1
|
Niibori-Nambu A, Wang CQ, Chin DWL, Chooi JY, Hosoi H, Sonoki T, Tham CY, Nah GSS, Cirovic B, Tan DQ, Takizawa H, Sashida G, Goh Y, Tng J, Fam WN, Fullwood MJ, Suda T, Yang H, Tergaonkar V, Taniuchi I, Li S, Chng WJ, Osato M. Integrin-α9 overexpression underlies the niche-independent maintenance of leukemia stem cells in acute myeloid leukemia. Gene 2024; 928:148761. [PMID: 39002785 DOI: 10.1016/j.gene.2024.148761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 06/16/2024] [Accepted: 07/10/2024] [Indexed: 07/15/2024]
Abstract
Leukemia stem cells (LSCs) are widely believed to reside in well-characterized bone marrow (BM) niches; however, the capacity of the BM niches to accommodate LSCs is insufficient, and a significant proportion of LSCs are instead maintained in regions outside the BM. The molecular basis for this niche-independent behavior of LSCs remains elusive. Here, we show that integrin-α9 overexpression (ITGA9 OE) plays a pivotal role in the extramedullary maintenance of LSCs by molecularly mimicking the niche-interacting status, through the binding with its soluble ligand, osteopontin (OPN). Retroviral insertional mutagenesis conducted on leukemia-prone Runx-deficient mice identified Itga9 OE as a novel leukemogenic event. Itga9 OE activates Akt and p38MAPK signaling pathways. The elevated Myc expression subsequently enhances ribosomal biogenesis to overcome the cell integrity defect caused by the preexisting Runx alteration. The Itga9-Myc axis, originally discovered in mice, was further confirmed in multiple human acute myeloid leukemia (AML) subtypes, other than RUNX leukemias. In addition, ITGA9 was shown to be a functional LSC marker of the best prognostic value among 14 known LSC markers tested. Notably, the binding of ITGA9 with soluble OPN, a known negative regulator against HSC activation, induced LSC dormancy, while the disruption of ITGA9-soluble OPN interaction caused rapid cell propagation. These findings suggest that the ITGA9 OE increases both actively proliferating leukemia cells and dormant LSCs in a well-balanced manner, thereby maintaining LSCs. The ITGA9 OE would serve as a novel therapeutic target in AML.
Collapse
Affiliation(s)
- Akiko Niibori-Nambu
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore; Department of Tumor Genetics and Biology, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Chelsia Qiuxia Wang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore; Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore; Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Desmond Wai Loon Chin
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Jing Yuan Chooi
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Hiroki Hosoi
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore; Department of Hematology/Oncology, Wakayama Medical University, Wakayama, Japan
| | - Takashi Sonoki
- Department of Hematology/Oncology, Wakayama Medical University, Wakayama, Japan
| | - Cheng-Yong Tham
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Giselle Sek Suan Nah
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Branko Cirovic
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Darren Qiancheng Tan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Hitoshi Takizawa
- International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Goro Sashida
- International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yufen Goh
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Jiaqi Tng
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Wee Nih Fam
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore; School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Melissa Jane Fullwood
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore; School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Toshio Suda
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore; International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan; Institute of Hematology, Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Henry Yang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Vinay Tergaonkar
- Laboratory of NFκB Signalling, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Ichiro Taniuchi
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Shang Li
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore, Singapore
| | - Wee Joo Chng
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore; National University Cancer Institute, Singapore; National University Health System, Singapore.
| | - Motomi Osato
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore; International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan; Department of General Internal Medicine, Kumamoto Kenhoku Hospital, Kumamoto, Japan.
| |
Collapse
|
2
|
Wirth F, Zoeller C, Lubosch A, Schroeder-Braunstein J, Wabnitz G, Nakchbandi IA. Insights into the metastatic bone marrow niche gained from fibronectin and β1 integrin transgenic mice. Neoplasia 2024; 58:101058. [PMID: 39413671 DOI: 10.1016/j.neo.2024.101058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/04/2024] [Accepted: 09/09/2024] [Indexed: 10/18/2024]
Abstract
Tumor cells can migrate from a primary cancer and form metastases by localizing to niches within other organs including the bone marrow, where tumor cells may exploit the hematopoietic stem cell niche. The precise composition of the premetastatic and the hematopoietic niches and the degree of overlap between them remain elusive. Because the extracellular matrix protein fibronectin is expressed in the pre-metastatic lung microenvironment, we evaluated the implications of its loss, as well as those of loss of its primary receptor subunit, β1 integrin, in various bone marrow cell types both in breast cancer bone metastasis and hematopoiesis. Using eight transgenic mouse models, we established that fibronectin production by osterix-expressing marrow cells, or β1 integrin expression (on vav, mx, or leptin receptor expressing cells), affects MDA-MB-231 breast cancer cell numbers in the bone marrow. Additionally, we identified stromal subpopulations that modulate transmigration through blood vessel walls. Not the number of tumor cells, but rather the changes in the microenvironment dictated whether the tumor progresses. Furthermore, hematopoiesis, particularly myelopoiesis, was affected in some of the models showing changes in tumor homing. In conclusion, there is partial overlap between the pre-metastatic and the hematopoietic niches in the bone marrow. Moreover, we have delineated a cascade starting with fibronectin secreted by pre-osteoblastic cells, which potentially acts on β1 integrin in specific stromal cell subsets, thereby inhibiting the formation of new breast cancer lesions in the bone marrow. This work therefore sheds light on the role of various stromal cell subpopulations that influence tumor behavior and affect hematopoiesis.
Collapse
Affiliation(s)
- Franziska Wirth
- Institute of Immunology, Heidelberg University, 69120, Heidelberg, Germany
| | - Caren Zoeller
- Institute of Immunology, Heidelberg University, 69120, Heidelberg, Germany
| | - Alexander Lubosch
- Institute of Immunology, Heidelberg University, 69120, Heidelberg, Germany
| | | | - Guido Wabnitz
- Institute of Immunology, Heidelberg University, 69120, Heidelberg, Germany
| | - Inaam A Nakchbandi
- Institute of Immunology, Heidelberg University, 69120, Heidelberg, Germany; Max-Planck Institute for Biochemistry, 82152, Martinsried, Germany; Max-Planck Institute for Medical Research, 69120, Heidelberg, Germany.
| |
Collapse
|
3
|
Ludwig-Husemann A, Schertl P, Shrivastava A, Geckle U, Hafner J, Schaarschmidt F, Willenbacher N, Freudenberg U, Werner C, Lee-Thedieck C. A Multifunctional Nanostructured Hydrogel as a Platform for Deciphering Niche Interactions of Hematopoietic Stem and Progenitor Cells. Adv Healthc Mater 2024; 13:e2304157. [PMID: 38870600 DOI: 10.1002/adhm.202304157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 06/10/2024] [Indexed: 06/15/2024]
Abstract
For over half a century, hematopoietic stem cells (HSCs) have been used for transplantation therapy to treat severe hematologic diseases. Successful outcomes depend on collecting sufficient donor HSCs as well as ensuring efficient engraftment. These processes are influenced by dynamic interactions of HSCs with the bone marrow niche, which can be revealed by artificial niche models. Here, a multifunctional nanostructured hydrogel is presented as a 2D platform to investigate how the interdependencies of cytokine binding and nanopatterned adhesive ligands influence the behavior of human hematopoietic stem and progenitor cells (HSPCs). The results indicate that the degree of HSPC polarization and motility, observed when cultured on gels presenting the chemokine SDF-1α and a nanoscale-defined density of a cellular (IDSP) or extracellular matrix (LDV) α4β1 integrin binding motif, are differently influenced on hydrogels functionalized with the different ligand types. Further, SDF-1α promotes cell polarization but not motility. Strikingly, the degree of differentiation correlates negatively with the nanoparticle spacing, which determines ligand density, but only for the cellular-derived IDSP motif. This mechanism potentially offers a means of predictably regulating early HSC fate decisions. Consequently, the innovative multifunctional hydrogel holds promise for deciphering dynamic HSPC-niche interactions and refining transplantation therapy protocols.
Collapse
Affiliation(s)
- Anita Ludwig-Husemann
- Institute of Cell Biology and Biophysics, Leibniz University Hannover, Herrenhäuser Str. 2, 30419, Hannover, Germany
- Institute of Functional Interfaces, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Peter Schertl
- Institute of Cell Biology and Biophysics, Leibniz University Hannover, Herrenhäuser Str. 2, 30419, Hannover, Germany
| | - Ananya Shrivastava
- Institute of Cell Biology and Biophysics, Leibniz University Hannover, Herrenhäuser Str. 2, 30419, Hannover, Germany
| | - Udo Geckle
- Institute for Applied Materials - Energy Storage Systems, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Johanna Hafner
- Institute for Mechanical Process Engineering and Mechanics, Applied Mechanics Group, Karlsruhe Institute of Technology (KIT), Gotthard-Franz-Str. 3, 76131, Karlsruhe, Germany
| | - Frank Schaarschmidt
- Institute of Cell Biology and Biophysics, Leibniz University Hannover, Herrenhäuser Str. 2, 30419, Hannover, Germany
| | - Norbert Willenbacher
- Institute for Mechanical Process Engineering and Mechanics, Applied Mechanics Group, Karlsruhe Institute of Technology (KIT), Gotthard-Franz-Str. 3, 76131, Karlsruhe, Germany
| | - Uwe Freudenberg
- Leibniz Institute of Polymer Research Dresden e.V, Max Bergmann Center of Biomaterials, Hohe Str. 6, 01069, Dresden, Germany
| | - Carsten Werner
- Leibniz Institute of Polymer Research Dresden e.V, Max Bergmann Center of Biomaterials, Hohe Str. 6, 01069, Dresden, Germany
- Center for Regenerative Therapies Dresden, Technical University Dresden, Fetscherstr. 105, 01307, Dresden, Germany
| | - Cornelia Lee-Thedieck
- Institute of Cell Biology and Biophysics, Leibniz University Hannover, Herrenhäuser Str. 2, 30419, Hannover, Germany
| |
Collapse
|
4
|
Poveda-Garavito N, Combita AL. Contribution of the TIME in BCP-ALL: the basis for novel approaches therapeutics. Front Immunol 2024; 14:1325255. [PMID: 38299154 PMCID: PMC10827891 DOI: 10.3389/fimmu.2023.1325255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/28/2023] [Indexed: 02/02/2024] Open
Abstract
The bone marrow (BM) niche is a microenvironment where both immune and non-immune cells functionally interact with hematopoietic stem cells (HSC) and more differentiated progenitors, contributing to the regulation of hematopoiesis. It is regulated by various signaling molecules such as cytokines, chemokines, and adhesion molecules in its microenvironment. However, despite the strict regulation of BM signals to maintain their steady state, accumulating evidence in B-cell precursor acute lymphoblastic leukemia (BCP-ALL) indicates that leukemic cells can disrupt the physiological hematopoietic niche in the BM, creating a new leukemia-supportive microenvironment. This environment favors immunological evasion mechanisms and the interaction of these cells with the development and progression of BCP-ALL. With a growing understanding of the tumor immune microenvironment (TIME) in the development and progression of BCP-ALL, current strategies focused on "re-editing" TIME to promote antitumor immunity have been developed. In this review, we summarize how TIME cells are disrupted by the presence of leukemic cells, evading immunosurveillance mechanisms in the BCP-ALL model. We also explore the crosstalk between TIME and leukemic cells that leads to treatment resistance, along with the most promising immuno-therapy strategies. Understanding and further research into the role of the BM microenvironment in leukemia progression and relapse are crucial for developing more effective treatments and reducing patient mortality.
Collapse
Affiliation(s)
- Nathaly Poveda-Garavito
- Grupo de Investigación en Biología del Cáncer, Instituto Nacional de Cancerología (INC), Bogotá, Colombia
- Grupo de Investigación Traslacional en Oncología, Instituto Nacional de Cancerología (INC), Bogotá, Colombia
- Departamento de Microbiología, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Alba Lucía Combita
- Grupo de Investigación en Biología del Cáncer, Instituto Nacional de Cancerología (INC), Bogotá, Colombia
- Grupo de Investigación Traslacional en Oncología, Instituto Nacional de Cancerología (INC), Bogotá, Colombia
- Departamento de Microbiología, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, Colombia
| |
Collapse
|
5
|
Chai Y, Chen Y, Liu J, He M, Jiang M, Xu B, Li Q. Improved survival in patients with isolated liver metastasis at initial diagnosis with surgery at primary and metastatic sites: A population-based study in patients with breast cancer. Thorac Cancer 2023; 14:2793-2803. [PMID: 37558505 PMCID: PMC10518231 DOI: 10.1111/1759-7714.15073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/29/2023] [Accepted: 07/31/2023] [Indexed: 08/11/2023] Open
Abstract
BACKGROUND The aim of this study was to investigate epidemiological characteristics, risk factors, optimal treatment options, and survival outcomes of breast cancer patients with isolated liver metastasis (BCILM). METHODS Patients with breast cancer (BC) were selected from Incidence-Surveillance, Epidemiology, and End Results (SEER) Research Plus Data, 17 registries between 2010 and 2019. The Kaplan-Meier method and log-rank test were used to compare survival rates between patients who received or did not receive surgery for the primary and liver metastatic sites. Univariate and multivariate analyses were conducted using Cox regression analysis. RESULTS This study included 17 743 stage IV BC patients, with 3604 (20.3%) patients experiencing liver metastasis at initial diagnosis. Of 3604 liver metastasis patients, 951 were diagnosed with BCILM. The median survival time of patients with BCILM who underwent surgery at the primary site (52.0 months) or distant sites (85.0 months) was significantly longer than that of patients who did not undergo surgery at the primary site (23.0 months) or distant sites (32.0 months). Univariate analysis indicated that age, race, histological grade, molecular subtype, T stage, N stage, surgery of the primary site, surgery to other regional/distant sites, radiotherapy, and chemotherapy were prognostic factors affecting the overall survival (OS) and cancer-specific survival (CSS) of patients with BCILM (p < 0.05). Multivariate analysis suggested that age, race, molecular subtype, T stage, surgery of the primary site, radiotherapy, and chemotherapy were independent prognostic factors. In the BCILM cohort, HR+ /HER2+ patients exhibited the best OS and CSS, followed by HR- /HER2+ , HR+ /HER2- , and HR- /HER2- patients (p < 0.0001; p < 0.0001). CONCLUSION Surgery at the primary and metastatic sites was associated with better survival in patients with BCILM. HER2+ patients with BCILM had a significantly better prognosis than HER2- patients.
Collapse
Affiliation(s)
- Yue Chai
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Yujie Chen
- Department of Plastic SurgeryPeking University Third HospitalBeijingChina
| | - Jiaxuan Liu
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Maiyue He
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Mingxia Jiang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Binghe Xu
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Qiao Li
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| |
Collapse
|
6
|
Weinhäuser I, Pereira-Martins DA, Almeida LY, Hilberink JR, Silveira DRA, Quek L, Ortiz C, Araujo CL, Bianco TM, Lucena-Araujo A, Mota JM, Hogeling SM, Sternadt D, Visser N, Diepstra A, Ammatuna E, Huls G, Rego EM, Schuringa JJ. M2 macrophages drive leukemic transformation by imposing resistance to phagocytosis and improving mitochondrial metabolism. SCIENCE ADVANCES 2023; 9:eadf8522. [PMID: 37058562 DOI: 10.1126/sciadv.adf8522] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 03/14/2023] [Indexed: 06/19/2023]
Abstract
It is increasingly becoming clear that cancers are a symbiosis of diverse cell types and tumor clones. Combined single-cell RNA sequencing, flow cytometry, and immunohistochemistry studies of the innate immune compartment in the bone marrow of patients with acute myeloid leukemia (AML) reveal a shift toward a tumor-supportive M2-polarized macrophage landscape with an altered transcriptional program, with enhanced fatty acid oxidation and NAD+ generation. Functionally, these AML-associated macrophages display decreased phagocytic activity and intra-bone marrow coinjection of M2 macrophages together with leukemic blasts strongly enhances in vivo transformation potential. A 2-day in vitro exposure to M2 macrophages results in the accumulation of CALRlow leukemic blast cells, which are now protected against phagocytosis. Moreover, M2-exposed "trained" leukemic blasts display increased mitochondrial metabolism, in part mediated via mitochondrial transfer. Our study provides insight into the mechanisms by which the immune landscape contributes to aggressive leukemia development and provides alternatives for targeting strategies aimed at the tumor microenvironment.
