroblasts in a KrasG12D-driven mouse ADM model decreased the amount of ADM events. ADMs from fibroblast Ets-2–deleted animals had reduced epithelial cell proliferation and increased apoptosis. Surprisingly, fibroblast Ets-2 deletion significantly altered immune cell infiltration into the stroma, with an increased CD8+ T-cell population, and decreased presence of regulatory T cells (Tregs), myeloid-derived suppressor cells, and mature macrophages. The mechanism involved ETS2-dependent chemokine ligand production in fibroblasts. ETS2 directly bound to regulatory sequences for Ccl3, Ccl4, Cxcl4, Cxcl5, and Cxcl10, a group of chemokines that act as potent mediators of immune cell recruitment. These results suggest an unappreciated role for ETS2 in fibroblasts in establishing an immune-suppressive microenvironment in response to oncogenic KrasG12D signaling during the initial stages of tumor development.
Collapse
Affiliation(s)
- Jason R Pitarresi
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; Department of Cancer Biology & Genetics, The Ohio State University, Columbus, OH 43210, USA
| | - Xin Liu
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; Department of Cancer Biology & Genetics, The Ohio State University, Columbus, OH 43210, USA
| | - Sudarshana M Sharma
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; Department of Cancer Biology & Genetics, The Ohio State University, Columbus, OH 43210, USA
| | - Maria C Cuitiño
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; Department of Cancer Biology & Genetics, The Ohio State University, Columbus, OH 43210, USA
| | - Raleigh D Kladney
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; Department of Cancer Biology & Genetics, The Ohio State University, Columbus, OH 43210, USA
| | - Thomas A Mace
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Sydney Donohue
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; Department of Cancer Biology & Genetics, The Ohio State University, Columbus, OH 43210, USA
| | - Sunayana G Nayak
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; Department of Cancer Biology & Genetics, The Ohio State University, Columbus, OH 43210, USA
| | - Chunjing Qu
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - James Lee
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; Department of Cancer Biology & Genetics, The Ohio State University, Columbus, OH 43210, USA
| | - Sarah A Woelke
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; Department of Cancer Biology & Genetics, The Ohio State University, Columbus, OH 43210, USA
| | - Stefan Trela
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; Department of Cancer Biology & Genetics, The Ohio State University, Columbus, OH 43210, USA
| | - Kyle LaPak
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; Department of Cancer Biology & Genetics, The Ohio State University, Columbus, OH 43210, USA
| | - Lianbo Yu
- Department of Biomedical Informatics' Center for Biostatistics, The Ohio State University, Columbus, OH 43210, USA
| | - Joseph McElroy
- Department of Biomedical Informatics' Center for Biostatistics, The Ohio State University, Columbus, OH 43210, USA
| | - Thomas J Rosol
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
| | - Reena Shakya
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; Department of Cancer Biology & Genetics, The Ohio State University, Columbus, OH 43210, USA
| | - Thomas Ludwig
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; Department of Cancer Biology & Genetics, The Ohio State University, Columbus, OH 43210, USA
| | - Gregory B Lesinski
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Soledad A Fernandez
- Department of Biomedical Informatics' Center for Biostatistics, The Ohio State University, Columbus, OH 43210, USA
| | - Stephen F Konieczny
- Department of Biological Sciences and the Purdue Center for Cancer Research and the Bindley Bioscience Center, Purdue University, West Lafayette, IN 47907-2057, USA
| | - Gustavo Leone
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; Department of Cancer Biology & Genetics, The Ohio State University, Columbus, OH 43210, USA
| | - Jinghai Wu
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; Department of Cancer Biology & Genetics, The Ohio State University, Columbus, OH 43210, USA
| | - Michael C Ostrowski
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; Department of Cancer Biology & Genetics, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
6
|
Sizemore GM, Pitarresi JR, Balakrishnan S, Ostrowski MC. The ETS family of oncogenic transcription factors in solid tumours. Nat Rev Cancer 2017; 17:337-351. [PMID: 28450705 DOI: 10.1038/nrc.2017.20] [Citation(s) in RCA: 220] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Findings over the past decade have identified aberrant activation of the ETS transcription factor family throughout all stages of tumorigenesis. Specifically in solid tumours, gene rearrangement and amplification, feed-forward growth factor signalling loops, formation of gain-of-function co-regulatory complexes and novel cis-acting mutations in ETS target gene promoters can result in increased ETS activity. In turn, pro-oncogenic ETS signalling enhances tumorigenesis through a broad mechanistic toolbox that includes lineage specification and self-renewal, DNA damage and genome instability, epigenetics and metabolism. This Review discusses these different mechanisms of ETS activation and subsequent oncogenic implications, as well as the clinical utility of ETS factors.
Collapse
Affiliation(s)
- Gina M Sizemore
- The Comprehensive Cancer Center, The Ohio State University
- Department of Cancer Biology and Genetics, The Ohio State University, 598 Biomedical Research Tower, 460 W. 12th Avenue, Columbus, Ohio 43210, USA
| | - Jason R Pitarresi
- The Comprehensive Cancer Center, The Ohio State University
- Department of Cancer Biology and Genetics, The Ohio State University, 598 Biomedical Research Tower, 460 W. 12th Avenue, Columbus, Ohio 43210, USA
| | - Subhasree Balakrishnan
- The Comprehensive Cancer Center, The Ohio State University
- Department of Cancer Biology and Genetics, The Ohio State University, 598 Biomedical Research Tower, 460 W. 12th Avenue, Columbus, Ohio 43210, USA
| | - Michael C Ostrowski
- The Comprehensive Cancer Center, The Ohio State University
- Department of Cancer Biology and Genetics, The Ohio State University, 598 Biomedical Research Tower, 460 W. 12th Avenue, Columbus, Ohio 43210, USA
| |
Collapse
|
7
|
Sinh ND, Endo K, Miyazawa K, Saitoh M. Ets1 and ESE1 reciprocally regulate expression of ZEB1/ZEB2, dependent on ERK1/2 activity, in breast cancer cells. Cancer Sci 2017; 108:952-960. [PMID: 28247944 PMCID: PMC5448599 DOI: 10.1111/cas.13214] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 02/21/2017] [Accepted: 02/23/2017] [Indexed: 12/17/2022] Open
Abstract
The epithelial–mesenchymal transition (EMT) is a crucial morphological event that occurs during progression of epithelial tumors. We reported previously that levels of the δ‐crystallin/E2‐box factor 1 (δEF1) family proteins (Zinc finger E‐box binding homeobox 1 [ZEB1]/δEF1 and ZEB2/ Smad‐interacting protein 1), key regulators of the EMT, are positively correlated with EMT phenotypes and aggressiveness of breast cancer. Here, we show that Ets1 induces ZEB expression and activates the ZEB1 promoter, independently of its threonine 38 phosphorylation status. In the basal‐like subtype of breast cancer cells, siRNAs targeting Ets1 repressed expression of ZEBs and partially restored their epithelial phenotypes and sensitivity to antitumor drugs. Epithelium‐specific ETS transcription factor 1 (ESE1), a member of the Ets transcription factor family, was originally characterized as being expressed in an epithelial‐restricted pattern, placing it within the epithelium‐specific ETS subfamily. ESE1, highly expressed in the luminal subtype of breast cancer cells, was repressed by activation of the MEK–ERK pathway, resulting in induction of ZEBs through Ets1 upregulation. Conversely, Ets1, highly expressed in the basal‐like subtype, was repressed by inactivation of MEK–ERK pathway, resulting in reduction of ZEBs through ESE1 upregulation. These findings suggest that ESE1 and Ets1, whose expressions are reciprocally regulated by the MEK–ERK pathway, define the EMT phenotype through controlling expression of ZEBs in each subtype of breast cancer cells.
Collapse
Affiliation(s)
- Nguyen Duy Sinh
- Department of Biochemistry, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, Japan
| | - Kaori Endo
- Department of Biochemistry, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, Japan
| | - Keiji Miyazawa
- Department of Biochemistry, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, Japan
| | - Masao Saitoh
- Department of Biochemistry, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, Japan.,Center for Medical Education and Sciences, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, Japan
| |
Collapse
|
8
|
Yang A, Currier D, Poitras JL, Reeves RH. Increased Skin Tumor Incidence and Keratinocyte Hyper-Proliferation in a Mouse Model of Down Syndrome. PLoS One 2016; 11:e0146570. [PMID: 26752700 PMCID: PMC4708994 DOI: 10.1371/journal.pone.0146570] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Accepted: 12/14/2015] [Indexed: 11/19/2022] Open
Abstract
Down syndrome (DS) is a genetic disorder caused by the presence of an extra copy of human chromosome 21 (Hsa21). People with DS display multiple clinical traits as a result of the dosage imbalance of several hundred genes. While many outcomes of trisomy are deleterious, epidemiological studies have shown a significant risk reduction for most solid tumors in DS. Reduced tumor incidence has also been demonstrated in functional studies using trisomic DS mouse models. Therefore, it was interesting to find that Ts1Rhr trisomic mice developed more papillomas than did their euploid littermates in a DMBA-TPA chemical carcinogenesis paradigm. Papillomas in Ts1Rhr mice also proliferated faster. The increased proliferation was likely caused by a stronger response of trisomy to TPA induction. Treatment with TPA caused hyperkeratosis to a greater degree in Ts1Rhr mice than in euploid, reminiscent of hyperkeratosis seen in people with DS. Cultured trisomic keratinocytes also showed increased TPA-induced proliferation compared to euploid controls. These outcomes suggest that altered gene expression in trisomy could elevate a proliferation signalling pathway. Gene expression analysis of cultured keratinocytes revealed upregulation of several trisomic and disomic genes may contribute to this hyperproliferation. The contributions of these genes to hyper-proliferation were further validated in a siRNA knockdown experiment. The unexpected findings reported here add a new aspect to our understanding of tumorigenesis with clinical implications for DS and demonstrates the complexity of the tumor repression phenotype in this frequent condition.