Collapse
Affiliation(s)
- Isabel Weinhäuser
- Department of Experimental Hematology, Cancer Research Centre Groningen, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
- Department of Internal Medicine, Medical School of Ribeirao Preto, University of São Paulo, Ribeirao Preto, Brazil
- Center for Cell Based Therapy, University of São Paulo, Ribeirao Preto, Brazil
| | - Diego A Pereira-Martins
- Department of Experimental Hematology, Cancer Research Centre Groningen, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
- Department of Internal Medicine, Medical School of Ribeirao Preto, University of São Paulo, Ribeirao Preto, Brazil
- Center for Cell Based Therapy, University of São Paulo, Ribeirao Preto, Brazil
| | - Luciana Y Almeida
- Department of Internal Medicine, Medical School of Ribeirao Preto, University of São Paulo, Ribeirao Preto, Brazil
| | - Jacobien R Hilberink
- Department of Experimental Hematology, Cancer Research Centre Groningen, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
| | - Douglas R A Silveira
- Myeloid Leukaemia Genomics and Biology Group, School of Cancer and Pharmaceutical Sciences, King's College London, London, SE5 8AF, UK
| | - Lynn Quek
- Myeloid Leukaemia Genomics and Biology Group, School of Cancer and Pharmaceutical Sciences, King's College London, London, SE5 8AF, UK
| | - Cesar Ortiz
- Department of Internal Medicine, Medical School of Ribeirao Preto, University of São Paulo, Ribeirao Preto, Brazil
- Center for Cell Based Therapy, University of São Paulo, Ribeirao Preto, Brazil
| | - Cleide L Araujo
- Department of Internal Medicine, Medical School of Ribeirao Preto, University of São Paulo, Ribeirao Preto, Brazil
| | - Thiago M Bianco
- Department of Internal Medicine, Medical School of Ribeirao Preto, University of São Paulo, Ribeirao Preto, Brazil
| | | | - Jose Mauricio Mota
- Medical Oncology Service, Sao Paulo State Cancer Institute, University of Sao Paulo, Brazil
| | - Shanna M Hogeling
- Department of Experimental Hematology, Cancer Research Centre Groningen, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
| | - Dominique Sternadt
- Department of Experimental Hematology, Cancer Research Centre Groningen, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
| | - Nienke Visser
- Department of Experimental Hematology, Cancer Research Centre Groningen, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
| | - Arjan Diepstra
- Department of Pathology and Medical Biology, Cancer Research Centre Groningen, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
| | - Emanuele Ammatuna
- Department of Experimental Hematology, Cancer Research Centre Groningen, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
| | - Gerwin Huls
- Department of Experimental Hematology, Cancer Research Centre Groningen, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
| | - Eduardo M Rego
- Center for Cell Based Therapy, University of São Paulo, Ribeirao Preto, Brazil
| | - Jan Jacob Schuringa
- Department of Experimental Hematology, Cancer Research Centre Groningen, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
7
|
Jeong J, Jung I, Kim JH, Jeon S, Hyeon DY, Min H, Kang B, Nah J, Hwang D, Um SJ, Ko M, Seong RH. BAP1 shapes the bone marrow niche for lymphopoiesis by fine-tuning epigenetic profiles in endosteal mesenchymal stromal cells. Cell Death Differ 2022; 29:2151-2162. [PMID: 35473985 PMCID: PMC9613645 DOI: 10.1038/s41418-022-01006-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 11/08/2022] Open
Abstract
Hematopoiesis occurs within a unique bone marrow (BM) microenvironment, which consists of various niche cells, cytokines, growth factors, and extracellular matrix components. These multiple components directly or indirectly regulate the maintenance and differentiation of hematopoietic stem cells (HSCs). Here we report that BAP1 in BM mesenchymal stromal cells (MSCs) is critical for the maintenance of HSCs and B lymphopoiesis. Mice lacking BAP1 in MSCs show aberrant differentiation of hematopoietic stem and progenitor cells, impaired B lymphoid differentiation, and expansion of myeloid lineages. Mechanistically, BAP1 loss in distinct endosteal MSCs, expressing PRX1 but not LEPR, leads to aberrant expression of genes affiliated with BM niche functions. BAP1 deficiency leads to a reduced expression of pro-hematopoietic factors such as Scf caused by increased H2AK119-ub1 and H3K27-me3 levels on the promoter region of these genes. On the other hand, the expression of myelopoiesis stimulating factors including Csf3 was increased by enriched H3K4-me3 and H3K27-ac levels on their promoter, causing myeloid skewing. Notably, loss of BAP1 substantially blocks B lymphopoiesis and skews the differentiation of hematopoietic precursors toward myeloid lineages in vitro, which is reversed by G-CSF neutralization. Thus, our study uncovers a key role for BAP1 expressed in endosteal MSCs in controlling normal hematopoiesis in mice by modulating expression of various niche factors governing lymphopoiesis and myelopoiesis via histone modifications.
Collapse
Affiliation(s)
- Jinguk Jeong
- School of Biological Sciences, Seoul National University, Seoul, 08826, Korea
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul, 08826, Korea
| | - Inkyung Jung
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, 44919, Korea
| | - Ji-Hoon Kim
- Molecular Recognition Research Center, Korea Institute of Science and Technology, Seoul, 02792, Korea
| | - Shin Jeon
- School of Biological Sciences, Seoul National University, Seoul, 08826, Korea
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, 14260, USA
- Department of Systems Pharmacology and Translational Therapeutics, Institute for Immunology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Do Young Hyeon
- School of Biological Sciences, Seoul National University, Seoul, 08826, Korea
| | - Hyungyu Min
- School of Biological Sciences, Seoul National University, Seoul, 08826, Korea
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul, 08826, Korea
| | - Byeonggeun Kang
- School of Biological Sciences, Seoul National University, Seoul, 08826, Korea
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul, 08826, Korea
| | - Jinwoo Nah
- School of Biological Sciences, Seoul National University, Seoul, 08826, Korea
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul, 08826, Korea
| | - Daehee Hwang
- School of Biological Sciences, Seoul National University, Seoul, 08826, Korea
| | - Soo-Jong Um
- Department of Integrative Bioscience and Biotechnology, Sejong University, Seoul, 05006, Korea
| | - Myunggon Ko
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, 44919, Korea.
| | - Rho Hyun Seong
- School of Biological Sciences, Seoul National University, Seoul, 08826, Korea.
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul, 08826, Korea.
| |
Collapse
|
8
|
Zhang J, Qi L, Wang T, An J, Zhou B, Fang Y, Liu Y, Shan M, Hong D, Wu D, Xu Y, Liu T. FEV Maintains Homing and Expansion by Activating ITGA4 Transcription in Primary and Relapsed AML. Front Oncol 2022; 12:890346. [PMID: 35875066 PMCID: PMC9300928 DOI: 10.3389/fonc.2022.890346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 06/17/2022] [Indexed: 11/13/2022] Open
Abstract
Acute myeloid leukemia (AML) is an aggressive hematological malignancy that recurs in approximately 50% of cases. Elevated homing and uncontrolled expansion are characteristics of AML cells. Here, we identified that Fifth Ewing Variant (FEV) regulates the homing and expansion of AML cells. We found that FEV was re-expressed in 30% of primary AML samples and in almost all relapsed AML samples, and FEV expression levels were significantly higher in relapsed samples compared to primary samples. Interference of FEV expression in AML cell lines delayed leukemic progression and suppressed homing and proliferation. Moreover, FEV directly activated integrin subunit alpha 4 (ITGA4) transcription in a dose-dependent manner. Inhibition of integrin α4 activity with natalizumab (NZM) reduced the migration and colony-forming abilities of blasts and leukemic-initiating cells (LICs) in both primary and relapsed AML. Thus, our study suggested that FEV maintains the homing and expansion of AML cells by activating ITGA4 transcription and that targeting ITGA4 inhibits the colony-forming and migration capacities of blasts and LICs. Thus, these findings suggested that the FEV-ITGA4 axis may be a therapeutic target for both primary and relapsed AML.
Collapse
Affiliation(s)
- Jubin Zhang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Lijuan Qi
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Tanzhen Wang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Jingnan An
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Biqi Zhou
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Yanglan Fang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Yujie Liu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Meng Shan
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Dengli Hong
- Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China
| | - Depei Wu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
- *Correspondence: Tianhui Liu, ; Yang Xu, ; Depei Wu,
| | - Yang Xu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
- *Correspondence: Tianhui Liu, ; Yang Xu, ; Depei Wu,
| | - Tianhui Liu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
- *Correspondence: Tianhui Liu, ; Yang Xu, ; Depei Wu,
| |
Collapse
|
9
|
Krenn PW, Montanez E, Costell M, Fässler R. Integrins, anchors and signal transducers of hematopoietic stem cells during development and in adulthood. Curr Top Dev Biol 2022; 149:203-261. [PMID: 35606057 DOI: 10.1016/bs.ctdb.2022.02.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Hematopoietic stem cells (HSCs), the apex of the hierarchically organized blood cell production system, are generated in the yolk sac, aorta-gonad-mesonephros region and placenta of the developing embryo. To maintain life-long hematopoiesis, HSCs emigrate from their site of origin and seed in distinct microenvironments, called niches, of fetal liver and bone marrow where they receive supportive signals for self-renewal, expansion and production of hematopoietic progenitor cells (HPCs), which in turn orchestrate the production of the hematopoietic effector cells. The interactions of hematopoietic stem and progenitor cells (HSPCs) with niche components are to a large part mediated by the integrin superfamily of adhesion molecules. Here, we summarize the current knowledge regarding the functional properties of integrins and their activators, Talin-1 and Kindlin-3, for HSPC generation, function and fate decisions during development and in adulthood. In addition, we discuss integrin-mediated mechanosensing for HSC-niche interactions, ex vivo protocols aimed at expanding HSCs for therapeutic use, and recent approaches targeting the integrin-mediated adhesion in leukemia-inducing HSCs in their protecting, malignant niches.
Collapse
Affiliation(s)
- Peter W Krenn
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, Martinsried, Germany; Department of Biosciences and Medical Biology, Cancer Cluster Salzburg, Paris-Lodron University of Salzburg, Salzburg, Austria.
| | - Eloi Montanez
- Department of Physiological Sciences, Faculty of Medicine and Health Sciences, University of Barcelona and Bellvitge Biomedical Research Institute, L'Hospitalet del Llobregat, Barcelona, Spain
| | - Mercedes Costell
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universitat de València, Burjassot, Spain; Institut Universitari de Biotecnologia i Biomedicina, Universitat de València, Burjassot, Spain
| | - Reinhard Fässler
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, Martinsried, Germany
| |
Collapse
|
10
|
Benkhoucha M, Tran NL, Breville G, Senoner I, Bradfield PF, Papayannopoulou T, Merkler D, Korn T, Lalive PH. CD4 +c-Met +Itgα4 + T cell subset promotes murine neuroinflammation. J Neuroinflammation 2022; 19:103. [PMID: 35488271 PMCID: PMC9052663 DOI: 10.1186/s12974-022-02461-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 04/13/2022] [Indexed: 11/21/2022] Open
Abstract
Objective c-Met, a tyrosine kinase receptor, is the unique receptor for hepatocyte growth factor (HGF). The HGF/c-Met axis is reported to modulate cell migration, maturation, cytokine production, and antigen presentation. Here, we report that CD4+c-Met+ T cells are detected at increased levels in experimental autoimmune encephalomyelitis (EAE), a mouse model of multiple sclerosis (MS). Methods c-Met expression by CD4+ T cells was analyzed mostly by flow cytometry and by immunohistochemistry from mice and human PBMCs. The in vivo role of CD4+c-Met+ T cells was assessed in EAE. Results CD4+c-Met+ T cells found in the CNS during EAE peak disease are characterized by a pro-inflammatory phenotype skewed towards a Th1 and Th17 polarization, with enhanced adhesion and transmigration capacities correlating with increased expression of integrin α4 (Itgα4). The adoptive transfer of Itgα4-expressing CD4+Vα3.2+c-Met+ T cells induces increased disease severity compared to CD4+Vα3.2+c-Met− T cells. Finally, CD4+c-Met+ T cells are detected in the brain of MS patients, as well as in the blood with a higher level of Itgα4. These results highlight c-Met as an immune marker of highly pathogenic pro-inflammatory and pro-migratory CD4+ T lymphocytes associated with neuroinflammation. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02461-7.
Collapse
Affiliation(s)
- Mahdia Benkhoucha
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Ngoc Lan Tran
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Gautier Breville
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Department of Neurosciences, Division of Neurology, University Hospital of Geneva, Geneva, Switzerland
| | - Isis Senoner
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Paul F Bradfield
- MesenFlow Technologies SARL, Chemin des Aulx 14, Geneva, Switzerland
| | - Thalia Papayannopoulou
- Division of Hematology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Doron Merkler
- Division of Clinical Pathology, Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Thomas Korn
- Department of Neurology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,Institute for Experimental Neuroimmunology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,Munich Cluster for Systems Neurology, SyNergy, Munich, Germany
| | - Patrice H Lalive
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland. .,Department of Neurosciences, Division of Neurology, University Hospital of Geneva, Geneva, Switzerland.
| |
Collapse
|
11
|
Ulyanova T, Cherone JM, Sova P, Papayannopoulou T. α4-Integrin deficiency in human CD34+ cells engenders precocious erythroid differentiation but inhibits enucleation. Exp Hematol 2022; 108:16-25. [DOI: 10.1016/j.exphem.2022.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/21/2022] [Accepted: 01/25/2022] [Indexed: 11/26/2022]
|
12
|
The extracellular matrix of hematopoietic stem cell niches. Adv Drug Deliv Rev 2022; 181:114069. [PMID: 34838648 PMCID: PMC8860232 DOI: 10.1016/j.addr.2021.114069] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/18/2021] [Accepted: 11/21/2021] [Indexed: 12/21/2022]
Abstract
Comprehensive overview of different classes of ECM molecules in the HSC niche. Overview of current knowledge on role of biophysics of the HSC niche. Description of approaches to create artificial stem cell niches for several application. Importance of considering ECM in drug development and testing.
Hematopoietic stem cells (HSCs) are the life-long source of all types of blood cells. Their function is controlled by their direct microenvironment, the HSC niche in the bone marrow. Although the importance of the extracellular matrix (ECM) in the niche by orchestrating niche architecture and cellular function is widely acknowledged, it is still underexplored. In this review, we provide a comprehensive overview of the ECM in HSC niches. For this purpose, we first briefly outline HSC niche biology and then review the role of the different classes of ECM molecules in the niche one by one and how they are perceived by cells. Matrix remodeling and the emerging importance of biophysics in HSC niche function are discussed. Finally, the application of the current knowledge of ECM in the niche in form of artificial HSC niches for HSC expansion or targeted differentiation as well as drug testing is reviewed.