Collapse
Affiliation(s)
- Annan Yang
- Department of Physiology and McKusick Nathans Institute for Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Duane Currier
- Department of Physiology and McKusick Nathans Institute for Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Jennifer L. Poitras
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Roger H. Reeves
- Department of Physiology and McKusick Nathans Institute for Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
9
|
Zong Y, Goldstein AS, Witte ON. Tissue Recombination Models for the Study of Epithelial Cancer. Cold Spring Harb Protoc 2015; 2015:pdb.top069880. [PMID: 26631129 DOI: 10.1101/pdb.top069880] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Animal models of cancer provide fundamental insight into the cellular and molecular mechanisms of human cancer development. As an alternative to genetically engineered mouse models, increasing evidence shows that tissue recombination and transplantation models represent an efficient approach to faithfully recapitulate solid epithelial cancer in mice. Cancer can be rapidly initiated through lentiviral delivery of defined genetic alterations into target cells that are grown in a physiological milieu with an appropriate epithelial-stromal interaction. Through genetic manipulation of distinct subpopulations of epithelial cells and mesenchymal cells, this powerful system can readily test both cell-autonomous roles of genetic events in the epithelial compartment and the paracrine effects of the microenvironment. Here we review the recent advances in mouse models of several epithelial cancers achieved using orthotopic transplantation and tissue recombination strategies, with an emphasis on the dissociated cell in vivo prostate regeneration model to investigate prostate cancer.
Collapse
Affiliation(s)
- Yang Zong
- Howard Hughes Medical Institute, University of California, Los Angeles, California 90095
| | - Andrew S Goldstein
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, California 90095; Department of Urology, University of California, Los Angeles, California 90095; Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, California 90095; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, California 90095
| | - Owen N Witte
- Howard Hughes Medical Institute, University of California, Los Angeles, California 90095; Department of Molecular and Medical Pharmacology, University of California, Los Angeles, California 90095; Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California 90095; Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, California 90095; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, California 90095
| |
Collapse
|
10
|
Kar A, Gutierrez-Hartmann A. Molecular mechanisms of ETS transcription factor-mediated tumorigenesis. Crit Rev Biochem Mol Biol 2013; 48:522-43. [PMID: 24066765 DOI: 10.3109/10409238.2013.838202] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The E26 transformation-specific (ETS) family of transcription factors is critical for development, differentiation, proliferation and also has a role in apoptosis and tissue remodeling. Changes in expression of ETS proteins therefore have a significant impact on normal physiology of the cell. Transcriptional consequences of ETS protein deregulation by overexpression, gene fusion, and modulation by RAS/MAPK signaling are linked to alterations in normal cell functions, and lead to unlimited increased proliferation, sustained angiogenesis, invasion and metastasis. Existing data show that ETS proteins control pathways in epithelial cells as well as stromal compartments, and the crosstalk between the two is essential for normal development and cancer. In this review, we have focused on ETS factors with a known contribution in cancer development. Instead of focusing on a prototype, we address cancer associated ETS proteins and have highlighted the diverse mechanisms by which they affect carcinogenesis. Finally, we discuss strategies for ETS factor targeting as a potential means for cancer therapeutics.
Collapse
|
11
|
Wallace JA, Li F, Balakrishnan S, Cantemir-Stone CZ, Pecot T, Martin C, Kladney RD, Sharma SM, Trimboli AJ, Fernandez SA, Yu L, Rosol TJ, Stromberg PC, Lesurf R, Hallett M, Park M, Leone G, Ostrowski MC. Ets2 in tumor fibroblasts promotes angiogenesis in breast cancer. PLoS One 2013; 8:e71533. [PMID: 23977064 PMCID: PMC3745457 DOI: 10.1371/journal.pone.0071533] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 06/28/2013] [Indexed: 01/20/2023] Open
Abstract
Tumor fibroblasts are active partners in tumor progression, but the genes and pathways that mediate this collaboration are ill-defined. Previous work demonstrates that Ets2 function in stromal cells significantly contributes to breast tumor progression. Conditional mouse models were used to study the function of Ets2 in both mammary stromal fibroblasts and epithelial cells. Conditional inactivation of Ets2 in stromal fibroblasts in PyMT and ErbB2 driven tumors significantly reduced tumor growth, however deletion of Ets2 in epithelial cells in the PyMT model had no significant effect. Analysis of gene expression in fibroblasts revealed a tumor- and Ets2-dependent gene signature that was enriched in genes important for ECM remodeling, cell migration, and angiogenesis in both PyMT and ErbB2 driven-tumors. Consistent with these results, PyMT and ErbB2 tumors lacking Ets2 in fibroblasts had fewer functional blood vessels, and Ets2 in fibroblasts elicited changes in gene expression in tumor endothelial cells consistent with this phenotype. An in vivo angiogenesis assay revealed the ability of Ets2 in fibroblasts to promote blood vessel formation in the absence of tumor cells. Importantly, the Ets2-dependent gene expression signatures from both mouse models were able to distinguish human breast tumor stroma from normal stroma, and correlated with patient outcomes in two whole tumor breast cancer data sets. The data reveals a key function for Ets2 in tumor fibroblasts in signaling to endothelial cells to promote tumor angiogenesis. The results highlight the collaborative networks that orchestrate communication between stromal cells and tumor cells, and suggest that targeting tumor fibroblasts may be an effective strategy for developing novel anti-angiogenic therapies.
Collapse
Affiliation(s)
- Julie A. Wallace
- Department of Molecular and Cellular Biochemistry, College of Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Fu Li
- Department of Molecular and Cellular Biochemistry, College of Medicine, The Ohio State University, Columbus, Ohio, United States of America
- Department of Molecular Genetics, College of Biological Sciences, The Ohio State University, Columbus, Ohio, United States of America
| | - Subhasree Balakrishnan
- Department of Molecular and Cellular Biochemistry, College of Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Carmen Z. Cantemir-Stone
- Department of Molecular and Cellular Biochemistry, College of Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Thierry Pecot
- Department of Molecular Genetics, College of Biological Sciences, The Ohio State University, Columbus, Ohio, United States of America
- Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University, Columbus, Ohio, United States of America
- The Ohio State University Computer Science and Engineering, The Ohio State University Biomedical Informatics, The Ohio State University, Columbus, Ohio, United States of America
| | - Chelsea Martin
- Department of Molecular and Cellular Biochemistry, College of Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Raleigh D. Kladney
- Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University, Columbus, Ohio, United States of America
| | - Sudarshana M. Sharma
- Department of Molecular and Cellular Biochemistry, College of Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Anthony J. Trimboli
- Department of Molecular Genetics, College of Biological Sciences, The Ohio State University, Columbus, Ohio, United States of America
- Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University, Columbus, Ohio, United States of America
| | - Soledad A. Fernandez
- Center for Biostatistics, The Ohio State University, Columbus, Ohio, United States of America
| | - Lianbo Yu
- Center for Biostatistics, The Ohio State University, Columbus, Ohio, United States of America
| | - Thomas J. Rosol
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Paul C. Stromberg
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Robert Lesurf
- Department of Biochemistry, Rosalind and Morris Goodman Cancer Centre, McGill University, Québec, Canada
| | - Michael Hallett
- Department of Biochemistry, Rosalind and Morris Goodman Cancer Centre, McGill University, Québec, Canada
- McGill Centre for Bioinformatics, McGill University, Québec, Canada
| | - Morag Park
- Department of Biochemistry, Rosalind and Morris Goodman Cancer Centre, McGill University, Québec, Canada
- Department of Oncology, McGill University, Québec, Canada
| | - Gustavo Leone
- Department of Molecular Genetics, College of Biological Sciences, The Ohio State University, Columbus, Ohio, United States of America
- Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University, Columbus, Ohio, United States of America
- Tumor Microenvironment Program, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, United States of America
| | - Michael C. Ostrowski
- Department of Molecular and Cellular Biochemistry, College of Medicine, The Ohio State University, Columbus, Ohio, United States of America
- Tumor Microenvironment Program, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, United States of America
- * E-mail:
| |
Collapse
|
12
|
The use of mouse models for understanding the biology of down syndrome and aging. Curr Gerontol Geriatr Res 2012; 2012:717315. [PMID: 22461792 PMCID: PMC3296169 DOI: 10.1155/2012/717315] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2011] [Accepted: 12/06/2011] [Indexed: 12/16/2022] Open
Abstract
Down syndrome is a complex condition caused by trisomy of human chromosome 21. The biology of aging may be different in individuals with Down syndrome; this is not well understood in any organism. Because of its complexity, many aspects of Down syndrome must be studied either in humans or in animal models. Studies in humans are essential but are limited for ethical and practical reasons. Fortunately, genetically altered mice can serve as extremely useful models of Down syndrome, and progress in their production and analysis has been remarkable. Here, we describe various mouse models that have been used to study Down syndrome. We focus on segmental trisomies of mouse chromosome regions syntenic to human chromosome 21, mice in which individual genes have been introduced, or mice in which genes have been silenced by targeted mutagenesis. We selected a limited number of genes for which considerable evidence links them to aspects of Down syndrome, and about which much is known regarding their function. We focused on genes important for brain and cognitive function, and for the altered cancer spectrum seen in individuals with Down syndrome. We conclude with observations on the usefulness of mouse models and speculation on future directions.
Collapse
|
13
|
Múnera J, Ceceña G, Jedlicka P, Wankell M, Oshima RG. Ets2 regulates colonic stem cells and sensitivity to tumorigenesis. STEM CELLS (DAYTON, OHIO) 2011. [PMID: 21425406 DOI: 10.1002/stem.599.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Ets2 has both tumor repressive and supportive functions for different types of cancer. We have investigated the role of Ets2 within intestinal epithelial cells in postnatal mouse colon development and tumorigenesis. Conditional inactivation of Ets2 within intestinal epithelial cells results in over representation of Ets2-deficient colon crypts within young and adult animals. This preferential representation is associated with an increased number of proliferative cells within the stem cell region and an increased rate of crypt fission in young mice that result in larger patches of Ets2-deficient crypts. These effects are consistent with a selective advantage of Ets2-deficient intestinal stem cells in colonizing colonic crypts and driving crypt fission. Ets2-deficient colon crypts have an increased mucosal thickness, an increased number of goblet cells, and an increased density. Mice with Ets2-deficient intestinal cells develop more colon tumors in response to treatment with azoxymethane and dextran sulfate sodium. The selective population of colon crypts, the altered differentiation state and increased sensitivity to carcinogen-induced tumors all indicate that Ets2 deficiency alters colon stem cell number or behavior. Ets2-dependent, epithelial cell-autonomous repression of intestinal tumors may contribute to protection from colon cancer of persons with increased dosage of chromosome 21.
Collapse
Affiliation(s)
- Jorge Múnera
- Tumor Development Program, Cancer Research Center, Sanford-Burnham Medical Research Institute, La Jolla, California 92037, USA
| | | | | | | | | |
Collapse
|
14
|
Múnera J, Ceceña G, Jedlicka P, Wankell M, Oshima RG. Ets2 regulates colonic stem cells and sensitivity to tumorigenesis. Stem Cells 2011; 29:430-9. [PMID: 21425406 DOI: 10.1002/stem.599] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Ets2 has both tumor repressive and supportive functions for different types of cancer. We have investigated the role of Ets2 within intestinal epithelial cells in postnatal mouse colon development and tumorigenesis. Conditional inactivation of Ets2 within intestinal epithelial cells results in over representation of Ets2-deficient colon crypts within young and adult animals. This preferential representation is associated with an increased number of proliferative cells within the stem cell region and an increased rate of crypt fission in young mice that result in larger patches of Ets2-deficient crypts. These effects are consistent with a selective advantage of Ets2-deficient intestinal stem cells in colonizing colonic crypts and driving crypt fission. Ets2-deficient colon crypts have an increased mucosal thickness, an increased number of goblet cells, and an increased density. Mice with Ets2-deficient intestinal cells develop more colon tumors in response to treatment with azoxymethane and dextran sulfate sodium. The selective population of colon crypts, the altered differentiation state and increased sensitivity to carcinogen-induced tumors all indicate that Ets2 deficiency alters colon stem cell number or behavior. Ets2-dependent, epithelial cell-autonomous repression of intestinal tumors may contribute to protection from colon cancer of persons with increased dosage of chromosome 21.
Collapse
Affiliation(s)
- Jorge Múnera
- Tumor Development Program, Cancer Research Center, Sanford-Burnham Medical Research Institute, La Jolla, California 92037, USA
| | | | | | | | | |
Collapse
|
15
|
Leask A. Eureka! Ets a target for fibrosis! J Cell Commun Signal 2011; 5:325-6. [PMID: 21748431 DOI: 10.1007/s12079-011-0145-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Accepted: 07/06/2011] [Indexed: 11/28/2022] Open
Abstract
The oncogenic Ets family of transcription factors is now recognized to play a key role in fibroblasts as it controls the expression of a variety of pro-fibrotic genes, including the induction of CCN2 by transforming growth factor β. A recent report (Baran et al., Am J Respir Cell Mol Biol. 2011 May 11) shows that mice containing a version of ets2 that is incapable of being phosphorylated are resistant to bleomycin-induced lung fibrosis. This latter paper is the subject of this commentary.
Collapse
Affiliation(s)
- Andrew Leask
- Department of Dentistry, Dental Sciences Building, University of Western Ontario, London, ON, Canada, N6A 5C1,
| |
Collapse
|
16
|
Cardiff RD, Kenney N. A compendium of the mouse mammary tumor biologist: from the initial observations in the house mouse to the development of genetically engineered mice. Cold Spring Harb Perspect Biol 2011; 3:cshperspect.a003111. [PMID: 20961975 DOI: 10.1101/cshperspect.a003111] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
For over a century, mouse mammary tumor biology and the associated mouse mammary tumor virus (MMTV) have served as the foundation for experimental cancer research, in general, and, in particular, experimental breast cancer research. Spontaneous mouse mammary tumors were the basis for studies of the natural history of neoplasia, oncogenic viruses, host responses, endocrinology and neoplastic progression. However, lacking formal proof of a human mammary tumor virus, the preeminence of the mouse model faded in the 1980s. Since the late 1980s, genetically engineered mice (GEM) have proven extremely useful for studying breast cancer and have become the animal model for human breast cancer. Hundreds of mouse models of human breast cancer have been developed since the first demonstration in 1984. The GEM have attracted a new generation of molecular and cellular biologists eager to apply their skill sets to these surrogates of the human disease. Newcomers often enter the field without an appreciation of the origins of mouse mammary tumor biology and the basis for many of the prevailing concepts. Our purpose in writing this compendium is to extend an "olive branch" while simultaneously deepen the knowledge of the novice mouse mammary tumor biologist as they journey into a field rich in pathology and genetics spanning several centuries.
Collapse
Affiliation(s)
- Robert D Cardiff
- Center for Comparative Medicine, University of California, Davis, 95616, USA.
| | | |
Collapse
|
17
|
Baran CP, Fischer SN, Nuovo GJ, Kabbout MN, Hitchcock CL, Bringardner BD, McMaken S, Newland CA, Cantemir-Stone CZ, Phillips GS, Ostrowski MC, Marsh CB. Transcription factor ets-2 plays an important role in the pathogenesis of pulmonary fibrosis. Am J Respir Cell Mol Biol 2011; 45:999-1006. [PMID: 21562315 DOI: 10.1165/rcmb.2010-0490oc] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Ets-2 is a ubiquitous transcription factor activated after phosphorylation at threonine-72. Previous studies highlighted the importance of phosphorylated ets-2 in lung inflammation and extracellular matrix remodeling, two pathways involved in pulmonary fibrosis. We hypothesized that phosphorylated ets-2 played an important role in pulmonary fibrosis, and we sought to determine the role of ets-2 in its pathogenesis. We challenged ets-2 (A72/A72) transgenic mice (harboring a mutated form of ets-2 at phosphorylation site threonine-72) and ets-2 (wild-type/wild-type [WT/WT]) control mice with sequential intraperitoneal injections of bleomycin, followed by quantitative measurements of lung fibrosis and inflammation and primary cell in vitro assays. Concentrations of phosphorylated ets-2 were detected via the single and dual immunohistochemical staining of murine lungs and lung sections from patients with idiopathic pulmonary fibrosis. Ets-2 (A72/A72) mice were protected from bleomycin-induced pulmonary fibrosis, compared with ets-2 (WT/WT) mice. This protection was characterized by decreased lung pathological abnormalities and the fibrotic gene expression of Type I collagen, Type III collagen, α-smooth muscle actin, and connective tissue growth factor. Immunohistochemical staining of lung sections from bleomycin-treated ets-2 (WT/WT) mice and from patients with idiopathic pulmonary fibrosis demonstrated increased staining of phosphorylated ets-2 that colocalized with Type I collagen expression and to fibroblastic foci. Lastly, primary lung fibroblasts from ets-2 (A72/A72) mice exhibited decreased expression of Type I collagen in response to stimulation with TGF-β, compared with fibroblasts from ets-2 (WT/WT) mice. These data indicate the importance of phosphorylated ets-2 in the pathogenesis of pulmonary fibrosis through the expression of Type I collagen and (myo)fibroblast activation.
Collapse
Affiliation(s)
- Christopher P Baran
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Dorothy M. Davis Heart and Lung Research Institute, Ohio State University, Columbus, 43210, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
C-Src is infrequently mutated in human cancers but it mediates oncogenic signals of many activated growth factor receptors and thus remains a key target for cancer therapy. However, the broad function of Src in many cell types and processes requires evaluation of Src-targeted therapeutics within a normal developmental and immune-competent environment. In an effort to understand the appropriate clinical use of Src inhibitors, we tested an Src inhibitor, SKI-606 (bosutinib), in the MMTV-PyVmT transgenic mouse model of breast cancer. Tumor formation in this model is dependent on the presence of Src, but the necessity of Src kinase activity for tumor formation has not been determined. Furthermore, Src inhibitors have not been examined in an autochthonous tumor model that permits assessment of effects on different stages of tumor progression. Here we show that oral administration of SKI-606 inhibited the phosphorylation of Src in mammary tumors and caused a rapid decrease in the Ezh2 Polycomb group histone H3K27 methyltransferase and an increase in epithelial organization. SKI-606 prevented the appearance of palpable tumors in over 50% of the animals and stopped tumor growth in older animals with pre-existing tumors. These antitumor effects were accompanied by decreased cellular proliferation, altered tumor blood vessel organization and dramatically increased differentiation to lactational and epidermal cell fates. SKI-606 controls the development of mammary tumors by inducing differentiation.
Collapse
|
19
|
Odiatis C, Georgiades P. New insights for Ets2 function in trophoblast using lentivirus-mediated gene knockdown in trophoblast stem cells. Placenta 2010; 31:630-40. [PMID: 20569982 DOI: 10.1016/j.placenta.2010.05.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Revised: 04/30/2010] [Accepted: 05/04/2010] [Indexed: 11/26/2022]
Abstract
Mouse trophoblast stem (TS) cells represent a unique in vitro system that provides an unlimited supply of TS cells for the study of trophoblast differentiation and TS cell self-renewal. Although the mouse transcription factor Ets2 is required for TS cell self-renewal, its role in this and in TS cell differentiation has not been explored fully, partly due to the early lethality of Ets2 null mice. To address this, we developed a novel lentivirus-based system that resulted in efficient Ets2 knockdown in the overwhelming majority of TS cells. This system enables functional studies in TS cells, especially for genes required for TS cell self-renewal because TS cell derivation using gene-knockout embryos for such genes depends on TS cell self-renewal. Using morphological/morphometric criteria and gene expression analysis, we show that the requirement for Ets2 in self-renewal of TS cells cultured in 'stem cell medium' (SCM) involves maintenance of the expression of genes that inhibit TS cell differentiation in SCM, such as Cdx2 and Esrrb, and preservation of the undifferentiated TS cell morphology. During TS cell differentiation caused by Cdx2/Esrrb downregulation, due to either Ets2 knockdown in SCM or culture in differentiation medium (DM), Ets2 is also required for the promotion of trophoblast giant cell (TGC) and junctional zone trophoblast (JZT) differentiation. This TGC differentiation involves Ets2-dependent expression of Hand1, a gene required for the differentiation of all TGC types. This study uncovers new roles for Ets2 in TS cell self-renewal and differentiation and demonstrates the usefulness of this lentivirus system for gene function studies in TS cells.