Collapse
|
13
|
Ruan Y, Kim HN, Ogana HA, Gang EJ, Li S, Liu HC, Bhojwani D, Wayne AS, Yang M, Kim YM. In vitro and in vivo effects of AVA4746, a novel competitive antagonist of the ligand binding of VLA-4, in B-cell acute lymphoblastic leukemia. Exp Ther Med 2021; 23:47. [PMID: 34934426 PMCID: PMC8652384 DOI: 10.3892/etm.2021.10969] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 09/14/2021] [Indexed: 12/16/2022] Open
Abstract
Treatment of resistant or recurrent acute lymphoblastic leukemia (ALL) remains a challenge. It was previously demonstrated that the adhesion molecule integrin α4, referred to hereafter as α4, mediates the cell adhesion-mediated drug resistance (CAM-DR) of B-cell ALL by binding to vascular cell adhesion molecule-1 (VCAM-1) on bone marrow stroma. In addition, it was previously observed that the blockade of α4 with natalizumab or inhibition using the small molecule antagonist TBC3486 sensitized relapsed ALL cells to chemotherapy. However, α4-targeted therapy is not clinically available for the treatment of leukemia to date. In the present study, the use of a novel non-peptidic small molecule integrin α4 antagonist, AVA4746, as a potential new approach to combat drug-resistant B-ALL was explored. An in vitro co-culture = model of primary B-ALL cells and an in vivo xenograft model of patient-derived B-ALL cells were utilized for evaluation of AVA4746. VLA-4 conformation activation, cell adhesion/de-adhesion, endothelial tube formation, in vivo leukemia cell mobilization and survival assays were performed. AVA4746 exhibited high affinity for binding to B-ALL cells, where it also efficiently blocked ligand-binding to VCAM-1. In addition, AVA4746 caused the functional de-adhesion of primary B-ALL cells from VCAM-1. Inhibition of α4 using AVA4746 also prevented angiogenesis in vitro and when applied in combination with chemotherapy consisting of Vincristine, Dexamethasone and L-asparaginase, it prolonged the survival of ~33% of the mice in an in vivo xenograft model of B-ALL. These data implicate the potential of targeting the α4-VCAM-1 interaction using AVA4746 for the treatment of drug-resistant B-lineage ALL.
Collapse
Affiliation(s)
- Yongsheng Ruan
- Department of Pediatrics, Division of Hematology-Oncology, Children's Hospital Los Angeles, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90027, USA.,Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Hye Na Kim
- Department of Pediatrics, Division of Hematology-Oncology, Children's Hospital Los Angeles, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90027, USA
| | - Heather A Ogana
- Department of Pediatrics, Division of Hematology-Oncology, Children's Hospital Los Angeles, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90027, USA
| | - Eun Ji Gang
- Department of Pediatrics, Division of Hematology-Oncology, Children's Hospital Los Angeles, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90027, USA
| | - Shuangyue Li
- Department of Pediatrics, Division of Hematology-Oncology, Children's Hospital Los Angeles, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90027, USA
| | - Hsiao-Chuan Liu
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
| | - Deepa Bhojwani
- Department of Pediatrics, Division of Hematology-Oncology, Children's Hospital Los Angeles, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90027, USA
| | - Alan S Wayne
- Department of Pediatrics, Division of Hematology-Oncology, Children's Hospital Los Angeles, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90027, USA
| | - Mo Yang
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China.,Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong 518107, P.R. China
| | - Yong-Mi Kim
- Department of Pediatrics, Division of Hematology-Oncology, Children's Hospital Los Angeles, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90027, USA
| |
Collapse
|
14
|
Härzschel A, Li L, Krenn PW, Szenes-Nagy E, Andrieux G, Bayer E, Pfeifer D, Polcik L, Denk U, Höpner JP, Karabatak E, Danner DJ, Tangermann S, Kenner L, Jumaa H, Greil R, Börries M, Ruppert R, Maity PC, Hartmann TN. Kindlin-3 maintains marginal zone B cells but confines follicular B cell activation and differentiation. J Leukoc Biol 2021; 111:745-758. [PMID: 34888947 DOI: 10.1002/jlb.1hi0621-313r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Integrin-mediated interactions between hematopoietic cells and their microenvironment are important for the development and function of immune cells. Here, the role of the integrin adaptor Kindlin-3 in B cell homeostasis is studied. Comparing the individual steps of B cell development in B cell-specific Kindlin-3 or alpha4 integrin knockout mice, we found in both conditions a phenotype of reduced late immature, mature, and recirculating B cells in the bone marrow. In the spleen, constitutive B cell-specific Kindlin-3 knockout caused a loss of marginal zone B cells and an unexpected expansion of follicular B cells. Alpha4 integrin deficiency did not induce this phenotype. In Kindlin-3 knockout B cells VLA-4 as well as LFA-1-mediated adhesion was abrogated, and short-term homing of these cells in vivo was redirected to the spleen. Upon inducible Kindlin-3 knockout, marginal zone B cells were lost due to defective retention within 2 weeks, while follicular B cell numbers were unaltered. Kindlin-3 deficient follicular B cells displayed higher IgD, CD40, CD44, CXCR5, and EBI2 levels, and elevated PI3K signaling upon CXCR5 stimulation. They also showed transcriptional signatures of spontaneous follicular B cell activation. This activation manifested in scattered germinal centers in situ, early plasmablasts differentiation, and signs of IgG class switch.
Collapse
Affiliation(s)
- Andrea Härzschel
- Department of Internal Medicine I, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany.,Department of Internal Medicine III with Hematology, Medical Oncology, Hemostaseology, Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute - Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), Paracelsus Medical University, Cancer Cluster Salzburg, Salzburg, Austria
| | - Lixia Li
- Department of Internal Medicine I, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Peter W Krenn
- Max Planck Institute of Biochemistry, Martinsried, Germany.,Department of Biosciences, Cancer Cluster Salzburg, Paris-Lodron University of Salzburg, Salzburg, Austria
| | - Eva Szenes-Nagy
- Department of Internal Medicine III with Hematology, Medical Oncology, Hemostaseology, Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute - Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), Paracelsus Medical University, Cancer Cluster Salzburg, Salzburg, Austria
| | - Geoffroy Andrieux
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Elisabeth Bayer
- Department of Internal Medicine III with Hematology, Medical Oncology, Hemostaseology, Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute - Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), Paracelsus Medical University, Cancer Cluster Salzburg, Salzburg, Austria
| | - Dietmar Pfeifer
- Department of Internal Medicine I, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Laura Polcik
- Department of Internal Medicine I, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Ursula Denk
- Department of Internal Medicine III with Hematology, Medical Oncology, Hemostaseology, Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute - Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), Paracelsus Medical University, Cancer Cluster Salzburg, Salzburg, Austria
| | - Jan P Höpner
- Department of Internal Medicine III with Hematology, Medical Oncology, Hemostaseology, Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute - Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), Paracelsus Medical University, Cancer Cluster Salzburg, Salzburg, Austria
| | - Elif Karabatak
- Department of Internal Medicine I, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Danielle-Justine Danner
- Department of Internal Medicine I, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Simone Tangermann
- Unit of Laboratory Animal Pathology, University of Veterinary Medicine, Vienna, Austria
| | - Lukas Kenner
- Unit of Laboratory Animal Pathology, University of Veterinary Medicine, Vienna, Austria.,Department of Clinical Pathology, Medical University Vienna, Vienna, Austria.,Department of Experimental Pathology and Laboratory Animal Science, Medical University of Vienna, Vienna, Austria.,Ludwig Boltzmann Institute for Cancer Research, Vienna, Austria
| | - Hassan Jumaa
- Institute of Immunology, Ulm University, Ulm, Germany
| | - Richard Greil
- Department of Internal Medicine III with Hematology, Medical Oncology, Hemostaseology, Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute - Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), Paracelsus Medical University, Cancer Cluster Salzburg, Salzburg, Austria
| | - Melanie Börries
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | | | - Tanja Nicole Hartmann
- Department of Internal Medicine I, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| |
Collapse
|
15
|
Grenier JMP, Testut C, Fauriat C, Mancini SJC, Aurrand-Lions M. Adhesion Molecules Involved in Stem Cell Niche Retention During Normal Haematopoiesis and in Acute Myeloid Leukaemia. Front Immunol 2021; 12:756231. [PMID: 34867994 PMCID: PMC8636127 DOI: 10.3389/fimmu.2021.756231] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/27/2021] [Indexed: 12/11/2022] Open
Abstract
In the bone marrow (BM) of adult mammals, haematopoietic stem cells (HSCs) are retained in micro-anatomical structures by adhesion molecules that regulate HSC quiescence, proliferation and commitment. During decades, researchers have used engraftment to study the function of adhesion molecules in HSC's homeostasis regulation. Since the 90's, progress in genetically engineered mouse models has allowed a better understanding of adhesion molecules involved in HSCs regulation by BM niches and raised questions about the role of adhesion mechanisms in conferring drug resistance to cancer cells nested in the BM. This has been especially studied in acute myeloid leukaemia (AML) which was the first disease in which the concept of cancer stem cell (CSC) or leukemic stem cells (LSCs) was demonstrated. In AML, it has been proposed that LSCs propagate the disease and are able to replenish the leukemic bulk after complete remission suggesting that LSC may be endowed with drug resistance properties. However, whether such properties are due to extrinsic or intrinsic molecular mechanisms, fully or partially supported by molecular crosstalk between LSCs and surrounding BM micro-environment is still matter of debate. In this review, we focus on adhesion molecules that have been involved in HSCs or LSCs anchoring to BM niches and discuss if inhibition of such mechanism may represent new therapeutic avenues to eradicate LSCs.
Collapse
Affiliation(s)
- Julien M P Grenier
- Aix-Marseille Université, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Institut Paoli Calmettes, Centre de Recherche en Cancérologie de Marseille (CRCM), Equipe Labellisée Ligue Nationale Contre le Cancer 2020, Marseille, France
| | - Céline Testut
- Aix-Marseille Université, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Institut Paoli Calmettes, Centre de Recherche en Cancérologie de Marseille (CRCM), Equipe Labellisée Ligue Nationale Contre le Cancer 2020, Marseille, France
| | - Cyril Fauriat
- Aix-Marseille Université, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Institut Paoli Calmettes, Centre de Recherche en Cancérologie de Marseille (CRCM), Equipe Labellisée Ligue Nationale Contre le Cancer 2020, Marseille, France
| | - Stéphane J C Mancini
- Aix-Marseille Université, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Institut Paoli Calmettes, Centre de Recherche en Cancérologie de Marseille (CRCM), Equipe Labellisée Ligue Nationale Contre le Cancer 2020, Marseille, France
| | - Michel Aurrand-Lions
- Aix-Marseille Université, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Institut Paoli Calmettes, Centre de Recherche en Cancérologie de Marseille (CRCM), Equipe Labellisée Ligue Nationale Contre le Cancer 2020, Marseille, France
| |
Collapse
|
16
|
Hao J, Zhou H, Nemes K, Yen D, Zhao W, Bramlett C, Wang B, Lu R, Shen K. Membrane-bound SCF and VCAM-1 synergistically regulate the morphology of hematopoietic stem cells. J Cell Biol 2021; 220:212562. [PMID: 34402812 PMCID: PMC8374872 DOI: 10.1083/jcb.202010118] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 06/29/2021] [Accepted: 07/29/2021] [Indexed: 12/12/2022] Open
Abstract
Membrane-bound factors expressed by niche stromal cells constitute a unique class of localized cues and regulate the long-term functions of adult stem cells, yet little is known about the underlying mechanisms. Here, we used a supported lipid bilayer (SLB) to recapitulate the membrane-bound interactions between hematopoietic stem cells (HSCs) and niche stromal cells. HSCs cluster membrane-bound stem cell factor (mSCF) at the HSC-SLB interface. They further form a polarized morphology with aggregated mSCF under a large protrusion through a synergy with VCAM-1 on the bilayer, which drastically enhances HSC adhesion. These features are unique to mSCF and HSCs among the factors and hematopoietic populations we examined. The mSCF-VCAM-1 synergy and the polarized HSC morphology require PI3K signaling and cytoskeletal reorganization. The synergy also enhances nuclear retention of FOXO3a, a crucial factor for HSC maintenance, and minimizes its loss induced by soluble SCF. Our work thus reveals a unique role and signaling mechanism of membrane-bound factors in regulating stem cell morphology and function.
Collapse
Affiliation(s)
- Jia Hao
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA
| | - Hao Zhou
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA
| | - Kristen Nemes
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA
| | - Daniel Yen
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA
| | - Winfield Zhao
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA
| | - Charles Bramlett
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA
| | - Bowen Wang
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA
| | - Rong Lu
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA.,Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA.,Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA.,Department of Medicine, University of Southern California, Los Angeles, CA
| | - Keyue Shen
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA.,Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA.,USC Stem Cell, University of Southern California, Los Angeles, CA
| |
Collapse
|
17
|
Karanth DS, Martin ML, Holliday LS. Plasma Membrane Receptors Involved in the Binding and Response of Osteoclasts to Noncellular Components of the Bone. Int J Mol Sci 2021; 22:ijms221810097. [PMID: 34576260 PMCID: PMC8466431 DOI: 10.3390/ijms221810097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/13/2021] [Accepted: 09/16/2021] [Indexed: 12/21/2022] Open
Abstract
Osteoclasts differentiate from hematopoietic cells and resorb the bone in response to various signals, some of which are received directly from noncellular elements of the bone. In vitro, adherence to the bone triggers the reduction of cell–cell fusion events between osteoclasts and the activation of osteoclasts to form unusual dynamic cytoskeletal and membrane structures that are required for degrading the bone. Integrins on the surface of osteoclasts are known to receive regulatory signals from the bone matrix. Regulation of the availability of these signals is accomplished by enzymatic alterations of the bone matrix by protease activity and phosphorylation/dephosphorylation events. Other membrane receptors are present in osteoclasts and may interact with as yet unidentified signals in the bone. Bone mineral has been shown to have regulatory effects on osteoclasts, and osteoclast activity is also directly modulated by mechanical stress. As understanding of how osteoclasts and other bone cells interact with the bone has emerged, increasingly sophisticated efforts have been made to create bone biomimetics that reproduce both the structural properties of the bone and the bone’s ability to regulate osteoclasts and other bone cells. A more complete understanding of the interactions between osteoclasts and the bone may lead to new strategies for the treatment of bone diseases and the production of bone biomimetics to repair defects.
Collapse
Affiliation(s)
- Divakar S. Karanth
- Department of Orthodontics, College of Dentistry, University of Florida, Gainesville, FL 32610, USA; (D.S.K.); (M.L.M.)
| | - Macey L. Martin
- Department of Orthodontics, College of Dentistry, University of Florida, Gainesville, FL 32610, USA; (D.S.K.); (M.L.M.)
| | - Lexie S. Holliday
- Department of Orthodontics, College of Dentistry, University of Florida, Gainesville, FL 32610, USA; (D.S.K.); (M.L.M.)
- Department of Anatomy & Cell Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
- Correspondence:
| |
Collapse
|
18
|
Fröbel J, Landspersky T, Percin G, Schreck C, Rahmig S, Ori A, Nowak D, Essers M, Waskow C, Oostendorp RAJ. The Hematopoietic Bone Marrow Niche Ecosystem. Front Cell Dev Biol 2021; 9:705410. [PMID: 34368155 PMCID: PMC8339972 DOI: 10.3389/fcell.2021.705410] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 06/28/2021] [Indexed: 12/18/2022] Open
Abstract
The bone marrow (BM) microenvironment, also called the BM niche, is essential for the maintenance of fully functional blood cell formation (hematopoiesis) throughout life. Under physiologic conditions the niche protects hematopoietic stem cells (HSCs) from sustained or overstimulation. Acute or chronic stress deregulates hematopoiesis and some of these alterations occur indirectly via the niche. Effects on niche cells include skewing of its cellular composition, specific localization and molecular signals that differentially regulate the function of HSCs and their progeny. Importantly, while acute insults display only transient effects, repeated or chronic insults lead to sustained alterations of the niche, resulting in HSC deregulation. We here describe how changes in BM niche composition (ecosystem) and structure (remodeling) modulate activation of HSCs in situ. Current knowledge has revealed that upon chronic stimulation, BM remodeling is more extensive and otherwise quiescent HSCs may be lost due to diminished cellular maintenance processes, such as autophagy, ER stress response, and DNA repair. Features of aging in the BM ecology may be the consequence of intermittent stress responses, ultimately resulting in the degeneration of the supportive stem cell microenvironment. Both chronic stress and aging impair the functionality of HSCs and increase the overall susceptibility to development of diseases, including malignant transformation. To understand functional degeneration, an important prerequisite is to define distinguishing features of unperturbed niche homeostasis in different settings. A unique setting in this respect is xenotransplantation, in which human cells depend on niche factors produced by other species, some of which we will review. These insights should help to assess deviations from the steady state to actively protect and improve recovery of the niche ecosystem in situ to optimally sustain healthy hematopoiesis in experimental and clinical settings.
Collapse
Affiliation(s)
- Julia Fröbel
- Immunology of Aging, Leibniz Institute on Aging - Fritz Lipmann Institute, Jena, Germany
| | - Theresa Landspersky
- School of Medicine, Department of Internal Medicine III, Technical University of Munich, Munich, Germany
| | - Gülce Percin
- Immunology of Aging, Leibniz Institute on Aging - Fritz Lipmann Institute, Jena, Germany
| | - Christina Schreck
- School of Medicine, Department of Internal Medicine III, Technical University of Munich, Munich, Germany
| | - Susann Rahmig
- Immunology of Aging, Leibniz Institute on Aging - Fritz Lipmann Institute, Jena, Germany
| | - Alessandro Ori
- Proteomics of Aging, Leibniz Institute on Aging - Fritz Lipmann Institute, Jena, Germany
| | - Daniel Nowak
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Marieke Essers
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany.,Division Inflammatory Stress in Stem Cells, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Claudia Waskow
- Immunology of Aging, Leibniz Institute on Aging - Fritz Lipmann Institute, Jena, Germany.,Institute of Biochemistry and Biophysics, Faculty of Biological Sciences, Friedrich Schiller University Jena, Jena, Germany.,Department of Medicine III, Technical University Dresden, Dresden, Germany
| | - Robert A J Oostendorp
- School of Medicine, Department of Internal Medicine III, Technical University of Munich, Munich, Germany
| |
Collapse
|
19
|
Correa-Gallegos D, Jiang D, Rinkevich Y. Fibroblasts as confederates of the immune system. Immunol Rev 2021; 302:147-162. [PMID: 34036608 DOI: 10.1111/imr.12972] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/28/2021] [Accepted: 04/28/2021] [Indexed: 12/18/2022]
Abstract
Fibroblastic stromal cells are as diverse, in origin and function, as the niches they fashion in the mammalian body. This cellular variety impacts the spectrum of responses elicited by the immune system. Fibroblast influence on the immune system keeps evolving our perspective on fibroblast roles and functions beyond just a passive structural part of organs. This review discusses the foundations of fibroblastic stromal-immune crosstalk, under the scope of stromal heterogeneity as a basis for tissue-specific tutoring of the immune system. Focusing on the skin as a relevant immunological organ, we detail the complex interactions between distinct fibroblast populations and immune cells that occur during homeostasis, injury repair, scarring, and disease. We further review the relevance of fibroblastic stromal cell heterogeneity and how this heterogeneity is central to regulate the immune system from its inception during embryonic development into adulthood.
Collapse
Affiliation(s)
- Donovan Correa-Gallegos
- Institute of Lung Biology and Disease, Comprehensive Pneumology Center, Helmholtz Zentrum München, Munich, Germany
| | - Dongsheng Jiang
- Institute of Lung Biology and Disease, Comprehensive Pneumology Center, Helmholtz Zentrum München, Munich, Germany
| | - Yuval Rinkevich
- Institute of Regenerative Biology and Medicine, Helmholtz Zentrum München, Munich, Germany
| |
Collapse
|
20
|
CD11c regulates hematopoietic stem and progenitor cells under stress. Blood Adv 2021; 4:6086-6097. [PMID: 33351105 DOI: 10.1182/bloodadvances.2020002504] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 11/09/2020] [Indexed: 12/28/2022] Open
Abstract
β2 integrins are well-known leukocyte adhesion molecules consisting of 4 members: CD11a-d. Their known biological functions range widely from leukocyte recruitment, phagocytosis, to immunological synapse formation, but the studies have been primarily focused on CD11a and CD11b. CD11c is 1 of the 4 members and is extremely homologous to CD11b. It has been well known as a dendritic cell marker, but the characterization of its function has been limited. We found that CD11c was expressed on the short-term hematopoietic stem cells and multipotent progenitor cells. The lack of CD11c did not affect the number of hematopoietic stem and progenitor cells (HSPCs) in healthy CD11c knockout mice. Different from other β2 integrin members, however, CD11c deficiency was associated with increased apoptosis and significant loss of HSPCs in sepsis and bone marrow transplantation. Although integrins are generally known for their overlapping and redundant roles, we showed that CD11c had a distinct role of regulating the expansion of HSPCs under stress. This study shows that CD11c, a well-known dendritic cell marker, is expressed on HSPCs and serves as their functional regulator. CD11c deficiency leads to the loss of HSPCs via apoptosis in sepsis and bone marrow transplantation.
Collapse
|
21
|
Manouchehri N, Hussain RZ, Cravens PD, Esaulova E, Artyomov MN, Edelson BT, Wu GF, Cross AH, Doelger R, Loof N, Eagar TN, Forsthuber TG, Calvier L, Herz J, Stüve O. CD11c +CD88 +CD317 + myeloid cells are critical mediators of persistent CNS autoimmunity. Proc Natl Acad Sci U S A 2021; 118:e2014492118. [PMID: 33785592 PMCID: PMC8040603 DOI: 10.1073/pnas.2014492118] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Natalizumab, a humanized monoclonal antibody (mAb) against α4-integrin, reduces the number of dendritic cells (DC) in cerebral perivascular spaces in multiple sclerosis (MS). Selective deletion of α4-integrin in CD11c+ cells should curtail their migration to the central nervous system (CNS) and ameliorate experimental autoimmune encephalomyelitis (EAE). We generated CD11c.Cre+/-ITGA4fl/fl C57BL/6 mice to selectively delete α4-integrin in CD11c+ cells. Active immunization and adoptive transfer EAE models were employed and compared with WT controls. Multiparameter flow cytometry was utilized to immunophenotype leukocyte subsets. Single-cell RNA sequencing was used to profile individual cells. α4-Integrin expression by CD11c+ cells was significantly reduced in primary and secondary lymphoid organs in CD11c.Cre+/-ITGA4fl/fl mice. In active EAE, a delayed disease onset was observed in CD11c.Cre+/-ITGA4fl/fl mice, during which CD11c+CD88+ cells were sequestered in the blood. Upon clinical EAE onset, CD11c+CD88+ cells appeared in the CNS and expressed CD317+ In adoptive transfer experiments, CD11c.Cre+/-ITGA4fl/fl mice had ameliorated clinical disease phenotype associated with significantly diminished numbers of CNS CD11c+CD88+CD317+ cells. In human cerebrospinal fluid from subjects with neuroinflammation, microglia-like cells display coincident expression of ITGAX (CD11c), C5AR1 (CD88), and BST2 (CD317). In mice, we show that only activated, but not naïve microglia expressed CD11c, CD88, and CD317. Finally, anti-CD317 treatment prior to clinical EAE substantially enhanced recovery in mice.
Collapse
Affiliation(s)
- Navid Manouchehri
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Rehana Z Hussain
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Petra D Cravens
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Ekaterina Esaulova
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Maxim N Artyomov
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Brian T Edelson
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Gregory F Wu
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110
| | - Anne H Cross
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110
| | - Richard Doelger
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Nicolas Loof
- The Moody Foundation Flow Cytometry Facility, Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Todd N Eagar
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX 77030
| | - Thomas G Forsthuber
- Department of Biology, University of Texas at San Antonio, San Antonio, TX 78249
| | - Laurent Calvier
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Center for Translational Neurodegeneration Research, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Joachim Herz
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Center for Translational Neurodegeneration Research, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Center for Neuroscience, Department of Neuroanatomy, Albert-Ludwigs University, 79085 Freiburg, Germany
| | - Olaf Stüve
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX 75390;
- Neurology Section, VA North Texas Health Care System, Dallas, TX 75216
| |
Collapse
|
22
|
Mehatre SH, Roy IM, Biswas A, Prit D, Schouteden S, Huelsken J, Verfaillie CM, Khurana S. Niche-Mediated Integrin Signaling Supports Steady-State Hematopoiesis in the Spleen. THE JOURNAL OF IMMUNOLOGY 2021; 206:1549-1560. [PMID: 33637617 DOI: 10.4049/jimmunol.2001066] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 01/20/2021] [Indexed: 11/19/2022]
Abstract
Outside-in integrin signaling regulates cell fate decisions in a variety of cell types, including hematopoietic stem cells (HSCs). Our earlier published studies showed that interruption of periostin (POSTN) and integrin-αv (ITGAV) interaction induces faster proliferation in HSCs with developmental stage-dependent functional effects. In this study, we examined the role of POSTN-ITGAV axis in lymphohematopoietic activity in spleen that hosts a rare population of HSCs, the functional regulation of which is not clearly known. Vav-iCre-mediated deletion of Itgav in the hematopoietic system led to higher proliferation rates, resulting in increased frequency of primitive HSCs in the adult spleen. However, in vitro CFU-C assays demonstrated a poorer differentiation potential following Itgav deletion. This also led to a decrease in the white pulp area with a significant decline in the B cell numbers. Systemic deletion of its ligand, POSTN, phenocopied the effects noted in Vav-Itgav-/- mice. Histological examination of Postn-deficient spleen also showed an increase in the spleen trabecular areas. Importantly, these are the myofibroblasts of the trabecular and capsular areas that expressed high levels of POSTN within the spleen tissue. In addition, vascular smooth muscle cells also expressed POSTN. Through CFU-S12 assays, we showed that hematopoietic support potential of stroma in Postn-deficient splenic hematopoietic niche was defective. Overall, we demonstrate that POSTN-ITGAV interaction plays an important role in spleen lymphohematopoiesis.
Collapse
Affiliation(s)
- Shubham Haribhau Mehatre
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Kerala 695551, India
| | - Irene Mariam Roy
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Kerala 695551, India
| | - Atreyi Biswas
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Kerala 695551, India
| | - Devila Prit
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Kerala 695551, India
| | - Sarah Schouteden
- Interdepartmental Stem Cell Institute, Katholieke Universiteit Leuven, 3000 Leuven, Belgium; and
| | - Joerg Huelsken
- École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Catherine M Verfaillie
- Interdepartmental Stem Cell Institute, Katholieke Universiteit Leuven, 3000 Leuven, Belgium; and
| | - Satish Khurana
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Kerala 695551, India;
| |
Collapse
|
23
|
Mitsdoerffer M, Di Liberto G, Dötsch S, Sie C, Wagner I, Pfaller M, Kreutzfeldt M, Fräßle S, Aly L, Knier B, Busch DH, Merkler D, Korn T. Formation and immunomodulatory function of meningeal B cell aggregates in progressive CNS autoimmunity. Brain 2021; 144:1697-1710. [PMID: 33693558 DOI: 10.1093/brain/awab093] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 12/25/2022] Open
Abstract
Meningeal B lymphocyte aggregates have been described in autopsy material of patients with chronic multiple sclerosis. The presence of meningeal B cell aggregates has been correlated with worse disease. However, the functional role of these meningeal B cell aggregates is not understood. Here, we use a mouse model of multiple sclerosis, the spontaneous opticospinal encephalomyelitis model, which is built on the double transgenic expression of myelin oligodendrocyte glycoprotein-specific T-cell and B-cell receptors, to show that the formation of meningeal B cell aggregates is dependent on the expression of α4 integrins by antigen-specific T cells. T cell-conditional genetic ablation of α4 integrins in opticospinal encephalomyelitis mice impaired the formation of meningeal B cell aggregates, and surprisingly, led to a higher disease incidence as compared to opticospinal encephalomyelitis mice with α4 integrin-sufficient T cells. B cell-conditional ablation of α4 integrins in opticospinal encephalomyelitis mice resulted in the entire abrogation of the formation of meningeal B cell aggregates, and opticospinal encephalomyelitis mice with α4 integrin-deficient B cells suffered from a higher disease burden than regular opticospinal encephalomyelitis mice. While anti-CD20 antibody-mediated systemic depletion of B cells in opticospinal encephalomyelitis mice after onset of disease failed to efficiently decrease meningeal B cell aggregates without significantly modulating disease progression, treatment with anti-CD19 chimeric antigen receptor-T cells eliminated meningeal B cell aggregates and exacerbated clinical disease in opticospinal encephalomyelitis mice. Since about 20% of B cells in organized meningeal B cell aggregates produced either IL-10 or IL-35, we propose that meningeal B cell aggregates might also have an immunoregulatory function as to the immunopathology in adjacent spinal cord white matter. The immunoregulatory function of meningeal B cell aggregates needs to be considered when designing highly efficient therapies directed against meningeal B cell aggregates for clinical application in multiple sclerosis.
Collapse
Affiliation(s)
- Meike Mitsdoerffer
- Klinikum rechts der Isar, Department of Neurology, Technical University of Munich, 81675 Munich, Germany.,Klinikum rechts der Isar, Institute for Experimental Neuroimmunology, Technical University of Munich, 81675 Munich, Germany
| | - Giovanni Di Liberto
- Division of Clinical Pathology, Department of Pathology and Immunology, Geneva Faculty of Medicine, Centre Médical Universitaire, 1211 Geneva, Switzerland
| | - Sarah Dötsch
- Institute for Medical Microbiology, Immunology, and Hygiene, Technical University of Munich, 81675 Munich, Germany
| | - Christopher Sie
- Klinikum rechts der Isar, Institute for Experimental Neuroimmunology, Technical University of Munich, 81675 Munich, Germany
| | - Ingrid Wagner
- Division of Clinical Pathology, Department of Pathology and Immunology, Geneva Faculty of Medicine, Centre Médical Universitaire, 1211 Geneva, Switzerland
| | - Monika Pfaller
- Klinikum rechts der Isar, Institute for Experimental Neuroimmunology, Technical University of Munich, 81675 Munich, Germany
| | - Mario Kreutzfeldt
- Division of Clinical Pathology, Department of Pathology and Immunology, Geneva Faculty of Medicine, Centre Médical Universitaire, 1211 Geneva, Switzerland
| | - Simon Fräßle
- Institute for Medical Microbiology, Immunology, and Hygiene, Technical University of Munich, 81675 Munich, Germany
| | - Lilian Aly
- Klinikum rechts der Isar, Department of Neurology, Technical University of Munich, 81675 Munich, Germany
| | - Benjamin Knier
- Klinikum rechts der Isar, Department of Neurology, Technical University of Munich, 81675 Munich, Germany
| | - Dirk H Busch
- Institute for Medical Microbiology, Immunology, and Hygiene, Technical University of Munich, 81675 Munich, Germany.,National Center for Infection Research (DZIF), Technical University of Munich, 81675 Munich, Germany
| | - Doron Merkler
- Division of Clinical Pathology, Department of Pathology and Immunology, Geneva Faculty of Medicine, Centre Médical Universitaire, 1211 Geneva, Switzerland
| | - Thomas Korn
- Klinikum rechts der Isar, Department of Neurology, Technical University of Munich, 81675 Munich, Germany.,Klinikum rechts der Isar, Institute for Experimental Neuroimmunology, Technical University of Munich, 81675 Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), DZNE site Munich, 81377 Munich, Germany
| |
Collapse
|
24
|
Rolfes L, Riek-Burchardt M, Pawlitzki M, Minnerup J, Bock S, Schmidt M, Meuth SG, Gunzer M, Neumann J. Neutrophil granulocytes promote flow stagnation due to dynamic capillary stalls following experimental stroke. Brain Behav Immun 2021; 93:322-330. [PMID: 33486002 DOI: 10.1016/j.bbi.2021.01.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 12/01/2022] Open
Abstract
Flow stagnation of peri-ischemic capillaries due to dynamic leukocyte stalls has been described to be a contributor to ongoing penumbral injury in transient brain ischemia, but has not been investigated in permanent experimental stroke so far. Moreover, it is discussed that obstructing neutrophils are involved in this process; however, their contribution has not yet been proven. Here, we characterize the dynamics of neutrophil granulocytes in two models of permanent stroke (photothrombosis and permanent middle cerebral artery occlusion) using intravital two-photon fluorescence microscopy. Different to previous studies on LysM-eGFP+ cells we additionally apply a transgenic mouse model with tdTomato-expressing neutrophils to avoid interference from additional immune cell subsets. We identify repetitively occurring capillary stalls of varying duration promoted by neutrophils in both models of permanent cerebral ischemia, validating the suitability of our new transgenic mouse model in determining neutrophil occlusion formation in vivo. Flow cytometric analysis of peripheral blood (PB) and brain tissue from mice subjected to photothrombosis reveal an increase in the total proportion of neutrophils, with selective upregulation of endothelial adherence markers in the PB. In conclusion, the dynamic microcirculatory stall phenomenon that is described after transient ischemia followed by reperfusion also occurs after permanent small- or large-vessel stroke and is clearly attributable to neutrophils.