Collapse
Affiliation(s)
- C Odiatis
- Department of Biological Sciences, University of Cyprus, University Campus, Nicosia, Cyprus
| | | |
Collapse
|
20
|
The role of ets factors in tumor angiogenesis. JOURNAL OF ONCOLOGY 2010; 2010:767384. [PMID: 20454645 PMCID: PMC2863161 DOI: 10.1155/2010/767384] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2009] [Revised: 02/06/2010] [Accepted: 03/02/2010] [Indexed: 12/14/2022]
Abstract
Angiogenesis is a critical component of tumor growth. A number of growth factors, including VEGF, FGF, and HGF, have been implicated as angiogenic growth factors that promote tumor angiogenesis in different types of cancer. Ets-1 is the prototypic member of the Ets transcription factor family. Ets-1 is known to be a downstream mediator of angiogenic growth factors. Expression of Ets-1 in a variety of different tumors is associated with increased angiogenesis. A role for other selected members of the Ets transcription factor family has also been shown to be important for the development of tumor angiogenesis. Because Ets factors also express a number of other important genes involved in cell growth, they contribute not only to tumor growth, but to disease progression. Targeting Ets factors in mouse tumor models through the use of dominant-negative Ets proteins or membrane permeable peptides directed at competitively inhibiting the DNA binding domain has now demonstrated the therapeutic potential of inhibiting selected Ets transcription factors to limit tumor growth and disease progression.
Collapse
|
21
|
Zabuawala T, Taffany DA, Sharma SM, Merchant A, Adair B, Srinivasan R, Rosol TJ, Fernandez S, Huang K, Leone G, Ostrowski MC. An ets2-driven transcriptional program in tumor-associated macrophages promotes tumor metastasis. Cancer Res 2010; 70:1323-33. [PMID: 20145133 DOI: 10.1158/0008-5472.can-09-1474] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Tumor-associated macrophages (TAM) are implicated in breast cancer metastasis, but relatively little is known about the underlying genes and pathways that are involved. The transcription factor Ets2 is a direct target of signaling pathways involved in regulating macrophage functions during inflammation. We conditionally deleted Ets in TAMs to determine its function at this level on mouse mammary tumor growth and metastasis. Ets2 deletion in TAMs decreased the frequency and size of lung metastases in three different mouse models of breast cancer metastasis. Expression profiling and chromatin immunoprecipitation assays in isolated TAMs established that Ets2 repressed a gene program that included several well-characterized inhibitors of angiogenesis. Consistent with these results, Ets2 ablation in TAMs led to decreased angiogenesis and decreased growth of tumors. An Ets2-TAM expression signature consisting of 133 genes was identified within human breast cancer expression data which could retrospectively predict overall survival of patients with breast cancer in two independent data sets. In summary, we identified Ets2 as a central driver of a transcriptional program in TAMs that acts to promote lung metastasis of breast tumors.
Collapse
Affiliation(s)
- Tahera Zabuawala
- Department of Molecular and Cellular Biochemistry, Center for Biostatistics, College of Public Health, and Tumor Microenvironment Program, Comprehensive Cancer Center, Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Charlot C, Dubois-Pot H, Serchov T, Tourrette Y, Wasylyk B. A review of post-translational modifications and subcellular localization of Ets transcription factors: possible connection with cancer and involvement in the hypoxic response. Methods Mol Biol 2010; 647:3-30. [PMID: 20694658 DOI: 10.1007/978-1-60761-738-9_1] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Post-translational modifications and subcellular localizations modulate transcription factors, generating a code that is deciphered into an activity. We describe our current understanding of these processes for Ets factors, which have recently been recognized for their importance in various biological processes. We present the global picture for the family, and then focus on particular aspects related to cancer and hypoxia. The analysis of Post-translational modification and cellular localization is only beginning to enter the age of "omic," high content, systems biology. Our snap-shots of particularly active fields point to the directions in which new techniques will be needed, in our search for a more complete description of regulatory pathways.
Collapse
Affiliation(s)
- Céline Charlot
- Department of Cancer Biology, Institute de Genetique et de Biologie, Moleculaire et Cellulaire, Lille, France
| | | | | | | | | |
Collapse
|
23
|
Abstract
In this issue of Blood, Wei and colleagues investigate the overlapping roles of Ets1 and Ets2 in the regulation of endothelial cell function and survival during embryonic angiogenesis.1
Collapse
|
24
|
Fluck MM, Schaffhausen BS. Lessons in signaling and tumorigenesis from polyomavirus middle T antigen. Microbiol Mol Biol Rev 2009; 73:542-63, Table of Contents. [PMID: 19721090 PMCID: PMC2738132 DOI: 10.1128/mmbr.00009-09] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The small DNA tumor viruses have provided a very long-lived source of insights into many aspects of the life cycle of eukaryotic cells. In recent years, the emphasis has been on cancer-related signaling. Here we review murine polyomavirus middle T antigen, its mechanisms, and its downstream pathways of transformation. We concentrate on the MMTV-PyMT transgenic mouse, one of the most studied models of breast cancer, which permits the examination of in situ tumor progression from hyperplasia to metastasis.
Collapse
Affiliation(s)
- Michele M Fluck
- Department of Microbiology and Molecular Genetics, Interdepartmental Program in Cell and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA.
| | | |
Collapse
|
25
|
Cheng J, DeCaprio JA, Fluck MM, Schaffhausen BS. Cellular transformation by Simian Virus 40 and Murine Polyoma Virus T antigens. Semin Cancer Biol 2009; 19:218-28. [PMID: 19505649 PMCID: PMC2694755 DOI: 10.1016/j.semcancer.2009.03.002] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Revised: 03/19/2009] [Accepted: 03/20/2009] [Indexed: 01/09/2023]
Abstract
Simian Virus 40 (SV40) and Mouse Polyoma Virus (PY) are small DNA tumor viruses that have been used extensively to study cellular transformation. The SV40 early region encodes three tumor antigens, large T (LT), small T (ST) and 17KT that contribute to cellular transformation. While PY also encodes LT and ST, the unique middle T (MT) generates most of the transforming activity. SV40 LT mediated transformation requires binding to the tumor suppressor proteins Rb and p53 in the nucleus and ST binding to the protein phosphatase PP2A in the cytoplasm. SV40 LT also binds to several additional cellular proteins including p300, CBP, Cul7, IRS1, Bub1, Nbs1 and Fbxw7 that contribute to viral transformation. PY MT transformation is dependent on binding to PP2A and the Src family protein tyrosine kinases (PTK) and assembly of a signaling complex on cell membranes that leads to transformation in a manner similar to Her2/neu. Phosphorylation of MT tyrosine residues activates key signaling molecules including Shc/Grb2, PI3K and PLCgamma1. The unique contributions of SV40 LT and ST and PY MT to cellular transformation have provided significant insights into our understanding of tumor suppressors, oncogenes and the process of oncogenesis.
Collapse
Affiliation(s)
- Jingwei Cheng
- Department of Medical Oncology, Dana-Farber Cancer Institute; Department of Medicine, Brigham and Women’s Hospital; and Harvard Medical School, Boston, MA 02115
| | - James A. DeCaprio
- Department of Medical Oncology, Dana-Farber Cancer Institute; Department of Medicine, Brigham and Women’s Hospital; and Harvard Medical School, Boston, MA 02115
- Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, MA 02115
| | - Michele M. Fluck
- Department of Microbiology and Molecular Genetics, Interdepartmental Program in Cell and Molecular Biology, Michigan State University, East Lansing, MI 48824
| | | |
Collapse
|
26
|
Jedlicka P, Sui X, Gutierrez-Hartmann A. The Ets dominant repressor En/Erm enhances intestinal epithelial tumorigenesis in ApcMin mice. BMC Cancer 2009; 9:197. [PMID: 19545444 PMCID: PMC2714157 DOI: 10.1186/1471-2407-9-197] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2008] [Accepted: 06/22/2009] [Indexed: 01/26/2023] Open
Abstract
Background Ets transcription factors have been widely implicated in the control of tumorigenesis, with most studies suggesting tumor-promoting roles. However, few studies have examined Ets tumorigenesis-modifying functions in vivo using model genetic systems. Methods Using mice expressing a previously characterized Ets dominant repressor transgene in the intestinal epithelium (Villin-En/Erm), we examined the consequences of blocking endogenous Ets-mediated transcriptional activation on tumorigenesis in the ApcMin model of intestinal carcinoma. Results En/Erm expression in the intestine, at levels not associated with overt crypt-villus dysmorphogenesis, results in a marked increase in tumor number in ApcMin animals. Moreover, when examined histologically, tumors from En/Erm-expressing animals show a trend toward greater stromal invasiveness. Detailed analysis of crypt-villus homeostasis in these En/Erm transgenic animals suggests increased epithelial turnover as one possible mechanism for the enhanced tumorigenesis. Conclusion Our findings provide in vivo evidence for a tumor-restricting function of endogenous Ets factors in the intestinal epithelium.
Collapse
Affiliation(s)
- Paul Jedlicka
- Department of Pathology, University of Colorado Denver, Aurora CO, USA.
| | | | | |
Collapse
|
27
|
Abstract
The ras/Raf/Mek/Erk pathway plays a central role in coordinating endothelial cell activities during angiogenesis. Transcription factors Ets1 and Ets2 are targets of ras/Erk signaling pathways that have been implicated in endothelial cell function in vitro, but their precise role in vascular formation and function in vivo remains ill-defined. In this work, mutation of both Ets1 and Ets2 resulted in embryonic lethality at midgestation, with striking defects in vascular branching having been observed. The action of these factors was endothelial cell autonomous as demonstrated using Cre/loxP technology. Analysis of Ets1/Ets2 target genes in isolated embryonic endothelial cells demonstrated down-regulation of Mmp9, Bcl-X(L), and cIAP2 in double mutants versus controls, and chromatin immunoprecipitation revealed that both Ets1 and Ets2 were loaded at target promoters. Consistent with these observations, endothelial cell apoptosis was significantly increased both in vivo and in vitro when both Ets1 and Ets2 were mutated. These results establish essential and overlapping functions for Ets1 and Ets2 in coordinating endothelial cell functions with survival during embryonic angiogenesis.