Collapse
Affiliation(s)
- Leoni Rolfes
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Germany.
| | | | - Marc Pawlitzki
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Germany; Department of Neurology, Otto-von-Guericke University, Magdeburg, Germany.
| | - Jens Minnerup
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Germany.
| | - Stefanie Bock
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Germany.
| | - Mariella Schmidt
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Germany.
| | - Sven G Meuth
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Germany; Department of Neurology, University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Germany.
| | - Matthias Gunzer
- Institute for Experimental Immunology and Imaging, University Hospital Essen, Germany.
| | - Jens Neumann
- Department of Neurology, Otto-von-Guericke University, Magdeburg, Germany.
| |
Collapse
|
25
|
Aira LE, Debes GF. Skin-Homing Regulatory B Cells Required for Suppression of Cutaneous Inflammation. J Invest Dermatol 2021; 141:1995-2005.e6. [PMID: 33577766 DOI: 10.1016/j.jid.2021.01.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 12/23/2020] [Accepted: 01/27/2021] [Indexed: 02/06/2023]
Abstract
Pro and anti-inflammatory B-cell subsets that localize to unperturbed and inflamed skin are newly emerging components of the skin immune system. To test the relevance of regulatory B cells (Bregs) in the suppression of cutaneous inflammation, we asked whether impaired migration of these cells into the skin exacerbates skin inflammation. Using a mouse model with a B-cell‒specific tamoxifen-inducible deletion of α4β1 integrin, we demonstrate that selective disruption of α4β1-integrin expression in B cells significantly decreases IL-10+ Bregs in inflamed skin, whereas it does not affect their counterparts in lymphoid tissues. Impaired skin homing and reduced cutaneous accumulation of IL-10+ Bregs lead to a significant increase in clinical and histopathological parameters of inflammation in both psoriasiform skin inflammation and cutaneous delayed contact hypersensitivity. Thus, our data show a crucial function of skin-homing IL-10+ Bregs in the suppression of skin inflammation, supporting the notion that Bregs are critical players in the cutaneous environment during inflammatory skin diseases.
Collapse
Affiliation(s)
- Lazaro Emilio Aira
- Department of Microbiology & Immunology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA; Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Gudrun Fiona Debes
- Department of Microbiology & Immunology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA; Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
26
|
Wirth F, Lubosch A, Hamelmann S, Nakchbandi IA. Fibronectin and Its Receptors in Hematopoiesis. Cells 2020; 9:cells9122717. [PMID: 33353083 PMCID: PMC7765895 DOI: 10.3390/cells9122717] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/08/2020] [Accepted: 12/15/2020] [Indexed: 02/07/2023] Open
Abstract
Fibronectin is a ubiquitous extracellular matrix protein that is produced by many cell types in the bone marrow and distributed throughout it. Cells of the stem cell niche produce the various isoforms of this protein. Fibronectin not only provides the cells a scaffold to bind to, but it also modulates their behavior by binding to receptors on the adjacent hematopoietic stem cells and stromal cells. These receptors, which include integrins such as α4β1, α9β1, α4β7, α5β1, αvβ3, Toll-like receptor-4 (TLR-4), and CD44, are found on the hematopoietic stem cell. Because the knockout of fibronectin is lethal during embryonal development and because fibronectin is produced by almost all cell types in mammals, the study of its role in hematopoiesis is difficult. Nevertheless, strong and direct evidence exists for its stimulation of myelopoiesis and thrombopoiesis using in vivo models. Other reviewed effects can be deduced from the study of fibronectin receptors, which showed their activation modifies the behavior of hematopoietic stem cells. Erythropoiesis was only stimulated under hemolytic stress, and mostly late stages of lymphocytic differentiation were modulated. Because fibronectin is ubiquitously expressed, these interactions in health and disease need to be taken into account whenever any molecule is evaluated in hematopoiesis.
Collapse
Affiliation(s)
- Franziska Wirth
- Institute of Immunology, University of Heidelberg, 69120 Heidelberg, Germany; (F.W.); (A.L.); (S.H.)
| | - Alexander Lubosch
- Institute of Immunology, University of Heidelberg, 69120 Heidelberg, Germany; (F.W.); (A.L.); (S.H.)
| | - Stefan Hamelmann
- Institute of Immunology, University of Heidelberg, 69120 Heidelberg, Germany; (F.W.); (A.L.); (S.H.)
| | - Inaam A. Nakchbandi
- Institute of Immunology, University of Heidelberg, 69120 Heidelberg, Germany; (F.W.); (A.L.); (S.H.)
- Max-Planck Institute for Medical Research, 69120 Heidelberg, Germany
- Correspondence: ; Tel.: +49-622-156-8744
| |
Collapse
|
27
|
Oulghazi S, Wegner SK, Spohn G, Müller N, Harenkamp S, Stenzinger A, Papayannopoulou T, Bonig H. Adaptive Immunity and Pathogenesis of Diabetes: Insights Provided by the α4-Integrin Deficient NOD Mouse. Cells 2020; 9:cells9122597. [PMID: 33291571 PMCID: PMC7761835 DOI: 10.3390/cells9122597] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 11/30/2020] [Accepted: 12/02/2020] [Indexed: 12/12/2022] Open
Abstract
Background: The spontaneously diabetic “non-obese diabetic” (NOD) mouse is a faithful model of human type-1 diabetes (T1D). Methods: Given the pivotal role of α4 integrin (CD49d) in other autoimmune diseases, we generated NOD mice with α4-deficient hematopoiesis (NOD.α4-/-) to study the role of α4 integrin in T1D. Results: NOD.α4-/- mice developed islet-specific T-cells and antibodies, albeit quantitatively less than α4+ counterparts. Nevertheless, NOD.α4-/- mice were completely and life-long protected from diabetes and insulitis. Moreover, transplantation with isogeneic α4-/- bone marrow prevented progression to T1D of pre-diabetic NOD.α4+ mice despite significant pre-existing islet cell injury. Transfer of α4+/CD3+, but not α4+/CD4+ splenocytes from diabetic to NOD.α4-/- mice induced diabetes with short latency. Despite an only modest contribution of adoptively transferred α4+/CD3+ cells to peripheral blood, pancreas-infiltrating T-cells were exclusively graft derived, i.e., α4+. Microbiota of diabetes-resistant NOD.α4-/- and pre-diabetic NOD.α4+ mice were identical. Co- housed diabetic NOD.α4+ mice showed the characteristic diabetic dysbiosis, implying causality of diabetes for dysbiosis. Incidentally, NOD.α4-/- mice were protected from autoimmune sialitis. Conclusion: α4 is a potential target for primary or secondary prevention of T1D.
Collapse
Affiliation(s)
- Salim Oulghazi
- Institute for Transfusion Medicine and Immunohematology, School of Medicine, Goethe University, Sandhofstraße 1, 60528 Frankfurt, Germany or (S.O.); (S.K.W.)
| | - Sarah K. Wegner
- Institute for Transfusion Medicine and Immunohematology, School of Medicine, Goethe University, Sandhofstraße 1, 60528 Frankfurt, Germany or (S.O.); (S.K.W.)
| | - Gabriele Spohn
- Institute Frankfurt, German Red Cross Blood Service BaWüHe, Sandhofstraße 1, 60528 Frankfurt, Germany; (G.S.); (N.M.); (S.H.)
| | - Nina Müller
- Institute Frankfurt, German Red Cross Blood Service BaWüHe, Sandhofstraße 1, 60528 Frankfurt, Germany; (G.S.); (N.M.); (S.H.)
| | - Sabine Harenkamp
- Institute Frankfurt, German Red Cross Blood Service BaWüHe, Sandhofstraße 1, 60528 Frankfurt, Germany; (G.S.); (N.M.); (S.H.)
| | - Albrecht Stenzinger
- Institute for Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 672, 69120 Heidelberg, Germany;
| | - Thalia Papayannopoulou
- Department of Medicine/Division of Hematology, University of Washington, 1959 NE Pacific St., Seattle, WA 98195, USA;
| | - Halvard Bonig
- Institute for Transfusion Medicine and Immunohematology, School of Medicine, Goethe University, Sandhofstraße 1, 60528 Frankfurt, Germany or (S.O.); (S.K.W.)
- Institute Frankfurt, German Red Cross Blood Service BaWüHe, Sandhofstraße 1, 60528 Frankfurt, Germany; (G.S.); (N.M.); (S.H.)
- Department of Medicine/Division of Hematology, University of Washington, 1959 NE Pacific St., Seattle, WA 98195, USA;
- Correspondence: ; Tel.: +49-69-6782177
| |
Collapse
|
28
|
Kramer F, Martinson AM, Papayannopoulou T, Kanter JE. Myocardial Infarction Does Not Accelerate Atherosclerosis in a Mouse Model of Type 1 Diabetes. Diabetes 2020; 69:2133-2143. [PMID: 32694213 PMCID: PMC7506833 DOI: 10.2337/db20-0152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 07/17/2020] [Indexed: 11/13/2022]
Abstract
In addition to increasing the risk of an initial myocardial infarction (MI), diabetes increases the risk of a recurrent MI. Previous work suggests that an experimental MI can accelerate atherosclerosis via monocytosis. To test whether diabetes and experimental MI synergize to accelerate atherosclerosis, we performed ligation of the left anterior descending coronary artery to induce experimental MI or sham surgery in nondiabetic and diabetic mice with preexisting atherosclerosis. All mice subjected to experimental MI had significantly reduced left ventricular function. In our model, in comparisons with nondiabetic sham mice, neither diabetes nor MI resulted in monocytosis. Neither diabetes nor MI led to increased atherosclerotic lesion size, but diabetes accelerated lesion progression, exemplified by necrotic core expansion. The necrotic core expansion was dependent on monocyte recruitment, as mice with myeloid cells deficient in the adhesion molecule integrin α4 were protected from necrotic core expansion. In summary, diabetes, but not MI, accelerates lesion progression, suggesting that the increased risk of recurrent MI in diabetes is due to a higher lesional burden and/or elevated risk factors rather than the acceleration of the underlying pathology from a previous MI.
Collapse
Affiliation(s)
- Farah Kramer
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington Medicine Diabetes Institute, University of Washington School of Medicine, Seattle, WA
| | - Amy M Martinson
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA
| | - Thalia Papayannopoulou
- Division of Hematology, Department of Medicine, University of Washington School of Medicine, Seattle, WA
| | - Jenny E Kanter
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington Medicine Diabetes Institute, University of Washington School of Medicine, Seattle, WA
| |
Collapse
|
29
|
Tomellini E, Fares I, Lehnertz B, Chagraoui J, Mayotte N, MacRae T, Bordeleau MÈ, Corneau S, Bisaillon R, Sauvageau G. Integrin-α3 Is a Functional Marker of Ex Vivo Expanded Human Long-Term Hematopoietic Stem Cells. Cell Rep 2020; 28:1063-1073.e5. [PMID: 31340144 DOI: 10.1016/j.celrep.2019.06.084] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 03/12/2019] [Accepted: 06/24/2019] [Indexed: 12/31/2022] Open
Abstract
Transplantation of expanded hematopoietic stem cells (HSCs) and gene therapy based on HSC engineering have emerged as promising approaches for the treatment of hematological diseases. Nevertheless, the immunophenotype of cultured HSCs remains poorly defined. Here, we identify Integrin-α3 (ITGA3) as a marker of cultured human HSCs. Exploiting the pyrimidoindole derivative UM171 to expand cord blood (CB) cells, we show that ITGA3 expression is sufficient to separate the primitive EPCR+CD90+CD133+CD34+CD45RA- HSC population into two functionally distinct fractions presenting mostly short-term (ITGA3-) and both short-term and long-term (ITGA3+) repopulating potential. ITGA3+ cells exhibit robust multilineage differentiation potential, serial reconstitution ability in immunocompromised mice, and an HSC-specific transcriptomic signature. Moreover, ITGA3 expression is functionally required for the long-term engraftment of CB cells. Altogether, our results indicate that ITGA3 is a reliable marker of cultured human long-term repopulating HSCs (LT-HSCs) and represents an important tool to improve the accuracy of prospective HSC identification in culture.
Collapse
Affiliation(s)
- Elisa Tomellini
- Molecular Genetics of Stem Cells Laboratory, Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, H3T 1J4 QC, Canada
| | - Iman Fares
- Molecular Genetics of Stem Cells Laboratory, Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, H3T 1J4 QC, Canada
| | - Bernhard Lehnertz
- Molecular Genetics of Stem Cells Laboratory, Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, H3T 1J4 QC, Canada
| | - Jalila Chagraoui
- Molecular Genetics of Stem Cells Laboratory, Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, H3T 1J4 QC, Canada
| | - Nadine Mayotte
- Molecular Genetics of Stem Cells Laboratory, Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, H3T 1J4 QC, Canada
| | - Tara MacRae
- Molecular Genetics of Stem Cells Laboratory, Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, H3T 1J4 QC, Canada
| | - Marie-Ève Bordeleau
- Molecular Genetics of Stem Cells Laboratory, Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, H3T 1J4 QC, Canada
| | - Sophie Corneau
- Molecular Genetics of Stem Cells Laboratory, Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, H3T 1J4 QC, Canada
| | - Richard Bisaillon
- Molecular Genetics of Stem Cells Laboratory, Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, H3T 1J4 QC, Canada
| | - Guy Sauvageau
- Molecular Genetics of Stem Cells Laboratory, Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, H3T 1J4 QC, Canada; Division of Hematology, Maisonneuve-Rosemont Hospital, Montréal, H1T 2M4 QC, Canada; Department of Medicine, Faculty of Medicine, Université de Montréal, Montréal, H3T 1J4 QC, Canada.
| |
Collapse
|
30
|
Lee BJ, Mace EM. From stem cell to immune effector: how adhesion, migration, and polarity shape T-cell and natural killer cell lymphocyte development in vitro and in vivo. Mol Biol Cell 2020; 31:981-991. [PMID: 32352896 PMCID: PMC7346728 DOI: 10.1091/mbc.e19-08-0424] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 02/10/2020] [Accepted: 03/10/2020] [Indexed: 12/14/2022] Open
Abstract
Lymphocyte development is a complex and coordinated pathway originating from pluripotent stem cells during embryogenesis and continuing even as matured lymphocytes are primed and educated in adult tissue. Hematopoietic stem cells develop in a specialized niche that includes extracellular matrix and supporting stromal and endothelial cells that both maintain stem cell pluripotency and enable the generation of differentiated cells. Cues for lymphocyte development include changes in integrin-dependent cell motility and adhesion which ultimately help to determine cell fate. The capacity of lymphocytes to adhere and migrate is important for modulating these developmental signals both by regulating the cues that the cell receives from the local microenvironment as well as facilitating the localization of precursors to tissue niches throughout the body. Here we consider how changing migratory and adhesive phenotypes contribute to human natural killer (NK)- and T-cell development as they undergo development from precursors to mature, circulating cells and how our understanding of this process is informed by in vitro models of T- and NK cell generation.