Collapse
|
28
|
Jedlicka P, Gutierrez-Hartmann A. Ets transcription factors in intestinal morphogenesis, homeostasis and disease. Histol Histopathol 2008; 23:1417-24. [PMID: 18785124 DOI: 10.14670/hh-23.1417] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Ets transcription factors comprise a large family of sequence-specific regulators of gene expression with important and diverse roles in development and disease. Most Ets family members are expressed in the developing and/or mature intestine, frequently in a compartment-specific and temporally dynamic manner. However, with the exception of the highly expressed Elf3, involved in embryonic epithelial differentiation, little is known about Ets functions in intestinal development and homeostasis. Ets factors show altered expression in colon cancer, where they regulate pathways relevant to tumor progression. Ets factors also likely act as important modifiers of non-neoplastic intestinal disease by regulating pathways relevant to tissue injury and repair. Despite a large body of published work on Ets biology, much remains to be learned about the precise functions of this large and diverse gene family in intestinal morphogenesis, homeostasis, and both neoplastic and non-neoplastic pathology.
Collapse
Affiliation(s)
- Paul Jedlicka
- Department of Pathology, University of Colorado Denver, Aurora CO 80045, USA.
| | | |
Collapse
|
29
|
Lamber EP, Vanhille L, Textor LC, Kachalova GS, Sieweke MH, Wilmanns M. Regulation of the transcription factor Ets-1 by DNA-mediated homo-dimerization. EMBO J 2008; 27:2006-17. [PMID: 18566588 PMCID: PMC2486274 DOI: 10.1038/emboj.2008.117] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2007] [Accepted: 05/23/2008] [Indexed: 01/07/2023] Open
Abstract
The function of the Ets-1 transcription factor is regulated by two regions that flank its DNA-binding domain. A previously established mechanism for auto-inhibition of monomeric Ets-1 on DNA response elements with a single ETS-binding site, however, has not been observed for the stromelysin-1 promoter containing two palindromic ETS-binding sites. We present the structure of Ets-1 on this promoter element, revealing a ternary complex in which protein homo-dimerization is mediated by the specific arrangement of the two ETS-binding sites. In this complex, the N-terminal-flanking region is required for ternary protein-DNA assembly. Ets-1 variants, in which residues from this region are mutated, loose the ability for DNA-mediated dimerization and stromelysin-1 promoter transactivation. Thus, our data unravel the molecular basis for relief of auto-inhibition and the ability of Ets-1 to function as a facultative dimeric transcription factor on this site. Our findings may also explain previous data of Ets-1 function in the context of heterologous transcription factors, thus providing a molecular model that could also be valid for Ets-1 regulation by hetero-oligomeric assembly.
Collapse
Affiliation(s)
| | - Laurent Vanhille
- Centre d'Immunologie de Marseille-Luminy, Université de la Méditerranée, Marseille, France,Institut National de la Santé et de la Recherche Médicale, Marseille, France,Centre National de la Recherche Scientifique, Parc scientifique de Luminy, Marseille, France
| | | | - Galina S Kachalova
- Max-Planck Unit for Structural Molecular Biology, c/o DESY, Hamburg, Germany
| | - Michael H Sieweke
- Centre d'Immunologie de Marseille-Luminy, Université de la Méditerranée, Marseille, France,Institut National de la Santé et de la Recherche Médicale, Marseille, France,Centre National de la Recherche Scientifique, Parc scientifique de Luminy, Marseille, France
| | - Matthias Wilmanns
- EMBL-Hamburg, c/o DESY, Hamburg, Germany,EMBL Hamburg Outstation, EMBL c/o DESY, Notkestrasse 85, Building 25A, Hamburg D-22603, Germany. Tel.: +49 40 899 021 26; Fax: +49 40 899 021 49; E-mail:
| |
Collapse
|
30
|
Xu D, Dwyer J, Li H, Duan W, Liu JP. Ets2 maintains hTERT gene expression and breast cancer cell proliferation by interacting with c-Myc. J Biol Chem 2008; 283:23567-80. [PMID: 18586674 DOI: 10.1074/jbc.m800790200] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human telomerase reverse transcriptase (hTERT) underlies cancer cell immortalization, and the expression of hTERT is regulated strictly at the gene transcription. Here, we report that transcription factor Ets2 is required for hTERT gene expression and breast cancer cell proliferation. Silencing Ets2 induces a decrease of hTERT gene expression and increase in human breast cancer cell death. Reconstitution with recombinant hTERT rescues the apoptosis induced by Ets2 depression. In vitro and in vivo analyses show that Ets2 binds to the EtsA and EtsB DNA motifs on the hTERT gene promoter. Mutation of either Ets2 binding site reduces the hTERT promoter transcriptional activity. Moreover, Ets2 forms a complex with c-Myc as demonstrated by co-immunoprecipitation and glutathione S-transferase pulldown assays. Immunological depletion of Ets2, or mutation of the EtsA DNA motif, disables c-Myc binding to the E-box, whereas removal of c-Myc or mutation of the E-box also compromises Ets2 binding to EtsA. Thus, hTERT gene expression is maintained by a mechanism involving Ets2 interactions with the c-Myc transcription factor and the hTERT gene promoter, a protein-DNA complex critical for hTERT gene expression and breast cancer cell proliferation.
Collapse
Affiliation(s)
- Dakang Xu
- Department of Immunology, Central and Eastern Clinical School, Monash University, AMREP, Prahran, Victoria 3181, Australia.
| | | | | | | | | |
Collapse
|
31
|
Melani C, Sangaletti S, Barazzetta FM, Werb Z, Colombo MP. Amino-biphosphonate-mediated MMP-9 inhibition breaks the tumor-bone marrow axis responsible for myeloid-derived suppressor cell expansion and macrophage infiltration in tumor stroma. Cancer Res 2008; 67:11438-46. [PMID: 18056472 DOI: 10.1158/0008-5472.can-07-1882] [Citation(s) in RCA: 260] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BALB-neuT mice expressing an activated rat c-erbB-2/neu transgene under the mouse mammary tumor virus long terminal repeat show enhanced hematopoiesis with hyperproduction of myeloid-derived suppressor cells (MDSC) because of vascular endothelial growth factor (VEGF) secreted by the tumor. Here, we show that both tumor and stromal cells express matrix metalloproteinase-9 (MMP-9), thereby increasing the levels of pro-MMP-9 in the sera of tumor-bearing mice. Treatment with amino-biphosphonates impaired tumor growth, significantly decreased MMP-9 expression and the number of macrophages in tumor stroma, and reduced MDSC expansion both in bone marrow and peripheral blood by dropping serum pro-MMP-9 and VEGF. We dissected the role of tumor-derived MMP-9 from that secreted by stromal leukocytes by transplanting bone marrow from MMP-9 knockout mice into BALB-neuT mice. Although bone marrow progenitor-derived MMP-9 had a major role in driving MDSC expansion, amino-biphosphonate treatment of bone marrow chimeras further reduced both myelopoiesis and the supportive tumor stroma, thus enhancing tumor necrosis. Moreover, by reducing MDSC, amino-biphosphonates overcome the tumor-induced immune suppression and improved the generation and maintenance of antitumor immune response induced by immunization against the p185/HER-2. Our data reveal that suppression of MMP-9 activity breaks the vicious loop linking tumor growth and myeloid cell expansion, thus reducing immunosuppression. Amino-biphosphonates disclose a specific MMP-9 inhibitory activity that may broaden their application above their current usage.
Collapse
Affiliation(s)
- Cecilia Melani
- Immunotherapy and Gene Therapy Unit, Department of Experimental Oncology, Fondazione Istituto Ricovero e Cura a Carattere Scientifico Istituto Nazionale dei Tumori, Milan, Italy.
| | | | | | | | | |
Collapse
|
32
|
Prostate-derived Ets transcription factor overexpression is associated with nodal metastasis and hormone receptor positivity in invasive breast cancer. Neoplasia 2007; 9:788-96. [PMID: 17971898 DOI: 10.1593/neo.07460] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2007] [Revised: 08/08/2007] [Accepted: 08/10/2007] [Indexed: 11/18/2022] Open
Abstract
Prostate-derived Ets transcription factor (PDEF) has recently been associated with invasive breast cancer, but no expression profile has been defined in clinical specimens. We undertook a comprehensive PDEF transcriptional expression study of 86 breast cancer clinical specimens, several cell lines, and normal tissues. PDEF expression profile was analyzed according to standard clinicopathologic parameters and compared with hormonal receptor and HER-2/neu status and to the expression of the new tumor biomarker Dikkopf-1 (DKK1). Wide ranging PDEF overexpression was observed in 74% of tested tumors, at higher levels than the average expression found in normal breasts. High PDEF expression was associated with hormone receptor positivity (P < .001), moderate to good differentiation (less than grade III, P = .01), and dissemination to axillary lymph nodes (P = .002). PDEF was an independent risk factor for nodal involvement (multivariate analysis, odds ratio 1.250, P = .002). It was expressed in a different subgroup compared to DKK1-expressing tumors (P < .001). Our data imply that PDEF mRNA expression could be useful in breast cancer molecular staging. Further insights into PDEF functions at the protein level, and possible links with hormone receptors biology, bear great potential for new therapeutic avenues.