Collapse
Affiliation(s)
- Barclay J. Lee
- Department of Bioengineering, Rice University, Houston, TX 77005
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Emily M. Mace
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032
| |
Collapse
|
31
|
Mesa-Núñez C, Leon-Rico D, Aldea M, Damián C, Sanchez-Baltasar R, Sanchez R, Alberquilla O, Segovia JC, Bueren JA, Almarza E. The downregulated membrane expression of CD18 in CD34 + cells defines a primitive population of human hematopoietic stem cells. Stem Cell Res Ther 2020; 11:164. [PMID: 32345365 PMCID: PMC7189462 DOI: 10.1186/s13287-020-01672-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 03/18/2020] [Accepted: 04/08/2020] [Indexed: 01/06/2023] Open
Abstract
Background CD18 is the common beta subunit of β2 integrins, which are expressed on hematopoietic cells. β2 integrins are essential for cell adhesion and leukocyte trafficking. Methods Here we have analyzed the expression of CD18 in different subsets of human hematopoietic stem and progenitor cells (HSPCs) from cord blood (CB), bone marrow (BM), and mobilized peripheral blood (mPB) samples. CD34+ cells were classified into CD18high and CD18low/neg, and each of these populations was analyzed for the expression of HSPC markers, as well as for their clonogenity, quiescence state, and repopulating ability in immunodeficient mice. Results A downregulated membrane expression of CD18 was associated with a primitive hematopoietic stem cells (HSC) phenotype, as well as with a higher content of quiescent cells and multipotent colony-forming cells (CFCs). Although no differences in the short-term repopulating potential of CD18low/neg CD34+ and CD18high CD34+ cells were observed, CD18low/neg CD34+ cells were characterized by an enhanced long-term repopulating ability in NSG mice. Conclusions Overall, our results indicate that the downregulated membrane expression of CD18 characterizes a primitive population of human hematopoietic repopulating cells.
Collapse
Affiliation(s)
- Cristina Mesa-Núñez
- Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Av. Complutense 40, 28040, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Melchor Fernández Almagro 3, 28029, Madrid, Spain.,Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS- FJD, UAM), Av. de los Reyes Católicos 2, 28040, Madrid, Spain
| | - Diego Leon-Rico
- Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Av. Complutense 40, 28040, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Melchor Fernández Almagro 3, 28029, Madrid, Spain.,Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS- FJD, UAM), Av. de los Reyes Católicos 2, 28040, Madrid, Spain
| | - Montserrat Aldea
- Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Av. Complutense 40, 28040, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Melchor Fernández Almagro 3, 28029, Madrid, Spain.,Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS- FJD, UAM), Av. de los Reyes Católicos 2, 28040, Madrid, Spain
| | - Carlos Damián
- Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Av. Complutense 40, 28040, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Melchor Fernández Almagro 3, 28029, Madrid, Spain.,Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS- FJD, UAM), Av. de los Reyes Católicos 2, 28040, Madrid, Spain
| | - Raquel Sanchez-Baltasar
- Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Av. Complutense 40, 28040, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Melchor Fernández Almagro 3, 28029, Madrid, Spain.,Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS- FJD, UAM), Av. de los Reyes Católicos 2, 28040, Madrid, Spain
| | - Rebeca Sanchez
- Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Av. Complutense 40, 28040, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Melchor Fernández Almagro 3, 28029, Madrid, Spain.,Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS- FJD, UAM), Av. de los Reyes Católicos 2, 28040, Madrid, Spain
| | - Omaira Alberquilla
- Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Av. Complutense 40, 28040, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Melchor Fernández Almagro 3, 28029, Madrid, Spain.,Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS- FJD, UAM), Av. de los Reyes Católicos 2, 28040, Madrid, Spain
| | - José Carlos Segovia
- Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Av. Complutense 40, 28040, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Melchor Fernández Almagro 3, 28029, Madrid, Spain.,Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS- FJD, UAM), Av. de los Reyes Católicos 2, 28040, Madrid, Spain
| | - Juan Antonio Bueren
- Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Av. Complutense 40, 28040, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Melchor Fernández Almagro 3, 28029, Madrid, Spain.,Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS- FJD, UAM), Av. de los Reyes Católicos 2, 28040, Madrid, Spain
| | - Elena Almarza
- Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Av. Complutense 40, 28040, Madrid, Spain. .,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Melchor Fernández Almagro 3, 28029, Madrid, Spain. .,Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS- FJD, UAM), Av. de los Reyes Católicos 2, 28040, Madrid, Spain.
| |
Collapse
|
32
|
Manouchehri N, Hussain RZ, Cravens PD, Doelger R, Greenberg BM, Okuda DT, Forsthuber TG, Eagar TN, Stüve O. Limitations of cell-lineage-specific non-dynamic gene recombination in CD11c.Cre +ITGA4 fl/fl mice. J Neuroimmunol 2020; 344:577245. [PMID: 32335319 DOI: 10.1016/j.jneuroim.2020.577245] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/14/2020] [Accepted: 04/15/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND The Cre-lox system is a non-dynamic method of gene modification and characterization. Promoters thought to be relatively cell-specific are utilized for generation of cell-lineage-specific gene modifications. METHODS CD11c.Cre+ITGA4fl/fl mice were generated to abolish the expression of ITGA (α4-integrin) in CD11c+ cells. Ex vivo flow cytometry studies were used to assess the expression of cellular surface markers in different lymphoid compartments and leukocytes subsets after Cre-mediated recombination. RESULTS A significant reduction of α4-integrin expression among CD11c+- cells was achieved in CD11c.Cre+ITGA4fl/fl mice in primary and secondary lymphoid tissues. A similar reduction in the expression of α4-integrin was also observed in CD11c- cells. CONCLUSION Cre-lox-mediated cell lineage-specific gene deletion is limited by the transient expression of recombination regulating sequences in hematopoietic cell lines. These methodological issues indicate the need to consider when to employ non-dynamic DNA recombination models in animal models of CNS autoimmunity. An experimental algorithm to address the biological complexities of non-dynamic gene recombination is provided.
Collapse
Affiliation(s)
- Navid Manouchehri
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center at Dallas, TX, USA
| | - Rehana Z Hussain
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center at Dallas, TX, USA
| | - Petra D Cravens
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center at Dallas, TX, USA
| | - Richard Doelger
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center at Dallas, TX, USA
| | - Benjamin M Greenberg
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center at Dallas, TX, USA
| | - Darin T Okuda
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center at Dallas, TX, USA
| | - Thomas G Forsthuber
- Department of Biology, University of Texas at San Antonio, San Antonio, TX, USA
| | - Todd N Eagar
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, USA
| | - Olaf Stüve
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center at Dallas, TX, USA; Neurology Section, VA North Texas Health Care System, Medical Service, Dallas, TX, USA.
| |
Collapse
|
33
|
Giladi A, Cohen M, Medaglia C, Baran Y, Li B, Zada M, Bost P, Blecher-Gonen R, Salame TM, Mayer JU, David E, Ronchese F, Tanay A, Amit I. Dissecting cellular crosstalk by sequencing physically interacting cells. Nat Biotechnol 2020; 38:629-637. [PMID: 32152598 DOI: 10.1038/s41587-020-0442-2] [Citation(s) in RCA: 155] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 01/30/2020] [Indexed: 02/06/2023]
Abstract
Crosstalk between neighboring cells underlies many biological processes, including cell signaling, proliferation and differentiation. Current single-cell genomic technologies profile each cell separately after tissue dissociation, losing information on cell-cell interactions. In the present study, we present an approach for sequencing physically interacting cells (PIC-seq), which combines cell sorting of physically interacting cells (PICs) with single-cell RNA-sequencing. Using computational modeling, PIC-seq systematically maps in situ cellular interactions and characterizes their molecular crosstalk. We apply PIC-seq to interrogate diverse interactions including immune-epithelial PICs in neonatal murine lungs. Focusing on interactions between T cells and dendritic cells (DCs) in vitro and in vivo, we map T cell-DC interaction preferences, and discover regulatory T cells as a major T cell subtype interacting with DCs in mouse draining lymph nodes. Analysis of T cell-DC pairs reveals an interaction-specific program between pathogen-presenting migratory DCs and T cells. PIC-seq provides a direct and broadly applicable technology to characterize intercellular interaction-specific pathways at high resolution.
Collapse
Affiliation(s)
- Amir Giladi
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Merav Cohen
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel.,Precision Immunology Institute, Tisch Cancer Institute, Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Chiara Medaglia
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel.,Department of Microbiology and Molecular Medicine, University of Geneva Medical School, Geneva, Switzerland
| | - Yael Baran
- Department of Computer Science and Applied Mathematics, Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Baoguo Li
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Mor Zada
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Pierre Bost
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel.,Systems Biology Group, Center for Bioinformatics, Biostatistics and Integrative Biology (C3BI) and USR 3756, Institut Pasteur CNRS, Paris, France.,Sorbonne Université, Complexité du vivant, Paris, France
| | - Ronnie Blecher-Gonen
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel.,Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Tomer-Meir Salame
- Flow Cytometry Unit, Department of Biological Services, Weizmann Institute of Science, Rehovot, Israel
| | | | - Eyal David
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Franca Ronchese
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Amos Tanay
- Department of Computer Science and Applied Mathematics, Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel.
| | - Ido Amit
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
34
|
Ulyanova T, Georgolopoulos G, Papayannopoulou T. Reappraising the role of α5 integrin and the microenvironmental support in stress erythropoiesis. Exp Hematol 2019; 81:16-31.e4. [PMID: 31887343 DOI: 10.1016/j.exphem.2019.12.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/13/2019] [Accepted: 12/15/2019] [Indexed: 02/06/2023]
Abstract
We previously studied the role of β1 integrin and some of its different α partners relevant to erythropoiesis. Although clear and consistent answers regarding the role of α4β1 (VLA-4) were evident, the role of its companion integrin α5β1 (VLA-5) was clouded by inconsistent outcomes in all prior publications. Furthermore, the functional consequences of integrin deficiencies only in microenvironmental (ME) cells supporting erythroid cell expansion and maturation post stress have never been explored. In the study described here, we created several additional mouse models in the aim of addressing unanswered questions regarding functional consequences of single or combined integrin deficiencies in erythroid cells or only in ME supporting cells. Our novel and expansive data solidified the intrinsic requirement of both α4 and α5 integrins in erythroid cells for their proliferative expansion and maturation in response to stress; α5 integrin alone, deleted either early in all hematopoietic cells or only in erythroid cell, has only a redundant role in proliferative expansion and is dispensable for erythroid maturation. By contrast, α4 integrin, on its own, exerts a dominant effect on timely and optimal erythroid maturation. Deficiency of both α4 and α5 integrins in ME cells, including macrophages, does not negatively influence stress response by normal erythroid cells, in great contrast to the effect of ME cells deficient in all β1 integrins. Collectively the present data offer deeper insight into the coordination of different β1 integrin functional activities in erythroid cells or in ME cells for optimal erythroid stress response.
Collapse
Affiliation(s)
- Tatyana Ulyanova
- Division of Hematology, Department of Medicine, University of Washington, Seattle, Washington, USA
| | | | - Thalia Papayannopoulou
- Division of Hematology, Department of Medicine, University of Washington, Seattle, Washington, USA.
| |
Collapse
|
35
|
Regulation of cell adhesion: a collaborative effort of integrins, their ligands, cytoplasmic actors, and phosphorylation. Q Rev Biophys 2019; 52:e10. [PMID: 31709962 DOI: 10.1017/s0033583519000088] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Integrins are large heterodimeric type 1 membrane proteins expressed in all nucleated mammalian cells. Eighteen α-chains and eight β-chains can combine to form 24 different integrins. They are cell adhesion proteins, which bind to a large variety of cellular and extracellular ligands. Integrins are required for cell migration, hemostasis, translocation of cells out from the blood stream and further movement into tissues, but also for the immune response and tissue morphogenesis. Importantly, integrins are not usually active as such, but need activation to become adhesive. Integrins are activated by outside-in activation through integrin ligand binding, or by inside-out activation through intracellular signaling. An important question is how integrin activity is regulated, and this topic has recently drawn much attention. Changes in integrin affinity for ligand binding are due to allosteric structural alterations, but equally important are avidity changes due to integrin clustering in the plane of the plasma membrane. Recent studies have partially solved how integrin cell surface structures change during activation. The integrin cytoplasmic domains are relatively short, but by interacting with a variety of cytoplasmic proteins in a regulated manner, the integrins acquire a number of properties important not only for cell adhesion and movement, but also for cellular signaling. Recent work has shown that specific integrin phosphorylations play pivotal roles in the regulation of integrin activity. Our purpose in this review is to integrate the present knowledge to enable an understanding of how cell adhesion is dynamically regulated.
Collapse
|
36
|
Chiu YG, Aljitawi OS. VCAM-1+ macrophages usher hematopoietic stem and progenitor cell to vascular niche "hotspots". ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:S116. [PMID: 31576323 DOI: 10.21037/atm.2019.05.48] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yahui Grace Chiu
- Department of Hematology and Oncology, Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| | - Omar S Aljitawi
- Department of Hematology and Oncology, Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
37
|
Sie C, Perez LG, Kreutzfeldt M, Potthast M, Ohnmacht C, Merkler D, Huber S, Krug A, Korn T. Dendritic Cell Accumulation in the Gut and Central Nervous System Is Differentially Dependent on α4 Integrins. THE JOURNAL OF IMMUNOLOGY 2019; 203:1417-1427. [PMID: 31399516 DOI: 10.4049/jimmunol.1900468] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 07/13/2019] [Indexed: 12/11/2022]
Abstract
Homing of pathogenic CD4+ T cells to the CNS is dependent on α4 integrins. However, it is uncertain whether α4 integrins are also required for the migration of dendritic cell (DC) subsets, which sample Ags from nonlymphoid tissues to present it to T cells. In this study, after genetic ablation of Itga4 in DCs and monocytes in mice via the promoters of Cd11c and Lyz2 (also known as LysM), respectively, the recruitment of α4 integrin-deficient conventional and plasmacytoid DCs to the CNS was unaffected, whereas α4 integrin-deficient, monocyte-derived DCs accumulated less efficiently in the CNS during experimental autoimmune encephalomyelitis in a competitive setting than their wild-type counterparts. In a noncompetitive setting, α4 integrin deficiency on monocyte-derived DCs was fully compensated. In contrast, in small intestine and colon, the fraction of α4 integrin-deficient CD11b+CD103+ DCs was selectively reduced in steady-state. Yet, T cell-mediated inflammation and host defense against Citrobacter rodentium were not impaired in the absence of α4 integrins on DCs. Thus, inflammatory conditions can promote an environment that is indifferent to α4 integrin expression by DCs.
Collapse
Affiliation(s)
- Christopher Sie
- Abteilung für Experimentelle Neuroimmunologie, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany.,Klinik für Neurologie, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany
| | - Laura Garcia Perez
- I. Medizinische Klinik und Poliklinik, Universitätsklinikum Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Mario Kreutzfeldt
- Division of Clinical Pathology, Department of Pathology and Immunology, University of Geneva, 1211 Geneva, Switzerland
| | - Maria Potthast
- Center of Allergy and Environment, Helmholtz Center and Technical University of Munich, 80802 Munich, Germany
| | - Caspar Ohnmacht
- Center of Allergy and Environment, Helmholtz Center and Technical University of Munich, 80802 Munich, Germany
| | - Doron Merkler
- Division of Clinical Pathology, Department of Pathology and Immunology, University of Geneva, 1211 Geneva, Switzerland
| | - Samuel Huber
- I. Medizinische Klinik und Poliklinik, Universitätsklinikum Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Anne Krug
- Institute for Immunology, Biomedical Center, Ludwig Maximilians University of Munich, 82152 Planegg-Martinsried, Germany; and
| | - Thomas Korn
- Abteilung für Experimentelle Neuroimmunologie, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany; .,Klinik für Neurologie, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany.,Munich Cluster for Systems Neurology, SyNergy, 81377 Munich, Germany
| |
Collapse
|
38
|
Phc2 controls hematopoietic stem and progenitor cell mobilization from bone marrow by repressing Vcam1 expression. Nat Commun 2019; 10:3496. [PMID: 31375680 PMCID: PMC6677815 DOI: 10.1038/s41467-019-11386-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 07/12/2019] [Indexed: 01/04/2023] Open
Abstract
The timely mobilization of hematopoietic stem and progenitor cells (HSPCs) is essential for maintaining hematopoietic and tissue leukocyte homeostasis. Understanding how HSPCs migrate between bone marrow (BM) and peripheral tissues is of great significance in the clinical setting, where therapeutic strategies for modulating their migration capacity determine the clinical outcome. Here, we identify an epigenetic regulator, Phc2, as a critical modulator of HSPC trafficking. The genetic ablation of Phc2 in mice causes a severe defect in HSPC mobilization through the derepression of Vcam1 in bone marrow stromal cells (BMSCs), ultimately leading to a systemic immunodeficiency. Moreover, the pharmacological inhibition of VCAM-1 in Phc2-deficient mice reverses the symptoms. We further determine that Phc2-dependent Vcam1 repression in BMSCs is mediated by the epigenetic regulation of H3K27me3 and H2AK119ub. Together, our data demonstrate a cell-extrinsic role for Phc2 in controlling the mobilization of HSPCs by finely tuning their bone marrow niche. Mobilization of hematopoietic stem and progenitor cells (HSPCs) into the circulation is essential for maintaining homeostasis. Here, the authors show that Phc2 in bone marrow stromal cells represses the cell adhesion molecule Vcam1 and facilitates mobilization of HSPCs through regulation of epigenetic marks.
Collapse
|
39
|
Hussain RZ, Cravens PD, Miller-Little WA, Doelger R, Granados V, Herndon E, Okuda DT, Eagar TN, Stüve O. α4-integrin deficiency in B cells does not affect disease in a T-cell-mediated EAE disease model. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2019; 6:e563. [PMID: 31086806 PMCID: PMC6481229 DOI: 10.1212/nxi.0000000000000563] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 02/01/2019] [Indexed: 11/16/2022]
Abstract
Objective The goal of this study was to investigate the role of CD 19+ B cells within the brain and spinal cord during CNS autoimmunity in a peptide-induced, primarily T-cell-mediated experimental autoimmune encephalomyelitis (EAE) model of MS. We hypothesized that CD19+ B cells outside the CNS drive inflammation in EAE. Methods We generated CD19.Cre+/- α4-integrinfl/fl mice. EAE was induced by active immunization with myelin oligodendrocyte glycoprotein peptide (MOGp35-55). Multiparameter flow cytometry was used to phenotype leukocyte subsets in primary and secondary lymphoid organs and the CNS. Serum cytokine levels and Ig levels were assessed by bead array. B-cell adoptive transfer was used to determine the compartment-specific pathogenic role of antigen-specific and non-antigen-specific B cells. Results A genetic ablation of α4-integrin in CD19+/- B cells significantly reduced the number of CD19+ B cells in the CNS but does not affect EAE disease activity in active MOGp35-55-induced disease. The composition of B-cell subsets in the brain, primary lymphoid organs, and secondary lymphoid organs of CD19.Cre+/- α4-integrinfl/fl mice was unchanged during MOGp35-55-induced EAE. Adoptive transfer of purified CD19+ B cells from CD19.Cre+/- α4-integrinfl/fl mice or C57BL/6 wild-type (WT) control mice immunized with recombinant rMOG1-125 or ovalbumin323-339 into MOGp35-55-immunized CD19.Cre+/- α4-integrinfl/fl mice caused worse clinical EAE than was observed in MOGp35-55-immunized C57BL/6 WT control mice that did not receive adoptively transferred CD19+ B cells. Conclusions Observations made in CD19.Cre+/- α4-integrinfl/fl mice in active MOGp35-55-induced EAE suggest a compartment-specific pathogenic role of CD19+ B cells mostly outside of the CNS that is not necessarily antigen specific.
Collapse
MESH Headings
- Adoptive Transfer
- Animals
- Antigens, CD19/genetics
- Antigens, CD19/immunology
- B-Lymphocytes/immunology
- Bone Marrow/immunology
- Brain/immunology
- Central Nervous System/immunology
- Cytokines
- Disease Models, Animal
- Encephalomyelitis, Autoimmune, Experimental/chemically induced
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Integrin alpha4/deficiency
- Integrin alpha4/genetics
- Integrin alpha4/immunology
- Lymph Nodes/immunology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Spinal Cord/immunology
- Spleen/immunology
- T-Lymphocytes/immunology
Collapse
Affiliation(s)
- Rehana Z Hussain
- Department of Neurology and Neurotherapeutics (R.Z.H., P.C.C., W.A.M.-L., R.D., V.G., D.T.O., O.S.) and Department of Pathology (E.H.), University of Texas Southwestern Medical Center, Dallas; Department of Pathology and Genomic Medicine (T.N.E.), Houston Methodist Hospital; Neurology Section (O.S.), VA North Texas Health Care System, Medical Service; and Department of Neurology (O.S.), Klinikum Rechts der Isar, Technische Universität München, Germany
| | - Petra D Cravens
- Department of Neurology and Neurotherapeutics (R.Z.H., P.C.C., W.A.M.-L., R.D., V.G., D.T.O., O.S.) and Department of Pathology (E.H.), University of Texas Southwestern Medical Center, Dallas; Department of Pathology and Genomic Medicine (T.N.E.), Houston Methodist Hospital; Neurology Section (O.S.), VA North Texas Health Care System, Medical Service; and Department of Neurology (O.S.), Klinikum Rechts der Isar, Technische Universität München, Germany
| | - William A Miller-Little
- Department of Neurology and Neurotherapeutics (R.Z.H., P.C.C., W.A.M.-L., R.D., V.G., D.T.O., O.S.) and Department of Pathology (E.H.), University of Texas Southwestern Medical Center, Dallas; Department of Pathology and Genomic Medicine (T.N.E.), Houston Methodist Hospital; Neurology Section (O.S.), VA North Texas Health Care System, Medical Service; and Department of Neurology (O.S.), Klinikum Rechts der Isar, Technische Universität München, Germany
| | - Richard Doelger
- Department of Neurology and Neurotherapeutics (R.Z.H., P.C.C., W.A.M.-L., R.D., V.G., D.T.O., O.S.) and Department of Pathology (E.H.), University of Texas Southwestern Medical Center, Dallas; Department of Pathology and Genomic Medicine (T.N.E.), Houston Methodist Hospital; Neurology Section (O.S.), VA North Texas Health Care System, Medical Service; and Department of Neurology (O.S.), Klinikum Rechts der Isar, Technische Universität München, Germany
| | - Valerie Granados
- Department of Neurology and Neurotherapeutics (R.Z.H., P.C.C., W.A.M.-L., R.D., V.G., D.T.O., O.S.) and Department of Pathology (E.H.), University of Texas Southwestern Medical Center, Dallas; Department of Pathology and Genomic Medicine (T.N.E.), Houston Methodist Hospital; Neurology Section (O.S.), VA North Texas Health Care System, Medical Service; and Department of Neurology (O.S.), Klinikum Rechts der Isar, Technische Universität München, Germany
| | - Emily Herndon
- Department of Neurology and Neurotherapeutics (R.Z.H., P.C.C., W.A.M.-L., R.D., V.G., D.T.O., O.S.) and Department of Pathology (E.H.), University of Texas Southwestern Medical Center, Dallas; Department of Pathology and Genomic Medicine (T.N.E.), Houston Methodist Hospital; Neurology Section (O.S.), VA North Texas Health Care System, Medical Service; and Department of Neurology (O.S.), Klinikum Rechts der Isar, Technische Universität München, Germany
| | - Darin T Okuda
- Department of Neurology and Neurotherapeutics (R.Z.H., P.C.C., W.A.M.-L., R.D., V.G., D.T.O., O.S.) and Department of Pathology (E.H.), University of Texas Southwestern Medical Center, Dallas; Department of Pathology and Genomic Medicine (T.N.E.), Houston Methodist Hospital; Neurology Section (O.S.), VA North Texas Health Care System, Medical Service; and Department of Neurology (O.S.), Klinikum Rechts der Isar, Technische Universität München, Germany
| | - Todd N Eagar
- Department of Neurology and Neurotherapeutics (R.Z.H., P.C.C., W.A.M.-L., R.D., V.G., D.T.O., O.S.) and Department of Pathology (E.H.), University of Texas Southwestern Medical Center, Dallas; Department of Pathology and Genomic Medicine (T.N.E.), Houston Methodist Hospital; Neurology Section (O.S.), VA North Texas Health Care System, Medical Service; and Department of Neurology (O.S.), Klinikum Rechts der Isar, Technische Universität München, Germany
| | - Olaf Stüve
- Department of Neurology and Neurotherapeutics (R.Z.H., P.C.C., W.A.M.-L., R.D., V.G., D.T.O., O.S.) and Department of Pathology (E.H.), University of Texas Southwestern Medical Center, Dallas; Department of Pathology and Genomic Medicine (T.N.E.), Houston Methodist Hospital; Neurology Section (O.S.), VA North Texas Health Care System, Medical Service; and Department of Neurology (O.S.), Klinikum Rechts der Isar, Technische Universität München, Germany
| |
Collapse
|
40
|
Dotan I, Allez M, Danese S, Keir M, Tole S, McBride J. The role of integrins in the pathogenesis of inflammatory bowel disease: Approved and investigational anti-integrin therapies. Med Res Rev 2019; 40:245-262. [PMID: 31215680 PMCID: PMC6973243 DOI: 10.1002/med.21601] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 04/12/2019] [Accepted: 05/13/2019] [Indexed: 12/12/2022]
Abstract
Inflammatory bowel disease (IBD) is characterized by uncontrolled inflammation in the gastrointestinal tract. The underlying pathobiology of IBD includes an increase in infiltrating gut-homing lymphocytes. Although lymphocyte homing is typically a tightly regulated and stepwise process involving multiple integrins and adhesion molecules expressed on endothelial cells, the distinct roles of integrin-expressing immune cells is not fully understood in the pathology of IBD. In this review, we detail the involvement of integrins expressed on specific lymphocyte subsets in the pathogenesis of IBD and discuss the current status of approved and investigational integrin-targeted therapies.
Collapse
Affiliation(s)
- Iris Dotan
- Division of Gastroenterology, Rabin Medical Center, Petah Tikva, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Matthieu Allez
- Department of Gastroenterology, Hôpital Saint-Louis, AP-HP, INSERM U1160, University Denis Diderot, Paris, France
| | - Silvio Danese
- Gastrointestinal Immunopathology Laboratory and IBD Unit, Humanitas Clinical and Research Center, Milan, Italy
| | - Mary Keir
- Department of Research and Early Development, Genentech, South San Francisco, California
| | - Swati Tole
- Department of Product Development, Genentech, South San Francisco, California
| | - Jacqueline McBride
- Department of Research and Early Development, Genentech, South San Francisco, California
| |
Collapse
|
41
|
Oliveira M, Laranjeira P, Fortuna M, Bártolo R, Ribeiro A, Santos M, Cortesão E, Marques G, Sarmento‐Ribeiro AB, Vitória H, Ribeiro L, Paiva A. CD43 and CD49d from the B‐Cell Chronic Lymphoproliferative Disorders Diagnostic Panel Are Useful to Detect Erythroid Dysplasia. CYTOMETRY PART B-CLINICAL CYTOMETRY 2019; 96:417-425. [DOI: 10.1002/cyto.b.21792] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 04/23/2019] [Accepted: 05/18/2019] [Indexed: 11/11/2022]
Affiliation(s)
- Melissa Oliveira
- Unidade de Gestão Operacional de Citometria, Serviço de Patologia ClínicaCentro Hospitalar e Universitário de Coimbra Portugal
| | - Paula Laranjeira
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculdade de MedicinaUniversidade de Coimbra Portugal
| | - Manuela Fortuna
- Unidade de Gestão Operacional de Citometria, Serviço de Patologia ClínicaCentro Hospitalar e Universitário de Coimbra Portugal
| | - Rui Bártolo
- Unidade de Gestão Operacional de Citometria, Serviço de Patologia ClínicaCentro Hospitalar e Universitário de Coimbra Portugal
| | - André Ribeiro
- Serviço de Hematologia ClínicaCentro Hospitalar e Universitário de Coimbra Portugal
| | - Mónica Santos
- Serviço de HematologiaCentro Hospitalar Viseu‐Tondela Portugal
| | - Emília Cortesão
- Serviço de Hematologia ClínicaCentro Hospitalar e Universitário de Coimbra Portugal
| | - Gilberto Marques
- Serviço de Patologia ClínicaCentro Hospitalar e Universitário de Coimbra Portugal
| | - Ana Bela Sarmento‐Ribeiro
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculdade de MedicinaUniversidade de Coimbra Portugal
- Serviço de Hematologia ClínicaCentro Hospitalar e Universitário de Coimbra Portugal
| | - Helena Vitória
- Serviço de HematologiaCentro Hospitalar Viseu‐Tondela Portugal
| | - Letícia Ribeiro
- Serviço de Hematologia ClínicaCentro Hospitalar e Universitário de Coimbra Portugal
| | - Artur Paiva
- Unidade de Gestão Operacional de Citometria, Serviço de Patologia ClínicaCentro Hospitalar e Universitário de Coimbra Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculdade de MedicinaUniversidade de Coimbra Portugal
- Instituto Politécnico de Coimbra, ESTESC‐Coimbra Health SchoolCiências Biomédicas Laboratoriais Portugal
| |
Collapse
|
42
|
de Kruijf EJFM, Fibbe WE, van Pel M. Cytokine-induced hematopoietic stem and progenitor cell mobilization: unraveling interactions between stem cells and their niche. Ann N Y Acad Sci 2019; 1466:24-38. [PMID: 31006885 PMCID: PMC7217176 DOI: 10.1111/nyas.14059] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/15/2019] [Accepted: 02/28/2019] [Indexed: 02/06/2023]
Abstract
Peripheral blood hematopoietic stem and progenitor cells (HSPCs), mobilized by granulocyte colony‐stimulating factor, are widely used as a source for both autologous and allogeneic stem cell transplantation. The use of mobilized HSPCs has several advantages over traditional bone marrow–derived HSPCs, including a less invasive harvesting process for the donor, higher HSPC yields, and faster hematopoietic reconstitution in the recipient. For years, the mechanisms by which cytokines and other agents mobilize HSPCs from the bone marrow were not fully understood. The field of stem cell mobilization research has advanced significantly over the past decade, with major breakthroughs in the elucidation of the complex mechanisms that underlie stem cell mobilization. In this review, we provide an overview of the events that underlie HSPC mobilization and address the relevant cellular and molecular components of the bone marrow niche. Furthermore, current and future mobilizing agents will be discussed.
Collapse
Affiliation(s)
- Evert-Jan F M de Kruijf
- Section of Stem Cell Biology, Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, the Netherlands
| | - Willem E Fibbe
- Section of Stem Cell Biology, Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, the Netherlands
| | - Melissa van Pel
- Section of Stem Cell Biology, Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
43
|
Shrestha KR, Yoo SY. Phage-Based Artificial Niche: The Recent Progress and Future Opportunities in Stem Cell Therapy. Stem Cells Int 2019; 2019:4038560. [PMID: 31073312 PMCID: PMC6470417 DOI: 10.1155/2019/4038560] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 02/02/2019] [Accepted: 03/10/2019] [Indexed: 12/11/2022] Open
Abstract
Self-renewal and differentiation of stem cells can be the best option for treating intractable diseases in regenerative medicine, and they occur when these cells reside in a special microenvironment, called the "stem cell niche." Thus, the niche is crucial for the effective performance of the stem cells in both in vivo and in vitro since the niche provides its functional cues by interacting with stem cells chemically, physically, or topologically. This review provides a perspective on the different types of artificial niches including engineered phage and how they could be used to recapitulate or manipulate stem cell niches. Phage-based artificial niche engineering as a promising therapeutic strategy for repair and regeneration of tissues is also discussed.