Collapse
|
33
|
Wen F, Tynan JA, Cecena G, Williams R, Múnera J, Mavrothalassitis G, Oshima RG. Ets2 is required for trophoblast stem cell self-renewal. Dev Biol 2007; 312:284-99. [PMID: 17977525 DOI: 10.1016/j.ydbio.2007.09.024] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2007] [Revised: 09/11/2007] [Accepted: 09/14/2007] [Indexed: 10/22/2022]
Abstract
The Ets2 transcription factor is essential for the development of the mouse placenta and for generating signals for embryonic mesoderm and axis formation. Using a conditional targeted Ets2 allele, we show that Ets2 is essential for trophoblast stem (TS) cells self-renewal. Inactivation of Ets2 results in TS cell slower growth, increased expression of a subset of differentiation-associated genes and decreased expression of several genes implicated in TS self-renewal. Among the direct TS targets of Ets2 is Cdx2, a key master regulator of TS cell state. Thus Ets2 contributes to the regulation of multiple genes important for maintaining the undifferentiated state of TS cells and as candidate signals for embryonic development.
Collapse
Affiliation(s)
- Fang Wen
- Molecular Pathology Graduate Program, University of California, San Diego, 9500 Gilman Drive 0612, La Jolla, CA 92093, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Dackor J, Strunk KE, Wehmeyer MM, Threadgill DW. Altered trophoblast proliferation is insufficient to account for placental dysfunction in Egfr null embryos. Placenta 2007; 28:1211-8. [PMID: 17822758 PMCID: PMC2121666 DOI: 10.1016/j.placenta.2007.07.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2007] [Revised: 07/22/2007] [Accepted: 07/23/2007] [Indexed: 01/27/2023]
Abstract
Homozygosity for the Egfr(tm1Mag) null allele in mice leads to genetic background dependent placental abnormalities and embryonic lethality. Molecular mechanisms or genetic modifiers that differentiate strains with surviving versus non-surviving Egfr nullizygous embryos have yet to be identified. Egfr transcripts in wildtype placenta were quantified by ribonuclease protection assay (RPA) and the lowest level of Egfr mRNA expression was found to coincide with Egfr(tm1Mag) homozygous lethality. Immunohistochemical analysis of ERBB family receptors, ERBB2, ERBB3, and ERBB4, showed similar expression between Egfr wildtype and null placentas indicating that Egfr null trophoblast do not up-regulate these receptors to compensate for EGFR deficiency. Significantly fewer numbers of bromodeoxyuridine (BrdU) positive trophoblast were observed in Egfr nullizygous placentas and Cdc25a and Myc, genes associated with proliferation, were significantly down-regulated in null placentas. However, strains with both mild and severe placental phenotypes exhibit reduced proliferation suggesting that this defect alone does not account for strain-specific embryonic lethality. Consistent with this hypothesis, intercrosses generating mice null for cell cycle checkpoint genes (Trp53, Rb1, Cdkn1a, Cdkn1b or Cdkn2c) in combination with Egfr deficiency did not increase survival of Egfr nullizygous embryos. Since complete development of the spongiotrophoblast compartment is not required for survival of Egfr nullizygous embryos, reduction of this layer that is commonly observed in Egfr nullizygous placentas likely accounts for the decrease in proliferation.
Collapse
Affiliation(s)
- J. Dackor
- Department of Genetics, , University of North Carolina, Chapel Hill, North Carolina 27599, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - K. E. Strunk
- Department of Genetics, , University of North Carolina, Chapel Hill, North Carolina 27599, USA
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee 37221, USA
| | - M. M. Wehmeyer
- Department of Genetics, , University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - D. W. Threadgill
- Department of Genetics, , University of North Carolina, Chapel Hill, North Carolina 27599, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, North Carolina 27599, USA
- Carolina Center for Genome Sciences, University of North Carolina, Chapel Hill, North Carolina 27599, USA
- **Corresponding author: David Threadgill, Department of Genetics, CB#7264, University of North Carolina, Chapel Hill, North Carolina 27599, Tel: 919-843-6472, Fax: 919-966-3292, E-mail:
| |
Collapse
|
35
|
Gutierrez-Hartmann A, Duval DL, Bradford AP. ETS transcription factors in endocrine systems. Trends Endocrinol Metab 2007; 18:150-8. [PMID: 17387021 DOI: 10.1016/j.tem.2007.03.002] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2006] [Revised: 02/19/2007] [Accepted: 03/16/2007] [Indexed: 12/31/2022]
Abstract
E26 transformation-specific (ETS) transcription factors have become increasingly recognized as key regulators of differentiation, hormone responses and tumorigenesis in endocrine organs and target tissues. The ETS family is highly diverse, consisting of both transcription activators and repressors that mediate growth factor signaling and regulate gene expression through combinatorial interactions with multiple protein partners on composite DNA elements. ETS proteins have a role in the endocrine system in establishing pituitary-specific gene expression, mammary gland development and cancers of the breast, prostate and reproductive organs.
Collapse
|
36
|
Abstract
For over a century, mouse mammary tumor biology and the associated Mouse mammary tumor virus (MMTV) have served as the foundation for experimental cancer research, in general, and, in particular, experimental breast cancer research. Spontaneous mouse mammary tumors were the basis for studies of the natural history of neoplasia, oncogenic viruses, host responses, endocrinology, and neoplastic progression. However, lacking formal proof of a human mammary tumor virus, the preeminence of the mouse model faded in the 1980s. Since the late 1980s, genetically engineered mice (GEM) have proven extremely useful for studying breast cancer and have become the animal model for human breast cancer. Hundreds of mouse models of human breast cancer have been developed since the first demonstration, in 1984, that the mouse mammary gland could be molecularly targeted and used to test the oncogenicity of candidate human genes. Now, very few scientists can avoid using a mouse model to test the biology of their favorite gene. The GEM have attracted a new generation of molecular and cellular biologists eager to apply their skills to these surrogates of the human disease. Newcomers often enter the field without an appreciation of the origins of mouse mammary tumor biology and the basis for many of the prevailing concepts. Our purpose in writing this short history of mouse mammary tumor biology is to provide a historical perspective for the benefit of the newcomers. If Einstein was correct in that "we stand on the shoulders of giants," the neophytes should meet their giants.
Collapse
Affiliation(s)
- Robert D Cardiff
- Center for Comparative Medicine, Department of Pathology and Laboratory Medicine, School of Medicine, University of California, Davis, California 95616, USA
| | | |
Collapse
|
37
|
Infiltrating neutrophils mediate the initial angiogenic switch in a mouse model of multistage carcinogenesis. Proc Natl Acad Sci U S A 2006. [PMID: 16891410 DOI: 10.1073/pnas.060180710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Matrix metalloprotease type 9 (MMP-9) has been functionally implicated in VEGF activation, the induction and maintenance of chronic angiogenesis, and early stage tumor growth in a number of mouse models of cancer. In this article, we have identified two inflammatory cell types that are major sources of MMP-9 in the angiogenic stages of pancreatic islet carcinogenesis that unfold in RIP1-Tag2 transgenic mice. MMP-9-expressing neutrophils were predominantly found inside angiogenic islet dysplasias and tumors, whereas MMP-9-expressing macrophages were localized along the periphery of such lesions. Transient depletion of neutrophils significantly suppressed VEGF:VEGF-receptor association, a signature of MMP-9 activity, and markedly reduced the frequency of initial angiogenic switching in dysplasias. Thus infiltrating neutrophils can play a crucial role in activating angiogenesis in a previously quiescent tissue vasculature during the early stages of carcinogenesis.
Collapse
|
38
|
Nozawa H, Chiu C, Hanahan D. Infiltrating neutrophils mediate the initial angiogenic switch in a mouse model of multistage carcinogenesis. Proc Natl Acad Sci U S A 2006; 103:12493-8. [PMID: 16891410 PMCID: PMC1531646 DOI: 10.1073/pnas.0601807103] [Citation(s) in RCA: 700] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Matrix metalloprotease type 9 (MMP-9) has been functionally implicated in VEGF activation, the induction and maintenance of chronic angiogenesis, and early stage tumor growth in a number of mouse models of cancer. In this article, we have identified two inflammatory cell types that are major sources of MMP-9 in the angiogenic stages of pancreatic islet carcinogenesis that unfold in RIP1-Tag2 transgenic mice. MMP-9-expressing neutrophils were predominantly found inside angiogenic islet dysplasias and tumors, whereas MMP-9-expressing macrophages were localized along the periphery of such lesions. Transient depletion of neutrophils significantly suppressed VEGF:VEGF-receptor association, a signature of MMP-9 activity, and markedly reduced the frequency of initial angiogenic switching in dysplasias. Thus infiltrating neutrophils can play a crucial role in activating angiogenesis in a previously quiescent tissue vasculature during the early stages of carcinogenesis.
Collapse
Affiliation(s)
- Hiroaki Nozawa
- Diabetes and Comprehensive Cancer Centers, University of California, San Francisco, CA 94143
| | - Christopher Chiu
- Diabetes and Comprehensive Cancer Centers, University of California, San Francisco, CA 94143
| | - Douglas Hanahan
- Diabetes and Comprehensive Cancer Centers, University of California, San Francisco, CA 94143
- To whom correspondence should be addressed at:
Diabetes and Comprehensive Cancer Centers, University of California, 513 Parnassus Avenue, HSW-1090, San Francisco, CA 94143. E-mail:
| |
Collapse
|
39
|
Baillat D, Leprivier G, Régnier D, Vintonenko N, Bègue A, Stéhelin D, Aumercier M. Stromelysin-1 expression is activated in vivo by Ets-1 through palindromic head-to-head Ets binding sites present in the promoter. Oncogene 2006; 25:5764-76. [PMID: 16652151 DOI: 10.1038/sj.onc.1209583] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Regulation of the gene expression of Stromelysin-1 (matrix metalloproteinase-3), a member of the matrix metalloproteinase family, is critical for tissue homeostasis. The Stromelysin-1 promoter is known to be transactivated by Ets proteins through palindromic head-to-head Ets binding sites (EBS), an unusual configuration among metalloproteinase promoters. Patterns of increased co-expression of Stromelysin-1 and Ets-1 genes have been observed in pathological processes such as rheumatoid arthritis, glomerulonephritis and tumor invasion. In this context, we show in a synovial fibroblastic model cell line (HIG-82), which is able to co-express Stromelysin-1 and Ets-1, that the EBS palindrome is essential for the expression of Stromelysin-1. More precisely, using electrophoretic mobility shift assays, DNA affinity purification and chromatin immunoprecipitation, we demonstrate that endogenous Ets-1, but not Ets-2, is present on this palindrome. The use of a dominant-negative form of Ets-1 and the decrease of Ets-1 amount either by fumagillin, an antiangiogenic compound, or by short interfering RNA show that the activation rate of the promoter and the expression of Stromelysin-1 correlate with the level of endogenous Ets-1. Thus, it is the first demonstration, using this cellular model, that endogenously expressed Ets-1 is actually a main activator of the Stromelysin-1 promoter through its effective binding to the EBS palindrome.