Collapse
Affiliation(s)
- Kshitiz Raj Shrestha
- BIO-IT Foundry Technology Institute, Pusan National University, Busan 46241, Republic of Korea
| | - So Young Yoo
- BIO-IT Foundry Technology Institute, Pusan National University, Busan 46241, Republic of Korea
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea
| |
Collapse
|
44
|
Periostin and Integrin Signaling in Stem Cell Regulation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1132:163-176. [DOI: 10.1007/978-981-13-6657-4_16] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
45
|
Hussain RZ, Cravens PC, Doelger R, Dentel B, Herndon E, Loof N, Tsai P, Okuda DT, Racke MK, Stüve O. TLR3 agonism re-establishes CNS immune competence during α4-integrin deficiency. Ann Clin Transl Neurol 2018; 5:1543-1561. [PMID: 30564621 PMCID: PMC6292184 DOI: 10.1002/acn3.664] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 09/13/2018] [Accepted: 09/13/2018] [Indexed: 01/07/2023] Open
Abstract
OBJECTIVE Natalizumab blocks α4-integrin-mediated leukocyte migration into the central nervous system (CNS). It diminishes disease activity in multiple sclerosis (MS), but carries a high risk of progressive multifocal encephalopathy (PML), an opportunistic infection with JV virus that may be prompted by diminished CNS immune surveillance. The initial host response to viral infections entails the synthesis of type I interferons (IFN) upon engagement of TLR3 receptors. We hypothesized that TLR3 agonism reestablishes CNS immune competence in the setting of α4-integrin deficiency. METHOD We generated the conditional knock out mouse strain Mx1.Cre+ α4-integrinfl/fl, in which the α4-integrin gene is ablated upon treatment with the TLR3 agonist poly I:C. Adoptive transfer of purified lymphocytes from poly I:C-treated Mx1.Cre+ α4-integrinfl/fl donors into naive recipients recapitulates immunosuppression under natalizumab. Active experimental autoimmune encephalomyelitis (EAE) in Mx1.Cre+ α4-integrinfl/fl mice treated with poly I:C represents immune-reconstitution. RESULTS Adoptive transfer of T cells from poly I:C treated Mx1.Cre+ α4-integrinfl/fl mice causes minimal EAE. The in vitro migratory capability of CD45+ splenocytes from these mice is reduced. In contrast, actively-induced EAE after poly I:C treatment results in full disease susceptibility of Mx1.Cre+ α4-integrinfl/fl mice, and the number and composition of CNS leukocytes is similar to controls. Extravasation of Evans Blue indicates a compromised blood-brain barrier. Poly I:C treatment results in a 2-fold increase in IFN β transcription in the spinal cord. INTERPRETATION Our data suggest that TLR3 agonism in the setting of relative α4-integrin deficiency can reestablish CNS immune surveillance in an experimental model. This pathway may present a feasible treatment strategy to treat and prevent PML under natalizumab therapy and should be considered for further experimental evaluation in a controlled setting.
Collapse
Affiliation(s)
- Rehana Z. Hussain
- Department of Neurology and NeurotherapeuticsUniversity of Texas Southwestern Medical CenterDallasTexas
| | - Petra C. Cravens
- Department of Neurology and NeurotherapeuticsUniversity of Texas Southwestern Medical CenterDallasTexas
| | - Richard Doelger
- Department of Neurology and NeurotherapeuticsUniversity of Texas Southwestern Medical CenterDallasTexas
| | - Brianne Dentel
- Department of Neurology and NeurotherapeuticsUniversity of Texas Southwestern Medical CenterDallasTexas
| | - Emily Herndon
- Department of PathologyUniversity of Texas Southwestern Medical CenterDallasTexas
| | - Nicolas Loof
- The Moody Foundation Flow Cytometry FacilityChildren's Research InstituteUniversity of Texas Southwestern Medical CenterDallasTexas
| | - Peter Tsai
- Department of Neurology and NeurotherapeuticsUniversity of Texas Southwestern Medical CenterDallasTexas
| | - Darin T. Okuda
- Department of Neurology and NeurotherapeuticsUniversity of Texas Southwestern Medical CenterDallasTexas
| | | | - Olaf Stüve
- Department of Neurology and NeurotherapeuticsUniversity of Texas Southwestern Medical CenterDallasTexas
- Neurology SectionVA North Texas Health Care System, Medical ServiceDallasTexas
- Department of NeurologyKlinikum rechts der IsarTechnische Universität MünchenMunichGermany
| |
Collapse
|
46
|
VCAM-1 + macrophages guide the homing of HSPCs to a vascular niche. Nature 2018; 564:119-124. [PMID: 30455424 DOI: 10.1038/s41586-018-0709-7] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 09/14/2018] [Indexed: 12/13/2022]
Abstract
Haematopoietic stem and progenitor cells (HSPCs) give rise to all blood lineages that support the entire lifespan of vertebrates1. After HSPCs emerge from endothelial cells within the developing dorsal aorta, homing allows the nascent cells to anchor in their niches for further expansion and differentiation2-5. Unique niche microenvironments, composed of various blood vessels as units of microcirculation and other niche components such as stromal cells, regulate this process6-9. However, the detailed architecture of the microenvironment and the mechanism for the regulation of HSPC homing remain unclear. Here, using advanced live imaging and a cell-labelling system, we perform high-resolution analyses of the HSPC homing in caudal haematopoietic tissue of zebrafish (equivalent to the fetal liver in mammals), and reveal the role of the vascular architecture in the regulation of HSPC retention. We identify a VCAM-1+ macrophage-like niche cell population that patrols the inner surface of the venous plexus, interacts with HSPCs in an ITGA4-dependent manner, and directs HSPC retention. These cells, named 'usher cells', together with caudal venous capillaries and plexus, define retention hotspots within the homing microenvironment. Thus, the study provides insights into the mechanism of HSPC homing and reveals the essential role of a VCAM-1+ macrophage population with patrolling behaviour in HSPC retention.
Collapse
|
47
|
Hermann DM, Kleinschnitz C, Gunzer M. Role of polymorphonuclear neutrophils in the reperfused ischemic brain: insights from cell-type-specific immunodepletion and fluorescence microscopy studies. Ther Adv Neurol Disord 2018; 11:1756286418798607. [PMID: 30245743 PMCID: PMC6144496 DOI: 10.1177/1756286418798607] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 08/10/2018] [Indexed: 01/19/2023] Open
Abstract
Polymorphonuclear neutrophil granulocytes (PMNs) are part of the early post-ischemic immune response that orchestrates the removal of infarcted brain tissue. PMNs contribute to secondary brain injury in experimental stroke models. In human patients, high PMN-to-lymphocyte ratios in peripheral blood are predictive of poor stroke outcome. Following earlier studies indicating that the cerebral microvasculature forms an efficient barrier that impedes PMN brain entry even under conditions of ischemia, more recent studies combining intravital two-photon microscopy and ex vivo immunohistochemistry unequivocally demonstrated the accumulation of PMNs in the ischemic brain parenchyma. In the meantime, transgenic mouse lines, such as mice expressing Cre-recombinase and the red fluorescent reporter protein tdTomato under the highly granulocyte-specific locus for the gene Ly6G (so-called Catchup mice), have become available that allow study of dynamic interactions of PMNs with brain parenchymal cells. These mice will further help us understand how PMNs promote brain injury and disturb brain remodeling and plasticity.
Collapse
Affiliation(s)
- Dirk M Hermann
- Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Hufelandstraße 55, Essen D-45122, Germany
| | | | - Matthias Gunzer
- Institute of Experimental Immunology and Imaging, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
48
|
Breuer J, Korpos E, Hannocks MJ, Schneider-Hohendorf T, Song J, Zondler L, Herich S, Flanagan K, Korn T, Zarbock A, Kuhlmann T, Sorokin L, Wiendl H, Schwab N. Blockade of MCAM/CD146 impedes CNS infiltration of T cells over the choroid plexus. J Neuroinflammation 2018; 15:236. [PMID: 30134924 PMCID: PMC6106934 DOI: 10.1186/s12974-018-1276-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 08/10/2018] [Indexed: 12/20/2022] Open
Abstract
Background Very late antigen 4 (VLA-4; integrin α4β1) is critical for transmigration of T helper (TH) 1 cells into the central nervous system (CNS) under inflammatory conditions such as multiple sclerosis (MS). We have previously shown that VLA-4 and melanoma cell adhesion molecule (MCAM) are important for trans-endothelial migration of human TH17 cells in vitro and here investigate their contribution to pathogenic CNS inflammation. Methods Antibody blockade of VLA-4 and MCAM is assessed in murine models of CNS inflammation in conjunction with conditional ablation of α4-integrin expression in T cells. Effects of VLA-4 and MCAM blockade on lymphocyte migration are further investigated in the human system via in vitro T cell transmigration assays. Results Compared to the broad effects of VLA-4 blockade on encephalitogenic T cell migration over endothelial barriers, MCAM blockade impeded encephalitogenic T cell migration in murine models of MS that especially depend on CNS migration across the choroid plexus (CP). In transgenic mice lacking T cell α4-integrin expression (CD4::Itga4−/−), MCAM blockade delayed disease onset. Migration of MCAM-expressing T cells through the CP into the CNS was restricted, where laminin 411 (composed of α4, β1, γ1 chains), the proposed major ligand of MCAM, is detected in the endothelial basement membranes of murine CP tissue. This finding was translated to the human system; blockade of MCAM with a therapeutic antibody reduced in vitro transmigration of MCAM-expressing T cells across a human fibroblast-derived extracellular matrix layer and a brain-derived endothelial monolayer, both expressing laminin α4. Laminin α4 was further detected in situ in CP endothelial-basement membranes in MS patients’ brain tissue. Conclusions Our findings suggest that MCAM-laminin 411 interactions facilitate trans-endothelial migration of MCAM-expressing T cells into the CNS, which seems to be highly relevant to migration via the CP and to potential future clinical applications in neuroinflammatory disorders. Electronic supplementary material The online version of this article (10.1186/s12974-018-1276-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Johanna Breuer
- Clinic of Neurology with Institute of Translational Neurology, University of Münster, Albert-Schweitzer-Campus-1, Building A01, 48149, Münster, Germany
| | - Eva Korpos
- Institute of Physiological Chemistry and of Pathobiochemistry, University of Münster, Münster, Germany.,Cells-in-Motion Cluster of Excellence, University of Münster, Münster, Germany
| | - Melanie-Jane Hannocks
- Institute of Physiological Chemistry and of Pathobiochemistry, University of Münster, Münster, Germany.,Cells-in-Motion Cluster of Excellence, University of Münster, Münster, Germany
| | - Tilman Schneider-Hohendorf
- Clinic of Neurology with Institute of Translational Neurology, University of Münster, Albert-Schweitzer-Campus-1, Building A01, 48149, Münster, Germany
| | - Jian Song
- Institute of Physiological Chemistry and of Pathobiochemistry, University of Münster, Münster, Germany.,Cells-in-Motion Cluster of Excellence, University of Münster, Münster, Germany
| | - Lisa Zondler
- Department of Anesthesiology, University of Münster, Münster, Germany
| | - Sebastian Herich
- Clinic of Neurology with Institute of Translational Neurology, University of Münster, Albert-Schweitzer-Campus-1, Building A01, 48149, Münster, Germany
| | - Ken Flanagan
- Prothena Biosciences Inc., South San Francisco, CA, USA
| | - Thomas Korn
- Department of Neurology, Technical University of Munich, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Alexander Zarbock
- Cells-in-Motion Cluster of Excellence, University of Münster, Münster, Germany.,Department of Anesthesiology, University of Münster, Münster, Germany
| | - Tanja Kuhlmann
- Department of Neuropathology, University of Münster, Münster, Germany
| | - Lydia Sorokin
- Institute of Physiological Chemistry and of Pathobiochemistry, University of Münster, Münster, Germany.,Cells-in-Motion Cluster of Excellence, University of Münster, Münster, Germany
| | - Heinz Wiendl
- Clinic of Neurology with Institute of Translational Neurology, University of Münster, Albert-Schweitzer-Campus-1, Building A01, 48149, Münster, Germany.,Cells-in-Motion Cluster of Excellence, University of Münster, Münster, Germany
| | - Nicholas Schwab
- Clinic of Neurology with Institute of Translational Neurology, University of Münster, Albert-Schweitzer-Campus-1, Building A01, 48149, Münster, Germany.
| |
Collapse
|
49
|
Saito-Reis CA, Marjon KD, Pascetti EM, Floren M, Gillette JM. The tetraspanin CD82 regulates bone marrow homing and engraftment of hematopoietic stem and progenitor cells. Mol Biol Cell 2018; 29:2946-2958. [PMID: 30133344 PMCID: PMC6329911 DOI: 10.1091/mbc.e18-05-0305] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Hematopoietic stem and progenitor cell (HSPC) transplantation represents a treatment option for patients with malignant and nonmalignant hematological diseases. Initial steps in transplantation involve the bone marrow homing and engraftment of peripheral blood–injected HSPCs. In recent work, we identified the tetraspanin CD82 as a potential regulator of HSPC homing to the bone marrow, although its mechanism remains unclear. In the present study, using a CD82 knockout (CD82KO) mouse model, we determined that CD82 modulates HSPC bone marrow maintenance, homing, and engraftment. Bone marrow characterization identified a significant decrease in the number of long-term hematopoietic stem cells in the CD82KO mice, which we linked to cell cycle activation and reduced stem cell quiescence. Additionally, we demonstrate that CD82 deficiency disrupts bone marrow homing and engraftment, with in vitro analysis identifying further defects in migration and cell spreading. Moreover, we find that the CD82KO HSPC homing defect is due at least in part to the hyperactivation of Rac1, as Rac1 inhibition rescues homing capacity. Together, these data provide evidence that CD82 is an important regulator of HSPC bone marrow maintenance, homing, and engraftment and suggest exploiting the CD82 scaffold as a therapeutic target for improved efficacy of stem cell transplants.
Collapse
Affiliation(s)
- Chelsea A Saito-Reis
- Department of Pathology, University of New Mexico Health Science Center, University of New Mexico, Albuquerque, NM 87131
| | - Kristopher D Marjon
- Department of Pathology, University of New Mexico Health Science Center, University of New Mexico, Albuquerque, NM 87131
| | - Erica M Pascetti
- Department of Pathology, University of New Mexico Health Science Center, University of New Mexico, Albuquerque, NM 87131
| | - Muskan Floren
- Department of Pathology, University of New Mexico Health Science Center, University of New Mexico, Albuquerque, NM 87131
| | - Jennifer M Gillette
- Department of Pathology, University of New Mexico Health Science Center, University of New Mexico, Albuquerque, NM 87131
| |
Collapse
|
50
|
Graham N, Qian BZ. Mesenchymal Stromal Cells: Emerging Roles in Bone Metastasis. Int J Mol Sci 2018; 19:E1121. [PMID: 29642534 PMCID: PMC5979535 DOI: 10.3390/ijms19041121] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 03/25/2018] [Accepted: 03/29/2018] [Indexed: 12/13/2022] Open
Abstract
Bone metastasis is the most advanced stage of many cancers and indicates a poor prognosis for patients due to resistance to anti-tumor therapies. The establishment of metastasis within the bone is a multistep process. To ensure survival within the bone marrow, tumor cells must initially colonize a niche in which they can enter dormancy. Subsequently, reactivation permits the proliferation and growth of the tumor cells, giving rise to a macro-metastasis displayed clinically as a bone metastatic lesion. Here, we review the evidences that suggest mesenchymal stromal cells play an important role in each of these steps throughout the development of bone metastasis. Similarities between the molecular mechanisms implicated in these processes and those involved in the homeostasis of the bone indicate that the metastatic cells may exploit the homeostatic processes to their own advantage. Identifying the molecular interactions between the mesenchymal stromal cells and tumor cells that promote tumor development may offer insight into potential therapeutic targets that could be utilized to treat bone metastasis.
Collapse
Affiliation(s)
- Nicola Graham
- Centre for Reproductive Health, Queens Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK.
| | - Bin-Zhi Qian
- Centre for Reproductive Health, Queens Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK.
- Edinburgh Cancer Research UK Centre, University of Edinburgh, Edinburgh EH4 2XR, UK.
| |
Collapse
|