Collapse
Affiliation(s)
- D Baillat
- CNRS Unité Mixte de Recherche 8526, Institut de Biologie de Lille, Institut Pasteur de Lille, Université de Lille II, Lille Cedex, France
| | | | | | | | | | | | | |
Collapse
|
40
|
Gunawardane RN, Sgroi DC, Wrobel CN, Koh E, Daley GQ, Brugge JS. Novel role for PDEF in epithelial cell migration and invasion. Cancer Res 2006; 65:11572-80. [PMID: 16357167 PMCID: PMC2919290 DOI: 10.1158/0008-5472.can-05-1196] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cell migration and invasion are two critical cellular processes that are often deregulated during tumorigenesis. To identify factors that contribute to oncogenic progression by stimulating cell migration, we conducted a powerful retroviral based migration screen using an MCF7 cDNA library and the immortalized human breast epithelial cell line MCF-10A. We identified prostate derived Ets factor (PDEF), an Ets transcription factor that is overexpressed in both prostate and breast carcinoma, as a candidate promigratory gene from this screen. Whereas PDEF induced limited motility of MCF-10A cells, coexpression of PDEF with the receptor tyrosine kinases (RTK) ErbB2 and colony-stimulating factor receptor (CSF-1R)/CSF-1 significantly enhanced MCF-10A motility. Furthermore, cells coexpressing PDEF with either ErbB2 or CSF-1R/CSF-1 induced a dramatic invasive phenotype in three-dimensional cultures. Constitutive activation of the extracellular signal-regulated kinase (ERK) pathway also enhanced PDEF-induced motility and invasion, suggesting that activation of the ERK/mitogen-activated protein kinase by ErbB2 and CSF-1R/CSF-1 can cooperate with PDEF to promote motility and invasion. Furthermore, PDEF promoted anchorage-independent growth of ErbB2 and CSF-1R/CSF-1-expressing cells. Using laser capture microdissection, we also found that PDEF mRNA is overexpressed in breast tumor epithelia throughout tumor progression. Taken together, these findings suggest that the transcription factor PDEF may play an important role in breast tumorigenesis and that PDEF overexpression may be particularly significant in tumors that exhibit activation of oncogenic RTKs such as ErbB2 and CSF-1R.
Collapse
MESH Headings
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Carcinoma, Ductal, Breast/metabolism
- Carcinoma, Ductal, Breast/pathology
- Cell Movement
- Epithelial Cells/pathology
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- Lasers
- Macrophage Colony-Stimulating Factor/metabolism
- Mitogen-Activated Protein Kinases/metabolism
- Neoplasm Invasiveness
- Proto-Oncogene Proteins c-ets/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptor, ErbB-2/metabolism
- Receptor, Macrophage Colony-Stimulating Factor/metabolism
- Retroviridae/genetics
- Tumor Cells, Cultured
- Wound Healing
Collapse
Affiliation(s)
| | - Dennis C. Sgroi
- Department of Pathology, Harvard Medical School, Molecular Pathology Research Unit, Massachusetts General Hospital
| | | | - Eugene Koh
- Brown University, Providence, Rhode Island
| | - George Q. Daley
- Children’s Hospital, Harvard Medical School, Boston, Massachusetts
| | | |
Collapse
|
41
|
Harris J, Stanford PM, Sutherland K, Oakes SR, Naylor MJ, Robertson FG, Blazek KD, Kazlauskas M, Hilton HN, Wittlin S, Alexander WS, Lindeman GJ, Visvader JE, Ormandy CJ. Socs2 and elf5 mediate prolactin-induced mammary gland development. Mol Endocrinol 2006; 20:1177-87. [PMID: 16469767 DOI: 10.1210/me.2005-0473] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The proliferative phase of mammary alveolar morphogenesis is initiated during early pregnancy by rising levels of serum prolactin and progesterone, establishing a program of gene expression that is ultimately responsible for the development of the lobuloalveoli and the onset of lactation. To explore this largely unknown genetic program, we constructed transcript profiles derived from transplanted mammary glands formed by recombination of prolactin receptor (Prlr) knockout or wild-type mammary epithelium with wild-type mammary stroma. Comparison with profiles derived from prolactin-treated Scp2 mammary epithelial cells produced a small set of commonly prolactin-regulated genes that included the negative regulator of cytokine signaling, Socs2 (suppressor of cytokine signaling 2), and the ets transcription factor, E74-like factor 5 (Elf5). Homozygous null mutation of Socs2 rescued the failure of lactation and reduction of mammary signal transducer and activator of transcription 5 phosphorylation that characterizes Prlr heterozygous mice, demonstrating that mammary Socs2 is a key regulator of the prolactin-signaling pathway. Reexpression of Elf5 in Prlr nullizygous mammary epithelium restored lobuloalveolar development and milk production, demonstrating that Elf5 is a transcription factor capable of substituting for prolactin signaling. Thus, Socs2 and Elf5 are key members of the set of prolactin-regulated genes that mediate prolactin-driven mammary development.
Collapse
Affiliation(s)
- Jessica Harris
- Garvan Institute of Medical Research, St. Vincent's Hospital, Darlinghurst, New South Wales 2010, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Tynan JA, Wen F, Muller WJ, Oshima RG. Ets2-dependent microenvironmental support of mouse mammary tumors. Oncogene 2006; 24:6870-6. [PMID: 16007139 DOI: 10.1038/sj.onc.1208856] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Decreasing the amount of active mouse Ets2 transcription factor by half in mice or use of a MAP kinase insensitive hypomorphic targeted Ets2 allele restricts the appearance of transgenic mammary tumors caused by either Polyoma middle T antigen (PyMT) or activated Neu/ErbB2. In addition, the early growth of transplanted mammary tumors is limited by restricted Ets2 activity of the host. Here we have tested genetically, with the use of a conditional Ets2flox allele and tissue specific Cre recombinase expression, whether Ets2 also functions within tumor cells by inactivating Ets2 within mammary luminal epithelial cells from which transgenic PyMTY315/322F tumors arise. We find that inactivation of Ets2 within tumor cells has no effect on tumor appearance or growth. By contrast, complete inactivation of Ets2 in both epithelial and stromal cells moderates the early hyperplastic phase of tumor development and the time of tumor appearance but does not prevent tumor occurrence and has no detectable effect on tumor growth. Thus, Ets2 supports mammary tumors exclusively through their microenvironment.
Collapse
Affiliation(s)
- John A Tynan
- Graduate Program in Molecular Pathology, University of California, San Diego, 9500 Gilman Drive 0612, La Jolla, CA 92093, USA
| | | | | | | |
Collapse
|
43
|
Buggy Y, Maguire TM, McDermott E, Hill ADK, O'Higgins N, Duffy MJ. Ets2 transcription factor in normal and neoplastic human breast tissue. Eur J Cancer 2005; 42:485-91. [PMID: 16380248 DOI: 10.1016/j.ejca.2005.10.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2005] [Revised: 10/13/2005] [Accepted: 10/27/2005] [Indexed: 11/25/2022]
Abstract
The Ets family of transcription factors regulate the expression of multiple genes involved in tumour formation and progression. The aim of this work was to test the hypothesis that the expression of Ets2 in breast cancers was associated with parameters of tumour progression and metastasis. Using reverse-transcriptase polymerase chain reaction (RT-PCR), Ets2 mRNA was detected in 69% of 181 breast carcinomas, 63% of 43 fibroadenomas and 47% of 43 specimens of normal breast tissue. Levels were significantly higher in carcinomas compared with normal breast tissue (P = 0.006). Using Western blotting, Ets2 protein was found to migrate as two bands with molecular masses of 52 kDa (p52) and 54kDa (p54). Levels of both proteins were significantly higher in the carcinomas compared with both fibroadenomas (P = 0.0001) and normal breast tissue (P = 0.0001). In the carcinomas, a significant relationship was found between the p52 and p54 form of Ets2 (r = 0.51, P < 0.0001; Spearman correlation). Also, in the carcinomas, a significant correlation was found between both forms of Ets2 protein and urokinase plasminogen activator (uPA) (for p52, r = 0.43, P = 0.0005, n = 68; for p54, r = 0.50, P = 0.0001, n = 68). As Ets2 binding sites are present on the uPA promoter, Ets2 may be one of the transcription factors regulating uPA expression in human breast cancer.
Collapse
Affiliation(s)
- Y Buggy
- UCD School of Medicine and Medical Science, Conway Institute of Biomolecular and Biomedical Research, Dublin 4, Dublin, Ireland
| | | | | | | | | | | |
Collapse
|
44
|
Borowsky AD, Namba R, Young LJT, Hunter KW, Hodgson JG, Tepper CG, McGoldrick ET, Muller WJ, Cardiff RD, Gregg JP. Syngeneic mouse mammary carcinoma cell lines: two closely related cell lines with divergent metastatic behavior. Clin Exp Metastasis 2005; 22:47-59. [PMID: 16132578 DOI: 10.1007/s10585-005-2908-5] [Citation(s) in RCA: 153] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2004] [Accepted: 02/24/2005] [Indexed: 12/01/2022]
Abstract
Two cell lines, Met-1(fvb2) and DB-7(fvb2), with different metastatic potential, were derived from mammary carcinomas in FVB/N-Tg(MMTV-PyVmT) and FVB/N-Tg(MMTV-PyVmT ( Y315F/Y322F )) mice, transplanted into syngeneic FVB/N hosts and characterized. The lines maintain a stable morphological and biological phenotype after multiple rounds of in vitro culture and in vivo transplantation. The Met-1(fvb2) line derived from a FVB/N-Tg(MMTV-PyVmT) tumor exhibits invasive growth and 100% metastases when transplanted into the females FVB/N mammary fat pad. The DB-7(fvb2) line derived from the FVB/N-Tg(MMTV-PyVmT ( Y315F/Y322F )) with a "double base" modification at Y315F/Y322F exhibits more rapid growth when transplanted into the mammary fat pad, but a lower rate of metastasis (17%). The Met1(fvb2) cells show high activation of AKT, while DB-7(fvb2) cells show very low levels of AKT activation. The DNA content and gene expression levels of both cell lines are stable over multiple generations. Therefore, these two cell lines provide a stable, reproducible resource for the study of metastasis modulators, AKT molecular pathway interactions, and gene target and marker discovery.
Collapse
Affiliation(s)
- Alexander D Borowsky
- Department of Medical Pathology and Laboratory Medicine, UC Davis School of Medicine, Sacramento, CA 95817, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
Cancer can be defined as a genetic disease, resulting as a consequence of multiple events associated with initiation, promotion and metastatic growth. Cancer results from the loss of control of cellular homeostasis. Cell homeostasis is the result of the balance between proliferation and cell death, while cellular transformation can be viewed as a loss of relationship between these events. Oncogenes and tumour suppressor genes act as modulators of cell proliferation, while the balance of apoptotic and anti-apoptotic genes controls cell death. All cancer cells acquire similar sets of functional capacities: (1) independence from mitogenic/growth signals; (2) loss of sensitivity to "anti-growth" signals; (3) evade apoptosis; (4) Neo-angiogenic conversion; (5) release from senescence; and (6) invasiveness and metastasis. One of the goals of molecular biology is to elucidate the mechanisms that contribute to the development and progression of cancer. Such understanding of the molecular basis of cancer will provide new possibilities for: (1) earlier detection as well as better diagnosis and staging of disease with detection of minimal residual disease recurrences and evaluation of response to therapy; (2) prevention; and (3) novel treatment strategies. We feel that increased understanding of ETS-regulated biological pathways will directly impact these areas. ETS proteins are transcription factors that activate or repress the expression of genes that are involved in various biological processes, including cellular proliferation, differentiation, development, transformation and apoptosis. Identification of target genes that are regulated by a specific transcription factor is one of the most critical areas in understanding the molecular mechanisms that control transcription. Furthermore, identification of target gene promoters for normal and oncogenic transcription factors provides insight into the regulation of genes that are involved in control of normal cell growth, and differentiation, as well as provide information critical to understanding cancer development. This review will highlight the current understanding of ETS genes and their role in cancer.
Collapse
Affiliation(s)
- Arun Seth
- Molecular and Cellular Biology Research, Laboratory of Molecular Pathology, Sunnybrook and Women's College Health Sciences Centre, 2075 Bayview Avenue, Toronto, Ontario, Canada M4N 3M5.
| | | |
Collapse
|
46
|
Tootle TL, Rebay I. Post-translational modifications influence transcription factor activity: a view from the ETS superfamily. Bioessays 2005; 27:285-98. [PMID: 15714552 DOI: 10.1002/bies.20198] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Transcription factors provide nodes of information integration by serving as nuclear effectors of multiple signaling cascades, and thus elaborate layers of regulation, often involving post-translational modifications, modulating and coordinate activities. Such modifications can rapidly and reversibly regulate virtually all transcription factor functions, including subcellular localization, stability, interactions with cofactors, other post-translational modifications and transcriptional activities. Aside from analyses of the effects of serine/threonine phosphorylation, studies on post-translational modifications of transcription factors are only in the initial stages. In particular, the regulatory possibilities afforded by combinatorial usage of and competition between distinct modifications on an individual protein are immense, and with respect to large families of closely related transcription factors, offer the potential of conferring critical specificity. Here we will review the post-translational modifications known to regulate ETS transcriptional effectors and will discuss specific examples of how such modifications influence their activities to highlight emerging paradigms in transcriptional regulation.
Collapse
Affiliation(s)
- Tina L Tootle
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | |
Collapse
|
47
|
Foulds CE, Nelson ML, Blaszczak AG, Graves BJ. Ras/mitogen-activated protein kinase signaling activates Ets-1 and Ets-2 by CBP/p300 recruitment. Mol Cell Biol 2004; 24:10954-64. [PMID: 15572696 PMCID: PMC533975 DOI: 10.1128/mcb.24.24.10954-10964.2004] [Citation(s) in RCA: 154] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Cell signaling affects gene expression by regulating the activity of transcription factors. Here, we report that mitogen-activated protein kinase (MAPK) phosphorylation of Ets-1 and Ets-2, at a conserved site N terminal to their Pointed (PNT) domains, resulted in enhanced transactivation by preferential recruitment of the coactivators CREB binding protein (CBP) and p300. We discovered this phosphorylation-augmented interaction in an unbiased affinity chromatography screen of HeLa nuclear extracts by using either mock-treated or ERK2-phosphorylated ETS proteins as ligands. Binding between purified proteins demonstrated a direct interaction. Both the phosphoacceptor site, which lies in an unstructured region, and the PNT domain were required for the interaction. Minimal regions that were competent for induced CBP/p300 binding in vitro also supported MAPK-enhanced transcription in vivo. CBP coexpression potentiated MEK1-stimulated Ets-2 transactivation of promoters with Ras-responsive elements. Furthermore, CBP and Ets-2 interacted in a phosphorylation-enhanced manner in vivo. This study describes a distinctive interface for a transcription factor-coactivator complex and demonstrates a functional role for inducible CBP/p300 binding. In addition, our findings decipher the mechanistic link between Ras/MAPK signaling and two specific transcription factors that are relevant to both normal development and tumorigenesis.
Collapse
Affiliation(s)
- Charles E Foulds
- Huntsman Cancer Institute, 2000 Circle of Hope, University of Utah, Salt Lake City, UT 84112-5550, USA
| | | | | | | |
Collapse
|
48
|
Barcellos-Hoff MH, Medina D. New highlights on stroma-epithelial interactions in breast cancer. Breast Cancer Res 2004; 7:33-6. [PMID: 15642180 PMCID: PMC1064117 DOI: 10.1186/bcr972] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Although the stroma in which carcinomas arise has been previously regarded as a bystander to the clonal expansion and acquisition of malignant characteristics of tumor cells, it is now generally acknowledged that stromal changes are required for the establishment of cancer. In the present article, we discuss three recent publications that highlight the complex role the stroma has during the development of cancer and the potential for targeting the stroma by therapeutic approaches.
Collapse
|
49
|
Masson V, de la Ballina LR, Munaut C, Wielockx B, Jost M, Maillard C, Blacher S, Bajou K, Itoh T, Itohara S, Werb Z, Libert C, Foidart JM, Noël A. Contribution of host MMP-2 and MMP-9 to promote tumor vascularization and invasion of malignant keratinocytes. FASEB J 2004; 19:234-6. [PMID: 15550552 PMCID: PMC2771171 DOI: 10.1096/fj.04-2140fje] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The matrix metalloproteinases (MMPs) play a key role in normal and pathological angiogenesis by mediating extracellular matrix degradation and/or controlling the biological activity of growth factors, chemokines, and/or cytokines. Specific functions of individual MMPs as anti- or proangiogenic mediators remain to be elucidated. In the present study, we assessed the impact of single or combined MMP deficiencies in in vivo and in vitro models of angiogenesis (malignant keratinocyte transplantation and the aortic ring assay, respectively). MMP-9 was predominantly expressed by neutrophils in tumor transplants, whereas MMP-2 and MMP-3 were stromal. Neither the single deficiency of MMP-2, MMP-3, or MMP-9, nor the combined absence of MMP-9 and MMP-3 did impair tumor invasion and vascularization in vivo. However, there was a striking cooperative effect in double MMP-2:MMP-9-deficient mice as demonstrated by the absence of tumor vascularization and invasion. In contrast, the combined lack of MMP-2 and MMP-9 did not impair the in vitro capillary outgrowth from aortic rings. These results point to the importance of a cross talk between several host cells for the in vivo tumor promoting and angiogenic effects of MMP-2 and MMP-9. Our data demonstrate for the first time in an experimental model that MMP-2 and MMP-9 cooperate in promoting the in vivo invasive and angiogenic phenotype of malignant keratinocytes.
Collapse
Affiliation(s)
- Véronique Masson
- Laboratory of Tumor and Development Biology, University of Liège, Liège, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Wei G, Guo J, Doseff AI, Kusewitt DF, Man AK, Oshima RG, Ostrowski MC. Activated Ets2 is required for persistent inflammatory responses in the motheaten viable model. THE JOURNAL OF IMMUNOLOGY 2004; 173:1374-9. [PMID: 15240733 DOI: 10.4049/jimmunol.173.2.1374] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The Ets2 transcription factor is constitutively phosphorylated on residue Thr(72) in macrophages derived from mice homozygous for the motheaten viable (me-v) allele of the hemopoietic cell phosphatase (Hcph) gene. To genetically test the importance of signaling through residue Thr(72) of Ets2 during inflammation, the Ets2(A72) mutant allele, which cannot be phosphorylated on Thr(72), was combined with the Hcph(me-v) allele in mice. Ets2(A72/A72) moderated the inflammation-related pathology of Hcph(me-v/me-v) mice, as demonstrated by the increased life span and the decreased macrophage infiltration in skin and lungs of these mice. Macrophage apoptosis induced by cytokine withdrawal was also increased in the double-mutant mice. Importantly, the Ets2(A72/A72) allele resulted in decreased expression of inflammatory response genes, including TNF-alpha, CCL3, matrix metalloprotease 9, integrin alpha(M), and Bcl-X in alveolar macrophage. Ets2 phosphorylation was required for persistent activation of TNF-alpha following LPS stimulation of bone marrow-derived macrophages. The phosphorylation of Ets2 functions in the severe inflammatory phenotype of the me-v model by mediating both macrophage survival and inflammatory gene expression.
Collapse
Affiliation(s)
- Guo Wei
- Department of Molecular Genetics, Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | | | | | |
Collapse
|